155 research outputs found

    A DWT based perceptual video coding framework: concepts, issues and techniques

    Get PDF
    The work in this thesis explore the DWT based video coding by the introduction of a novel DWT (Discrete Wavelet Transform) / MC (Motion Compensation) / DPCM (Differential Pulse Code Modulation) video coding framework, which adopts the EBCOT as the coding engine for both the intra- and the inter-frame coder. The adaptive switching mechanism between the frame/field coding modes is investigated for this coding framework. The Low-Band-Shift (LBS) is employed for the MC in the DWT domain. The LBS based MC is proven to provide consistent improvement on the Peak Signal-to-Noise Ratio (PSNR) of the coded video over the simple Wavelet Tree (WT) based MC. The Adaptive Arithmetic Coding (AAC) is adopted to code the motion information. The context set of the Adaptive Binary Arithmetic Coding (ABAC) for the inter-frame data is redesigned based on the statistical analysis. To further improve the perceived picture quality, a Perceptual Distortion Measure (PDM) based on human vision model is used for the EBCOT of the intra-frame coder. A visibility assessment of the quantization error of various subbands in the DWT domain is performed through subjective tests. In summary, all these findings have solved the issues originated from the proposed perceptual video coding framework. They include: a working DWT/MC/DPCM video coding framework with superior coding efficiency on sequences with translational or head-shoulder motion; an adaptive switching mechanism between frame and field coding mode; an effective LBS based MC scheme in the DWT domain; a methodology of the context design for entropy coding of the inter-frame data; a PDM which replaces the MSE inside the EBCOT coding engine for the intra-frame coder, which provides improvement on the perceived quality of intra-frames; a visibility assessment to the quantization errors in the DWT domain

    A human visual system based image coder

    Get PDF
    Over the years, society has changed considerably due to technological changes, and digital images have become part and parcel of our everyday lives. Irrespective of applications (i.e., digital camera) and services (information sharing, e.g., Youtube, archive / storage), there is the need for high image quality with high compression ratios. Hence, considerable efforts have been invested in the area of image compression. The traditional image compression systems take into account of statistical redundancies inherent in the image data. However, the development and adaptation of vision models, which take into account the properties of the human visual system (HVS), into picture coders have since shown promising results. The objective of the thesis is to propose the implementation of a vision model in two different manners in the JPEG2000 coding system: (a) a Perceptual Colour Distortion Measure (PCDM) for colour images in the encoding stage, and (b) a Perceptual Post Filtering (PPF) algorithm for colour images in the decoding stage. Both implementations are embedded into the JPEG2000 coder. The vision model here exploits the contrast sensitivity, the inter-orientation masking and intra-band masking visual properties of the HVS. Extensive calibration work has been undertaken to fine-tune the 42 model parameters of the PCDM and Just-Noticeable-Difference thresholds of the PPF for colour images. Evaluation with subjective assessments of PCDM based coder has shown perceived quality improvement over the JPEG2000 benchmark with the MSE (mean square error) and CVIS criteria. For the PPF adapted JPEG2000 decoder, performance evaluation has also shown promising results against the JPEG2000 benchmarks. Based on subjective evaluation, when both PCDM and PPF are used in the JPEG2000 coding system, the overall perceived image quality is superior to the stand-alone JPEG2000 with the PCDM

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    NASA Tech Briefs, June 2001

    Get PDF
    Topics covered include: Sensors; Electronic Components and Systems; Software Engineering; Materials; Manufacturing/Fabrication; physical Sciences; Information Sciences

    Accountable, Explainable Artificial Intelligence Incorporation Framework for a Real-Time Affective State Assessment Module

    Get PDF
    The rapid growth of artificial intelligence (AI) and machine learning (ML) solutions has seen it adopted across various industries. However, the concern of ‘black-box’ approaches has led to an increase in the demand for high accuracy, transparency, accountability, and explainability in AI/ML approaches. This work contributes through an accountable, explainable AI (AXAI) framework for delineating and assessing AI systems. This framework has been incorporated into the development of a real-time, multimodal affective state assessment system

    Phoneme-based Video Indexing Using Phonetic Disparity Search

    Get PDF
    This dissertation presents and evaluates a method to the video indexing problem by investigating a categorization method that transcribes audio content through Automatic Speech Recognition (ASR) combined with Dynamic Contextualization (DC), Phonetic Disparity Search (PDS) and Metaphone indexation. The suggested approach applies genome pattern matching algorithms with computational summarization to build a database infrastructure that provides an indexed summary of the original audio content. PDS complements the contextual phoneme indexing approach by optimizing topic seek performance and accuracy in large video content structures. A prototype was established to translate news broadcast video into text and phonemes automatically by using ASR utterance conversions. Each phonetic utterance extraction was then categorized, converted to Metaphones, and stored in a repository with contextual topical information attached and indexed for posterior search analysis. Following the original design strategy, a custom parallel interface was built to measure the capabilities of dissimilar phonetic queries and provide an interface for result analysis. The postulated solution provides evidence of a superior topic matching when compared to traditional word and phoneme search methods. Experimental results demonstrate that PDS can be 3.7% better than the same phoneme query, Metaphone search proved to be 154.6% better than the same phoneme seek and 68.1 % better than the equivalent word search

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Probabilistic characterization and synthesis of complex driven systems

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2000.Includes bibliographical references (leaves 194-204).Real-world systems that have characteristic input-output patterns but don't provide access to their internal states are as numerous as they are difficult to model. This dissertation introduces a modeling language for estimating and emulating the behavior of such systems given time series data. As a benchmark test, a digital violin is designed from observing the performance of an instrument. Cluster-weighted modeling (CWM), a mixture density estimator around local models, is presented as a framework for function approximation and for the prediction and characterization of nonlinear time series. The general model architecture and estimation algorithm are presented and extended to system characterization tools such as estimator uncertainty, predictor uncertainty and the correlation dimension of the data set. Furthermore a real-time implementation, a Hidden-Markov architecture, and function approximation under constraints are derived within the framework. CWM is then applied in the context of different problems and data sets, leading to architectures such as cluster-weighted classification, cluster-weighted estimation, and cluster-weighted sampling. Each application relies on a specific data representation, specific pre and post-processing algorithms, and a specific hybrid of CWM. The third part of this thesis introduces data-driven modeling of acoustic instruments, a novel technique for audio synthesis. CWM is applied along with new sensor technology and various audio representations to estimate models of violin-family instruments. The approach is demonstrated by synthesizing highly accurate violin sounds given off-line input data as well as cello sounds given real-time input data from a cello player.by Bernd Schoner.Ph.D
    • …
    corecore