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Abstract 
 
Over the years, society has changed considerably due to technological changes, and 

digital images have become part and parcel of our everyday lives. Irrespective of 

applications (i.e., digital camera) and services (information sharing, e.g., Youtube, 

archive / storage), there is the need for high image quality with high compression 

ratios. Hence, considerable efforts have been invested in the area of image 

compression. The traditional image compression systems take into account of 

statistical redundancies inherent in the image data. However, the development and 

adaptation of vision models, which take into account the properties of the human 

visual system (HVS), into picture coders have since shown promising results.  

 

The objective of the thesis is to propose the implementation of a vision model in two 

different manners in the JPEG2000 coding system: (a) a Perceptual Colour Distortion 

Measure (PCDM) for colour images in the encoding stage, and (b) a Perceptual Post 

Filtering (PPF) algorithm for colour images in the decoding stage.  Both 

implementations are embedded into the JPEG2000 coder. The vision model here 

exploits the contrast sensitivity, the inter-orientation masking and intra-band masking 

visual properties of the HVS. Extensive calibration work has been undertaken to fine-

tune the 42 model parameters of the PCDM and Just-Noticeable-Difference thresholds 

of the PPF for colour images.  Evaluation with subjective assessments of PCDM 

based coder has shown perceived quality improvement over the JPEG2000 

benchmark with the MSE (mean square error) and CVIS criteria. For the PPF adapted 

JPEG2000 decoder, performance evaluation has also shown promising results against 

the JPEG2000 benchmarks.  Based on subjective evaluation, when both PCDM and 

PPF are used in the JPEG2000 coding system, the overall perceived image quality is 

superior to the stand-alone JPEG2000 with the PCDM.  

 

 



 iii

A Human Visual System Based Image Coder 

 
 
 
 
 

Declaration 

 
I certify that except where due acknowledgement has been made, the work is that of the author alone; 
the work has not been submitted previously, in whole or in part, to qualify for any other academic 
award; the content of the thesis is the result of work which has been carried out since the official 
commencement date of the approved research program; and, any editorial work, paid or unpaid, carried 
out by a third party is acknowledged. 

 
 

___________________________ 
Chin Soon Tan 
23 March 2009 



 iv

Acknowledgements 
 

I thank my God, the Father of our Lord Jesus Christ, who has helped me throughout 

my darkest hour.  He helped me through my most depressing state.  He gave me 

wisdom and encouragement so much so that I can see the day of the completion of my 

thesis writing.  To Him be the Glory, Amen. 

 

I will also like to thank the various people: Prof. Hong Ren Wu for his input, Dr. 

Damian Tan for his guidance and patience throughout this period; my fellow research 

mates, James Mei and David Wu, for their encouragement and support. 

 

A special thank you also to my two children, Claudia and Moses, who had been most 

understanding when I had to spend hours slogging over my thesis; the brothers and 

sisters in Christ who have prayed and encouraged me. To my dearest wife, Kok Nee, I 

owe her for her support, patience, and understanding.  



 v 

 

List of Publications by Author 
 
 
 

1. C. S. Tan, D. M. Tan, and H. R. Wu, "Perceptual Coding of Digital Colour 
Images Based on a Vision Model," in Proceedings of IEEE International 

Symposium on Circuits and Systems, Vancouver, Canada, 23-26 May 2004, pp. 
V-441-V-444. 

 
 

2. C. S. Tan and H. R. Wu, "Vision Model Based Perceptual Post Filtering of 
JPEG2000 Coded Colour Images," in Proceedings of SPIE Conference: Visual 

Communications and Image Processing 2005, Jul 2005. 
 
 

3. C. S. Tan and H. R. Wu, "Common and Separate Parameterizations of Vision 
Model Based Perceptual Post Filtering for Digital Colour Images," in 
Proceedings of the TENCON2005 IEEE Region 10 Conference, Melbourne, 
Victoria Australia, Nov 2005. 

 
 

4. C. White, R. Martin, D. Wu, C. S. Tan, D. M. Tan, H. R. Wu, and J. Cai, 
"Subjective Image Quality Assessment at Threshold Level," in Proceedings of 

the TENCON 2005 IEEE Region 10 Conference, Melbourne, Victoria, 
Australia, Nov 2005. 
 

5. D. M. Tan, C. S. Tan, and H. R. Wu, "Perceptual Color Image Coding With 
JPEG2000," IEEE Transactions on Image Processing, vol. 19, pp. 374 - 383, 
Feb 2010.  
 

 
 



 vi

Table of Contents 
 
 
Abstract--------------------------------------------------------------------------------------------ii 

 

Declaration---------------------------------------------------------------------------------------iii 

 

Acknowledgements-----------------------------------------------------------------------------iv 

 

List of Publications by the Author -----------------------------------------------------------v 

 

List of Tables------------------------------------------------------------------------------------ix 

 

List of Figures----------------------------------------------------------------------------------xii  

 
List of Common Abbreviations--------------------------------------------------------------xvi 
 

Chapter 1 Introduction ................................................................................................... 1 

1.1 Research Areas in Image Compression ............................................................... 2 

1.2 Objective and Organisation of Thesis .................................................................. 3 

1.3 Contributions ........................................................................................................ 5 

Chapter 2 Studies of Human Visual System .................................................................. 6 

2.1 Overview of the Human Visual System - Physiological view ............................. 6 

2.1.1 The Human Eye ............................................................................................ 7 

2.1.2 The Visual Pathways ................................................................................... 12 

2.1.3 The Primary Visual Cortex ......................................................................... 16 

2.1.4 Characteristics of Neural Responses - Orientation and Frequency 
Selectivity ............................................................................................................ 18 

2.2.1 Visual Acuity .............................................................................................. 21 

2.2.2 Contrast Sensitivity Function ...................................................................... 23 

2.2.3 Visual Masking ........................................................................................... 26 

2.3 Chapter Summary .............................................................................................. 33 

Chapter 3 Review of Contemporary Image Coders ..................................................... 34 

3.1 Overview of image compression systems .......................................................... 34 

3.2 Information Theory ............................................................................................ 35 

3.2.1 Theory of entropy ....................................................................................... 35 

3.2.2 Rate distortion theory (R-D) ....................................................................... 36 

3.3 Elements of an Image Compression System ...................................................... 39 

3.3.1 Transform .................................................................................................... 40 

a. Block-based Transform ................................................................................ 47 

b. Subband Transform ...................................................................................... 48 

c. Separable Image Transform ......................................................................... 48 

d. Multiresolution Transform ........................................................................... 49 

3.3.2 Quantisation ................................................................................................ 49 



 vii

3.3.3 Bitplane Coding and Bitplane Quantisation ............................................... 52 

3.4 Hierarchical Bitplane coders .............................................................................. 54 

3.4.1 Embedded Zero-tree Wavelet (EZW) ......................................................... 55 

3.4.2 Set Partitioning In Hierarchical Tree (SPIHT) ........................................... 59 

3.4.3 Embedded Block Coding with Optimized Truncation (EBCOT) ............... 62 

3.5 Perceptual Coders and Psychophysical Quality Metrics ......................... 64 

3.5.1 Watson’s DCTune ....................................................................................... 65 

3.5.2 Subband Image Coder by Safranek and Johnston ....................................... 67 

3.5.3  Perceptually Tuned Subband Image Coding by Chou and Li .................... 68 

3.5.4 Locally Adaptive Perceptual-based Image Coding by Hontsch and Karam
 .............................................................................................................................. 69 

3.5.5 EBCOT with Visual Masking by Taubman ................................................ 72 

3.5.6 Point-wised Extended Visual Masking by Zeng, Daly and Lei .................. 73 

3.5.7 Wavelet Visible Difference Predictor by Bradley ...................................... 75 

3.5.8 JND in DCT Subband Domain by Lin ........................................................ 79 

3.5.9 Perceptual Distortion Metric by Liu et al. .................................................. 83 

3.5.10 Perceptual Image Distortion Metric by Tan et al. ..................................... 86 

3.5.11 Just Noticeable Colour Difference Model by Chou and Liu .................... 89 

3.5.12 Comparison of Some Perceptual Coders .................................................. 92 

3.6 Chapter Summary .............................................................................................. 94 

Chapter 4 Perceptual Coding based on Intra-band and Inter-orientation Masking ..... 96 

4.1 Introduction ........................................................................................................ 96 

4.2 The Reference Model – JPEG2000 Coding Structure ....................................... 96 

4.3 Proposed Vision Model .................................................................................... 102 

4.4 Model Adaptation ............................................................................................ 110 

4.5 Model Calibration ............................................................................................ 111 

4.5.1 Test Condition ........................................................................................... 112 

4.5.2 Calibration Process ................................................................................... 112 

4.6 Experimental Results and Analysis ................................................................. 118 

4.6.1 Subjective Assessment I ........................................................................... 119 

a. Test 1 .......................................................................................................... 123 

b. Test 2 .......................................................................................................... 123 

4.6.2 Subjective Assessment II .......................................................................... 124 

4.7 Chapter Summary ............................................................................................ 131 

Chapter 5 Vision Model Based Perceptual Post Filtering of JPEG2000 Coded Colour 
Images ........................................................................................................................ 132 

5.1 Introduction ...................................................................................................... 132 

5.2 Vision Modelling ............................................................................................. 133 

5.3 Coding Adaptation ........................................................................................... 133 

5.4 Model Parameterisation and Thresholding ...................................................... 138 

5.5 Experiment and Results ................................................................................... 144 

5.5.1 Implementation I ....................................................................................... 145 

a. Evaluation of Round 1 Test Result ............................................................ 149 

b. Evaluation of Round 2 Test Result ............................................................ 149 

c. Evaluation of Round 3 Test Result ............................................................ 150 

5.5.2 Implementation II ...................................................................................... 150 

a. Evaluation of Test 1 Result ........................................................................ 154 

b. Evaluation of Test 2 Result ........................................................................ 155 

c. Evaluation of Test 3 Result ........................................................................ 155 

5.5.3 Discussion of Subjective Test Results ...................................................... 156 



 viii

5.6 Chapter summary ............................................................................................. 162 

Chapter 6  Conclusion ................................................................................................ 163 

6.1 Research Findings ............................................................................................ 163 

6.2 Further Research .............................................................................................. 166 

Bibliography .............................................................................................................. 168 

 

 

Appendix A……………………………………………………………...………….176 

Appendix B………………………………………………………………………….177 

Appendix C……………………………………………………………...…………..182 

Appendix D…………………………………………………………………………184 

Appendix E……………………………………………………………...…………..186 

Appendix F………………………………………………………………………….188 

Appendix G....………………………………………………………………………189 

Appendix H…………………………………………………………………………191 

Appendix I…..………………………………………………………………………192 

Appendix J.....……………………………………………………………………… 195 

 

 



 ix

List of Tables 

 

Table 3.1: ( )θ,lA  for wavelet 9/7 basis functions. ...................................................... 84 

Table 3.2: The constant parameters for the base JND threshold, ( )θ,lJND . .............. 84 

Table 3.3: Vision Model Parameters. .......................................................................... 89 

Table 3.4  Comparison of Some Perceptual Coders .................................................... 92 

 

Table 4.1: The Daubechies 9/7 wavelet filter set. (Note:  This is the un-normalized 

version.  The normalized version involves a multiplicative factor of 2  and 
2

1
 

for the analysis filter and synthesis filter, respectively.) ..................................... 98 

 

Table 4.2 SET-A Sub-optimal CSF weights and model parameters. ........................ 117 

Table 4.3 SET-B Sub-optimal CSF weights and model parameters. ......................... 117 

Table 4.4 Comparative Forced-Choice Subjective Test Results. A – JPEG2000-

PCDM coder, B – JPEG2000-MSE, C – JPEG2000-CVIS.  Test 1 for 

JPEG2000-PCDM against JPEG2000-MSE. Test 2 for JPEG2000-PCDM  

against JPEG2000-CVIS. ................................................................................... 120 

 

Table 4.5 Critical t [155] at 95% (t0.05), 99% (t0.01) and 99.5% (t0.005) confidence 

interval ............................................................................................................... 121 

 

Table 4.6 Comparative Forced-Choice Subjective Results, categorising according to 

images. (By summing up the preferences of bitrate 1.0, 0.5, 0.25 and 0.125 for 

each type of images. Note: A – JPEG2000-PCDM coder, B – JPEG2000-MSE,  

C– JPEG2000-CVIS.  Test 1 for JPEG2000-PCDM against JPEG2000-MSE. 

Test 2 for JPEG2000-PCDM against JPEG2000-CVIS.) .................................. 122 

 

Table 4.7 Comparative Force-Choice Subjective Test Results, categorising according 

to bitrates. (By summing up the preferences of 5 images for each of the bitrates.  

Note: A – JPEG2000-PCDM coder, B – JPEG2000-MSE, C – JPEG2000-CVIS. 

Test 1 for JPEG2000-PCDM against JPEG2000-MSE. Test 2 for JPEG2000-

PCDM against JPEG2000-CVIS.) ..................................................................... 122 



 x 

Table 4.8 The t-values. (P -  categorising according to image from Table 4.6. Q -  

categorising according to bitrates from Table 4.7) ............................................ 123 

 

Table 4.9 Comparative Forced-Choice Subjective Results. ...................................... 125 

(A – JPEG2000-PCDM coder, B JPEG2000-MSE, C – JPEG2000-CVIS.  Test 1 for 

JPEG2000-PCDM against JPEG2000-MSE, Test 2 for JPEG2000-PCDM against 

JPEG2000-CVIS) ............................................................................................... 125 

 

Table 4.10 Critical t at 95% (t0.05), 99% (t0.01) and 99.5% (t0.005) confidence interval.

............................................................................................................................ 125 

 

Table 4.11 Computed t-values based on different bitrate categories for subjective 

assessment II. ..................................................................................................... 126 

 

Table 5.1 Predetermined threshold values for ( )θ,, lcTD . ......................................... 144 

 

Table 5.2 Predetermined threshold values for ( )θ,, lcTp . ......................................... 144 

 

Table 5.3: Comparative Force-Choice Subjective Test Results 

(A – preference for JPEG2000-PCDM-PPF, B – preference for JPEG2000-PCDM,  

C- preference for JPEG2000-MSE, D – preference for JPEG2000-CVIS) ....... 146 

 

Table 5.4 Critical t at 95% (t0.05), 99% (t0.01) and 99.5% (t0.005) confidence intervals.

............................................................................................................................ 147 

 

Table 5.5: Comparative Force-Choice Subjective Test Results, categorized according 

to images. (By summing up the preferences of bitrate 1.0, 0.5 and 0.25 for each 

type of images.  Note: A – preference for JPEG2000-PCDM-PPF, B – preference 

for JPEG2000-PCDM, C – preference for JPEG2000-MSE, D – preference for 

JPEG2000-CVIS) ............................................................................................... 148 

 

Table 5.6: Comparative Force-Choice Subjective Test Results, categorized according 

to bitrates. (By summing up the preferences of 10 images for each of the bitrates.  



 xi

Note: A – preference for JPEG2000-PCDM-PPF, B – preference for JPEG2000-

PCDM, C – preference for JPEG2000-MSE, D – preference for JPEG2000-

CVIS) ................................................................................................................. 148 

 

Table 5.7 The t-values. (P) – categorising according to image, computed from Table 

5.5. (Q) – categorising according to bitrates, computed from Table 5.6. d.f. 

donotes degree of freedom. ................................................................................ 149 

 

Table 5.8: Comparative Subjective Test Result. ........................................................ 152 

(A – preference for JPEG2000-PPF with SMP model, B – preference for JPEG2000-

PPF with CMP model, C – preference for JPEG2000, N – preference for neither 

A nor B.  Note that goldhill, sail, pepper, lena, and tulip were encoded by 

JPEG2000 with MSE, while zelda, bikes, buildings, lighthouse2, and stream 

were encoded by JPEG2000 with CVIS) ........................................................... 152 

 

Table 5.9: Comparative Subjective Test Result, categorized according to different 

source images. (By summing up the preference of bitrate 1.0, 0.5 and 0.25 for 

each type of images. Note:   A – preference for JPEG2000-PPF with SMP model, 

B – preference for JPEG2000-PPF with CMP model, C – preference for 

JPEG2000, N – preference for neither A nor B.  Note that goldhill, sail, pepper, 

lena, and tulip were encoded by JPEG2000 with MSE, while zelda, bikes, 

buildings, lighthouse2, and stream were encoded by JPEG2000 with CVIS.) .. 153 

 

Table 5.10: Comparative Force-Choice Subjective Test Results, categorized according 

to bitrates. (By summing up the preferences of 10 images for each of the bitrates.  

Note:   A – preference for JPEG2000-PPF with SMP model, B – preference for 

JPEG2000-PPF with CMP model, C – preference for JPEG2000, N – preference 

for neither A nor B.  Note that goldhill, sail, pepper, lena, and tulip were encoded 

by JPEG2000 with MSE, while zelda, bikes, buildings, lighthouse2, and stream 

were encoded by JPEG2000 with CVIS.) .......................................................... 154 

 

Table 5.11 The t-values. (P) – categorising according to source images, computed 

from Table 5.9.. (Q) – categorising according to bitrates, computed from Table 

5.10..................................................................................................................... 154 



 xii

 List of Figures 
 
 
Figure 2.1 Visual pathways: retina to cortex------------------------------------------------7 

 

Figure 2.2 A generalized cross section of a human eye------------------------------------8 

 

Figure 2.3 Absorption spectra of the three types of cones--------------------------------10 

 

Figure 2.4 Cross section through the retina-------------------------------------------------13 

 

Figure 2.5 (a) Schematic depiction of on-centre/ off-surround (left) and off-centre/on-

surround (right) receptive field structures---------------------------------------------------14 

 

Figure 2.5 (b) Contrast processing of receptive fields-------------------------------------14 

 

Figure 2.6 Anatomically and physiologically subdivisions of  the visual system-----17 

 

Figure 2.7 Bar Stimuli of different orientations (left) and the responses they evoke 

from a simple cell in primary visual cortex (right)-----------------------------------------19 

 

Figure 2.8 Illustration of the idea that simple cells result from the feed forward 

convergence of a set of center-surround cells-----------------------------------------------19 

 

Figure 2.9 Point spread function--------------------------------------------------------------22 

 

Figure 2.10 Modulation transfer function of the human eye------------------------------23 

 

Figure 2.11 Contrast measures of simple patterns -----------------------------------------24 

 

Figure 2.12 Contrast sensitivity of sine-wave gratings------------------------------------26 

 

Figure 2.13 Target contrast threshold vs masker contrast (TvC curve)-----------------27 

 



 xiii

Figure 3.1 A typical rate distortion (R-D) function curve-------------------------------39 

 

Figure 3.2 Structure of an image compression system-----------------------------------40 

 

Figure 3.3 Structure of subband coding- the result is a collection of M x N numbers of 

subbands----------------------------------------------------------------------------------------44 

 

Figure 3.4 Block based decomposition. An input image is sub-divided into blocks of 

M x N pixels before decomposition takes place. The output is a set of blocks of M x N 

coefficients-------------------------------------------------------------------------------------45 

 

Figure 3.5 Frequency decomposition in multiresolution representation---------------46  

 

Figure 3.6 Different classification of quantisers-------------------------------------------51 

 

Figure 3.7 An example of bitplane quantiser and its encoding order-------------------53 

 

Figure 3.8 Parent-child relationship in EZW-----------------------------------------------56 

 

Figure 3.9 Flow chart for encoding a coefficient of the significant map---------------58 

 

Figure 3.10 (a) Parent-child relationship in SPIHT---------------------------------------61 

 

Figure 3.10 (b) Shaded region indicates coefficients in the LL3 (the lowest DC level) 

that have no children--------------------------------------------------------------------------61 

 

Figure 3.11 Rate distortion curve with bitplane-------------------------------------------64 

 

Figure 3.12 Casual neighbourhood coefficients-------------------------------------------75 

 

Figure 3.13 The structure of wavelet visible difference predictor----------------------76 

 

Figure 4.1 Coding Structure of JPEG2000-------------------------------------------------97 

 



 xiv

Figure 4.2 A 5-level Multiresolution Mallet decomposition-----------------------------99 

 

Figure 4.3 JPEG2000 coding structure with the proposed PDM replacing MSE 

criterion-----------------------------------------------------------------------------------------101 

 

Figure 4.4 Example of 5-level dyadic wavelet decomposition structure--------------108 

 

Figure 4.5 Neighbouring coefficients around centroid coefficient---------------------109 

 

Figure 4.6 Presentation of subjective test images for pararmeter calibration---------113 

 

Figure 4.7 Calibration of parameters in the context of coder---------------------------114 

 

Figure 4.8 Arrangement of paired images on a monitor---------------------------------118 

 

Figure 4.9 Pictorial view of force-choice comparative subjective test-----------------118 

 

Figure 4.10 Cropped images of Lena-------------------------------------------------------128 

 

Figure 4.11 Cropped images of Tulip------------------------------------------------------129 

 

Figure 4.12 Cropped images of Sail--------------------------------------------------------130 

 

Figure 5.1 Block diagram of the structure of the Perceptual Post Filtering at the 

decoder-----------------------------------------------------------------------------------------134 

 

Figure 5.2 Calibration of pararmeters in the context of coder--------------------------139 

 

Figure 5.3 (a) building2- original uncompressed-----------------------------------------158 

 

Figure 5.3 (b) building2- PPF with JPEG2000-PCDM (0.25bpp)---------------------158 

 

Figure 5.3 (c) building2- JPEG2000-PCDM (0.25bpp)---------------------------------158 

 



 xv 

Figure 5.3 (d) building2- JPEG2000-MSE (0.25bpp)------------------------------------158 

 

Figure 5.3 (e) building2- JPEG2000-CVIS (0.25bpp)-----------------------------------159 

 

Figure 5.4 (a) lena- original uncompressed-----------------------------------------------159 

 

Figure 5.4 (b) lena-  PPF with JPEG2000-PCDM (0.5bpp)-----------------------------159 

 

Figure 5.4 (c) lena- JPEG2000-PCDM (0.5bpp)------------------------------------------159 

 

Figure 5.4 (d) lena- JPEG2000-MSE (0.5bpp)--------------------------------------------160 

 

Figure 5.4 (e) lena- JPEG2000-CVIS (0.5bpp)-------------------------------------------160 

 

Figure 5.5 (a) tulip- original uncompressed-----------------------------------------------160 

 

Figure 5.5 (b) tulip- PPF with JPEG2000-PCDM (1.0bpp)-----------------------------160 

 

Figure 5.5 (c) tulip- JPEG2000-PCDM (1.0bpp)-----------------------------------------161 

 

Figure 5.5 (d) tulip- JPEG2000-MSE (1.0bpp)-------------------------------------------161 

 

Figure 5.5 (e) tulip- JPEG2000-CVIS (1.0bpp)-------------------------------------------161 



 xvi

List of Common Abbreviations 
 

 

1-D One Dimension 

2-D Two Dimension 

bpp Bit Per Pixel 

CI Confidence Interval 

CGC Contrast Gain Control 

CMP Common Model Parameterisation 

CSF Contrast Sensitivity Function 

CVIS or VDM Visual Distortion Metric 

DCT Discrete Cosine Transform 

DCTune see page 65 

d.f. Degree of Freedom 

DFT Discrete Fourier Transform 

DPCM Differential Pulse Code Modulation 

DICOM Digital Imaging and Communications in Medicine 

DWT Discrete Wavelet Transform 

EBCOT Embedded Block Coding with Optimised Truncation 

EZW Embedded Zero-tree Wavelet 

GQMF Generalised Quadrature Mirror Filter 

HDTV High Definition TV 

HVS Human Visual System 

JNCD Just Noticeable Colour Difference 

JND Just Noticeable Difference 

JPEG Joint Photographic Experts Group 

JPEG2000 Still Image Compression Standard developed by the Joint 
Photographic Experts Group 

JPEG-LS Image Compression Standard for Lossless and Near Lossless 
Compression of Continuous-tone, Gray Scale and Colour Still 
Images 

JBIG2 Image Compression Standard developed by the Joint Bi-level 
Image Expert Group 

KLT Karhunen-Loeve Transform 

LAPIC Locally Adaptive Perceptual Image Coding 

LGN Lateral Geniculate Nucleus 

LSB Least Significant Bit 

LSBP Least Significant Bitplane 

LSF Linespread Function 

LWT Lifting Wavelet Transform 

M Cells Magnocellular Cells 

MAE Mean Absolute Error 

MND Minimally Noticeable Distortion 

MSB Most Significant Bit 

MSBP Most Significant Bitplane 

MSE Mean Square Error 

MTF Modulation Transfer Function 

P Cells Parvocellular Cells 



 xvii

PCDM Perceptual Colour Distortion Measure 

PCRD Post Compression Rate Distortion 

PDF Probability Distribution Function 

PDM Perceptual Distortion Metric 

PIDM Perceptual Image Distortion Metric 

PPF Perceptual Post Filtering 

PSF Point Spread Function 

Q MF Quadrature Mirror Filter 

R-D Rate Distortion 

RMS Root Mean Square 

SMP Separate Model Parameterisation 

SNR Signal-to-Noise Ratio 

SPIHT Set Partitioning in Hierarchical Tree 

TvC Target Contrast  Threshold Versus Masker Contrast 

V1 Primary Visual Cortex 

VDP Visible Difference Predictor 

VQ Vector Quantisation 

WITCH Wavelet-based Image/Texture Coding Hybrid 

WVDP Wavelet Visible Difference Predictor 

 

 



 1 

Chapter 1 Introduction 
 

Data Compression is concerned with the removal of redundancies [1]. Data 

compression has become prevalent since the advent of the digital age with 

dependency on digital data. With the prevalence of digital media in our everyday lives 

and the use of images to convey information, images are now an integral part of our 

modern lifestyle. One can relate how an image of war-torn country speaks louder than 

a thousand words describing the scene. Moreover, with the increase in popularity of 

websites like Facebook1, where one shares information and digital images freely over 

the internet, and the Google Earth2 where one can find satellite images for maps and 

directions, the need for image compression becomes clear. 

 

With the surge of the internet and intranet use, there exists a possibility that network 

traffic volume may exceed its capacity, thereby affecting transmission speed.  Some 

have argued against the need for image compression as there is now greater 

availability of high-bandwidth broadband cable networks. However, as the issues 

surrounding the cost of providing and maintaining broadband access to the wider 

community (e.g., who is to bear the cost, cost of subsidies to Telcos) have been so 

greatly contested at both the local and higher governments3 , the need for image 

compression still persists. This is evident with the total switch of analog to digital 

High Definition TV (HDTV) in the near future in some countries, thus, the need for 

picture compression looms greater. Limitation in electronic data storage space also 

dictates the need for data compression to prevent an overflow of data storage [1]. 

 

Even at the individual consumer level, the need for electronic data storage space will 

always exist. With the increased use of digital images, e.g., digital photography used 

in cameras and mobile phones, there will always be a problem of “not enough disk 

space” or “not enough memory space”. Hence the research of image compression has 

                                                 
1 Facebook is social networking website launched on February 4, 2004. 
http://www.facebook.com/facebook. 
2 Google Earth is a virtual globe program. It maps the earth by the superimposition of images obtained 
from satellite images and aerial photography. http://earth.google.com. 
3 State or Federal Governments. 
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much bearing in the application for the world of consumer electronics such as digital 

image cameras.  Furthermore, image compression has also gained inroads into other 

areas in medical imaging such as JPEG-LS [2, 3] and DICOM [4] for medical field 

especially in the areas of medical imaging [5-7], FBI Compression for finger printing  

[8, 9] for defence, security, and law enforcement. 

 

1.1 Research Areas in Image Compression  

 

Image compression involves the removal of data redundancies in an image. This is 

also referred to by Shannon as statistical redundancy with “noise” [10]. In the premise 

of this thesis, two approaches of image compression are most poignant: lossy and 

lossless compression. Both compression philosophies seek to remove redundancies 

within images. However, in lossy compression, image quality is compromised to 

allow for a higher compression ratio. The loss of information accompanying the lossy 

compression is the result of quantisation. Conversely, a lossless compression seeks to 

achieve an optimal compression ratio without compromising image quality. The JPEG 

baseline [11] (established to standardise image compression techniques) uses the 

block based DCT approach and concentrates on removing the statistical redundancies 

which are computed from the mean squared error (MSE) [12].  More recently, in the 

JPEG2000 standard [12, 13], the embedded block coding with optimized truncation 

(EBCOT) [14] has been adopted. The EBCOT uses the rate-distortion function to 

achieve optimal quality for a given bit rate [12, 14].  Consequently, EBCOT’s main 

features are scalability in quality and resolution.  

 

However, there has been a growing research in the area of an image coder based on 

the human visual system (HVS). Apart from the statistical redundancies, there are 

some redundancies which are imperceptible to the human eye.  These redundancies 

are known as psychovisual redundancies. Removal of these redundancies gives rise to 

perceptually lossy [15] or perceptual lossless compression [16]. Being modeled after 

the human eye, this vision model [15, 16] takes into consideration the physiological 

and psychological studies in relation to the human visual systems and the interactions 

of these visual signals with our human brain [17, 18].  The neural responses that form 

the visual images are arranged in a manner which is both frequency and orientation 
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selective [19-21]. One particular neural phenomenon that has direct bearing on our 

visual perception is masking, which intrinsically decreases the strength of some neural 

signals. This masking effect has been modelled by some researchers [22-26]. For 

example, the contrast gain control model booted by Watson and Solomon attempts to 

incorporate the quantifiable properties of the HVS, namely contrast, frequency, 

orientation and masking sensitivities [27].  

 

Having established the HVS model, there is the next step of applying the HVS model 

to a coding structure.  Several approaches have been identified, such as pre-filtering to 

reduce visual redundancies, post-filtering to reduce distortions or designing 

quantisation matrices specific to aspects of the HVS. In some cases, vision model is 

incorporated into the distortion function. For optimisation of the vision model, 

parameterisation is required, i.e., the parameters of the model are calibrated to attain 

optimal visual quality.  

 

1.2 Objective and Organisation of Thesis 

 

The objective of this thesis is to design a perceptual colour image coder based on the 

Human Visual System (HVS). The proposed coder employs the JPEG2000 [12] 

structure.  As the coder is based on the HVS, there is a need to underline the 

physiology and psychophysical studies relating to the human eye. Chapter 2 gives a 

detailed account of the physical eye and its interactions with the human brain to form 

neural images. Psychophysical experiments related to mammalian visual system are 

outlined in the chapter [19-21, 28-30]. This chapter provides insights into the human 

eye and lays the premises relating to the HVS model.  

 

Chapter 3 begins with a general description of the image compression systems, 

namely lossy and lossless compressions and the underlying theory of image 

compression, i.e., Shannon’s theory of noiseless source coding and rate distortion 

theory [10]. The rate distortion theory is concerned with the relation between bit rate 

and image quality. An overview of the various elements in an image compression 

system is also discussed, with particular emphasis on the various transform and 

quantisation methods [12]. In particular, the block-based transform and bitplane 
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quantisation forms part of the framework of the Perceptual Colour Distortion Measure 

(PCDM) discussed in chapter 4.  

 

A comparison of the various image bitplane coders are presented, beginning with the 

Embedded Zero-tree Wavelet (EZW) [31], the Set Partitioning in Hierarchical Tree 

(SPIHT) [32] and the Embedded Block Coding with Optimised Truncation (EBCOT) 

[14]. The EBCOT is regarded as superior to EZW and SPIHT in terms of its Signal-

to-Noise Ratio (SNR) and resolution scalability [14]. Consequently, the JPEG2000 

which is based on the EBCOT structure is now hailed as the current state-of-art coder.  

 

Since human observers are the ultimate judges of image quality, perceptual image 

coders based on the HVS have gained attention. Ultimately, the goal of these 

perceptual models is to improve perceived image quality. A literature review of 

perceptual image coders is provided in chapter 3 to give an overview of the current 

development of perceptual image coders. The model proposed by Tan et al. [15],  

which forms the basis of the development of the PCDM model for colour image and 

the Perceptual Post-Filtering (PPF) algorithm, is also presented. 

 

Chapter 4 presents the Perceptual Colour Distortion Measure (PCDM) coder for 

colour image and the parameterisation of its HVS model. It is extensively calibrated 

to improve visual quality at medium to low bit rates. The subjective assessment 

results and the test images involving about thirty participants are also presented to 

ascertain the performance of the PCDM based coder. 

 

In chapter 5, a perceptual post-filtering (PPF) algorithm based on the HVS model is 

developed to attempt to recover the loss of visual information. The preliminary 

subjective assessment tests show promising results for the algorithm. 

 

Finally, chapter 6 concludes with an overview of the contribution of this thesis and 

directions for future research. 
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1.3 Contributions   

 

The contributions of this thesis are as follows: 

 

a. An adaptation of the monochromatic based PIDM (Perceptual Image 

Distortion Metric) into colour based PCDM model in the YCbCr colour space.  

The resulting model, PCDM, is adapted to JPEG2000 coder. 

b. The calibration of the 42 PCDM parameters. Two sets of sub-optimal values 

were obtained. 

c. Subjective assessment of proposed PCDM based coder vs JPEG2000-MSE 

and JPEG2000-CVIS was carried out with 30 subjects for performance 

evaluation. Results showed that the PCDM produces image with better 

perceived quality than the benchmarks. 

d. Adaption of the PPF algorithm to the JPEG2000 decoder to recover the loss of 

visual information due to compression operation. 

e. Threshold points of PPF were obtained through subjective experiment. The 

thresholds are set at the Just-Noticeable-Difference (JND) level. 

f. Performance evaluations of the PPF based decoder and the PCDM with the 

PPF codec were conducted through subjective tests against JPEG2000-MSE 

and JPEG2000-CVIS. Perceptual improvement in picture quality is obtained 

for both proposed implementations against the JPEG2000 benchmarks. 

g. Subjective evaluation of the PPF algorithm with separate model 

parameterisation (SMP) against the PPF algorithm with common model 

paramterisation (CPM). The SMP implementation did not show better 

perceived picture quality than the CMP.  
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Chapter 2 Studies of Human Visual System 
 

2.1 Overview of the Human Visual System - Physiological view 

 

Even at this moment, when one is reading this page, the light that is reflected from 

this page is focused by the lens of the eyes to form retinal images [18]. Light reaching 

the retina must pass through all other layers of the retina tissues before reaching the 

light sensitive photoreceptors. The fovea, a small dip in the retina about 1 mm away 

from the posterior pole of the eye and near the centre of the retina, has the highest 

concentration of photoreceptors that are exposed to light. Once illuminated, these 

photosensitive cells response by converting the light energy into electro-chemical 

signals. These signals are further processed by multiple retinal connections before 

being transported through the visual pathway via the optic nerve, the axons of the 

ganglion cells.  The retina ganglion cells then send their signals to the lateral 

geniculate nucleus (LGN), a part of the thalamus in the midbrain, where further 

synaptic connections are formed from the LGN to neurons that project to the primary 

visual cortex  (V1 region) in the occipital lobe of the cerebral cortex. The visual 

signals are then processed by the brain to produce visual perception of object 

structures, location, motion, colours, etc.  Hence the human visual system (HVS) (see 

Figure 2.1) can be seen in 3 parts: the eyes (the window to the outside world), the 

visual pathway (the linkway where an image is conveyed and processed) and the final 

destination – the visual cortex of the brain (where images are perceived by the 

individual). 

 

Being one of the most sophisticated and intricate system of the body, it is impossible 

due to limitations in technology and ethical issues to fully unravel the mystery of the 

functional processes of the HVS. Instead much of the theories postulated concerning 

the HVS are based on empirical studies on primates, felines and other animals, 

psychological studies of the HVS or even educated guesses [17, 18, 33-36]. 
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Figure 2.1 Visual pathways: retina to cortex.  
(Adapted from Forrester et al. [37]) 

 

 2.1.1 The Human Eye  

 
a. The physical structure of the Human Eye 

Light enters the eye through the cornea, a thin transparent film which acts as a 

protective barrier for the inner eye from the external world. It also acts as a refractive 

surface of the eye whereby external light source is refracted toward and away from 

the lens. Eventually an image representing the external world is formed at the retina as 

an inverted retina image on the fovea. The cornea provides two-thirds of the eyes’ 

refractive power [38]. 

 

In Figure 2.2, the area between the cornea and the lens is the anterior chamber which 

is filled with a liquid substance called aqueous humour.  The aqueous humour 

provides nutrients to the cornea, iris and lens.  In addition, it keeps the eyeball rigid by 

maintaining interior pressure at around 10 to 20 mm Hg [38]. 
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Figure 2.2 A generalized cross section of a human eye. 
(Adapted from Malacara [39]) 

 
 

The iris forms an aperture in front of the lens. At its centre is a circular opening called 

the pupil.  Though, the iris can dilate or constrict the pupil to as little as 1 mm 

diameter, it normally functions in the range of 3 to 7 mm as the adjustment depends 

on the prevailing light level and influences of the autonomic nervous responses [38]. 

The dilation and constriction of the pupil size control the exposure area of the lens to 

external light. This mechanism can change this area by as much as a factor of 5. A 

smaller pupil size has the effect of restricting the amount of light onto the lens to the 

peripheral region of the retina, and hence reduces spherical aberration and peripheral 

blurring [40, 41]. Spherical aberration occurs due to different focal length variations 

between the fovea and peripheral parts of the retina while chromatic aberration occurs 

due to different focal lengths for light of different wavelengths [38]. However, 

reducing the pupil size reduces the amount of light reaching the retina and causes 

more diffraction, and hence blurring as well. The pupil is automatically adjusted 

according to light intensity to minimise the blurring effect. The iris which regulates 

the pupil size thus helps to control the overall sharpness of the images formed at the 

retina.  T lens, suspended at the circular ciliary muscle, is made up of ribbon-like 

fibres arranged in concentric laminae. Unlike the cornea which has a constant 

refractive power, the refractive power of the lens varies. It changes through a process 

called accommodation.  Accommodation is controlled by the ciliary muscle, causing 
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the anterior surface of the lens to either bulge forward or backward, thereby 

increasing or decreasing respectively the optical power of the lens. The purpose of 

accommodation is to focus the image onto the retina.  The lens focus objects at a 

distance from about 6.5 metres down to about 10 centimeters. Containing yellow 

pigments, the lens can also absorb light at ultraviolet region near the wavelength of 

365 nm. Hence ultraviolet radiation is usually invisible to the human visual perception 

[38]. 

 

The interior area between the lens and retina is occupied by the vitreous body 

(vitreous humour).  The liquid filled vitreous humour maintains the structural integrity 

of the eye by ensuring sufficient pressure is maintained to prevent the collapse of the 

cavity wall.  The content of the liquid and its concentration is similar to that of the 

aqueous humour, and hence both have the same refractive power. The cavity wall 

contains its neural structures and composes of three layers, the sclera, choroid and the 

retina. For this thesis, the point of interest is the retina which will be discussed in 

greater details in the next section. 

 

b. Retina 

The retina is part of the central nervous system. It consists of five main groups of 

neural cells arranged into three cellular layers and two synaptic layers.  The innermost 

layer contains light sensitive photoreceptors called rods and cones, named according 

to their physical appearances. (Refer to Fig. 2.4) [18]. Each retina has about 100-120 

million rods and 7-8 million cones [37, 42]. The rods are sensitive to light at low level 

of illumination and are responsible for scotopic vision (e.g. “night” vision). On the 

other hand, being less sensitive than rods, the cones are responsible for colour vision 

(photopic vision) at high level of illumination.  According to Forrester et al. [37], both 

the rods and the cones  are sensitive to light with wavelengths from about 400nm to 

700nm, with the rods having peak sensitivity at about 498nm.  The cones have 

bandpass spectral response characteristics. There are three types of cones with three 

different photopigments to absorb different wavelengths of light to different degrees. 

The three types of cones, being sensitive to lights of short, medium and long 

wavelengths, are respectively labelled as S (or “blue”) cones, M (or “green”) cones 

and L (or “red”) cones.  The sensitivities of these cones cover the entire visible 
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spectrum of the human eye, with peak sensitivities at 420nm for “blue” cones, 534nm 

for “green” cones, and 564 nm for “red” cones. It has been found that the S cones 

have different spectral sensitivity than the L and M cones that share similar spectral 

sensitivities.  

 

The strength of the cone’s response is proportional to the amount of light energy 

absorbed by its pigment [18]. The perceptual quality of colour relates roughly to the 

wavelength’s physical properties, i.e., colour as perceived in our nervous system is the 

result of the differing profile of responses of each type of cone [18].  Red colour is an 

example of increased activity in the long wavelength cones coupled with minimum 

activity in the small and medium wavelength cones (see Fig 2.3). 

 

Figure 2.3 Absorption spectra of the three types of cones. 
(Adapted from Farah [18]) 

 

Apart from the nasal retina where the optic disc (the blind spot where no rods and 

cones are present) resides, the density and distribution of rods and cones are not 

uniform throughout the surface of the retina. At the fovea, the cones density is the 

highest but without any presence of rods.  With increasing eccentricity from the fovea, 

the cones density decreases in an exponential manner until it reaches a constant low 

level at about 20 degrees from the fovea, while the rods concentration increases until 

it reaches a maximum level at about 20 degrees from the fovea. Thereafter, the rods 

concentration decreases to a minimum at about 75 degrees from the fovea [37]. It is 

clear that the eyes are focused in a manner so that the retina image of any object is 
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always formed at the fovea where the concentration of cones is highest, and hence 

sharpest vision and colour discrimination is possible. Away from the fovea, the rest of 

the retina is responsible for peripheral vision.  However, at a very low level of 

illumination, the image formation at the fovea region does not ensure high visual 

acuity because of the absence of the rods and insensitivities of the cones at low levels 

of illumination. 

 

A closer observation of the structures of the photoreceptors and the optic nerve 

reveals that some form of signal processing does occur before visual information is 

transmitted to the visual pathway. Each photoreceptor, rod or cone, is composed of an 

outer segment, a narrow neck, an inner segment, a cell body, and a synaptic base (see 

Figure 2.4). The outer segment contains photopigments. For the cones, there are 3 

pigments that have maximum absorptions for blue, green and red. Photo-chemical 

reaction to light illumination takes place at the outer segment to produce generator 

potential. The retina are organised into two synaptic layers, i.e., the outer and inner 

plexiform layers, which provide both direct and lateral interconnections from the 

photoreceptor to ganglion cell.  The outer plexiform layer consists of horizontal and 

bipolar cells.  One bipolar cell forms a synapse to multiple rods.  In contrast, only one 

cone makes multiple synapses to a bipolar cell. The horizontal cells in the outer 

plexiform layer provide lateral interconnections between photoreceptors.  The second 

layer consists of amacrine and ganglion cells.  The bipolar cells in the outer layer are 

synapsed to the ganglion cells in the inner layers, while the amacrine cells provide 

lateral interconnections between the bipolar cells.  The synapse of multiple rods to a 

single bipolar cell increases the sensitivity of photonic energy since any response of 

any connected rod would activate the bipolar cell. However, less visual acuity is 

evident as it is less likely to precisely identify between the responses of more than one 

connected receptors.  Hence the rods are more sensitive to low level illumination but 

less sensitive to discriminate sharper details, while the converse is true for the cones. 

In the inner plexiform layer, the axions of the ganglion cells extend to form the fibers 

of the optic nerve. 

 

The differing photosensitive chemicals as well as differing patterns of connectivity to 

other cells in subsequent layers give rise to the differing functions of rods and cones. 

Farah [18] postulated a trade-off between sensitivity to light and spatial resolution. 
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Amazingly, the HVS multiplexes an image into two channels: one that favours 

sensitivity and one that favours resolution. Hence, the rods with higher sensitivity and 

convergence onto bipolar collector and ganglion cells give us a low resolution image 

when there is little light. Conversely, the cones, due to their lower convergence, 

provide us a high resolution image in the presence of good lighting [18]. Moreover, 

since colour relies on the cones, which trades off resolution for sensitivity, there is the 

phenomenon of achromative vision blindness that may occur when lighting is poor. 

 

2.1.2 The Visual Pathways 

 
As mentioned earlier, the visual pathway is the linkway that conveys information 

from the eye to the visual cortex. The bundle of axons  connecting the retina to the 

visual pathway, also known as the optic nerve, splits into numerous pathways [18], of 

which only two are crucial to visual perception.  The first is the geniculostriaye 

pathway, consisting of the LGN and the primary visual cortex. The other is collicular 

pathway, which affects spatial orienting and eye movement. In  this thesis, only the 

geniculostriaye pathway will  be discussed as it is the most dominant pathway of the 

HVS [18]. 

 

a. Retinal Ganglion Cells – Center surround Receptive Fields 

 

The concept of center surround receptive fields was used by Kuffler [43] to describe 

the interactions of neuron within the visual systems of mammals. Before an image 

leaves the eye, absolute levels of illumination are laundered off, leaving a retinotopic 

map of differences: points in the visual field where an illuminated region abuts a dark 

region. At the individual retinal ganglion cell level, this is represented as the center-

surround organisation of its receptive fields (See Figure 2.5) [18].  
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Figure 2.4 Cross-section through the retina 
(Adapted from Farah [18]) 

 

The human retinal ganglion cells comprise of three distinct classes that are known as 

X, Y, W cells [44, 45].  These cells are of different sizes.  Both X and Y cells project 

to the dorsal lateral geniculate nucleus and the pretectum. The W ganglion cells 

project to the superior colliculus and the pretectum. It is also known that the X cells 

have slower conduction velocities than the Y type cells, with the W cells having the 

lowest of the three.  It is believed that both X and Y cells contribute to high vision 

discrimination.  X cells are more likely to be responsible for resolving higher spatial 
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frequencies, while the Y cells are more responsive to moving stimuli. The X ganglion 

cells are concerned with central vision [46].  

 

Figure 2.5 (a)  Depiction of on-centre/off-surround (left) and off centre/on-surround 
(right) receptive field structures; (b) Contrast processing of receptive fields (Adapted 
from Farah [18] ) 
 

As stated previously, the photoreceptors in the retina transform light energy into 

electrical impulses from the ganglion cells. These electrical impulses can be 

determined by using microelectrodes [30, 34] which measures the response as active 

potentials or spikes over a time period, when the receptors are subjected to a stimulus. 

The results showed that the spontaneous firing rate or average rate of occurring spikes 

increases when a neuron is subjected to a spot of light. However, when the spot of 

light shifts to the surrounding region, the spontaneous firing rates diminish [34, 38]. 

Referring to Figure 2.5, the “on-center” cells are stimulated by light in a small area 

throughout the visual field (on- center) while inhibited by light in the surrounding 

areas (off- surround). Conversely, the “off-center” cells works in the opposite way 

[18, 47]. Hence, in the eventual visual perception of objects, it is not the level of 

absolute brightness, but the differences in brightness between central and the 

surrounding regions of receptive fields that matter. In Figure 2.5(b), the greater 

difference in brightness on the right hand side of the on-centre/off-surround receptive 

field results in higher response (++) than the ‘no’ response (Ф) of the left hand side 

on-centre/off-surround receptive field pattern which has the same absolute brightness 
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in both the on-centre/off-surround regions. In the same way, the perception of colour 

images is also based on the groundwork of the output of the on-off receptors cells of 

the various cone types [18].   

 

b. The Lateral Geniculate Nucleus (LGN) 

 

The Lateral Geniculate Nucleus (LGN) consists of  six layers - four parvocellular (P 

cells) layers visible at the top and two layers of  magnocellular cells (M cells) visible 

from the bottom [17, 18]. Compared to the P cells, the M cells are larger and have 

broader axons, resulting in a faster nerve conduction velocity and more transient 

response. However, in terms of colour perception, the P cells exhibit colour sensitivity 

while the M cells do not. Moreover, the M cells receive input from a greater number 

of photoreceptors, giving rise to greater light sensitivity or in other words, better 

temporal resolution. On the other hand, the P cells, receive input from a smaller 

number of receptors, producing better spatial resolution. [18]. The temporal resolution 

of the M cells creates the perception of motion and redirects spatial attention to any 

unexpected stimulus (e.g., tracking), while the spatial resolution, colour sensitivity 

and pattern detection of the P cells caters for object recognition where pattern, colour 

and texture are dominant characteristics [18, 34]. Experiments carried out on primates 

have also shown the above characteristics of the M and P cells. In the experiments, 

sections of the monkeys’ LGN layers were lesioned with ibotenic acid to create 

impairment in the M or P cellular layers. The primates are then subjected to 

psychophysical test to map their impaired and preserved visual perceptual abilities 

[48]. Recent Studies has also indicated the presence of another separate layer, the 

Koniocellular layer [49], which exhibited similar behaviour to the P cells. The 

Koniocellular layer bypasses the primary visual cortex, V1, and instead connects 

directly to the V2 layer [50].  The functionality of this layer is as yet unknown. 

 

The neurons in the LGN layers exhibit the same center-surround organization as the 

retinal ganglion cells. Though some researchers think that the cells in the LGN layers 

have more powerful inhibition towards the surrounding regions [34, 51], there should 

not be any major distortion of the neural image as it moves from the retina to LGN. 

Currently, researchers do not fully understand the full function of the LGN though 
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many concur that it is positioned to amplify  visual input to the cortex [51]. This then 

leads us to our next section where the primary visual cortex is discussed [34, 38] – 

(the final destination of the visual signal from the retina and LGN) . 

 

2.1.3 The Primary Visual Cortex 

 

The optic fibers from the two retinas merge at the optic chiasm where the fibers are 

separated into two groups that connect to each side of the brain. Here the retinal 

ganglion cells send images from the left optic field to the right side and of the brain 

and vice versa. A large part of the visual signal from the retina and LGN is sent to a 

single area in the occipital lobe of the cortex. This area is called V1 or the primary 

visual cortex [34].   Other cortical areas have also been identified by researchers over 

the years, of which V1 through to V5 are most prominent. V4 is generally associated 

with colour while V5 with motion [18, 34, 37, 52, 53] (See Figure 2.6). 

 

The discussion here shall center on V1 and V4. V1 consists of six layers based on the 

differing densities of neurons, axons, synapses and interconnectivities with the rest of 

the brain. According to Livingstone and Hubel [54], layer 4B received signals from 

the M cells, specializing in the motion and depth perception. Layer 4C continues the 

parvocellular processing, specializing in colour and shape perception. These two 

streams then project to different parts of V2 and even possibly project to other higher 

level of association cortices. However, recent studies have shown that the 

hypothesized segregation at each level of processing is not always true [18]. 

 

V4 is commonly associated with the perception of colour. Perception of colour starts 

with the absorption of different wavelength light corresponding to the three cone 

types. The P cells in the retinal ganglion cells with the center-surround field responds 

to the differing profile of responses towards colour. Colour contrast is further 

processed and becomes more pronounced in the LGN. 
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Figure 2.6 Anatomically and physiologically defined subdivisions of the visual 
system (Adapted from Livingstone and Hubel [54] ) 
 

In the primary visual cortex, layers 2 and 3 carry colour information and project it into 

V2 which in turn is translated to V4. Although many researchers have accepted the 

hypothesis of V4 being a main player in colour perception or even the colour centre, 

nothing can be said about the  exact nature of V4’s role [18]. Thus this gives rise to a 

hypothesis of the specialization of higher cortical processes in the HVS [18]. Similar 

to the retina ganglion cells, the cells of the primary cortex exhibits some 

characteristics - the orientation and frequency selectivity nature of the cells in the 

primary cortex (discussed in the next section). 
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2.1.4 Characteristics of Neural Responses - Orientation and 
Frequency Selectivity 

 

a. Simple, center-surround and complex cells in the primary visual cortex 

When visual signals travel from the LGN through the visual pathway to the primary 

cortex, there is a major change in the image representation [18]. Hubel and Weisel 

discovered in 1958 that the receptive fields of the visual cortex cells are different from 

that of the retina and LGN when they conducted experiments on a cat’s eye [55]. 

Basically the cells in the visual cortex are classified into 3 categories [21]: simple 

cells, center-surround cells and complex cells.  

 

Within a visual field, simple cells respond to edges at certain specific locations and 

orientations (see Figure 2.7). The excitatory and inhibitory regions are elongated and 

thus spots of light or edges at the wrong orientation have little effect on their response 

levels. As regards to center-surround cells, they response similarly to the retinal 

ganglion on-off cells (discussed earlier), i.e., specific regions of the visual field either 

excite or inhibit them [18]. Complex cells, as the name suggests, have responses more 

complex than the previous two types. Representing more abstract visual information, 

they are more selective to particular lengths of contour and thus are sometimes called 

“hypercomplex” or “end-stopped” cells [18]. In fact, Hubel and Weisel [21] suggested 

that there could be a feed-forward sequential and hierarchical visual processing 

between the three types of cells (see Figure 2.8). The responses of the cells are 

specific to the form of stimulus (e.g., from constant luminance to an oriented edge or 

bar) and the viewing conditions (from a point to a range of location in reference to a 

fixation). Thus a simple pattern of excitation would channel signals from one level to 

another, and the simple and center-surround cells would converge on a complex cell, 

giving rise to object recognition at a higher level of visual processing. From 

experimental data, Hubel and Weisel found that the stimuli that incite strongest 

responses from simple and complex cells were oriented edges and bars [21]. 
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 Figure 2.7 Bar stimuli of different orientations (left) and the responses they evoke 
from a simple cell in primary visual cortex (right). (Adapted from Hubel [56]) 
 

 

   Figure 2.8 Illustration of the idea that simple cells result from the feedforward 
convergence of a set of centre-surround cells. (Adapted from Hubel and Wiesel [21]) 
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b. Orientation selectivity 

A visual signal (electrode penetration) which is perpendicular to the cortical layer will 

attune to cells with the same orientation preference. At each level, there is a column 

with a particular orientation preference [18, 21]. The orientation preferences of each 

successive column vary in a smooth and systematic way and are by no means random. 

Hence, Hubel and Weisel [21] used the term “columns” to portray the organisation of 

orientation selectivity in the human visual system.  

 

On the psychophysical front, Valois, Yund and Hepler [19] derived quantitative data 

on the orientation and directional responses of cells in the striate cortex (primary 

visual cortex of monkeys). Their studies reveal that the orientation bandwidth of cells 

at half amplitude ranges from 6 to 36 degrees, with a median of 40 degrees. Most cells 

also show excitations to some particular orientations and inhibitions to other 

orientations, with maximum inhibitions present side by side of excitatory orientations. 

Some cells are also found to be isotropic. 

 

C. Frequency selectivity 

Many psychophysical studies have shown that the “visual system operates in a quasi-

linear fashion over a realistic range of contrasts, producing multiple, fairly narrow 

tuned, spatial frequency channels. (Presumably, cells are selectively sensitive to 

different restricted portions of the spatial frequency spectrum).” [20]. Thus it can be 

said that the HVS (up to the region of the primary visual cortex) performs a spatial 

frequency filtering of the visual information.  

 

2.2 Overview of Human Visual system – Psychophysical View 

 

Visual adaptations include changes over time in the areas of visibility, colour 

appearance, visual acuity and sensitivity. These changes can be be measured using 

psychophysical experiments [37].  Therefore, the study of the HVS is not complete 

without observing the psychophysical aspect. The psychophysical studies and 

experiments undertaken in the areas of visual acuity, contrast sensitivity and visual 

masking will be discussed in the following sections. 
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2.2.1 Visual Acuity 

 

When an image is captured by the eye, three factors (i.e., optical filtering, receptor 

sampling and the receptive organization at the retinal level) determine the clarity of 

the captured image. Thus visual acuity is the measurement of this clarity [37]. 

 

Campbell and Gubish [57] measure the optical quality of the eye by recording the 

faint light emerging from the eye that was reflected on the fundus.  The basic idea 

behind this is to capture the retinal image. However, due to the problem of the double 

passage of light (light entering and leaving the eye) and the optical imperfections 

inherent to the eye, the clarity of an external object is slightly diminished. For 

example, an infinitesimally, self-luminous object will be degraded to a smooth 

illuminance distributiontermed as the linespread function (LSF) [57]. Using Fourier 

transform, the line images were translated to modulation transfer functions (MTF). 

Results show that the MTF gives rise to a better optical quality estimate. Other studies 

have also confirmed that for a given pupil size, the retinal image of a thin line is twice 

as broad as the line’s diffracted image [57-60]. Moreover, a further study by Campbell 

and Gubisch [57] not only shows that the retinal image is a blurred version of the 

original input image due to imperfections of the human’s optic, but it also shows that  

the linespread function is related to  the pupil size,  i.e., a larger pupil will give rise to 

more blurring of the image.  

 

However, as most images do not consist of weighted sums of line, Wandell [34] 

suggested the use of a set of points as better descriptors for  two-dimensional (2-D- 

image. Thus the use of the point spread function (PSF) [61] is a more general 

representation for real life images (see Figure 2.9) [34]. 

 

The derivation of the MTF either from the LSF or the PSF is an optical transfer 

function which defines the scale factors applied to each spatial frequency. The MTF is 

the magnitude of the Fourier Transform of the PSF. Due to difficulty of determining 

the MTF from PSF, a common approach is to determine the MTF by taking the Fast 

Fourier Transform (FFT) of the LSF at various angles.  In Manos and Sakrison [62], 



 22 

the MTF of the PSF has been used to measure perception distortion of images. Based 

on the modulation curves of the HVS, derived through experiments, the MTF could 

serve as a good estimate of optical sensitivities relative to frequency. According to 

Mannos and Sakrison [62], the MTF which is an empirical model often used in 

experiment to fit CSF data is shown as, 

 

( ) ( ) 1.1
rf114.0

r ef114.00192.06.2MTF
−+≈      (2.1) 

 

where 22
yxr fff ++++==== . xf  and yf  are the horizontal and vertical spatial frequencies, 

measured in cycles/degrees. 

 

 

 

    Figure 2.9 Point spread function (Adapted from Wandell [34]) 
 

 

From the characteristics of the MTF (See Figure 2.10), the human optics have a band 

pass characteristic with a peak sensitivity estimated to be about 8 cycles per degree of 

visual angle.  This sensitivity attenuates rapidly at both the lower and higher 

frequency band with a cut off frequency at around 50 cycles per degree. This is 

consistent with the contrast sensitivity function [63, 64]. The low frequency cut-off is 

due to lateral suppression in the retina ganglion cells.  The high frequency cut-off is 
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due to the MTF of the optics and the integration process of the retina photoreceptive 

cells (i.e., the cones). 

 

  

2.2.2 Contrast Sensitivity Function 

 
The HVS is able to perceive very minute differences in luminance. Contrast threshold 

is thus defined as the contrast needed to elicit a visual response in the wake of 

differences in intensity/luminance. By inversing the contrast threshold, the contrast 

sensitivity function is obtained [34]. Contrast can be measured at the luminance level 

and has several forms of expression. Two commonly used definitions are the Weber-

Fechner contrast [65] and the Michelson’s contrast functions [66]. 

 

             

   Figure 2.10: Modulation Transfer Function of the Human Eye.  
  (Based on MTF function of Mannos and Sakrison [62])  

 
 

Weber’s contrast function is derived from a psycho-visual experiment. An observer 

looks at a stimulus like the one shown in Figure 2.11. The stimulus consists of a 

constant uniform background with luminance L and a varying patch in the foreground 

with luminance L + ∆L. As the foreground luminance increase in brightness, the Just 
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Noticeable Difference (JND) - ∆L/L which is the minimum luminance needed to see 

the patch, is measured. Thus the Weber’s constant function is defined as 

 

k
L

L
Cweber =

∆
=         (2.2) 

 

where L  is the background luminance, k is the Weber-Fechner fraction, and the JND 

is 1-3% for a constant region of L  values between 0.1 – 1000 cd/m2 

 

Michelson’s contrast is usually used to measure contrast of sinusoidal grating: 

 

minmax

minmax

LL

LL
CMichelson

+

−
=        (2.3) 

 

where maxL  and minL  are the maximum and minimum luminance, respectively. 

 

 

Figure 2.11 Contrast measures of simple patterns 
 

However, both Weber-Fechner and Michelson’s contrast functions are designed for 

simple patterns. As the images in our real world have more complex patterns, these 

functions have limited effectiveness. In fact, Winkler [67]  highlighted that both 

Weber’s and Michelson’s functions are affected by changes in luminance extremities 
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and fluctuations. Note that, as reported by Peli [68], although both definitions of 

contrast are similar, they are not equivalent and the dynamic range for both are not the 

same.  

 

Peli provided a definition for contrast for complex images  – the band-limited contrast 

( blc
C ) [68], which defined contrast at any frequency band. The band-limited contrast, 

blc

iC , at any spatial frequency, i,  is as follows, 

 

( )
( )
( )y,xl

y,xa
y,xC

i

iblc

i =         (2.4) 

 

where ( ) 0>y,xli .  In the space domain, ( )y,xai  is the bandpass-filtered image, and 

( )y,xli  is the low pass filtered version of the image containing all energy at bands 

below the current scale.  In Peli’s work [68], a pyramidal structure of 1-octave wide 

bandpass filter centred at different scales that are 1-octave apart is used.  A definition 

of the bandlimited contrast with the pyramidal structure is included in Appendix H.  

Interested readers may refer to Peli’s work [68] for an extensive coverage. 

  

Contrast sensitivity is a function of spatial frequency, temporal frequency and mean 

luminance [34].  Van Nes and Bouman described the CSF in two parts: “the optical 

modulation transfer function responsible for the image formation on the retina, and a 

retina-perception-center contrast sensitivity function.”  [64]. The contrast threshold 

increases according to mean luminance [64]. Since the CSF is the inverse of the 

contrast threshold, when the mean luminance increases, the contrast sensitivity of high 

spatial frequency signals decreases (Fig 2.12). 
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Figure 2.12 Contrast Sensitivity of sine-wave gratings. Cross for lower 
mean luminance. Circle for higher mean luminance. (Adapted from 
Wandell [34]) 

 
 

2.2.3 Visual Masking   

 

In the presence of other visual stimuli, the strength of a visual stimulus can be either 

enhanced or diminished. The enhancement or deterioration of the visual stimulus is 

due to the responses of receptive fields in the visual cortex being triggered either 

positively (excitation) or negatively (inhibition). The enhancement and deterioration 

of visual stimulus in this manner is commonly known as facilitation and masking, 

respectively. In the experiment conducted by Legge and Foley [22] with sinusoidal 

gratings, the frequency and orientation of the target signal and masker are closely 

related as to affect the level of facilitation and masking.  In Figure 2.13, the target 

contrast threshold versus masker contrast (TvC) profile, no masking occurs at low 

masking contrast level (masking contrast below c1). Facilitation occurs between c1 

and c2, and masking occurs beyond c2. It has been found in [22] that for high contrast 

maskers and signals at medium and high spatial frequencies, signal threshold 

elevation increases when the frequency and orientation of the target signal and masker 

are similar, and being maximal when both signal and masker have the same 

frequency. The effect of masking diminishes as the masking frequencies deviate away 

from the target signal frequency. 
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The masking model proposed by Legge and Foley includes both low contrast 

detection and high contrast discrimination in a nonlinear transducer as follows, 

 

 

(((( ))))
qq

p

ar

ra
rF

2

1

++++
====         (2.5) 

 

 

 

Figure 2.13 Target contrast thresold vs masker contrast (TvC) curve. 
No masking is observed to the left of C1.  Facilitation occurs between C1 and C2.  
Masking occurs to the right of C2. (Adapted from Legge and Foley [22] ) 
 

 

where r is the input signal (signal + masker or signal without masker) to the 

transducer. It is derived from the output of a presiding linear filter. 1a  and 2a  are 

constants. p  and q  are the exponents for the excitatory and inhibitory terms, 

respectively, with qp > .  The exponents p  and q  are set to 2.4 and 2, respectively, 
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at low input to account for low contrast, 2ar > , ( ) 4.0

1 rarF ≈ . At high input, which 

accounts for high contrast, 2ar < , ( )
2

2

42

1

a

ra
rF

.

≈ . 

 

The output, ( )rF , from the transducer is added with Gaussian noise, e,  to account for 

observers giving the same response in identical force-choice trials.  The output of the 

detector is ( ) ( ) erFrE += .  The force-choice trials are conducted whereby an 

observer is presented with one interval containing target signal plus masker, and with 

another interval containing masker alone. 

 

Essential, the decision rule is based on ( ) ( )mms rErrE −+ , where sr  and mr  are input 

signals representing target signal and masker, respectively. 

 

a. Foley’s Model 

Based on the work of Legge and Foley [22], Foley [25] conducted experiments to 

investigate two prediction (1) a change in spatial waveform of the masker causes a left 

or right shift of the TvC function by a multiplicative constant, and (2) a shift of the 

TvC function to either left or right by an additive constant in the presence of an 

additional constant masker. However, tests with Gabor patterns for both the target and 

the masker did not support the above predictions. Instead, Foley developed two new 

models incorporating a divisive inhibition that described better fits to observed data 

than that of Legge and Foley’s model [22].  The new models were based on the 

finding that cells in the visual cortex have both the excitatory and a broadband 

divisive input. In one of the proposed models, the excitation function, E , is the half-

wave rectified sum of the individual excitation function, of which the individual 

excitation function is defined as the product of component contrast, iC , and the 

sensitivity due to the normalized luminance profile, EiS  of component, i , that is, 

 

∑=
i

Eii sCE          (2.6) 

 

The contrast component, iC , is defined as 
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(((( ))))

o

oi

i
L

LyxL
C

−−−−
==== max

,
        (2.7) 

 

where (((( ))))max, yxLi  and oL  are the maximum and average luminance, respectively, for 

component, i . 

 

The broadband divisive inhibition function, I , is defined as the sum of the product of 

individual inhibition. The individual inhibition function is defined as the product of 

the component contrast iC  and sensitivity IiS for pattern i . 

 

∑=
i

Iii sCI          (2.8) 

 

The response function is given by, 

 

ZI

E
R

q

p

++++
====          (2.9) 

 

where p  and q  are constant exponents, with 2====q , and Z  is a positive constant 

parameter to prevent any likelihood of division by zero. In general, IE ≠≠≠≠ , EiS  and 

IiS , due to excitation and inhibition, respectively, are different, in general. 

  

An elaboration of the above model gives rise to another model that includes 

components from the same orientation as well as that pooled from different 

orientation, j , as part of the sum for the division term in the response function.  

Hence the inhibition becomes, 

 











==== ∑∑∑∑ 0,max

i

Iijijj sCI        (2.10) 

 

where i  is the index for components of the same orientation and j  is an index for 

orientation.  The response is defined as 
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ZI

E
R

j

q
j

p

++++
====
∑∑∑∑

        (2.11) 

 

The inhibitory input terms are summed together for components with the same 

orientation, i , as in equation (2.10). For pattern components across different 

orientations, the input is raised to a power, q , before it is summed across different 

orientations, j .  The elaborated model with response function in equation (2.11) 

resulted in better fit to experimental data than that of equation (2.9). 

 

b. Teo and Heeger’s Model 

Teo and Heeger [23, 69] developed a perceptual distortion measure based on the HVS 

that fits empirical psychophysical data of spatial masking experiments [70] . The 

model is closely based on the work of Heeger [71] , in which the neuronal response is 

the result of an accelerating nonlinear response of a cortical neuron’s excitation and 

suppressed divisively by pooled responses of other cortical neurons. 

 

The model consists of a front-end linear transform, squaring of the transform 

coefficient, a divisive contrast normalization (similar to that of Legge and Foley [22]) 

across orientations, and finally a detection stage. The model initially uses the 

Hexagonal QMF filters [72] for frequency decomposition, creating subbands of 0, 60 

and 120 degrees orientations for each resolution level.  However, the bandwidths for 

the 60º and 120º orientations were too wide to provide good fit to data. The frequency 

transform is subsequently replaced by steerable pyramid transform.  The steerable 

pyramid transform is used to decompose the image into several spatial frequency 

levels, each of which is further divided into six orientations at 0, 30, 60, 90, 120, and 

150 degrees.  The neuronal response function takes the form as follows, 

 

( )
( )2

2

i

i
I

X
kR

σθ

θ
θ

+
=         (2.12) 
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where { }Ni ,...,2,1∈  denotes the contrast discrimination band with 4=N . θX  is the 

transform coefficient at orientation, θθθθ , and iσ is the saturation constant.  ik  is the 

scaling constant. ( )∑=
φ φθ

2
XI  is the inhibition function, with 

Φ },150,120,90,60{0,30= 00000  as the orientations. Since each normalized sensor can 

only discriminate contrast differences for a narrow contrast range, the contrast 

discrimination level is set to N=4 so as to cover the full range of contrasts. With the 

inclusion of numerator term, θX , as part of the ( )∑φ φ

2
X , and 0>>>>iσσσσ , the range for 

the response function, θθθθR , is [[[[ ))))ik,0 . 

 

The final detection, D , adopts the 2l  norm, 

 

ββββαααα RRD −−−−====         (2.13) 

 

where ααααR  and ββββR  are the vectors of normalized responses due to the distorted image 

(α ) and the reference image ( β ), respectively.  

 

c. Watson-Solomon’s Model 

While Foley’s model [25] mainly considers spatial masking localised with individual 

oriented bands, that is, masking contribution due to components within the same 

spatial frequencies, but without components from the same spatial but different 

orientation subbands, Teo and Heeger’s model [23, 69] only considers masking 

contribution from across different oriented subbands, but does not include masking 

contribution from different spatial frequencies.  Considerations of both spatial 

frequencies as well as across different orientations as pooled candidates in the divisive 

inhibitory function are necessary to achieve better fit to psycho-physical data. All 

these considerations are subsequently included in Watson-solomon’s model [27] 

through the contrast gain control (CGC) process. In Watson-solomon’s model, the 

inhibitory function includes multiple channel inputs from spatial, frequency and 

orientation domains.  The input signals of two-dimensional image are filtered 

according to the contrast sensitivity of the HVS followed by either the cortex 
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transform or the Gabor Array into frequency domain, creating multiple frequency and 

orientation subbands.   

 

The neuronal excitation, (((( ))))φφφφ,, xu
E , similar to that of Teo-heeger’s model [23, 69]. It is 

defined as, 

 

( ) ( )
p

,x,,x,u
tE

φµφ
=          (2.14) 

 

where (((( ))))φφφφ,,xu
t  is the transformed coefficient of the input image, obtained by either 

cortex transform (see Appendix I) or Gabor filtering. (((( ))))ΘΘΘΘ==== ,Lu  refers to the subband 

of frequency L  and orientation ΘΘΘΘ , x  the spatial location, φφφφ  the phase, and p  the 

excitation exponent. The phase, φφφφ , refers to the four hypothetical phases (0. 90, 180, 

270 degrees)  of the individual receptive fields [27]. 

 

The inhibitory function, I , pools transformed coefficients from within individual 

frequency subband, across different orientation bands and between different 

frequency bands.  It is computed as a convolution with a pooling kernel ( )φ,x,u
H  as 

follows, 

 

( ) ( ) ( )φφφ ,,,,,,
*

xu

q

xuxu
HtI =        (2.15) 

 

where (((( ))))φφφφ,,xu
H  is the pooling kernel, and 2=q  is the inhibitory exponent. 

 

The overall response, ( )φ,x,u
r , after pooling is defined as, 

 

( )
( )

( )φ

φ

φ

,x,u
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,x,u

,x,u Ib

E
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+
=         (2.16) 

 

where 0>>>>b prevents the response from saturating. In general, qp >>>> . 
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2.3 Chapter Summary 

 

This Chapter presents an overview of the human visual system. The physiology of the 

human eye is discussed in detail. Of particular interest is the process of how an image 

is transformed from a light image to a neural image by the human visual system 

(HVS). The three aspects involved in this transformation are discussed in detail 

namely, the retina (where an image is first captured), the visual pathway (where the 

image is conveyed and processed through LGN) and the primary cortex (where the 

image is perceived by the human brain). Some neural cells responsible for image 

formation in the HVS are frequency and/or orientation selective [19-21]. One 

particular neural behavior that has direct bearing on visual perception is masking. 

Some of these properties are important visual characteristics which are taken into 

account during the development of the perceptual models presented in the later 

chapters. 

 

The study of the physiological mechanisms of the human eye establishes the basis of 

visual adaptation. Examples of visual adaptations include changes over time in the 

areas of visibility, colour appearance, visual acuity and sensitivity. Some of these 

changes can be observed and quantified with  psychophysical experiments [37, 42].  

Therefore, the study of the human visual system is incomplete without observing the 

psychophysical aspect.  

 

The psychophysical studies and experiments undertaken in the areas of visual acuity, 

contrast sensitivity and visual masking have been discussed in this chapter. The 

Contrast Gain Control Model by Watson and Solomon [27] is an example of a vision 

model which attempts to incorporate certain  quantifiable properties of the HVS such 

as contrast sensitivity, frequency and  orientation selectivity of neurons, and masking 

phenomenon. Other models following this approach are also discussed [22, 25, 69, 73, 

74]. These models formed the basis of the Perceptual Colour Distortion Measure 

(PCDM) and Perceptual Post-Filtering (PPF) algorithm developed in chapters 4 and 5. 
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Chapter 3 Review of Contemporary Image Coders 

 

3.1 Overview of image compression systems 

 

Digital images or pictures are prevalent in modern day life. However, they require 

significant storage and transmission bandwidth.  For example, a 512×512 resolution 

colour image with 24-bit per pixels occupies 786,432 bytes. Thus, at a resolution of 

1024×1024, the size of the image becomes four times as large. With the increased 

need for digital storage and the use of images in most applications, image 

compression then becomes important [12, 75, 76]. 

 

There are two approaches to image compression: lossy and lossless. Lossy 

compression allows for some loss of information during encoding. On the other hand, 

the lossless compression maintains integrity of information during the encoding 

process, i.e., the reconstructed image from a lossless compression is identically equal 

to the original uncompressed image. For lossless compression, statistical redundancies 

in a given data set are removed.  

 

Given that there are limitations in transmission bandwidths and storage capacity, a 

higher level of compression ratio is desirable and perhaps necessary in some 

applications. Inevitably, there is a need to accept a certain amount of distortion 

(information loss) in order to achieve higher compression as evident in the Rate 

Distortion (R-D) Function [12], i.e., compression ratio is related to the level of 

distortion.  As the encoding process in the lossy compression is selective, meaning not 

every single piece of information is encoded, lossy compression can achieve higher 

compression ratio as opposed to the lossless compression. The general approach for 

lossy compression is to encode information according to importance, i.e., most 

important information over less important.  

 

In recent years, another school of thought for image compression (i.e., perceptual 

coding) [77] has emerged which strives to maintain better perceived image quality 

(vis a vis that of the lossy compression) whilst achieving a higher compression ratio 
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(compared to that of the lossless compression). Essentially, “perceptually” lossless 

compression is achieved by removing information that is “perceptually” irrelevant to 

the HVS. Perceptually lossless compression attempts to remove statistical and 

psychovisual redundancies  

 

The focus of the discussion in this chapter is the review of the various image coders in 

the literature (sections 3.4 and 3.5). An overview of the information theory which 

forms the basis for image coding is also provided.   

  

3.2 Information Theory 

 

3.2.1 Theory of entropy 

 

Image compression is achieved through the removal of statistical redundancies in the 

data set. Shannon theory of entropy [10] describes the relationship between data, 

information and redundancy. All data contains certain amount of information which is 

measured in bit per pixel (bpp).  If data used to describe the information exceeds the 

entropy, redundancy exists. Given a data set with n different symbols of probability of 

occurrence, { }
np,...,p,pp 21= , where 1

1
=∑

n

ip , there is a minimum amount of bits 

required to represent each symbol. This is referred to as self information [10], and is 

defined as, 

 

ii pI 2log−=          (3.1) 

 

Hence, symbols with higher probability can be represented with shorter length code 

words and vice versa. The summation of all self-information in a data set is equal to 

the entropy, H .  H and is defined as, 

 

∑−=
n

ii ppH
1

2log         (3.2) 

 



 36 

The entropy for a given input source is the minimum average number of bits required 

to represent each data sample.  When all symbols in a data set have equal probability 

(i.e., the worst case scenario), 
n

H
1

log- 2=  corresponds to the maximum H .  The 

redundancy (Rd) in data is defined as, 

 

∑∑ +=







−−−=

i

ii

n

iid ppnpp
n

R
1

22

1

22 logloglog
1

log    (3.3) 

 

If no redundancies exist, e.g., random noise, then Rd would have been zero, resulting 

in 0loglog
1

22 =+∑
i

ii ppn . 

 

Since that for a certain interval of finite length of codes, fixed length coding cannot 

ensure that all source outcomes are represented efficiently, variable length codes are 

used [12]. Examples of variable length codes are Prefix Codes [78, 79], Unary Code, 

Golomb Code [80] , Shannon-Fano Code,  Huffman Code [81] and Adaptive Huffman 

Code [82], Arithmetic Code [83-85]. For most practical implementation of lossless 

compression, Huffman Coding, Adaptive Huffman Coding, and Arithmetic Coding 

are widely used . Similarly, examples of fixed-length codes are Run Length Encoding 

[80], Tunstall Code [86]. 

 

While the theoretical coding efficiency is at the entropy, in practice, coding at entropy 

has never been achieved due to practical limitations of modelling accuracy and coding 

overhead.  However, the entropy bound can be nearly achieved with the use of 

arithmetic coding to the extent that source statistics can be accurately modeled. 

 
 

3.2.2 Rate distortion theory (R-D) 

 

“The primary goal of lossless compression is to minimize the number of bits required 

to represent the original samples without any loss of information” [12]. However, 

there are three reasons why information loss is acceptable: (1) Loss of information is 

allowed as long as it is not perceptible by the HVS, (2) lossless compression is unable 
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to provide high compression ratio for many practical applications.  Consequently, the 

existence of compression standards, such as JPEG baseline [11] and JPEG2000-lossy 

[12] came to being, and (3) in the first place, any digital input to the compression 

algorithm is itself not a perfect representation of the original image. 

 

Given that small errors or distortion are permitted, lossy compression thus strives to 

provide a balance between distortion levels versus compression ratio [12]. 

 

Consider the case of the mutual information, ( )V;UI , between two random variables 

U and V, which is defined as: 

 

( ) ( ) ( )V|UHUHV;UI −=        (3.4) 

 

where the entropy, ( ) ( )∑−=
u

UU uPloguP)U(H 2 , and the conditional entropy, 

( ) ( ) ( )∑∑−=
u

V|UV|U

v

V v,uPlogv,uPvP)V|U(H 2 . ( )vPV and ( )uPU are the probabilities 

of occurrence for V and U, respectively. ( )v,uP V|U  is the joint probability.  The mutual 

information ( )V,UI  in equation (3.4) becomes, 
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    (3.5) 

 

In source coding with lossy compression, the loss of information is most notably due 

to quantisation. Consider a source sample, { }Nx,...,x,xX 21= , subjected to 

quantisation process such that ( )( )XQQX̂ 1−= , where ( ).Q  and ( ).Q 1−  are the 

quantisation and dequantisation operations, respectively. The distortion measure 

based on square error between ix  and ix̂  is given as ( ) ( )2

iiii x̂xx̂,xd −= .  The mean 

square error between X and X̂  is computed as: 
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Applying equations (3.4) and (3.5) with square error distortion, ( )ii x̂,xd , to a 

memoryless source, the rate distortion (R-D) function is obtained by solving the 

minimization problem as follows: 

 

( )
( )
( ) ( ) ( )
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x x̂

iXX|X̂X|X̂X|X̂
Dx̂,xdxPx,x̂P:PP

X̂;XIinf

DR   (3.7) 

 

The discrete case in equation (3.7) can be extended to the general case for continuous 

function.  Typically, the R-D function is a continuous and monotonically decreasing 

convex function in the interval [0, Dmax] as shown in Figure 3.1.  Dmax is the value of 

D after which R(D)=0. R(D=0) is the rate at which distortion is zero, and in this case 

for lossless compression.  The inverse of R-D function is the distortion rate (D-R) 

function which sets the theoretical limit on distortion, subject to the constraint of a 

given coding rate. 

 

For a memoryless source, X, with squared error as distortion measure, Shannon lower 

bound states that: 

 

( ) ( ) ( )DhXhDR −≥         (3.8) 

 

Where h(D) is the differential entropy of a Gaussian random variable with variance, 

D. Consequently, for the memoryless source where ( )xPX  is Gaussian with variance, 

2σ , subject to the constraint, ( )[ ] DX̂XE ≤−
2

, the R-D function is as follows: 

 

( ) 2
2

2 0log
2

1
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x D
D

DR σ
σ

≤≤=       (3.9) 

 

The function in equation (3.9) has a similar shape as in Figure (3.1).  The rate 

distortion theory essentially shows us that any compression system can only perform 

within the shaded area in Figure (3.1). For a given distortion D, it is the design of a 

lossy compression system to attempt to operate as close to the R-D curve (i.e., 
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reaching the lower bound).  Note that in transform based image coding [87, 88], 

distortions are usually generated as a result of quantisation noise. (This will be 

discussed further in section 3.3.2). 

 

 

                     

 

 

3.3 Elements of an Image Compression System 

 

Figure 3.2 shows the elements in an image compression system. The following 

sections focus on each of the main elements during the process of image compression.  

 

Pixels of natural images are usually correlated with their neighbouring pixels [12].  

The first step in a transformed based image compression system is to project these 

correlated pixels into a representation so that the sample data are decorrelated [87] 

with a large quantity of the image energy compacted at a few coefficients (i.e.. DCT 

transform). The transformed samples are then subjected to a process of quantisation 

which essentially decreases the precision of the sample data, and thereby reshaping 

the probability distribution function (PDF) and hence the entropy [89].  Quantised 

coefficients are then entropy encoded to form the compressed bit-stream. 

 

Figure 3.1 A typical rate distortion (R-D) function curve 
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During the de-compression process, the compressed bit-stream is entropy decoded, 

followed by dequantisation, and then the inverse transform to reconstruct the input 

image.  While quantisation contributes to compression gain, it is also the main 

contributor to distortion due to quantisation error. 

 

3.3.1 Transform 

 

A linear transform ( ( ).T ) on an input signal, x , and its invertible transform ( ( ).T 1− ) 

on the transform coefficients, X, can be expressed as, 

 

( )xX T=          (3.10) 

 

( )Xx 1−= T           (3.11) 

 

In transform based image coding, where a recovery process is required to reconstruct 

compressed images, it is desirable to have an invertible transform kernel [90], i.e., 

perfect reconstruction.  Both the orthogonal and bi-orthogonal transforms [89-92] are 

classes of all invertible transform. The perfect reconstruction Quadrature Mirror Filter 

(QMF) [93] which has been used in both audio and image coding [94] in the literature 

is also invertible. 
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Figure 3.2 Structure of an image compression system 
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From matrix perspective, orthogonal transforms must fulfill the following conditions: 

 

IAA α=⋅ T          (3.12) 

 

where A is a M×M square matrix, I is the identity matrix, and αααα is a diagonal matrix. 

Both A and αααα are of the form, 
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Orthogonality of a transform can also be viewed from vector perspective as inner 

product of two vectors satisfying the condition below, 
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where ia  is the row vector of Am with { }M,...,,i 21= , T

ja  is the transpose of ja , and 

R∈α . Am is the square matrix equivalent to equation (3.13). 

 

Matrix A in equation (3.13) is orthonormal if 1=iiα .  Consequently, the analysis 

vector (A) and the synthesis vector ( TAAS == −1 ) of orthonormal transforms are 

equivalent in a sense that the analysis filters are time-reversed, complex conjugate 
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versions of the synthesis filters, and they are mutually orthogonal with a unit length 

[12].  That is, 

 

IAA =⋅ T          (3.16) 

 

or 
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All orthogonal transforms are linear. An important characteristic of an orthogonal 

transform is the energy preserving property also known as Parseval’s relationship [12, 

90, 91, 95]. In short, this means, 

 

( ) xxxIxxAxAxAxAxAx ===== TTTTT
    (3.18) 

 

where x is the input signal vector in the time domain, the Ax is the transform 

coefficient vector and A is the orthogonal matrix. Hence, if the MSE in the transform 

domain is minimised, the MSE of the reconstructed image is also minimised. 

Examples of well-known orthogonal transforms in the field of image coding include  

the Discrete Fourier Transform (DFT) [90], Discrete Cosine Transform (DCT) [96], 

Hadamard Transform, Haar Transform [97], Slant Transform and the Karhunen-

Loeve Transform (KLT) [98]. 

 

A Biorthogonal transform [90] is invertible, like an orthogonal transform. 

Specifically, for a non-orthogonal matrix B (i.e., TBB ≠−1 ), if there exists a dual basis 

non-orthogonal matrix B
~

 (i.e., TBB
~~ 1 ≠− , and BB

~
≠ ), that satisfies the condition, 

 

αIBB =T~
,         (3.19) 

 

it is said that matrix B and B
~

 are biorthogonal, where ℜ∈α .  From the vector 

perspective, vector B and its dual basis B
~

, are biorthogonal if, 
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If 1=α , matrices B and B
~

 are said to be biorthonormal, and the analysis and 

synthesis filters are dual basis of each other.  Biorthogonal filters do not preserve 

vector length.  Also, Parseval’s relation no longer holds for biorthogonal system, 

therefore, it is important to design a biorthogonal system so that the norms are close 

[91].  

 

Biorthogonal transform is advantageous over the orthogonal transform with respect to 

regularity and phase linearity. Regularity is a filter characteristic which measures the 

degree of filter smoothness under iterations. This means minimum fluctuation, 

resulting in better reconstructed image. A filter’s length affects its regularity and the 

longer the filter length, the more regular the filter will be. However longer filters 

increase the computation load of transform [90].  

 

Though regularity is desirable, Rioul [99] argued that excessively regular filters are 

not needed in image compression since they do not offer significant improvement in 

the quality of reconstructed images. Since the biorthogonal filters allow for phase 

linearity, they eliminate phase distortion especially along the sharp edges of images. 

Though phase misalignment can occur during an orthogonal transform, this problem 

can also be avoided by using symmetrical filters [100-102].   
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Figure 3.3 Structure of subband coding. The result is a collection of M × N 
numbers of subbands.      N means down sampling by a factor of N. 
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The various spectral decomposition structures can be categorised into: subband, 

block-based, and hierarchical structures. The subband structure organises the spectral 

coefficients into groups of frequency bands, such that coefficients of the same 

frequency band are grouped together (See Figure 3.3).  For a block-based structure 

(see Figure 3.4), an image is first divided into blocks of NM ×  size, each of which is 

independently decomposed into spectral coefficients, forming NM ×  number of 

subband coefficients. The hierarchical structure follows the wavelet-based multi-

resolution analysis (see Figure 3.5) according to Mallat decomposition [103] .  
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a. Block-based Transform 

 

The Discrete Cosine transform (DCT) Transform [96], the Karhunen-Loeve 

Transform (KLT) [98] and the Haar transform  [87, 104, 105] are the various common 

block-based transforms. In theory, the KLT is noted for its excellent pixel 

decorrelation. Though KLT is the optimal transform in terms of energy compaction 

and decorrelation, it is nevertheless not used in practical applications due to its 

complex computation. As the KLT Kernel has to be computed for an individual image 

and transmitted along with the compression stream, calculation of the KLT kernel is 

slow and cumbersome [1] since there are no fast algorithms. Furthermore, the 

application of KLT becomes impossible in some situations where the statistics of the 

source data may not be known in advance, since the optimum transform kernel must 

be constructed from the statistics of the source data. 

 

In terms of decorrelation and energy compaction, the DCT transform [106] is second 

only to KLT [12]. With good decorrelation and the availability for fast algorithms, the 

DCT [106] has been used extensively in picture compression applications such as 

JPEG [11] and MPEG [107]. 

 

The 2-D DCT [1] is defined as, 
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where 10 −≤≤ Nk  and 10 −≤≤ Ml . [ ]jix ,  belongs to the pixel element of an 

M×N pixel block, and [ ]ji,  denotes the position of the pixel element in the block.  

Usually, an image is divided into k  blocks of 8×8 pixels [11]. 
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The inverse DCT [1] is defined as, 
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b. Subband Transform 

 

The main disadvantage of the block-based transform is that the images are processed 

in independent blocks. These blocks are seen as disjointed blocks, and thus assumed 

to be uncorrelated with neighbouring blocks. However, this assumption does not seem 

plausible as neighbouring pixels may show high correlation. Generally, the correlation 

decreases when the block size increases [12].  

 

Subband transform uses input from multiple vectors through a sequence of transform 

matrices known as the filter bank [12].  It filters the source data with a set of m bank 

analysis filters. For each filter output, only the m
th sample is retained through 

decimation (or down-sampling) [108].  These decimated output values of the mth filter 

form the m
th subband. In the reconstruction stage, coefficients in subbands are up-

sampled, then inverse transformed to reconstruct the data [12].  

 

c. Separable Image Transform 

 

Multi-dimensional signal processing uses both separable and non-separable filters 

[109]. In a two dimensional separable transform, the analysis vector is formed by 

taking the tensor product of one dimensional analysis vectors. Similarly, the synthesis 

vector is the tensor product of one dimensional synthesis vectors. In separable 

filtering, input signals can be processed separately in a cascaded manner. Conversely, 

input signals of non-separable filtering are applied directly in all dimensions. 

Specifically, consider the case of a separable filter for a two dimensional image 

arranged in a row and column form, a 1-D subband transform is first performed on the 

input image along each row to produce an intermediate 2-D array.  Then the 1-D 

transform is applied to each column of this intermediate 2-D array to produce the final 
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samples. This structure is illustrated in Figure 3.3. Since the implementation and 

computation of separable filters are less complicated than that of the non-separable 

filters, separable filters are most widely used in most image coders.  

 

d. Multiresolution Transform  

 

A commonly used subband transform is the hierarchical subband transform based on 

the multiresolution representation of Mallat [103]. Unlike uniform subband transform, 

this tree-structured transform subjects each successive low frequency band to further 

decomposition to form a hierarchical resolution chain. Figure 3.5 illustrates a dyadic 

hierarchical decomposition. A feature of this transform is that a compressed image 

can be partially reconstructed with higher successive resolutions of the source image. 

The “resolution scalability” feature in these dyadic decompositions thus makes this 

transform desirable for image compression applications.   

 

3.3.2 Quantisation 

 

Scalar quantisation is most commonly used in lossy compression systems. A scalar 

quantisation function maps each element, ℜ∈ix , on the real line to a particular value 

within the same subset of data [12].  For a given real number line that is divided into a 

set of M disjoint intervals, { }M, I,...,II,II 210= , with [ )1+= qqq x,xI  and Mq ≤≤0 , 

the scalar quantisation process maps all real number input values, ℜ∈ix , with 

1+<≤ qiq xxx  and q  being the integer-valued quantisation index, into a particular 

value in qx̂ , where 1+<≤ qqq xx̂x .  Hence scalar quantisation is a many-to-one 

mapping.  Specifically, the quantisation maps all the values in the M disjoint 

intervals, { }M, I,...,II,II 210= , with [ )1+= qqq x,xI , into a subset of M single-real-

valued numbers, { }Mr x̂,...,x̂,x̂,x̂x̂ 210= .  In practice, the quantisation index, q, is 

being transmitted after a scalar quantiser is applied. At the receiving end, an inverse 

quantiser is applied to q to produce the output, qx̂ .  If we denote Q  and 1−Q  as the 

operators for the uniform linear quantiser and inverse quantiser, respectively, then, 
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and 

 

( )qQx̂q

1−=          (3.25) 

 

where s  is the quantisation step size.  A scalar quantisers can be classified as either 

uniform or non-uniform quantiser, and mid-rise or mid-thread quantiser [110] as 

shown in Figure 3.6. Due to the many-to-one mapping of quantisation process, both 

the input value, ix  and its output value, qx̂  are not equal in general.  The error 

between the input and the output values, qii x̂xe −= , is known as the quantisation 

error.  

 

Quantisation contributes significantly to the actual compression of data by decreasing 

the precision of the input data, leading to a reshaping PDF which alters the entropy 

[89].  The distortion due to quantisation is commonly computed by either the mean-

squared-error (MSE) or mean-absolute-error (MAE) metrics.  For a set of N  sample 

input data ( X ) and its quantised output values ( X̂ ), the MSE and MAE are defined 

as, 
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The Lloyd-Max quantiser [111, 112] provides an optimal scalar quantiser when the 

probability density function of the source input is known. Under the optimal 

conditions, the Lloyd-Max quantiser minimises the MSE [12, 111]. The other 

commonly used quantisation scheme for image compression is vector quantisation 

(VQ) [113], whereby, it selects a codeword, { }i

m

ii

i xxxc ˆ,...,ˆ,ˆ
21= , from a codebook, 

{ }nc,...,c,cC 21= , such that, the selected codeword gives the best approximation to 

the vector of input data, { }mx,...,x,xx 21=
r

.  The key to VQ lies in the vector 

codebook. Therefore, optimizing this codebook will lead to error minimisation – a 

process that can be accomplished by the Linde-Buzo-Gray algorithm [113] .  A 

x  

x̂  

Non-uniform mid-rise quantiser 

x  

x̂  

Uniform mid-rise quantiser 

x  

x̂  

Uniform mid-tread quantiser 

x  

x̂  

Non-uniform mid-tread quantiser 

Figure 3.6 Different classification of quantisers 
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detailed coverage of VQ can be found in [114].  It is noted that the scalar quantisation 

is a special case of vector quantisation with vector length equals 1. 

 

3.3.3 Bitplane Coding and Bitplane Quantisation 

 

Bitplane coding [115] is an approach for encoding bit layers of data, starting from 

most significant bit layer to the least significant bit layer, in a progressive manner.  

Each coefficient is represented in a series of binary digits, starting from the most 

significant bit (MSB) to the least significant bit (LSB).  When all the data set are 

represented in their binary representation, they collectively form layers of bitplanes, 

starting from most significant bitplane (MSBP) to the least significant bitplane 

(LSBP) as shown in Figure 3.7. 

 

For instance, with a block of coefficients, X, and hence XM being the magnitude 

portion of the coefficients of X arranged in a row and a column format as follows, 
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where v,ux  is the coefficient in location ( )v,u  in XM.  If all elements in XM can be 

sufficiently represented by k-binary bits, there will be k binary bitplanes for XM  

starting from the MSBP (p=(k-1)th) to the LSBP (p=0), and hence XM  can be arranged 

in bitplane layers as, 

 

{ }01221 ,,,...,, XXXXXX kkM −−=       (3.29) 
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Figure 3.7 shows an example of a group of 3×4 data in their bitplane representation 

and a possible order in which they may be encoded. Essentially, the bitplane 

representation re-organises the source symbols into bitplane symbols that are encoded 

within each bit plane successively with traditional entropy encoding techniques [81, 

104, 105], resulting in either information-preserving (i.e., lossless) operation or 

information-destroying (i.e., lossy) operation.  In the case of lossy operation, where 

successive bitplane coding with bitplane levels lower than l  are truncated, the 

distortion is equivalent to having a scalar quantiser in operation, and the quantised 

value, ( )n,mX̂ q , of coefficient, ( )n,mX , produced by the bitplane quantisation 

amounts to 

 

( ) ( )( )
( )

l

lq

n,mX
n,mXsignn,mX̂ 2

2
⋅







= .     (3.30) 

 

where    means rounding down to the nearest integer value. In equation (3.30), the 

bitplanes used are magnitude bitplanes of sign-magnitude representation. With partial 

bitplane truncation, it is obvious that some coefficients may be zero while others with 

lower significant bits being set to binary ‘0’s because of bit rate constraint as in the 

case of EZW[31], SPIHT [32], and EBCOT[14].  Hence, progressive encoding with 

bitplane quantisation has the effect of successive approximation [116]. Consequently, 

encoding from higher bitplane levels first before lower bitplane levels result in lower 

MSE.   Examples of hierarchical bitplane coders include EZW [31], SPIHT [32], 

EBCOT [14], JPEG2000 [12]. 

   

3.4 Hierarchical Bitplane coders 

 

This section shall focus on the discussion of hierarchical bitplane coders (i.e., EZW, 

SPIHT, and EBCOT) that share some common principles coding strategies in the 

following way: 

(a) wavelet transform  the image data, 
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(b) encoding transform data in progressive bitplane quantisation scheme, and thus 

provides bit streams that have rate scalability for EZW and SPIHT coders, and 

rate, resolution and quality scalability for EBCOT. The core coding design 

principles of EBCOT have been adopted by the state-of-the-art JPEG2000 

image compression standards [12]. 

  

3.4.1 Embedded Zero-tree Wavelet (EZW) 

 

Shapiro [31] has noted that zeros symbols in subbands can be predicted from low 

resolution level to high resolution level across scales, and hence he proposed the EZW 

algorithm with a hierarchical bitplane coding scheme for still images.  It is found that 

wavelet coefficients at the higher resolution subbands of the same orientation 

belonging to the same spatial location have high probability of being insignificant if 

the corresponding wavelet coefficient at the lower resolution subband is insignificant 

with respect to a given threshold, T [31].  From this empirical evidence, a zero-tree 

data structure is used to define the relationship between coefficients across scales.  

Dependencies between wavelet coefficients across subbands at different resolution 

levels are depicted in Figure 3.8. In Figure 3.8, every coefficient in the LL3 (i.e., 

isotropic DC band at the lowest resolution level) is directly related to coefficient in 

the three orientation bands (LH3, HL3, HH3) at the same spatial location. Each 

coefficient in the orientation subbands of HL3, LH3, and HH3 is related to four 

coefficients in the HL2, LH2, and HH2 subbands, respectively.  The dependencies of 

coefficients across resolution levels are classified as, 

 

(1) Parent – Any coefficient at a lower resolution subband of the tree with same 

spatial and/or orientation position than the current coefficient.  In Figure 3.8, a 

coefficient in LL3 is a parent of coefficients in HL3, LH3 and HH3 at the 

same spatial location.  A coefficient in LH3 is a parent of four coefficients in 

LH2, and a coefficient in LH2 is a parent in LH1.  However, all the 

coefficients in LH1, HL1 and HH1 cannot be parents as they are the leaves of 

the tree. 

(2) Child – a coefficient is a child if it has a parent coefficient in the next lower 

resolution subband at the same spatial and/or orientation position. The children 
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in HL2 have a parent coefficient in HL3.  In the case of coefficients in LL3, 

they have no parents. 

(3) Descendants – For a given parent, the set of all coefficients at all higher 

resolution subbands of same spatial and/or orientation locations are defined as 

descendents. A coefficient in HH3 in Figure 3.8 has 20 descendants (i.e., 4 in 

HH2 and 16 in HH1). 

(4) Ancestors – For a given child, the set of coefficients at all the lower subbands 

of the same spatial and/or orientation locations are called ancestors.  A 

coefficient at LH2 has two ancestors (i.e., 1 each at LH3 and LL3). 
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HL3 

LH3 HH3 

HL2 

LH2 HH2 
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Figure 3.8 Parent-child relationship in EZW. 
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The bitplane encoding process starts at the lowest resolution band, denoted by LLn, 

and the orientation bands in the order of LLn, HLn, LHn, and HHn at resolution level n. 

It then moves on to the next higher resolution (n-1) at HLn-1, LHn-1 and HHn-1. During 

the scanning process, no coefficient is scanned before its parent and all coefficients 

within a subband must be scanned in a raster format before scanning moves to the 

next subband.  The bitplane encoding involves a two-pass process, namely a dominant 

pass followed by a subordinate pass, commencing from the MSBP and ending at the 

LSBP.   At the highest bitplane, Pmax, the dominant pass updates the significant map 

by determining if a coefficient is significant or not with respect to a threshold level, 

maxpT .  An insignificant coefficient is one whose magnitude is below a threshold level, 

maxpT .  Once the status of a coefficient is determined, it will be updated on the 

significant map with one of the four coding symbols defined for dominant pass.  

 

For any other bitplane, p, coefficients that have not been found to be significant 

during the previous bitplane will be scanned during the dominant pass to determine if 

they are significant or not with respect to threshold level, ( ) 21+= pp TT , where 

bitplane p+1 is higher than bitplane p.  

 

The four coding symbols defined for the dominant pass are (1) zerotree root (ZTR), 

(2) isolated zero (IZ), (3) positive significant (POS), and (4) negative significant 

(NEG).  The ZTR is used when a coefficient and all its descendants are insignificant, 

but itself is not the descendant of a previously found zero-tree root. If an insignificant 

coefficient has significant descendant(s), it is coded with IZ symbol.  The POS 

symbol is used for coding a significant coefficient that has a positive value, and the 

NEG symbol is used for a negatively signed significant coefficient. In addition, a 

Magnitude Refinement (MR) symbol, which is used in the subordinate pass, is used 

for coding the bitplanes of coefficients that are found to be significant in the dominant 

pass.  Figure 3.9 shows the flow chart for encoding a coefficient of the significant 

map. 

 

The zerotree coding effectively reduces the cost of encoding the significant map with 

the use of self-similarity that exists between coefficients across scales as the 
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appearances of insignificant coefficients across scales are not strictly independent 

events. When a zerotree root is coded, all the descendants following the “zerotree 

root” symbol of the insignificant coefficient need not be coded.  Effectively, only the 

significant map and the significant coefficient of the current bitplane along with their 

children are coded. The two-pass approach in the bitplane coding also allows the 

different PDF to be used in the dominant pass and subordinate pass separately. This 

provides a better statistical model and thus entropy coding is expected to be more 

efficient. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Flow chart for encoding a coefficient of the significant map. 
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Undoubtedly, EZW represents a significant contribution and novelty in the design of 

hierarchical bitplane coders. Subsequent improvement of this algorithm can be found 

in [117]. Its popularity has motivated the development of SPIHT [32] and the EBCOT 

[14] coders.  Monro et al. [118] has also extended the EZW approach to block-based 

transform coding, where zero-tree coding for DCT coefficients is proposed. 

 

3.4.2 Set Partitioning In Hierarchical Tree (SPIHT)  

 
The SPIHT coder [32] offers an extension to the EZW coder [31]. In the EZW coding, 

there is the partial ordering of the transform coefficients with respect to a set of 

threshold values. In SPIHT, however, a set partitioning sorting procedure is used, and 

a significant test is performed on the partitioned set, Γ , of coefficients.  The 

magnitude of the maximum coefficient in the given partitioned set, Γ, is tested against 

a threshold, nT , and the set is considered significant if 
( )

{ } nji
ji

Tc ≥
Γ∈

,
,

max .  If the test is 

insignificant, all the other coefficients in the partitioned set are also considered as 

insignificant.  With the exception of the relationship in the LLD (the lowest isotropic 

DC band), the parent-child relationships in the SPIHT are similar to that of the EZW. 

Referring to Figure 3.10 on the SPIHT, one quarter of the coefficients (with even 

horizontal and vertical coordinates) in the LLD have no children, while the rest of the 

coefficients each have four children. For the other three regions, the HH, HL and LH, 

the parent-child relationships for SPIHT are similar to that of the EZW. 

 

There are three ordered lists in SPIHT: 

1) List of significant coefficients (LSC) 

2) List of insignificant coefficients (LIC) 

3) List of insignificant sets of coefficients (LIS)  

 

The set of coordinates of immediate children, descendents and non-immediate-

offspring descendents are represented as ( )jiI , , ( )jiD , , and ( ) ( ) ( )jiIjiDjiDni ,,, −= , 

respectively.  
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Beginning with the highest bitplane, each bitplane is treated with the significance and 

the refinement pass. At the initialization stage, the LSC is reset as an empty set, the 

coordinates ( )ji,  of all coefficients in the LLD region enters the LIC, and those 

coefficients with children are added to the LIS as roots of Type A. Next, all 

coefficients in LIC are examined and coded starting from the MSB plane. For 

significant coefficients, their signs are output, and the significant coefficients are 

moved to LSC.  All the set of coefficients in the LIS are also examined and coded in 

sequential order, one set at a time. If a set of coefficients in the LIS is significant and 

belongs to type A, two possible outcomes arise:  

(a) if the set of its immediate children ( )jiI ,  is significant, the coordinates of 

children coefficients are moved to LSC and the signs of their coefficients 

are output.  Otherwise, 

(b)  the coordinates of the immediate children coefficients are moved to LIC.   

 

If the set only has immediate children but no other descendents, the set would be 

removed from LIS. If the set has non-immediate offspring (i.e., ( ) 0, ≠jiDni ), the 

coordinate (i, j) is moved to LIS as type B.  If a set of coefficients in the LIS is 

insignificant, a 0 bit is coded.  If a set of coefficients (i, j) in the LIS belonging to type 

B and the set of its non-immediate-offspring descendents ( ( )jiDni , ) are significant, 

the coordinates of its immediate children are added to the end of LIS as type A.  The 

entry of the set of coefficients (i, j) is removed from LIS.  

 

At the refinement pass, all LSC coefficients are coded, except those that have just 

been added to LSC.  The coding proceeds for the next lower bitplane by visiting 

entries in the LIP, LIS and LSC. 
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Figure 3.10 (a) Parent-child relationship in SPIHT. (b) Shaded region indicates 
coefficients in the LL3 (the lowest DC Level) that have no children. 

(b)  

LL3 
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Similar to the EZW, encoding can halt at any time when the desired coding rate is 

achieved. Empirical studies too have shown that the SPIHT has achieved better 

coding results than the EZW [1, 12, 32].  While there are 3 coding passes in SPIHT as 

opposed to 2 coding passes in EZW, the extra coding pass in SPIHT can provide fine 

embedding of information which can potentially be exploited for HVS-based rate 

control scheme. 

 

3.4.3 Embedded Block Coding with Optimized Truncation (EBCOT)  

 

The EBCOT [14] algorithm employs DWT with either the Mallat dyadic [103] or 

packet wavelet decomposition structure [90].  The DWT samples are then bitplane 

quantised and encoded with context arithmetic coding.  Similar to EZW and SPIHT, 

the EBCOT is a scalable coder. While EZW and SPIHT generate bitstreams that are 

rate scalable, the EBCOT produces bitstreams that are quality and resolution scalable. 

The output bit stream consists of embedded subsets (codeblock layers) which are 

independently compressed.   

 

Resolution scalability translates to the ability to reconstruct an image at different 

resolution levels. Quality scalability means that images can be reconstructed with 

different quality levels, relative to some quality measure.  When the bitstream is both 

resolution and quality scalable, it means that the compressed bit stream can be 

decoded to different resolution or quality levels [12, 14, 103].   

 

EBCOT utilizes a two-tier coding strategy. During tier one coding, each subband is 

divided into independent code-blocks of 32x32 or 64x64 samples each.  Each 

codeblock is encoded bitplane layer by bitplane layer. Each bitplane layer is further 

segregated to fractional bitplane layers to form addition truncation points on the R-D 

curve. Associated with each fractional bitplane layer is the rate (in bits) required to 

encode the layer and the distortion reduction resulting from the encoding of the layer. 

The rate increase and the distortion reduction for all truncation points are then used in 

the Post Compression Rate Distortion (PCRD) optimisation in the tier two coding to 

optimise the final bitstream.  The Partitioning of codeblock has the advantage of 
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minimising the use of memory [14].  Compressing individual blocks as opposed to the 

whole image is more resource efficient.  

 

Every sample in the codeblock is coded by four different types of coding primitives: 

Zero Coding (ZC), Run-Length Coding (RLC), Sign Coding (SC) and Magnitude 

Refinement (MR).  While it may be reasonable to assume the correlation between the 

current codeblock and its neighbours as insignificant (in order to ensure that each 

block’s bit-stream remains independent), this does not hold for the neighbours of each 

subblock.  In the presence of an insignificant sample, the ZC is used. However, if a 

horizontal run of insignificant samples is encountered, the RLC is used instead of ZC. 

SC is employed to determine the sign of the sample and is used only once for each 

sample. Conversely, significant samples are subjected to the MR primitive coding 

operation [14]. 

 

Starting from the MSB, bitplane coding is carried out through four coding passes, 

each generating its own truncation point.  As shown in Figure 3.11, more truncation 

points do provide finer approximations to the R-D curve. 

  

The four coding passes are described as follows: 

1) Forward Significance Propagation Pass (P1
P): This pass proceeds through the sub 

block samples in a scan-line fashion, omitting all samples which are insignificant. 

Here, the ZC or RLC is employed to identify the significance of the sample, and 

if found to be significant, the SC coding operation is executed. 

2) Reverse Significance Propagation Pass (P2
P): Similar to the coding pass in (P1

P), 

this scanning is done in the reverse order. Samples which are coded in the 

previous pass are omitted, while samples with at least one significant neighbour 

(of the 8 immediate neighbours) are added.  

3) Magnitude refinement Pass (P3
P): All samples which were previously found to be 

significant are coded with the MR coding operation.  

4) Normalisation Pass (P4
P):  The least significant bit of the remaining samples 

which were not visited by the preceding three passes is coded using the RLC 

primitive, and if a sample is significant, its sign will also be coded immediately 

with a SC primitive. 
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3.5 Perceptual Coders and Psychophysical Quality Metrics 

 
 
Traditional transform coders achieved excellent compression ratio by exploiting the 

statistical redundancies exists in the image data.  However, reduction of statistical 

redundancies does not necessary equate to the reduction of psychovisual 

redundancies.  Since the human observers are the ultimate judges of picture quality, 

picture coders should ideally remove psycho-visual redundancies, and thus retain 

visually relevant information in image data.  Hence, it would be beneficial to 

incorporate aspects of the HVS into the coding process to improve picture quality of 

coded images. Perceptual coders can be widely classified into rate driven or quality 

driven.  

 

 

Figure 3.11 Rate Distortion Curve with Bitplane. 
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3.5.1 Watson’s DCTune 

 

Watson’s DCTune [119] is based on the standard DCT coder with vision modeling for 

quantisation matrix.  In the earlier publication by Paterson et al. [120, 121], the 

threshold for DCT basis functions is measured.  It is found that there exists a smallest 

coefficient that shows psychophysical visible distortion for a certain DCT basis 

function at index (u, v).  This value is known as the threshold, uvt .  The highest 

possible quantisation error at this threshold point is, 

 

2
uv

uvk

q
e =          (3.31) 

 

where uvke  is the maximum quantisation error for kth DCT block at index (u,v). If the 

element in the quantisation matrix is set at uv
uv t

q
=

2
, it will ensure that errors are 

visually imperceptible.  Hence, 

 

uvuv tq 2=          (3.32) 

 

The quantisation matrix (QM), qu,v, is thus dependent on the visually perceptible 

maximum possible quantisation errors at various DCT basis functions, but 

independent of the image. Watson called it the “image-independent perceptual” (IIP).  

However, Watson in DCTune [119] proposes an image dependent perceptual (IDP) 

approach for formulating a QM tailored to specific images. The IDP approach gives 

rise to a given perceptual error, based on the DCT coefficients by considering both the 

effects of contrast and luminance masking.  The model for the masked threshold, 

uvkm , is as follows, 

 

( )uvuv w

uvk

w

uvkuvkuvk tctm
−

=
1

,max       (3.33) 
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where uvw  is the exponent having a value between 0 and 1, uvkt  and uvkc  are the 

luminance masking threshold and the DCT coefficient, respectively. Note that the 

image is first divided into blocks of size 8x8, and k denotes the index of a block (size 

of 8x8) of image, u and v are indices of the DCT frequency (or basis function).  The 

DCT coefficient, uvkc , can be computed by equation (3.21) (i.e., the X[k,l] in equation 

(3.21)).  The luminance masking threshold, uvkt , can be found by the formula supplied 

by Ahumada and Peterson [122]. The perceptual distortion due to quantisation error 

when considering the effect of masking is thus expressed as, 

 

uvk

uvk
uvk

m

e
d =          (3.34) 

 

Minkowski metric is used to pool the Just-Noticeable-Differences (JND), uvkd , for a 

particular frequency at (u, v) over all DCT block, k, as follows, 

 

ββ

1









= ∑

k

uvkuv dD         (3.35) 

 

Where uvD  is the perceptual error at (u, v).  Pooling all the elements of (u, v) of the 

perceptual error leads to the overall distortion as, 

 

λ
λ

1









= ∑∑

u v

uvDD         (3.36) 

 

If the exponent, ∞→λ , D  is ( )uvDmax , and the minimum bitrate for a given ψ=D  

is achieved when ψ=uvD , where ψ  is the perceptual error. 

 

The optimisation of the quantisation matrix (QM) can be determined by assuming 

∞→λ , and the QM becomes separate optimisation of individual elements of the 

matrix. Each entry of the perceptual error, uvD , is an independently monotonically 

increasing function of the respective elements in the QM. 
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When coding Lena at 0.25 bpp separately by IDP and IIP approaches, Watson [119] 

has reported that the IDP approach produced better perceived quality improvement 

over the IIP approach. 

 

3.5.2 Subband Image Coder by Safranek and Johnston 

 

This coder [123] presents coding of wide selection of images with rates of less than 1 

bit per pixel (bpp). It employs differential pulse code modulation (DPCM), entropy 

coding, perceptual-threshold calculation, and quiescent block rejection. 

 

Each image is transformed using the GQMF filter bank [94, 124] into four bandpass 

sub-images.  The RMS noise sensitivity threshold (also called based noise sensitivity) 

for each subband was determined through a series of informal sensitivity testing. By 

adjusting the luminance level and base sensitivity, both frequency content and image 

brightness for a flat-field image, which the human eye is sensitive to, are accounted 

for. The perceptual threshold calculation is expressed in dB as follows: 

 

( ) ( ) ( )( ) ( )v,uCWv,uTlog.bBv,u,bpt ⋅−−= 150     (3.37) 

 

where b is the subband, u and v correspond to the pixel location.  B(b) is the base 

noise sensitivity for subband, b. W and ( )v,uC  are the brightness weighting factor and 

the brightness correction, respectively, The brightness factor takes into consideration 

luminance variations. Notice also the function has a texture energy variable, )v,u(T , 

for textural masking adjustment as Safranek and Johnston [123] generally believe that 

textured regions are over coded. The texture energy function is: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )11110
15

1

++++⋅+⋅=∑
=

v,u,v,u,y,u,v,uvarWv,u,bEbWv,uT mtf

b

mtf  

          (3.38) 

 

The weights,  mtfW , are assigned based on the modulation transfer function (MTF) 

[125]. The ( ),,,var  is the variance taken over a 2x2 area with the target pixel in the 
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upper left corner at (u, v),  ( )v,u,bE  is the local energy in the subband, b, except  

subband zero. Essentially, the texture masking function is the weighted sum of the 

texture energy at each image location. 

  

 

3.5.3  Perceptually Tuned Subband Image Coding by Chou and Li 

 

Chou and Li [126] propose a method to estimate the JND and minimally noticeable 

distortion (MND) profiles of monochromatic images. The JND/MND profiles are 

used to remove perceptual redundancy in their subband coding algorithm.  The JND 

profile is computed as follows, 

 

( ) ( ) ( ){ }y,xf,y,xfmaxy,xJND dafb =       (3.39) 
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where ( )y,xag  and ( )y,xbg  are the weighted average luminance differences and 

mean background luminance around pixel ( )y,x , respectively.  The parameters, λ , 

0T , and γ , were derived from subjective experiments and curve fitting.  The values of 

these parameters increase with increasing viewing distance. While fgJND  profile 

encodes images to an imperceptible difference level, the MND profile encodes images 

to a target bitrate while minimising visual distortion.  The MND profile is computed 

as follows, 

 

( ) ( ) gy,xJNDy,xMND fbfb,g ⋅=       (3.42) 

 

where g is the distortion index ranging between 1.0 and 4.0.  After the JND or MND 

have been computed from the image data, it is decomposed into respective subbands 
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(i.e., each JND or MND per subband) in the frequency domain with their MTF 

weights, where each MTF weight is the average MTF value of its subband.  The 

decomposed JNDs or MNDs in the subbands are used in the DPCM encoding to 

achieve the desired bitrate and visual quality. 

 

3.5.4 Locally Adaptive Perceptual-based Image Coding by Hontsch 
and Karam 

 

Hontsch and Karam’s Locally Adaptive Perceptual Image Coding (LAPIC) [127] is 

an extension of their earlier work [128, 129] that uses adaptive quantisation scheme 

with DPCM coding within the domain of Generalised Quadrature Mirror Filter 

(GQMF) Bank [94, 124]. The earlier work is based on the concept of JND [130], 

incorporating aspects of the HVS of contrast sensitivity, luminance and contrast 

masking.  The quantisation scheme estimates the JND threshold at the encoding stage. 

A similar process is carried out to estimate its JND threshold during dequantisation at 

the decoding stage without side information, and hence eliminating the need to 

transmit adaptive quantisation step sizes.  This quality driven coder produces superior 

quality images than its predecessor [123].   

 

Being an expansion of the previous work [128, 129] that are based on GQMF, the 

LAPIC is based on discrete cosine transform (DCT) and uses JND threshold for DCT 

coefficients. Contrast sensitivity and contrast masking are the two visual mechanism 

employed in the computation of the JND thresholds denoted as ( )21 n,n,bt JND . It is 

defined as, 

 

( ) ( ) ( )212121 n,n,ban,n,btn,n,bt CMDCTJND
⋅=      (3.43) 

 

where ( )21 n,n,btDCT  and ( )21 n,n,baCM  are background luminance-adjusted contrast 

sensitivity threshold and contrast masking adjustment, respectively. The index b 

denotes the DCT subband number, n1 and n2 identify the coefficient location within 

the subband, b.  

 

The contrast sensitivity threshold is derived as, 
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where ( )21 n,nT j,i  is the background luminance-adjusted contrast sensitivity of the 

luminance error due to quantisation of DCT coefficient, j,ic , in DCT block ( )
21 n,n .  

M being the gray levels, mnL  and maxL  are the minimum and maximum display 

luminances, and, 
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zα    with   { }jiz ,=  . iα  and jα are the DCT 

coefficient normalization factors. The block size of DCT, DCTN , is 8. 

 

( )21 n,nT j,i  is based on empirical model [122] that was obtained in psychophysical 

experiments of fitting CSF data, and it is computed as, 
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where j,if  is the spatial frequency corresponding to DCT coefficient in location ( )j,i , 

and is given as, 
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the orientation, j,iΘ , ( )21 n,nTmin , ( )21min , nnf , and ( )21 , nnK  are, respectively, 

computed as, 
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The local background luminance, ( )21 n,nL , is computed as, 
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This is based on a fovea region of about 2 degree angle. ( )( )
2n,n 1n0,F  that is taken as 

follows, 
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where D , R  and θ  are the viewing distance, display resolution, and visual angle, 

respectively.  The contrast masking adjustment, ( )21 n,n,baCM , is computed as 

follows, 
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where 
( )2n,

c 1b,nF  is the average magnitude of the DCT coefficients in ( )2n,1nb,F , and 

( )2n,1nb,F  denotes the area centre at location ( )2n,n1  in subband b that covers 2 degrees 

of visual angle. 

 

For imperceptible quantisation errors, the uniform quantisation step size, 

( )21 n,n,bsJND , is computed as, 

 

( ) ( )2121 2 n,n,bt̂n,n,bs JNDJND =       (3.54) 

 

where ( )21 n,n,bt̂ JND  is the estimated threshold at location ( )21 n,n,b . ( )21 n,n,bt̂ JND  is 

computed based on equation (3.43) except with ( )2n,1nb,F  being replaced by a causal 

fovea region.  Compared with Watson’s DCTune [119], the Locally Adaptive 

Perceptual Image Coding has improved image quality, especially, at low bitrate as 

reported in [127] . 

 

3.5.5 EBCOT with Visual Masking by Taubman  

 
 

In EBCOT [14], the default measure for distortion is the MSE.  However, it is well 

known that MSE is not a good measure for visual distortion.  Taubman proposes a 

spatially varying distortion metric [14] that incorporates masking phenomenon within 

the distortion function.  Accordingly, the visual distortion metric (VDM), also known 

as the CVIS, has the following expression,   
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where [ ]kxz  and [ ]kx̂
n

z  denote the subband sample and quantised representation of 

the subband sample, respectively, in code-block, zB , at location ( )21 k,kk = , where ,k  

and 2k are the horizontal and vertical positions, respectively, for subbands HH, LH, 

and LL.  In the case of HL, ,k  and 2k represent the vertical and horizontal positions, 

respectively. 
zbw is the 2L  norm of basis function of wavelet transform for 

subband, zb ,which contains the code-block, zB , 
zbσ is provided for minimum level of 

inhibition.  [ ]k,jVz  denotes the visual masking strength, and is computed as, 
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where [ ]kzη  denotes the neighbourhood of samples about [ ]kxz , and [ ]kzη denotes 

the size of the neighbourhood.  The neighbourhood is obtained by partitioning the 

code-block, zB , into 8x8 blocks, and the exponent, ρ , is set to 0.5.  It is noted that 

the normalized image samples with a range of 0 to 1 has been used for the non-linear 

operation above. 

 

3.5.6 Point-wised Extended Visual Masking by Zeng, Daly and Lei  

 

Embedded into the JPEG2000 coder [131], the Point-wised Extended Visual Masking 

coding [132] by Zeng et al. incorporates self-contrast masking and neighbourhood 

masking effects by introducing a non-linear function that maps the wavelet 

coefficients into perceptual domain.  In contrast to EBCOT’s Visual Masking [14] 

where masking effects were considered after quantisation, here a signal that is subject 

to masking is elevated by a power function and then followed by a divisible 

neighourhood masking weighting factor. The masking operator modifies the DWT 

coefficients, and hence an inverse process is required at the decoder. While the 

neighbourhood masking weighting factor could also include neighourhood 

coefficients from interbands, the final model that has been adopted by the JEG2000 

standard only considers intra-band masking, where the neighourhood masking 
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weighting factor includes neighbouring coefficients from the same subband.  The final 

model maps the wavelets coefficients as follows, 
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        (3.57) 

 

where kx is the wavelet coefficient, α is the power factor for self-contrast masking 

having a value between 0 and 1, ( )kxsign  gives the sign of the wavelet coefficient, 

kx ,  a being the normalisation factor.  iφ  denotes the size of the causal 

neighbourhood.  ix̂  are the quantised coefficients of the causal neighbourhood for 

coefficient, kx .  The exponent, β , is greater than zero. The typical values for α  and 

β  are 0.7 and 0.2, respectively. A proper choice of α , β  and iφ  enables the coder 

to distinguish local sharp edges from a locally complex image region. Figure 3.12 

shows the selection of causal neighbourhood coefficients that are quantised 

coefficients ix̂  prior to kx .  From the perspective of coefficient recovery, only causal 

neighbouring samples are used. This is because the decoder requires causal samples to 

recover the modified DWT coefficients caused by masking operator at the encoder.  

These neighbourhood coefficients are chosen so that each coefficient of the quantised 

coefficients, ix̂ , can be recovered prior to recovery of kx at the decoder.  

 

It is noted that the use of neighbourhood quantised coefficients results in some degree 

of masking inaccuracy especially when coefficients are coarsely quantised and only 

the first few most significant bits of the quantised indexed are retained while the 

remaining lower bits are truncated during bitplane coding.   
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Figure 3.12 Causal neighbourhood coefficients ix̂  (the shaded boxes    ) for signal kx      

in a 7x7 Neighbourhood where 24=iφ .  The non-causal coefficients (the unshaded 

boxes) are not included as the coefficients for computation. 
 

3.5.7 Wavelet Visible Difference Predictor by Bradley  

 

In Daly’s VDP, an algorithm is developed to determine image fidelity with a vision 

model by also considering the effect of display parameters and viewing conditions. 

The output is a probability detection map that provides the location and the degree of 

visual differences (in the perceptual sense). However, the VDP map does not attempt 

to discriminate among different suprathreshold visual errors. Three aspects are 

considered in the VDP: amplitude non-linearity, contrast sensitivity function, and 

detection mechanism.  Basically, two images (an original image and a noisy one) are 

rescaled by the amplitude non-linearity and CSF functions, before they are filtered by 

cortex transform.  A masked function is applied to the filtered images to determine 

their masked threshold elevations.  The contrast difference and the masked threshold 

elevation between the two filtered images are used in a psychometric function to 

compute the probability of detecting the contrast difference.  Probability summation is 

used to pool data over the various cortex channels to create the detection map. A 

comprehensive coverage of VDP can be found in [133]. The vision model used in the 

VDP is also included in Appendix G as a reference. 

 

The Wavelet Visible Difference Predictor proposed by Bradley [134] is a 

modification of the visible difference predictor (VDP), as proposed by Daly [133]. 

Unlike VDP which is based on the cortex transform, WVDP uses the linear phase 9/7 

   

kx  

ix̂  
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biorthogonal filter within the hierarchical wavelet transform [135]. Other key 

modifications are (1) no light adaptation preprocessing is considered in WVDP, (2) 

adoption of a simplified definition of subband contrast, and (3) the CSF is assumed to 

have applied directly in the transform domain.  

 

In WVDP, both the original image and noisy image are processed in the three stages 

before a final probability summation is carried out as outlined in Figure 3.13.  During 

the first stage, discrete wavelet transform is applied to both the original and noisy 

images. Their output are processed by the threshold elevation (TE) function at the 

second stage.  The TE function determines the amount of quantisation error that can 

be added without the error being visible after the image is reconstructed.  The TE is 

defined as, 
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Figure 3.13 The structure of wavelet visible difference predictor 
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( ) ( ) ( ) ( )( )nmXfSfdnmfTE mc ,,,max,,, ⋅= θθ     (3.58) 

 

where θ  and f denote the orientation (LL,LH,HL,HH) and the frequency level of 

decomposition, ( )n,mX  is the wavelet coefficient at location m and n.  The ( )fSm  is 

a constant variable that varies according to the frequency, f, of the decomposition.  

( )fSm  can alter the slope of the masking function.  For the current model, ( )fSm  has 

been set to one, which corresponds to the derived slope for phase-incoherent masking 

mentioned in Daly [133]. Together, ( ) ( )nmXfSm ,⋅  acts like self masking. ( )f,d c θ  

is a coefficient detection threshold defined as, 

 

( ) ( )
( )12 −⋅

=
l

l

c
pk

f,y
f,d

θ

θ
θ         (3.59) 

 

where l  is the decomposition level of the wavelet transform. θk  is either 2

lp , 2

hp , or 

kl p.p  for LL, HH, or LH/HH subband, respectively. The maximum values of lp  and 

hp  are 0.788485 and 0.852699, respectively.  The denominator in equation (3.59) acts 

like energy gain factors of a wavelet transform and is used to normalized the 

minimum threshold elevation function, ( )f,y θ . The minimum threshold elevation 

function, ( )f,y θ , is obtained from empirical model [122] in psychophysical 

experiments of noise added directly to wavelet coefficients and viewed from a gamma 

corrected monitor.  ( )f,y θ  has the following expression, 

 

( )

22

010






















⋅=
fg

f
logk

af,y θθ        (3.60)  

 

where a , k , of  are constants having values of 0.495 (minimum), 0.466, and 0.401, 

respectively.  θg  has values of 1.501, 1, and 0.534 for LL, LH/HL, and HH subbands, 

respectively.  Equation (3.60) and the values for a , k , of  and θg  are consistent with 

those proposed by Liu e. al. in section 3.5.9.  
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The third stage accounts for mutual masking between the threshold elevations (TE) of 

both the original ( oTE ) and noisy ( nTE ) images by taking the minimum of the two, 

( ) ( ) ( )( )n,m,f,TE,n,m,f,TEminn,m,f,T noem θθθ = . 

 

The probability, ( )n,mPb , of detecting the visible difference in each subband for each 

coefficient at location ( )n,m  is computed as 

 

( )
( )

( )

β

α

δ

⋅
−

−=
n,mT

n,m

b
em

x

en,mP 1        (3.61) 

 

where ( ) ( ) ( )n,mXn,mXn,m nox −=δ , β  andα  are constants having values of 2 and 

4, respectively.  oX  and nX  are the transform coefficients of the original and noisy 

images, respectively. 

 

The final output of WVDP is a probability detection map of each pixel at location 

( )n,m . It is computed by combining the probability of detection in each of the 

subbands as follows, 

 

( ) ( )( )∏ −−=
b

bWVDP n,mPn,mP 11       (3.62) 

 

Due to aliasing and reduced spatial resolution associated with critical sampling, the 

critically sample version of WVDP is less accurate when predicting the masking 

function than the overcomplete version of WVDP. Moreover, the use of 9/7 wavelet 

transform in WVDP may not be as suitable as the cortex transform, (used in the 

VDP), for modeling the HVS.  

 

Although, the WVDP is not as reliable and accurate as the cortex transform based 

VDP, the WVDP can potentially be used to provide a quantitative measure of visual 

quality in wavelet based coders that do not use the cortex transform. As suggested by 

Bradley [134], the WVDP can be used to provide a framework for setting a perceptual 

error below certain visual threshold across the image, so that a wavelet based 
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compression scheme could operate within this constraint to achieve perceptually 

lossless compression. 

 

3.5.8 JND in DCT Subband Domain by Lin  

 

A JND model incorporating CSF, luminance adaptation, intra-band and inter-band 

frequency masking effects based on the HVS was proposed by Lin [136] to compute a 

distortion measure in the DCT domain.  The JND, ( )l,k,ns , is defined as, 

 

 ( ) ( ) ( )∏
℘

℘−= l,k,nl,k,ntl,k,ns csfs α       (3.63) 

 

where ( )l,k,ns  is the JND for a DCT subband, ( )l,k,nt csfs−  is the base threshold due 

to CSF, and ( )l,k,n℘α  is the elevation parameter for all the { }erint,raint,lum∈℘  

due to luminance adaptation, intra-band frequency masking and inter-band frequency 

masking. n denotes the position of a NxN  DCT block in an image, X , and ( )l,k  

denotes the position of a DCT coefficient within a DCT block.  The base threshold, 

( )l,k,nt csfs− , is based on a modification of the formula developed  by Ahumada et al. 

[122], and can be traced back to Van Nes and Boudman’s experiments  on CSF [64].   

The formula is modified to avoid over estimation of the base threshold for coefficients 

in DCT subband at position ( )l,k,n .  The base threshold is computed as 

 

( )
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LL

G
l,k,nt

o

minmaxlk

csfs
−

=−
φφ

     (3.64) 

 

where 
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( ) ( ) ( )
( )l,kf

l,f,kf
sinl,k

2

1 002 ⋅⋅
= −θ       (3.67) 

 

where maxL  and minL  are the maximum and minimum display luminance values, 

xω and yω  are the horizontal and vertical visual angles of a pixel. pf  is the spatial 

frequency at which the minimum CSF threshold ( minT ) occurs.  ( )nK  is a positive 

constant that be empirically determined as reported in [136].  r  is set to 0.7.  The 

normalizing coefficients kφ  and lφ  of equation (3.64) can be determined as follows, 
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where 8=N , and { }l,kr ∈ . 

 

As reported by Lin, the luminance adaptation in digital images is affected by the 

ambient illumination on the display and the gamma correction of the display tube.  

With gamma correction, the luminance adaptation is computed as, 
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where 1k  and 2k are constants values associated with ( ) 000 =,,nX  and 

( ) NG,,nX ⋅=00 , respectively.  G , N , and ( )00,,nX  are the maximum number of 

grey-level, the size of DCT block, and DC coefficient at the th
n  DCT block, 

respectively.   Note that the a constant grey value is not used as it tends to 

underestimate the visibility threshold at dark region. 

 

The intra-band frequency masking, raintα , computed as  
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where the exponent, ς , varies from 0 to 1. 

 

The current model of the inter-band frequency masking, erintα , is determined by, 
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          (3.71) 

 

The inter-band frequency masking, erintα , for the th
n  DCT block depends on whether 

the th
n  DCT block belongs to a Low, Medium, or High Masking block.  

Classification of the DCT block as either a Low, Medium or High Masking block is 

determined by the process outlined below, 

 

Firstly, for the nth DCT block, the medium-frequency (MF) and high-frequency (HF) 

energy, ( )nEmh ,  is defined as 

 

( ) ( ) ( )nRnRnE HMmh +=        (3.72) 

 

and the relative low-frequency (LF) strength, ( )nE
~

d , is defined as 

( )
( )
( )nR

nR
nE

~

M

L

d =         (3.73) 

 

and the relative LF and MF strength, ( )nE
~

dm , is defined as 
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where ( )nRL , ( )nRM  and ( )nRH  are the sums of the absolute DCT coefficients in the 

LF, MF, and HF groups, respectively.  The LF, MF an HF groups are similar to those 

in [137]. Their corresponding means are ( )nRL , ( )nRM  and ( )nRH , respectively. 

 

A DCT block is assigned to one of these classes (i.e., Low Masking, Medium 

Masking, or High Masking Class) according to the following rules: 

 

1.  For ( ) 1µ≤nEmh  : the DCT block belongs to Low-Masking class. 

 

2.  For ( ) 21 µµ ≤< nEmh  : if condition (3.75) or (3.76) is met, the DCT block belongs 

to Medium Masking class; otherwise it belongs to Low-Masking class. 

 

3.  For ( ) 32 µµ ≤< nEmh  : if condition (3.75) or (3.76) is met, the DCT block belongs 

to Medium Masking class; otherwise it belongs to High-Masking class. 

 

4.  For ( ) 3µ>nEmh  : if condition (3.75) or (3.76) is met for ϕτϕτ ⋅=  and χτχτ ⋅=  

(where 1<τ ), the DCT block belongs to Medium Masking class; otherwise it 

belongs to High-Masking class. 

 

Conditions: 

      ( ) QnE
~

dm ≥         (3.75) 

 

       ( ) ( ){ } ( ) ( ){ } χϕ ≥≥ nE
~

,nE
~

minandnE
~

,nE
~

max dmddmd   (3.76) 

 

where the model parameters for determining erintα  are set as 1251 =µ , 2902 =µ , 

9003 =µ , 7=ϕ , 5=χ , 10.=τ , 16=Q , 400=oR , 12511 .=δ  and 2512 .=δ . 

 

Together with the conditions specified in equations (3.75) and (3.76), the model 

parameters ( 1µ , 2µ , 3µ ) are use as for either lower or upper ranges for the medium-

frequency and high-frequency energy, ( )nEmh ,  so that the n
th DCT block can be 
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classified as either belonging to low-masking, medium-masking or high-masking 

block.  Once the block is classified, the interband frequency masking, ( )nerintα , for the 

n
th DCT block can be computed as in equation (3.71) according to the block 

classification and its low-frequency and medium-frequency energies. 

 

3.5.9 Perceptual Distortion Metric by Liu et al. 

 

Liu et al. propose a Perceptual Distortion Metric [138] for the JPEG2000 coder with a 

quality-driven encoding scheme. The distortion metric is computed based on JND 

threshold, which modelled the HVS with contrast sensitivity function (CSF), 

luminance masking adaptation and contrast masking adaptation.   The JND threshold 

in this instance is defined as, 

 

( ) ( ) ( ) ( )n,m,,lMn,m,,lM,lJNDn,m,,lt CLJND θθθθ ⋅⋅=    (3.77) 

 

where ( )θ,lJND , ( )n,m,,lM L θ  and ( )n,m,,lM C θ  are the base JND detection 

threshold, luminance masking adjustment, and contrast masking adjustment, 

respectively for subband ( )θ,l  at spatial location (m,n). Variables l  and θ  specify the 

frequency and orientation (i.e., the LL, LH, HL, HH orientation), respectively.  The 

JND(l,θ) was acquired through data fitting of experimental data. It is expressed as, 
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where ( )θ,lA  is the amplitude of the wavelet 9/7 basis functions for subband ( )θ,l  

(Table 3.1),  and 
357180 .

dv
tandvr ≈








⋅=

π
 is the visual resolution of the display in 

pixel per degree. The d and v are the display resolution in pixel/cm and viewing 

distance in cm, respectively. The parameters, a , k , θg , of , are obtained through 

data fitting and listed in Table 3.2. The ( )θ,lJND  in equation (3.78) is essentially the 

same model used for ( )f,d c θ  in equation (3.59) (note that one needs to substitute 
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equation (3.60) into equation (3.59) in order to observe their similarity). 

Consequently, the values for a , k , θg  and of  are the same for both WVDP model in 

section 3.5.7 and the model presented in this section. 

 

Orientation 

θ  

Decomposition Level, l  

1 2 3 4 5 6 

LL 0.62171 0.34537 0.18004 0.09140 0.045943 0.023013 

LH, HL 0.67234 0.41317 0.22727 0.11792 0.059758 0.030018 

HH 0.72709 0.49428 0.28688 0.15214 0.077727 0.039156 

Table 3.1: ( )θ,lA  for wavelet 9/7 basis functions. 

 

 

   
θg  

   Orientation, θ  

a  k  
of  LL=θ  LH,HL=θ  HH=θ  

0.495 0.466 0.401 1.501 1.0 0.534 

Table 3.2: The constant parameters for the base JND threshold, ( )θ,lJND . 

 

 

The luminance masking adjustment accounts for the HVS response that depends not 

so much on absolute luminance, but more on the luminance variation relative to the 

surrounding background.  This phenomena can be described by the Weber-Fechner 

law [139].  The luminance masking adjustment is approximated by, 

 

( )
( ) Ta

L

LL

L

n,mX
n,m,,lM 







 ′′
=

µ
θ       (3.79) 

 

where ( )n,mX LL
′′  is the wavelet coefficient in the LL band that corresponds spatially 

to location ( )n,m,,l θ  whereby  llmax/mm
−=′ 2  and  llmax/nn

−=′ 2 , and 128=Lµ  is 

the mean luminance of the display for an unsigned 8-bit image. The exponent, Ta , has 

a value of 0.649. 
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The contrast masking adjustment accounts for the fact that the visibility of visual 

signal can be affected (i.e., reduce or enhance) by the presence of other visual 

patterns. Here the contrast masking adjustment, ( )n,m,,lM C θ , includes two factors, 

the self masking and masking due to neighbouring visual signals.  It is expressed as, 

 

( ) ( ) ( )n,m,,lMn,m,,lMn,m,,lM neighborselfC θθθ ⋅=     (3.80) 

 

The self masking, ( )n,m,,lM self θ , is expressed as, 
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where ( )n,m,,iX θ  is the wavelet coefficient of subband ( )θ,l  at location ( )n,m , and 

the exponent, γ , is set at a value of 0.6.  The neighourhood masking adjustment for 

subband ( )θ,l  at location ( )n,m  is expressed as, 
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          (3.82) 

 

where all the elements specified by Xµ are neighbourhood coefficients with location 

( )n,m,,l θ  being at its centre, φ is a constant parameter.  The total number of 

neighbourhood coefficients is specified by n,mN  for subband ( )θ,l  at location ( )n,m . 

 

For the HVS, the fovea region has the highest cone concentration, and hence has the 

highest visual acuity.  This region covers about two degree of visual angle.  Hence the 

distortion is computed by considering the spatial region, ( )21 n,nF , in the image 

domain that is covered by the fovea region.  Consequently, the number of coefficients 

in ( )21 n,nF  can be approximated by, 
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where r  is the visual resolution for the display in pixels per degree. The distortion 

appears in the form of the Minkowski metric as follows, 
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Where ( )n,m,,leq θ  is the quantisation error at location ( )n,m,,l θ . The distortion 

measure, D, is determined by considering the highest probability of detecting a 

distortion over all possible fovea region over the entire image. This corresponds to the 

expression below, 

  

( ) ( ){ }
21

21

n,nF
n,n

DmaxD =         (3.85) 

 

For a given target distortion, tD , the minimum bitrate can be determined by ensuring 

all ( ) tn,nF DD =
21

 is met. 

 

3.5.10 Perceptual Image Distortion Metric by Tan et al. 

 

The Perceptual Image Distortion Metric (PIDM) proposed by Tan et al. [15] is based 

on the Contrast Gain Control (CGC)  model of Watson and Solomon [27], and the 

model proposed by Teo and Heeger [23].  The PIDM employs CSF, intra-band 

masking, and inter-orientation masking of similar frequencies to model the HVS.  It is 

adapted into the EBCOT encoding framework [14]. From subjective test results, the 

PIDM produces better perceived visual quality of digital monochrome images when 

compared to those that used the MSE measure.  The PIDM uses the Daubechies 9/7 

biorthogonal filter set for its frequency decomposition in a dyadic structure. There are 

three stages in the CGC model:  
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Stage 1: Dyadic transform with Daubechies 9/7 bi-orthogonal filters [140] is used to 

approximate the frequency and orientation selective nature of the HVS. (Note that 

cortex transform [141] will produce a more accurate model for the HVS),  

 

Stage 2: The effect of contrast sensitivity is accounted for via a set of weights to 

adjust the wavelet coefficients according to the sensitivity of the HVS at various 

spatial frequencies, 

 

Stage 3: Intra-band masking and inter-orientation masking are considered and are 

represented by inhibition functions. 

 

The neural response, zR , is defined as, 
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n,m,,lI

n,m,,lE
.kn,m,,lR

τθ

θ
θ

+
=       (3.86) 

 

where { }ΘΓ∈ ,z , with Γ  and Θ denoting intra-band spatial masking domain and 

inter-orientation masking domain of the similar frequency coefficients, respectively.  

zE  and zI  are the excitation and inhibition functions for the two domains in 

{ }ΘΓ∈ ,z .  zk  and zτ  are the scaling and saturation constants, respectively.  The 

term, 0>zτ , has been added to provide minimum level of inhibition. ( )n,m,,l θ  

denotes the location of the wavelet coefficient relative to spatial location ( m , n ), 

resolution (l) and orientation (θ) within a codeblock, note that { }521 ,...,,l =  being the 

frequency level and { }HHHLLH ,,=θ  being the orientation band.  The zE  and zI  

for { }ΘΓ∈ ,z  are defined as, 
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( ) [ ]( )
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where 
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[ ]nmlX w ,,,θ  is the CSF weighted wavelet coefficient, and q is set at 2. The inhibition 

function, ( )n,m,,lI θΓ , consists of two components: (1) spatial masking that is 

computed based on a square neighbourhood area around the [ ]nmlX w ,,,θ , with the 

area being, ( ) ( )2
12 += llN , and (2) the texture masking that is computed by the 

neighbourhood variance, q

varσ , in equation (3.91).  ( )n,mµ  represents the mean of the 

square neighbourhood area. At very high activity region of an image, the HVS is more 

tolerable to noise.  Therefore, the texture masking is included in addition to spatial 

masking to account for the HVS’s ability to tolerate higher distortion at very high 

activity region, where tolerance to higher distortion could not be sufficiently 

accounted for by spatial masking alone. 

 

At the lowest frequency subband (i.e., the isotropic LL (DC) band) where very little or 

no masking is envisaged, the response is computed differently and is defined as, 
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where wX
~

 and wX  are the quantised and unquantised DC coefficients, respectively.  

The distortion for individual neural response is defined as follows, 

 

( ) ( ) ( )
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where z,Rα  and z,Rβ  are from the reference and processed images, respectively.  The 

final distortion measure for codeblock, b , is the sum of all intra-band and inter-

orientation maskings, 

 

( ) ( ) ( )( )∑∑ ΘΘΓΓ ⋅+⋅=
i j

,l n,m,,lDgj,i,,lDgbD θθθ    (3.94) 

 

where { }
bM,..,,i 21=  and { }

bN,...,,j 21=  are the row and column positions for the 

codeblock, b .  The various model parameter constants are listed in Table 3.3 below. 

 

Parameters  Parameters  

CSF (LL-band) 1.4800 
Θk  0.9876 

CSF ( )1=l  1.5500 
Γτ  5.5550 

CSF ( )2=l  1.7700 
Θτ  7.6800 

CSF ( )3=l  1.6800 
Γp  2.5800 

CSF ( )4=l  1.2900 
Θp  2.3950 

CSF ( )5=l  0.8050 
Γg  0.7588 

Γk  1.0888 
Θg  0.4834 

Table 3.3: Vision Model Parameters. 
 

3.5.11 Just Noticeable Colour Difference Model by Chou and Liu 

 

Chou and Liu [142] proposed a visual model for measuring perceptual redundancy 

inherent in colour images.  The proposed model can be adapted in the JPEG-LS and 

JPEG2000 compliance coders.  According to Chou and Liu [142], the perceptual 

redundancy of a particular colour can be determined by the radius of just noticeable 

colour difference (JNCD) in all regions of the uniform colour space.  The radius of 

JNCD sphere is scaled by both the chroma of the associated pixel and the local 

luminance properties, and it is expressed as adaptive JNCD (AJNCD) as, 

 

( )( ) ( )b,aL,LEJNCDAJNCD ClumLab αα ⋅∆⋅=     (3.95) 
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where L, a, and b are components specified in the CIE-Lab Space.  LabJNCD  is the 

threshold for determining if two colours in the CIE-Lab space are considered 

perceptually distinguishable if their Euclidean distance between them exceeds this 

threshold.  lumα  and Cα  are scaling factors which consider the effect of chroma 

changes and masking effect due to local luminance texture, respectively.  The scaling 

factor, Cα , is determined as, 

 

( ) 2204501 ba.b,aC +⋅+=α       (3.96) 

 

The masking factor, lumα , due to local luminance texture, is defined as, 

 

( )( ) ( )( ) 01.LLEL,LElum +∆⋅=∆ τα       (3.97) 

 

where ( )LE  and L∆  are mean background luminance of the target pixel and the 

maximum luminance gradient across the target pixel, respectively.  ( )( )LEτ  is the 

slope of the lines that fit the empirical data under different ranges of  ( )LE , and it is 

determined as, 
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A lower colour bound, 1k , and upper colour bound, 2k , for colour, k ,have been 

defined so that only colours within the AJNCD  sphere and those which have 

luminance components between the colour bounds 1k  and 2k  are included as 

candidates for estimating the perceptual redundancy for colour, k. As consideration 

for all colours within the AJNCD  sphere can be prohibitively large, only limited 

numbers of critical colours that are at the verge of being distinguishable from colours 

are selected for setting the lower and upper bounds, and the critical colour samples are 

chosen as, 
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( ) ( ) ( ){ }θθϕ i

k

i

kk eEImb,eERea,Lk ⋅+⋅+= 111 1
    (3.99) 

 

( ) ( ) ( ){ }θθϕ i

k

i

kk eEImb,eERea,Lk ⋅+⋅+= 222 2
    (3.100) 

 

where 
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where kL , 
1kL and 

2kL  are the luminance levels for colours k , 1k  and 2k , 

respectively.  The kAJNCD  is adaptive JNCD  for colour, k .  n is the number of 

critical colour samples for 1k  and 2k . 

 

The JND value for each colour component { }Cr,Cb,Yc ∈  for colour k is computed as, 

 

( )
( ) ( ) ks

kks
c ccminkJND −=

∪∈ 21 ϕϕ
       (3.104) 

 

To incorporate into the JPEG2000 compliance coder, the distortion measure that is 

used in the post compression rate distortion optimisation is defined as perceptible 

distortion, 
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where i,cB  is the set of sequences in code block i of colour component { }Cr,Cb,Yc ∈ , 

( )v,uX i,c  is the wavelet coefficient at location ( )v,u  within code block i of colour 

component { }Cr,Cb,Yc ∈ , and 
( ) ( )v,uX̂ i,cn

i,c

λ
 is the reconstruction of ( )v,uX i,c  by the 

bit streams truncated at truncation point ( )λi,cn  at optimal rate-distortion slope λ , 

which is obtained via the rate-distortion optimisation procedure in the JPEG2000 

compliance coder.  ( )v,uJND i,c  is the JND  value obtained as in equation (3.101) for 

colour component { }Cr,Cb,Yc ∈  for sample ( )v,uX i,c  belonging to code block i . 

 

3.5.12 Comparison of Some Perceptual Coders 

 

In sections 3.5.1 to 3.5.11, some perceptual image coders are discussed in detail. The   

visual properties and features of different perceptual coders are summarised and 

tabulated in Table 3.4. 

 

Perceptual Models Visual properties 

considered 

Feature 

Watson DCTune Contrast and 
Luminance masking 
 

Selection of a quantisation matrix that 
can yield the best quality given the 
desired compression ratio.  

Safranek and Johnson Luminance variations 
for the purpose of 
textual masking 

Coding of images with rates of less 
than one bit per pixel. Achieved using 
a combination of the following 
compression method: DPCM, entropy 
coding, perceptual-threshold 
calculation and quiescent block 
rejection. 

 
Table 3.4  Comparison of Some Perceptual Coders 
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Perceptual Models Visual properties 

considered 

Feature 

Chou & Li Average luminance 
difference and mean 
background around 
pixel  

Proposes a method to estimate the 
Just-Noticeable-Distortion (JND) and 
Minimally-Noticeable-Distortion 
(MND) profiles of a monochromatic 
image. 
The decomposed JNDs and MNDs in 
the subbands are used in encoding to 
achieve the desired bitrate and quality. 

Hontsch and Karam Background-
luminance adjusted 
contrast sensitivity, 
contrast masking 

Uses adaptive quantisation scheme 
with DPCM coding and JND threshold 
for DCT coefficients. 

Taubman Visual masking Proposes a spatially varying distortion 
metric that incorporates masking 
phenomenon within the distortion 
function of EBCOT. Masking effects 
are considered after quantisation. 

Zeng, Daly and Lei Intra-band masking, 
Self-contrast masking 
and neighbourhood 
masking effects 

Incorporates self-contrasting masking 
and neighbourhood masking effects by 
introducing a non-linear function that 
maps the wavelet coefficients into a 
perceptual domain. Masking effects 
are considered by applying a signal 
(which is subjected to masking) to a 
power function and followed by a 
divisible neighbourhood masking 
factor. 

Liu Contrast sensitivity, 
luminance masking, 
contrast masking 

Proposes a distortion metric based on 
JND thresholds (which incorporates 
CSF, luminance and contrast masking 
adaptation) in the wavelet domain in a 
dyadic structure with Daubechies 9/7 
filters. 

Tan Contrast sensitivity, 
intra-band frequency 
spatial masking, 
inter-orientation 
masking of similar 
frequencies 

Considers the CSF, intra-band 
frequency spatial masking, inter-
orientation masking of similar 
frequencies within a Contrast Gain 
Control Mode [27] that is adapted into 
the EBCOT framework[14]. 

Chou and Liu Local luminance 
masking 

Incorporates adaptive JNCD into the 
distortion function for JPEG2000 
compliance coder.  Considers the 
effects of chroma variation and 
luminance properties on adaptive 
JNCD. 

Table 3.4 Comparison of Some Perceptual Coders (cont…). 
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3.6 Chapter Summary 

 

This Chapter reviews the various coders used for image compression (sections 3.4 & 

3.5). Section 3.2 gives a brief overview of information theory which forms the basic 

foundation of data compression including image coding [10]. Picture compression is 

categorized into lossy and lossless. Lossy compression allows for some information 

loss during compression. On the other hand, lossless compression maintains 

information integrity during the encoding process. Lossless compression systems are 

centred solely on the removal of statistical redundancies which Shannon refers to as 

noise [10]. For lossy compression, a balance between information loss and 

compression ratio must be established. Thus, the rate distortion theory is seen as 

critical component for mitigating the tradeoff between bitrates and distortion, i.e., 

picture quality versus file size. 

 

Section 3.3 presents the structure of transform based lossy image compression system, 

which includes data transformation and quantisation. Section 3.4 presents the concept 

of hierarchical bitplane coding, specifically the EZW [31], the SPIHT [32], and the 

EBCOT [14] coders.  Apart from improved coding efficiency over the DCT based 

image coder, i.e., JPEG baseline [11], these coders also offer scalability feature. 

EBCOT has been adopted as the core of JPEG2000 still image coding standard [12]. 

 

A comparison of three wavelet based bitplane image coders have been presented, 

beginning with the EZW [31], then the SPIHT [32] and finally EBCOT [14] coders. 

Undoubtedly, EZW represents significant contribution and novelty in the design of 

hierarchical bitplane coders. Subsequent improvement based on this algorithm can be 

found in [117]. Its popularity has motivated the development of SPIHT [32] and 

subsequently the EBCOT [14] coders.  Monro et al. [118] has also extended the EZW 

approach to block-based transform coding, where zero-tree coding for DCT 

coefficients is proposed. Similar to the EZW, for the SPIHT, encoding can halt at any 

time once the desired coding rate is achieved. However, empirical studies have shown 

that SPIHT has achieved better coding results than that of EZW and thus is a more 

efficient coding tool [1, 12, 32]. In the EBOCT algorithm [14], encoding is performed 
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on partitioned codeblocks. This involves bitplane quantisation with context arithmetic 

coding. This is in contrast to EZW and SPIHT, where the dependency nature of the 

subbands means that coding is carried out across scales without subdivision.  

Experimental results find that the EBCOT is regarded as superior to EZW and SPIHT 

in terms of its Signal-to-Noise Ratio (SNR) and resolution scalability. Moreover, the 

JPEG2000 which is based on the EBCOT structure is now hailed as the current state-

of-the-art coder. The JPEG2000 coder is also taken as the benchmark for subsequent 

image coders developed in Chapters four and five to be measured against.  

 

In an effort to improve the perceived quality of coded images, picture coding systems 

have been incorporated with HVS based models. A review of some of these 

perceptual models [14, 15, 119, 123, 126, 127, 132, 134, 136, 138, 142] in section 

(3.5) highlights the visual properties considered by the various perceptual models. 

Some of these perceptual coders are either rate or quality driven. A review of these 

models serves as the backdrop for the development of the PCDM model for colour 

images and the Perceptual Post Filtering (PPF) algorithm presented in chapters 4 and 

5. A comparison of the various perceptual models is shown in Table 3.4. 
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Chapter 4 Perceptual Coding based on Intra-band and 

Inter-orientation Masking 

4.1 Introduction 

 

The JPEG2000 standard [12] represents the current state-of-the-art coder for still 

images.  The core coding structure of JPEG2000 is the block-based bitplane coding 

paradigm adopted from the EBCOT [14] that has demonstrated superior performance 

over other wavelet-based coders. The EBCOT and, hence, the JPEG2000 generate 

independent bit-streams for each codeblock which are packed into quality layers. In 

both coders, the delivery of optimized bit stream is the result of rate-distortion 

optimisation and context arithmetic coding. While applying the Mean Squared Error 

(MSE) or masking sensitive distortion measure (i.e., the VDM of EBCOT) as the 

distortion measure in the R-D optimisation produces good quality performance for the 

coded images, the MSE has long been recognized as being an inadequate 

measurement of perceived image quality as reported in [143] and [144]. The MSE 

only measures the raw mathematical distortion and does not take into account the 

perceived distortions as seen by the human visual system.  It is true that while some 

aspect of vision modeling design such as the CVIS criteria has been incorporated into 

JPEG2000 software verification model (VM8) for experimental testing, a more 

comprehensive vision model can be used to improve the visual quality of the coded 

images. 

 

4.2 The Reference Model – JPEG2000 Coding Structure  

 

The proposed model that is described in subsequent sections is built into the 

framework of JPEG2000 [14].  Figure 4.1 depicts a pictorial view of the building 

block in the JPEG2000 structure.  The encoding process involves a tier-1 and tier 2 

coding.  
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In the lossy compression mode with irreversible path, the Discrete Wavelet Transform 

(DWT) or the Lifting Wavelet Transform (LWT) [145, 146] is applied to the image 

data and decomposes it into a k-level multiresolultion representation by Mallat 

decomposition [103] with the Daubechies 9/7 separable filter set [140], which is the 

symmetric and linear phase. In both the lossy compression mode with reversible path 

and the lossless compression mode, a biorthogonal 5/3 integer filter set is used [12] 

instead. Table 4.1 below and Figure A1 in appendix A show the coefficients and 

profiles of the 9/7 filter sets, respectively. With relatively short filter lengths, the 

filters enable relatively fast computational speed.  For each decomposition level, each 

column of a 2-D image is first transformed vertically with a 1-D analysis filter bank, 

the results of the 1-D transformed coefficients are then transformed horizontally along 

each row with the same analysis filter bank.  For illustration purpose, Figure 4.2 

shows the multiresolution of a 5-level DWT decomposition by the Mallat 

DWT 

Bitplane 
Quantisation 

Context   
Adaptive 
Arithmetic 
Coding 

Distortion 
Measure 

PCRD 
Bit Stream 
Organization 

Input 
image 

Tier 1 coding Tier 2 coding 

Final 
embedded bit 
streams 

distortion 

Rate 

quantised DWT 
coefficients 

DWT 
coefficients 

Figure 4.1 Coding Structure of JPEG2000.  Tier 1 Coding: The bitplane quantised 
DWT coefficients and the unquantised coefficients are used to compute the 
distortions for all coding passes.  The bitplane quantized DWT is also entropy 
coded with context adaptive arithmetic coder.  Both distortion reductions and rates 
for the coding passes are used to generate the embedded bit streams through Post 
Compression Rate Distortion Optimizer.  Tier 2 Coding:  The Bit Stream 
organisation forms the final embedded bit stream. 
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decomposition [103]. The 5-level decomposition produces one isotropic and 15 

oriented subbands at approximately 0 degree orientation for the isotropic band, and 90 

and 45/135 degree orientations per level for the other 15 oriented subbands. Note the 

proposed model operates within the lossy mode with irreversible path of the 

JPEG2000 structure. 

 
 

Filter 
Taps 

Analysis Filter Synthesis Filter 

Low Pass, h  High Pass, g  Low Pass, h  High Pass, g  

0 0.602949 -0.557543 1.115086 -1.205898 

±1 0.266864 0.295636 0.591272 0.533728 

±2 -0.078223 0.028772 -0.057544 0.156446 

±3 -0.016864 -0.045636 -0.0921272 -0.033728 

±4 0.026749 0 0 -0.053498 

 
Table 4.1: The Daubechies 9/7 wavelet filter set. (Note:  This is the un-normalized 

version.  The normalized version involves a multiplicative factor of 2  and 
2

1
 for 

the analysis filter and synthesis filter, respectively.) 
 
 

Scalar dead-zone quantisation is applied to the transformed coefficients.  In the lossy 

mode with irreversible path where the Daubechies 9/7 separable filter set is used, the 

choice of the quantiser step size for each band is relative to the nominal dynamic 

range of the subband signal. 

 

During tier-1 coding, the quantisation indices produced by the scalar quantisation for 

each subband are partitioned into code blocks, each of which has typical block size of 

64x64.  Each code block is then independently coded using bit-plane coding 

beginning from the most significant bit plane to the least significant bit plane.  For 

each code block, an embedded code is produced, consisting of numerous coding 

passes.  At each bit plane, it involves three coding passes, namely significance pass, 

refinement pass, and cleanup pass.  The samples of each code block are scanned in the 

same order by the coding passes.  In each coding pass, the bit plane encoding process 

produces a sequence of symbols which may be entropy encoded by context-based 

adaptive arithmetic coder, specifically, the MQ coder from the JBIG2 standard [147] 

is used.  Each coding pass forms a truncation point.  Associated with each coding pass 

is the rate (in bits) required to generate the coded symbols and the distortion reduction 
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resulting from encoding the coding pass.  The rate increase and the distortion 

reduction for all truncation points are then used in the Post Compression Rate 

Distortion (PCRD) optimisation in the tier-2 encoding process to optimize the final bit 

stream.  The distortion criteria used in the JPEG2000 is typically the mean squared 

error (MSE), or optionally the visual distortion metric (CVIS) in the JPEG2000 

software verification model (VM8).  However, JPEG2000 standard does not restrict 

the choice of distortion metric.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LL HH1 LH1 HL1 HL2 LH2 HH2 HL3 

LH3 HH3 

LH4 HH4 

LH5 HH5 

HL4 

HL5 

Figure 4.2 A 5-level Multiresolution Mallat decomposition.  One Isotropic DC band 
(LL1), and 15 orientation bands covering 90, 45/135 degrees of orientations, where 1 

denotes the lowest frequency level and 5 the highest frequency level. 
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In tier-2 encoding process, the PCRD optimisation process decides which coding 

passes to be included or excluded (discarded) from the final bit stream.   

 

The MSE as the distortion metric used in the JPEG2000 coder here (Note it is actually 

weighted MSE) for a given truncation point t  in code block iB  is expressed as, 
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where j  represents the location of the coefficient within the code block iB  for a 

given truncation point t ,  tκ  includes all coefficients within the code block iB that 

produces truncation point t , ]j[X i  is the transform coefficient value, ( )
]j[X

t

i is the 

bit-plane quantized coefficient value for truncation point t , bG is the squared norm of 

the synthesis basis vectors for subband b  which contains the code block iB , csf

bi
W  is 

the CSF energy weighting factor. 

 

The distortion computation according to the CVIS for a given truncation point t  in 

code block iB is given as, 
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where bT  is the contrast sensitivity thresholds for subband b , jN  is the 

neighbourhood around location j  and the neighbourhood is identified with the 

subblock of size 8x8 that contains location j , α is an arbitrary constant, the masking 

gain , g ,  has a typical value of 0.5. 
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Perceptual Colour Distortion Measure 

 

While both the EBCOT and the JPEG2000 encoding use the mean squared error 

(MSE) or visual distortion metric (CVIS) as a distortion measure in the R-D 

optimisation function, the proposed coder uses Perceptual Colour Distortion Measure 

(PCDM) - mimicking that of the perception of the human visual system (HVS) – as a 

distortion measure in the R-D optimisation.  Specifically, the optical sensitivity at the 

optical stage of the HVS represented by the response of the contrast sensitivity 

function (CSF), and the responses of the various masking effects at the cortical stage 

are considered in the formulation of the PCDM function.   

 

Figure 4.3 gives a pictorial view of the PCDM.  Basically, the PCDM is a replacement 

of the distortion measure used in the JPEG2000 coding structure where the proposed 

PCDM has been incorporated. From Figure 4.3, both the quantised and raw DWT 

coefficients are weighted with CSF weights, and the various masking functions are 

applied to the CSF weighted coefficients to compute the masking responses (i.e., from 

the raw coefficients and the quantised coefficients).  The detection and pooling stage 

computes the distortion by pooling the error between the two responses.  

 

 

 

 

 

 

 

Figure 4.3 The JPEG2000 Coding Structure with the proposed PCDM replacing the 

MSE criterion. 

 

CSF 
Weight 

CSF 
Weight 

Masking 

Masking 

Detection 
& Pooling 

Wavelet 

Decomposition R-D 
Optimisation  
& Arithmetic  

Coding 

Bitplane Coder 

Input Image (YCbCr) 

Raw 
Coefficients 

(YCbCr) 

Quantised 
Coefficients 
(YCbCr) 

Rate 

Distortion 

Perceptual Distortion Measure Compressed Bit Stream 



 102 

4.3 Proposed Vision Model 

 

Several HVS based models have gained increasing acceptance as in [148] and [149]. 

The coverage of HVS perception and some of these HVS model based coders are 

explained in chapters 2 and 3, respectively.  For simplicity, an HVS can be modeled 

by two successive and separate stages: optical and cortical.  The optical stage is 

concerned with the limitation of the sensitivity of the human optical system relative to 

background luminance and spatio-temporal frequencies.  Discussion of some of the 

properties of the human optics and the cortical stages of the HVS can be found in 

chapter 2 of this thesis.  

 

4.3.1 The optical stage 

 

The optical sensitivity has been described by Van Nes and Bouman [64]  as the 

“contrast sensitivity function” (CSF).  The CSF possesses the characteristic of a band-

pass filter.  The visual sensitivity described by the CSF is highest at mid-frequencies, 

and the lowest visual sensitivity is observed at very high frequencies.  This implies 

that visual signal components of high spatial frequencies cannot be easily identified 

by the human visual system as compared to those of the lower and mid-range 

frequencies.   

 

Hence, noises at those very high frequencies range produced by quantisation during 

compression will contribute lesser amount of ‘perceived’ degradation in the visual 

quality of reconstructed images than those of lower and mid-range frequencies.  The 

reason for this is due to the weaker ability of the human optics to detect visual signals 

at very high frequencies. Therefore, there is an obvious advantage for the visual 

signals to be moderated to reflect this limitation of the sensitivity of the human optics 

so as to improve the compression system.  In the proposed model, the CSF is applied 

as uniform frequency-specific weights on the visual components in the spectral 

domain.  The values of the weights are calibrated to coarsely address the effect of the 

band-pass profile of the human optics. 
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4.3.2 Cortical Stage 

 

The cortical stage is represented by the masking or facilitation characteristics of the 

HVS whereby detection of visual stimulus can be impeded (i.e., masked) or enhanced 

(i.e., facilitated) in the presence of other visual patterns (i.e., a masker), respectively 

[22, 25]. Basically, the enhancement or impediment of the visual response is due to 

the responses of receptive fields in the visual cortex being triggered either positively 

(excitation) or negatively (inhibition), respectively [19-21].  In the proposed coder, for 

the purpose of image compression only masking is considered. 

 

 

4.3.3 The Masking Model 

 

The proposed masking model extends the grey scale model of Tan et al. [15] to the 

YCbCr color space within the contrast gain control structure (CGC) described in [27] 

by Watson and Solomon, and in  [23] by Teo and Heeger. Unlike the proposed model 

that separates masking responses into intra-band and inter-orientation masking 

domains, Teo and Heeger only considered orientation masking, and Watson and 

Solomon unified all masking domains into a single response function.  

 

Teo and Heeger used the shift invariant Steerable Pyramid transform [150] to 

decompose images into different frequencies and orientation bands, thereby avoiding 

aliasing.  Watson and Solomon used either the cortex transform [141] or the Gabor 

array [27] for signal decomposition.  All these transforms are overcomplete, and the 

basis of their use are due to overlapping nature of receptive fields of the HVS.  The 

receptive fields are likely to be non-orthogonal as observed in [151].  The responses 

of the receptive fields in the cortex are band-selective. The visual perception is 

thought to be activated in multiple channels that are each selective in spatial 

frequency, orientation and temporal frequency.  The bandwidths of spatial and 

orientation channels are found to be around one octave and 40 degrees, respectively.  

In addition, the data representation in the cortex appears to follow that of 

multiresolution representation, and it is thought to be covered by about 5 frequency 
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selective channels and 4 orientation channels. The steerable pyramid transform, cortex 

transform or Gabor array can provide the choice of tuning filters to specified 

frequencies and orientations while avoiding aliasing due to down sampling, making 

them excellent models for approximating the behaviour of the receptive fields in the 

cortex. They are excellent HVS models that can be used for perceptual quality 

assessment.  However these filters are computationally complex.  Also Gabor array 

has a much higher computational cost than the Cortex transform. 

 

Although the cortex transform or the Gabor filters are better models for representing 

the receptive fields of the HVS, they are not used as transform kernels in the 

JPEG2000 framework.  Instead, the Bi-orthogonal Daubechies 9/7 filter set as the 

wavelet transform kernel with dyadic decomposition is used in the proposed coder.  

The choice of Daubechies 9/7 filter set comes with some problems.  Firstly, there are 

only 3 orientation bands at each frequency level instead of 4 orientation bands (i.e., 

the HVS needs at least 4 orientation bands).  It has only one diagonal band at each 

frequency level that effectively combines responses from both 45 degrees and 135 

degrees. Inaccuracy may arise with insufficient orientation bands.  Secondly, the 

critically sampled wavelet transform can introduce aliasing errors.  In spite of the 

drawbacks, for the purpose of exploiting the existing JPEG2000 framework, and at 

the same time with reasonable approximation to the modelling of the receptive fields, 

the coder described here uses the Bi-orthogonal Daubechies 9/7 filters as the wavelet 

transform kernel with Mallat decomposition [103].  

 
All the above mentioned models and the proposed PCDM here have something in 

common with Foley’s model as described in Chapter 2: the neural response ( )R  of the 

cortical stage is modeled in terms of an excitation function (E) being ‘masked’ by a 

divisible inhibition Function (I) as in equation (2.9).  

 

As the PCDM model discussed here is built into the coding structure of JPEG2000, an 

image in the discrete wavelet transform domain is divided into several codeblocks, 

each of which is hierarchically bitplane encoded with several coding passes per 

bitplane, beginning from the most significant bitplane and ending at the lowest 

bitplane. 
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We first define a linear transform, ( ).T , of a natural digital colour image, x , as:  

 

( )xTX =          (4.3)  

 

where X is the frequency and orientation sensitive spectral neural image. In the 

proposed coder, the image data is decomposed into a 5-level multiresolution spectral 

representation according to dyadic Mallat decomposition [103]. Transformed 

coefficients are denoted as either [ ]ll nmθlcX ,,,,  or [ ]11 ,,,1, nmLLcX , where 

[ ]ll nmlcX ,,,, θ  is the coefficient at spatial frequency location [ ]ll nm ,  in the 

orientation band, { }HHHLLH ,,=θ , at resolution level, { }5,4,3,2,1=l , belonging to 

colour component, { }Cr,Cb,Yc∈ , and [ ]11,,,1, nmLLcX  refers to the transform 

coefficient for the lowest LL  isotropic (DC) band. 

 

The transform coefficient is then modulated by the CSF weights according to the 

sensitivity of the human optics.  The CSF weights used here are an attempt to roughly 

reflect the sensitivity of the human optics. The ability of the human optics to detect 

visual signals at very high frequencies is much weaker than at mid-range and lower 

frequencies. Note that the technique of CSF weighting for different subbands to 

account for their relative contributions for the purpose of rate allocation is commonly 

used. In the proposed coder, CSF weights are assigned according to frequency levels. 

A more accurate CSF curve is mentioned in Figure 2.12, which is adapted from 

Wandell [34]. The CSF weighted coefficients are expressed as, 

 

[ ] [ ] [ ]llwllw nmlcXlcCnmlcX ,,,,,,,,, θθ =     (4.4) 

 

[ ] [ ] [ ]1111 ,,,1,,,,,1, nmLLcXLLcCnmLLcX ww ⋅=     (4.5) 

 

where [ ]llw nmlcX ,,,, θ  and [ ]11,,,1, nmLLcX w  are, respectively, the CSF-weighted 

coefficients of [ ]ll nmlcX ,,,, θ  and [ ]ll n,m,LL,1,cX . [ ]lcCw ,  is the CSF weights for 

color component, { }Cr,Cb,Yc ∈ , at resolution level, { }5,4,3,2,1=l .  [ ]LLcCw ,  is the 
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CSF weight for color component, { }Cr,Cb,Yc ∈   for the lowest LL isotropic (DC) 

band.  

 

The intra-band and inter-orientation maskings are expressed as follows, 
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where ( )llz nmlcE ,,,, θ and ( )llz
nmlcI ,,,, θ  are the excitation and inhibition 

functions, respectively, z,ck  and q

z,cσ  are the scaling and saturation coefficients, 

{ }γ,z Θ∈  with Θ and γ  represent the inter-orientation and intra-band masking 

domains, respectively.  Note that the response, ( )llz nmlcR ,,,, θ , increases with 

excitation but diminishes with inhibition.  This models the phenomena that the visual 

pattern can be diminished by the presence of a masking pattern. The excitation and 

inhibition functions for the inter-orientation masking are defined as, 

 

( ) [ ]( ) Θ=Θ
,,,,,,,,, cp

llwll nmlcXnmlcE θθ      (4.7) 
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The excitation and inhibition functions of the intra-band domain are defined as, 

 

( ) [ ]( ) γθθγ
,,,,,,,,, cp

llwll nmlcXnmlcE =      (4.9) 
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 (4.10) 

 

In the current model, q is set to 2 with the condition qp z,c > . Equation (4.8) 

represents the inhibition function as a sum of squares of the CSF-weighted transform 
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coefficients spanning all orientations (i.e., k=1,2,3 for LH, HL, HH orientation band, 

respectively) at spatial location [ ]ll nm , .  Figure 4.4 depicts the inter-orientation and 

intra-band masking coefficients at work. The inhibition function in (4.10) comprises 

of three terms.  The second term is the sum of squares of neighbouring CSF-weighted 

transform coefficients about the centroid, [ ]llw nmlcX ,,,, θ , and the neighbourhood is 

defined as a squared region with size of ( ) ( ) 1-12
2

+= llN , and }5,4,3,2,1{=l  from 

the lowest to the highest frequency level.  The size of the neighbourhood is described 

pictorially in Figure 4.5.  At this stage, little is known about what optimum 

neighbourhood sizes are for spatial masking. However, we can assume the 

neighbourhood size to be much smaller than the coverage of 2 degrees visual angle 

(θ).  Assume that an image of size 512x512 pixels (i.e., H=512, W=512) is to be 

displayed on a monitor with a viewing distance (D) at four times the image height 

(H), the vertical coverage that will reach the fovea is 

( ) ( ) 721tan4096
2

2
51242

2
2 =⋅=








⋅=








⋅⋅ o

o

tanxtanD
θ

pixels.  For a 5-level Mallat 

decomposition with downsampling of 2 each at horizontal and vertical directions, the 

coverage corresponds to area sizes of 36x36, 18x18, 9x9, 5x5 and 3x3 pixels for 

frequency levels l at 5, 4, 3, 2 and 1, respectively.  The neighbourhood size for spatial 

masking can only be smaller. Based on subjective experiment, the coder is found to 

achieve excellent visual performance at neighbourhood regions of 11x11, 9x9, 7x7, 

5x5 and 3x3 pixels at frequency level l of 5, 4, 3, 2 and 1, respectively, for a 5-level 

Mallat decomposition.  The third term in equation (4.10) is the local variance, 

( )
llc nm ,2

var,σ , which accounts for the texture masking [123]. It is defined as   
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where ( )ll nm ,µ  is the mean value of the set of neighboring coefficients about 

[ ]llw nmlcX ,,,, θ . At very high activity region of an image, the HVS is more tolerable 

to noise.  The texture masking is included in addition to spatial masking to account for 
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the HVS’s ability to tolerate higher distortion at very high activity region, where the 

tolerance to higher distortion could not be sufficiently accounted for by spatial 

masking alone. 

 

The response function in (4.6) is applied to all subbands (LH, HL, HH) spanning from 

all resolution levels except the lowest LL isotropic (DC) band, whereby only intra-

band masking is applied.  The response function for the LL band is expressed as 
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σ
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+
=    (4.13) 

 

where [ ]11 ,,,1,
~

nmLLcX w and [ ]11,,,1, nmLLcX w  are the bitplane quantised and 

unquantised DC coefficients, respectively. 
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neighbouring coefficients 

Inter-orientation masking 
from coefficients of 
orientation bands (LH, HL 

and HH) at location [ ]ll nm , . 
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Figure 4.4 Example of 5-level dyadic wavelet decomposition structure.  This diagram 
also gives a pictorial view of how coefficients are used for the inter-orientation masking 
and intra-band masking. 
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The difference of the masking response between the reference image (α) and the 

processed image (β) (i.e., bitplane quantised image) for each colour 

component { }Cr,Cb,Yc ∈  is determined by a simple squared-error ( 2l norm) as 

expressed below, 

 

( ) ( ) ( )
2

,, ,,,,-,,,,,,,, llzllzllz nmlcRnmlcRnmlcD θθθ βα=    (4.14) 

 

In equation (4.14), the ( )ll,z n,m,,l,cR θα  is the response due to CSF weighted 

unquantised coefficient, [ ]llw n,m,,l,cX θ , and { }γ,z Θ∈  represents the inter-

orientation or intra-band masking domain, respectively.  The ( )
ll,z n,m,,l,cR θβ  is the 

response due to CSF weighted biplane quantised coefficient, [ ]llw n,m,,l,cX
~

θ , at 

certain bit plane level, { }1221 ,,...,B,B,Bb −−∈  and B is the highest bit plane level.  

In JPEG2000, the bit plane encoding proceeds from the highest bit plane to the lowest 

bit plane, and multiple coding passes are involved in each bit plane level. When 

computing ( )
ll,z n,m,,l,cR θβ , the CSF weighted quantized coefficient, 

[ ]llw n,m,,l,cX
~

θ , is used instead of the use of the CSF weighted unquantised 

coefficient, [ ]llw n,m,,l,cX θ .  For a bit plane level, { }1221 ,,...,B,B,Bb −−∈ , and B is 

nl 

nl 

Figure 4.5 Neighbouring coefficients around centroid coefficient [ ]ll nmlcX ,,,, θ  

for inclusion in computing intra-band masking.  The neighbour coefficients are the 

shaded region excluding the coefficient [ ]ll nmlcX ,,,, θ .  The size of the square is 

( ) ( ) 112
2

−+= llN , where l  is the resolution level from 1 to 5. Figures (a), (b), (c), 

(d) and (e) are the neighbouring coefficients for levels 1 to 5 respectively. 
 

(a) l=1 ,N=8 (b) l = 2, N=24 (c) l = 3, N=48 (d) l = 4, N=80 (e) l = 5, N=120 
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the highest bit plane level, the square difference in the masking response of equation 

(4.14) essentially accounts for the distortion incurred by the bit plane quantisation at 

bit plane level, b, for the coefficient, [ ]ll n,m,,l,cX θ . 

 

Encompassing both the intra-band and inter-orientation masking domains for all 

subbands, except the LL band which only considers intra-band masking, the final 

perceptual distortion measure, cD , of each codeblock for each colour component 

{ }Cr,Cb,Yc ∈ , is then computed as follows, 

   

( ) ( )( )∑∑

1 1

l lM

i

N

j

,cr,cc j,i,,l,cDgj,i,,l,cDgD
= =

ΘΘ+= θθγ    (4.15) 

 

where γ,cg and Θ,cg  are the proportional contributing gains for both intra-band and 

inter-orientation masking, respectively. lM  and lN  represent the actual size for the 

codeblock, at resolution level, l .  At LL band, r,cg is set to 1 and the term, 

( )jilcDg c ,,,,, θΘΘ  is omitted.  Note that the perceptual distortion measure, cD , is 

computed separately for each colour component { }Cr,Cb,Yc ∈ . 

  

4.4 Model Adaptation 

 

The PCDM is built into the coding structure of JPEG2000, where an image in the 

discrete wavelet transform domain is divided into several codeblocks, each of which 

is bitplane encoded [12].  In the proposed coder, both the unquantised and bitplane 

quantised coefficients are weighted according to their respective CSF weights. The 

masking function described in section 4.3 is applied to these weighted output and the 

distortion measure is then computed at the final detection stage. The distortion 

measure and the rate accumulated during bitplane encoding are used as inputs to the 

R-D optimisation function to generate the compressed bitstreams. 
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For a rate driven lossy coder, the purpose of the R-D function is to determine the 

minimum distortion possible for a given bitrate in such a way that any further 

reduction below the minimum distortion will not be possible without allowing an 

increase in the specified bitrate. In the JPEG2000 framework, the R-D optimisation 

uses the rate of reduction of distortion against the rate of increase in the bitrate to 

obtain the best possible distortion for the least number of bits.  Let z,cR  be the 

response of unquantised coefficient, and p,k,z,cR  be the response of a coefficient 

quantised to the th
k  bitplane at thp  coding pass, where { }Cr,Cb,Yc ∈  denotes the 

colour component and { }γ,z Θ∈  for inter-orientation and intra-band maskings 

domains.  The perceptual distortion that corresponds to bitplane quantisation for the 

th
k  bitplane at thp  coding pass of colour component { }Cr,Cb,Yc ∈  is  

 

( ) ( )∑∑∈ 2

-
p,k,cNj z

z,cp,k,z,cz,cp,k,c jRjRgD =      (4.16) 

 

where { }
Θ= ,cγ,cz,c g,gg  refers to the proportional contributing gains for both intra-

band and inter-orientation masking.  p,k,cN  denotes the set of coefficients that belong 

to the coding pass thp  at th
k  bitplane of colour component { }Cr,Cb,Yc ∈ .  For the 

JPEG2000-PCDM coder, the perceptual distortion in equation (4.16) is used to 

replace the MSE distortion described in equation (4.1).   The reduction in perceptual 

distortion between successive bitplanes th
k  and ( )th

k 1+  for colour component 

{ }Cr,Cb,Yc ∈  is  

 

p,k,cp,k,cp,k,c DDD 1+−=∆        (4.17) 

 

4.5 Model Calibration 

 

The CSF weights and model parameters (see Tables 4.2 and 4.3) are calibrated to the 

perceptual response of the HVS.  For each model parameter value estimation, nine 

natural images are derived as test images from three sets of images (i.e., barbara, 
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barbara2, boats, see appendix B), each of which is coded at bitrates of 0.5, 0.3 and 

0.25 bpp. 

 

4.5.1 Test Condition 

 

The calibration of CSF weights and model parameters was conducted on a Sun Ultra 

60 Workstation in a dark room with minimum illumination.  The test images were 

viewed by one expert viewer on a 21-inch, 0.24mm dot pitch Sun Colour Monitor 

with its display set at 1280x1024 pixels resolution. This display setting allows the 

paired images (512x512 pixels each) to span the entire display horizontally. However, 

the tradeoff of not having display set at its native resolution is that some internal 

interpolation does occur. The viewing distance was three times the image height 

[152]. Between quality assessments of the images of the current estimated parameter 

set and the next one, a break of at least 10 minutes was observed to avoid the effect of 

fatigue during the subjective test.  The presentation of the test images is depicted in 

Figure 4.6.  Force-choice comparative subject assessment was used to evaluate the 

quality of the images. 

 

4.5.2 Calibration Process 

 

The set of model parameter values are taken from Tan et al. [15] as the set of initial 

parameter values for the YCbCr color space.  While no best way has yet been devised 

for parameterising the 42 parameters ( pM ), the current approach to optimising the 

parameters is sequential tuning iteratively.  The sequential tuning of parameters may 

proceed for multiple passes (i.e., an approximation pass and multiple refinement 

passes) with different step sizes ( Rδ ).  While the approximation pass uses larger step 

size, the refinement passes use smaller step sizes. The approximation pass aims at 

achieving the parameter set close to the sub-optimal values with fast convergence, 

while the refinement passes attempt to calibrate the parameters to the sub-optimal set 

at a finer resolution. 
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Figure 4.6 Presentation of subjective test images for parameter calibration.  Ipe, 

Ipr and Io represent the image with estimated parameter set, the image with 

reference parameter set, and the original uncompressed image respectively. The 

images are sequentially presented in the order of (a), (b), (c) and (d).  For each 

paired images, the position of an image on either left or right is pseudo-

randomised. Each iteration uses four combination assessments, a, b, c, and d.  A 

decision is made after viewing all the images.  

 

The model parameters are calibrated within the context of the coder as shown in 

Figure 4.7.   

 

Let ( )ΓdI  represents the complete set of distorted images (9 images) produced by the 

PCDM with parameter set, ( ) ( ){ }iPiP re ,=Γ . ( )iPe  and ( )iPr  represent, respectively, 

the estimate and reference parameter sets of the current iteration, i .  Consequently, 

the selection of the reference parameter set is expressed as, 

 

( ) ( )( ) ( )( )( )iPIiPIfiP rdedsr ,1 =+       (4.18) 

 

image 

(Ipe) 

image 

(Ipr) 
image 

(Ipe) 

image 

(Io) 

image 

(Ipr) 

image 

(Io) 

image 

(Ipr) 

image 

(Ipe) 

(a) (b) 

(c) (d) 



 114 

where ( ).sf  is the force choice subjective assessment operation.  The selection of 

( )1+iPr  is subjected to the assessment setup as depicted in Figure 4.6.  Note that all 

the 9 distorted images at bitrates of 0.5, 0.3 and 0.25 bpp of ( )iPe  are evaluated 

against those of ( )iPr  with their original uncompressed images taken as additional 

reference set for force choice consideration.  The parameter set (i.e., either ( )iPe  or 

( )iPr ) is selected as the better parameter set if it scores the higher number of 

subjective preferences (a value between 0 and 9). The better parameter set is then used 

in the next iteration ( 1+i ) as the reference parameter set, ( )1+iPr .   The next 

estimated parameter set ( )1+iPe  is determined by the step size, Rδ , which varies 

from 0.02 to 0.0001 depending on whether it is in approximation pass or refinement 

pass.  The force choice procedure applies to all the model parameters, pM , where, 

 

[ ] [ ] [ ] [ ]{ }zczczczcwwwwp gpklCbClCrClYCLLYCM ,,., ,,,,,,,,,,, σ=   (4.19) 

 

where { }γ,z Θ∈  and { }5,...,2,1=l . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Calibration of parameters in the context of coder.  (The step size Rδ  

for each parameter varies according to the approximation and refinement 

passes.) 

 

The calibration process is described in details as follows, 
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a.1. The values of the parameter set pM  for all the Y, Cb and Cr are initialised to 

the same values of the parameter set from Tan et al. [15]. The step size, Rδ , 

varies from 0.02 to 0.0001, is expressed as, 

 

( )
i

iR

1
=δ         (4.20) 

 

a.2. Calibration begins with Y component with step size increment of ( )50Rδ  and 

initial  [ ] 60.LL,YCw = . 

a.3. Equation (4.18) is used to determine the parameter set, either ( )iPr  or ( )iPe , 

that scores the higher subjective preferences. The parameter value is increased 

by the same step size increment until the visual quality of the images degrades 

in three consecutive step size increments.  The parameter set that gives the 

best visual quality is chosen as the new parameter set so that it will be used for 

calibration for the other model parameter as well as in the next iteration i+1. 

When calibrating a model parameter, the calibration always begins by setting 

that parameter to its initial value while the other parameters use their ‘best 

values’ obtained from the previous calibration. 

a.4. Similarly, calibrate all [ ]l,YCw  with initial value of 0.6 and step size increment 

of ( )50Rδ  with the same procedure as in step a.3. 

a.5. Follow the same procedures in a.3 and a.4, calibrate the [ ]LL,CbCw  and 

[ ]l,CbCw  with initial value of 0.6 and step size increment of ( )50Rδ  for colour 

component Cb. 

a.6. Follow the same procedures in a.3 and a.4,  calibrate the [ ]LL,CrCw  and 

[ ]l,CrCw  with initial value of 0.6 and step size increment of ( )50Rδ  for colour 

component Cr. γ,ck , γ,cg , Θ,ck , Θ,cg  

a.7. Calibrate the Θ,cσ , Θ,cp , γσ ,c , γ,cp  with step size ( )50Rδ  by following the step 

in a.3 in the order of Θ,cσ , Θ,cp , γσ ,c , γ,cp , and colour component, 

{ }Cr,Cb,Yc ∈ , in the order of Y, Cb, and Cr.  When calibrating a parameter, it 

is set to its initial value while the other parameters use the new set of values. 
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The initial values for Θ,cσ , Θ,cp , γσ ,c , and γ,cp  are set at 4.0, 2.0, 1.0, and 2.0, 

respectively. 

a.8. Calibrate the γ,ck , γ,cg , Θ,ck , Θ,cg  with step size ( )50Rδ  by following the step 

in a.3 in the order of γ,ck , γ,cg , Θ,ck , Θ,cg , and colour component, 

{ }Cr,Cb,Yc ∈ , in the order of Y, Cb, and Cr.  When calibrating a parameter, it 

is set to its initial value while the other parameters use the new set of values. 

The initial values for γ,ck , γ,cg , Θ,ck , and Θ,cg  are set to 0.8, 0.3, 0.8, and 0.3, 

respectively. 

a.9. With the new set of parameters, calibrate the all parameters by following steps 

from a.3 to a.8 with the step size being refined to increment of ( )1000Rδ . 

When calibrating a parameter, it is set to its initial value while the other 

parameters use the new set of values. The initial values for the [ ]LL,cCw  and 

[ ]l,cCw  are set to 0.6, z,ck  to 0.8, z,cp  at 2.0, Θ,cσ  at the maximum value of 

new set value minus 4.0 and 0.4, γσ ,c  at the maximum value of new set value 

minus 4.0 and 1.0,  z,cg  at the maximum value of new set value minus 3.0 and 

0.3. 

a.10. With the new set of parameters, the calibration repeats from a.3 to a.9 with 

final step size of ( )10000Rδ  and initial values of those used while calibrating 

with step size of ( )1000Rδ . 

 

It is noted that the calibration of each model parameter ends when the next three 

successive step size increments do not yield a visual improvement in image quality of 

any of the test images for each step size setting of ( )50Rδ , ( )1000Rδ  and ( )10000Rδ . 

 

Tables 4.2 and 4.3 are the final output of calibration.  The SET-A parameters were 

calibrated with initial values taken from Tan et al. [15]. The SET-A parameters were 

used in the subjective assessment I, the result of which is reported in section 4.6.1.  In 

the hope of improving the visual performance of the coder, the parameters were re-

calibrated by following the steps from a.3 to a.10 but with SET-A parameters as the 

initial values.  The result is the set of parameters listed in Table 4.3 as SET-B 

parameters.  The SET-B parameters were used in subjective assessment II as 
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described in section 4.6.2.  It must be mentioned that these two sets of parameters are 

just sub-optimals due to the sequential nature of the calibration process that is used to 

search through a rather large 42-parameter space.  It has not been found that either 

parameter set yields better visual performance than the other.  It is believed that many 

sub-optimal parameter sets could give rise to comparable visual performance for the 

coder.  The calibration process could produce multiple sets of sub-optimal parameters 

that could give comparable visual performance. 

 

CSF weights and Model Parameters 

 Y Cb Cr  Y Cb Cr 

[ ]LLcCw ,  0.95 1.03 1.28 
Θ,cσ  6.925 15.02 10.11 

[ ]1,cCw  1.15 1.23 1.35 
Θ,cp  2.145 2.040 2.215 

[ ]2,cCw  1.33 1.39 1.40 
Θ,cg  0.35 0.501 0.35 

[ ]3,cCw  1.41 1.34 1.35 
γ,ck  1.09 1.11 0.98 

[ ]4,cCw  1.30 1.10 1.13 
γσ ,c  2.505 11.00 1.505 

[ ]5,cCw  1.02 0.65 0.85 
γ,cp  2.153 2.170 2.300 

Θ,ck  0.9876 0.9800 0.9300 
γ,cg  0.37 0.85 0.402 

Table 4.2 SET-A Sub-optimal CSF weights and model parameters. 
 

 

CSF weights and Model Parameters 

 Y Cb Cr  Y Cb Cr 

[ ]LLcCw ,  0.95 1.03 1.28 
Θ,cσ  6.925 15.02 10.11 

[ ]1,cCw  1.15 1.23 1.35 
Θ,cp  2.145 2.040 2.215 

[ ]2,cCw  1.33 1.39 1.40 
Θ,cg  0.346 0.490 0.338 

[ ]3,cCw  1.41 1.34 1.35 
γ,ck  

1.053 1.092 1.005 

[ ]4,cCw  1.30 1.10 1.13 
γσ ,c  2.505 11.00 1.505 

[ ]5,cCw  1.02 0.65 0.85 
γ,cp  2.153 2.170 2.300 

Θ,ck  0.999 1.002 0.963 
γ,cg  0.383 0.864 0.392 

Table 4.3 SET-B Sub-optimal CSF weights and model parameters. 
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4.6 Experimental Results and Analysis 

 

The performance evaluation of PCDM has been conducted against the two 

benchmarks metric, the MSE and the CVIS [12] within the JPEG2000 software 

verification model version 8 (VM8) coder through force-choice comparative 

subjective tests [153, 154]. The evaluation was carried out in two parts: assessments I 

and II. For each assessment part, source images were each coded at four different 

bitrates of 1.0, 0.5, 0.25 and 0.125 bpp by three different coders: JPEG2000-PCDM, 

JPEG2000-MSE and JPEG2000-CVIS. Note that the masking gain, g, is set at 0.5 for 

the CVIS criterion (see equation (4.2)). Paired images generated by the JPEG2000-

PCDM and benchmarks are arranged side by side for assessment on a monitor as 

depicted in Figure 4.8. The viewing distance is two and a half times the image height 

[152]. The position of images displayed either on the left or the right, is pseudo-

randomised.  Figure 4.9 illustrates the force-choice assessment process. 
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Figure 4.8 Arrangement of paired images on a Monitor. 

Left/Right position of images are pseudo-randomised. 

Figure 4.9 Pictorial view of force-choice comparative subjective test. 

The sequence generator is pseudo-randomised based on both image and 

bitrate.  For each subject, both sequence number will not be re-used after it 
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The subjective tests were conducted in a dark room with minimum illumination. The 

sequences of paired images were randomised from 1 to N, where N was either 20 or 

24 for assessment I and assessment II, respectively. 

 

4.6.1 Subjective Assessment I 

 

Assessment I involved 6 participants viewing 20 paired images generated from 5 

different source images (goldhill, sail, pepper, lena, tulip).  The PCDM in this 

instance uses SET-A model parameters from Table 4.2.  Images (cropped at 512x512 

pixels) were viewed on a 21 inch, 0.24mm dot pitch Sun Monitor with display 

resolution set to 1280×1024 pixels. The images were cropped after compression in 

such a way that the important image features were included in the cropped images. 

For example, regions such as the face, the hat, hairs and their immediate 

neighbourhoods are important features for “lena”, so they were included in the 

cropped image of “lena”. For “tulip”, several tulip flowers were included. For 

“goldhill”, the cropped image contained several adjacent buildings and the backdrop.  

These are important image contents which were included in the cropped images. This 

is the policy used for cropped images in all subjective assessments mentioned in 

chapters 4 and 5 of this thesis. The raw scores of the test results are presented in Table 

4.4. 
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Image Bitrate 
(bpp) 

Raw Scores 

Test 1 Test 2 

A B A C 

goldhill 1.0 0 6 4 2 

0.5 5 1 5 1 

0.25 4 2 6 0 

0.125 5 1 5 1 

Sail 1.0 4 2 5 1 

0.5 5 1 6 0 

0.25 5 1 6 0 

0.125 6 0 6 0 

pepper 1.0 1 5 2 4 

0.5 5 1 5 1 

0.25 3 3 5 1 

0.125 4 2 4 2 

Lena 1.0 4 2 3 3 

0.5 4 2 3 3 

0.25 5 1 6 0 

0.125 5 1 6 0 

Tulip 1.0 2 4 4 2 

0.5 4 2 5 1 

0.25 2 4 6 0 

0.125 5 1 5 1 

Table 4.4 Comparative Forced-Choice Subjective Test Results. A – JPEG2000-
PCDM coder, B – JPEG2000-MSE, C – JPEG2000-CVIS.  Test 1 for JPEG2000-
PCDM against JPEG2000-MSE. Test 2 for JPEG2000-PCDM against JPEG2000-
CVIS. 
 

 

Evaluation of the test results can be achieved by paired t-test [155, 156], and the t-

value can be computed by, 
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       (4.21) 

 

where di is the difference between raw scores of JPEG2000-PCDM and the 

benchmark coders, and i={1,2,…, N} is the test sequence number.  The critical t for 3 

and 4 degrees of freedom (d.f.) at 95%, 99% and 99.5% Confidence Intervals (CI) is 
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tabulated in Table 4.5.  The evaluation is based on comparing the t-value and the 

critical t at certain degree of freedom (d.f.) with certain Confidence Interval (CI).  If 

the difference in preference for two coders under measurement has t-value higher than 

the critical t, the Null hypothesis is rejected and the Alternate hypothesis is accepted, 

and vice versa. 

 

 

d.f. t0.05 t0.01 t0.005 

4 2.1318 3.7469 4.6041 

3 2.3534 4.5407 5.8409 

Table 4.5 Critical t [157] at 95% (t0.05), 99% (t0.01) and 99.5% (t0.005) confidence 
interval 
 

 

As there were only six participants for assessment I, it will be necessary to combine 

the data sets before paired t-test analysis can be performed.  This is to ensure that the 

data set has reasonable number of sample points for meaningful statistical analysis. 

This compaction of data also leads to diminished dimensionality, i.e., it cannot 

measure performance for each image at each bitrate. The data sets from raw scores of 

Table 4.4 are grouped as follows, 

• The scores of bitrate 1.0, 0.5, 0.25 and 0.125 are combined up for each of the 

five source images. This is tabulated in Table 4.6.  The 5 paired sets 

correspond to 4 degree of freedom (d.f.). This analysis only provides the 

overall performance according to different source image. 

• The scores of the 10 images are summed up for each bitrate (1.0, 0.5, 0.25 and 

0.125 bpp), and the data set is tabulated in Table 4.7.  The 4 paired sets 

correspond to 3 degree of freedom (d.f.). This provides overall performance 

analysis of PCDM for different bitrates only. 
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 P 

Image Scores 

Test 1 Test 2 

A B A C 

goldhill 14 10 20 4 

sail 20 4 23 1 

pepper 13 11 16 8 

lena 18 6 18 6 

tulip 13 11 20 4 

Table 4.6 Comparative Forced-Choice Subjective Results, categorising according to 
images. (By summing up the preferences of bitrate 1.0, 0.5, 0.25 and 0.125 for each 
type of images. Note: A – JPEG2000-PCDM coder, B – JPEG2000-MSE, C – 
JPEG2000-CVIS.  Test 1 for JPEG2000-PCDM against JPEG2000-MSE. Test 2 for 
JPEG2000-PCDM against JPEG2000-CVIS.) 
 
 

 Q 

Bitrate 
(bpp) 

Scores 

Test 1 Test 2 

A B A C 

1.0 11 19 18 12 

0.5 23 7 24 6 

0.25 19 11 29 1 

0.125 25 5 26 4 

Table 4.7 Comparative Force-Choice Subjective Test Results, categorising according 
to bitrates. (By summing up the preferences of 5 images for each of the bitrates.  
Note: A – JPEG2000-PCDM coder, B – JPEG2000-MSE, C – JPEG2000-CVIS. Test 
1 for JPEG2000-PCDM against JPEG2000-MSE. Test 2 for JPEG2000-PCDM 
against JPEG2000-CVIS.) 
 
 
The t-values are computed based on the group data sets of Tables 4.6 and 4.7. For the 

paired t-test, 5 and 4 paired sets correspond to 4 and 3 degrees of freedom (d.f.), 

respectively.  The t-values are tabulated in Table 4.8 for Tests 1 and 2.  

 

The Null hypothesis, H0, of the paired t-test here assumes that “The perceived image 

quality of JPEG2000-PCDM is equivalent to or worse than the benchmarks”, while 

the alternate hypothesis, H1, is “the perceived image quality of the JPEG2000-PCDM 

is better than the benchmarks.”  
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 Types of 

Category 

P Q 

 d.f. 4 3 

 t-value Test 1 2.5082 1.4536 

Test 2 6.3454 3.9821 

Table 4.8 The t-values. (P -  categorising according to image from Table 4.6. Q -  
categorising according to bitrates from Table 4.7) 
 

a. Test 1 

From Table 4.8, in (P), the t-value (2.5082) is higher than the critical t for 4 d.f. at 

95% CI.  Hence the Null Hypothesis (H0) is rejected.  Therefore, the JPEG2000-

PCDM is perceived to be superior to the JPEG2000-MSE for all source images.  

Based on evaluation of (Q), the quality performance of JPEG2000-PCDM is 

perceived to be statistically equivalent to or worse than the JPEG2000-MSE according 

to bitrates category, as the t-value (1.4536) is lower than the critical t. 

 

b. Test 2 

In (P), the t-value (6.3454) is higher than the critical t for 4 d.f. at 95% CI.  Hence the 

Null Hypothesis (H0) is rejected.  Therefore, the JPEG2000-PCDM is perceived to be 

superior to the JPEG2000-CVIS for all source images.  Based on evaluation of (Q), 

the quality performance of JPEG2000-PCDM is perceived to be statistically better 

than the JPEG2000-CVIS according to bitrates category, as the t-value (3.9821) is 

higher than the critical t for 3 d.f. at 95% CI. 

 

From the t-test analysis for Tests 1 and 2, overall, JPEG2000-PCDM produces images 

with better perceived quality improvement than the JPEG2000 benchmarks for all 

source images.  However, it cannot be established that JPEG2000-PCDM produces 

images better than those of JPEG2000-MSE for all bitrate categories from1.0 to 0.125 

bpp.  Further subjective assessment with more participants is needed to investigate 

visual performance of the proposed coder for bitrate categories as in subjective 

assessment II. 
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4.6.2 Subjective Assessment II 

 
 

Subjective experiment II involves 30 participants viewing a total of 24 images 

produced from 6 different images (goldhill, sail, pepper, lena, tulip, paintedhouse), 

each coded at bitrate of 1.0, 0.5, 0.25 and 0.125 bpp.  The PCDM based coder uses 

SET-B sub-optimal CSF weights and model parameters from Table 4.3.  The images 

(cropped at 500x500 pixels) are assessed on a 19 inch Colour Monitor (Model: 

Diamond Digital DV997FD) with resolution adjusted at 1280×1024 pixels. Due to 

unavailability of the 21 inch Sun Monitor at this stage, the 19 inch Monitor is used 

instead. To avoid displaying the outer region of the images on the slightly curving 

region along the boundaries of the Monitor, the images are cropped at 500x500 pixels 

instead of 512x 512 pixels as reported earlier.  To ensure the quality of the subjective 

assessment, the participants were fully voluntary and had to be 18 years and above. 

They came from a varied range of profession, so that they are not all expert viewers in 

the field of image processing. It is known that colour perception differs between male 

and female. Hence a good mix of male and female participants were involved in the 

subjective assessment. More importantly, all participants are not known to have 

colour deficiency.  For those who did wear glasses, they were asked to view the 

images with their glasses on. Each participant was presented with the questionnaire 

set out in Appendix C.  Basically, the participants had to choose one of the 

randomized images according to their preferences. To eliminate the fatigue factor, 

they were given a break before they were presented with the next sequence of 

randomized images. The complete set of test images is contained in the CD in 

Appendix H.  The raw scores of the test results are presented in Table 4.9. 

 

Again, the same Null hypothesis, H0, and Alternate hypothesis, H1, from Assessment I 

were assumed.  Evaluation of the test results is based on (a) all the twenty images 

covering all the four bitrates, and (b) per bitrate category (involving six images per 

bitrate).  For the paired t-test, 24 and 6 paired sets correspond to 23 and 5 degrees of 

freedom (d.f.), respectively.  Table 4.10 shows the critical t for 23 and 5 d.f. at 95%, 

99% and 99.5% confidence intervals (CI), respectively.  
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Bitrate 

(bpp) 

 Raw scores 

Images Test 1 Test 2 

 A B A C 

 Goldhill 18 12 20 10 

 Sail 12 18 17 13 

1.0 Pepper 18 12 17 13 

 Lena 18 12 12 18 

 Tulip 11 19 16 14 

 paintedhouse 15 15 25 5 

 Goldhill 20 10 26 4 

 Sail 17 13 26 4 

0.5 Pepper 15 15 21 9 

 Lena 19 11 22 8 

 Tulip 17 13 24 6 

 paintedhouse 23 7 25 5 

 Goldhill 19 11 27 3 

 Sail 19 11 27 3 

0.25 Pepper 20 10 25 5 

 Lena 21 9 28 2 

 Tulip 23 7 27 3 

 paintedhouse 27 3 26 4 

 Goldhill 25 5 27 3 

 Sail 26 4 29 1 

0.125 Pepper 16 14 29 1 

 Lena 28 2 29 1 

 Tulip 23 7 28 2 

 paintedhouse 27 3 25 5 

Table 4.9 Comparative Forced-Choice Subjective Results.  
(A – JPEG2000-PCDM coder, B JPEG2000-MSE, C – JPEG2000-CVIS.  Test 1 for 
JPEG2000-PCDM against JPEG2000-MSE, Test 2 for JPEG2000-PCDM against 
JPEG2000-CVIS) 

 

 

d.f. t0.05 t0.01 t0.005 

23 1.7139 2.4999 2.8073 

5 2.0150 3.3649 4.0322 

Table 4.10 Critical t at 95% (t0.05), 99% (t0.01) and 99.5% (t0.005) confidence interval. 
 

The t-values are presented in Table 4.11. In the ALL bitrate category, the t-values for 

Tests 1 (5.1500) and 2 (9.6033) are higher than the critical t (2.8073) at 23 d.f. with 

99.5% CI. Hence, the Null Hypothesis (H0) is rejected, and the JPEG2000-PCDM is 
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overall statistically superior to both the JPEG2000-MSE and JPEG2000-CVIS coder 

with 99.5% CI. At high bitrate (1.0 bpp) category, the JPEG2000-PCDM is equivalent 

to or worse than the JPEG2000-MSE and JPEG2000-CVIS since the t-values (0.2548 

for Test 1, and 1.5936 for Test 2) are lower than the critical t (2.0150) at 95% CI. At 

99.5% CI, from low (0.125 bpp) to intermediate bitrates (0.5 bpp), their t-values are 

higher than the critical t except in the case against JPEG2000-MSE.  Therefore the 

perceived quality of the images generated by JPEG2000-PCDM from low to 

intermediate bitrates are better than the two benchmarks with 99.5% confidence 

interval in all cases except against JPEG2000-MSE at 0.5 bpp. At 0.5 bpp, the 

JPEG2000-PCDM is perceived to have better perceived quality improvement than the 

JPEG2000-MSE with 95% CI. 

 

 Bitrate (bpp) 0.125 0.25 0.5 1.0 ALL 

 d.f. 5 5 5 5 23 

Computed t-value Test 1 5.1557 5.1657 3.0502 0.2548 5.1500 

 Test 2 19.6214 27.6699 10.5097 1.5936 9.6033 

Table 4.11 Computed t-values based on different bitrate categories for subjective 
assessment II. 
 

In short, the perceived quality improvements are as follows, 

• Overall, JPEG2000-PCDM produces images with better perceived image 

quality than that of JPEG2000-MSE and JPEG2000-CVIS. 

• When breaking down into individual bitrate category, JPEG2000-PCDM 

produces images with better perceived image quality than JPEG2000-MSE 

and JPEG2000-CVIS from low (0.125 bpp) to intermediate (0.5 bpp) bitrate 

with 99.5% CI except against JPEG2000-MSE at 0.5 bpp.  At 0.5 bpp, 

JPEG2000-PCDM is better than JPEG2000-MSE with 95% CI. 

• At high bitrate of 1.0 bpp, the force-choice subjective assessment does not 

establish that JPEG2000-PCDM coder produces images with better perceived 

image quality than both the JPEG2000-MSE and JPEG2000-CVIS. 

 

At high bit rate of 1.0 bpp and above, it is difficult for the human viewers to identify 

the quality differences of images produced by the various coders: JPEG2000-PCDM, 

JPEG2000-MSE and JPEG2000-CVIS. 
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The objective measure, peak-signal-to-noise-ratio (PSNR), for the JPEG2000-PCDM, 

JPEG2000-MSE and JPEG2000-CVIS for the test images is attached in Appendix F.  

It must be emphasised that images with higher PSNR as in Appendix F do not 

necessarily possess better perceived visual quality.  On the contrary, some images 

produced by JPEG2000-MSE and JPEG2000-CVIS with higher PSNR than those of 

JPEG2000-PCDM were rated poorly than the JPEG2000-PCDM during force-choice 

subjective assessments.  This re-affirms that the MSE or PSNR as an objective quality 

metric does not correlate well as far as perceived quality by HVS is concerned, which 

is as reported in Girod [143] and Wang et al. [144]. 

 

In Figure 4.10, better visual quality can be observed around the eyes of lena at 0.125 

bpp for JPEG2000-PCDM coder. For lena, ‘clipped’ eye is observed for both 

JPEG2000-MSE and JPEG2000-CVIS coders while JPEG2000-PCDM coder retains 

most of the details of lena’s eye.  Shaper nose area of lena is observed for the 

JPEG2000-PCDM coder than the two JPEG2000 benchmarks.  Pattern aliasing is less 

obvious around the edges of lena’s hat for JPEG2000-PCDM coder.  In the case of 

tulip in Figure 4.11, the image coded at 0.125 bpp by the JPEG2000-PCDM coder is 

less blur with shaper details in the centre of tulip. Similarly, sail coded at 0.25 bpp by 

the JPEG2000-PCDM coder is able to preserve number details better than the other 

coders as indicated in Figure 4.12.  

 

Overall, the JPEG2000-MSE criterion somehow achieves better visual performance 

than the CVIS criterion. This is likely due to visual weighting being used with the 

MSE in the VM8 version of the JPEG2000. 

 

A complete set of test images with various bit rates is provided in the CD in Appendix 

J.   
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JPEG2000-PCDM coder (0.125 bpp)  JPEG2000 with MSE (0.125 bpp) 

 

 

 

      

JPEG2000 with CVIS (0.125 bpp)  Original Uncompressed Image 

Figure 4.10 Cropped images of lena. 

PCDM coder produces better 
perceived visual details around the 

eyes of lena. 
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JPEG2000-PCDM coder (0.125 bpp)  JPEG2000 with MSE (0.125 bpp) 

 

 

 

      

JPEG2000 with CVIS (0.125 bpp)  Original Uncompressed Image 

 

Figure 4.11 Cropped images of tulip. 

 

PCDM coder produces shaper details 

around the centre of the tulip. 
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JPEG2000-PCDM coder (0.25 bpp)  JPEG2000 with MSE (0.25 bpp) 

 

 

 

      

JPEG2000 with CVIS (0.25 bpp)  Original Uncompressed Image 

 

Figure 4.12 Cropped images of sail. 

PCDM coder preserves number 

details better than the other coders. 
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4.7 Chapter Summary 

 

Applying R-D function ensures that picture quality is optimised relative to bitrate. The 

MSE is commonly used as the distortion measure.  However, the standard MSE has 

also been shown to be an inadequate measurement of perceived image quality metric 

[143, 144]. It is true that while some aspects of vision modelling design have been 

built into the VDM measure of the EBCOT, and also the CVIS of JPEG2000, a more 

comprehensive vision models based distortion measure can provide better estimation 

of visual distortion and thus improve the perceived image quality of JPEG2000 coded 

images. 

 

The PCDM for colour image proposed in this chapter is embedded within the 

JPEG2000 [12, 158] core structure (Figure 4.1). Instead of using the MSE or the 

CVIS [12] as distortion measure in the R-D optimisation function, the Perceptual 

Colour Distortion Measure (PCDM) is employed. The PCDM considers contrast 

sensitivity and the masking mechanism of the HVS. 

 

The masking model considers intra-band and inter-orientation masking for colour 

images. The PCDM expands the monochromatic PIDM mentioned in chapter 3 to 

colour space (YCbCr). This involves substantial calibration of the model parameters. 

While no best way has yet been devised for parameterising all the 42 parameters, the 

current approach to optimisation is carried out sequentially in an iterative manner in 

multiple passes. Subjective experiments conducted with 30 participants have shown 

superior perceived visual performance of the PCDM to that of the MSE or CVIS 

within the JPEG2000 coder. 
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Chapter 5 Vision Model Based Perceptual Post 
Filtering of JPEG2000 Coded Colour Images 
 

5.1 Introduction 

 

The coding paradigm of the JPEG2000 still image coding standard [12, 159-161] 

partitions the discrete wavelet transform of image into several codeblocks. Each 

codeblock is independently bitplane encoded, starting from the most significant 

bitplane (MSBP) to the least significant bitplane (LSBP) in multiple coding passes 

(with the exception of the MSBP in only one coding pass) [12].  The distortion 

reduction and the rate increase are collated and subsequently used to determine what 

coding passes to be included and/or excluded in the final embedded bitstream for each 

codeblock through the Post Compression Rate-distortion (PCRD) operation.   For rate 

and quality scalable mode, once decided, those coding passes which are excluded 

from the PCRD algorithm are simply discarded (i.e., truncated) from the bitstreams. 

Based on bitrate constraint, the bitplane encoding from the MSBP to the LSBP and 

the PCRD optimisation as the procedure to subsequently discard coding passes of the 

bitplanes, will likely result in more bits being truncated (discarded) at the lower 

bitplanes than those at the higher bitplanes.  The truncation of lower bitplanes 

provides an opportunity of restoring some of the lost visual information through 

bitplane recovery with a Perceptual Post Filtering (PPF) algorithm.  At the heart of the 

PPF is a vision model that is used to perform the perceptual recovery operation from 

compressed images in the DWT domain. The PPF operates at the decoding stage and 

considers the contrast sensitivity, the intra-band masking and inter-orientation 

masking of the HVS.   

 

The PPF assumes that there must be sufficient amount of information in a compressed 

image for it to operate effectively.  For example, images coded at very low bitrates 

may not have sufficient information for bitplane recovery.  PPF only operates on 

“significant” coefficients in codeblocks. The vision model used here operates on 

coded images as a reference set of data for bitplane recovery.  
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The Wavelet-based Image/Texture Coding Hybrid (WITCH) system proposed by 

Nadenau [162] works on the principle that most progressive bitplane coders encode 

bitplane starting from the MSB to the LSB, whereby the lower bitplanes are truncated 

to zeros under bitrate constraint. Implemented in the JPEG2000 decoder, the WITCH 

system injects stochastic noise generated based on model parameters from the 

encoder.  The noise essentially synthesises the lost texture information at the decoder, 

thereby improves the texture quality of the reconstructed image.  The stochastic noise 

injection is limited to the lowest three bitplane layers of all subblocks of typical size 

of 32 or 16 coefficients each (though other sizes are also applicable), and is applied 

only to the two highest frequency resolutions.  This is in contrast to the PPF based 

decoder where the vision model is used to inject bits to recover perceived loss of 

information over the bitplane layers starting from the lowest to the highest bitplane 

subject to meeting some thresholds set at JND levels over all resolution levels except 

the isotropic (LL) band.  The PPF algorithm is not only limited to texture information 

recovery alone, but also reconstruct perceived loss of structural details such as edges 

and lines. 

 

5.2 Vision Modelling 

 

The PPF utilises the vision model described in chapter 4 that considers the optical and 

cortical properties of the HVS as discussed previously in section 4.3.  The contrast 

sensitivity is applied as a set of uniform frequency-specific sensitivity weights to 

modulate the DWT coefficients. Inter-orientation masking and intra-band spatial 

masking are taken as ratio operators.  Mathematical descriptions are given in 

equations (4.4), (4.6) to (4.12) of section 4.3. 

 

5.3 Coding Adaptation 

 

At the decoding stage, the perceptual post filtering (PPF) algorithm (see Figure 5.1) is 

applied through progressive bitplane recovery of DWT coefficients for each 

codeblock, starting from the least significant bit, and then proceeds upwards to the 

most significant bit. 
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For each decoded transform coefficient, [ ]ll nmlcX ,,,, θ , and [ ]llM n,m,,l,cX θ  being 

the magnitude portion of the coefficient, [ ]ll nmlcX ,,,, θ , and hereby we call 

[ ]llM n,m,,l,cX θ  as the magnitude coefficient, the recovered bit-plane magnitude 

coefficient, [ ]llM,b n,m,,l,cX̂ θ ,  up to bit plane level, b, is expressed as,  

 

[ ] )(|]n,m,,l,c[Xn,m,,l,cX̂
b

llMllM,b 12 −= θθ     (5.1) 

 

where β∈b  , and { }B,...,,21=β  is a set of bitplane level, and B is the most 

significant bitplane of the magnitude coefficient [ ]llM n,m,,l,cX θ . “|” denotes the bit-

wise logical OR operator. The variables, c, l, θ , are defined in section 4.3.3. 

 

Similar to the CSF-weighted transform coefficient, [ ]iiw nmlcX ,,,, θ , in equation 

(4.4), and the recovered CSF-weighted transform coefficient is expressed as follows, 

 

[ ] [ ]
llbwllbw nmlcXlcCnmlcX ,,,,ˆ,],,,,[ˆ

, θθ ⋅=     (5.2) 

 

CSF 

CSF 

Masking 

Masking 

Threshold 
Measure 

Condition met 

Condition not met 

Increase bitplane level, b 

recovered 
transform 
coefficient 

[ ]llb nmlcX ,,,,ˆ θ  

transform 
coefficient 

[ ]ll nmlcX ,,,, θ

Done 

Figure 5.1 Block diagram of the structure of the Perceptual Post Filtering at the 

decoder. (The condition is met when ( ) ( )θθ ,,,,,,
min, lcTnmlcDR DllbT >  and 

( ) ( )θθ ,,,,,,
min, lcTnmlcPR pllbp <  is satisfied.) 
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where [ ]lcCw ,  is the CSF weight at frequency level, l, for colour component, c. 

[ ]llb n,m,,l,cX̂ θ  is the recovered transform coefficient whose magnitude coefficient is 

[ ]llM,b n,m,,l,cX̂ θ  which is computed in equation (5.1). Essentially, the bit plane 

recovery is applied to the magnitude portion of the transform coefficient only. 

 

The perceptual distortion recovery, bTDR , , of each recovered CSF weighted 

coefficient for colour component { }Cr,Cb,Yc ∈ , is then defined as follows, 

 

( ) ( ) ( )
2

,,, ,,,,,,,,,,,, ∑ −=
z

llzllbzzcllbT nmlcRnmlcRgnmlcDR θθθ   (5.3) 

 

where zR  is the masking response of CSF-weighted transform coefficient at the 

decoder, and bzR ,  is the masking response of the recovered CSF-weighted transform 

coefficient at up to bitplane level b, and { }γ,Θ∈z  with Θ and γ representing the 

inter-orientation and intra-band masking domains, respectively. zcg ,  are proportional 

gain factors which are used to determine the relative amount of contributions from 

inter-orientation and intra-band masking domains towards perceptual distortion 

recovery. (Note that the relative amounts of their contributions are not equal.) 

 

The equation for the response ( )llz nmlcR ,,,, θ  is taken directly from equation (4.6), 

and ( )
llbz nmlcR ,,,,, θ  is modified from equation (4.6), and is expressed as, 

 

( )
( )

( ) q

zcllz

llbz

zcllbz
nmlcI

nmlcE
knmlcR

,

,

,,
,,,,

,,,,
,,,,

σθ

θ
θ

+
=      (5.4) 

 

Currently, q , set at 2. ( )llz nmlcI ,,,, θ , is the inhibition function from equations (4.8) 

and (4.10). The excitation functions, ( )
llbz nmlcE ,,,,, θ , due to estimated CSF-

weighted transform coefficient, are expressed as follows, respectively, 
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( ) [ ]( ) Θ

=Θ

,

,,,,ˆ,,,, ,,

cp

llbwllb nmlcXnmlcE θθ      (5.5) 

 

( ) [ ]( ) γ

θθγ

,

,,,,ˆ,,,, ,,

cp

llbwllb nmlcXnmlcE =      (5.6) 

 

where zcp ,  are the exponents for inter-orientation masking and intra-band masking 

domains with { }γ,Θ∈z . 

 

bTDR ,  in equation (5.3) calculates the amount of perceived distortion recovery when 

the bits are added to the coefficient to form the recovered coefficient as the bit plane 

recovery proceeds from the lowest to the highest bit plane level. As the bitplane 

recovery proceeds from the lower bit plane to the higher bitplane, care must be taken 

to ensure that recovery process is not overdone. Otherwise, distortion may occur. 

What mechanism is used by the HVS to determine if the process is overdone is also 

not clear at this stage.  Hence, a hypothetical perceptual percentage response, 

( )
llbp nmlcPR ,,,,, θ , is introduced.  The ( )

llbp nmlcPR ,,,,, θ  calculates the amount of 

hypothetical neuron energy response ratio that is altered as a result of adding bits to 

coefficients along the bitplane layers.  The amount allowed for the percentage 

response cannot be too substantial as over correction may occur. The percentage 

response, ( )
llbp nmlcPR ,,,,, θ ,  is defined as, 

 

( )
( ) ( )
( ) ( )

llbllb

llll

llbp
nmlcRnmlcR

nmlcRnmlcR
nmlcPR

,,,,,,,,

,,,,,,,,
,,,,

,,

,
θθ

θθ
θ

γ

γ

+

+
=

Θ

Θ
    (5.7) 

 

where ( )ll nmlcR ,,,, θΘ  and ( )
ll nmlcR ,,,, θγ  are the inter-orientation and intra-band 

masking responses of CSF-weighted DWT coefficient, respectively.  Similarly, 

( )
llb nmlcR ,,,,, θΘ  and ( )

llb nmlcR ,,,,, θγ  are the inter-orientation and intra-band 

masking responses of the recovered CSF-weighted DWT coefficient, respectively. 

 

For each coefficient, the progressive bitplane recovery is achieved when the minimum 

bitplane level, minb , is reached for that coefficient such that the condition 
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( ) ( )θθ ,,,,,,
min, lcTnmlcDR DllbT >  and ( ) ( )θθ ,,,,,,

min, lcTnmlcPR pllbp <  is satisfied. 

Consequently, the final DWT coefficient is as follows, 

 

[ ]
[ ]

[ ]

 ≤≤

=
elsenmlcX

BbandtrueisifnmlcX
nmlcX

ll

llb

ll
,,,,,

1,,,,,ˆ
,,,, minmin

θ

ϑθ
θ  (5.8) 

 

where ( ) ( ) ( ) ( ){ }θθθθϑ ,l,cTn,m,,l,cPRand,l,cTn,m,,l,cDR pllb,pDllb,T minmin
<>=  

The perceptual distortion recovery threshold, ( )θ,, lcTD , and the perceptual 

percentage threshold, ( )θ,, lcTp , are pairs of predetermined thresholds for the 

perceptual distortion recovery, ( )
llbT nmlcDR ,,,,, θ , and the perceptual percentage 

response, ( )
llbp nmlcPR ,,,,, θ , respectively, at resolution level { }5,4,3,2,1=l  and 

orientation { }HHHLLH ,,=θ .  ( )θ,, lcTD  and ( )θ,, lcTp  are obtained through 

calibration as mentioned in section 5.4.  Equation (5.8) ensures the bitplane recovery 

is achieved up to bit plane level, bmin, such that the ( )
llb,T n,m,,l,cDR

min
θ  is just above 

the threshod ( )θ,l,cTD  but below the condition where over-correction is reached (i.e., 

( )
llb,p n,m,,l,cPR

min
θ  is below the threshold, ( )θ,, lcTp ).  In practice, ( )θ,, lcTD  is 

very small and bmin will usually be reached. Should bit plane recovery arrive beyond 

the highest bitplane, B, no recovery is allowed, and the transform coefficient remains 

unaltered. If at any time where ( ) ( )θθ ,l,cTn,m,,l,cPR pllb,p min
≥  is reached before 

( ) ( )θθ ,l,cTn,m,,l,cDR Dllb,T min
> , no recovery is allowed, and the transform 

coefficient remains unaltered. 

 

The progressive bitplane estimation is applied to all transform coefficients, 

[ ]ll nmlcX ,,,, θ , at the decoder spanning all frequencies and orientation bands except 

the isotropic low pass band (LL) which is too sensitive to be included for bitplane 

recovery.  The inverse DWT is then applied with the recovered transform coefficients 

and the unaffected coefficients at the isotropic low pass band to reconstruct the 

compressed image. 
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Note that the decoded sample values prior to bit plane recovery were obtained using 

mid-point dequantisation rule. During implementation, buffers are created to keep the 

samples after dequantisation, so that sufficient sample coefficients were obtained 

before they were bit plane recovered and then followed by inverse transform. 

 

5.4 Model Parameterisation and Thresholding  

 

The PPF utilizes the PCDM parameters in Tables 4.2. However, the set of thresholds 

for ( )θ,, lcTD  and ( )θ,, lcTp  requires some calibration to recover perceptually 

relevant information. These thresholds were set at the Just Noticeable Difference 

(JND) levels.  

 

The calibration process involved a total of nine test images generated from three 

different source images (barbara2, bikes, building2), each at three different bitrates, 

namely, 1.0, 0.5 and 0.25 bpp.  Test images were displayed on a 21-inch, 0.25 mm dot 

pitch Sun Monitor with a display resolution set to 1280×1024 pixels.  The test images 

are attached in Figures B2, B4, and B5 of appendix B. During calibration, the images 

were displayed on the Monitor as illustrated in Figure 5.2 below. 

 

The calibration starts with the Y colour component by adjusting the value of ( )θ,, lcTD  

and ( )θ,, lcTp  sequentially while resetting the values of ( )θ,, lcTD  and ( )θ,, lcTp  of 

Cr and Cb colour components to zero. 
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Figure 5.2 Calibration of parameters in the context of coder. (step size, δ ,  is 0.0001 

for ( )θ,, lcTD , and varies from 0.05 to 0.01 for ( )θ,, lcTp .) 

 

Let ( )χdI  represents the complete set of images (nine images) produced by the PPF 

with threshold set, ( ) ( ){ }iTiTe γχ ,= . ( )iTe  and ( )iTr  represent the estimate and 

reference threshold sets of the current iteration, i, respectively.  Consequently, the 

selection of the reference threshold set is expressed as, 

 

( ) ( )( ) ( )( )( )iTIiTIfiT deds γγ ,1 =+       (5.8) 

 

where ( ).sf  is the force choice subjective assessment operation.  The selection of 

( )1+iTγ  is subjected to the similar assessment setup as depicted in Figure 4.6.  Note 

that all the nine distorted images at bitrate of 1.0, 0.5, and 0.25 bpp of ( )iTe  were 

evaluated against those of ( )iTγ  with their original uncompressed images taken as 

additional reference set for force-choice test.  The parameter set (i.e., either ( )iTe  or 

( )iTγ ) is selected as the better threshold set if it scores the higher number of 

subjective preferences (a value between 0 and 9) at JND level. The subjective 

preferred threshold set is then used in the next iteration ( )1+i  as the reference 

threshold set, ( )1+iTγ .   The next estimated threshold set ( )1+iTe  is determined by 
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the step size, δ , which is set as 0.0001 for ( )θ,, lcTD , and varies from 0.05 to 0.01 for 

( )θ,, lcTp .   

  

The calibration process is described in details as follows, 
 

a.1. All the values of DT  are initialized 0 while all the values of pT  are first 

initialized to 1.  The step size increment, Dδ , is set to 0.0001.  Calibration 

starts with DT  of Y component. 

a.2. Start with level 1=l , the DT  for the three orientations { }HH,HL,LH=θ  is 

increased by the step size 00010.D =δ .  With three orientations, there will be 

seven possible sets of DT  as follows, 

DT  set HH HL LH 

Set 1 No change No change Increased by Dδ  

Set 2 No change Increased by Dδ  No change 

Set 3 No change Increased by Dδ  Increased by Dδ  

Set 4 Increased by Dδ  No change No change 

Set 5 Increased by Dδ  No change Increased by Dδ  

Set 6 Increased by Dδ  Increased by Dδ  No change 

Set 7 Increased by Dδ  Increased by Dδ  Increased by Dδ  

 

For each set of the DT , equation (5.8) is applied to determine the parameter 

set, either ( )iTγ  or ( )iTe , that has the higher preference score at JND level in a 

force-choice test. In the event that JND level has not been observed, the DT  is 

increased by step size 00010.D =δ  starting from Sets 1 to 7 again.  The 

increment process of the DT  is repeated until the JND level is reached. The 

highest preference score of the seven sets of DT  at JND level will be selected 

as the new parameter set for the next iteration i+1.  In the event of more than 

two sets of DT  having the highest preference score at JND level, the DT  set 

with the highest index is chosen (e.g. Set 7 is chosen if Set 6 and Set 7 are 

having the same highest preference score). 
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a.3. With the new DT  set determined in step a.2, calibrate DT  for levels 2,3,4, and 

5 in that order with step size increment 00010.D =δ  by following the step in 

a.2. 

a.4. Calibrate the DT  for the Cb component with step size 00010.D =δ  while 

setting all the DT  values of Y component to half their values so as to give 

allowance for calibrating thresholds for other colour components.  Calibrate 

DT  for Cb component by following steps a.2 and a.3. 

a.5. Calibrate the DT  for the Cr component with step size 00010.D =δ  while 

setting all the DT  values of Cb component to half their values so as to give 

allowance for calibrating thresholds for other colour components.  Calibrate 

DT  for Cr component by following steps a.2 and a.3. 

a.6. Next set the DT  values of Cr component to half their values.  Calibrate pT  of Y 

component with step size 050.p =δ .  

a.7. Start with level 1=l , the pT  for the three orientations { }HH,HL,LH=θ  is 

decreased by the step size 050.p =δ .  With three orientations, there will be 

seven possible sets of pT  as follows, 

pT  set HH HL LH 

Set 1 No change No change Decreased by pδ  

Set 2 No change Decreased by pδ  No change 

Set 3 No change Decreased by pδ  Decreased by pδ  

Set 4 Decreased by pδ  No change No change 

Set 5 Decreased by pδ  No change Decreased by pδ  

Set 6 Decreased by pδ  Decreased by pδ  No change 

Set 7 Decreased by pδ  Decreased by pδ  Decreased by pδ  

 

For each set of the pT , equation (5.8) is applied to determine the parameter set, 

either ( )iTγ  or ( )iTe  , that has the higher preference score at JND level in a 

force-choice test. In the event that JND level has not been observed, the pT  is 
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increased by step size 050.p =δ starting from Sets 1 to 7 again.  The 

increment process of the pT  is repeated until the JND level is reached.  The 

highest preference score of the seven sets of pT  at JND level will be selected 

as the new parameter set for the next iteration i+1.  In the event that more than 

two sets of pT  having the highest preference score at JND level, pT  set with 

the highest index is chosen (e.g. Set 7 is chosen if set 6 and set 7 are having 

the same highest preference score). 

a.8. With the new pT  set determined in step a.2, calibrate pT  for levels 2,3,4, and 5 

in that order with step size decrement of 050.p =δ  by following the step in 

a.7. 

a.9. Calibrate the pT  for the Cb component with step size 050.p =δ  while setting 

all of the pT  values of Y component to half the sum of 1.0 and their 

previously calibrated values.   Calibrate Tp for Cb component by following 

steps a.7 and a.8. 

a.10. Calibrate the pT  for the Cr component with step size 050.p =δ  while setting 

all the pT  values of Cb component to half sum of 1.0 and their previously 

calibrated values.  Calibrate pT  for Cr component by following steps a.7 and 

a.8. 

a.11. Next set the pT  values of Cr component to half the sum of 1.0 and their 

previously calibrated values.   

a.12. Finally, beginning with DT  of Y component at level l=1, recalibrate the DT  

and pT  iteratively from steps a.2 to a.12 with increment of DT  by step size of 

00010.D =δ  and decrement of pT  by step size of 010.p =δ , respectively.  

The manner in which the DT  is set to half their previously calibrated values 

and pT  is set to half the sum of 1.0 and its previously calibrated value from 

iteration i to i+1 will ensure convergence of their threshold values at JND 

level. 
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When calibrating the value of each ( )θ,, lcTD  or ( )θ,, lcTp  values, the step size 

increment is applied to that parameter only until the visual difference of the image 

quality is just recognized.  This is to ensure that the JND level is reached. 

 

Once the thresholds of ( )θ,, lcTD  and ( )θ,, lcTp  of Y colour component are calibrated, 

their values are then set to half their values before the calibration proceeds to the next 

( )θ,, lcTD  or ( )θ,, lcTp  parameter. The reason for setting thresholds of ( )θ,, lcTD  and 

( )θ,, lcTp  of Y colour component to half their values is to prevent over correction of 

the threshold values as observed in the actual calibration experiment. It is found that 

simply reversing to the earlier threshold set for Y colour component did not allow 

proper calibration of threshold levels for both Cb and Cr colour components. The 

calibration then proceeds sequentially by calibrating ( )θ,, lcTD  and ( )θ,, lcTp  for all 

the colour components according to the same procedure as Y component. 

 

The values of thresholds are presented in Tables 5.1 and 5.2. Note that the set of 

thresholds obtained are at most sub-optimal levels due to the fact that only one expert 

viewer was involved and only small sample of images were used in the calibration 

process.  Hence, while the perceived visual quality of most images may be improved, 

It is possible that visual quality of some other images may be degraded by the 

distortion introduced in bit plane recovery process in the proposed PPF.  Therefore, 

care must be taken to avoid over calibrating the ( )θ,, lcTD  and ( )θ,, lcTp  levels above 

the JND levels, as higher values may introduce ringing artifacts. 
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Colour 

component 

Orientation, 

θ  

Frequency Level, l  

1 2 3 4 5 

 

   Y 

 

LH 0.0004 0.0006 0.0008 0.0010 0.0015 

HL 0.0004 0.0006 0.0008 0.0010 0.0015 

HH 0.0004 0.0006 0.0008 0.0012 0.0015 

  Cb LH,HL,HH 0.0002 0.0004 0.0006 0.0008 0.0015 

  Cr LH,HL,HH 0.0002 0.0004 0.0006 0.0008 0.0015 

Table 5.1 Predetermined threshold values for ( )θ,, lcTD . 

 

Colour 

component 

Orientation, 

θ  

Frequency Level, l  

1 2 3 4 5 

   Y LH,HL,HH 0.90 0.85 0.75 0.5 0.35 

  Cb LH,HL,HH 0.90 0.85 0.75 0.5 0.35 

  Cr LH,HL,HH 0.95 0.90 0.85 0.80 0.75 

Table 5.2 Predetermined threshold values for ( )θ,, lcTp . 

 

5.5 Experiment and Results  

 

The PPF algorithm has been implemented in two ways:  

• PPF algorithm at decoder for recovering images generated by JPEG2000 with 

PCDM coder (as implemented in Chapter 4), is hereby known as JPEG2000-

PCDM-PPF, 

• PPF algorithm at decoder for recovering images generated by JPEG2000 with 

MSE or CVIS distortion criterion, is hereby known as JPEG2000-MSE-PPF 

and JPEG2000-CVIS-PPF, respectively. 

 

For both implementations, Comparative force-choice subjective tests [153, 154] were 

conducted on a total of 30 paired images generated from 10 different source images 

coded at three different bitrates 1.0, 0.5, and 0.25 bpp. The images were assessed on a 

21-inch, 0.25 mm dot pitch Sun Monitor with a display resolution of 1280×1024 

pixels by a group of voluntary viewers.  The paired images were left and right pseudo 

randomised and their sequencing of paired images, numbered from 1 to 30, are also 
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randomised.  The presentation of paired images and the order of presentation are 

similar to that depicted in Figure 4.8 but with the PPF algorithm, instead of the 

JPEG2000-PCDM.  The viewing distance is set at two and a half times the height of 

the images [152] which were cropped to 512×512 pixels.  The force-choice tests were 

conducted in a room with low illumination. 

 

5.5.1 Implementation I 

 

Implementation I: PPF algorithm with separate model parameterisation (SMP) at 

decoder for recovering images generated by EBCOT/JPEG2000 with PCDM coder, 

also denoted as JPEG2000-PCDM-PPF. 

 

The 10 images (goldhill, sail, pepper, lena, tulip, zelda, bikes, building2, lighthouse2, 

and stream) were first encoded with the JPEG2000 with PCDM as implemented in 

chapter 4 at three different bitrates, i.e., 1.0, 0.5 and 0.25 bpp. The compressed 

bitstreams were then reconstructed with the PPF algorithm with SMP at the 

JPEG2000 decoder. Separate model parameterisation in PPF refers to the use of three 

different sets of model parameter values (as shown in Table 4.2) for Y, Cb, and Cr, 

respectively.  The subjective assessment involves three separate rounds of testing, 

each with 30 pairs of images.  There were nine participants for the first and the second 

rounds and eight participants for the third round. To ensure the quality of the 

subjective assessment, the participants were fully voluntary and had to be 18 years 

and above. There was also a good mix of male and female participants. Each 

participant was presented with the questionnaire set out in Appendix D.  Basically, the 

participants had to choose one of the randomized images according to their 

preferences. Fifteen minutes interval (or days for some participants) was given 

between each round of test so as to minimise viewing fatigue. The complete set of test 

images is contained in the CD in Appendix J. 

 

Rounds 1, 2, and 3 were designed to assess the performance of the images generated 

by JPEG2000-PCDM-PPF against those generated by (a) JPEG2000-PCDM as in 

chapter 4 without PPF algorithm, (b) JPEG2000-MSE, and (c) JPEG2000-CVIS, 
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respectively.  With the CVIS criterion of JPEG2000, the images were coded with 

masking gain, g=0.5. The results of the subjective test are tabulated in Table 5.3. 

 

 

Image Bitrate 
(bpp) 

Raw Scores 

Round 1 Round 2 Round 3 

A B A C A D 

goldhill 1.0 5 4 7 2 7 1 

 0.5 6 3 7 2 8 0 

 0.25 5 4 8 1 6 2 

Sail 1.0 5 4 8 1 7 1 

 0.5 6 3 6 3 6 2 

 0.25 9 0 6 3 5 3 

pepper 1 4 5 5 4 5 3 

 0.5 7 2 7 2 5 3 

 0.25 6 3 5 4 7 1 

Lena 1.0 6 3 6 3 3 5 

 0.5 7 2 6 3 8 0 

 0.25 4 5 8 1 7 1 

tulip 1.0 7 2 6 3 6 2 

 0.5 2 7 8 1 7 1 

 0.25 6 3 5 4 4 4 

zelda 1.0 3 6 4 5 4 4 

 0.5 4 5 6 3 6 2 

 0.25 3 6 3 6 5 3 

bikes 1.0 4 5 7 2 8 0 

 0.5 6 3 6 3 7 1 

 0.25 8 1 7 2 8 0 

building2 1.0 8 1 7 2 6 2 

 0.5 9 0 6 3 8 0 

 0.25 9 0 6 3 6 2 

lighthouse2 1.0 3 6 6 3 8 0 

 0.5 8 1 4 5 3 5 

 0.25 9 0 7 2 7 1 

stream 1.0 6 3 9 0 7 1 

 0.5 7 2 8 1 6 2 

 0.25 7 2 6 3 2 6 
 

Table 5.3: Comparative Force-Choice Subjective Test Results 
(A – preference for JPEG2000-PCDM-PPF, B – preference for JPEG2000-PCDM, C 
– preference for JPEG2000-MSE, D – preference for JPEG2000-CVIS) 
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The paired t-test [155] is used to evaluate the test results.  The critical t for 9 d.f. and 2 

d.f. at 95%, 99%, and 99.5% confidence levels (CI) are tabulated in Table 5.4. 

 

d.f. t0.05 t0.01 t0.005 

9 1.8331 2.8214 3.2498 

2 2.9200 6.9646 9.9248 

Table 5.4 Critical t at 95% (t0.05), 99% (t0.01) and 99.5% (t0.005) confidence intervals. 
 

 

As there were only nine participants for rounds 1 and 2 tests and eight participants for 

the round 3 test, it will be necessary to combine the data sets before paired t-test 

analysis is performed.  This is to ensure that the data set has reasonable number of 

sample points for meaningful statistical analysis.  The data sets from the raw scores of 

Table 5.3 are grouped as follows: 

• The scores of bitrate 1.0, 0.5 and 0.25 are combined for each type of images 

(i.e., categorising according to different images), and the data set is tabulated 

in Table 5.5.  The 10 paired sets correspond to 9 degree of freedom (d.f.). This 

analysis only provides the overall performance according to different source 

images.  

• The scores of the 10 images are combined for each bitrate (1.0, 0.5, 0.25 bpp), 

(i.e., categorising according to different bitrates), and tabulated in Table 5.6.  

The three paired sets correspond to 2 degree of freedom (d.f.). This provides 

overall performance analysis of the PPF according to different bitrates only. 

 

The t-values are computed based on the grouped data sets of Table 5.5 and 5.6. For 

the paired t-test, 10 and 3 paired sets correspond to 9 and 2 degrees of freedom (d.f.), 

respectively.  The t-values are tabulated in Table 5.7 for all rounds of tests.  
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Image P 

Overall Scores 

Round 1 Round 2 Round 3 

A B A C A D 

Goldhill 16 11 22 5 21 3 

Sail 20 7 20 7 18 6 

Pepper 17 10 17 10 17 7 

Lena 17 10 20 7 18 6 

Tulip 15 12 19 8 17 7 

Zelda 10 17 13 14 15 9 

Bikes 18 9 20 7 23 1 

building2 26 1 19 8 20 4 

lighthouse2 20 7 17 10 18 6 

Stream 20 7 23 4 15 9 
 

Table 5.5: Comparative Force-Choice Subjective Test Results, categorized according 
to images. (By summing up the preferences of bitrate 1.0, 0.5 and 0.25 for each type 
of images.  Note: A – preference for JPEG2000-PCDM-PPF, B – preference for 
JPEG2000-PCDM, C – preference for JPEG2000-MSE, D – preference for 
JPEG2000-CVIS) 
 
 

Bitrate 
(bpp) 

Q 

Overall Preference 

Round 1 Round 2 Round 3 

A B A C A D 

1.0 51 39 65 25 61 19 

0.5 62 28 64 26 64 16 

0.25 66 24 61 29 57 23 
 

Table 5.6: Comparative Force-Choice Subjective Test Results, categorized according 
to bitrates. (By summing up the preferences of 10 images for each of the bitrates.  
Note: A – preference for JPEG2000-PCDM-PPF, B – preference for JPEG2000-
PCDM, C – preference for JPEG2000-MSE, D – preference for JPEG2000-CVIS) 
 
 

Evaluation of the test results is based on (a) all the 10 images covering all the bitrates 

combined, and (b) all the three bitrates (1.0, 0.5 and 0.25 bpp) covering all image 

types combined.  For the paired t-test, 10 and 3 paired sets correspond to 9 and 2 

degrees of freedom (d.f.), respectively.  The t-values are tabulated in Table 5.7.  
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 Types of 
Category 

P Q 

 d.f. 9 2 

Computed t-value Round 1 3.3539 3.2705 

Round 2 6.1492 15.2542 

Round 3 7.7500 10.1927 

Table 5.7 The t-values. (P) – categorising according to image, computed from Table 
5.5. (Q) – categorising according to bitrates, computed from Table 5.6. d.f. denotes 
degree of freedom. 
 

a. Evaluation of Round 1 Test Result 
 
Let the Null Hypothesis (H0) be “the perceived image quality of JPEG2000-PCDM-

PPF is equivalent to or worse than the JPEG2000-PCDM”, and the Alternate 

Hypothesis (H1) is “the image quality of JPEG2000-PCDM-PPF is better than the 

JPEG2000-PCDM.” 

 

From Table 5.7, in (P), the t-value (3.3539) is higher than the critical t (3.2498) for 9 

d.f. at 99.5% CI.  Hence the Null Hypothesis (H0) is rejected.  Therefore, when 

categorising according to different source images, the perceived image quality 

produced by JPEG2000-PCDM-PPF based coder is overall statistically superior to the 

JPEG2000-PCDM based coder at 99.5% CI. For (Q), categorising according to 

bitrates, the perceived quality performance of JPEG2000-PCDM-PPF is statistically 

better than the JPEG2000-PCDM for 2 d.f. at 95% CI as the t-value (3.2705) is higher 

than the critical t (2.9200). 

 

b. Evaluation of Round 2 Test Result 

The Null Hypothesis (H0) is assumed to be “the perceived image quality of 

JPEG2000-PCDM-PPF is equivalent to or worse than the JPEG2000-MSE”, and the 

Alternate Hypothesis (H1) is “the perceived image quality of JPEG2000-PCDM-PPF 

is better than the JPEG2000-MSE.” 

 

In (P), the t-value (6.1492) is higher than the critical t (3.2498) for 9 d.f. at 99.5% CI.  

Hence the Null Hypothesis (H0) is rejected. Therefore, when categorising according to 

different source images, the perceived quality performance of JPEG2000-PCDM-PPF 
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coder is overall statistically superior to the JPEG2000-MSE at 99.5% CI.  In (Q), 

when categorising according to bitrates, the perceived quality performance of 

JPEG2000-PCDM-PPF is statistically better than the JPEG2000-MSE for 2 d.f. at 

99.5% CI as the t-value (15.2542) is higher than the critical t (9.9248). 

 

c. Evaluation of Round 3 Test Result 
 
The Null Hypothesis (H0) is assumed to be “the perceived image quality of 

JPEG2000-PCDM-PPF is equivalent to or worse than the JPEG2000-CVIS”, and the 

Alternate Hypothesis (H1) is “the perceived image quality of JPEG2000-PCDM-PPF 

is better than the JPEG2000-CVIS.” 

 

In (P), the t-value (7.7500) is higher than the critical t (3.2498) for 9 d.f. at 99.5% CI.  

Hence the Null Hypothesis (H0) is rejected.  Therefore, when categorising according 

to different source images, the perceived quality performance of JPEG2000-PCDM-

PPF coder is overall statistically superior to the JPEG2000-CVIS with 99.5% CI. For 

(Q), when categoring according to different bitrates, the perceived quality 

performance of PCDM-PPF is statistically better than the JPEG2000-MSE for 2 d.f. at 

99.5% CI as the t-value (10.1927) is higher than the critical t (9.9248). 

 

5.5.2 Implementation II 

 
Implementation II: PPF algorithm with (a) common model parameterisation (CMP) 

and (b) separate model parameterisation (SMP) at decoder for recovering images 

generated by JPEG2000 with MSE or CVIS distortion criterion. 

 

While SMP uses separate sets of parameter values for Y, Cb, and Cr colour 

components, CMP uses the same set of parameter values for all the three colour 

components.  In CMP, The sets of parameter values for Cb and Cr colour components 

are exactly those used in the Y component. 

 

The JPEG2000-MSE encoded images (i.e., goldhill, sail, pepper, lena, and tulip) and 

JPEG2000-CVIS encoded images (i.e., zelda, bikes, building2, lighthouse2, stream) 
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were reconstructed by the JPEG2000-PPF decoder. The qualities of these JPEG2000-

PPF decoded images were evaluated against the images generated by JPEG2000-MSE 

or JPEG2000-CVIS, respectively.  In the case of CVIS criterion, masking gain, g=0.5, 

was used.  Three different subjective tests as described below were conducted with 5 

participants, and their results are tabulated in Table 5.8. Similar to the other subjective 

assessments, to ensure the quality of the subjective assessment, the participants were 

fully voluntary and had to be 18 years and above. There was a good mix of male and 

female participants. Each participant was presented with the questionnaire set out in 

Appendix E.  Basically, the participants had to choose one of the randomized images 

according to their preferences. To eliminate the fatigue factor, they were given a break 

before they were presented with the next sequence of randomized images. The 

complete set of test images is contained in the CD in Appendix H.   

 

Test #1 

 

Force-choice Comparative subjective test [153, 154] was conducted between images 

reconstructed by JPEG2000-PPF algorithm with CMP model against images 

reconstructed by JPEG2000-PPF with SMP model.  The participants were asked to 

evaluate if the paired images were of similar quality.  If they were not of similar 

quality, the participants had to make a preferred choice of the two. (Please refer to 

Part 1 of the questionnaire in Appendix E).   

 

Test #2 

 

Force-choice Comparative force-choice subjective test [153, 154] was conducted to 

evaluate the quality of images between those reconstructed by JPEG2000-PPF with 

CMP model against those generated by JPEG2000-MSE or JPEG2000-CVIS, 

respectively.  The participants had to choose which image is of better quality when 

they were presented with the left-right randomised paired images. (Please refer to Part 

2 of the questionnaire in Appendix E).   

 

Test #3 
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In the third test, paired images between those reconstructed by the JPEG2000-PPF 

with SMP model and those generated by JPEG2000-MSE or JPEG2000-CVIS, 

respectively, were presented to the participants.  The participants were asked to 

choose which image is of better quality. (Please refer to Part 3 of the questionnaire in 

Appendix E).   

 

Image Bitrate 
(bpp) 

Score (%) 

Test 1 Test 2 Test 3 

A B N A C B C 

Goldhill 1.0 1 1 3 5 0 4 1 

0.5 2 0 3 5 0 5 0 

0.25 0 2 3 5 0 4 1 

Sail 1.0 0 1 4 3 2 5 0 

0.5 1 1 3 5 0 4 1 

0.25 1 0 4 4 1 4 1 

Pepper 1.0 1 0 4 4 1 4 1 

0.5 0 1 4 4 1 4 1 

0.25 1 0 4 3 2 3 2 

Lena 1.0 0 2 3 4 1 4 1 

0.5 0 3 2 4 1 4 1 

0.25 1 2 2 3 2 4 1 

Tulip 1.0 1 2 2 5 0 5 0 

0.5 0 1 4 4 1 5 0 

0.25 0 0 5 4 1 4 1 

Zelda 1.0 1 1 3 4 1 5 0 

0.5 1 1 3 5 0 5 0 

0.25 2 0 3 5 0 5 0 

Bikes 1.0 2 0 3 3 2 3 2 

0.5 2 0 3 5 0 4 1 

0.25 1 0 4 4 1 2 3 

building2 1.0 2 1 2 4 1 4 1 

0.5 0 1 4 5 0 5 0 

0.25 1 0 4 5 0 5 0 

lighthouse2 1.0 1 0 4 3 2 2 3 

0.5 1 0 4 3 2 2 3 

0.25 2 0 3 3 2 4 1 

Stream 1.0 1 1 3 3 2 5 0 

0.5 1 0 4 4 1 4 1 

0.25 0 2 3 5 0 5 0 

Table 5.8: Comparative Subjective Test Result. 
(A – preference for JPEG2000-PPF with SMP model, B – preference for JPEG2000-
PPF with CMP model, C – preference for JPEG2000, N – preference for neither A nor 
B.  Note that goldhill, sail, pepper, lena, and tulip were encoded by JPEG2000 with 
MSE, while zelda, bikes, buildings, lighthouse2, and stream were encoded by 
JPEG2000 with CVIS) 
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Similar to the argument made in implementation I, as there were only six participants 

involved in the subjective test for implementation II, grouped data sets for paired t-

test is statistically more meaningful.  The grouped data sets derived from the raw 

scores of Table 5.3 are grouped as follows: 

• The scores of bitrate 1.0, 0.5 and 0.25 are combined for each of the source 

images, and the data set is tabulated in Table 5.9.  This analysis only provides 

the overall performance, categorised according to the different source image. 

• The scores of the 10 images are combined for each bitrate (1.0, 0.5, 0.25 bpp), 

and the data set is tabulated in Table 5.10.  This provides overall performance 

analysis of the PPF, categorized according to different bitrates. 

 

The t-values are computed based on the group data set of Tables 5.9 and 5.10.  For the 

paired t-test, 10 and 3 paired sets correspond to 9 and 2 degrees of freedom (d.f.), 

respectively.  The t-values are tabulated in Table 5.11 for all Tests 1 to 3.  

 

Image P 

Overall Preference 

Test 1 Test 2 Test 3 

A B N A C B C 

goldhill 3 3 9 15 0 13 2 

sail 2 2 11 12 3 13 2 

pepper 2 1 12 11 4 11 4 

lena 1 7 7 11 4 12 3 

tulip 1 3 11 13 2 14 1 

zelda 4 2 9 14 1 15 0 

bikes 5 0 10 12 3 9 6 

building2 3 2 10 14 1 14 1 

lighthouse2 4 0 11 9 6 8 7 

stream 2 3 10 12 3 14 1 

Table 5.9: Comparative Subjective Test Result, categorized according to different 
source images. (By summing up the preference of bitrate 1.0, 0.5 and 0.25 for each 
type of images. Note:   A – preference for JPEG2000-PPF with SMP model, B – 
preference for JPEG2000-PPF with CMP model, C – preference for JPEG2000, N – 
preference for neither A nor B.  Note that goldhill, sail, pepper, lena, and tulip were 
encoded by JPEG2000 with MSE, while zelda, bikes, buildings, lighthouse2, and 
stream were encoded by JPEG2000 with CVIS.) 
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Bitrate 
(bpp) 

Q 

Overall Preference 

Round 1 Round 2 Round 3 

A B N A C B C 

1.0 10 9 31 38 12 41 9 

0.5 8 8 34 44 6 42 8 

0.25 9 6 35 41 9 40 10 

Table 5.10: Comparative Force-Choice Subjective Test Results, categorized according 
to bitrates. (By summing up the preferences of 10 images for each of the bitrates.  
Note:   A – preference for JPEG2000-PPF with SMP model, B – preference for 
JPEG2000-PPF with CMP model, C – preference for JPEG2000, N – preference for 
neither A nor B.  Note that goldhill, sail, pepper, lena, and tulip were encoded by 
JPEG2000 with MSE, while zelda, bikes, buildings, lighthouse2, and stream were 
encoded by JPEG2000 with CVIS.) 
 
 

 Types of 

Category 

P Q 

 d.f. 9 2 

Computed t-value Test 1 0.4082 1.5119 

Test 2 8.5903 9.2376 

Test 3 6.5658 27.7128 

Table 5.11 The t-values. (P) – categorising according to source images, computed 
from Table 5.9. 
(Q) – categorising according to bitrates, computed from Table 5.10. 
 
 

a. Evaluation of Test 1 Result 

Let the Null Hypothesis (H0) be “the perceived image quality of JPEG2000-PPF with 

SMP is equivalent to or worse than the JPEG2000-PPF with CMP”, and the Alternate 

Hypothesis (H1) be “the perceived image quality of JPEG2000-PPF with SMP is 

better than PPF with CMP.” 

 

From Table 5.11, in (P), the t-value (0.4082) is lower than the critical t (1.8331) for 9 

d.f.. Hence the Null Hypothesis (H0) cannot be rejected at 95% CI.  Therefore, when 

categorising according to source images, the perceived quality performance of 

JPEG2000-PPF with SMP is overall statistically equivalent to or worse than the 

JPEG2000-PPF with CMP. Based on evaluation of (Q), when categorising according 

to bitrates, the t-value (1.5119) is lower than the critical t (2.9200) for 2 d.f.. Hence 
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the Null Hypothesis (H0) cannot be rejected at 95% CI. Therefore, the perceived 

quality performance of JPEG2000-PPF with SMP is also statistically equivalent to or 

worse than the JPEG2000-PPF with CMP. 

 

However, based on the raw score percentage computation, the overall percentage 

preferences of JPEG2000-PPF with SMP and JPEG2000-PPF with CMP are 18% and 

15.3%, respectively, i.e., a 2.7% preference gain is observed for JPEG2000-PPF with 

SMP.   

 

b. Evaluation of Test 2 Result 
 
The Null Hypothesis (H0) is “the perceived image quality of JPEG2000-PPF with 

SMP is equivalent to or worse than the JPEG2000 with MSE and CVIS criterion”, 

and the Alternate Hypothesis (H1) is “the perceived image quality of JPEG2000-PPF 

with SMP is better than JPEG2000 with MSE and CVIS criterion.” 

 

For (P), t-value (8.5903) is higher than the critical t (3.2498) for 9 d.f. at 99.5% CI.  

Hence the Null Hypothesis (H0) is rejected.  Therefore, when categorising according 

to source images, the perceived quality performance of JPEG2000-PPF with SMP is 

overall statistically superior to the JPEG2000-MSE and CVIS criteria at 99.5% CI.  In 

(Q), when categorising according to bitrates, the images produced by JPEG2000-PPF 

with SMP has superior perceived quality to those of JPEG2000 with MSE and CVIS 

for 2 d.f. at 99% CI as the t-value (9.2376) is higher than the critical t (6.9646). 

 

c. Evaluation of Test 3 Result 
 
The Null Hypothesis (H0) is “the perceived image quality of JPEG2000-PPF with 

CMP is equivalent to or worse than the JPEG2000 with MSE and CVIS criterion”, 

and the Alternate Hypothesis (H1) is “the perceived image quality of JPEG2000-PPF 

with CMP is better than JPEG2000 with MSE and CVIS criterion.” 

 

In (P), the t-value (6.5658) is higher than the critical t (3.2498) for 9 d.f. at 99.5% CI.  

Hence the Null Hypothesis (H0) is rejected.  Therefore, when categorising according 



 156 

to source images, the perceived quality performance of JPEG2000-PPF with CMP is 

overall statistically superior to the JPEG2000-MSE and CVIS criterion at 99.5% CI.  

In (Q), the perceived quality performance of JPEG2000-PPF with CMP is statistically 

better than the JPEG2000-MSE and CVIS for 2 d.f. at 99.5% CI as the t-value 

(27.7128) is higher than the critical t (9.9248). 

 

5.5.3 Discussion of Subjective Test Results 

 

The subjective test results of implementation I suggests that the images constructed by 

JPEG2000-PCDM-PPF is overall statistically superior to those of the JPEG2000-

PCDM. In comparison to JPEG2000-MSE and JPEG2000-CVIS, the JPEG2000-

PCDM-PPF has also shown an overall improvement in perceived quality 

performance. This result is consistent with the subjective test result presented in 

chapter 4 for JPEG2000-PCDM. Hence, it can be inferred that JPEG2000-PCDM 

coded images’ perceived quality can be further improved with PPF algorithm at the 

decoder. When comparing JPEG2000-PCDM-PPF with JPEG200-MSE and 

JPEG2000-CVIS, the JPEG2000-PCDM-PPF produces better perceived visual quality 

images at bitrates between 0.25 and 1.0 bpp.  

 

As a reference, the objective measure, PSNR, of the test images produced by the 

JPEG2000-PCDM-PPF, JPEG2000-PCDM, JPEG2000-MSE and JPEG2000-CVS is 

attached in Appendix G.  It must be emphasized that images with higher PSNR as in 

Appendix G do not necessarily imply better perceived visual quality.  On the contrary, 

some images produced by the JPEG2000-PCDM-PPF that possess lower PSNR were 

rated better perceived image quality than JPEG2000-MSE and/or JPEG2000-CVIS in 

the force-choice subjective assessments.  It re-affirms that the MSE or the PSNR as an 

objective quality metric does not correlate well with the HVS’s perception of image 

quality as reported by Girod [143] and Wang et al. [144]. 

 

The subjective test results of implementation II account for the quality preference 

between two different model parameterisations of the PPF algorithm: common model 

parameterisation (CMP) and separate model parameterisation (SMP).   From the 

paired t-test analysis at 95% CI, there is no evidence to suggest that the SMP is 
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superior to the CMP. However, if the test results are calculated by overall percentage 

preferences of the raw scores, the computation shows that there is a 2.7% gain in 

preference for the JPEG2000-PPF with SMP over that of the JPEG2000-PPF with 

CMP. This suggests a very small but thus insignificant preference of images operated 

on by the JPEG2000-PPF with separate model parameterisation. Given that there is no 

significant statistical evidence to suggest SMP parameterization to have produced 

superior results than the CMP parameterization, the model with CMP may be 

desirable since the optimisation load is significantly reduced as only one third of the 

model parameters and thresholds are involved in the calibration process for CMP.  

Tests 2 and 3 results also suggest that the PPF algorithm alone without the PCDM can 

produce images with improved perceived quality than those of JPEG2000-MSE and 

JPEG2000-CVIS. 

 

Notwithstanding, both models, PPF with SMP and CMP, consistently produce images 

with improved visual quality, as perceived by the participants, than both of the 

JPEG2000-MSE and JPEG2000-CVIS coders. Some examples of coded images by 

PCDM-PPF are shown in Figures 5.3, 5.4 and 5.5. A complete set of test images with 

various bit rates is provided in the CD in Appendix H. 

 

In Figures 5.3b, 5.3c, 5.3d and 5.3e where circles are drawn around the region with 

“WKS”, the word “WKS” and the leaves around it are clearer for Figure 5.3b than the 

others. In addition this region is enhanced for Figure 5.3b.  For ‘lena’ where an oval is 

drawn around here eyes, it can be seen that sharper eyes are observed for Figure 5.4b 

than the others.  In the case of ‘tulip’, the centre of the flower (i.e., the stigma) is also 

more visible and enhanced for Figure 5.5b. 
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Figure 5.3b: building2 - PPF with JPEG200-PCDM (0.25bpp) Figure 5.3a: building2 - original uncompressed 

Figure 5.3c: building2 – JPEG2000-PCDM (0.25bpp) Figure 5.3d: building2 - JPEG2000-MSE (0.25bpp) 
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Figure 5.3e: building2 - JPEG2000-CVIS (0.25bpp) Figure 5.4a: lena - original uncompressed 

Figure 5.4b: lena - PPF with JPEG2000-PCDM 

(0.5bpp) 
Figure 5.4c: lena – JPEG2000-PCDM (0.5bpp) 
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Figure 5.4d: lena - JPEG2000-MSE (0.5bpp) Figure 5.4e: lena - JPEG2000-CVIS (0.5bpp) 

Figure 5.5a: tulip - original uncompressed Figure 5.5b: tulip - PPF with JPEG2000-PCDM (1.0 
bpp) 
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Figure 5.5c: tulip – JPEG2000-PCDM (1.0 bpp) Figure 5.5d: tulip - JPEG2000-MSE (1.0 bpp) 

Figure 5.5e: tulip - JPEG2000-CVIS (1.0 bpp) 
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5.6 Chapter summary 

 
In this Chapter, a Perceptual Post Filtering (PPF) algorithm is proposed. This 

algorithm is used for perceptual recovery of bitplane information from the compressed 

images in the DWT domain at the JPEG2000 decoding stage. The visual properties of 

the HVS considered are the effects of contrast sensitivity, the intra-band masking and 

inter-orientation masking. At the decoding stage, the PPF is applied in progressive 

bitplane recovery manner on the transform coefficients for each code block, beginning 

with the LSB and proceeding upwards to the MSB (refer to Figure 5.1). With the 

exception of the isotropic low pass band, the PPF algorithm is applied to all transform 

coefficients of all frequency and orientation bands.  Thereafter, an inverse DWT is 

applied to all these coefficients to reconstruct the compressed image. 

 

In the calibration process, the PPF thresholds, perceptual distortion recovery and 

perceptual percentage thresholds are set to the JND level. The vision model 

parameters for the PCDM are taken directly from chapter 4. 

 

Subjective test results of the PPF show that JPEG2000-PCDM-PPF offers visible 

improvement over JPEG2000-PCDM, JPEG2000-MSE and JPEG2000-CVIS. Further 

subjective tests were undertaken to evaluate the PPF algorithm with common model 

parameterisation (CMP) and separate model parameterisation (SMP). The results 

showed that there is no statistical advantage of using SMP over CMP 

parameterization in delivering better visual performance. However, since the CMP is 

less complex than the SMP in terms of calibration, CMP has the implementation 

advantage. Without PCDM, the PPF algorithm implemented alone at the decoder has 

demonstrated better perceived visual quality of images than JPEG2000 without PPF. 
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Chapter 6  Conclusion 
 

6.1 Research Findings 

 
As technology becomes intertwined with every aspect of daily lives, and the use of 

images to convey information and knowledge in this fast paced modern world has 

increased, the demand for transmitting images quickly with the highest possible 

resolution and at an affordable cost and given infrastructure has heightened. Along 

with this surge, a large body of research has been carried out to deal with the all-

important issue of data and image compression. 

 

It must be acknowledged that much research has been undertaken out in the areas of 

the removal of statistical redundancies or “noise” in data as first mentioned by 

Shannon [10]. Some aspects of removal of statistical redundancies deal with the use 

of MSE (Mean Square Error) as a distortion measure, PSNR (Peak Signal Noise 

Ratio) or MAE. This body of research has seen the emergence of various imaged 

coders or image compression systems. The elements of an image coder are explained 

in Chapter 3 with a specific focus on transform based image coding and the elements 

involved in that system.  These elements include spectral transformation, quantisation, 

and entropy encoding.    Examples of transform based bit-plane image coders are the 

EZW [31], SPIHT [32] and EBCOT [14] which are also discussed in greater lengths 

in Chapter 3.  The JPEG2000 standard [12] has also been ear marked as the new state-

of-the-art standard for still image coding. 

 

Along with this, some studies have also been carried out for image coding based on 

the human visual system, in particular, the effect of physiological characteristics of 

the human eye on the perception of visual signals. These perceptual image coders 

researched into the removal of other redundancies which are imperceptible to the 

human visual system. In simpler terms, some redundancies which are not noticeable 

by the human visual system could be eliminated to produce images with high 

compression ratios.  
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To gain a better understanding of these imperceptible characteristics of the human 

visual system, chapter 2 reviews the human visual system in some details. It covers 

the physiology of the human eye and neural connections associated with the HVS. 

The three aspects of the HVS are the optics, the visual pathway and the visual cortex. 

Extensive experimental studies have been carried out by various researchers to model 

the behaviours of these components.  In particular, Watson and Solomon [27] have 

incorporated some crucial characteristics of the HVS in the modelling process, and 

they proposed the Contrast Gain Control model. This includes: 1) optical sensitivity 

of the human eye with contrast sensitivity function (CSF), 2) spectral decomposition 

to approximate frequency and orientation sensitivity of cortical neurons, and 3) 

masking phenomenon of the HVS by incorporating a normalised masking function.  

 

The contribution of this thesis is the proposal of two perceptual image models based 

on the human visual system -- the Perceptual Colour Distortion Measure (PCDM) and 

Perceptual Post Filtering (PPF), both based on the human visual system, (in chapters 4 

and 5 respectively). Both models exploit the inter-orientation masking and intra-band 

masking mechanism of the HVS.  

 

The PCDM proposed in this thesis is a perceptual image coder and is an adaptation of 

the monochromatic based PIDM (Perceptual Image Distortion Metric) into colour 

based PCDM in the YCbCr colour space. The resulting PCDM model is then adapted 

to the JPEG2000 encoder.  Essentially, the proposed PCDM model incorporates a 

distortion measure that considers the effect of inter-orientation masking and intra-

band masking mechanism of the HVS into the JPEG2000 coding system.   This is in 

contrast to the widely used MSE distortion measure which is inaccurate in regard to 

perception by the HVS.  In comparison to the CVIS, the PCDM is more elaborate and 

comprehensive as it includes inter-orientation masking.  The PCDM model requires 

the calibration of 42 model parameters.  Two sub-optimal values were obtained 

through a labourious and tedious process.  Basically, it adopts the current approach to 

optimise the parameters -- sequential tuning iteratively.  The sequential tuning of 

parameters may proceed for multiple passes (i.e., an approximation pass and multiple 

refinement passes) with different step sizes ( Rδ ). This process has been explained in 
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greater detail in section 4.5 of chapter four. It appears that more than one set of sub-

optimal values can be obtained to produce comparable performance in image quality.    

 

The Perceptual Post Filtering (PPF) algorithm presented in chapter 5 is embedded into 

the JPEG2000 decoder to recover the perceived loss of information, and hence 

enhanced the perceived image quality. This is carried out through approximated bit-

plane reconstruction. The core structure of vision model used in the PCDM is 

extended to the PPF algorithm, and it is used to achieve approximate bit-plane 

reconstruction in the PPF by considering the effects of the inter-orientation masking 

and intra-band masking of the HVS.  The calibration of PPF thresholds is also 

undertaken at the Just-Noticeable-Difference (JND) level. The calibration process 

involves the use of nine test images generated from three different source images 

(barbara2, bikes, building2), each at three different bitrates, namely, 1.0, 0.5 and 0.25 

bpp.   A detailed description of the calibration process is presented in section 5.4 of 

chapter 5.   

      

It is noted that while both PCDM and PPF employ the same vision model, the PCDM 

is embedded in the JPEG2000 encoder, whereas PPF is embedded in the JPEG2000 

decoder. As JPEG2000 is being regarded as the state-of-the-art standard, some 

researchers have incorporated their proposed perceptual models in the JPEG2000 

coding structure. Due to logistical restraints (i.e., software codes of other perceptual 

coders proposed by other researchers and their coded images are not made available in 

the public domain), it is uncertain to accurately compare and validate the performance 

results of these perceptual models through subjective assessment against the PCDM 

and PPF based coder proposed in this thesis.  However, evaluation of the two models 

(PCDM and PPF) against the JPEG2000 benchmarks through subjective assessments 

indicated their performance improvement in the perceived image quality over the 

JPEG2000 with MSE and CVIS criteria. Moreover, as a reference, the objective 

measure, PSNR, is also investigated for the PCDM, PPF and JPEG2000 benchmarks. 

The findings re-affirm that the MSE or the PSNR as an objective quality metric does 

not correlate well with the HVS’s perception of image quality as reported by Girod 

[143] and Wang et al. [144]. 
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For the PCDM model, subjective assessments have been carried out with 30 viewers 

and the experimental results showed that the PCDM provided improved visual 

performance over the JPEG2000 with MSE and CVIS criteria, especially for the low 

(0.125bpp) and intermediate bitrates (0.5bpp).  This improvement of image quality at 

low and intermediate bit rates is a promising result if its potential to be applied to 

software applications, file transfer applications can be explored further.  

 

Two separate assessments have been undertaken to evaluate the PPF algorithm. 

Assessment one involves a performance evaluation of the JPEG2000-PCDM coder 

with the PPF algorithm with separate model parameterisation (SMP) against the 

JPEG2000-PCDM, the JPEG2000-MSE and JPEG2000-CVIS, all without the PPF 

algorithm. Assessment two involves a performance evaluation of the PPF algorithm 

with common model parameterisation (CMP) against JPEG2000-MSE and JPEG-

CVIS. Test results have shown that both the PPF alone and PPF with PCDM 

improved performance over these JPEG2000 benchmarks. However, further 

subjective assessments of the PPF algorithm do not suggest any difference between 

the use of CMP or SMP for the PPF model.   

 

The subjective assessment also suggests that the use of both the PCDM in the encoder 

and the PPF in the decoder in the JPEG2000 framework improves the visual 

performance as compared to when PCDM is used alone.    

 

6.2 Further Research 

 
 

Thus far, the PCDM model has shown promising results in lossy perceptual 

compression. Attempts to test its performance for perceptually lossless compression 

for colour image are on-going.  The proposed approach is through a bit-plane 

truncation of the samples with a vision model similar to that proposed in PCDM and 

PPF, with the bit-plane truncation achieved at JND level.  This approach has been 

reported in Wu [16] for medical images.  Hence there is definitely scope for this 

model to be further developed for colour images. Furthermore, not all the 

psychovisual characteristics of the HVS have been fully incorporated into the vision 
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model, e.g. inter-band masking between subbands of different frequency levels.  The 

vision model could be developed along these lines for both the monochromatic and 

colour images.  

 

The calibration of the model parameters currently produces sub-optimal values.  More 

extensive calibration could lead to more accurate model parameters and yield more 

favourable results in terms of image quality and compression ratios.  In addition, the 

present calibration algorithm is both tedious and slow; further research is required to 

develop a better and faster calibration algorithm for optimizing the model parameters 

of the proposed PCDM model and PPF algorithm. 

 

 Having said that, the proposed PCDM models and PPF algorithm, having produced 

improved image quality as compared with the JPEG2000-MSE and JPEG2000-CVIS, 

especially at low (0.125bpp) and intermediate bit rates (0.5bpp) is a promising result. 

Further research could be undertaken to assess its potential to be used in software 

applications and data transfer and storage purposes.    
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Appendix A 
 
Table A1: The Daubechies 9/7 wavelet filter set 
 

Filter 
Taps 

Analysis Filter Synthesis Filter 

Low Pass, h  High Pass, g  Low Pass, h  High Pass, g  

0 0.602949 -0.557543 1.115086 -1.205898 

±1 0.266864 0.295636 0.591272 0.533728 

±2 -0.078223 0.028772 -0.057544 0.156446 

±3 -0.016864 -0.045636 -0.0921272 -0.033728 

±4 0.026749 0 0 -0.053498 
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Figure A1: Profiles of Daubechies 9/7 filter taps. 
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Appendix B 
 
 

 
 
Figure B1 Original uncompressed image of barbara.  The size of this image is 
reduced to 60% to fit within A4 size paper. 
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Figure B2 Original uncompressed image of barbara2.  The size of this image is 
reduced to 60% to fit within A4 size paper. 
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Figure B3 Original uncompressed image of boats.  The size of this image is reduced 
to 60% to fit within A4 size paper. 
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Figure B4 Original uncompressed image of bikes.  The size of this image is reduced to 
56% to fit within A4 size paper. 
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Figure B5 Original uncompressed image of building2.  The size of this image is 
reduced to 68% to fit within A4 size paper. 
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Appendix C: Subjective Assessment Questionnaire for Chapter 4 
 
Digital Image Quality Analysis Form for Digital Colour Images 
 
Venue: Room 87-03-06, RMIT City Campus 
 
Important Information 

Thank you for your participation. 
To participate, you must be at least 18 years old. 
You may withdraw at any time without completing it. 
Data and methods will be fully published. However, no personal identifiable data and 
no data identifying an individual will be published. 
 

 
Participant Details 

Name:  Sex: Female / Male 

Do you normally wear glasses? Yes / No 

Are you colour blind? Yes / No 

 
Official Use:  

Serial No:  

 
Part 1:  AB/BA sequence  Date:___________ Time: _____________ 

Context 

You have to spend $2400 on the purchase of 24 pictures either as a gift for someone 
special or for your personal collection.  The pictures are displayed on the left and right. 
Your task is as follows: 
Tick on the box showing your preferred picture ( i.e., “ L” for Left image,  “R” for the 
Right image). 
 
 

Image 
Number 

L R  Image 
Number 

L R 

1    13   

2    14   

3    15   

4    16   

5    17   

6    18   

7    19   

8    20   

9    21   

10    22   

11    23   

12    24   

 
Legend: L – Left,   R - Right 
 



 183 

 
Part 2:  AC/CA sequence  Date:___________ Time: _____________ 

Context 

You have to spend $2400 on the purchase of 24 pictures either as a gift for someone 
special or for your personal collection.  The pictures are displayed on the left and right. 
Your task is as follows: 
Tick on the box showing your preferred picture ( i.e., “ L” for Left image,  “R” for the 
Right image). 
 
 

Image 
Number 

L R  Image 
Number 

L R 

1    13   

2    14   

3    15   

4    16   

5    17   

6    18   

7    19   

8    20   

9    21   

10    22   

11    23   

12    24   

 
Legend: L – Left,   R - Right 
 
 
____________________________ End of Test ______________________________ 
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Appendix D: Subjective Assessment Questionnaire for Chapter 5 

(Implementation I) 
 
Digital Image Quality Analysis for Digital Colour Images 
 
Venue: Room 1103, Building 75 (Strip), Clayton Campus, Monash University 
 
Important Information 

Thank you for your participation. 
To participate, you must be at least 18 years old. 
You may withdraw at any time without completing it. 
Data and methods will be fully published. However, no personal identifiable data and 
no data identifying an individual will be published. 
 

 
Participant Details 

Name:  Sex: Female / Male 

Do you normally wear glasses? Yes / No 

Are you colour blind? Yes / No 

 
Official Use:  

Serial No:  

 

Context 

You have to spend $3000 on the purchase of 30 pictures either as a gift for someone 
special or for your personal collection.  The pictures are displayed on the left and right. 
Your task is to choose the picture you prefer. 
Task: Tick on the box indicating your preferred choice. 
 
 
Part 1: AB/BA sequence  Date: ____________  Time: _______ 
 

Image 
Number 

Left Right  Image 
Number 

Left Right  Image 
Number 

Left Right 

1    11    21   

2    12    22   

3    13    23   

4    14    24   

5    15    25   

6    16    26   

7    17    27   

8    18    28   

9    19    29   

10    20    30   
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Part 2: AC/CA sequence  Date: ____________  Time: _______ 
 

Image 
Number 

Left Right  Image 
Number 

Left Right  Image 
Number 

Left Right 

1    11    21   

2    12    22   

3    13    23   

4    14    24   

5    15    25   

6    16    26   

7    17    27   

8    18    28   

9    19    29   

10    20    30   

 
 
 
Part 3: AD/DA sequence  Date: ____________  Time: _______ 
 

Image 
Number 

Left Right  Image 
Number 

Left Right  Image 
Number 

Left Right 

1    11    21   

2    12    22   

3    13    23   

4    14    24   

5    15    25   

6    16    26   

7    17    27   

8    18    28   

9    19    29   

10    20    30   

 
 
____________________________ End of Test ______________________________ 
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Appendix E: Subjective Assessment Questionnaire for Chapter 5 

(Implementation II) 
 
Digital Image Quality Analysis for Digital Colour Images 
 
Venue: Room 87-03-06, RMIT City Campus 
 
Important Information 

Thank you for your participation. 
To participate, you must be at least 18 years old. 
You may withdraw at any time without completing it. 
Data and methods will be fully published. However, no personal identifiable data and 
no data identifying an individual will be published. 

 
Participant Details 

Name:  Sex: Female / Male 

Do you normally wear glasses? Yes / No 

Are you colour blind? Yes / No 

 
Official Use:  

Serial No:  

 
Part 1: AB/BA sequence  Date: ____________  Time: _______ 
 

Context 

You have to spend $3000 on the purchase of 30 pictures either as a gift for someone 
special or for your personal collection.  The pictures are displayed on the left and right. 
Your task is to choose the picture you prefer. 
Task: Tick on the box indicating ‘N’ if both images are of the similar quality. 
Otherwise tick on the box indicating your preferred choice (either Left or Right). 
 

Image 
Number 

N Left Right  Image 
Number 

N Left Right 

1     16    

2     17    

3     18    

4     19    

5     20    

6     21    

7     22    

8     23    

9     24    

10     25    

11     26    

12     27    

13     28    

14     29    

15     30    
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Part 2: AC/CA sequence  Date: ____________  Time: _______ 
 

Context 

You have to spend $3000 on the purchase of 30 pictures either as a gift for someone 
special or for your personal collections.  The pictures are displayed on the left and 
right. Your task is to choose the picture you prefer. 
Task: Tick on the box indicating your preferred choice. 
 
 

Image 
Number 

Left Right  Image 
Number 

Left Right  Image 
Number 

Left Right 

1    11    21   

2    12    22   

3    13    23   

4    14    24   

5    15    25   

6    16    26   

7    17    27   

8    18    28   

9    19    29   

10    20    30   

 
 
 
Part 3: AD/DA sequence  Date: ____________  Time: _______ 
 

Context 

You have to spend $3000 on the purchase of 30 pictures either as a gift for someone 
special or for your personal collections.  The pictures are displayed on the left and 
right. Your task is to choose the picture you prefer. 
Task: Tick on the box indicating your preferred choice. 
 
 

Image 
Number 

Left Right  Image 
Number 

Left Right  Image 
Number 

Left Right 

1    11    21   

2    12    22   

3    13    23   

4    14    24   

5    15    25   

6    16    26   

7    17    27   

8    18    28   

9    19    29   

10    20    30   

 
____________________________ End of Test ______________________________ 
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Appendix F: 

MSE for JPEG2000-PCDM, JPEG2000-MSE and JPEG2000-CVIS 

 

 
  Average PSNR (db) 

Bit rate 
(bpp) 

Images JPEG2000-
PCDM 

JPEG2000-MSE JPEG2000-CVIS 

1.0 goldhill 38.43 38.52 38.47 

 Sail 37.77 37.74 39.12 

 Pepper 42.26 42.47 42.42 

 Lena 39.07 39.15 38.88 

 Tulip 39.65 39.93 39.95 

 Paintedhouse 39.31 39.31 39.76 

0.5 goldhill 36.63 36.80 36.78 

 Sail 35.11 34.97 36.20 

 Pepper 39.70 39.78 39.74 

 Lena 37.28 37.30 37.08 

 Tulip 35.72 36.02 36.22 

 Paintedhouse 36.77 36.64 37.22 

0.25 goldhill 35.17 35.19 35.51 

 Sail 32.57 32.53 33.90 

 Pepper 36.51 36.67 36.58 

 Lena 35.29 35.36 35.30 

 Tulip 32.23 32.72 32.99 

 Paintedhouse 34.77 34.85 35.26 

0.125 goldhill 33.58 33.88 34.18 

 Sail 29.98 30.48 31.67 

 Pepper 32.90 33.27 33.19 

 Lena 33.19 33.29 33.41 

 Tulip 28.87 29.86 30.07 

 Paintedhouse 33.45 33.37 34.04 

 
The average PSNR is computed based on the expressions below, 

( )
[ ] [ ]( )

N

ixix̂

cMSE Ni

cc∑
∈

−

=

2

   

( )
( )









⋅=

cMSE
logcPSNR

255
10 10  

 

3

)C(PSNR)C(PSNR)Y(PSNR
PSNRAverage rb ++

=  

 

Where  [ ]ix̂c  and [ ]ixc  are the sample data of the compressed and original images of 

N samples, and { }rb C,C,Yc ∈  is the colour component. 
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Appendix G:   

MSE for JPEG2000-PCDM-PPF, JPEG2000-PCDM, JPEG2000-

MSE, and JPEG2000-CVIS 

 
  Average PSNR (db) 

Image Bit 
Rate 
(bpp) 

JPEG2000-
PCDM-PPF 

JPEG2000-
PCDM 

JPEG2000-
MSE 

JPEG2000-
CVIS 

goldhill 1.0 37.06 38.49 38.58 38.54 

 0.5 35.69 36.69 36.86 36.86 

 0.25 34.51 35.25 35.27 35.59 

sail 1.0 36.18 37.72 37.74 39.11 

 0.5 34.19 35.05 34.97 36.21 

 0.25 32.05 32.51 32.54 33.91 

pepper 1.0 39.69 42.23 42.45 42.38 

 0.5 38.02 39.59 39.68 39.65 

 0.25 35.52 36.31 36.48 36.41 

lena 1.0 37.75 39.10 39.17 38.92 

 0.5 36.39 37.31 37.34 37.13 

 0.25 34.73 35.34 35.38 35.34 

tulip 1.0 37.88 39.60 39.89 39.92 

 0.5 34.93 35.72 35.99 36.19 

 0.25 31.82 32.19 32.70 32.96 

zelda 1.0 40.75 42.84 43.02 42.85 

 0.5 39.83 41.58 41.74 41.47 

 0.25 38.71 40.07 40.10 40.07 

bikes 1.0 36.08 37.66 37.63 39.00 

 0.5 33.66 34.51 34.61 36.06 

 0.25 31.88 32.39 32.27 33.76 

building2 1.0 32.84 33.68 33.45 34.59 

 0.5 30.86 31.28 31.23 32.34 

 0.25 29.20 29.44 29.76 30.65 

lighthouse2 1.0 39.18 41.82 41.88 42.42 

 0.5 37.29 38.96 38.94 40.05 

 0.25 35.51 36.53 36.80 38.07 

stream 1.0 35.63 37.04 37.10 38.46 

 0.5 34.10 35.04 35.21 36.46 

 0.25 33.28 34.03 33.98 35.20 

 

The average PSNR is computed based on the expressions below, 

( )
[ ] [ ]( )

N

ixix̂

cMSE Ni

cc∑
∈

−

=

2

   

( )
( )









⋅=

cMSE
logcPSNR

255
10 10  
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3

)C(PSNR)C(PSNR)Y(PSNR
PSNRAverage rb ++

=  

 

where  [ ]ix̂c  and [ ]ixc  are the sample data of the compressed and original images of N 

samples, and { }rb C,C,Yc ∈  is the colour component. 
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Appendix H: Bandlimited Contrast by Peli   

 
The image is filtered by a pyramidal structure of 1-octave wide bandwidth bandpass 
filters centred at different levels that are 1-octave apart. At every level, a local average 

luminance, ( )y,xli , containing all energy at bands lower than the current band, is 

computed. The bandlimited contrast is obtained by dividing the bandpass-filtered 

image point-by-point (i.e., ( )y,xai ) by the corresponding local average luminance. 

 

We consider an image ( )y,xf  that can be represented in the frequency domain as, 

 

( ) ( ) ( ) ( ) ( )θθθθ ,rK,rA,rL,rFv,uF n

n

i

i ++== ∑
−

=

1

1

0     (h1) 

 
where u and v are the horizontal and vertical spatial frequency coordinates, 

22
vur += and ( )

v
utan

1−=θ θ  are the polar spatial coordinates, ( )θ,rL0  and 

( )θ,rK n  are the low and high residual terms.  ( )θ,rAi  can be obtained by multiplying 

the fourier transform of image ( )y,xf  with a cosine log bandpass filter in equation 

(h2) which is of 1-octave wide bandwidth centred at frequency 1-octave apart at 
different levels.  The cosine log filter is as follows; 
 
 

( ) ( )[ ]irlogcosrG
i

ππ −+= 21
2

1
      (h2) 

 
The filtered image is transformed back to space domain via inverse fourier transform. 
The image in the space domain can be expressed as; 
 

( ) ( ) ( ) ( )y,xhy,xay,xly,xf n

n

i

i ++= ∑
−

=

1

1

0      (h3) 

 

The bandlimited contrast, ( )y,xC
blc

i , is computed as; 

 
 

( )
( )
( )

( )

( ) ( )∑
−

=

+

==
1

1

0

i

k

k

i

i

iblc

i

y,xay,xl

y,xa

y,xl

y,xa
y,xC      (h4) 
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Appendix I: The Cortex Transform  
 
The cortex transform is modelled with separate class of filters: the dom and fan filters. 

The dom filters are used to model the spatial frequency channels while the fan filters 

models the orientation channels of the HVS. 

 

The cortex filter is defined as. 

 

( ) ( ) ( )v.uhv,udv,ucortex iki,k ⋅=       (i1) 

 

Where ( )v,udk  and ( )v.uhα  are the dom filter at k
th scale and j

th fan filter for 

orientation band at 
K

j π⋅
 radians (or 

K

j⋅180
degrees)  with K being the total of number 

of fan filters at each scale. 

 

The dom filter ( )v,udk  is computed as the difference of mesa filters as follows, 

 

( ) ( ) ( )v,umv,umv,ud kkk 1+−=        (i2) 

 

where ( )v,umk  and ( )v,umk 1+  are the mesa filters at scale k and k+1, respectively.  

The kth scale mesa filter is defined as, 

 

( ) ( )vs,usmv,um
kk

k =         (i3) 

 

where  ( )v,um  is defined as the convolution of a Gaussian function with a cylinder of 

radius 0f  .  At every successive resolution, the image is reduced by a factor of s. 

 

( ) 







∏∗
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−

0
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      (i4) 
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where 22
vur +=  and 








∏

02 f

r
 is a rectangular pulse with unity height centred at 

the origin. 0f  is the corner frequency at which the Gaussian falls off to 0.5 of its 

height. λ  is the parameter defining the sharpness of the response. 

 

For the fan filter ( )v.uh j , it is computed as, 

 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]v,ubv,ubv,ubv,ubv.uh wKjwKjwjwjj ⋅++⋅++⋅+⋅ −+−= 111 11   (i5) 

 

Where 
K

w
π

=  is the orientation bandwidth for K fan filters, and the index, j, to the 

orientation band is { }121 −∈ K,...,j .  The bisection filter, ( )v,ubβ , is defined as the 

cumulative Gaussian as follows. 

 

( ) ( )( )βββ sinucosvwgv,ub −=       (i6) 

 

where 

 

( ) ∫ ∞−

−⋅=
v

rw
drewwvg

22π        (i7) 

 

The β in radians is the angle of rotation for the orientation band.  For example, 

wj ⋅=β  refers to the jth orientation band which corresponds to 
K

j π⋅
 radians (or 

K

j⋅180
degrees).  The 3rd orientation band of a 4-orrientation band filter corresponds 

to the 135 degrees band. 

 

For a two dimensional image, the filtered images are computed by multiplying the 

discrete Fourier transform of the input image by each filter defined in equation (i1), 

followed by applying the inverse discrete Fourier transform. To reconstruct the image, 

discrete Fourier transform is applied to each of the filtered images at each layer, the 
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DFT of the layer are embedded in a null DFT to the size of the original image, 

followed by applying the inverse discrete Fourier transform.  
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Appendix J 
 
This CD contains test images that were used in the subjective evaluations for  

(1) PCDM based coder introduced in chapter 4, 
(2) PCDM-PPF based algorithm as introduced in implementation I of chapter 5, 

and 
(3)  PPF algorithm as introduced in implementation II of chapter 5. 

 
All images are in PPM format.  The images can be viewed by a PPM compatible 
image viewer. 
 
 

 


