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Abstract 
The technological strides we have taken over the past few decades has resulted in vast improvements 

to machine learning (ML) and artificial intelligence (AI) systems. Increases in computational power and 

performance has resulted in a growing reliance and the widespread adoption of AI and ML 

infrastructures across various industries. However, there is no dedicated, quantifiable way of assessing 

AI system transparency, performances, and accountability. 

But as these systems begin to be used in more critical assessment tasks, the need for transparency, 

comprehensibility and accountability is becoming more apparent as a result. The goal of AI system 

developers should be to move away from traditional black-box approaches and aim to incorporate 

comprehensible and accountable elements into AI system design in addition to maintaining high levels 

of classification performances. Incorporating such principles in an AI system would be a step toward 

addressing the needs of all stakeholders from end-users to management, to regulatory bodies. 

In general, current state-of-the-art affective state assessment (ASA) systems fail in their attempts at 

being transparent, comprehensible and accountable in their design. These systems can also be limited 

in their application if they are built on the foundations of discrete emotion and affective state models. 

Ultimately, there is a large room for improvement in regard to ASA systems in regard to back-end and 

front-end development.  

This work proposes various contributions that can be described under two larger umbrellas of work. 

Firstly, an accountable, explainable artificial intelligence (AXAI) capability framework has been 

designed as a tool to be used in developing more transparent, explainable AI systems as well as serving 

as a means of assessing and comparing AI/ML systems post-hoc. The AXAI capability framework allows 

for the delineation and assessment of AI systems on the basis of: (i) comprehensibility, based on 

inspection time, predicate recognition time and predicate naming time, (ii) system accountability, 

based on the inspect-ability of input cues, processed data, and output cues and (iii) predictive 

accuracy, measuring the classification and traditional performance of the system through the ratio of 

test/training data, the training data size and the number of occurrences of false-positive results. 

Through this research, it is evident that the AXAI capability framework can be used throughout the 

software design and development process of an AI system. Using the framework metrics as a template, 

it is possible to develop a system that is highly accurate, comprehensible and has degrees of 

accountability, with the latter being important when considering the legislative and regulatory gaps 

that need to be addressed in AI and machine learning literature and the adoption of AI and ML systems 

in critical and/or high-risk applications. 

The AXAI capability framework was used as a foundation for developing SAM – the State Assessment 

Module. SAM is a multimodal, real-time ASA system and intelligent agent that exists as a low-cost, 

portable, embedded system. Whereas most ASA solutions in literature focus on the discrete 

assessment of affective states, SAM is capable of understanding and accounting for the dynamics of 

human expressions when analysing facial expressions and speech. 

Through a hierarchical classifier ensemble consisting of an array of 43 unique binary and ternary 

classifiers, SAM is capable of predicting 116 unique states spread across facial expression and speech 

analysis sub-processes, including the ability to detect the presence of visual occlusions. A high 
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classification accuracy is reported, showing average validation accuracies of accuracies of 83.07% and 

95.90% for facial expression and speech classifiers respectively (21 classifiers each) and approximately 

100% for the visual occlusion classification. 

The decision to construct a hierarchical classifier ensemble was key in designing a dynamic, continuous 

assessment system that accounts for the complex, temporal nature of human expressions. Delegating 

classification tasks to an array of sub-classifiers improved classification performances and allowed for 

a high degree of system accountability, since SAM’s decision-making processes were made 

transparent from input to output, including its intermediate stages. 

Resulting from an iterative design process, an intuitive graphical user interface (GUI) was developed 

and embedded as part of SAM’s architecture. The GUI and interactive elements that SAM possesses, 

evidence a high degree of comprehensibility and system accountability. SAM can be considered as an 

intelligent agent and is equipped with speech-to-text and text-to-speech capabilities as well as a 

working memory that allows for a more advanced level of communication. 

Through the AXAI capability framework and SAM, this work is indicative of a positive trajectory for AI 

and ML system design and proves that black-box machine learning approaches must be considered as 

a thing of the past. 
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i. Nomenclature 
Variable Definition First Occurrence 

(Chapter-Section) 

𝐱(𝒕) Observed signal mixture (BSS)  

 

 

 

 

Chapter 2 – Section 2.1.1 

𝑨 Mixing matrix (BSS) 

𝐬(𝒕) Time-domain source signals (BSS) 

𝐛(𝒕) Defines any noise present in a signal mixture (BSS) 

𝐖 Demixing matrix (BSS) 

𝐲(𝒕) Estimated separated signals (BSS) 

𝑻𝒌 Defines the linear operator when deploying DTCWT for 

separation 

𝝍𝒊(𝒕) Real component of a wavelet transform (DTCWT). 

𝝍𝒋(𝒕) Imaginary component of a wavelet transform (DTCWT). 

𝐱𝐢 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎} Singular pattern or feature vector  

 

Chapter 2 – Section 2.1.2 

𝐗 = {𝐱𝟏, 𝐱𝟐 , … , 𝐱𝐍} Set of feature vectors of size 𝑁 × 𝑚 

𝑪 = {𝒄𝟏, 𝒄𝟐, … , 𝒄𝑲} Defines the ‘𝐾’ class labels for patterns in 𝐗. 

𝒌𝒑 Number of peaks/partitions in a continuous sample 

𝑲𝒄𝒍𝒂𝒔𝒔𝒆𝒔 Number of classes extracted derived from 𝑘𝑝 

𝐱𝐤̅̅ ̅ 𝐤𝑡ℎ cluster centroid in an LDA problem or example. Chapter 2 – Section 2.1.3 

𝑵𝑳𝑫 Number of linear discriminants (LDA) 

Ƥ Definite program  

 

 

 

 

 

 

Chapter 3 – Section 3.1 

𝕜 Constant 

𝕊 Human population  

𝕍 First-order variable 

𝔹 Background knowledge 

𝔻 Domain 

𝕡 Predicate symbol 

𝔸𝕀𝑨𝑿 Accountable, explainable artificial intelligence (AXAI) capability 

ℂ Comprehensibility 

𝑷𝑨 Predictive Accuracy  

𝑺𝑨 System Accountability 

𝑻𝒊𝒕 Inspection time  

Chapter 3 – Section 3.2 𝑻𝒑𝒓 Predicate recognition time 

𝑻𝒑𝒏 Predicate naming time 

𝒓𝒕𝒔𝒕−𝒕𝒓𝒏 Ratio of model test data size and training data size  

Chapter 3 – Section 3.3 𝒅𝒕𝒓𝒏 Training data size 

𝑶𝒇𝒑 Number of occurrences of false-positive results 

𝑰𝒊𝒏 Inspect-ability of input models or cues  

Chapter 3 – Section 3.4 𝑰𝒑𝒓𝒐 Inspect-ability of processed intermediate data 

𝑰𝒐𝒖𝒕 Inspect-ability of output models or cues 

𝑳𝑫𝒏 Describes the 𝑛𝑡ℎ linear discriminant Chapter 6 – Section 6.2 

𝑳𝑫𝒏.𝒎 Describes macro- and micro-level linear discriminants 
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ii. Equations and Formulae 
Equation Definition/Purpose First Occurrence 

(Chapter-Section) 

𝐱(𝒕) = 𝐀𝐬(𝒕) + 𝐛(𝒕) BSS governing equation  

 

 

 

 

 

Chapter 2 – Section 2.1 

𝐲(𝒕) = 𝐖𝐱(𝒕) = 𝐖𝐀𝐬(𝒕) BSS solution to estimate separated signals 

𝐖+ = 𝐖 + 𝚪[𝐝𝐢𝐚𝐠(−𝜷𝒊) + 𝑬{𝒈(𝐲)𝐲𝑻}]𝐖 

 

Fast-ICA learning algorithm 

𝐖+ = 𝐖 + 𝝁[𝐈 + 𝒈(𝐲)𝐲𝑻]𝐖 

 

Maximum-likelihood solution for the Fast-

ICA algorithm 

𝐬𝒌(𝒕) = 𝑻𝒌[𝐬(𝒕)] 

 

Describes the linear operator in a DTCWT 

application  

𝐱𝒌(𝒕) = 𝑻𝒌[𝐀𝐬(𝒕)] 

 

How the DTCWT technique is deployed in a 

BSS problem 

𝝍(𝒕) = 𝝍𝒊(𝒕) + 𝝍𝒋(𝒕) 

 

Representation of the wavelet transform 

showing real and complex components 

𝑫𝑬𝒖𝒄𝒍𝒊𝒅𝒆𝒂𝒏 = √∑|𝒙𝒊 − 𝒚𝒊|
𝟐

𝒏

𝒊=𝟏

 

Euclidean distance-based similarity  

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 – Section 2.1 

𝑫𝑴𝒂𝒏𝒉𝒂𝒕𝒕𝒂𝒏 = ∑|𝒙𝒊 − 𝒚𝒊|

𝒏

𝒊=𝟏

 
 

Manhattan distance-based similarity  

𝑫𝑴𝒂𝒉𝒂𝒍𝒂𝒏𝒐𝒃𝒊𝒔 = √(𝒙𝒊 − 𝒚𝒊)𝑺−𝟏(𝒙𝒊 − 𝒚𝒊)
𝑻 Mahalanobis distance-based similarity  

𝑯[𝑿𝟏|𝑿𝟐] = − ∑ 𝒑(𝑿𝟏 = 𝐱𝐢, 𝑿𝟐 = 𝐱𝐣)

𝐢,𝐣

× 𝐥𝐨𝐠 (𝒑(𝑿𝟏 = 𝐱𝐢, 𝑿𝟐

= 𝐱𝐣)) 

 

Conditional entropy 

𝑰[𝑿𝟏; 𝑿𝟐]

= ∑ 𝒑(𝑿𝟏 = 𝐱𝐢, 𝑿𝟐 = 𝐱𝐣)

𝐢,𝐣

× 𝐥𝐨𝐠 (
𝒑(𝑿𝟏 = 𝐱𝐢, 𝑿𝟐 = 𝐱𝐣)

𝒑(𝑿𝟏 = 𝐱𝐢) ∙ 𝒑(𝑿𝟐 = 𝐱𝐣)
) 

 

Mutual information score 

𝑺𝒄𝒐𝒔𝜽 =
𝐱𝐢 ∙ 𝐱𝐣

|𝐱𝐢||𝐱𝐣|
 

 

Cosine similarity 

𝚫𝑺 = 𝑺(𝐱𝐢, 𝐱𝐢) − 𝑺(𝐱𝐢, 𝐱𝐢+𝟏) Dissimilarity between two sequential pairs 

𝒇(𝐱𝐢) = 𝚫𝑺 ∶ 𝐱𝐢 ∈ 𝐗 𝐚𝐧𝐝 𝐱𝐢+𝟏 ≤ 𝐱𝐍 Represents the dissimilarity across a 

continuous sample 

𝑲𝒄𝒍𝒂𝒔𝒔𝒆𝒔 = 𝒌𝒑 + 𝟏 
 

Derivation of the number of classes given a 

number of partitions that a continuous 

sample is split into (𝑘𝑝) 

𝒃′𝐁𝒃

𝒃′𝐖𝒃
 

Linear discriminant analysis’ (LDA) basic 

optimisation problem 

 

 

 

 

 

 

 

Chapter 2 – Section 2.1 

|𝒃′(𝐱𝐢 − 𝐱𝟏̅̅ ̅)| − |𝒃′(𝐱𝐢 − 𝐱𝟐̅̅ ̅)|

− |𝒃′(𝐱𝐢 − 𝐱𝐤̅̅ ̅)| − ⋯

− |𝒃′(𝐱𝐢 − 𝐱𝐊𝐜𝐥𝐚𝐬𝐬𝐞𝐬
̅̅ ̅̅ ̅̅ ̅̅ ̅)| < 𝟎 

The application of LDA when used for 

classification tasks 

𝒚(𝒙) = 𝐬𝐢𝐠𝐧 [∑ 𝜶𝐢𝐲𝐢𝝍(𝐱, 𝐱𝐢) + 𝐛

𝑵

𝐢=𝟏

] 
Definition of the Support Vector Machine 

classifier – used to construct hyperplane 

boundaries 

𝝍𝒍𝒊𝒏𝒆𝒂𝒓(𝐱, 𝐱𝐢) =  𝐱𝐢
𝐓𝐱 Linear SVM Kernel operating term 
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𝝍𝑹𝑩𝑭(𝐱, 𝐱𝐢) = 𝐞𝐱𝐩 (−
‖𝐱 − 𝐱𝐢‖

𝟐

𝟐𝝈𝟐 ) 
Radial Basis Function (RBF) SVM Kernel 

operating term 

𝒉𝒊 = 𝝈 (∑ 𝑾𝒊𝒋𝒙𝒋 + 𝑻𝒊(𝒉𝒊𝒅)

𝑵

𝒋=𝟏

) 
Governing equation for defining a neural 

network node 

𝝈𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝒙) =
𝟏

𝟏 + 𝒆−𝒙 
Sigmoid activation function 

𝝈𝒕𝒂𝒏𝒉(𝒙) =
𝒆𝒙 − 𝒆−𝒙

𝒆𝒙 + 𝒆−𝒙 
Hyperbolic tangent activation function 

𝝈𝑹𝒆𝑳𝑼(𝒙) = {
𝟎 𝒊𝒇 𝒙 ≤ 𝟎
𝒙 𝒊𝒇 𝒙 > 𝟎

 Rectified linear unit (ReLU) activation 

function 

𝝈𝒃𝒊𝒏𝒂𝒓𝒚(𝒙) = {
𝟎 𝒊𝒇 𝒙 < 𝟎
𝟏 𝒊𝒇 𝒙 ≥ 𝟎

 

 

Binary activation function 

𝑨 =  √𝒂𝟏𝐢 + 𝒂𝟐𝐣 + 𝒂𝟑𝐤 
 

Three-dimensional vector decomposition Chapter 3 – Section 3.1 

ℂ(𝕊, Ƥ) =  √(𝑻𝒊𝒕
𝟐 + 𝑻𝒑𝒓

𝟐 + 𝑻𝒑𝒏
𝟐 ) 

AXAI comprehensibility vector 

representation 

Chapter 3 – Section 3.2 

𝑷𝑨(𝕊, Ƥ) = √𝒓𝒕𝒔𝒕−𝒕𝒓𝒏
𝟐 + 𝒅𝒕𝒓𝒏

𝟐 + 𝑶𝒇𝒑
𝟐  

AXAI predictive accuracy vector 

representation 

Chapter 3 – Section 3.3 

𝑺𝑨(𝕊, Ƥ) = √𝑰𝒊𝒏
𝟐 + 𝑰𝒑𝒓𝒐
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Chapter 1:  Introduction 

1.1  Mission Statement 

The primary goals of this research are to: (i) develop a framework that would be for the design and 

assessment of ML and AI systems, in an attempt to prove that better, more transparent systems can 

be achieved, (ii) design an embedded, real-time affective state assessment system that is capable of 

dynamic, continuous assessment of states, and would be equipped with advanced interaction 

functions and the ability to explain its decision-making and reasoning, serving as proof of accountable, 

explainable artificial intelligence, applied within the context of affective computing. 

Through its discussion of accountability and comprehensibility, this research will address the issue of 

trust in AI Systems that is held by the general public as has been discussed in the relevant literature 

[2-9, 11-13] and has been a consistent topic of conversation as AI systems have become more 

prevalent in daily life. However, while explainable AI (XAI) is considered a solution, there are still some 

gaps that these solutions fail to address as explained in [11, 14, 15], including the issue that there is 

no clear or standardised method of incorporating explainability into AI/ML system design processes.  

There is a defined connection between XAI and reasoning w.r.t decision-making processes. However, 

a large issue is that AI systems are known for being opaque and unable to explain their decision-

making processes [7, 16]. Thus, when we consider XAI and the issues of trust, we are led to the realm 

of legislation and regulation, a place where XAI literature lacks when attempting to deconvolute 

concepts of accountability and comprehensibility. In order to construct regulations and standards, all 

stakeholders must be listened to and accounted for in regard to AI system design and development. 

In fact, some strides have been taken to address AI system regulation as proposed in [6, 17, 18]. 

When discussing affective state assessment (ASA) and affective computing, the applications and 

literature body are both extensive. This research aims to address research gaps pertaining to the fact 

that there is a lack of real-time Accountable explainable AI (AXAI) or general XAI-capable ASA systems. 

In addition, there is also a lack of continuous assessment solutions, systems that account for occluded 

facial expressions, and no presence of blind source separation (BSS) being deployed for ASA tasks. 

Regarding real-time ASA systems, there are examples in literature as shown in [19-23]. The novelty of 

this work is not in developing a real-time system, but in developing an ASA system that is capable of 

explaining its decision-making processes and incorporating elements of AXAI into its system design. 

While there are various continuous and discrete emotion models in literature, it is important to 

consider the dynamics of human expressions and the need to design continuous solutions and 

currently, discrete models are more prevalent in literature [22, 24]. The societal effects of the COVID-

19 pandemic resulted in an increase in the use of PPE like face masks to mitigate the spread of diseases 

and viruses, the result was that facial expression recognition systems and ASA systems that rely on 

facial image data would become adversely affected or rendered obsolete as reported in [25]. 

Furthermore, while BSS is a very common tool for separating statistically dependent and independent 

signal mixtures but despite its utility, its use in affective state assessment is not evident in literature. 

Identifying the above issues and understanding the relevant research gaps resulted in the formulation 

of eight contributions that are evidenced through this work. The primary goals of this research 

encompass how these contributions are achieved, with the AXAI capability framework serving as the 

foundation for addressing the general AI and machine learning-related gaps by creating a way of 
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assessing and delineating AI systems on the basis of predictive accuracy, accountability, and 

comprehensibility.  

The State Assessment Module (SAM) was designed to prove how AXAI can be incorporated in a real-

time, modular ASA system’s design and development process and aims to address ASA- and affective 

computing-related research gaps. Finally, this work contributes toward literature by addressing the 

issue of occluded facial expression classification and proves how BSS can be used for ASA tasks by 

deploying the technique for group sentiment analysis.  

Overall, this work applies a multi-level, holistic approach at improving human-machine interactions 

and AI systems in general. Through the development of the AXAI capability framework, this work 

deconvolutes the concept of ‘explainability’ and continues the discussion of how developers and law 

makers can improve trust, accountability, and comprehensibility in AI systems. Through SAM and its 

intrinsic link with AXAI, the benchmark for real-time ASA and intelligent systems is raised. 

 1.2 Objectives 

A few years prior to my Philosophical Doctorate (PhD) Thesis, I found that my research interests 

swayed heavily toward the world of artificial intelligence (AI) given the growth of the field of research, 

especially in the 21st Century. This work is a continuation of my Honours Thesis entitled: Bi-modal 

Affect-Based Authentication Machines [1], where I explored automated recognition and classification 

of human affective states, using real-time input signals for the purpose of contextual classification. 

While my previous work successfully achieved the goals that were set out for it, I found that I barely 

scratched the surface of not only what is possible for affective state assessment (ASA) systems, but 

how AI and machine learning (ML) systems in general can be improved on a more global scale. 

Through this research, the goal was to focus on addressing both higher-level research gaps, and lower-

level research gaps w.r.t to the domains of artificial intelligence and machine/deep learning theory 

and implementation in the affective computing domain. Hence, the long-term objectives of this 

research project were split into two umbrellas of work, each containing significant contributions: 

1. High Level: Design and Implementation of the accountable, explainable AI (AXAI) framework 

2. Low Level: Development of a real ASA system through SAM – the State Assessment Module 

The two major objectives were designed to address some of the research gaps that exist at the higher- 

and lower-levels of the relevant literature and provide significant contributions to the existing body 

of work. These contributions were achieved in a top-down approach, first designing, implementing, 

and proving the AXAI framework prior to commencing development of SAM. Many sub-processes and 

parallel research efforts were conducted between the two major objectives, but the overall vision was 

to maintain the synergy that existed between these two objectives. Figure 1 visualises the thought 

process for this research given this top-down approach, highlighting some of the research gaps, 

contributions, and the overall flow of information for this work at the highest level. 

As discussed, there were significant gaps in the research that needed to be identified, with the AXAI 

framework and SAM serving as significant tools in which these gaps would be addressed. 
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Figure 1: Top-down, visual representation of the thought process for this research, highlighting 

  the evolution of the work from general AI research – to AXAI (main objective 1) – to 

  the development of SAM (main objective 2). 

 1.3 Research Gaps 

This work aims to provide a comprehensive, holistic view on the theory, design, development, and 

application of AI and ML systems. This is achieved through the development of the AXAI framework 

and SAM, as visualised in Figure 1. This work aims to discuss the two major objectives both 

independently, as well as how they are connected and the synergy that exists between them. With 

this in mind, there are AXAI-related and ASA-related gaps in the research that will be addressed in this 

section.  
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  1.3.1 General AI- and ML-related gaps 

1. The Issue of Trust in AI Systems for the General Public 

The issue of “trust” in AI and ML systems has long been a discussion in relevant literature [2-9, 11-13] 

across various domains and points of view, looking at trust in regard to trust in decision-making 

processes [2,6-8], legislation and government regulations [4-6], and the trust that local populations 

would not suffer job loss as a result of the advancement of AI systems [2, 9]. 

A lack of trust in new technologies is not uncommon, especially given the rapid technological growth 

since the beginning of the third industrial revolution, aptly described as “The Digital Revolution” [10] 

which began in the middle of the 20th century and started the societal transition into the information 

age. With the rapid advancement of technology in the last century, we can excuse the general 

population for mistrusting technology that they do not understand.  

Which introduces the issue of “black-box” ML processes which is described in its simplest form in 

Figure 2. The question bubbles above each stage in the process are examples of what questions end-

users or key stakeholders may have. Looking at the black-box approach in this light outlines why trust 

in AI systems is present, and why developers and AI researchers need to shift away from opaque, 

traditional approaches [4, 5]. 

The role of XAI was to make the decision-making processes of AI systems and systems that use 

machine and deep learning classifiers more transparent [4-6] and provide users with more “human-

understandable” AI systems based on explanation theory and social sciences literature [3, 8]. 

Predominantly, AI systems that exist in the public domain cannot be considered as examples of 

explainable AI systems, which highlights the lack of trust and transparency in these systems. 

Going forward, the issues of trust and transparency must be addressed when developing alternative 

high-level structures like the AXAI framework, and elements of these infrastructures and ideologies 

must be implemented into the software design process for applications, as was the case when 

developing SAM as part of this research endeavour. Ideologies like XAI serve as a strong foundation 

for improving these systems but as will be discussed, there is still room for improvement to the way 

we design ML and artificial intelligence systems beyond ‘explainability’. 

 

Figure 2: Simple representation of a traditional, black-box ML approach indicating some of the 

  questions (top) that key stakeholders may have at each stage of the process. 



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

19 
 
 

Explainable AI Still Contains Gaps 

While the argument for XAI is strong relative to traditional black-box approaches. The general 

definitions of XAI seem to vary and conflate depending on the literature [4, 5, 11, 12]. Generally, 

judging, and delineating ML systems on the basis of their explainability is done in a two-dimensional 

plane of comprehensibility and predictive accuracy [11, 13]. Which shows a distinct improvement w.r.t 

traditional assessments of black-box models that are assessed purely on their predictive accuracy.  

Comprehensibility being added as a criterion for assessing ML systems is an improvement [11]. 

However, this model does not account for factors such as the accountability of ML and AI systems 

throughout the development process and oftentimes convolutes concepts of accountability and 

explainability. Given the complex roles that these systems are now deployed in, including: (i) clinical, 

(ii) legal, (iii) autonomous travel, (iv) security-related tasks, accountability of decision-makers and 

intelligent agents is an essential requirement [14, 15]. 

Currently, accountability of ML systems is considered domain-dependent, and the assessment of these 

metrics is done in post-production tasks [15]. This highlights the gap in XAI that needs to be addressed. 

Rather than developing these systems and determining their accountability in post-production, 

accountability should be a metric that can be quantitatively assessed at various stages of the 

development process and should be domain-independent – hence why the AXAI framework discussed 

in this work addresses this gap by serving as an improvement on XAI. 

2. Lack of Reasoning in ML Systems 

There is a clear synergy between ML reasoning and explainability, in that a system that is capable of 

explanatory reasoning would be an example of XAI [3, 5, 8]. However, reasoning itself is not so straight 

forward, as behavioural sciences literature shows us that there are various types of reasoning [7, 16], 

as well as various methods in which these systems can display their reasoning [3,4,7]. 

Analysing Figure 2, we can see that a major issue with traditional, black-box ML systems is a lack of 

reasoning in regard to decision-making processes and the flow of information from input to output. 

Most humans are capable of explaining their decision-making and reasoning processes beyond purely 

primal instincts, highlighting our advanced level of intelligence. For machines to be considered as 

“human-understandable” and for them to possess advanced levels of intelligence, they need to be 

capable of understanding their internal logical and/or classification architectures, their feature 

selection and extraction processes and the flow and processing of information from input to output. 

For the example shown in Figure 3, suppose there is a simple, supervised, multi-class ML system with 

a goal of classifying coloured shapes on a white piece of paper and outputting the non-white colours 

it has detected on the page. A black-box model would take an input image, process it, and output 

either a prediction integer value between 0, 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠, or the label associated with the prediction. In 

the case of Figure 3, this black-box model would only output to the user: Red, Blue, Yellow. Adding 

simple explanatory reasoning to this crude system could involve: 

• Input Data: Displaying the pre-processed input image back to the user via a graphical user 

interface (GUI), showing exactly what the system is trying to classify i.e., the input image. 
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• Feature Extraction: Explain to the user that RGB values are extracted for each pixel. Displaying 

the RGB values of each pixel in a secondary interface panel for each pixel so that a user can 

see exactly what features are input into the classifier 

• Classification: Making the user aware of the classes/colours contained in the system and an 

approximation of the RGB value for each colour as well as descriptions of the classifier. 

• Prediction Output: “I detect red, blue and yellow on the page”, showing the predicted state 

and the difference in RGB values between input colour RGB values and the predicted colour 

RGB values. For a fear of misclassification, prediction scores can also be used to justify 

explanatory reasoning i.e., “I detect 3 colours on the page, here are my 3 guesses for each…” 

 

Figure 3: Extension of Figure 2 showing a crude example of a classifier that detects coloured 

  shapes on a page and outputs the colours it has detected 

Although the crude example is a simple classification problem, we can see how reasoning behind 

decision-making processes can improve the user-experience by “walking through” how a prediction 

was made, and how this example can be scaled up to more complex tasks. Unfortunately, a lot of 

classification systems do not provide users with reasoning which is why ideas like XAI and AXAI have 

been theorised. This research gap has been addressed in this research through systems like SAM which 

has various ways of explaining its decision-making processes, as will be discussed later. 

3. AI Regulation and Quantitative Assessment Tools 

The issue with assessing accountability as domain-dependent and as a post-production task, means 

that there is an increased chance that tests are not regulated, or that there is no quantitative measure 

to compare AI systems once they are released to market. This introduces an issue in regard to the 

legislation, regulation, and proper testing procedures of AI systems prior to this point. 

An example of accountability in artificial intelligence was discussed in the 2019 Algorithmic 

Accountability Act, introduced by the United States Senate [17], which states that accountability 

should be derived from data as well as with algorithmic approaches. The aim of the act was to call for 
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businesses to appraise their AI systems and address the outcomes of predictive machines [17]. 

However, this is not the only form of legislation and regulation around the world. Liu et al. discuss the 

case of the General Data Protection Regulation of the European Union [6], which suggests that users 

of automated processes and decision-making systems should be made aware of meaningful 

information about the internal system logic, providing a legal precedent for the use of a person’s data 

and how this information is processed [6].  

Another case study reported in [18], discusses an AI algorithm deployed by the Home Office UK Visas 

and Immigration (UKVI) department, which aimed to optimise VISA application services [18]. The UK 

government upon querying in parliament refused to disclose the logical functions of the assisted and 

pleaded that the system was working as intended, and that a final decision is made by a human agent 

[18]. While this case study does not discuss legislation and regulation specifically, it does highlight the 

importance of accountability and transparency of ML systems when applied in critical scenarios. 

The examples discussed above highlight the need for domain-independent assessment of 

accountability and identifies the gap in XAI approaches that fail to account for accountability as an 

assessable metric for AI systems. The AXAI framework aims to tackle the issue of accountability 

throughout the development cycle of AI systems – from inception to release, addressing the current 

gaps in general AI and ML literature as well as XAI literature. 

  1.3.2 ASA-related gaps 

1. Lack of Real-time AXAI/XAI-capable Affective State Assessment Systems 

In my previous research I designed a real-time multimodal system for contextual ASA in real-time [19], 

with the aim then, to address the lack of real-time XAI-capable ASA systems. While at the time, the 

intention was to focus on the ASA part of the work, not the XAI capabilities, as concepts of 

accountability and comprehensibility were not formalised in the design process of this previous work. 

There are many examples in literature of real-time ASA systems, which use a variety of input 

modalities for assessment as surveyed across [20-23]. But as we analyse the methods and applications 

discussed in these surveys, it is evident that elements of explanatory reasoning, comprehensibility and 

accountability are lacking. A lot of the flowcharts of these systems evidence black-box models that do 

not relay the internal reasoning processes to the user, and output predicted emotions, graphical 

results, or are used to complete a task.  

Dissecting some of the applications surveyed in [20], the authors discuss affective interactional 

systems and focus on these systems aiming for “user-enhanced experiences”, for use in multi-agent 

systems [20]. However, upon further analysis, these applications could enhance the user experience 

even further if they adopted XAI and AXAI principles into their design. However, it should be noted 

that the survey was conducted in 2015. 

To analyse and compare this to a more recent survey published in 2020, we can discuss some of the 

works in [23], which surveys emotion recognition and machine learning systems which use multimodal 

data. While the survey discusses methodologies, modalities, and feature extraction techniques across 

various modalities [23]. When discussing applications of these techniques, the reader is inclined to 

believe that the surveyed works provide model-based predictions, which re-introduces the black-box 

ML problem discussed prior. 
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The lack of real-time ASA systems with XAI or AXAI capabilities embedded within them is evident 

across many surveyed works, highlighting an identifiable gap in the literature. For complex, critical 

applications like the autonomous vehicle applications surveyed in [22] that sense driver emotions, it 

is imperative that the driver, lawmakers, and other key stakeholders are aware of why certain 

decisions would be made by a vehicle when analysing a driver’s state. 

2. Lack of Dynamic, Continuous Assessment Solutions 

As will be discussed in more detail in Chapter 2, the concept of affective states and ASA solutions are 

based on either discrete, or continuous models. Due to a large number of datasets being discretely 

labelled as highlighted in [22], a lot of the corresponding ASA solutions are discrete classification 

solutions, modelling a small number of ‘𝑛’ affective state/emotion classes [22, 24]. 

The complexity of the human experience, and the way we express our internal thoughts, intents, and 

feelings, make continuous models much more representative of the unique nature of affective states. 

This is not to discount discrete solutions, but instead queries the applicability of these solutions in 

real-world scenarios where a singular description of the state does not consider global and local 

contexts and a wider population. 

Continuous assessment solutions that consider a larger array of states, temporal information, or 

spectrum-based representations would be more capable of accounting for the dynamics of human 

affective states and would be more accepted for real-world applications. 

The lack of continuous ASA solutions that account for the dynamics of human experiences highlights 

a significant gap in the literature that this thesis and SAM aims to address. This research gap has been 

addressed and reported by Vice et al. in [24], where the authors discuss the development and 

implementation of a continuous assessment tool that accounts for the dynamics of human 

expressions, with this research serving as the classification architecture foundations of SAM, which is 

detailed in later sections of this work. 

3. Facial Expression Recognition Systems Cannot Adapt to Occluded Faces 

In light of the recent COVID-19 pandemic, major societal changes occurred around the world. 

Throughout, the adoption of masks, personal protective equipment (PPE) and proper hygiene 

protocols assisted in mitigating the spread of viruses and diseases [25, 26]. While the social acceptance 

of masks and PPE were already normalised in some parts of the world [27], the acceptance of mask-

wearing in public spaces grew as a result of people wanting to remain safe throughout troubling times. 

Facial recognition and facial expression recognition systems that had been deployed prior to 2020 

would have been severely impacted by the rise in occluded faces in public spaces and as a result, the 

deployed classifiers would have been adversely affected. However, as stated in the corresponding 

paper by Vice et al. that addresses this research gap [25], the authors and developers of assessment 

systems would not have had the foresight to design these systems to account for occluded 

expressions. 

Therefore, systems that are currently in the process of development that rely on facial data for analysis 

should be equipped with an occlusion detection subsystem that accounts for changes and adapts the 
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internal logical flows to classify upper-, or full-facial expressions, depending on if an occlusion like a 

protective mask is detected by the input device.  

While this gap in this research may have only arisen (globally) in recent years as a result of the current 

global situation. As expressed in [27], in some parts of the world, the use of personal protective 

equipment has been socially acceptable for a much longer period of time. Thus, addressing this gap, 

would have been beneficial both in the past, as well as currently. The research presented in [25] 

addresses this research gap, and the methodology is discussed in detail in subsequent sections. 

4. Blind Source Separation Applied for Affective State Assessment 

Blind Source Separation (BSS) is a common signal analysis tool that is used to separate statistically 

dependent/independent signals from a mixture to retrieve approximations of their source signals. The 

approach is used across various industries, particularly in the music industry where the technique is 

deployed to separate vocals from instrumentals [28], as well as being used to improve automatic 

speech recognition systems by removing background noise and background music [29]. 

Throughout an extensive literature review, no evidence could be found regarding the use of BSS within 

the realms of ASA. However, the applications for implementing such a system would be beneficial in 

public safety, entertainment, security, and commercial sectors. The gap in the literature is evidenced 

by the lack of literature regarding BSS being used in an ASA or emotion recognition scenario. In later 

chapters, the implementation of this technique within the realms of ASA is discussed, in a means of 

addressing the research gap, and contributing through a novel, crowd sentiment analysis system. 

The research gaps introduced in this subsection highlight the plethora of work that still needs to be 

done to improve ML and AI systems at a higher level – through tools like XAI and AXAI. These gaps also 

evidence that we can improve affective state assessment solutions – by using higher level tools like 

AXAI to address issues pertaining to explainability, accountability, comprehensibility, and reasoning, 

while also attempting to address more novel gaps such as adapting ASA systems to account for 

occluded expressions and deploying BSS techniques within the realms of affective computing. This 

thesis aims to address the research gaps discussed above by making novel, significant contributions 

that would add to the existing body of literature. 

 1.4 Contributions  

Across the two overarching objectives of this work, this thesis and its corresponding publications have 

made significant contributions toward the body of literature. As visualised in Figure 1, this work 

presents eight contributions that aim to address the research gaps that were raised in Section 1.3. 

1.4.1 The AXAI Capability Framework 

As addressed in Section 1.3.1, there are many research gaps that can be addressed with respect to 

general ML and AI systems. The emerging discussion on explainable AI and interpretable models is a 

clear indication for the advancement of AI systems in the modern age. While XAI is beneficial, through 

the gaps discussed, it is evident that the way in which we assess these systems can be improved 

further. Through the design and implementation of the Accountable, Explainable Artificial Intelligence 

(AXAI) framework, this work contributes toward general AI and ML literature. The AXAI framework 

allows for the delineation of ML and classification systems based on their comprehensibility, 
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accountability, and predictive accuracy – with accountability serving as the novel addition to 

assessment tools when compared to existing works. 

1.4.2 Blind Source Separation for Group Sentiment Analysis 

Figure 1 highlights several branches of affective computing that have been addressed through this 

work. Through an extensive survey of the literature, there was no evidence of BSS being used in the 

realm of affective computing. This work contributes to affective computing literature through a novel 

method of analysing group sentiments. Integrating this system into existing, capable infrastructures 

would allow for the separation of speech signals and the assessment of the overall mood of a crowd, 

for the potential use in security, entertainment, and commercial sectors. 

1.4.3 Design and Implementation of a Dynamic, Multimodal, State  

  Assessment System 

The “Big Idea” proposed during the inception of this thesis, was a modular device that could equip any 

robotic system with affect awareness. While the overall specifications of this project may have shifted 

through the research process, the core vision has remained consistent, and has been achieved. This 

required an extensive literature review into existing multimodal ASA systems to find dynamic, 

multimodal classification models. As discussed in Section 1.3.2, the number of solutions that 

accounted for continuous expressions of states were limited, and as such, provided an opportunity in 

which to make a significant contribution. 

The SAM back-end design uses a hierarchical classifier ensemble to provide multi-level, dynamic 

classification that accounts for continuous changes in affective state expressions as well as temporal 

considerations for both facial expression and speech signals. The classification architecture is made 

transparent through the GUI, providing users with a vast array of observable outputs, inputs and 

auxiliary, with this implementation being discussed in later sections. 

1.4.4 Occluded Facial Expression Detection and Classification 

Current and past ASA systems that require facial data for effective classification were hindered in their 

functionality given the changing landscape due to the COVID-19 pandemic. The change in societal 

views and acceptance of face masks in public, particularly in western countries, would see these 

systems struggle, or even fail, to handle occluded facial expressions. The idea was to propose an 

adaptive classification framework as evidenced in [25], which would determine whether to classify 

upper- or full-facial expressions, depending on whether an occluded face was detected. 

Given the current climate, this would be a significant contribution as it would prompt researchers and 

developers to evolve past systems and to futureproof current systems. History shows that another 

pandemic is likely in the future, and protective face masks are generally more accepted, and will be in 

the future. As mentioned prior, the presence of protective face masks in public spaces has been an 

accepted practice in some corners of the world as such, these countries would also benefit by adopting 

such a system, further evidencing this work as a valid contribution to the literature. 

1.4.5 Hybrid Learning for the Development of Hierarchical Classification  

  Models for ASA 

The State Assessment Module contains two hierarchical classifier ensembles, one for each assessable 

modality (facial expressions and speech). The development of these models was done using a hybrid 
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learning approach, employing both supervised and unsupervised learning techniques. This approach 

exploits the statistical similarities embedded in partially-labelled facial expression and speech data, 

allowing for the development of a holistic classification system and novel classes. 

While hybrid learning and hierarchical classifiers are not novel, the implementation of the techniques 

discussed in this thesis within the domain of ASA, proposes some novel elements. The hybrid model 

in question leans on the foundations of literature to structure and justify the different levels of the 

hierarchical model, and through a high classification performance, proves itself as a valid contribution 

toward ASA literature.  

1.4.6 Multi-level, State-based Reasoning for Speech, and Facial Expression 

  Classifiers 

The development of the hierarchical classifier ensemble combines foundational theory with statistical 

clustering and similarity measurements. For both speech and facial expression channels, there are 

four levels of classification, with each level hosting ensembles of either ternary or binary classifiers. 

The “state-based reasoning” comes from the literary foundations, in that the logical flow of 

information across levels is relayed to the user through SAM’s GUI assets, acting as a means of 

explaining its classification trees and SAM’s reasoning processes. As discussed in previous sections, 

the lack of transparency and explainable elements in ASA systems poses a major gap in literature that 

needs to be addressed going forward. Through SAM’s intuitive GUI design and comprehensive 

functionality, it proves itself as an example of how this research gap has been addressed. 

1.4.7 Real-time, AXAI-Capable Assessment and Interaction through SAM 

At the core of this research is the AXAI framework and SAM. While there are research gaps belonging 

to general AI and ML as well as ASA, the implementation of SAM contributes toward both as well as 

to wider engineering literature. SAM is a real-time system that was designed with AXAI in mind 

throughout the entirety of the software design and development process. The extensive functionality 

of SAM does not limit it to being purely a classification system as it contains many impressive sub-

systems that make it an advanced AI solution. 

In later chapters we will discuss how SAM serves as a foundation as to where affective computing and 

human-machine interaction (HMI) systems can go in the future. The understanding of human feelings, 

intent and moods is no longer science fiction, and through contributions like SAM, we can move 

toward machines understanding humans and their decision-making at a more conscious level. 

1.4.8 Integration of SAM into Existing Robotic and Surveillance   

  Infrastructures 

This work contributes toward general engineering, robotics, and AI literature through SAM’s 

deployment as an embedded system. In later chapters, we will discuss how SAM (as a modular, 

portable system) can be integrated into existing robotic and surveillance infrastructures given the 

necessary peripheral devices. By integrating SAM into existing frameworks, it would equip any robotic 

system with an intuitive GUI, affective state assessment capabilities and the ability to partake in 

dialogue with a user. 

This is a major contribution that has the potential to be expanded in many directions across various 

industries and highlights a significant step forward in the realm of affective computing.   
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 1.5 Chapter Description and Summary 
This thesis aims to discuss all the above contributions and outline the theory, implementation, and 

results of this research. This thesis is structured as follows. Chapter 1 has introduced the research, 

identifying the main objectives, research gaps and significant contributions of this work. Chapter 2 

discusses the background information for all facets of this work, from ML foundations to AI systems, 

XAI and transparency, to the theoretical foundations of emotions and affective computing. 

Chapter 3 dissects the AXAI framework, detailing comprehensibility, accountability, and predictive 

accuracy metrics, and providing two case studies of different classification systems. Chapter 4 shifts 

the discussion toward software design and development principles, focusing on how AXAI features 

could be implemented in the design phase of a system.  

Chapter 5 details SAM, discussing back-end and front-end designs as well as discussing SAM as a 

modular, embedded device capable of being integrated into existing infrastructures. Chapter 6 

discusses some of the parallel research efforts and other major contributions including BSS and 

dynamic micro-expression detection in upper- and lower- faces.  

Finally, Chapter 7 concludes this work, emphasising the importance of the AXAI framework and SAM, 

and discussing potential future work that could arise from this research. 
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Chapter 2:  Background Theory 
There are many facets to this research that span from machine and deep learning theory to intelligent 

systems, embedded technologies and affective computing, this chapter reviews the literature and 

discusses some of the fundamental theory that has shaped this research. 

2.1 Foundational Machine and Deep Learning Theory 

Machine and deep learning architectures and applications have grown throughout the late 20th and 

early 21st centuries. Underneath the larger umbrellas of machine and deep learning are supervised 

and unsupervised learning categories, each playing host to an array of different algorithms and 

approaches. Both learning approaches are built from statistical and probabilistic computational 

foundations, and their applications span across various industries, as visualised in Figure 4. 

Figure 4: Visual representation of applications in which supervised and unsupervised learning 

  techniques have been deployed, highlighting the various independent sectors 

  including: commercial, marking, medical, security and social. 

In comparison to deep learning, machine learning approaches define some of the more traditional, 

conventional classification methods that have singular feature extraction and classification methods 

[30]. When we consider deep learning processes, we think of multi-level structures and techniques 

that utilise artificial neural networks (ANN). Neural networks attempt to mirror human decision-

making and feature extraction processes through digital nodes and synapses that are described 

through multi-variate network weights and descent-based algorithms or transfer functions [30-32]. 

Irrespective of the depth of learning, these techniques are often split into: (i) supervised, (ii) 

unsupervised and (iii) hybrid learning approaches, with the latter describing techniques that combine 

supervised and unsupervised techniques in one application. This research deploys hybrid learning, and 

as such a thorough literature review is conducted for both supervised and unsupervised learning 

methods. 
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Through this section, the aim is to discuss the background theory behind all methods that have been 

explored and deployed through this research, i.e.: (i) mutual information extraction and clustering, (ii) 

blind source separation (BSS), (iii) linear discriminant analysis (LDA), (iv) support vector machines 

(SVM), (v) multi-layer perceptron (MLP) networks and (vi) convolutional neural networks (CNN). 

At its core, supervised learning implies the existence of labelled data which is used for training a 

particular algorithm. The correlation and statistical similarity of features provide a basis in which labels 

are applied to classes (prior to applying the supervised learning algorithm), with the purpose of 

training a classification model using labelled data and using the model to make a statistical prediction 

of an input sample/s, based on a set of rules and parameters gained throughout training [33]. 

In comparison, unsupervised learning techniques are aimed at information extraction and finding 

representations of data from unlabelled datasets [34, 35]. These techniques allow us to infer particular 

relationships, clusters and components from analysed data that may be unobservable through natural 

human sense [35]. The ability to cluster and separate data highlights an immediate benefit for ASA 

systems like the one proposed in this work – introducing a vehicle in which discretely labelled data 

can be separated into continuous representations of state in a temporal domain. Then, by deploying 

supervised learning algorithms, it would allow for dynamic classification within a continuous space, as 

opposed to limiting classification capabilities through purely discrete, state-based classification. This 

describes at the highest level, the hybrid learning approach proposed in this work. 

Within the context of this research, unsupervised learning provides a medium in which spectrum-

based, continuous assessment solutions may be applied, and representations of group sentiments 

may be found. Manual labelling of a large corpus of data requires an extensive number of resources 

and introduces human error and biases. Thus, by applying unsupervised learning, one can remove the 

inherent biases that exist in humans, in favour of more objective, feature-based representations and 

labels. 

Regardless of modality, application or method, unsupervised learning proposes a means of learning 

the probability distribution of data [34, 36], the categories of methods are extensive and can range 

from traditional clustering, to manifold learning, to blind source separation etc. This research provides 

evidence of BSS and traditional clustering techniques being applied for ASA tasks, looking at mutual 

information and the extraction and measurement of similarity and dissimilarity in continuous signals. 

  2.1.1 Unsupervised Learning – Blind Source Separation  

Blind source separation utilises sparse decomposition of signals as the basis for separation, under 

various assumptions of signal mixture probabilities [35, 37]. In essence, the overall concept of BSS 

algorithms is to separate a smaller number of observed signals into a greater number of estimated 

source signals, serving as a means of data separation and is sometimes used as a pre-processing step 

[28, 29]. The governing BSS equation characterises a continuous, observed signal mixture ‘𝐱(𝑡)’ and is 

represented as [37]: 

𝐱(𝑡) = 𝐀𝐬(𝑡) + 𝐛(𝑡), 1 ≤ 𝑡 ≤ 𝑇 

where ‘𝐀’ defines the mixing matrix, ‘𝐬(𝑡)’ defines the source signals and ‘𝐛(𝑡)’ defines any noise 

present in the signal mixture, which is sometimes omitted if negligible. 

(1) 
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Blind source separation aims to solve the equation for 𝐬(𝑡) given an unknown mixing matrix and only 

having knowledge of the observed signal mixture. Blind source separation techniques are supported 

by the fact that at every point in the continuous mixture, one signal has a higher activation than the 

rest [37]. This primary assumption indicates that if the mixture can be modelled effectively and 

separated on the basis of these higher activations, then the source signals may be estimated. Solving 

BSS problems requires one to determine a demixing matrix 𝐖 through computational and component 

analysis methods [35, 37]: 

𝐲(𝑡) = 𝐖𝐱(𝑡) = 𝐖𝐀𝐬(𝑡) 

where 𝐲(𝑡) is the estimated separated signals given the observed signal mixture 𝐱(𝑡). The obvious 

solution is that 𝐖 = 𝐀−1, which is unachievable given the unknown mixing parameters of 𝐀 and its 

inverse. Therefore, some kind of similarity measures need to be deployed to find the maximum-

likelihood solution for the demixing matrix 𝐖. 

Depending on the statistical conditions/assumptions of the observed mixture, different signal 

decomposition techniques may be deployed to solve the separation problem. In this work, 

Independent Component Analysis (ICA) and Dependent Component Analysis (DCA) methods were 

explored, with the former assuming non-Gaussianity and statistical independence between source 

signals. Conversely, DCA assumes statistical dependence and can be more applicable in the real world 

where Gaussian mixtures are more present [35]. 

Independent Component Analysis aims to maintain statistical independence between signals in a 

mixture and while the definition of ICA tends to vary throughout literature, researchers tend to agree 

[38]: ICA of a random vector ‘𝐱’ consists of estimating the following generative model for the data: 

𝐱 = 𝐀𝐬 

which is of the same form as (1) defined prior – only that noise is omitted from the mixture in this 

case. Equation (2) defines the problem statement where the demixing matrix ‘𝐖’ is the variable to 

solve. Learning algorithms are often used to determine ‘𝐖’ such as the Kullback-Leibler (KL) 

divergence method. Novel computational methods have seen the evolution of ICA learning 

algorithms, spawning tools such as Fast-ICA, which is an implementation of the algorithm derived in 

[39], represented by: 

𝐖+ = 𝐖 + Γ[diag(−𝛽𝑖) + 𝐸{𝑔(𝐲)𝐲𝑇}]𝐖 

where 𝐲 = 𝐖𝐱, 𝛽𝑖 = 𝐸{𝑦𝑖𝑔(𝑦𝑖)} and Γ = diag (
1

𝛽𝑖−𝐸{𝑔′(𝑦𝑖)}
). In their work, Hyvärinen and Oja 

compare (3) with the method used to determine maximum likelihood [39], i.e.: 

𝐖+ = 𝐖 + 𝜇[𝐈 + 𝑔(𝐲)𝐲𝑇]𝐖 

This comparison sees Fast-ICA as an algorithm used for fixed-point maximum likelihood independent 

component analysis i.e., blind source separation through estimation. Successful implementation of 

the Fast-ICA algorithm will produce ‘n’ separated source signals, maintaining statistical independence 

between them. 

In comparison to ICA, DCA methods aim to achieve the same task of BSS, only under the assumption 

of statistical dependence – which as mentioned prior, is more prevalent in real-world scenarios. 

(2) 

(3) 

(4) 
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Statistical dependence assumes some form of mutual information that is contained in the signal 

mixture, which affects the process of separation. One DCA method is Multidimensional Independent 

Component Analysis (MICA) which is an extension of the traditional ICA method. MICA adopts the 

theory that n-tuples of signals in a mixture may be dependent. 

The structure of the MICA algorithm may be summarised as such [40, 41]: 

1. Identify one-dimensional components and make a primary estimation of the separation 

matrix elements. 

2. Identify Gaussian characteristics and group these ‘𝑘’ elements to form multidimensional 

components 𝐶𝑘 

3. If a source signal satisfies 𝐶𝑘 > 1, decompose the signal into 𝑘 one-dimensional components 

– which is done by projecting the source onto the first axis of the covariance matrix. 

4. Optimize a global criterion function 𝐺(. ) such that the separation matrix and observed 

mixture 𝐖𝐱 satisfies the condition: 

𝐺(𝐖𝐱) = 0 

Another method which maintains statistical dependence is the dual-tree complex wavelet transform 

(DTCWT), which exploits shift invariances and orthogonality in signal mixtures [42-44]. The DTCWT 

method finds statistical dependence and mutual information at particular frequencies while 

maintaining the notion that other frequencies may still be statistically independent. 

The DTCWT technique employs a linear operator 𝑇𝑘 to separate independent frequencies such that: 

𝐬𝒌(𝑡) = 𝑇𝑘[𝐬(𝑡)] 

Applying this operator to the blind source separation base equation, the observed signal may 

therefore be represented in the form: 

𝐱𝒌(𝑡) = 𝑇𝑘[𝐀𝐬(𝑡)] 

These rules allow for the following generalisation to be made: 

𝐀𝑇𝑘[𝐬(𝑡)] = 𝐀𝐬𝒌(𝑡) 

Based on theoretical foundations formulated in [42-44], the DTCWT method may exploit real and 

imaginary components of the wavelet transform 𝜓(𝑡) such that: 

𝜓(𝑡) = 𝜓𝑖(𝑡) + 𝜓𝑗(𝑡) 

The Hilbert transform is then invoked on the real component 𝜓𝑖(𝑡), allowing the complex variable 

𝜓𝑗(𝑡) to take the desired form of: 

𝜓𝑗(𝑡) ≈ [ℋ𝜓𝑖(𝑡)] 

The DTCWT method serves as a means of decomposition, the mutual information at each frequency 

is approximated using entropy measures and subsequent second, third and fourth order cumulants 

were used to for probability distribution approximations. Once the DTCWT method has been 

employed for decomposition, the ICA algorithm mentioned prior may be used to estimate the 

demixing matrix 𝐖, which through the DTCWT method maintains a signal mixture’s statistical 

dependence assumptions. 

(5) 

(6) 

(7) 

(8) 

(9) 
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  2.1.2 Unsupervised Learning – Clustering 

Clustering and cluster analysis aim to infer natural relationships from similar instances in a dataset 

by grouping them in regions based on their similarities [45, 46]. This relates to the application of 

automated labelling. By having a system that defines various regions based on the objectivity of 

feature similarities, one may find new relationships and classes that may be otherwise unobservable 

when performing manual labelling. 

Clusters will form in a dataset regardless of which clustering algorithm is chosen and regardless of if 

the data contains distinct clusters or not [46]. Therefore, choosing an effective clustering algorithm is 

important as the data may be represented in a more beneficial, applicable way, despite not changing 

the input dataset/data mixture. The selection of features is also dependent on the modality in which 

the data presents itself, there are no defined guidelines or restrictions which state what patterns or 

features are to be inferred through clustering [46]. 

In this work, the separation and clustering of homogenous, gaussian, continuous data was achieved 

by exploiting similarity and dissimilarity measures. Prior to discussing the theoretical concepts, let us 

define some standard definitions used in this work: 

• 𝐱𝐢 = {𝑥1, 𝑥2, … , 𝑥𝑚} defines a singular pattern or feature vector, where ‘𝑥𝑖’ defines feature ‘𝑖’. 

• 𝐗 = {𝐱𝟏, 𝐱𝟐, … , 𝐱𝐍} defines a set of input patterns of matrix size 𝑁 × 𝑚, which is a collection of 

singular feature vectors used in the clustering problem. 

• 𝑪 = {𝑐1, 𝑐2, … , 𝑐𝐾} defines the ‘𝐾’ class labels for the patterns contained in the pattern set ‘𝐗’. 

Similarity measures allow us to detect statistical correlations that may exist within data, allowing for 

the separation and clustering of subsets of similar feature vectors ‘𝐱𝐢’ from within the set of input 

patterns ‘𝐗’. Some of the most common, logical tools for detecting similarity are distance-based, 

including Euclidean, Manhattan and Mahalanobis distances [35], being defined as such: 

𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑|𝑥𝑖 − 𝑦𝑖|2

𝑛

𝑖=1

 

𝐷𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 = ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 = √(𝑥𝑖 − 𝑦𝑖)𝑆−1(𝑥𝑖 − 𝑦𝑖)𝑇 

In this instance, 𝑥𝑖 and 𝑦𝑖  define two points in an 𝑛-dimesional workspace. Logically, Euclidean 

distances of points contained in the same clusters will be smaller than those in foreign clusters. 

Therefore, a key consideration in this case, is the ‘threshold distance’, the distance in which clusters 

are separated from each other [35]. Too large a threshold distance and the number of clusters ‘𝐾’ may 

be reduced. In contrast, too small a threshold distance and the number of clusters ‘𝐾’ may increase 

to a point where clusters become too insular [35]. 

The previous subsection (2.1.1) discussed statistical dependence within the context of BSS and 

dependent component analysis methods. The concept of mutual information within a set of feature 

vectors/patterns ‘𝐗’ indicates the presence of statistical dependence within that set. Mutual 

(10) 

(11) 

(12) 
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information can be used to describe a subset of samples in a given set that are dependent and share 

similar features, thus serving as a vehicle for the detection of similarity between feature vectors.  

Applying mutual information extraction within the context of this research, it was used as the 

unsupervised learning part of the hybrid model, tasked with separating and clustering continuous 

facial expression and speech data into ‘𝐾’ classes that account for changes in temporal phase to create 

a dynamic, spectrum-based state classification solution across two modalities. 

Three mutual information extraction techniques were experimented with though this research: 

1. Conditional Entropy 

2. Mutual Information Score (KL divergence) 

3. Cosine Similarity 

with cosine similarity being used for final models. All three approaches achieved similar results, but 

their governing approaches and equations are unique. Conditional entropy is represented by [24, 25, 

47]: 

𝐻[𝑋1|𝑋2] = − ∑ 𝑝(𝑋1 = 𝐱𝐢, 𝑋2 = 𝐱𝐣) × log (𝑝(𝑋1 = 𝐱𝐢, 𝑋2 = 𝐱𝐣))

𝐢,𝐣

 

where 𝑝(𝑋1 = 𝐱𝐢, 𝑋2 = 𝐱𝐣) represents the probability that a random variable 𝑋1 = 𝐱𝐢 and another 

variable 𝑋2 = 𝐱𝐣, with the pair of variables describing sequential feature vectors within the sample set 

‘𝐗’ in this application. 𝐻[𝑋1|𝑋2] must be greater than zero for all cases of 𝑋1 and 𝑋2 noting that as 

two samples become more similar, 𝐻[𝑋1|𝑋2] → 0. 

Mutual Information Score is derived directly through the KL divergence of the joint and product 

distributions of two random variables [48]. Note that the KL divergence method was also discussed in 

the previous section w.r.t determining the demixing matrix parameters for BSS, thus highlighting the 

prevalence of this method in the realm of unsupervised learning. Mutual information score can 

therefore be modelled through: 

𝐼[𝑋1; 𝑋2] = ∑ 𝑝(𝑋1 = 𝐱𝐢, 𝑋2 = 𝐱𝐣) × log (
𝑝(𝑋1 = 𝐱𝐢, 𝑋2 = 𝐱𝐣)

𝑝(𝑋1 = 𝐱𝐢) ∙ 𝑝(𝑋2 = 𝐱𝐣)
)

𝐢,𝐣

 

Comparing (13) and (14) we can see consistent elements across both conditional entropy and mutual 

information score approaches, highlighting why the results of separation may be similar across both 

methods. 

The final separation algorithm explored more foundational vector algebra i.e., cosine similarity. This 

method detects the cosine angle between two 𝑚-dimensional feature vectors 𝐱𝐢 and 𝐱𝐣. the resulting 

angle showing the mutual information between two vectors. Cosine similarity ‘𝑆cos 𝜃’ is defined as: 

𝑆𝑐𝑜𝑠𝜃 =
𝐱𝐢 ∙ 𝐱𝐣

|𝐱𝐢||𝐱𝐣|
 

Analysing (15), we note that as the mutual information between two feature vectors rises, 𝑆cos 𝜃 → 1. 

Through basic algebra, we can use this equation to prove how similarity increases as cos−1(1) = 0°, 

(13) 

(14) 

(15) 
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which indicates two identical feature vectors and cos−1(0) = 90°, which corresponds to two 

perpendicular, dissimilar feature vectors.  

All three methods defined above can be used to detect the similarity of two samples. In this work, the 

dissimilarity between two sequential samples 𝐱𝐢 and 𝐱𝐢+𝟏 was more important, as the points of 

maximum dissimilarity in a continuous sample set ‘𝐗’ determines the locations of the 𝑚-dimensional 

hyperplane boundaries that are used to construct the cluster borders. 

Given this work clustered continuous samples of facial expression and speech modalities, the 

dissimilarity is calculated for all sequential sample pairs in a set using the following notation: 

Δ𝑆 = 𝑆(𝐱𝐢, 𝐱𝐢) − 𝑆(𝐱𝐢, 𝐱𝐢+𝟏) 

where ‘𝑆’ is the similarity measure used for separation and ‘𝐱𝐢’ is the 𝑖𝑡ℎ feature vector in a set ‘𝐗’. 

Using cosine similarity as an example, (16) can be rewritten as:  

Δ𝑆𝑐𝑜𝑠𝜃 = 𝑆𝑐𝑜𝑠𝜃(𝐱𝐢, 𝐱𝐢) − 𝑆𝑐𝑜𝑠𝜃(𝐱𝐢, 𝐱𝐢+𝟏) 

which can be written as: 

Δ𝑆𝑐𝑜𝑠𝜃 = 1 − 𝑆𝑐𝑜𝑠𝜃(𝐱𝐢, 𝐱𝐢+𝟏) 

given that the algorithm has been applied correctly, since the ‘𝑆𝑐𝑜𝑠𝜃(𝐱𝐢, 𝐱𝐢)’ term defines the similarity 

between two identical feature vectors. For all feature vectors in 𝐗, we can therefore describe the 

function: 

𝑓(𝐱𝐢) = Δ𝑆 ∶ 𝐱𝐢 ∈ 𝐗 and 𝐱𝐢+𝟏 ≤ 𝐱𝐍 

such that max[𝑓(𝐱𝐢)] defines the maximum dissimilarity in 𝐗. By splitting 𝐗 into ‘𝑘𝑝’ equal parts, one 

can then detect ‘𝑘𝑝’ peaks, such that: 

𝐾𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 𝑘𝑝 + 1 

which determines the number of clusters that have been extracted from the sample set. The 

application of this clustering method within the context of this research is detailed more extensively 

in Chapter 5. 

2.1.3 Supervised Learning 

This research explores many supervised learning methods and algorithms that range from traditional, 

shallow machine learning approaches to more complex, deep learning solutions. To reiterate, this 

research explored and adopted four unique supervised learning methods for dimensionality reduction 

and classification purposes, i.e.: 

1. Linear Discriminant Analysis (LDA) 

In addition to LDA being applied for classification, it can also be used as a supervised learning 

dimensionality reduction technique, as has been applied in this work. By having knowledge of labelled 

sample data, LDA projects higher-dimensional data onto a lower-dimensional linear discriminant 

(feature) space. This process maximises the inter-cluster variance while minimising the intra-cluster 

variance, thus optimising the separation between cluster centroids [49]. Immediately, it was evident 

that combining this method with the separation and clustering techniques discussed in subsection 

(16) 

(17) 

(18) 
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2.1.2 would enhance the classification capabilities of the presented system, deploying two 

independent clustering algorithms. 

Unlike the unsupervised separation and clustering algorithms discussed in previous sections, LDA is an 

optimisation problem that leans on the benefits of labelled data. The aim is to determine the optimal 

value of ‘𝑏’ in (19) that would maximise: 

𝑏′𝐁𝑏

𝑏′𝐖𝑏
 

Where ‘𝐁’ represents the inter-cluster covariance matrix and ‘𝐖’ represents the intra-cluster 

covariance matrix. The solution for (19) is to calculate the number of linear discriminants ‘𝑁𝐿𝐷’, which 

can be found via the largest eigenvalues of 𝐖−𝟏𝐁, keeping in mind that for ‘𝐾𝑐𝑙𝑎𝑠𝑠𝑒𝑠’ [26, 49]: 

𝑁𝐿𝐷 ≤ 𝐾𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1 

All samples in a given set 𝐗 are then projected onto an 𝑁𝐿𝐷-dimensional linear discriminant feature 

space. As briefly mentioned, LDA may be used for classification tasks as well. While this functionality 

of the algorithm is not applied in this work, classification is achieved through the detection of similarity 

between an input signal and the cluster centroids of the LDA model, e.g.: 

|𝑏′(𝐱𝐢 − 𝐱𝟏̅̅ ̅)| − |𝑏′(𝐱𝐢 − 𝐱𝟐̅̅ ̅)| − |𝑏′(𝐱𝐢 − 𝐱𝐤̅̅ ̅)| − ⋯ − |𝑏′(𝐱𝐢 − 𝐱𝐊𝐜𝐥𝐚𝐬𝐬𝐞𝐬
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )| < 0 

where ‘𝐱𝐤̅̅ ̅’ is the 𝐤𝑡ℎ cluster centroid. 

2. Support Vector Machines (SVM) 

The SVM model is one of the most prevalent across supervised learning literature. They discern 

multidimensional data through hyperplanes that separate labelled data. Similar to the LDA approach, 

SVM’s maximise intra-cluster margins to construct the hyperplane boundaries, defining classifiers of 

the form [24, 50]: 

𝑦(𝑥) = sign [∑ 𝛼𝐢𝐲𝐢𝜓(𝐱, 𝐱𝐢) + b

𝑁

𝐢=𝟏

] 

where ‘𝐱𝐢’ and ‘𝐲𝐢’ correspond to the 𝐢𝑡ℎ input and output feature vectors, respectively. ‘𝛼𝐢’ and ‘b’ 

are constants. 𝜓(𝐱, 𝐱𝐢) is the operating term and is dependent on the type of SVM kernel used for 

classifier training. Two common SVM operating terms are the Linear and Radial Basis Function (RBF) 

terms [50, 51], described respectively by (22) and (23): 

𝜓𝑙𝑖𝑛𝑒𝑎𝑟(𝐱, 𝐱𝐢) =  𝐱𝐢
𝐓𝐱 

𝜓𝑅𝐵𝐹(𝐱, 𝐱𝐢) = exp (−
‖𝐱 − 𝐱𝐢‖

2

2𝜎2 ) 

which promotes the two solutions: 

𝐰𝐓𝛗(𝐱𝐢) + b ≥ +1, for positive 𝐱𝐢  

𝐰𝐓𝛗(𝐱𝐢) + b ≤  −1, for negative 𝐱𝐢  

(21) 

(22) 

(23) 

(19) 

(20) 
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where ‘𝐰’ is a weight vector and ‘𝛗(𝐱𝐤)’ is a nonlinear function (operating term) [51]. The 

construction of the SVM models and the parameters used in this work is detailed in Chapter 5 where 

facial expression and affective speech classification models are discussed in greater depth. 

3. Multi-Layer Perceptron (MLP) Networks 

Multi-Layer Perceptron Networks are an evolutional of the traditional single-layer perceptron 

algorithm derived in the mid-20th century [52, 53]. A perceptron at its core, is an artificial neuron, 

designed to mimic human neural feature extraction for binary classification. The MLP algorithm is a 

feed-forward, fully-connected neural network that is capable of approximating linear and non-linear 

functions for the classification of unseen data [52, 54]. 

Artificial neural networks (like MLP) are graphical in nature, consisting of hidden layers and artificial 

neural nodes. The nodes are connected via linear/non-linear activation functions – of which there are 

various unique functions, each being more applicable to some classification tasks over others [52]. 

The governing equation for a neural network node can be defined as [55]: 

ℎ𝑖 = 𝜎 (∑ 𝑊𝑖𝑗𝑥𝑗 + 𝑇𝑖(ℎ𝑖𝑑)

𝑁

𝑗=1

) 

where ℎ𝑖 is the output of the 𝑖𝑡ℎ neuron in the hidden layer, based on the activation function ‘𝜎( )‘. 

‘𝑁’ defines the number of input neurons with weights ‘𝑊𝑖𝑗’, inputs ‘𝑥𝑗’ and threshold term for the 

hidden neurons ‘𝑇𝑖(ℎ𝑖𝑑)’. Some common activation functions that appear in literature are: 

𝜎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 

𝜎𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

𝜎𝑅𝑒𝐿𝑈(𝑥) = {
0 𝑖𝑓 𝑥 ≤ 0
𝑥 𝑖𝑓 𝑥 > 0

 

𝜎𝑏𝑖𝑛𝑎𝑟𝑦(𝑥) = {
0 𝑖𝑓 𝑥 < 0
1 𝑖𝑓 𝑥 ≥ 0

 

The number of output layer nodes of the MLP network define the number of classes 𝐾𝑐𝑙𝑎𝑠𝑠𝑒𝑠 present. 

An MLP network is trained using a training set 𝐗 containing consistent 𝑚-dimensional feature vectors 

and is dependent on the construction of the network i.e., the number of layers, the chosen activation 

functions, and the network weights [52]. The aim of the network is to define and optimise an unknown 

function ‘𝑓’ that describes the network and links the input layer to the output layer, thus facilitating 

classification [52, 55]. 

4. Convolutional Neural Networks (CNN) 

Convolutional neural networks show another evolution from traditional neural network algorithms 

and perceptrons, and are designed to process, learn about, and classify array-shaped data [30, 56, 57]. 

The evolution of CNN algorithms has shown powerful improvements to pattern recognition tasks that 

require multidimensional input data for example when handling time series data and multi-channel 

signals, performing RGB image/audio classification [56, 57]. 

(24) 

(25) 

(26) 

(27) 

(28) 
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Convolutional neural networks can range in size complexity and the evolution of CNN’s has seen the 

development of many unique deep learning algorithms such as ResNet, VGGNet, AlexNet, Inception, 

Xception etc. [58] that have all been built from the same foundational knowledge, which again, evolves 

from the “simple” perceptron. These CNN’s all range in network structure, size and complexity, with 

approaches like the Inception and Xception algorithms being explored in previous works [1, 19, 24]. A 

description of these algorithms is highlighted in Table 1. 

Irrespective of the algorithm, there are various unique layers that can be added to a CNN, especially 

when using common development tools such as Keras and TensorFlow [58]. Through convolutional 

layers, we establish the basic building blocks of CNN’s. These layers define the (𝑛 × 𝑚)-dimensional 

feature maps that are embedded with multi-channel information and to detect local feature 

information of an input signal [30] and by varying parameters such as the kernel size or padding for 

example, one is able to teach the CNN “how” to learn.  

Name Year No. 
Parameters 

Description 

AlexNet 
[59] 

2012 60 million Convolutional Neural Network designed and competed in the ImageNet 
contest consisting of five convolutional layers and three fully connected 
layers with other neural network elements existing between layers [59]. 
The model achieved respective top-1 and top-5 error rates of 37.5% and 
17%. 

VGGNet 
[60] 

2014 138 million A convolutional Neural Network architecture containing 16 weight layers 
including maximum pooling layers. The number of parameters in this 
architecture is considerably higher than the others in this table. VGGnet 
was used as a competitor in the ImageNet competition, boasting top-1 
error rates between 25.5 and 30% and top-1 error rates ranging between 
8 and 10.5%. [60] 

InceptionV
3 [61] 

2016 24 million The InceptionV3 model combines several inception modules which are 
designed to perform cross-channel and spatial correlations more 
efficiently. The author reported a 3.5% top-5 error rate and a 17.3% top-1 
error rate on the validation set using an ensemble of Inception models 
[61]. 

Xception 
[62] 

2017 24 million The Xception architecture is more novel than its predecessor 
(InceptionV3) but is claimed to be “inspired by Inception” [62]. The model 
contains 36 convolutional layers and reported a top-1 error rate of 21% 
and a top-5 error rate of 5.5%. 

ResNet 
[63] 

2016 60.2 million 
(when using 
ResNet-152 

Explores the notion of using layers as “learning residual functions” with 
relationship to layer inputs. The corresponding paper refers to different 
layer configurations, each resulting in different performance metrics. The 
best performing architecture on the ImageNet dataset uses 152 layers 
(defined as ResNet-152), boasting a top-1 error of 21.43% and a top-5 
error of 5.71% [63]. 

Table 1: Comparison of various Convolutional Neural Network (CNN) architectures that are 

  common in the relevant literature and are deployed for various applications across 

  independent industries. 

2.1.4 Hybrid Learning 

Hybrid learning systems are a combination of unsupervised and supervised learning approaches, 

oftentimes exploiting the benefits of both approaches for great results. This research heavily explores 

hybrid learning and classifier ensembles through its adoption of a hierarchical classification network 

for continuous affective state assessment. The construction of hybrid learning frameworks in [24, 25] 
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make up much the back-end classifier functionality of SAM (as will be discussed in Chapters 5 and 6 of 

this work). However, there are various other examples of hybrid learning in literature outside of the 

works that have been published as a result of this research. 

In [64], researchers discuss a hybrid learning method based in deep learning theory to improve 

emotion recognition accuracy. In their work, they use dimensionality reduction that is granted by 

hidden layer representations (unsupervised) prior to using a MLP network for affective state 

classification (supervised) [64]. This architecture is experimented on an affective speech dataset 

where valence, arousal and dominance recognition accuracy are used as performance metrics, with 

the classification performances being improved as the result of deploying a hybrid learning model. 

Another example in [65] proposes a hybrid combination of RBF-based K-means clustering with a bi-

directional long short-term memory (LSTM) network using speech samples segments as the input for 

the unsupervised clustering algorithm. The K-means clustering approach allows for the extraction of 

“key segments” which are taken at a point near to the cluster centroid. This key segment is sequenced 

and serves as the input of the Bi-LSTM network [65]. Researchers validated the method on three 

datasets, observing accuracies between the range of 72% and 86%. 

Research conducted in [66] proposes a hybrid neural network approach for the classification of 

emotions on social media platforms, applying the hybrid technique for sentiment analysis. In their 

research, the authors incorporate semantic features into a neural network model, deploying the 

unsupervised models of the hybrid network for feature transformation and a feed-forward perceptron 

which serves as the supervised component of the hybrid network [66]. Through their hybrid approach, 

the authors successfully improve social emotion classification, again proving the benefits of exploiting 

the benefits of both supervised and unsupervised models, as was evidenced in other works discussed 

[24, 25, 64-66]. 

Machine and deep learning models are the structural building blocks for applied artificial intelligence 

and statistical classification systems. The predictive capabilities of these systems have seen them 

deployed in many industries across the globe. Throughout this section we have discussed the 

mathematical and statistical foundations of these various approaches and algorithms. But, to a 

layperson, or someone unfamiliar with the literature, the vast amounts of theory would be 

overwhelming and highlights why this research focuses on how these systems can be improved in 

terms of their comprehensibility, accountability, and overall interpretability.  

By compressing these models into a black-box and deploying them for classification tasks, it would be 

impossible to develop a truly intelligent AI system or robotic assistant that would be capable of 

explaining their decision-making processes. Thus, AI researchers and developers need to be aware of 

how they can improve the usability and transparency of their systems beyond their mathematical 

foundations, ensuring that that are designed to be more human-understandable. 

 2.2 Artificial Intelligence (AI) Systems and Robotic Assistants 

The philosophical conflict and relationship between Man and Machine has been discussed in fictional 

and non-fictional works for the last two centuries. Through fictional works, parties have been 

portrayed as both allies and adversaries in utopian and dystopian scenarios. Examples include 

Frankenstein (1818), Metropolis (1927), Terminator (1984), Matrix (1999) and many 20th century 

works by Isaac Asimov including his ‘Robot’ short story series. These works have seen the rise of 
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cybernetics, robotics and artificial intelligence systems in popular culture and have contributed 

consciously and subconsciously toward the public perception and acceptance of these systems over 

time. 

Translating to real-world implementations, the concept of robotics and automation has been a theme 

of discussion since the digital revolution [10], with the advancement of information technology, 

integrated circuits and semiconductors serving as the catalyst for this change. The invention of the 

microprocessor which eventually evolved into what is today known as the personal computer was a 

boon for many industries around the world, especially within the manufacturing industry, as fully 

automated factories were seen as an inevitable reality. 

The Oxford Dictionary defines a robot as “A machine that can perform complicated tasks 

automatically” [67]. A robot can therefore come in many forms both digitally and physically if it is a 

machine that has been programmed to complete a task automatically. The term ‘robot’ is generally 

reserved for physical robots, whereas digital machines and virtual robots are generally referred to as 

‘bots’ – a robot without a body [68]. Robots and bots were developed as physical and virtual assistants 

to aid in many facets of human life as a way of either supplementing and/or replacing tasks that are 

performed by humans. 

Continuous improvements of AI systems, virtual agents and robotics runs parallel to advancements of 

human machine interactions [69]. Developing a system capable of understanding human emotion 

and/or sentiment will further advance human-machine interactions as our lives become more 

entangled with technology. However, as emphasised throughout this work, comprehensibility and 

accountability must be present in these AI systems throughout the development process as we aim to 

move away from traditional black-box approaches in favour of more acceptable solutions for the 

general public. 

While algorithms continue to become more advanced and accurate, the back-end decision-making 

processes of these systems are still not shown to key stakeholders. Without this transparency, the 

inherent lack of trust will still exist in these systems. Through the incorporation of XAI and AXAI 

principles, we can further enhance human-machine interaction systems. 

 2.3 Explainable AI, Reasoning and Transparency 

Explainable AI aims to address issues of trust and explainability in AI and ML systems, attempting to 

improve human-machine interactions in the process [4,5,7-9]. By improving factors such as 

comprehensibility, understandability, interpretability and transparency, these systems can be 

enhanced for all stakeholders including developers, regulators, users, and domain experts [4]. There 

are various elements that can be incorporated into AI systems to promote XAI-capabilities including: 

1. Transparency via input feedback – Providing a medium to the user that explains what features 

are being extracted and used for classification and decision-making processes. Visualisations 

of data throughout the process from input to output, including raw representations of data 

[70] promote transparency in ML systems. Human-machine interactions would be improved 

by providing users with the ability to visualise and query input data – especially for critical 

applications where a domain expert is still necessary when using these systems. 

2. Graphical and data tabular data presentation – Another form of visualisation that informs 

users of classifier prediction results over time or visualising decision-making processes. For a 
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real-time system this may involve graphically showing how predictions change over time or 

updating timestamped prediction labels and showing this information to the user. However, 

it must be noted that an overabundance of information and visual assets can negatively 

impact the user experience, so this information must be optimised [3]. 

3. Ability to scrutinise and debug – Providing users and domain experts with the ability to gain 

trust in decision-making processes and system performances and providing experts with the 

ability to suggest system improvements. Giving users access to classification metrics for 

example, would make them aware of how accurate the system is and would make it easier for 

them to spot misclassifications (given their expertise in the domain). The ability to scrutinise 

the methods of classification as well as the predictive capabilities of a system is important in 

XAI literature [4, 70]. The ability for domain experts to test systems and suggest changes based 

on their user-experience promotes trust in AI and instils mor control in experts – further 

establishing the ML system as a tool rather than an adversary [4].  

4. Explanations through Bayesian probability measures – Revealing the probabilistic 

foundations of a classification system and mapping information such that the logical decision-

making processes are made transparent. Implementing Bayesian rule lists (BRLs) can be used 

for reducing classifier output dimensions into a combination of smaller, interpretable models 

that can assist in the explainability of a ML system [5, 7]. Bayes’ theorem provides knowledge 

of the probability of an event occurring based on prior knowledge of observed condition (prior 

and posterior probabilities). This can be used to generate explanations of logical processes, 

thus assisting in the transparency of a system, trust in the system, and an improvement in the 

overall human-machine interaction experience. 

5. High-level feature attribution and decision trees – presenting and explaining hierarchical 

models and classifier ensembles to users through various media allows users to interpret the 

intra- and inter-signal relationships. Through feature attributions at various levels, the 

classification strategy of an ML becomes clearer, and is a very important tool in the XAI arsenal 

[7, 71]. 

There are various other model-dependent and model-agnostic elements that could be incorporated 

to improve the interpretability and explainability of AI systems as discussed in [5, 7]. While integrating 

these features highlight the advantages of XAI over traditional AI systems, as addressed in previous 

sections, the delineation of XAI is often convoluted and lacks a clear definition of explainability across 

literature. Thus, the need for a model- and application-agnostic assessment framework is one of the 

reasons why the AXAI framework is being proposed in this work. Furthermore, given the various 

stakeholders engaged in the development of AI and ML systems (from developers → organisations → 

users), explainability and comprehensibility of these systems can be addressed in different ways. 

Solutions can be specific to different groups involved and could benefit one over another. For example, 

developers can develop interpretable, rule-based models to enhance the comprehensibility when 

analysed by other developers, but not-so-much by users who do not have the domain knowledge.  

Across literature [4, 5, 7-9, 72-78], we see that concepts like explainability, comprehensibility and 

transparency are perceived differently depending on the application and what needs these methods 

are trying to address. The rest of this section will explore how XAI concepts and methodologies have 

been applied within the context of more traditional machine learning models [72-75], as well 

convolutional and deep neural networks [76, 78, 79].  
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2.3.1  Explainable AI Applied for Supervised ML Methods 

Section 2.1 previously established the mathematical and theoretical foundations of supervised and 

unsupervised machine and deep learning techniques, discussing the traditional implementations of 

these methods. With the growth of technology and research in the domain and a shift toward more 

interpretable models, efforts have been made to make traditional methods more interpretable such 

that black-box approaches become a thing of the past.  

A survey conducted in [72] highlights the benefits that explainability will have in domains like 

healthcare, aviation, and human resources. Interpretability is also dependent on the model being 

deployed, with some models being defined as ‘naturally’ more interpretable based on their 

algorithmic implementation e.g., decision trees which are often perceived as being very interpretable 

due to their logical structure. Whereas others can be ‘designed’ to have more explainable elements 

integrated into them [72]. Rule-based systems, along with textual/graphical media can also be used 

to convey explainability through design, which is beneficial when models are not naturally 

interpretable or transparent [70, 71, 73] and ultimately, AI practitioners should have a duty of care to 

endeavour to make models and applications as explainable and comprehensible as possible (within 

the constraints of the project/application). 

To further the benefits of explainability within the context of the healthcare domain, we can refer to 

the research conducted in [73], in which the authors evidence the importance of explainable models 

over traditional black-box machine learning approaches when applying them in a clinical setting within 

the field of oncology. The authors stress that while other models in literature perform well w.r.t to 

predictive accuracy measures, their lack transparency make them harder to deploy [73]. To prove that 

explainability could be incorporated into their models, they use Shapley Additive Explanations (SHAP) 

values, which is proposed as a model-agnostic means of extracting and outputting feature importance 

and feature correlations [73, 74].  

Moncada-Torres et al. incorporated SHAP to explain the prediction results of three ML models based 

on: (i) Random Forests, Support Vector Machines and (iii) Extreme Gradient Boosting for survival 

analysis in oncology [73]. Their results found that their proposed ML models were comparable 

performance-wise to other state-of-the-art methods, while also having interpretable and explainable 

decision-making, a capability that was granted through the integration of the SHAP values. 

In [74], authors propose an explainable ensemble Gaussian kernel (XEGK) to capture representative 

features from the input in an attempt to map the input with the output – a form of feature extraction. 

Similar to the approach discussed in [73], the authors apply the XEGK-extracted features as inputs to 

SVM and Random Forest Machine Learning models, using the SHAP method to determine feature 

importance and feature correlations [75] to represent the parsing of data in a more interpretable 

manner. Results show that their proposed model outperforms compared models when assessing 

performance, while also having the benefits being interpretable and explainable.  

2.3.2  Explainable AI Applied for Neural Networks 

As the name suggests and as has been emphasised prior, neural networks are designed to emulate 

human neural functions and the transfer of information through digital synapses and nodes. What 

currently separates man from machine is our natural ability to explain the logic and rationale behind 

our decision-making processes and in most cases, allowing us (humans) to be transparent systems. 
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Whereas traditional, artificial neural networks (including deep and convolutional NN’s) are oftentimes 

categorised as being black-boxes due to their inability to make their decision-making and inferencing 

processes transparent. The surveyed works discussed in this section (Section 2.3.2) all contribute 

toward how explainability has been applied in neural network model architectures. 

A survey conducted in [76] provides an overview of the technical properties and implementations of 

state-of-the-art explainers for deep neural networks. The survey proposes that there are two kinds of 

explainers: (i) intrinsically interpretable models and (ii) post hoc explainability which is incorporated 

based on a model’s output. From these two definitions we see that there are consistencies in the 

definitions provided in [76] and [72], highlighting that AI practitioners can deploy naturally explainable 

(intrinsically interpretable) models as well as models that are explainable by design (post-hoc 

explainability). 

Deep neural network explainers can include [76]:  

• Deconvolution – Which can be used to show how features are represented visually through 

mapping and projection, and how this information can be used to identify class probability, 

• Decomposition – Isolating or limiting network layers or regions to provide an understanding 

of how the sub-regions influence global network decision-making, 

• Gradients/Back Propagation – Emphasises feature importance and layer-to-layer unit 

changes to understand network architectures, with the magnitude of the gradient showing 

importance from input to output, 

• Visualizations – A concept which has been (and will be) discussed in depth, using textual, 

graphical or media representations to provide an explanation for a model’s decision-making 

processes. 

The survey also discusses how synthetic, prototypical outputs can be used to explain how a neural 

network perceives a particular class. Relating to back propagation, by emphasising feature importance 

and mapping the most important features for a class from output to input (an interpretation of how 

data is parsed), this information can be used to generate the network’s representation of what a 

particular class should look like [76].  

Online tools such as DALL.E mini [77] sparked a pop culture trend in 2022 in which the concept of 

neural network feature importance could be seen. By providing the machine with a prompt for 

example “Eiffel Tower”, it would use natural language processing and an extremely large dataset of 

labelled internet images [77] to generate a synthetic, prototypical output based on a user prompt. 

While none of the images produced are real, it explains to the user what the machine thinks the “Eiffel 

Tower” looks like based on how the model has been trained and how images had been labelled. 

Rule-based systems are common in XAI literature as they provide logical explanations to make black-

boxes more transparent. Dattachaudhuri et al. propose a Transparent Rule Extraction using Neural 

Network (TRENN) method [78], which is an extension of a previous algorithmic approach. The TRENN 

method contains six sub-processes to optimise and prune network structures, and construct, prune, 

and update rules. The TRENN network pruning is based on back propagation and the rule construction 

uses the generated network paths for each class to determine a rule with the best description of the 

output [78]. However, the generated rules are more tailored toward people with the domain 
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knowledge and do not appear to be beneficial to those without ML and AI experience as the rules 

themselves are probabilistic statements which would require some understanding of ML models. 

But making neural network models more explainable does not always need to involve removing layers 

and nodes and creating a critical path. Research reported in [79] proposes a contrary solution in which 

an additional “concept” layer is added into a CNN architecture to provide a learning path between 

visual features and image descriptors/word phrases [79]. The authors make their model interpretable 

by employing a global pooling layer (concept layer) to report model outputs as a weighted sum of 

learned concepts, which would allow for an integrated explanation [79]. 

By using word phrases to describe classes rather than a discrete label, the authors propose a model 

that is more explainable by nature. Rather than a machine outputting “Painted Bunting” for example 

(a breed of bird), it would instead, using the concept layer and word phrases, provide a ground truth 

description which evidences which CNN concept layer nodes are activated and to what degree [79]. 

Across various datasets, the Comprehensible CNN model proposed shows competitive if not, greater 

performance metrics when compared to other models, while having the benefit of being an 

interpretable model [79]. 

Considering the applications of AI and ML systems, it is important to address some of the elements 

discussed in this section throughout the software development process. By enhancing the 

interpretability and explainability of a system, it would improve the user experience. Furthermore, 

considering systems that process and classify natural phenomena such as changes in emotions and 

affective states (like this work), it is important that these systems are more intelligent and XAI/AXAI-

capable, due to the sensitivity of the biometric information being used for analysis. 

 2.4 Emotions and the Concept of Affect  

Human experiences are extremely complex and changes in mood and emotion are influenced by 

various factors that impact a person’s state. This complexity highlights the difficulty of training and 

developing truly intelligent ASA and emotion recognition systems. Even in human-human interactions, 

without knowledge of internal and external contextual variables, it is impossible to understand how a 

person is feeling. Likewise, in human-machine interactions, an intelligent agent is unable to have a 

holistic understanding of a person’s state without an advanced working memory and multimodal 

peripheral devices. The development of a truly affect-aware system must be considered a remarkable 

feat and an evolutionary step for AI systems. 

There are various discrete and continuous affective models in literature that aim to describe and 

quantify the human experience [80-83]. One of the most common, and heavily cited models in 

literature is Paul Ekman’s six basic emotion model [80] – an argument for the existence of universal 

emotions that are irrespective of cultural background. These universal states were: (i) anger, (ii) 

disgust, (iii) happiness, (iv) sadness, (v) fear, (vi) surprise.  

However, while Ekman’s theory is heavily cited, there are other affective state models presented in 

literature that offer continuous, spectrum-based solutions that describe states as being fluid and 

multidimensional – an argument that is representative of the human experience. While a discrete 

model like Ekman’s may describe universally present states, compressing such complex experiences 

into six discrete states fails to account for the dynamics of human expressions – especially given the 

way we express ourselves while experiencing these different states is unique to each person. 
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The Circumplex model of affect for example, plots states on a plane of valence vs. arousal. With 

valence describing the ‘positivity’ of the affective state and arousal being indicative of the excitation 

or activation level [81]. Analysing the circumplex model in Figure 5 we see some states like happiness, 

surprise and sadness that are consistent with Ekman’s universal basic emotion model. However, the 

ability to analyse states on a spectrum through the likes of the circumplex model proposes the literary 

foundations for dynamic classification. In addition, Russell and Mehrabian’s Three-Factor theory of 

emotions described in [82] is an extension of the circumplex model with respect to some of the state 

dimensions. However, this solution also explores a third dimension of ‘dominance’ which describes a 

level of control [82]. This three-dimensional interpretation of states further evidence continuous 

solutions as opposed to discrete ones and provides an additional argument for dynamic classifiers. 

Figure 5: (LEFT) Visualisation of the circumplex model, highlighting the two axes of valence 

  (unpleasant→pleasant) and arousal (low activation→high) [81]. (RIGHT) Conceptual 

  Visualisation of Russell and Mehrabian’s Three-Factor Theory of Emotions [82]. 

 

 



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

44 
 
 

 

Figure 6: Visualisation of the Plutchik spectrum, highlighting the eight ‘petals’ of states.  

  Intensity is inversely proportional to radius i.e.; more intense states are located at 

  the centre of the figure. This image was extracted from [84]. 

The Plutchik Emotion Spectrum offers a third continuous assessment solution when considering 

human expressions of states. In his research, Plutchik’s eight emotions are formed under the basis of 

ten postulates, creating a three-dimensional conical model [83]. This model highlights states, 

similarities across states, and a third dimension described variation in intensity – similar to the arousal 

dimension used for the circumplex and three-factor models [81, 82]. 

One can argue that an ASA/emotion recognition system capable of measuring the intensities of 

affective states within a two/three-dimensional plane/space might prove to be more powerful than 

one that focuses on defining discrete affective states. This argument supports the idea of affective 

state expressions being subjective and dynamic in nature. 

As introduced in Chapter 1 and evidenced across the relevant literature [20-23], affective state and 

emotion expressions have multimodal consequences, through signals that are both perceptible and 

imperceptible to human senses. These changes can be biometric such as: changes in facial expressions, 

speech patterns, blood pressure, skin conductance, electrocardiogram (ECG) signals as well as through 

other psychophysiological changes as well [20-23].  

The multimodal nature of expressions further evidences the complexity of human emotions and 

resulting ASA systems. The relationship between emotions and robotics/AI is therefore an oxymoron 

when discussed at a philosophical level. This is due to emotions and the concept of affect defining 

something so innately erratic, instinctive and ‘human’, in comparison to robotics, which is generally 

described as being structured, learned, monotonous and with identifiable core principles. This 

highlights the interest and wonder of affective computing – a domain in which we can equip machines 

with tools to understand humans at a deeper, more complex level. 
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 2.5 Affective Computing 

Combining human psychology and robotics proposes fascinating applications i.e., trying to assess 

behavioural patterns that humans can oftentimes struggle with themselves. Through affective 

computing, ASA systems are capable of analysing human expressions of affective states using various 

input data sources in single- or multi-classifier solutions for the purpose of classifying a person’s mood, 

intent, or emotional state. 

By exploiting unsupervised learning techniques, ASA systems can infer unique relationships, clusters 

and components that exist in datasets and data mixtures. Combining theory from Sections 2.1 and 

2.4, the inference of statistical relationships and clusters can lead to the deployment of continuous, 

spectrum-based classifiers that account for variations in affective states. Then, by utilising supervised 

learning techniques on the newly labelled data, these systems can be used for dynamic classification 

tasks as has been achieved through the State Assessment Module being proposed in this work. 

This research focuses on facial expressions and speech input signals for ASA. The Facial Action Coding 

System (FACS) has provided a literary foundation for many modern facial expression recognition 

research endeavours. This tool allows for the analysis of facial muscle movements to discern between 

different affective state expressions [85]. The Emotional-FACS (EMFACS) was then developed as a 

means of applying quantitative tags when describing Ekman’s universal emotion model [85, 86]. A 

tabular representation of EMFACS and the associated muscle movements and facial region is shown 

in Table 2. The FACS was cited and exploited in this research when attempting to define rules for multi-

level classification – looking at similar FACS present in state groups that would justify their presence 

in the same class. 

State Facial Region Action Units Physical Action Muscle 

 
Happy 

Lower 12 Lip corners raised Zygomaticus major 

Lower 26, 27 Open mouth Orbicularis oris 

Upper 6, 7 Raised lower eye-lids Orbicularis oculi 

 
Surprise 

Lower 26, 27 Open mouth Orbicularis oris 

Upper 5 Raised upper eye-lids Levator palpebrae superioris 

Upper 1 Raised eyebrows Medial frontalis 

 
Anger 

Lower 23 Lip Tightener Orbicularis oris 

Upper 5 Raised upper eye-lids Levator palpebrae superioris 

Upper 6, 7 Raised lower eye-lids Orbicularis oculi 

Upper 4 Eyebrow Frown Corrugator supercilii 

 
Disgust 

Lower 9, 10 Raised Upper Lip Levator labii 

Upper 6, 7 Raised lower eye-lids Orbicularis oculi 

Upper 4 Eyebrow Frown Corrugator supercilii 

 
Fear 

Lower 26, 27 Open mouth Orbicularis oris 

Upper 1 Raised eyebrows Medial frontalis 

Upper 4 Eyebrow Frown Corrugator supercilii 

Upper 5 Raised upper eye-lids Levator palpebrae superioris 

 
Sadness 

Lower 15 Lowered lip corners Depressor anguli oris 

Upper 1 Raised eyebrows Medial frontalis 

Upper 4 Eyebrow Frown Corrugator supercilii 

Table 2: List of facial action units associated with common expressions of states, highlighting

  their facial region and the corresponding muscle being activated [25, 86]. 
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Regarding expressions of states through speech, this is split into paralinguistic and linguistic 

components, respectively describing fluctuations in acoustic features (how something is said) and the 

content and structure of the utterance (what was said) [1, 19, 87]. Together, the two speech channels 

are used to express changes of state in speech. This work applies the classification of facial expressions 

and paralinguistic speech. Previous work saw the classification of linguistic expressions [1, 19] but 

without the ability to properly validate the approach, this was omitted for this work. 

Paralinguistic speech features provide a quantitative way of analysing affective speech. However, 

there are various examples of paralinguistic feature sets that exist in literature that have been used 

for affective speech classification tasks [87-89]. In previous research for example [19], a custom 

feature set was derived for paralinguistic classification, but there are more established sets such as 

the Computational Paralinguistic Challenge 2016 (ComParE2016) feature set [88] and the Geneva 

Minimalistic Acoustic Parameter Set (GeMAPS) [89]. Through this research, both GeMAPS and 

ComParE2016 were experimented with for feature extraction, experimenting with both low-level 

descriptor and functional feature levels using the openSMILE signal processing package [90]. This 

process will be discussed in more detail in Chapter 5. 

Similar to the FACS and the EMFACS, researchers have attempted to apply tags to acoustic feature 

fluctuations that relate to changes in affective state. However, the difficulty in defining these features 

for a global audience is amplified due to social, cultural, and anthropological factors. For example, 

displaying states of anger are different when speaking to a child vs. speaking to an adult, or in a social 

environment vs. a professional environment. Therefore, the tags would only be generalisations based 

on the corpus of people being observed. 

For creating the multi-level classifiers in this work, a survey was conducted on various human affective 

speech characteristics literature to determine how speech could be characterised in human-readable 

terms rather than showing changes in acoustic parameters that would be too mathematical and 

unclear. Klaus Scherer is one of the leading researchers in paralinguistics and the expressions of 

emotions through speech. Most of the literature that had been surveyed for this research, cited, and 

built upon Scherer’s works including [91-93], which were used to define the interpretable speech 

assessment models. Table 3 reports the list of states and the vocal changes that are experienced 

(relative to neutral) as reported in [91-93]. In order to remain consistent across modalities, it is 

important that all assessable states are also consistent. 

There are various examples of ASA systems in literature that utilise these methods [94-108], which 

are reported in Table 4 and Figure 7, highlighting various hybrid learning ASA approaches. Comparing 

the applications discussed in this survey and reported in Table 4 and Figure 7, it is evident that 

variations in classification accuracy are dependent on various factors including the modality, the 

chosen dataset and the method chosen. The applications discussed serve as a small sample size of 

various unsupervised, supervised and hybrid learning approaches applied in affective computing and 

ASA tasks. 

While the surveyed systems are capable of providing users with classifiable labels and promising 

classification performances, many of these solutions lack accountability, comprehensibility, and 

explainable elements that would make users and the general public have greater trust in them. This 

reiterates the research gap discussed in Section 1.3. While ASA and ML systems promise high 



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

47 
 
 

performance levels, they are generally hamstrung by their inability to explain their decision-making 

processes and provide some sense of accountability to major stakeholders. Thus, highlighting the 

necessity of developing tools like the accountable, explainable artificial intelligence framework which 

will be introduced in the next chapter (Chapter 3). 

Vocal Change Anger Happiness Sadness Fear Disgust Surprise 

Speech Rate Slightly 
faster 

Faster or 
slower 

Slightly 
slower 

Much faster Very much 
slower 

Faster 

Pitch Average Very much 
higher 

Much higher Slightly 
lower 

Very much 
higher 

Very much 
lower 

Higher 

Pitch Range Much wider Much wider Slightly 
narrower 

Much wider Slightly 
wider 

Wider 

Intensity Higher Higher Lower Normal Lower Higher 

Voice Quality Breathy, 
chest tone 

Breathy, 
blaring 

Resonant Irregular 
voicing 

Grumbled, 
chest tone 

- 

Pitch Change Abrupt, on 
stressed 
syllables 

Smooth, 
upward 
inflections 

Downward 
inflections 

Normal Wide, 
downward 
inflections 

Upward and 
fast 

Articulation Tense Normal Slurring Precise Normal - 

Table 3: List of vocal changes associated with common expressions, highlighting various 

  interpretable changes in speech, based on acoustic characteristics defined in 

  literature [91-93]. 

 

Figure 7: Highest observed ASA performance comparison for systems discussed in Table 4. 

  Note that lowest observed accuracies are not present and [106] has been omitted due 

  to it discussing CCC values as the comparative performance metric. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [107]

A
SA

 C
la

ss
if

ic
at

io
n

/R
e

co
gn

it
io

n
 A

cc
u

ra
cy

Surveyed Work

Comparing Affective State Assessment Solution 
Performances



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

48 
 
 

Work Approach Modality Feature Description Classification Accuracy, Dataset(s) 

[65] K-Means Clustering with a deep bi-directional long short-
term memory (BiLSTM) network. 

Speech Key segments and high-level 
discriminant features 

72% - 86% - tested on: IEMOCAP, EMO-DB, 
RAVDESS 

[94] Cascaded Gaussian mixture model and deep neural 
network (GMM-DNN) 

Speech 26 Mel-Frequency Cepstral 
Coefficient (MFCC) features 

84% - tested on: Emirati Speech Database 

[95] Gaussian mixture model vs. K-Nearest Neighbour Speech MFCC, wavelet features and 
subharmonic-to-harmonic ratio 
(SHR) pitch features 

66% - tested on: EMO-DB 

[96] Gaussian mixture model Speech Temporal, frequency, and 
amplitude-related acoustic 
features and MFCC features 

86 - 92% - tested on: Mandarin emotional speech 
database 

[97] Reports the Enhanced Lipschitz Embedding (ELE) 
algorithm 

Speech 48 prosodic features plus 16 
formant frequency features 

ELE provided 26% increase in recognition accuracy 
relative to other dimensionality reduction 
methods. Tested on: Chinese Academy of Science 
Emotional Speech Dataset. 

[98] Comparison of dimensionality reduction techniques 
including Isomap and LLE. Using SVM, KNN and Logistic-
regression for classification. 

Speech IS10 feature set, RQA feature set 
and a combination of IS10+RQA 
features. 

47% - 60% - tested on EMO-DB, IEMOCAP 

[99] Reports the Enhanced Kernel Isometric Mapping 
(EKIsomap) algorithm. Classification using SVM. 

Speech 48 prosody and voice-quality 
features including high-level 
statistical features 

80.85% - tested on: EMO-DB 

[100] Reports the Many Graphs Embedding (MGE) 
dimensionality reduction algorithm. Maximum likelihood 
used for classification. 

Facial 
Expression 
Images 

Arnold-Transformed facial 
expression pixel features. 
Reduced to discriminative graph-
embedded features 

95.24%, 46% and 40% testing on JAFFE, MUG and 
CK+ datasets, respectively. 

[101] Fast Independent Component Analysis (ICA) and Granger 
Causality Analysis (GCA). 

EEG Signal Independent components and 
residual mutual information 
define clusters used for 
classification. 

85% and 90% when experimented on two human 
subjects reacting to International Affective Picture 
System (IAPS) samples. 

[102] Reports the Hybrid ICA-Wavelet (ICA-W) Transform 
algorithm for artefact removal. Signals are decomposed 
using ICA prior to further separation via discrete wavelet 
transform. 

EEG Signal Statistical measures and spectral 
features are extracted from EEG 
signals post-separation and prior 
to emotion recognition. 

Improvement of ≈10% for statistical and wavelet 
feature classification relative to separation via pure 
ICA. 
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[103] Blind Source Separation (BSS) to split music + speech 
audio mixtures prior to parallel emotion recognition using 
random forest classification and deep neural networks 

Speech and 
Music 
Mixtures 

1582 suprasegmental acoustic 
features (speech) and 2651 
“Essentia” global features 

Less than 50% recognition accuracy. BSS boosted 
classifier performance by 11%-14%. 

[104] Reports the use of denoising autoencoders to reduce the 
dimensionality for speech emotion recognition, with 
classification being done through SVM. 

Speech 384 acoustic features based on 
the INTERSPEECH 2009 Emotion 
Challenge. 

62.74% and 64.18% recognition accuracy when 
tested on the SUSAS and ABC datasets 
respectively. Performing the best out of other 
compared methods. 

[105] Compares a novel Ladder Network architecture to 
traditional autoencoder baseline architectures (among 
others) to compare classification accuracy under different 
dimensionality reduction techniques 

Speech 6373 acoustic features based on 
the feature set introduced in the 
INTERSPEECH 2013 
Computational Paralinguistic 
Challenge (Functional feature) 

Valence:  0.289 – 0.458 
Arousal: 0.761 - 0.803 
Dominance: 0.687 – 0.746 
Performance was measured using CCC values, 
validated and tested on the MSP-Podcast dataset. 

[106] Uses the Khohnen Self-Organising Map architecture for 
dimensionality reduction and unsupervised classification 
through the automatic grouping of data 

Facial 
Expressions 

16 Facial Action Units based on 
Ekman and Friesen’s Emotional 
Facial Action Units 

98.13% average recognition accuracy when 
validated on three datasets: JAFFE, CK+ and MMI 
Facial Expression Database. 

Table 4: Survey of applications that utilise supervised and unsupervised learning for affective computing and ASA tasks across various modalities and

  input signals.
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Chapter 3:  The Accountable, Explainable AI (AXAI) Framework 

 3.1 A Method for Improving Explainable AI 
As emphasised previously, in comparison to traditional black-box AI and ML approaches, XAI promises 

more interpretable, explainable AI systems. By incorporating XAI capabilities during development, 

these systems would evidence an improvement. However, representing systems on a plane of 

comprehensibility vs. predictive accuracy as discussed in [11,13], means that factors of accountability 

are either domain-dependent or not considered when developing these systems [15]. Hence, the AXAI 

capability framework is proposed as a means of delineating systems in a space of comprehensibility 

vs. predictive accuracy vs. accountability [107]. 

By implementing domain-independent accountability measures, this would allow developers, 

managers, and other key stakeholders the ability to quantitatively assess AI/ML systems throughout 

the development process. Furthermore, while the development of a tool like AXAI framework may not 

be the finished article by any means, it does promise an unbiased assessment tool that takes into 

various elements of AI system design [107, 108] – serving as a valid piece of literature that may be 

built upon in the future, when designing more sophisticated assessment frameworks. 

Assessing the accountability of AI systems is important when considering the ethical, legal, and social 

compliances [109, 110]. Cases discussed in [6, 17, 18, 110] serve as evidence to support something 

like the AXAI framework w.r.t to legislative and regulatory applications. Legitimised standards exist 

across all branches of industry that ensure that goods, services, and practices are “up to standard”. If 

implemented at regulatory level, something like the AXAI framework proposed in this work could 

provide a legitimate standard for AI systems.  

Given the AXAI framework’s orthogonal vectors that will be discussed in the following sections, there 

is even the future possibilities of using the AXAI framework as an autonomous classification tool to 

detect the AXAI-capabilities of AI systems, using each of the parameters as inputs into a classification 

model. By gathering a corpus of assessed systems, this information can be used to train an 

autonomous AXAI classification system. The trained classifier could then be deployed throughout the 

development process by system designers and clients to score AI systems based on various capabilities 

in order to quantitatively rank and compare them. Again, discussing AXAI as a regulatory application, 

this may also be a way to consider if systems are up to standard prior to commercial or public use. 

For the purpose of this research, we will discuss the construction of the AXAI framework vectors, and 

their sub-components as visualised in Figure 8. The AXAI framework contains nine elements that 

deconvolute AI and ML system explainability and performance metrics inro three high-level vectors. 

All three high-level vectors i.e., accuracy, accountability and comprehensibility are mutually 

perpendicular with the same unit length [111]. Decomposing each high-level vector, we see that all 

are three-dimensional such that vector ‘𝐴’ can be described as: 

𝐴 =  √𝑎1𝐢 + 𝑎2𝐣 + 𝑎3𝐤 

where ‘𝑎𝑛’ describe the magnitude of the 𝑛𝑡ℎ vector component. 

 

(29) 
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Figure 8: Breakdown of the AXAI framework showing comprehensibility, predictive accuracy 

  and system accountability vectors making up the three high-level dimensional  

  vectors, with each containing another three assessment vectors, totalling 32  

  dimensions for assessing AI and ML systems. 

The AXAI framework is a novel invention that builds on the foundations of XAI and proposes the 

following, as reported in [107]: 

1. An intuitive, domain-independent AXAI capability framework that accounts for existing XAI 

paradigms, 

2. The ability to quantitatively assess the predictive accuracy of an AI system, 

3. The ability to quantitatively assess the comprehensibility measures of an AI system, 

4. The ability to quantitatively assess the accountability of an AI system in-production as well as 

post-production depending on stakeholder requirements, 

5. Allows all parties involved the ability to visualise the AXAI capabilities of a system and examine 

areas of improvement, while also assessing the relevance of each element w.r.t the 

application of the system, 

6. A foundation for future expansion/development of the AXAI framework and the ability to 

develop it as an AXAI-capability classification system and potential regulatory solution 

Prior to discussing the AXAI high-level vectors, some initial assumptions and definitions need to be 

made, which are derived from, and inspired by literature [11, 112-118]. These definitions have also 

been reported in [107].  

Let an AI system be a definite program ‘Ƥ’. This program will transform inputs→outputs over a series 

of internal steps/processes and may initiate decision-making [118]. In this work, Ƥ contains: (i) definite 

symbols, (ii) definite functions, (iii) definite propositions, (iv) definite predicates, (v) logical symbols, 

(vi) object variables and (vii) propositional variables. When discussing hypotheses, assumptions, and 

definitions in this work, let: 

• 𝕜 = Constant, 

• 𝕡 = Predicate symbol, 

• 𝕊 = Human population, where ‘𝑠’ defines a singular human in the population, 

• 𝕍 = First-order variable, 

• 𝔹 = Background knowledge, where a human ‘𝑠’ with ‘𝔹’ is considered a definite program ‘Ƥ’, 
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• 𝔻 = Domain 

Definition 1: 

A predicate symbol ‘𝕡’ – called in queries, is a part of the definite program i.e., 𝕡 ϵ Ƥ. If the predicate 

symbol forms part of the background knowledge ‘𝔹’ of each human (𝑠𝜖𝕊), 𝕡 is considered public. 

Otherwise, 𝕡 is considered a private predicate symbol. 

Definition 2: 

Let Ƥ𝑋 be some arbitrary AI system. If 𝔹 of Ƥ is that of 𝔹 ∪ Ƥ𝑋 forms, then the predicate symbol 

𝕡𝑋 𝜖 Ƥ𝑋 becomes a predicate invention given that the predicate symbol 𝕡𝑋 was conceived in Ƥ𝑋 prior 

to becoming part of the background knowledge 𝔹. 

Definition 3: 

Accountable, Explainable Artificial Intelligence (AXAI) capability is denoted by 𝔸𝕀𝐴𝑋. The 𝔸𝕀𝐴𝑋 

framework represents a 3D space that consists of three, independent vectors: ℂ = comprehensibility, 

𝑃𝐴 = predictive accuracy and 𝑆𝐴 = system accountability. 

The following sections discuss each of the AXAI vectors {ℂ , 𝑃𝐴, 𝑆𝐴} and their corresponding vector 

components as visualised in Figure 8, including further definitions, assumptions, and hypotheses. The 

final section of this chapter attempts to visualise 𝔸𝕀𝐴𝑋 in a 3D space while showing experiments of 

deploying the AXAI framework to assess two ASA systems that have developed in the past. 

 3.2 Comprehensibility 

Comprehensibility ‘ℂ’ in the context of the AXAI capability framework is a criterion that allows for the 

assessment of a human’s ability to understand the information being presented to them by an AI 

system that allows them to solve problems within the target domain. Comprehensibility is 

proportional to the mean readiness of a human in the population. Similar to Section 3.1, ‘ℂ’ can be 

described through a set of definitions and consequent hypotheses [107]. 

Definition 4.0: 

The comprehensibility ‘ℂ’ of a definite program ‘Ƥ’ relative to a population ‘𝕊’ can be represented as: 

ℂ(𝕊, Ƥ), where ℂ is a three-dimensional vector comprising of: 

• Inspection Time – 𝑇𝑖𝑡, 

• Predicate Recognition Time – 𝑇𝑝𝑟, 

• Predicate Naming Time – 𝑇𝑝𝑛 

Therefore, using the base vector equation defined by (29): 

ℂ(𝕊, Ƥ) =  √(𝑇𝑖𝑡
2 + 𝑇𝑝𝑟

2 + 𝑇𝑝𝑛
2 ) 

Through this definition, naming refers to establishing the “object-property” relationship and 

understanding the named objects based on AI/ML system observations. Thus, within this framework, 

‘ℂ(𝕊, Ƥ)’ determines the mean readiness of a human ‘𝑠’ to use a program and apply the knowledge to 

an observation within the domain ‘𝔻’ after inspecting Ƥ for times {𝑇𝑖𝑡, 𝑇𝑝𝑟, 𝑇𝑝𝑛}. 

(30) 
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Definition 4.1: 

The inspection time ‘𝑇𝑖𝑡’ defines the mean time that a human ‘𝑠’ (where 𝑠 𝜖 𝕊) will require to inspect 

and evaluate the information provided by the definite program prior to use the newly gathered 

information to complete a task within the relevant domain ‘𝔻’. 

Definition 4.2: 

The predicate recognition time ‘𝑇𝑝𝑟’ defines the mean time that a human ‘𝑠’ needs to assign a correct 

public name to a predicate symbol ‘𝕡’ within the relevant domain ‘𝔻’. This is in reference to Definition 

1, which states that 𝕡 is public if it forms part of the background knowledge ‘𝔹’. 

Definition 4.3: 

The predicate naming time ‘𝑇𝑝𝑛’ defines the mean time that a human ‘𝑠’ requires to name a predicate 

symbol 𝕡 which has been output by the program as a privately named entity within 𝔻. Citing Definition 

1 again, a privately named predicate symbol is one that does not form part of the background 

knowledge ‘𝔹’. Thus, 𝑇𝑝𝑛 assesses the time it takes to assign a public name to the initial private 

predicate symbol after interacting with the definite program. 

Given the above definitions (4.1 – 4.3), we can define a few hypotheses regarding comprehensibility 

ℂ(𝕊, Ƥ). 

Hypothesis 1: 

Comprehensibility ℂ(𝕊, Ƥ) measures the mean readiness of a human ‘𝑠’ (where 𝑠 𝜖 𝕊) to consume the 

knowledge presented by a definite program ‘Ƥ’ such that they are able to complete a task within the 

applicable domain 𝔻. Therefore, the larger the norm of the comprehensibility vector ‘|ℂ|’, the more 

comprehensible the AI program is. 

Hypothesis 2: 

The inverse of the mean inspection time introduced in Definition 4.1 i.e., ‘
1

𝑇𝑖𝑡
’ is directly proportional 

to the presentation quality of the definite program Ƥ. In layman’s terms, the longer it takes for a 

human to inspect the signals, the lower the presentation quality. 

Hypothesis 3: 

The inverse of the mean predicate recognition time introduced in Definition 4.2 i.e., ‘
1

𝑇𝑝𝑟
’ is directly 

proportional to the ability to recognise and accurately assign a public name to a predicate symbol 𝕡 

that has been presented by the definite program Ƥ. Thus, the longer it takes for a human to assign a 

public name, the lower the recognition ability of the program.  

 3.3 Predictive Accuracy 

Machine learning and AI systems have traditionally been assessed on the basis of their predictive 

accuracy and their ability to accurately make predictions. There are various measures for example: 
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validation accuracy, precision, recall, Cohen’s Kappa, 𝐹1 score and confusion matrices that have been 

used to assess the predictive capabilities of an AI system. 

Predictive accuracy ‘𝑃𝐴’ in the context of the AXAI capability framework is directly proportional to the 

mean ability of a human ‘𝑠’ in a population ‘𝕊’ to correctly apply a public name to a definite program’s 

privately presented predicate symbol 𝕡. As in previous sections, 𝑃𝐴 can be described through 

definitions and hypotheses. 

Definition 5.0: 

Let ‘𝑃𝐴’ of a definite program ‘Ƥ’ relative to population 𝕊 within an applicable domain 𝔻 be 

represented by: ‘𝑃𝐴(𝕊, Ƥ)’. As discussed, 𝑃𝐴 is a three-component vector containing: 

• Ratio of model test data size and model training data size – 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛  

• Training data size – 𝑑𝑡𝑟𝑛  

• Number of occurrences of false-positive results – 𝑂𝑓𝑝 

Using equation (29) for reference, 𝑃𝐴(𝕊, Ƥ) can be defined as: 

𝑃𝐴(𝕊, Ƥ) = √𝑟𝑡𝑠𝑡−𝑡𝑟𝑛
2 + 𝑑𝑡𝑟𝑛

2 + 𝑂𝑓𝑝
2  

Thus, 𝑃𝐴  defines the mean ability of a human user to convert a privately named/described predicate 

symbol 𝕡 into a publicly described entity belonging to applicable domain 𝔻. 

Definition 5.1: 

The ratio of test and train data ‘𝑟𝑡𝑠𝑡−𝑡𝑟𝑛’ is related to the testing and training of the machine learning 

models that constitute an AI system Ƥ. Within a domain 𝔻, 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 refers to the level of rigour applied 

when training and testing Ƥ, such that it is more capable of correctly naming a privately named 

predicate symbol 𝕡. 

Definition 5.2: 

The absolute training data size ‘𝑑𝑡𝑟𝑛’ defines the sample size used for training Ƥ w.r.t the domain 𝔻. 

This is indicative of the breadth of samples that Ƥ can exploit when attempting to correctly name 𝕡. 

A larger value of unique samples in 𝑑𝑡𝑟𝑛 would indicate sample variation within 𝔻 that Ƥ can call upon 

when attempting to complete tasks. 

Definition 5.3: 

Occurrences of false-positive ‘𝑂𝑓𝑝’ names of ‘𝕡n’ is more closely related to traditional accuracy metrics 

used to assess AI systems in the past, where 𝑛 = {1, 2, 3, … , 𝑁} – classes. Within the AXAI framework, 

𝑂𝑓𝑝 is related to the ability of Ƥ to use trained models to predict new, unknown symbols that belong 

to the same, relevant domain 𝔻. Therefore, the magnitude - |𝑂𝑓𝑝|, is indicative of the amount of error 

built into Ƥ in regard to the naming of new predicate symbols ‘𝕡’ that exist in 𝔻. Through this 

definition, it is evident that 𝑂𝑓𝑝 is very similar to metrics like validation accuracy and precision. 

Given the above definitions for predictive accuracy – 𝑃𝐴(𝕊, Ƥ), we can define some hypotheses. 

  

(31) 
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Hypothesis 4: 

Given the predictive accuracy, ‘𝑃𝐴’ measures the ability of a human user to convert a private described 

predicate symbol into a publicly named entity. The greater the norm of the vector |𝑃𝐴|, the better the 

predictive accuracy of the definite program Ƥ. 

Hypothesis 5: 

The test-train data ratio ‘𝑟𝑡𝑠𝑡−𝑡𝑟𝑛’ of a definite program ‘Ƥ’ is directly proportional to the level of rigour 

that was applied to the testing and training of the ML models contained within the definite program 

‘Ƥ’ within the applicable domain 𝔻. Thus, assessing the test-train ratio is an optimisation problem as 

an appropriate partition of testing and training data is important when building ML systems. 

Hypothesis 6: 

The volume of occurrences of false-positive naming of predicate symbols by a definite program Ƥ will 

determine the system’s built-in error within an applicable domain 𝔻. Plain-speaking, 𝑂𝑓𝑝 is an 

indication of how often an AI system will make an incorrect prediction when attempting to perform a 

task. This is an important when considering applications where the cost of misclassification is high. 

 3.4 Accountability 

The incorporation and assessment of system accountability ‘𝑆𝐴’ during the development cycle would 

improve the way AI systems are developed and highlights the novel difference between the proposed 

AXAI framework and other XAI models in literature. As mentioned prior, the critical tasks that some 

AI systems perform highlight the importance of accountability with respect to AI system design and 

implementation [14, 15]. 

System Accountability ‘𝑆𝐴’ in the context of the AXAI framework describes the mean accuracy with 

which a human ‘𝑠’ that belongs to a population ‘𝕊’ can recognise various inspectable facets of an AI 

system Ƥ, including: constants ‘𝕜’, predicate symbols ‘𝕡’, and variables ‘𝕍’ that belong to a particular 

domain ‘𝔻’. Like comprehensibility and predictive accuracy defined above, 𝑆𝐴 can be described 

through definitions and hypotheses [107]. 

Definition 6.0: 

Let the system accountability ‘𝑆𝐴’ of a definite program ‘Ƥ’ w.r.t to a population ‘𝕊’ can be defined 

using: ‘𝑆𝐴(𝕊, Ƥ)’, which is a vector containing three components that measure the ‘inspect-ability’ of 

an AI system Ƥ: 

• Inspect-ability of input models or cues – 𝐼𝑖𝑛 

• Inspect-ability of processed, intermediate data – 𝐼𝑝𝑟𝑜 

• Inspect-ability of output models or cues – 𝐼𝑜𝑢𝑡 

Recalling equation (29), system accountability can be defined as: 

𝑆𝐴(𝕊, Ƥ) = √𝐼𝑖𝑛
2 + 𝐼𝑝𝑟𝑜

2 + 𝐼𝑜𝑢𝑡
2  

 

(32) 
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Definition 6.1: 

The inspect-ability ‘𝐼𝑖𝑛’ of input models or cues models the clarity of the input signals of a definite 

program ‘Ƥ’ from the point of view of a human ‘𝑠’. Thus, given some observable definitions or entities, 

𝐼𝑖𝑛 is an indicator of the format and structure of inputs with respect to the relevant domain 𝔻. 

Definition 6.2: 

The inspect-ability ‘𝐼𝑝𝑟𝑜’ of processed data represents the clarity of intermediate program states or 

information as observed by a human ‘𝑠’ from a population 𝕊. This is an important metric in regard to 

making black-box approaches more transparent, as processed observations are made available to a 

user prior to them becoming predicate symbols 𝕡 within a domain 𝔻. 

Definition 6.3: 

The inspect-ability ‘𝐼𝑜𝑢𝑡’ of output data that is produced by an AI system ‘Ƥ’ describes the ability of Ƥ 

to show a clear, transparent representation of outputs. Furthermore, 𝐼𝑜𝑢𝑡 represents the clarity in 

which a human observer can associate an AI system predicate symbol 𝕡 to an entity within an 

applicable domain 𝔻. 

As was the case when discussing comprehensibility and predictive accuracy, the above definitions all 

for the discussion of accountability-related hypotheses: 

Hypothesis 7: 

System accountability 𝑆𝐴 refers to the ability of a human to associate constants, predicate symbols 

and variables provided by a definite program, with respect to input, processed and output data. Thus, 

the greater the norm of system accountability |𝑆𝐴|, the more accountable a system is. In layman’s 

terms, by allowing a user to be more aware of input, processed and output data, key stakeholders can 

more easily identify what party is accountable in terms of decision-making i.e., the user, the AI system, 

or the developer. 

Hypothesis 8: 

The inspect-ability of processed data – 𝐼𝑝𝑟𝑜 defines the interpretability of internal models and 

intermediate data stages of an AI system. Along with 𝐼𝑖𝑛 and 𝐼𝑜𝑢𝑡, these metrics could very well be 

used to discern transparency of AI and ML models on the condition that it shows how data/signals are 

transformed from input forms to output predictions. 

 3.5 Design and Implementation of the AXAI Framework 

The construction of the AXAI framework is justified and explained through Definitions 1 – 6.3 and 

Hypotheses 1 – 8 discussed so far in this chapter. Table 5 and Figure 9 summarise comprehensibility, 

predictive accuracy, and system accountability components, assigning them a “Score No.” which is 

used in Table 6 to describe an example of how systems can be scored and compared using the AXAI 

framework as has been reported in the accompanying research paper [107]. 

By analysing Table 5 and Figure 9, we can paint a picture of how a multi-dimensional space like the 

presented AXAI framework can be used to describe and compare the AXAI capabilities of various 

systems. Guidelines and scoring metrics need to be established in order to assess AXAI capabilities, 
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but while the criteria outlined in Table 6 may not be perfect, it outlines a general foundation in which 

the AXAI capability framework may be improved in the future. As will be discussed, these guidelines 

proved to be a good indication when comparing unique ASA systems as reported in [107]. 

Score No. Symbol Definition Measure 

1 |ℂ| Norm of the comprehensibility vector Integer 

2 |𝑃𝐴| Norm of the predictive accuracy vector Integer 

3 |𝑆𝐴| Norm of the system accountability vector Integer 

4 𝑇𝑖𝑡  Inspection time Score (Integer) 

5 𝑇𝑝𝑟 Predicate recognition time Score (Integer) 

6 𝑇𝑝𝑛 Predicate naming time Score (Integer) 

7 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 Ratio of test data and training data Score (Integer) 

8 𝑑𝑡𝑟𝑛 Absolute training data size Score (Integer) 

9 𝑂𝑓𝑝 Occurrences of false-positive naming Score (Integer) 

10 𝐼𝑖𝑛 Inspect-ability of input signals Score (Integer) 

11 𝐼𝑝𝑟𝑜 Inspect-ability of processed data Score (Integer) 

12 𝐼𝑜𝑢𝑡  Inspect-ability of output cues Score (Integer) 

Table 5: The collection of parameters used to assess the AXAI capabilities of a definite  

  program ‘Ƥ’ through the AXAI framework. 

 

Figure 9: Visual representation of the AXAI framework highlighting predictive accuracy, 

  accountability and comprehensibility vectors and their corresponding components. 

Comprehensibility and system accountability measures are assessed based on the user experience and 

should be addressed iteratively throughout the software development process. Analysing Table 6, we 

see that while offering a solution for iteratively implementing AXAI in a system throughout 

development, it can also be used for post-hoc scoring of AI systems. 

A test/survey was conducted on three systems that have been developed [107], the Affective State 

Assessment Module (ASAM) [1, 19, 108] – the predecessor to SAM, the two-step, dynamic assessment 
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of affective states and arousal levels system (DAASAS) [119], and the first version of SAM (SAM-V1), 

discussed in this work. To test the ASAM, ten qualified industry professionals volunteered to test the 

ASAM system on the basis of its AXAI capabilities. The volunteers came from Engineering, Science and 

Psychology backgrounds and were given a short briefing of the objective prior to being given a user 

manual showing them how to use the system. Users tested the system for approximately twenty 

minutes on average and provided scores for parameters 4-6 (comprehensibility) and 10-12 

(accountability) using a 5-point scale as outlined in Table 6. These scores were then normalised to and 

converted to unit vectors such that they could be used to compare AXAI capabilities with the DAASAS 

system and SAM-V1 systems. 

 Scoring Criteria 

Score Symbol 𝟎. 𝟎 − 𝟏. 𝟎 𝟐. 𝟎 − 𝟑. 𝟎 𝟒. 𝟎 − 𝟓. 𝟎 

4 𝑻𝒊𝒕 Information appears to be very 

difficult and takes a long time to 

understand. 

Information takes some efforts 

and time to understand. 

 

Information is easy to 

understand with minimal 

efforts. 

5 𝑻𝒑𝒓 It takes a very long time for a 

person to interpret an output. 

It takes some time for a person to 

interpret an output. 

A person would interpret 

an output very quickly. 

6 𝑻𝒑𝒏 It takes a very long time for a 

person to use inferences to name 

a predicate symbol within 𝔻. 

`It takes some time to use 

inferences to name a predicate 

symbol within 𝔻. 

Naming a predicate 

symbol using inferences 

within 𝔻 is very quick. 

7 𝒓𝒕𝒔𝒕−𝒕𝒓𝒏 0:   0.0 ≤ 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 ≤ 1.0 

1:   1.0 < 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 ≤ 2.0 

2:   2.0 < 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 ≤ 3.0 

3:   3.0 < 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 ≤ 4.0 

4:   4.0 < 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 ≤ 4.5 

5:   4.5 < 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 ≤ 5.0 

8 𝒅𝒕𝒓𝒏 0:   𝑑𝑡𝑟𝑛 ≤ 5𝑁𝑐𝑙𝑎𝑠𝑠 

1: 5𝑁𝑐𝑙𝑎𝑠𝑠 < 𝑑𝑡𝑟𝑛 ≤ 10𝑁𝑐𝑙𝑎𝑠𝑠 

2: 10𝑁𝑐𝑙𝑎𝑠𝑠 < 𝑑𝑡𝑟𝑛 ≤ 50𝑁𝑐𝑙𝑎𝑠𝑠 

3: 50𝑁𝑐𝑙𝑎𝑠𝑠 < 𝑑𝑡𝑟𝑛 ≤ 100𝑁𝑐𝑙𝑎𝑠𝑠 

4: 100𝑁𝑐𝑙𝑎𝑠𝑠 < 𝑑𝑡𝑟𝑛

≤ 1000𝑁𝑐𝑙𝑎𝑠𝑠 

5:   𝑑𝑡𝑟𝑛 ≥ 1000𝑁𝑐𝑙𝑎𝑠𝑠 

9 𝑶𝒇𝒑 0:   𝑂𝑓𝑝 ≥ 50% 

1:   40% ≤  𝑂𝑓𝑝 < 50% 

2:   30% ≤  𝑂𝑓𝑝 < 40% 

3:   25% ≤  𝑂𝑓𝑝 < 30% 

4:   10% ≤  𝑂𝑓𝑝 < 25% 

5:   𝑂𝑓𝑝 ≤ 10% 

10 𝑰𝒊𝒏 Explanations of input data is not 

clear to the user 

Explanations of input data is 

somewhat clear to the user 

Explanations of input 

data are very clear to 

user 

11 𝑰𝒑𝒓𝒐 Intermediate data and processing 

stages are hidden or cannot be 

interpreted by the user. 

Some of the intermediate data 

and processing stages cannot be 

interpreted 

Intermediate data and 

processing stages are 

transparent and can be 

interpreted 

12 𝑰𝒐𝒖𝒕 Output information is nondescript 

and hard to interpret 

Output information is somewhat 

descriptive and quite difficult to 

understand and interpret 

Output information is 

descriptive and easy to 

understand and 

interpret. 

Table 6: Guidelines and scoring criteria for accountability, comprehensibility, and predictive

  accuracy AXAI framework vectors for determining the AXAI capability of AI systems. 

The DAASAS is a dynamic assessment tool that classifies arousal levels using thermal, infrared images 

(TIRI’s) that was designed as a statistical classifier without any embedded AXAI elements in its design 

[119]. This system analyses haemodynamic changes in facial expressions for classification using 

principal component analysis to detect the arousal levels. For assessing the AXAI capabilities of the 

DAASAS, eight volunteers trained in AI and ML assessed the AXAI-capabilities of the system after a 

brief introduction and after being informed of the objectives of the experiment. Similar to the ASAM, 

volunteers scored the DAASAS on the basis of its comprehensibility and accountability using a 5-point 

scale. The results of the surveys of the ASAM and DAASAS systems are presented in tables 7 and 8 

respectively, with a comparison of the two being visualised in Figures 10 and 11. 
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An assessment of SAM-V1 using the AXAI capability framework is discussed in Section 5.4 after the 

system is introduced and described in more depth. This allows for an understanding of how the AXAI 

capability framework is beneficial when it is at the centre of the design and development process, as 

was evident when designing SAM. 

 Assessor ID   

Score 
No. 

Sym
-bol 

1 2 3 4 5 6 7 8 9 10 Average using 5-
point score 

Normalised 
Average Score 

1 |ℂ|   1.203 

3 |𝑆𝐴| 1.139 

4 𝑇𝑖𝑡  4 4 4 4 5 3.5 4 5 4 2 3.95  

5 𝑇𝑝𝑟  5 3 3 4 3 3 4 4 1 2 3.2 

6 𝑇𝑝𝑛 3 3 3 2 4 3.5 3 5 2 2 3.05 

10 𝐼𝑖𝑛 4 5 3 3 2.5 3 3 5 2 5 3.55 

11 𝐼𝑝𝑟𝑜 2 1 2 3 0 2 2 4 2 1 1.9 

12 𝐼𝑜𝑢𝑡  3 4 4 3 5 4 4 5 3 3 3.8 

Table 7: ASAM user experience and assessor scores using the 5-point scale identified in Table

  6. This table indicates the comprehensibility and system accountability of the ASAM. 

 Assessor ID   

Score 
No. 

Sym-
bol 

1 2 3 4 5 6 7 8 Average using 5-
point score 

Normalised Average 
Score 

1 |ℂ|   0.333 

3 |𝑆𝐴| 0.489 

4 𝑇𝑖𝑡  0.5 1 1 0.5 1 1 1 1 0.87  

5 𝑇𝑝𝑟  0.2 0.2 0 0.1 0 0 0 0 0.06 

6 𝑇𝑝𝑛 0.5 1.5 0.5 1 2 1.5 2 2 1.37 

10 𝐼𝑖𝑛 1.5 2 2 2 2 2 2 2 1.93 

11 𝐼𝑝𝑟𝑜 0 0 0 0 0 0 0 0 0 

12 𝐼𝑜𝑢𝑡  1.5 2 2 1 1 2 1 1 1.43 

Table 8: DAASAS user experience and assessor scores using the 5-point scale identified in Table 

  6. This table indicates the comprehensibility and system accountability of the DAASAS. 

 ASAM DAASAS 

Score No. Symbol 5-point Score Normalised Score 5-point Score Normalised Score 

2 |𝑃𝐴|  1.54606  1.3416 

7 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 5  5  

8 𝑑𝑡𝑟𝑛 4.055 2 

9 𝑂𝑓𝑝 4.2797 4 

Table 9: Comparison of predictive accuracy component scores for the ASAM and DAASAS AI 

  systems using the scoring criteria outlined in Table 6. 

Assessors are not tasked with deriving the predictive accuracy component scores as these will be 

known during the development cycle of each system. Given both systems (ASAM and DAASAS) had 

reached the end of their development cycles prior to assessment, the predictive accuracy assessment 

in this case was done as a post-production task. Table 9 outlines and compares the predictive accuracy 

component scores for each system. 

The calculation of predictive accuracy component scores was done using the scoring criteria 

highlighted in Table 6 and when developing new systems, these could be assessed iteratively as 

machine learning models are changed and improved throughout the development cycle. Regarding 
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the ASAM, the test-train data ratio ‘𝑟𝑡𝑠𝑡−𝑡𝑟𝑛’ was kept as 80:20, an allocation that is consistent across 

machine learning literature – which as per Table 6 corresponds to a score of 5. As reported in [107, 

119], 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 of the DAASAS was 1:1 which also correspond to a score of 5.  

Due to the multimodal nature of the ASAM, the training data size 𝑑𝑡𝑟𝑛 was averaged over both sets of 

training data (facial expression and speech classifiers), in which 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 7 for both cases. For facial 

expression data, there were approximately 100 samples per class which corresponds to a score of 4/5 

using Table 6. For speech data, there were approximately 200 samples per class which would score it 

at 4.11/5 when considering the range from a score of 4 to 5 using Table 6. Thus, by calculating the 

mean, the 𝑑𝑡𝑟𝑛 score for the ASAM as a whole was 4.055. The DAASAS in comparison, scored 2/5 for 

𝑑𝑡𝑟𝑛 as reported in [107] as is shown in Table 9. 

Validating machine learning models is an important part of the AI system development process. As 

mentioned in Chapter 2, there are various supervised and unsupervised machine learning methods 

that are more useful in particular classification tasks and may not be as useful in others. Thus, the 

software development process will oftentimes see variables changed from inception to release and as 

such, the validation results will change as the training parameters change. The false-positive naming 

occurrences ‘𝑂𝑓𝑝’ correlate with the validation performances of a system. In the case of the ASAM, 

like the assessment of the ‘𝑑𝑡𝑟𝑛’ component, 𝑂𝑓𝑝 needed to be averaged across facial expression and 

paralinguistic speech classifiers. Validation tasks reported naming errors of 22.71% and 18.9% across 

the two modalities which is an average naming error of 20.805%. Scoring this on a range of 0-5 using 

the criteria in Table 6, the 𝑂𝑓𝑝 score was calculated as 4.2797/5. For the DAASAS, as reported in [107, 

119], the 𝑂𝑓𝑝 score was determined as 4/5. 

Normalising the 5-point scores listed in Table 9, it allows us to derive the predictive accuracy scores 

of both the ASAM and DAASAS systems using equation (31) as follows: 

𝑃𝐴(𝕊, Ƥ)𝐴𝑆𝐴𝑀 = √𝑟𝑡𝑠𝑡−𝑡𝑟𝑛
2 + 𝑑𝑡𝑟𝑛

2 + 𝑂𝑓𝑝
2  

                          =  √12 + 0.8112 + 0.85592 

                          = 1.54606 

𝑃𝐴(𝕊, Ƥ)𝐷𝐴𝐴𝑆𝐴𝑆 = √𝑟𝑡𝑠𝑡−𝑡𝑟𝑛
2 + 𝑑𝑡𝑟𝑛

2 + 𝑂𝑓𝑝
2  

                              =  √12 + 0.42 + 0.82 

                              = 1.3416 

Similar calculations were used to calculate the system accountability and comprehensibility vector 

norms using equations (30) and (32). Analysing the AXAI-capability scores reported in Tables 7-9, we 

can report some findings about both systems [107]: 

• The predictive accuracy of both the ASAM and DAASAS systems are very good showing that 

they are effective w.r.t to their classification capabilities and the ability for users to use these 

systems for classification tasks in their relevant domains. 

• The ASAM displays very good comprehensibility scores with the inspection time ‘𝑇𝑖𝑡’ being the 

highest scored parameter by users. 
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• In contrast, the ASAM’s predicate naming time was low 𝑇𝑝𝑛 = 3.05 and user feedback 

suggested that the predicate naming was far more difficult and time consuming and should 

be considered as something to improve in future works. 

• The ASAM’s 𝑆𝐴 vector norm was far lower than comprehensibility and predictive accuracy 

norms, specifically when analysing 𝐼𝑝𝑟𝑜, which shows that the ASAM still struggles to show 

intermediate data stages and could be improved to make the intermediate stages more 

transparent to the user. 

• The ASAM is an AXAI-capable system. However, there is still room for further improvement in 

regard to system accountability and predicate naming time, something that has been 

addressed through SAM. 

• The DAASAS has a low level of comprehensibility as it was designed as a statistical classifier 

prior to AXAI being considered by the system authors. 

• The DAASAS had a comparatively less than average system accountability score, again due to 

AXAI elements not being considered/conceived in the development process. 

• Due to its nature as a statistical classifier, the predictive accuracy of the DAASAS remains very 

high and competitive. 

Analysing the graphics in Figures 10 and 11, we can see that the ASAM outperforms the DAASAS as an 

AXAI-capable system. While the AXAI framework was not conceived in a formal manner at the time of 

development of the ASAM, the concept of XAI and interpretability of machine learning systems was 

under consideration throughout development and as such, this evidences why it outperforms the 

system it is being compared to. Through Figures 10 and 11, we can see how the AXAI capability 

framework discussed in this chapter can be used to delineate AI systems on the basis of their 

predictive accuracy, comprehensibility and accountability. Through a thorough investigation of logic 

programming and XAI models and terminology, this work proves the AXAI framework as a novel, 

important addition to the literary corpus, as evidenced through works like [107, 108]. 

 

Figure 10: Comparison of the DAASAS (red) and ASAM (blue) AI systems using the AXAI capability 

  framework performance metrics. 

Accuracy Comprehen. Account.

DAASAS 1.3416 0.333 0.489

ASAM 1.54606 1.203 1.139
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Figure 11: Visualisation of the AXAI capability framework when comparing the DAASAS and 

  ASAM systems that have been assessed on the basis of their system accountability, 

  comprehensibility, and predictive accuracy metrics. 

Chapter 3 has shown how the AXAI framework can be used to quantitatively assess AI systems in post-

production scenarios through the discussion of the ASAM and DAASAS systems. However, the AXAI 

framework also serves as a tool in which software design and development processes can be 

augmented such that software systems have an AXAI-focus throughout the development cycle, thus 

ensuring that all facets of explainability and transparency are covered, and the needs of all 

stakeholders are addressed. Embedding and assessing AXAI-capabilities throughout development 

ensures that gaps are not missed and that explainability and transparency are at the forefront of 

developers’ design processes – as was the case when designing SAM. 

This framework and implementation task will be referred to again in Section 5.4 when the AXAI 

capabilities of SAM are compared to the likes of the ASAM and DAASAS systems as reported in [107]. 
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Chapter 4:  AXAI-Focused Software Design and Development 

 4.1 Software Design and Development Principles 

Throughout the last century, various software design and development processes (SDDPs) have been 

conceived in an aim to optimise workflows, boost productivity, and make the system design process 

more efficient. While there are various solutions employed across various industries, there is no 

“industry-standard” SDDP.  

There are many variables and constraints to consider when deciding on what SDDP method to use for 

a particular project including [120-122]:  

1. The application, scope, and complexity of a project, 

2. The size of the development team including designers, testers, and management, 

3. The amount of man hours required to complete the project, 

4. The timeframe in which you have to complete a project based on deadlines set by interested 

parties including but not limited to: self, team, upper-management, clients, 

5. Budgetary constraints that may also influence other factors including man-hours, size of 

development teams and the scope of a project. 

Some SDDP methods may favour some applications and systems over others. The variables and 

constraints listed above will also influence the choice of SDDP for any given project. 

Regarding complexity and application for example, projects that require programmable logic 

controllers (PLCs) for the implementation of autonomous solutions may not require much iteration 

once autonomy is achieved, whereas AI solutions for social applications on average would require 

more iterations due to tasks such as training models and verifying performances in real-world 

environment. The PLC-based task may then require a more linear SDDP whereas the AI solution would 

require more iterative, dynamic approaches to the software development cycle [121]. 

The size of the development team is very important to consider when deciding on a SDDP. Ideally, the 

dynamics and number of iterations in a development cycle is proportional to the size of the team due 

to the number of man hours also being dependent on the size of the team. Having a larger team and 

delegating testing, development, and administrative tasks across members of the team is conducive 

to more iterative approaches, especially when the scope of a project is large. 

The timeframe required to complete a task would determine the number of iterations planned 

throughout an iterative SDDP. If a project has a duration/deadline of nine months from the beginning 

of production and each iteration takes two months on average to complete, the maximum number of 

iterations ‘𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠’ outlined at the beginning of production would be: 

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = ⌊
𝑇𝑀𝑜𝑛𝑡ℎ𝑠

𝑇𝑖
⌋ 

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = ⌊
9

2
⌋ = 4 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

where 𝑇𝑀𝑜𝑛𝑡ℎ𝑠 is the total time allocated for a project in months and 𝑇𝑖 is the average time it would 

take to complete one iteration. However, the example discussed above is a very crude representation 

of iterative software design. Implemented SDDP methods are far more nuanced in their approach and 
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account for things like slack and the fact that iterations will not take the same amount of time – as 

was evidenced when designing and implementing SAM as will be discussed in Section 4.3 of this work. 

Ultimately, all of the factors listed above share dependencies and are not mutually exclusive. The 

application and scope of the project would be dependent on the size of the development team which 

influences the number of weekly man hours available to complete the project, which influences, and 

is influenced by project deadlines and budgetary constraints. Thus, a thorough appraisal of project 

constraints needs to be done prior to choosing a SDDP method. 

Some of the more popular SDDPs include: (i) the Waterfall model, (ii) Agile methods, (iii) Incremental 

models, (iv) Iterative models and (v) component-based development (CBD). 

The waterfall model is one of the most traditional development models in which each sub-process in 

the model sequentially follows after the previous one [120-122]. While its linear design makes it easy 

to understand, there are various issues that arise when applying the waterfall model as the SDDP for 

complex software designs. The inflexibility of the waterfall design makes it difficult to implement for 

large-scale solutions or projects that have continually changing requirements [121, 122]. Hence, why 

dynamic, agile solutions are more preferred as modern SDDP solutions. 

Agile methodologies arose in the mid 1990’s as solutions to software design and development and is 

seen as a competitor to more traditional, linear models that were considered as singular, long 

processes rather than a combination of shorter development cycles [120, 122, 123]. The flexibility of 

agile methods is seen as a boon for the development process and the communication between key 

stakeholders as it allows for the reusability and improvement of assets and code from version-to-

version while allowing stakeholders to maintain a continuous vision throughout the SDDP [122, 123]. 

Agile methods maintain the communication across key stakeholders including developers and users 

as expectations continuously change to meet specific needs. 

Incremental and iterative models exist in a space between linear sequential models and agile models. 

To clarify, incremental and iterative SDDP models are semi-rigid (like linear models) in their process 

and have some flexibility (like agile) so that elements of a system can be changed at each 

increment/iteration [120, 122]. Through various versions that relied on goals, feedback, and 

reflections at each stage of development, SAM evidenced an incremental SDDP approach which will 

be discussed later in this chapter (see Section 4.3). 

Component-based development (CBD) is as its name states, emphasising the importance of 

“components” in the software design process. Discussing CBD, components describe functional code 

that exist in a software solution [122, 124]. This approach is more flexible when compared to the 

traditional waterfall model as components can be developed, tested, and assessed in parallel 

throughout the development cycle prior to its assembly and deployment [124]. Component-based 

development would be very efficient in organisations where code blocks are reused across various 

business sectors thus, the reusability of code would make it a very attractive method to adopt. 

However, for more niche projects where code blocks are implemented in one-off software solutions, 

CBD becomes obsolete and as such, agile solutions should therefore be considered as an alternative.  

Figures 12-14 visualise the waterfall model, an incremental model, and the standard agile model. 
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Figure 12: Traditional, waterfall model showing the linear sequential nature of each phase 

 

Figure 13: Incremental model showing the cyclical, version-based software design processes 

 

Figure 14: The standard agile model showing the continuous, dynamic approach highlighted by 

  the circular flow in the middle of the figure which repeats until deployment. 

 4.2 AXAI-Focused Software Design 

The SDDPs discussed in the previous section are general software development methods that are 

integrated across various independent sectors for to complete various different applications through 

both linear sequential models like the waterfall model and more dynamic, iterative processes like agile 

methods (and incremental and iterative models) [120]. 
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The AXAI framework introduced in Chapter 3 discusses the implementation of AXAI capabilities into 

AI systems throughout the development cycle by addressing comprehensibility, predictive accuracy, 

and system accountability vector components. Rather than assessing AXAI as a post-production task, 

by integrating these components throughout the development process, it would ensure that the 

needs and wants of key stakeholders are addressed. Furthermore, it would ensure that the 

improvement of human-machine interactions and transparency is at the forefront of development. 

For example, if the development team contained members responsible for testing and quality control, 

by adding an “AXAI Assessment” task at the end of each iteration, you could quantitively track the 

predictive accuracy, comprehensibility, and system accountability performance metrics at each stage 

of development. Along with general feedback, this knowledge of AXAI components could then 

influence future phases as AI system developers would therefore know how to improve AXAI 

capabilities using this generalised framework. 

As expressed, the advantages of implementing AXAI into the SDDP include:  

1. The ability to track and quantitatively assess AXAI components throughout development, 

2. The ability to improve AXAI capabilities through feedback at each iteration, 

3. It ensures that transparency and improving human-machine interactions remain at the 

forefront of development,  

4. If competitors or similar systems have used the AXAI framework, it would allow developers to 

quantitatively compare their system with another on the basis of {𝑃𝐴, 𝑆𝐴, ℂ}, 

5. The ability to track and document AXAI capabilities throughout development, leading into 

production and commercialisation could provide some kind of legal foundations as it would 

allow for the establishment of the chain of responsibility (accountability) in the event that 

something goes wrong once the system is deployed.  

However, there are obvious challenges in terms of implementing AXAI into the software design 

process, since the AXAI framework is not perfect in its current form. One of the clear challenges would 

be ensuring that proper testing of AXAI metrics is conducted. Like other testing processes, one would 

need to ensure that fair testing conditions are abided by and as such, placing faith in system 

developers and testers to be honest in their assessments if the assessment is not conducted by an 

impartial, independent body. 

Another challenge would be getting the AXAI capability framework accepted as a general assessment 

tool for AI systems. Currently, the AXAI framework has only been tested on three systems that were 

easily accessible. It would take years and various iterations for a system like the AXAI framework to 

be considered an acceptable regulatory/standard tool for developers. Unless it is adopted by many, 

its impact will be limited to a niche audience. Thus, traction of the AXAI framework is pivotal to its 

success, improvement, and further implementation.  

 4.3 Software Design Process of the State Assessment Module 

The State Assessment Module (SAM) is an affective state assessment solution that focuses on 

integrating AXAI into its core functionality to improve its usability, transparency, comprehensibility, 

and accountability, thus serving as an example of how human-machine interactions can still be 

improved. AXAI capabilities were considered throughout the development of the system and feedback 

of its predecessor – the ASAM was used for further improvements [1, 19, 108]. However, SAM was 
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largely designed and developed from the ground up given its functionality and GUI is far more 

sophisticated in comparison to previous works. 

The SDDP of SAM can be considered as an iterative process leaning more towards an agile model than 

a traditional waterfall model as visualised in Figure 13. The reason for this was to maintain some of 

the rigidity and structure of a waterfall model while maintaining the flexibility of agile solutions – 

which was achieved through a thorough version control process. The ultimate scope of SAM was 

identified prior to development, but throughout the development process, additional functions were 

conceived and listed as design ideas to be implemented – which highlights the need for a flexible 

solution. 

As discussed, AXAI was a major focus of the design and at each version, elements were 

added/addressed to improve the comprehensibility, accountability, and predictive accuracy of the 

system. A description of the versions of SAM is outlined in Table 10 and visualised in Figure 15. Note 

that Table 10 does not account for the literature review and theoretical research that predated the 

development of SAM, this information is reported in depth in Chapter 5 along with in-depth 

discussions on computational flowcharts and high- and low-level system designs 

Figure 15: Timeline of SAM’s development, officially starting 01/11/2021 and finishing on 

  17/03/2022. This is a visualisation of the tasks outline d in Table 10 and does not 

  account for prior theoretical research that was undertaken prior to the development 

  of back-end programs in Version 0. 

Analysing Table 10, Figure 15, and Appendices A-E, we see the construction of SAM from its 

foundations, all the way to it being a fully functional, AXAI-capable, embedded system with real-time, 

dynamic ASA capabilities. As was initially hypothesised, the back-end development took the longest 

amount of time relative to other versions.  

Version 1 mainly consisted of GUI and asset development. Considering a new GUI development 

package was used to design SAM, it was expected that this version took longer to implement than 

versions 2, 3 and 4. Version 2 was the quickest iteration but was the most effective in regard to 

improving the predictive accuracy of the system in real-time. Interestingly, at the time of 

development, version 3 felt like the most difficult and time-consuming considering the number of new 

functions and changes that were added into the system at this point, however we see that it was 

shorter than version 1. Finally, version 4 was the final software development phase and saw the 

integration of text-to-speech and speech-to-text communication.
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Version 
No. 

Start Date Specifications Implementation and Notes AXAI element 
addressed 

0 01/11/2021 Design and training of the 
paralinguistic speech classifiers, 
including the design of the 
classification tree and clustering of 
classes 

Two datasets were experimented with, the Ryerson Audio-visual database of emotional speech 
and song (RAVDESS) [124] and the Surrey Audio-visual expressed emotion (SAVEE) dataset 
[126]. This task also involved testing various feature sets and levels including ComParE2016, 
extended GeMAPS and the emobase feature set using low-level descriptor and functional 
feature levels, experimenting with various classifiers including MLP and SVM models, being 
combined with LDA feature extraction. The classification tree and ALL classification accuracies 
were finalised and LDA clustering was used as justifiable evidence for the formation of clusters. 

Predictive Accuracy 

0 05/11/2021 Design and training of the facial 
expression classifiers, including the 
design of the classification tree and the 
clustering of classes 

The RAVDESS dataset [124] was also used for training and testing of the facial expression 
classifiers, using 150x150, 100x100 and 50x50 training image data sizes. The 150x150 and 
100x100 training images were too much data for training and resulted in “memory errors” or 
slow performances and as such the 50x50 samples were chosen as they optimised the number 
of raw features vs. classification accuracy. SVM and MLP models were experimented with at 
this stage of training. Again, the classification tree and ALL classification accuracies were 
finalised and LDA clustering was used as justifiable evidence for the formation of clusters. 

Predictive Accuracy 

0 10/11/2021 Identification of feature similarities 
that apply a theoretical foundation for 
why states have been clustered (for 
facial expression and speech) 

Using [85, 86, 91-93], the theoretical justification was made for the clustering of data, using an 
evidence-based clustering approach to support the initial separation and clustering of data. The 
groups were finalised at this stage and the feature similarities were documented. 

System Accountability, 
Comprehensibility 

0 12/11/2021 Derivation of the first “official” version 
of the classification logical flowcharts 
(for facial expression and speech). 

With the first iteration of the classifiers trained, the flowchart needed to be finalised – outlining 
the clustering of data and the purpose of each “depth” of classification. This flowchart outlined 
what classes were present for ALL classifiers at each stage of classification across both 
modalities. 

Comprehensibility 

0 16/11/2021 Development of the dialogue for all 
classifier outputs, for both speech and 
facial expression modalities. 

SAM incorporates “classification depth” for both modalities, where there are four levels of 
classification – corresponding to each state group. For all classifiable states in every classifier 
contained within SAM, there is a dialogue output attached that describes what is being “seen” 
or “heard” by the system. 

System Accountability, 
Comprehensibility 

0 18/11/2021 Primary GUI design and planning Prior to developing SAM, the GUI needed to be designed and planned to ensure that GUI and 
functional programming was efficiently done. Initially, eleven windows were designed, with this 
number increasing proportionally to the complexity of the system. 

Comprehensibility 

0 01/12/2021 Development of the classifier model 
and dialogue loading functions 

Writing up the code (component-based development) that would be used for loading machine 
learning models and dialogue .csv files into interpretable data structures. 

Predictive Accuracy 

0 09/12/2021 Retraining of LDA models This task was necessary as the LDA models initially imported resulted in a memory issue as they 
were using eigen solvers for clustering which resulted in larger file sizes. This issue was resolved 
by converting all LDA models from eigen → singular value decomposition (SVD) solvers, which 
reduced the file sizes and removed the memory fault. 

Predictive Accuracy 

1 10/01/2022 Digital design and planning of GUI Conversion of the hand-drafted GUI window designs into a digital format to further establish 
the design of SAM’s GUI. 

Comprehensibility 
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1 10/01/2022 Integrated dialogue functionality A major improvement in the development of SAM vs. the ASAM developed previously was to 
be the compartmentalisation and structuring the code in a modular fashion. The “dialogue” 
subdirectory was the first example of this and contains all dialogue prompts and dialogue-
related functions. 

Comprehensibility 

1 13/01/2022 Development of “Home Screen” GUI 
window 

The home-screen is to be opened upon execution of the program – it allows users to monitor 
the raw input information including: (i) Live camera feed, (ii) Live audio input feed, (iii) audio 
transcription capabilities. All data on the home-screen should be reflective of what SAM is 
sensing in real-time and a bounding box should be displayed around a face to show what 
exactly SAM is using for classification. The home-screen should also have a status box to alert 
users of what the current status is in real-time. The home-screen should also serve as hub to 
access other GUI windows. 

System Accountability 

1 17/01/2022 Implementing Home Screen button 
functionality and improving home-
screen 

The home-screen as a standalone window only shows input data to the user thus, only 
addresses system accountability. The user needs to be able to access other GUI windows to 
view more data screens which is done through SAM’s GUI buttons. The buttons open new 
windows that exist on child threads (where the home screen is the parent thread), with the 
buttons being labelled according to what data/window the user wants to view. 

Comprehensibility 

1 20/01/2022 Integrating Level 1 classification Level 1 classification for both facial expression and speech classifiers considering the change in 
the level of activation from neutral → low → high. Both windows are very similar and code 
blocks were used for both of them – with variables being changed to be indicative of the 
modality. Being the first level of classification, the development of both windows involved the 
processing of input data and the extraction of features. Users are also capable of outputting log 
information through button presses on the newly created windows. 

Predictive Accuracy,  
System Accountability, 
Comprehensibility 

1 23/01/2022 Integrating Level 2 classification Due to different modalities, level 2 classification represents different clusters for facial 
expression and speech and different representations of data. For facial expressions, level 2 
classifies the state group (and groups of muscles) and for speech, level 2 classifies temporal 
phase (and the change in speech patterns in terms of onsetting, apex, or returning to neutral). 

Predictive Accuracy,  
System Accountability, 
Comprehensibility 

1 26/01/2022 Integrating Level 3 classification For facial expressions, level 3 classifies the discrete state and detects the action units present 
for a predicted state. For speech, level 3 classifies the valence and the acoustic feature groups 
present for high and low valence states. 

Predictive Accuracy,  
System Accountability, 
Comprehensibility 

1 27/01/2022 Integrating Level 4 classification For facial expressions, level 4 classifies the temporal phase and shows if muscles are slightly 
activated, activated, or returning to normal. For speech, level 4 classifies the state and the 
acoustic feature changes that correspond to the predicted state 

Predictive Accuracy,  
System Accountability, 
Comprehensibility 

1 28/01/2022 Consolidation and validation of SAM 
version 1 

End of SAM V1, the code was executed to check that it was in a working condition. All input 
data signals were received in real time. The software was modular. All GUI windows updated 
GUI assets including tabular cell information, animations, exporting logs, opening logs, updating 
dialogue, integration of ‘verbose’ setting when needed. Back-end models designed in V0 were 
all integrated into V1. 
Design specifications were outlined for Version 2 and a manifest/summary file was produced 
for V1 (See Appendix A). 

- 
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2 29/01/2022 Improving real-time facial expression 
and speech classifier performances 

While validation accuracies achieved when training the models (in version 0) provided 
promising results, this was not conducive to real-time performances and as a result, the 
classification models were revisited (classifier ensemble logic and trees remained consistent). 
For facial expression classification, the LDA and Scaler approach was abandoned in favour of a 
2-layer CNN. Regarding paralinguistic speech, the features were changed to be consistent with 
the feature used for separation i.e., ComParE2016 LLDs. 

Predictive Accuracy 

2 31/01/2022 Implementing report generation 
functionality 

SAM should be capable of outputting classification results to users in an interpretable manner 
that highlights how it performed during an interaction. The decision was made to not show the 
graphical data over time as a result of feedback from people that interacted with the ASAM in 
the past, who suggested an overabundance of graphical information did not assist in making 
the system more explainable. Thus, SAM allows users to generate reports from live data or 
historical data for all classification levels whenever they please. 

System Accountability, 
Comprehensibility 

2 09/02/2022 Consolidation and validation of SAM 
version 2 

End of SAM V2. This version improved the predictive accuracy of the facial expression and 
speech classifiers and implemented the report generation functionality, thus improving system 
accountability and comprehensibility AXAI components. 
Design specifications were outlined for Version 3 and a manifest file was produced for V2 (See 
Appendix B) 

- 

3 10/02/2022 Integrating face mask detection 
functionality 

A parallel research effort reported in [25] discussed an adaptive system that accounted for the 
presence of occluded facial expressions in light of the COVID-19 pandemic. The thought process 
was that this system would be capable of showing this theorised functionality in practice. As 
such, SAM was integrated with a binary mask detection classifier that detected the presence of 
face masks and disabled facial expression classifiers if a mask was detected. 

Predictive Accuracy, 
System Accountability, 

3 10/02/2022 Handling removed peripheral devices Being a real-time system, SAM should be capable of handling instances of peripheral devices 
being removed without causing the system to break. This was handled through “try, except” 
loops that attempted to reconnect the camera and microphone when disconnected and 
disabled GUI windows if a camera was not detected, directing users to SAM’s issue. 

System Accountability 

3 15/02/2022 Implementing report generation for 
the Home Screen – Interaction 
Analytics 

SAM should be able to monitor how the user interacts with it by timestamping user button 
presses and recording transcription and video camera input data. The decision was made to 
display this via a report similar to the reports generated for the individual GUI windows. 

System Accountability, 
Comprehensibility 

3 17/02/2022 User and subject authentication 
capabilities, creation and viewing of 
databases through SAM’s GUI 

SAM must be able to understand who is using the system (USER) and who it is analysing 
(SUBJECT). This is not a natural understanding like humans who gather this information from 
speech or facial expression data, SAM does this through a login functionality. SAM users should 
also be restricted on the basis of their permissions and as such, USERS are granted permissions 
to be able to view certain data – proof of concept with three arbitrary levels.  
 
SAM should also understand the information it uses to make decisions – example of working 
memory, to understand more about itself such as who it knows (the users and subjects in the 
database). This will be discussed further in later sections. 

System Accountability 
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3 03/03/2022 Consolidation and validation of SAM 
version 3 

End of SAM V3. This version could have been deployed as two separate versions given the 
extensive amount of work and man-hours required to complete. In summary, this version 
integrated the mask detection, peripheral device disconnection handling, report generation for 
the home screen and the user and subject capabilities. Design specifications were outlined for 
Version 4 and a manifest file was produced for V3 (See Appendix C) 

- 

4 04/03/2022 SAM Interaction – making use of 
speech-to-text 

SAM should have the ability to communicate with its users and subjects, showing that it has 
some form of intelligence. SAM has 21 commands that have been appended to the dialogue 
database that allow it to show off its various capabilities including: instant classification, 
understanding of its classification trees, understanding of the user and subject, understanding 
its purpose and what it is, a sense of time and a working memory, understanding of what it is 
looking for in speech and facial expressions, and the ability to debug itself and shut it down 

System Accountability 

4 14/03/2022 SAM Interaction – making use of text-
to-speech 

SAM should be able to actually communicate – giving it “a voice”.  Through synthesised 
dialogue and text-to-speech, SAM is able to verbally communicate all of the commands and 
dialogue options that is contained in its memory. It transforms into more of an assistant in the 
mould of Siri, Alexa and Cortana that exist on personal computers and mobile devices. 

System Accountability, 
Comprehensibility 
 

 

4 16/03/2022 Consolidation and validation of SAM 
version 4 

End of V4. This is the last major addition to the software capabilities of SAM. Through version 4, 
SAM was given the ability to communicate with users and subjects and have a more 
sophisticated understanding of its purpose, inputs, outputs, and a working memory. Design 
specifications were outlined for Version 5 and a manifest file was produced for V4 (See 
Appendix D) 

- 

5 17/03/2022 Giving SAM a body Version 4 saw the end of the software development process and SAM was then ported onto a 
LattePanda development board. Through some stress testing and maintenance, some of the 
software was edited, but nothing noteworthy.  
 
Version 5 sees SAM deployed as a cost-effective, energy efficient, embedded system capable of 
being integrated into any existing framework (robotic or not), with the purpose of granting the 
host machine AXAI-capable, dynamic state assessment. 
 
A manifest file for version 5 is shown in Appendix E 

- 

Table 10: Summary and description of the iterative software design and development process (SDDP) of the State Assessment Module (SAM). Through

  a version-based, iterative approach, SAM has been developed from the ground-up into an AXAI-capable affective state assessment system,

  which was developed over 137 days, amounting to approximately 1100 man-hours (from 01/11/2021). This calculation of days and man- 

  hours does not consider the time and effort prior which involved research and literature reviews as the overall research project began in 

  January 2020.
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While Figure 15 highlights the time taken to build the system and table 10 outlines how AXAI 

capabilities were improved throughout the SDDP, they do not show the size and complexity of SAM in 

terms of computation and lines of code. Figures 16 and 17 visualise the size and complexity of SAM 

over time, including subsystems. 

 

Figure 16: SAM size and complexity over time as a function of the number of lines of code at 

  each version and the size of the deployed package in megabytes 

 

Figure 17: SAM subsystem complexity over time as functions of the number of lines of code for 

  each version of the system, showing functionality was added across different versions 

1 2 3 4

Size (MB) 29.8 104 96 96.2

N_Lines 3413 6990 8423 9216
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Analysing Figures 16 and 17 we can see how SAM evolves over time. Looking at the size and complexity 

of the system at version 1, we can identify the core functionality as requiring a larger volume of code 

to complete facial expression and paralinguistic speech analysis in comparison to “other” functions. 

Considering the addition of report generation functions in version 2 being the only major addition, we 

can see how much is required to achieve this, by looking at the steep gradient from version 1-2 in 

Figure 17. Analysing the same relationship in Figure 16, we see that the size of SAM in MB drastically 

increases from version 1 to later versions. This is due to the introduction of the CNN facial expression 

classification models that were added to improve predictive accuracy. 

Through Figure 17, we can deduce that at the point of version 2, facial expression and paralinguistic 

speech classifiers remained largely unchanged, with the largest changes coming in “other” 

functionalities which include functions relating to SAM’s working memory, user and subject database 

integration, mask detection, and the “interaction” subsystem, increasing to a point in which its 

complexity relative to the number of lines of code is nearly equal to that of the speech analysis 

subsystem. 

Through the iterative SDDP discussed in this section, SAM was successfully developed to the 

specifications defined in version 0, while maintaining enough flexibility for elements to be changed, 

and addition functions to be added throughout the development process. This chapter has shown 

various examples of SDDP and how AXAI can be integrated into them, with SAM being an example of 

this. Chapter 5 will discuss SAM in a deeper, more holistic level, outlining back-end and front-end 

design elements as well as further discussing its functionality as an embedded system. 
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Chapter 5:  Introducing SAM, the State Assessment Module  
The State Assessment Module is an example of how AXAI has been implemented into a sophisticated, 

real-time ASA system. The system is modular in its design allowing for it to be integrated into existing 

robotic and surveillance infrastructures, granting the host machine ASA capabilities if they are 

equipped with the necessary peripheral devices. This chapter will aim to discuss the full extents of 

SAM’s functionality, including front-end and back-end design approaches (including hierarchical 

classifier design) and the flow of information through the GUI. To summarise some of SAM’s key 

functions: 

1. Novel, real-time, embedded system capable of being equipped into existing infrastructures, 

2. Novel classification architecture that is based on literary and statistical findings, 

3. Allows for monitoring of input data, intermediate data stages and output data, 

4. Visual representations and explanations of changes in states across four levels of classification 

and two input modalities (facial expressions and speech), 

5. Provides explanations for classification both textually and vocally for all fields of classification 

i.e., an understanding of purpose and the way I was designed, 

6. Textual and vocal dialogue between the user and system, 

7. The ability to generate reports from live data and historical data for all classification levels 

8. An understanding of local (to the interaction) and global date-time information and the ability 

to explain this information, 

9. An understanding of who is using the system and who SAM is “looking at” (the subject in the 

interaction), 

10. Ability to access user, subject, and dialogue database information in real-time.  

Chapter 5 will serve as a holistic description of SAM covering all elements of its design including the 

construction of facial expression and paralinguistic speech classifier trees as well as reporting classifier 

performances. Regarding front-end design, this chapter includes multi-level flowcharts and 

discussions on SAM’s GUI and how information is transferred across various subsystems.  

 5.1 Classifier Design and Implementation 

SAM is a system that exploits hybrid learning methodologies to allow for continuous affective state 

assessment, thus accounting for the dynamics of human expressions. In its final version, the data used 

to train the facial expression and speech classifiers was curated from the Ryerson Audio-Visual 

Database of Emotional Speech and Song (RAVDESS) dataset [124]. Throughout the development cycle, 

several datasets were experimented with for facial expression and speech classification, with these 

datasets being reported in Table 11. 

While the performances of most datasets experimented with was relatively consistent when 

performing classifier validation tasks, each dataset had its weaknesses and several considerations 

needed to be made. Firstly, a decision was made that the dataset had to be multimodal such that the 

ground truth for affective state expressions was consistent across both facial expression and speech 

modalities hence, single-channel datasets were omitted. Secondly, the dataset had to have continuous 

data such that a dynamic classification solution could be developed. Finally, the dataset had to be 

diverse such that it would be robust enough to handle speakers of various different genders and 

nationalities.  
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Dataset Name Modality Classes (no. entries) Publication 
Year 

Description 

Ryerson Audio-
Visual Database of 
Emotional Speech 
and Song (RAVDESS) 
[124] 

Facial 
Expression and 
Speech 

Neutral (288) 
Calm (576) 
Happy (576) 
Sad (576) 
Angry (576) 
Fearful (576) 
Disgust (576) 
Surprise (552) 
Total = 4296 samples 

2018 Audio-visual dataset containing 
utterances for speech and song 
samples. The number of utterances in 
the third column only refers to the 
number of utterances for speech. The 
dataset is diverse and consists of 24 
actors both male and female speaking 
North American English [124]. 

Cohn-Kanade Plus 
(CK+) Dataset [125] 

Facial 
Expression 

Neutral (266) 
Contempt (18) 
Happy (69) 
Sad (28) 
Anger (45) 
Fear (25) 
Disgust (59) 
Surprise (83) 
Total = 593 samples 

2010 The CK+ Dataset uses FACS action units 
as the basis for defining the emotional 
images in the dataset. The labelling of 
data is done through the validation of 
present action units in the image. The 
resolution of the images is 640 x 490 
and the is diverse in the selection of 
subjects used when constructing the 
dataset [125].   

Surrey Audio-Visual 
Expressed Emotion 
(SAVEE) Database 
[126] 

Facial 
Expression and 
Speech 

Anger (60) 
Happiness (60) 
Sadness (60) 
Surprise (60) 
Fear (60) 
Disgust (60) 
Neutral (120) 
Total = 480 samples 

2011 Database consists of four male actors 
speaking with 7 different states. The 
speakers are native British English 
speakers. The database uses the TIMIT 
phonetically balanced sentences as the 
basis for the utterances [126]. 

Toronto Emotional 
Speech Set (TESS) 
Database [127] 

Speech Anger (200) 
Happiness (200) 
Sadness (200) 
Surprise (200) 
Fear (200) 
Disgust (200) 
Neutral (200) 
Total = 2800 samples 

2010 The TESS consists of utterances by two 
female English speakers (26 and 64 
years old). The phrases are of the 
structure “say the word ___” in which 
the final word represented by the 
blank space is one of 200 target words. 
[127] 

Crowd-sourced 
Emotional 
Multimodal Actors 
Dataset (CREMA-D) 
[128] 

Facial 
Expression and 
Speech 

Neutral (551) 
Happy (618) 
Sad (661) 
Anger (651) 
Fear (644) 
Disgust (654) 
Total = 3779 samples 

2015 The CREMA-D dataset is an audio-
visual corpus of affective data, in total 
there are 7442 (audio-only + visual-
only + audio-visual) entries from 91 
different actors ranging between ages 
20 to 74 [128]. 

Berlin Database of 
Emotional Speech 
(EMO-DB) [129] 

Speech Anger (127) 
Boredom (81) 
Disgust (46) 
Fear (69) 
Happiness (71) 
Neutral (79) 
Sadness (62) 
Total = 535 samples 

1999 Database consists of male and female 
German native speaking subjects 
acting out 10 different utterances 
[129]. 

Table 11: List of facial expression, speech and multimodal datasets experimented with  

  throughout the development of SAM. 

With the above considerations in mind, the RAVDESS dataset [124] was chosen for the final 

implementation of SAM. RAVDESS is the most diverse in comparison and is the most novel, being 

published in 2018. Novelty is important as the video and audio-recording quality of the RAVDESS 

samples is far more consistent with modern, higher-definition peripheral devices. However, the two 

biggest advantages of using the RAVDESS dataset was that (i) it allows for the classification of all 
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temporal phases i.e., onset, apex, offset [130] and (ii) it accounts for high and low levels of activation 

of states. Whereas a dataset like the CK+ for example, while being very popular, only shows a change 

in state from neutral to activated (onset to apex) thus, it could potentially introduce some ambiguity 

in terms of if a person is deactivating from a particular state or activating towards it if it were deployed 

in a classifier. 

Thus, after separation and clustering of both modalities, there should be 37 classifiable states present 

at the lowest level (Level 4) that define the temporal phases of each state present in the RAVDESS 

dataset (minus Calm), and the level of activation (high vs. low) as indicated in Table 12. 

State Levels of Activation Temporal Phase 

Neutral - - 

Surprise High, Low Onset, Apex, Offset 

Happy High, Low Onset, Apex, Offset 

Anger High, Low Onset, Apex, Offset 

Fear High, Low Onset, Apex, Offset 

Disgust High, Low Onset, Apex, Offset 

Sadness High, Low Onset, Apex, Offset 

Table 12: List of SAM’s classifiable states present at the lowest level of classification (level 4) for 

  both facial expression and paralinguistic speech classification. 

Note that neutral expressions of states are not separated into temporal phases or levels of activation 

as neutral represents a baseline, absence of activation. Immediately, we can identify that presenting 

raw outputs of all the classifiable states using a single classification model is not conducive to 

explainability and comprehensibility as this would correspond to an overabundance of information 

[3]. This highlights a challenge that would need to be addressed through the GUI and through a 

hierarchical classifier ensemble for both modalities. The following section addresses the various levels 

of classification and how the hierarchical nature of SAM was constructed and how it exploits the 

relationships between features presented in Tables 2 and 3 to improve the AXAI capabilities of SAM. 

  5.1.1 Facial Expression Classifier Subsystem 

Table 2 introduced the facial action coding system (FACS), which serves as a means of separating 

common facial expressions based on different combinations of activated facial muscles that have 

identifiable action units (third column of Table 2). FACS-posed expressions are often used for the 

development of datasets that contain acted expressions as was the case with the RAVDESS dataset 

[124]. This allows for the separation of data and the detection of micro-expressions as the activation 

of different muscles and muscle groups changes as a person activates from a neutral state to an 

activated state and back to neutral state. This was accounted for in the development of SAM’s facial 

expression classifier subsystem in order to extract temporal phase information from continuous video 

samples. 

The RAVDESS dataset samples are labelled in two ways that are beneficial for the construction of a 

continuous ASA system. Firstly, they show the “emotional intensity” of a speaker as ‘normal’ or 

‘strong’ which is consistent with models like Russell and Mehrabian’s Three-Factor Theory of Emotions 

and the Plutchik spectrum [82, 84] that account for changes in expression intensity. Secondly, the 

RAVDESS dataset labels the emotion being expressed by the actors as well as the intensity. Given that 

video samples are continuous collections of still images, through additional work, the RAVDESS 
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dataset allows for the extraction of temporal phase, affective state, and emotional intensity 

information, allowing for the development of a continuous ASA solution. 

Figure 18: cosine-similarity based clustering of continuous RAVDESS samples showing pre- 

  processing (blue), similarity calculation (orange), dissimilarity and clustering (green). 

The initial unsupervised, cosine similarity-based clustering process separates a continuous sample into 

three clusters of images that define the temporal phases – onset, apex, and offset based on a 

detection of dissimilarity throughout the sample. The flowchart visualised in Figure 18 highlights the 

separation process for a single continuous sample. Thus, this is applied for all continuous samples in 

the dataset to retrieve all class data prior to training the classifier models. 

As shown, the flowchart is separated into three stages: (i) pre-processing, (ii) similarity calculation and 

(iii) dissimilarity calculation and clustering. The pre-processing stage firstly defines number of frames 

in the continuous sample and then utilises OpenCV and the Python Image Library (PIL) to extract the 

facial image and rescale it to a 100x100 image size prior to conversion from an RGB image to a single-

channel, grayscale feature vector. 

The similarity calculation stage follows the mathematical foundations outlined in Section 2.1.2, 

comparing features vectors, and calculating the cosine similarity across all vectors in a continuous 

sample using equation (15). This information can then be presented as a heat map (visualised in Figure 

19) to show the cosine similarity across a continuous sample. Figure 19 shows a comparison between 
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the similarity calculation through the mutual information score and using cosine similarity for the 

same sample. In both cases we see that the diagonal represents the highest value i.e., the highest 

similarity. This is because the vectors being compared are the same and as such, we can use (15) as 

an example to show that cos−1(1) = 0° → maximum similarity. 

 

Figure 19: Comparison of similarity across a continuous RAVDESS dataset sample. Actor 

  information: Actor 2, happiness, low intensity, phrase 1, first repetition.  

 

Figure 20: Visualisation of three “temporal phase” regions that are contained in the one sample, 

  using the cosine similarity sub-figure from Figure 19. 

Figure 20 shows the foundation of the clustering process and how mutual information, and statistical 

dependence is exploited to extract temporal phase information in this work by defining the three 

clusters (outlined by the blue rectangles). In theory, this process can be applied to define even more 

micro-clusters and lower-level states that could be exploited in the future. This is visualised in Figure 

21, which enhances the middle region in Figure 20, displaying four micro-clusters within this larger 

cluster. While this is something that could be explored in the future for more defined micro-expression 

analysis, in this work, only the higher-clusters (Figure 20) are considered i.e., 𝐾𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. 
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Figure 21: An expansion of the middle region in Figure 20, showing even more micro-level states 

  contained within the higher-level region. 

The purpose of the dissimilarity calculation and clustering stage is to find the locations of the cluster 

boundaries. This is done autonomously but can be represented graphically as shown in Figure 22, 

which shows the “frame-to-frame” gradient analysis for RAVDESS and CK+ samples using cosine 

similarity extraction. Under the assumption that 𝐾𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3, the number of peaks that this process 

looks for can be defined as: 𝐾𝑝 = 2. Analysing the RAVDESS figure, we see that these peaks occur at 

frame transitions 16 and 38, which in this example, conveniently separates the continuous sample 

into three equal clusters, however this convenient observation will not occur for every sample. 

Comparing to the CK+ graph on the bottom of Figure 22, we see that the dissimilarity peaks are less 

pronounced when compared to the RAVDESS dataset. This is because the actors are trending from 

inactive to active, meaning that the dissimilarity will not be as noticeable until there is a distinct 

change, which when analysing the figure, occurs at the 14th frame-to-frame transition.  

 

 Figure 22: Visualisation of the dissimilarity measurements for frame-to-frame transitions from 

  samples in the RAVDESS (top) and CK+ (bottom) datasets. 
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Repeating the above process for all samples allows for the clustering of similar facial expression and 

samples for all classes outlined in Table 12. This unsupervised separation algorithm allows for the 

clustering of data and could be replicated for any mutual information-carrying continuous data as will 

be shown in later, as this method is deployed for clustering affective speech signals as well. 

As mentioned prior, SAM employs a four-tier, hierarchical classifier ensemble for facial expression and 

speech classification. Each level of the hierarchy contains a unique collection of classes that explain 

SAM’s decision-making processes and how it is able to identify micro-expressions of states and 

changes in temporal phase. For the facial expression classification subsystem, the four levels of 

classification can be described as such: 

1. Level of activation 

First classification stage is a ternary classifier to identify the intensity of the expression as either: 

Neutral, Low or High, exploiting the emotional intensity-based labelling of the RAVDESS dataset. 

2. State group and muscle regions 

After determining the level of activation/emotional intensity, SAM attempts to identify the state group 

that the input expression may belong to as well as the corresponding muscle regions. This exploits 

similarities in FACS action units and allows for a more ‘high-level’ assessment of states. This 

classification level consists of two ternary classifiers – one for ‘low’ activation and ‘high’ activation. 

3. Discrete state and extended action unit 

With the state group determined, SAM will look at more micro-level changes in features to assess the 

discrete state of the person and the corresponding action units that are associated with that 

expression of an affective state. Whereas level 2 was a general prediction of state groups, level 3 

exploits this information to improve classification accuracy of discrete states, transforming and 

improving a single septenary classifier as discussed in previous works [1, 19] into a more interpretable 

combination of ternary and binary classifiers. This classification level deploys three binary classifiers 

for each level of activation. 

4. Temporal phase 

The final classification level, SAM will analyse whether a person is approaching a state (onset), 

experiencing that state (apex) or returning to a neutral level (offset). This level of classification allows 

SAM to be applied in a temporal domain, giving it an understanding of the continuous nature of 

expressions given that humans cannot instantaneously change their expression from neutral to 

activated due to physical constraints and muscle movements needing to occur. For a real-time ASA 

system, it is essential that temporal phase is classifiable. This classification level deploys six ternary 

classifiers for each level of activation. 

The hierarchical facial expression classifier ensemble is presented in Figure 23. The novel addition of 

SAM is the ability to show the reasoning behind its classification processes from input → output. This 

is achieved through a GUI display of muscle groups and facial action units to the users at levels 2 and 

3. The muscle groups shown to users at level 2 exploit the similarities in action units and muscle 

activations in states reported in Table 2. A graphical representation of state and muscle groups (and 

an insight into its functionality in the GUI) is shown in Figure 24. 
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Figure 23: Visualisation of the four-tier hierarchical classification ensemble for the facial  

  expression classification subsystem of SAM. 

 

Figure 24: Graphical representation of state groups and muscle groups for level 2 classification, 

  using the FACS to evidence the logic behind the choice of states per group. 

The structure of the hierarchical classifier ensemble introduced above is visualised in Figures 23 and 

25. Across the four levels of classification, SAM is capable of identifying a total of 57 unique, classifiable 

facial expressions. Through the GUI, the user can choose how much of this information they would 

like to see depending on what windows they open, which serves as a boon for the comprehensibility 

of the system. 
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Prior to training the classifiers, LDA was applied to the labelled facial expression data at each level to 

assess and visualise how the facial expression samples would cluster in a linear space. This was done 

as a sanity check prior to training and validating the classifier models. A visual representation of this 

is shown in Figure 25. 

Analysing the temporal phase (level 4) clusters in Figure 25, we see that while SAM only accounts for 

three temporal phases i.e.: onset, apex, and offset, there is potential for an expansion in the number 

of temporal phases per state from 3 → 5 as shown in Figure 26, which is an enhanced version of the 

Fear subplot from Figure 25. Looking at Figure 26, we see three larger clusters (circled blue) and two 

smaller clusters (circled orange). This relates directly to a hypothesis made earlier when discussing 

Figure 21, where sub-clusters were identified in the cosine similarity heatmap, allowing us to theorise 

that this work can be expanded upon in order to discover clusters that reside outside of the three 

major temporal phase states that could unlock the ability to classify even more micro-expressions. 

Furthermore, the linear relationship between these clusters from onset→apex→offset proves the 

continuous nature of facial expressions in the RAVDESS dataset and further validates the approach 

taken when designing SAM’s facial expression subsystem. 
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Figure 25: Visualisation of facial expression LDA-transformed clusters across the four levels of the hierarchical classifier ensemble. The dimensionality

  (number of linear discriminants) of the clusters was dependent on the number of classes in the problem where 𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1.



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

84 
 
 

Figure 26: Enhancement of the ‘Fear’ cluster subplot from Figure 25 showing the traditional 

  temporal phases (onset, apex and offset) as well as the clear presence of smaller 

  clusters highlighted in orange circles. 

With the clusters sanity checked and supported by theoretical foundations, the next stage is to train 

and validate the classifiers. In total, there are twenty-one (21) facial expression classifiers tasked with 

outputting the 57 classifiable states. Given the cost-effective, real-time application proposed through 

SAM, the classifiers needed to be optimised in regard to size, complexity and predictive accuracy. 

Many traditional machine and deep models were explored for training the facial expression classifiers 

including SVM, MLP, and various CNN models. In its final version, for all 21 classifiers, SAM deploys 2-

layer CNN’s that use 50x50 facial greyscale facial image inputs. The model architecture for all four 

levels is visualised in Figures 27 and 28. While more complex solutions were explored throughout 

Versions 1+2 of the development process, the 2-layer CNN became an optimisation problem and 

achieved competitive classifier performances while being less complex and faster – an important 

consideration for real-time systems that employ classifier ensembles. 
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Figure 27: Facial expression Level 1 Classifier training architecture. 

This section has explored the back-end facial expression classifier functions and the construction of 

the hierarchical classifier ensemble. Through the proposed architecture, SAM is capable of classifying 

a large amount of unique facial expressions and affective states that are representative of continuous 

emotion and affective state models.  

The topic of classification in machine and deep learning systems is not complete without a discussion 

on performances. There are various metrics to use for reporting a classifiers accuracy and 

performance. Among these are metrics such as: confusion matrices, validation accuracies/precision, 

recall, 𝐹1 score and ten-fold cross-validation accuracies. Due to the large number of classifiers used in 

this system across speech and facial expression modalities, it was decided that validation accuracies 

and cross-validation accuracies be used to assess the models. 

Validation accuracies were extracted for the facial expression CNN models discussed in this section. 

This represents the number of correct predictions made ‘𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡’ out of a bag of total predictions 

‘𝑁𝑡𝑜𝑡𝑎𝑙’, defined by: 

𝐴𝑐𝑐𝑣𝑎𝑙(%) =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
× 100% 

This metric is often used in ASA and general machine learning literature and allows for the assessment 

of the 𝑂𝑓𝑝 parameter discussed w.r.t to the AXAI framework. The CNN models were trained and 

validated using the RAVDESS dataset and the test-train ratio ‘𝑟𝑡𝑠𝑡−𝑡𝑟𝑛’ was 1: 4 i.e., 20% for testing 

and 80% for training. From the continuous RAVDESS video samples, 76270 facial expressions were 

extracted, separated, and labelled for training and validating the CNN Models. Table 13 reports the 

distribution of samples per class. The construction of Table 13 allows us to assess SAM’s training data 

size ‘𝑑𝑡𝑟𝑛’ which shows that when looking at the temporal phase, the corresponding sample sizes 

show a consistent trend for all states. Establishing the ‘𝑑𝑡𝑟𝑛’ and ‘𝑟𝑡𝑠𝑡−𝑡𝑟𝑛’ provides context in order 

to report the validation accuracies of the various classifiers, with these results shown in Table 14. 

(33) 
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Figure 28: Levels 2, 3 and 4 facial expression classifier training architecture. 

State Activation Temporal Phase and Corresponding Number of Samples 

Neutral None 5907 

Happy LOW Onset 1710 Apex 2410 Offset 1868 

Sadness LOW Onset 1753 Apex 2250 Offset 1866 

Anger LOW Onset 1710 Apex 2161 Offset 1787 

Fear LOW Onset 1702 Apex 2226 Offset 1762 

Disgust LOW Onset 1674 Apex 2251 Offset 1837 

Surprise LOW Onset 1544 Apex 2147 Offset 1748 

Happy HIGH Onset 1858 Apex 2158 Offset 2141 

Sadness HIGH Onset 1845 Apex 2775 Offset 1920 

Anger HIGH Onset 1739 Apex 2300 Offset 1741 

Fear HIGH Onset 1730 Apex 2207 Offset 1864 

Disgust HIGH Onset 1766 Apex 2480 Offset 1830 

Surprise HIGH Onset 1627 Apex 2232 Offset 1744 

Table 13: Distribution of RAVDESS class data used for training and validation of the facial  

  expression CNN classifiers, total = 76270 samples. 
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Index Classifier ID Activation Class [0] Class [1] Class [2] 𝑨𝒄𝒄𝒗𝒂𝒍(%) 

0 1 - Neutral Low High 89.58% 

1 2.1 LOW Happy | Surprise Anger | Disgust Sadness | Fear 93.90% 

2 2.1.1 LOW Happy Surprise  98.04% 

3 2.1.1.1 LOW Happy-Onset Happy-Apex Happy-Offset 72.75% 

4 2.1.1.2 LOW Surprise-Onset Surprise-Apex Surprise-Offset 74.78% 

5 2.1.2 LOW Anger Disgust  99.89% 

6 2.1.2.1 LOW Anger-Onset Anger-Apex Anger-Offset 71.52% 

7 2.1.2.2 LOW Disgust-Onset Disgust-Apex Disgust-Offset 74.67% 

8 2.1.3 LOW Sadness Fear  99.83% 

9 2.1.3.1 LOW Sadness-Onset Sadness-Apex Sadness-Offset 66.89% 

10 2.1.3.2 LOW Fear-Onset Fear-Apex Fear-Offset 66.83% 

11 2.2 HIGH Happy | Surprise Anger | Disgust Sadness | Fear 97.01% 

12 2.2.1 HIGH Happy Surprise  98.71% 

13 2.2.1.1 HIGH Happy-Onset Happy-Apex Happy-Offset 77.79% 

14 2.2.1.2 HIGH Surprise-Onset Surprise-Apex Surprise-Offset 75.30% 

15 2.2.2 HIGH Anger Disgust  99.09% 

16 2.2.2.1 HIGH Anger-Onset Anger-Apex Anger-Offset 70.73% 

17 2.2.2.2 HIGH Disgust-Onset Disgust-Apex Disgust-Offset 70.38% 

18 2.2.3 HIGH Sadness Fear  99.87% 

19 2.2.3.1 HIGH Sadness-Onset Sadness-Apex Sadness-Offset 71.80% 

20 2.2.3.2 HIGH Fear-Onset Fear-Apex Fear-Offset 75.05% 

Table 14: List of 2-layer CNN model information and reported validation accuracies obtained 

  when training SAM using the RAVDESS dataset and an 80/20 ratio for training and 

  testing.  The classifier ID naming structure identifies what depth the specific classifier 

  is applied. The ‘class [n]’ columns identify what labels are output by the system when 

  a prediction is made using this classifier. All models were trained using the Keras and 

  TensorFlow Python packages. The validation accuracies are visualised in Figure 29. 

 

Figure 29: Visualisation of facial expression classifier performances using the 2-Layer CNN 

  models discussed. Bars are colour-coded to show the level of classification where: 

  PURPLE = level 1, CYAN = level 2, LIME = level 3 and YELLOW = level 4. 
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Table 14 and Figure 29 show the facial expression classification performance of each of the 21 

classifiers embedded in the state assessment module’s classifier ensemble. The average classification 

accuracy can be broken down per level: 

Level 1. Single classifier = 89.58% validation accuracy. 

Level 2. Two classifiers = 95.46% mean validation accuracy. 

Level 3. Six classifiers = 99.24% mean validation accuracy. 

Level 4. Twelve classifiers = 72.37% mean validation accuracy. 

Thus, the average classification accuracy across all classifiers is 83.07% for facial expression 

classification. We see that the major decrease in performance comes at level 4 – temporal phase 

classification which shows the lowest average classification accuracy in comparison to other levels. 

Comparatively, we see that classification of discrete states (level 3) is most accurate and when 

compared to surveyed work reported in Figure 7 (See Section 2.5), we see that all levels of 

classification and the overall classification performance of SAM is competitive and outperforms other 

state of the art ASA systems. 

This section has discussed the implementation of SAM’s novel hybrid learning architecture which uses 

separated RAVDESS data to classify a person’s level of activation, state group, discrete state and 

temporal phase using facial inputs. The successful implementation of this subsystem as reported in 

[24] lead to it being implemented for affective speech, proving the hybrid learning architecture is not 

bound by modality and in fact can be used with other continuous signals. This is detailed further in 

the following section. 

  5.1.2 Affective Speech Classifier Subsystem 

The success of using the hybrid learning method for separating continuous facial expression data into 

37 activation- and temporal phase-based classes resulted in the approach being applied for continuous 

affective speech data. Given the multimodal nature of human expressions of states in conversation, it 

is important that both speech and facial expressions are accounted for. As mentioned in Section 2.5, 

the measurement of affect in speech is separated into paralinguistic and linguistic components, with 

the former quantifying ‘how’ speech sounds and the latter describing the structure of linguistic 

components in an utterance (what was said). While SAM is capable of retrieving some linguistic 

information through speech-to-text functions, the linguistic affect data is not processed/classified. 

However, SAM is capable of classifying affective speech through the extraction of ComParE2016 low-

level descriptor (LLD) features [88]. 

The ComParE2016 LLD feature set used in this work extracts 65 frame-wise acoustic parameters. While 

other feature sets like the GeMAPS [89] were explored throughout the prototyping stages, 

experiments found that the chosen feature set was the most effective for the clustering and 

classification systems proposed through this work. Likewise, other datasets like the SAVEE, TESS, 

CREMA-D and EMODB datasets reported in Table 11 were also explored but in order to be consistent 

with the facial expression modality, it was decided that the RAVDESS dataset would be used. 

Like the facial expression classifier subsystem discussed in the previous section, cosine similarity-

based clustering was adopted to separate continuous affective speech data into temporal phase-

dependent classes. However, with speech being a different modality, it is important to note that there 

are significant differences in pre-processing and feature extraction as visualised in Figure 30. 
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Figure 30: Cosine-similarity based clustering of continuous RAVDESS audio samples showing 

  pre-processing (blue), similarity calculation (orange), dissimilarity and clustering 

   (green). This figure is similar to Figure 18 with the difference being pre-processing 

Analysing Figure 30, we see that it very similar to Figure 18, which showed the cosine similarity-based 

separation of continuous facial expression signals. This is intentional as it shows that regardless of the 

input modality, as long as the signal is continuous, the separation technique can be applied – in this 

case to extract temporal phase information from an affective speech signal. Note the initialised 

variables in the pre-processing stage. In this work the sample rate is 44kHz and the number of windows 

extracted is defined as 𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠 = 20. The ComParE2016 LLD feature set extracts 65 frame-wise 
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features describing contours along a continuous signal. Two cosine similarity heat map examples for 

affective speech samples are visualised in Figures 31 and 32, using samples from the RAVDESS dataset. 

Interestingly, when analysing Figure 32 we see two max dissimilarity peaks in the first half of the audio 

signal. In cases like this, the algorithm picks the highest of the two points as the peak in that half. 

Furthermore, a 5% buffer is added to the start and end of a signal to ensure that the clusters do not 

form using 1 window of data. The choice of 𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠 = 20 was due to the RAVDESS samples being 

approximately 2 → 2.5 seconds in length, thus resulting in each window being approximately 0.1 →

0.15 seconds in length. 

 

Figure 31: RAVDESS affective speech cosine similarity heat map for a continuous sample 

  partitioned into 20 equally sized windows and the corresponding dissimilarity curve. 

  Actor Information: Actor 4, disgust, high intensity, phrase 1, first repetition.  
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Figure 32: RAVDESS affective speech cosine similarity heat map for a continuous sample 

  partitioned into 20 equally sized windows and the corresponding dissimilarity curve. 

  Actor Information: Actor 9, surprise, high intensity, phrase 2, second repetition. Note 

  two peaks are detected at frame transition 5 and 13 similar to Figure 31. 

Using this method on all continuous samples in the RAVDESS dataset allowed for the separation and 

clustering of temporal phase-dependent affective speech samples. Through the methods discussed so 

far, we see that continuous, multimodal samples were initially separated into separate data channels 

(speech and facial expressions. They were then further separated into temporal phase clusters using 

cosine similarity-based separation, allowing for the delineation of all states outlined in Table 12. 

Similar to facial expression ASA discussed prior, SAM’s affective speech classification is done on four 

levels. However, being that the signals are unique, the design and construction of the corresponding 

affective speech hierarchical classifier ensemble is different to the facial expression ensemble. The 

four affective speech classification levels can be described as follows: 

1. Level of Activation 

Like the facial expression subsystem, the first classification stage is a ternary classifier to identify the 

intensity of the expression as either: Neutral, Low or High, exploiting the emotional intensity-based 

labelling of the RAVDESS dataset.    

2. Temporal Phase 

After determining the activation, SAM attempts to identify the temporal phase of the speaker i.e.: 

approaching a state (onset), experiencing a state (apex), or deactivating from a state toward neutral 

(offset). This applies SAM in a temporal domain and while at this level not being descriptive of a state, 

shows the continuous nature of the incoming speech signal. This classification level consists of two 

ternary classifiers – on for ‘low’ activation and one for ‘high’ activation. 
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3. State/Valence Group and General Acoustic Characteristics 

Once the temporal phase and level of activation is determined, SAM classifies the valence and state 

group that the speech sample belongs to as well as the corresponding acoustic characteristics that are 

similar between the states. This level of classification exploits the acoustic characteristic relationships 

identified in Table 3 across different states – allowing for a generalised classification of affective 

valence as described in [81, 82], allowing for an assessment of the ‘positivity’ or ‘negativity’ of an input 

speech sample. There are three binary classifiers that are deployed for each level of activation. 

4. Discrete State and Extended Acoustic Characteristics   

The final affective speech classification level. With the valence and general state group derived, SAM 

classifies the discrete state of the person and the acoustic characteristics associated with that state as 

per Table 3. This level of classification uses the general predictions in the previous level to improve 

the discrete, septenary state classification accuracy when compared to models derived in previous 

work [1, 19]. By combining ternary and binary classifiers for the assessment of affective speech, not 

only do you enhance the interpretability of the system, but it also allows for the improvement of 

classification performance. This classification level deploys six ternary classifiers for each level of 

activation. 

Figure 33 visualises the construction of the hierarchical classifier ensemble described above, which we 

can see is similar in shape to the facial expression classifier ensemble and identical in regard to the 

number of classes ‘𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠’ at each level (as visualised in Figure 23). While the distribution of ternary 

and binary classifiers is consistent across the two modalities, the way that signals are processed, 

classified, and labelled is different in terms of characteristics and features at each level. 

 

 

Figure 33: Visualisation of the four-tier hierarchical classification ensemble for the affective

  speech classification subsystem of SAM. 

The affective speech hierarchical classifier ensemble visualised in Figure 33 is expanded upon in Figure 

34, showing how states are clustered at all levels using LDA representations of data. Like the facial 

expression classifier ensemble, in total, SAM is capable of classifying 57 unique affective speech states, 

tallying up a total of 114 states across the two modalities. 
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Unlike the facial expression classifiers which deploy CNNs for feature extraction and classification, the 

affective speech classifier ensemble uses LDA to transform input signals, projecting them onto a linear 

discriminant space prior to having a standard scaler applied to standardise the transformed data. New 

input signals are transformed using an LDA model prior to being input into SVM models for classifying 

and labelling input speech samples. 

Analysing Figure 34 we see that across the four levels of classification, affective speech data is 

clustered very differently when compared to facial expression data. The first contributing factor is the 

size of the dataset used for training the LDA models ‘𝑑𝑡𝑟𝑛’ which totals 96 × 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3744 samples 

after cosine similarity-based clustering. This volume is smaller than the facial expression absolute 

training data size by a factor of 20.37. Secondly, due to the cluster boundaries of individual speech 

samples being dependent on the number of windows prior to cosine similarity-based clustering, it is 

less likely that the temporal phase micro-expressions would be detected with a smaller number of 

windows. However, the number of windows 𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠
1

∝
 paralinguistic information. Thus, by increasing 

𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠 to a large amount, the amount of information in an utterance segment would be reduced 

as a result, which may be detrimental to the clustering algorithm. 

With the clusters and the hierarchical classifier ensemble established, we can discuss the training of 

machine learning models used for classifying affective speech at each level. For affective speech 

assessment, there are multiple steps to achieve classification with three models used per ‘classifier’, 

these are: (i) Linear Discriminant Analysis (LDA) model, (ii) Standard Scaler model and (iii) support 

vector machine (SVM) classifier model. A summary of the classification process is outlined in Figure 

35, highlighting the goals, methods, and parameters at each stage. Figures 36 and 37 break down the 

model training architecture for all classifiers deployed across the hierarchical classifier ensemble. 

Python’s sci-kit learn packages were used for training the affective speech models [131].



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

94 
 
 

Figure 34: Visualisation of affective speech LDA-transformed clusters across the four levels of the hierarchical classifier ensemble. The number of linear 

  discriminants for the clusters was dependent on the number of classes that were defined prior to training, where 𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1. 

  Note that in comparison to the facial hierarchical classifier ensemble (Figure 25), there is less affective speech data, and the clusters are far 

  more separated, in some cases having clearly defined cluster centroids with minimal variances.
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Figure 35 High-level summary of the affective speech classifier subsystem showing the process 

  from input to classification and the three models deployed – LDA, Scaler, SVM. 

Analysing Figure 35 we see that at each stage, there are parameters that need to be considered. 

Regarding the ‘Input’ block, note that padding is applied to ensure that all samples used for training 

the dataset have a consistent number of features = 87766, which is calculated from the longest sample 

in the dataset such that no information is lost during training. Zero-padding is performed, which pads 

the feature array with zero values. It was found that the padding was more pronounced with ‘onset’ 

and ‘offset’ samples, with the observed consistency assisting in model training and improving the 

overall classifier performance. Once padding is completed, the features are then extracted using the 

ComParE2016 LLD feature set that has been discussed previously. The resulting, flattened feature 

vector that is input into the LDA model contains 12675 features in total. 

The statistical and machine learning foundations of LDA have been discussed previously in Section 

2.1.3. To optimise separation the LDA models deployed in SAM have the maximum number of linear 

discriminants allowed based on the number of classes i.e.: 

𝑁𝐿𝐷 = 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1 

The number of classes 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 and linear discriminants 𝑁𝐷𝑖𝑚 at each stage is visualised in Figure 34 

noting that for ternary classifiers, feature vectors are projected onto a two-dimensional hyperplane 

and for binary classifiers, they are projected onto a one-dimensional hyperplane. The solver used to 

solve the LDA optimisation problem defined by (19) was singular value decomposition (SVD). While an 

eigen value decomposition could be deployed (and was experimented with), it resulted in large LDA 

models that resulted in memory errors when attempting to incorporate them into SAM’s architecture. 

As a result, SVD was deployed, as it also more effective at handling data with a large number of 

features e.g., 12675. While LDA can be used for classification tasks, in this work, SAM exploits LDA to 

project data onto a linear discriminant space prior to classification.  

Through trial and error, it was found that a scaler could improve classification accuracy when 

combined with LDA. Two scalers were experimented with: (i) robust scaler and (ii) standard scaler. 

The latter proved to be more effective as the robust scaler is useful when scaling sets of data that 

contain outliers. In this work, the outliers were handled prior to feature extraction using an Isolation 

Forest anomaly detection algorithm [132]. 

The standard scaler standardises an input sample using the mean ‘𝜇𝐗’ and standard deviation ‘𝜎𝐗’ of 

the training data. The standardised score ‘Z𝐱’ of a single sample (or feature vector) is described as: 

Z𝐱 =
𝐱 − 𝜇𝐗

𝜎𝐗
 

where 𝐱 describes the feature vector being scaled, which in this case is the LDA-projected data. 

(34) 
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Finally, the SVM is trained using the scaled, LDA-projected training data. Given that LDA projects data 

onto a linear discriminant space, it is logical that the SVM kernels are consistent i.e., linear which is 

described in Section 2.1.3 through equation (22) i.e.:  

𝜓𝑙𝑖𝑛𝑒𝑎𝑟(𝐱, 𝐱𝐢) =  𝐱𝐢
𝐓𝐱 

The gamma ‘𝛾’ and cost-function ‘𝐶’ parameters influence the construction of the SVM hyperplane 

boundaries, affecting the reachable areas and decision boundaries of the linear kernel. For all SVM 

models, the gamma and cost-function parameters remained consistent: 

𝛾 =
1

𝑁𝐷𝑖𝑚 × 𝐗𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

𝐶 = 0.1 

 

Figure 36: Affective speech Level 1 Classifier training architecture. 

This section has explored the construction of back-end affective speech classifier models, including 

LDA, Scaler and SVM models required for assessing speech signals. In total, there are 21 × 3 unique 

models created (a triad/ensemble of LDA, Scaler, SVM models). Ten-fold cross-validation is a very 

common technique used to assess prediction error and was used to assess the SVM classification 

performance of all affective speech classifier models. 𝑘-fold cross-validation splits the input data into 

‘𝑘’ equal parts and assess the prediction error across an entire dataset by iterating through the 𝑘 parts 

and assigning a different validation set at each iteration [133]. The estimate of the cross-validation 

‘𝐶𝑉’ estimate can therefore be derived as [133]: 

𝐶𝑉(𝑓) =
1

𝐾
∑ 𝐿 (𝑦𝑖 , 𝑓−𝜅(𝑖)(𝑥𝑖))

𝐾

𝑖=1

 

(35) 

(36) 
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where 𝑓−𝜅(𝑖) = fitted function, 𝜅(𝑖) = an indexing function, 𝑖 = observation/iterator. In this work 𝐾 =

10. The ten-fold 𝐶𝑉 metrics are reported in Table 15 and Figure 38 and allow us to determine the 

‘𝑂𝑓𝑝’ for this modality. 

 

Figure 37: Levels 2, 3 and 4 affective speech classifier training architecture. 
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Figure 38:  Visualisation of affective speech cross-validation accuracies using the LDA+SVM 

  models discussed. Bars are colour-coded to show the level of classification where: 

  PURPLE = level 1, CYAN = level 2, LIME = level 3 and YELLOW = level 4. 

Index Clf. ID Activation Phase Class [0] Class [1] Class [2] 𝑨𝒄𝒄𝒗𝒂𝒍 

0 1 - - Neutral Low High 98.37% 

1 2.1 LOW - Onset Apex Offset 98.97% 

2 2.1.1 LOW Onset Happy|Anger|Surprise Sadness|Fear| Disgust - 97.97% 

3 2.1.1.1 LOW Onset Happy Anger Surprise 96.69% 

4 2.1.1.2 LOW Onset Sadness Fear Disgust 97.10% 

5 2.1.2 LOW Apex Happy|Anger|Surprise Sadness|Fear| Disgust - 92.90% 

6 2.1.2.1 LOW Apex Happy Anger Surprise 91.74% 

7 2.1.2.2 LOW Apex Sadness Fear Disgust 88.06% 

8 2.1.3 LOW Offset Happy|Anger|Surprise Sadness|Fear| Disgust - 98.92% 

9 2.1.3.1 LOW Offset Happy Anger Surprise 98.20% 

10 2.1.3.2 LOW Offset Sadness Fear Disgust 97.86% 

11 2.2 HIGH - Onset Apex Offset 99.21% 

12 2.2.1 HIGH Onset Happy|Anger|Surprise Sadness|Fear| Disgust - 98.18% 

13 2.2.1.1 HIGH Onset Happy Anger Surprise 96.77% 

14 2.2.1.2 HIGH Onset Sadness Fear Disgust 95.63% 

15 2.2.2 HIGH Apex Happy|Anger|Surprise Sadness|Fear| Disgust - 90.57% 

16 2.2.2.1 HIGH Apex Happy Anger Surprise 89.39% 

17 2.2.2.2 HIGH Apex Sadness Fear Disgust 89.87% 

18 2.2.3 HIGH Offset Happy|Anger|Surprise Sadness|Fear| Disgust - 99.26% 

19 2.2.3.1 HIGH Offset Happy Anger Surprise 99.63% 

20 2.2.3.2 HIGH Offset Sadness Fear Disgust 98.52% 

Table 15: SVM model information and reported 10-fold cross validation accuracies obtained 

  when using the RAVDSES dataset for training using the architecture and methods 

  discussed in this section. A visualisation of these accuracies is shown in Figure 38. 

Table 15 and Figure 38 report the cross-validation accuracies for the 21 classifiers embedded in SAM’s 

classifier ensemble for analysing affective speech signals. The average classification accuracy can be 

broken down per level: 
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Level 1. Single classifier = 98.37% validation accuracy. 

Level 2. Two classifiers = 99.09% mean validation accuracy. 

Level 3. Six classifiers = 96.30% mean validation accuracy. 

Level 4. Twelve classifiers = 94.96% mean validation accuracy. 

Thus, the average classification accuracy across all classifiers is 95.90% for affective speech 

classification. Analysing these metrics, we see that on average, the classification accuracy is very high 

(greater than 90% for most classifiers) and when compared to facial expression classification as 

discussed in the previous section, it is far greater. By comparing this data to those reported in Figure 

7, we again see that the overall performance of SAM when assessing affect in speech is competitive 

and can outperform other state of the art ASA systems. 

This section has discussed the assessment of affective speech using SAM’s novel hybrid learning 

architecture. It has shown that the same governing methodologies can be applied through two unique 

modalities, under the condition that the data is continuous. Through the classifier ensemble, SAM is 

capable of classifying activation, temporal phase, valence, and discrete states through a person’s 

speech with a high degree of accuracy. The State Assessment Module is not limited to the classification 

of facial expressions and speech – as globally, the increase in the use of personal protective equipment 

(PPE) such as face masks has meant that ASA systems that rely on facial expressions become impaired 

and, in some cases, obsolete due to the presence of visual occlusions. SAM is adaptive in that it does 

not classify facial expressions when it detects that a visual occlusion is present on a person’s face. The 

following section discusses the classification performance of the facial occlusion detection subsystem. 

  5.1.3 Facial Occlusion Classifier Subsystem 

The goal of the facial occlusion classifier subsystem was to prove SAM as a robust, adaptive system 

that accounts for changing conditions and distorted data. Some of this functionality is reported in [25] 

i.e., the ability to detect facial occlusions such as face masks. The proposed solution came as a 

response to the increase in the use of face masks across the globe to mitigate the spread of viruses 

and diseases in light of the COVID-19 pandemic. Chapter 6 discusses the classification of upper-facial 

expressions when an occlusion is detected (also reported in [25]) but this has not been implemented 

as part of SAM’s functionality.  

At the highest level, when a facial occlusion is detected, SAM prompts the user to the fact that the full 

face that it is analysing is not clear, disabling its ability to classify the facial expression – this is visualised 

in Figure 39, which is a snippet of SAM’s GUI. 
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Figure 39: Screenshot of SAM’s home screen GUI window when a mask has been detected on a 

  subject. Note the warning displayed in the top right and the disabled buttons. 

In order to achieve this functionality, SAM deploys another classification schema, a binary classifier to 

detect two classes: “Masked” and “No Mask”. It deploys a combination of two datasets to train the 

two classes. Samples from the RAVDESS dataset were used to define the “No Mask” class and the 

MaskedFace-Net dataset [134] was used to define the “Masked” class.  

The MaskedFace-Net dataset was developed as a direct response to the COVID-19 pandemic given the 

rise in the use of face-masks globally and contains image data pertaining to situations where masks 

are worn correctly and incorrectly [134]. When deploying the binary classifier, SAM treats both cases 

as one class – “Masked”, given that in both instances the assessment of a facial expression will be 

compromised by the presence of some visual occlusion. 

To ensure that the training of classifiers was done fairly and to mitigate biases, each class contains the 

same number of samples: Masked = 17328 samples, No Mask = 17328 samples. The RAVDESS data 

used to construct the No Mask class were randomly allocated and amounted to approximately 22.7% 

of the total number of samples that were used for training the facial expression classifiers. 

It was hypothesised that the classification would yield good performance results given the difference 

in a masked vs. an unmasked face, particularly if only the bottom half of image samples were used as 

inputs. Once a facial image has been detected as shown by the blue bounding box in Figure 39, SAM 

will split the facial data in half (slicing horizontally) and analyse the bottom half pixels to assess if a 

mask is present. In most cases the bottom half of the face has very distinguishable features including 

the mouth, nose, and nostrils; so, the presence of a face mask covers these features and provides a 

distinct separation between the two classes. A visualisation of how the LDA-transformed data is 

clustered is shown in Figure 40, showing the distinct separation that was hypothesised. 
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The classification of facial occlusions follows a similar method to affective speech i.e., combining LDA 

for transformation, a scaler for standardisation and an SVM for classification, similar to what is 

discussed in [25]. As discussed above, the separation of classes is distinct when comparing masked 

and non-masked faces and as such, it was decided that implementing a statistical classifier would 

optimise performance and accuracy in favour of a more complex neural network or deep learning 

solution. A summary of this process is shown in Figure 41. 

The classification performance of the facial occlusion classifier subsystem was done through a ten-fold 

cross validation task. Observing Figure 40, we can see that the classification accuracy should be high 

to be consistent with the separation of clusters. The reported cross validation accuracy of this 

subsystem was 99.973% ≈100% which matches the initial hypothesis. 

Being the first classifier that SAM deploys for facial expression assessment, it is important that the 

validation accuracy be very high as the cost of misclassification at such a high-level would adversely 

affect the performances of the rest of the system to a high degree.  

With all classifiers discussed in this section (Section 5.1), we can establish how a continuous video 

input is split into facial and speech signals, processed, and classified. Across all three classifier 

subsystems, SAM is capable of detecting 116 unique classes/states in. The classification of these 

signals is visualised in Figure 42 and the interaction between front-end and back-end elements of the 

system are discussed in more detail in the following section (Section 5.2). 

 

Figure 40: Visualisation of how the “Masked” and “No Mask” samples are clustered after 

  projection onto a 1-dimesional linear discriminant space using an LDA transform. It 

  also shows how the facial occlusion classifier subsystem interacts with the facial  

  expression classification subsystem. 
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Figure 41: Visual occlusion binary classifier training architecture showing how data from the 

  MaskedFace-Net and RAVDESS datasets are combined and transformed to detect 

  visual occlusions such as face masks. 

Figure 42: Summary of SAM’s multimodal classification network showing the transformation 

  and processing of data from a raw video input to the classification of states using the 

  three classifier subsystems discussed in section 5.1. 

  



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

103 
 
 

 5.2 Implementing SAM’s Graphical User Interface and Frontend Design 

  5.2.1 Graphical User Interface Purpose 

SAM’s graphical user interface (GUI) was designed to provide users with the ability to analyse its 

decision-making processes including: inputs, processed data, and outputs. By integrating the 

classifiers that were discussed in the previous section, information is parsed to the necessary 

windows. The GUI also serves as vehicle to apply other back-end subsystems including its speech-to-

text, working memory and database manipulation processes. Figures 43 and 44 along with Table 16 

help visualise and discuss the purpose of each of SAM’s GUI windows as well as how data is parsed 

and manipulated throughout. 

Previously, it was mentioned that SAM is an extensive evolution of the ASAM discussed in [1, 19, 108]. 

After a review of the functionality of that system, it was declared that vast improvements were 

required to make it a more powerful, dynamic ASA system. While being a functional assessment tool, 

the ASAM was lacking in various aspects and could be improved upon. Thus, SAM was invented and 

constructed from the ground-up as a more powerful system that dwarfs the capabilities of the ASAM. 

As detailed in Section 4.3, the SDDP of SAM can be considered as an iterative process leaning more 

towards an agile model. Throughout iterations, the GUI was expanded upon, and more functionality 

was added to the system. To ensure that SAM’s software was organised, code was developed in a 

modular fashion and functions were contained directories related to their functionality. Figure 45 

visualises the directory and file structure of the latest SAM package. 

This section discusses each of the GUI windows outlined in Table 16, highlighting: 

1. Software algorithms, the flow of information and the parsing of data (through flowcharts), 

2. The design, process, and structure of generated reports, 

3. The back-end classifiers that are deployed (if classification is involved), 

4. Visual assets that are used to indicate changes in states, 

5. SAM’s dialogue, interactions and working memory. 

 

Figure 43: Visualisation of how databases are parsed into the system and what GUI windows 

  exploit the database information including dialogue responses, user and subject 

  information and classifier responses for facial expression and speech analysis.
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Figure 44: Extension of Figure 42, visualising a high-level representation of how data is parsed through the system from input → processed states → 

  outputted classification results across all of the GUI windows. 
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GUI Window 
Label 

Name Purpose and Capabilities Data Involved 

GUI (HS) SAM Home Screen Monitor input data in real-time including: camera input, microphone feed, speech-
to-text transcription, 
Monitors the status of the system including if a mask is detected and/or if 
peripheral devices are removed among others, 
Acts as the hub to access other GUI windows, 
Grants the ability to generate interaction analytics reports and logs 

Raw video input → camera + 
audio input 
 

GUI (F1) LVL 1:  Facial expression level of 
activation classification 

Monitor changes in facial expression level of activation, 
Generate reports from the interaction 

Facial expression image data 

GUI (F2.1) LVL2: General facial muscle 
movement classification 

Monitor changes in general facial muscle movements and muscle regions, 
Monitor changes in the level of activation, 
Generate reports from the interaction 

Facial expression image data  

GUI (F2.2) LVL2: Facial expression state 
group classification 

Monitor changes in facial expression state group, 
Monitor changes in the level of activation, 
Generate reports from the interaction 

Facial expression image data  

GUI (F3.1) LVL3: Facial AU/extended facial 
muscle movement classification 

Monitoring of Facial Action Unit (AU) changes and the corresponding muscle 
movements, 
Monitor changes in the level of activation, 
Generate reports from the interaction 

Facial expression image data  

GUI (F3.2) LVL3: Discrete facial expression 
classification 

Monitor changes in discrete state/emotion,  
Monitor changes in the level of activation, 
Generate reports from the interaction 

Facial expression image data 

GUI (F4) LVL4: Facial expression 
Temporal phase classification 

Monitor changes in temporal phase relative to facial expressions, 
Monitor changes in discrete state/emotions, 
Monitor changes in the level of activation, 
Ability to change ‘verbose’ setting to communicate extended muscle movement 
related information, 
Generate reports from the interaction 

Facial expression image data 

GUI (S1) LVL1: Affective speech level of 
activation classification 

Monitor changes in the level of activation w.r.t to input speech signals, 
Generate reports from the interaction 

Speech signal data 

GUI (S2) LVL2: Affective speech temporal 
phase classification 

Monitor changes in temporal phase relative to speech, 
Monitor changes in the level of activation, 
Generate reports from the interaction 

Speech signal data 



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

106 
 
 

GUI (S3) LVL3: Affective speech valence 
and general speech 
characteristics classification 

Monitor changes in valence (high vs. low) for speech, 
Monitor changes in general speech characteristics, 
Monitor changes in the level of activation, 
Monitor changes, in temporal phase, 
Generate reports from the interaction, 
Ability to change ‘verbose’ setting to communicate either valence information or 
speech characteristic information 

Speech signal data 

GUI (S4) LVL4: Affective speech discrete 
state and extended speech 
characteristics classification  

Monitor changes in discrete state/emotion through speech, 
Monitor changes in extended speech characteristics, 
Monitor changes in temporal phase, 
Monitor changes in the level of activation, 
Generate reports from the interaction, 
Ability to change ‘verbose’ setting to communicate either valence information or 
speech characteristic information. 

Speech signal data  

GUI (SET) Settings and login window Ability to add new users/subjects to SAM’s database, 
Ability to log in/out using user and subject credentials, 
Ability to view details of a currently logged in user/subject – ability to understand 
the people in the interaction, 
Ability to access SAM’s README, 
Change SAM functionality based on user’s permissions 

Subject database, 
User database 

GUI (INT) SAM interaction window Provides the ability to communicate with SAM using 21 unique commands, 
Ability to have two-way communication (verbal) with SAM, 
Ability to analyse instantaneous predictions for all levels and modalities of 
classification 

Subject database, 
User database, 
SAM responses database, 
Speech signal data, 
Facial expression image data, 
Speech signal data 

Table 16: Summary of SAM’s GUI functionality for each of the windows, reporting the labels (which are shown in Figure 43), the purpose of each  

  window and the data that is used to achieve functionality within that window. 
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Figure 45: Construction and tree diagram of the SAM package showing how system elements are partitioned throughout the system. The legend on 

  the bottom right of the figure assists in explaining the how elements are colour coded. The algorithmic implications of the SAM package are 

  discussed throughout Chapter 5 and highlight the modular nature of the system.  
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Figure 46: Annotated screenshots of SAM’s home screen GUI window, showing examples of its various states and functions that are reported in 

 flowcharts in Figures 47-54. We see that the window can be partitioned into five major sections: (1) camera input, (2) speech 

 input, (3) speech-to-text, (4) facial expression analysis window buttons and (5) affective speech analysis window buttons.
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  5.2.2 Home Screen – GUI (HS) 

The home screen GUI window is the interface that is opened when SAM’s executable is launched. The 

executable is built from the “HomeScreen” source code. Figure 46 shows an annotated version of the 

home screen GUI window of the latest version of SAM. Together with the flowcharts that follow in 

Figures 47-54, the overall functionality and flow of information throughout the home screen can be 

reported and discussed. Analysing Figure 46, the GUI (HS) window is partitioned into five major areas: 

1. Real-time camera input 

In general, the home screen provides transparency of input signals. The “real-time camera input” area 

relays the camera input to the user, providing a vehicle in which the user can assess what features are 

being used for SAM’s decision-making processes. Research conducted in [70, 72, 76] outlines the 

importance of being able to see raw representations of data. In the context of critical applications 

where a domain-expert is using the system, it is important that they are able to view the input data 

and overrule SAM’s decision-making processes, passing the accountability from the machine to the 

user. The AXAI framework highlights the inspect-ability of input models or cues – ‘𝐼𝑖𝑛’ as a key 

parameter for assessing the accountability of a system and showing the raw data to the user is a step 

in achieving this. 

Furthermore, see that SAM is capable of adapting to changes in system status’, including changes in 

what it is presented in front of it, as well as if peripheral devices have been removed during an 

interaction. As shown in the figure, SAM is capable of detecting the presence of a visual occlusion like 

a protective face mask through its facial occlusion classifier subsystem which was discussed in Section 

5.1.3. Once an occlusion is detected, a warning is output, and the facial expression analysis GUI 

window buttons (area 4) are disabled. Disabling the classifier is important as classifying the full facial 

expressions of a masked face would produce erroneous results – given half of the facial features are 

obstructed.  

When SAM detects that a peripheral device has been removed, it displays this information to the user. 

Not only does this assist in the debugging process [4, 70], it also aids in improving the accountability 

of the system. By highlighting to the user that the peripheral device is disconnected, it shows users 

that SAM is unable to make an assessment and as such, cannot be accountable for incorrect decisions 

being made in the time that it has no input data to assess. As shown in Figure 51 and Appendix F, this 

information is reported so that when an interaction is analysed in post, an interested party can view 

if and when a peripheral device was disconnected and who would be accountable if any errors are 

observed during this window. 

2. Real-time microphone input 

Like the camera input, the microphone input is updated in real-time and provides users and domain 

experts the ability to view the input speech signal that is being used for classification and speech-to-

text processes. With a sample rate of 44kHz and a chunk size of 4389, through the x-axis, we can see 

that two chunks of data are displayed to the user at any time. Again, showing the input data introduces 

a degree of transparency, and improves the accountability of the system (through its ability to inspect 

input signals). Like the camera input, it is important that the user is alerted when a peripheral device 

has been disconnected. This is achieved by outputting zeros to the GUI window and changing the 

colour of the line to red. Furthermore, the ability to access the vocal analysis GUI windows is disabled 
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along with speech classification processes as SAM is unable to ‘hear’ in the interaction. Throughout 

prototyping, a video camera was used for experimentation and development and removing the 

peripheral device would cause both error conditions to be raised. However, SAM is capable of handling 

separate microphone and camera input devices. 

3. Speech-to-text integration 

The third area displays the speech-to-text output to the user through the transcription box. This work 

deploys the Python speech recognition package [135] – specifically, the integrated Google speech-to-

text application programming interface (API). Detecting what has been said during an interaction 

allows users to communicate with SAM and also monitors the linguistic components of an interaction. 

While linguistic ASA is not integrated into this system, this process allows for future integration of such 

capabilities. Speech-to-text is deployed on a separate thread to the main thread as failure to do so 

interrupts the main loop while the transcription is being processed through the API. The transcription 

is stored and can be replicated in a report to monitor what a subject has said during an interaction. As 

will be discussed in section 5.2.6, the transcription of speech is vital for two-way communication with 

SAM as it allows for an understanding of user requests. 

4. Facial expression analysis GUI window access 

Previous sections have discussed SAM’s hierarchical facial expression classifier ensemble, containing 

21 unique classifiers capable of detecting 57 unique states with an average accuracy of approximately 

83%. The classifiers are deployed across six different GUI windows which will be discussed in section 

5.2.3, with the data being analysed at each level of classification being discussed in previous sections.  

This area of the home screen GUI allows users to access the multi-level facial expression classifier 

results if the buttons are enabled. Figure 46 highlights an example of all the buttons being disabled. 

The status of the buttons is dependent on variables including: (i) if a camera peripheral device is 

connected, (ii) if a person is wearing a mask, (iii) if a user and subject have logged into SAM, (iv) the 

permissions of the user. 

SAM checks the permission level of the user and determines what button states are activated as a 

result. These levels are arbitrary and are used to highlight how this functionality could be implemented 

into an applicable setting. SAM understands three levels: (i) ‘master’ – equivalent to ROOT, who can 

access all windows, (ii) ‘admin’ – who can access a subset of windows specifically GUI (F1, F2.2, F3.2) 

and (iii) ‘guest’ – who can only access GUI (F1). Whenever SAM adds a new user to its database, they 

are assigned the ‘guest’ permission level by default. 

5. Vocal/Speech analysis GUI window access 

Like area 4, this area consists of all the buttons that allow users to navigate through the affective 

speech assessment GUI windows that deploy the hierarchical affective speech classifier ensemble 

models discussed previously. Unlike the facial expression assessment windows, there are only four 

vocal/speech analysis GUI windows (one for each level). This is due to the amount of information 

displayed to the user through speech assessment. Condensing all the speech assessment information 

into four windows was achievable, unlike the facial expression analysis GUI windows where 

attempting to do so would be a counterproductive burden [3]. 
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The status of the buttons in this area are dependent on: (i) if the microphone has been disconnected, 

(ii) if the user and subject have logged in, and (iii) the permissions of the user. The permissions levels 

outlined above are consistent for speech analysis and govern button status’ as such: ‘master’ – all 

windows are accessible, ‘admin’ – all windows bar GUI (S4) are accessible and ‘guest’ – only GUI (S1) 

is accessible. Again, this information is visualised in Figure 54. Other elements and GUI window 

functions that don’t fall into a specific category are: 

• Ability to access the settings window GUI (SET), 

• Ability to generate an Analytics report, with an example report shown in Appendix F, 

• Ability to access the SAM interaction window GUI (INT), 

• Status bar showing updates of the system, providing users with the ability to scrutinise and 

debug the system while providing further transparency of what the SAM is doing, 

• Ability to ‘Export’, ‘Get’ and ‘Open’ log files. 

 

Figure 47: Home screen GUI initialisation function block. When SAM is launched, this is the first 

  code block that is executed. Other function blocks discussed in this section are  

  highlighted in light blue e.g., the “MAIN LOOP” function block. 
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Figure 48: Speech-to-text function block – which is executed on parallel thread separate to the

  main thread. This provides SAM the ability to understand what a user has said in an 

  interaction and provides the foundation for two-way communication. 

Figure 49: SAM’s main loop function block which is run after the home screen initialisation  

  function block visualised in Figure 47. The event handling function blocks i.e.: (i)  

  Handle FACIAL GUI Button Events, (ii) Handle VOCAL GUI Button Events, (iii) Handle 

  SETTINGS GUI Button Events, (iv) Handle INTERACTION GUI Button Events are  

  discussed in the relevant sections in this chapter. 
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Figure 50: Home screen GUI event handler function block. This describes how other windows 

  are initialised and opened from the home screen. 

Figure 51: Facial recognition algorithm/function, called in the main loop, relying on Python’s 

  OpenCV package [136] and highlighting some of SAM’s error handling. 
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Figure 52: Mask detection function block deployed in the main loop. This is an algorithmic  

  representation of how SAM deploys the facial occlusion classifier subsystem. 

Figure 53: Vocal/Speech analysis function block called in the main loop. Note that the error 

  handling functionality visualised in Figure 46 is represented through this flowchart. 
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Figure 54: Home screen GUI button state changing function called at the end of the main loop 

  to check if the SAM’s status’ have changed regarding the user, subject, permission, 

  peripheral devices, and presence of visual occlusions. 

5.2.3 Facial Expression Analysis Windows – GUI (FX) 

SAM’s facial expression analysis windows denoted by ‘GUI (FX)’, are accessed from the home screen 

as shown in Figure 50. SAM was designed to allow users the ability to view as much, or as little 

information as required – to optimise what they are looking for. Thus, all GUI windows spawned by 

SAM are ‘non-blocking’ and operate on separate threads to allow for the parallel viewing of 

information. When a window is closed, the child thread is killed. The classification and button events 

for each of these windows is handled using various button event handling functions. 

The facial expression analysis windows allow for the connection between the back-end classifiers and 

the front-end, providing visual assets to assist in explaining the decision-making process. Previous 

attempts at designing a previous system (ASAM) saw the visualisation of graphical prediction data on 

the analysis windows at all times [108]. It was found that given the increase in the number of windows 

and classifiable states, this amount of information in every window, would not be representative of 

an explainable, comprehensible system. Furthermore, removing this functionality improves SAM’s 

performance as there are less graphics to handle. As such, it was decided in early stages of the 

development process to provide users with the ability to export data and generate reports of current 

and historical interactions. As a result, all GUI (FX/SX) windows contain the same three buttons: 

1. Export Data 

Throughout an interaction, while the GUI windows are updating the visual assets with the current 

classifier predictions, this data is also time-stamped and stored in a two-dimensional array i.e.: 

[timestamp, classifier prediction]. The user has the option to export this data and save it for historical 

use, or use it generate reports of the current interaction. The exported data is saved in a dedicated 

‘logs’ directory that has been created for the window in use (see Figure 45), with the data being 

exported in a .csv format. 
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2. Get Data 

Opens a file explorer to choose a log file that will be used to generate and view a report. 

3. Open Data/View Reports 

Using the log file that has been selected using the “Get Data” button, this button uses the log file 

information and generates a report of the data, containing graphical information of classifier 

predictions throughout an interaction. Examples of generated reports are seen in Appendices G to L. 

Along with the three buttons listed above, the general layout the facial expression analysis windows 

consist of: (i) animation assets to visualise predictions, (ii) tabular representation of features or 

prediction results, (iii) dialogue output box showing SAM’s interpretation of the prediction and 

explanation as to why the state is predicted and (iv) a status bar similar to the home screen. Figure 55 

shows an example of all windows open at the same time showing the outputs of all windows to the 

same expression. Figure 56 is a collection of the facial expression analysis GUI windows. 

Note that in Figures 55 and 56, the dialogue is not always reflective of the state being represented 

through visual assets, this is because dialogue is only updated every ≈ 2 seconds, outputting the mean 

state that was predicted over that time, whereas predictions are updated continuously. This decision 

was made because updating the dialogue with every prediction (rate of ≈ 0.2 seconds) would not give 

users enough time to read dialogue outputs thus, the GUI window dialogue would be redundant. This 

process of updating the GUI dialogue fields is visualised in flowcharts figures in this section.  

 

Figure 55: An example of all facial expression GUI windows being open in parallel showing a 

  low activation, apex temporal phase, surprise state (at level 4). We see that the  

  activation (level 1) is present in every GUI window, with GUI (F2.1/2.2) showing the 

  state group, GUI (F3.1) showing the FACS facial action units and GUI (F4) showing the 

  temporal phase and discrete state information.
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Figure 56: Collection of facial expression analysis window layouts of the four levels of the hierarchical classifier ensemble contained within SAM. As 

  discussed previously, each level of classification allows users to view different information pertaining to a subject’s facial expression. Unlike 

  when generating screenshots for Figure 55, these windows were recorded at different times. 
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Figure 57: Facial GUI button handling function – Part 1. This flowchart shows how window events for facial GUI (F1, 2.1, 2.2) are handled in the main 

  loop. The event handling function was split into Parts 1 and 2 due to the size of the flowchart. Figure 58 shows part 2. 
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Figure 58: Facial GUI button handling function – Part 2. This flowchart shows how window events for facial GUI (F3.1, 3.2, 4) are handled in the main 

  loop. This figure is an extension of the first part of the event handling function shown in Figure 57. 
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Analysing Figures 55 and 56 together, we see that examples of different states are shown, and we can 

see how the same logic that applies for Figure 55 would apply for other states. The change in image 

asset shown on the GUI window is dependent on the classifier prediction, with the integer predictions 

and corresponding images being reported in the package tree-diagram in Figure 45. 

Analysing the flowcharts in Figures 57 and 58, we see how the facial expression analysis windows are 

integrated into SAM’s main loop. As discussed, all GUI windows operate on parallel threads and as 

such the event handling functions are non-blocking – meaning that all windows can be viewed in 

parallel without interrupting processes of other windows. Furthermore, we see how the classifiers 

listed in Table 14 are integrated into the system. 

A novel invention that is added to SAM, is its ability to convert classifier predictions to human-

understandable dialogue to relay the decision-making process and assist in improving the 

comprehensibility and accountability of the system. For all classifiable facial expressions, there is at 

least one unique dialogue output that SAM will use to relay its findings – using the theoretical 

foundations established in previous sections to justify the content of the dialogue. Table 17 reports 

some examples of the dialogue displayed to the users at different levels for facial expression analysis. 

Classification Level Prediction Dialogue 

Level 1 Neutral This person looks like they are in a neutral state, due to the lack of 
noticeable movement around their face. 

Level 2.1 LOW – Happy or Surprise I see a slight change in mouth shape, and a combination of weak, 
lower, and upper eyelid movements. 

Level 2.2 HIGH – Anger or Disgust This person looks like they are either very angry, or very disgusted. 

Level 3.1 LOW – Fear I see a slightly open mouth, raised upper eyelids, and some 
indication of raised and frowned eyebrows. 

Level 3.2 HIGH – Sad I predict that this person looks very sad. 

Level 4 (verbose = 
False) 

LOW – Happy – Onset This person looks like they are approaching a mildly happy state. 

Level 4 (verbose = 
True) 

HIGH – Anger – Apex This person looks like they are very angry, by looking at their 
tightened lip, raised upper and lower eyelids and frowned brows. 

Table 17: Examples of different dialogue outputs that are displayed (or spoken) to the user 

  when a prediction is made, highlighting SAM’s ability to explain the reasoning  

  behind why a classification is made at each level for facial expression classification 

As we can see when comparing Level 2.1 and 2.2 or Level 3.1 and 3.2, we can see that SAM is capable 

of outputting verbose and succinct descriptions of states, with the user having the ability to choose 

what output is relevant for them. A full list of the facial expression classifier dialogue outputs for all 

levels of classification is shown in Appendix M. 

All generated reports are output as PDFs automatically using custom report generation functions that 

exploit the continuous data that has been recorded during an interaction. The report generated and 

recorded in Appendix J highlights the intelligence of SAM to understand facial expressions. Specifically, 

in its ability to understand how specific muscles change throughout an interaction based on what 

predictions have been made. Given similar FACS muscle movements are present for different states, 

this information can be used to show how independent muscle movements change based on the 

predicted state. Analysing the generated reports in Appendices G-L, we can see that removing the real-

time graphical data from the GUI allows users to view this information when necessary, thus removing 

the issue of having “too much information” on the GUI. Failure to do so may compromise the system’s 

comprehensibility and accountability. 
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5.2.4 Affective Speech Analysis Windows – GUI (SX) 

The affective speech/vocal analysis windows – GUI (SX), are accessible via the corresponding buttons 

on the home screen as shown in Figures 46 and 50. The development of assets for both modalities 

were done in parallel as shown in Table 10, with the levels of classification being integrated into SAM 

iteratively from Level 1 → Level 4. Like the facial expression analysis windows discussed in the previous 

section, SAM was designed to allow users to view an optimal amount of information required by the 

user when assessing speech, again exploiting the benefits of multithreading. Figure 49 shows how 

events related to GUI (SX) windows are handled within SAM’s main loop. 

SAM’s analysis of affective speech connects the back-end classifiers discussed in Section 5.1.2 with 

front-end interface elements and allows users to monitor changes in acoustic characteristics as well 

as the predicted state for incoming speech signals. Unlike facial expressions that are instantaneous 

however, affective speech signals need to be handled in “windows/packets”, with input speech 

needing to be appended to an “audio buffer” variable that is only handled when it’s the right size. The 

length of a speech sample when analysed is approximately 2 seconds given an audio data packet 

length of 4389 and a sample rate of 44kHz. This makes it consistent with the samples used to train the 

dataset prior to feature extraction. Likewise, the GUI assets related to vocal analysis update at a 

constant rate given that feature extraction and classification is only done when a packet is full sized. 

SAM’s affective speech analysis f are separated across four GUI windows, one for each level of 

classification. Unlike the facial expression analysis windows discussed in the previous sections, it was 

found that the GUI elements needed to describe changes in speech features did not need to be 

separated into six windows due to what was being classified at each level. To incorporate the ability 

to change how SAM responds via its dialogue output, ‘verbose’ tick-boxes have been added to GUI 

(S3, S4) windows as visualised in Figure 60. Users are capable of viewing GUI (SX) windows in parallel 

dependent on the level of classification that is being enquired about, which is shown in Figure 59. All 

affective speech/vocal analysis GUI windows have the same buttons that were described in the 

previous section i.e.: “Export Data”, “Get Data”, and “Open Data” buttons.  

 

Figure 59: Affective speech analysis GUI windows in parallel operation where SAM predicted 

  that the user sounded like they were offsetting from a high activation happy state. 
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Figure 60: Collection of affective speech/vocal analysis GUI window layouts, showing the integration of the four levels of the hierarchical classifier  

  ensemble contained within SAM. GUI (S3, S4) windows contain ‘verbose’ settings that affect what dialogue subset is deployed i.e., describing 

  changes in speech characteristics, or describing changes in states. 
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Figure 61: Affective Speech GUI button handling function – Part 1. This flowchart shows how window events for vocal GUIs are handled in  

  the main loop. The event handling function was split into Parts 1 and 2 due to the size of the flowchart. Figure 62 shows part 2. 
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Figure 62: Affective speech/vocal GUI button handling function – Part 2. This flowchart shows how window events are handled in the main   

  loop. This figure is an extension of the first part of the event handling function shown in Figure 61. 
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Looking at the flowcharts in Figures 61 and 62, it allows us to visualise how the affective speech 

analysis windows are integrated into the operation of SAM, and how events are handled in the main 

loop. Classification Is deployed as long as a window is open to ensure that power and resources are 

not drawn by processes that are inactive. Consequently (and logically), power and resource 

consumption are proportional to the number of GUI windows open as all threads run in parallel, which 

allow for simultaneous viewing of prediction data. 

Understanding the parallel operation of GUI windows means that users have the ability to open all ten 

analysis windows (across facial expression and speech classification) simultaneously if the system 

being used had the resources to handle the simultaneous classification. Section 5.3 discusses SAM’s 

performances as an embedded solution, highlighting the compromise between processor capabilities 

and system performance when deploying the software on the LattePanda 4G/64GB board. 

Like with facial expression analysis, SAM is able to convert integer classifier predictions into human-

readable assessments of a person’s affective speech state across the hierarchical classifier ensemble. 

This is done through the report generation ability (see Appendices N-Q), and the incorporation of 

dialogue outputs. Every predictable state has at least one dialogue output, with states at level 3 and 

4 having two dialogue outputs dependent on the verbosity setting. The theoretical foundations 

surrounding speech characteristics discussed in Section 2.5 and Table 3 establish the link between 

SAM’s dialogue outputs at different levels. Table 18 highlights some examples of dialogue outputs that 

are displayed to users under different conditions. 

Classification Level Prediction Dialogue 

Level 1 HIGH This person sounds like they are in a high activation state due to the 
very strong variations in their speech. 

Level 2 HIGH – Apex This person sounds like they are currently experiencing a very 
activated state. 

Level 3 (verbose = 
True) 

HIGH – Onset, HIGH 
Valence 

I sense speech rate and pitch are increasing, along with amplitude, 
at a very high rate. 

Level 3 (verbose = 
False) 

LOW – Offset, LOW 
Valence 

It sounds like this person is either exiting a mildly sad, mildly scared, 
or mildly disgusted state. 

Level 4 (verbose = 
True) 

HIGH – Apex, Happy This person sounds like they are very happy, due to the change in 
speech rate and higher vocal pitch, showing an upward cadence, as 
well as their voice sounding very loud, blaring, and breathy. 

Level 4 (verbose = 
False) 

LOW – Apex, Fear This person sounds like they are in a mild state of fear. 

Table 18: Examples of different affective speech dialogue outputs that are displayed (or spoken) 

  to the user when a prediction is made, highlighting SAM’s ability to explain reasoning

  behind why a classification is made at each level based on user requirements. 

Through Table 18, we can see how the verbose settings are used to manipulate how SAM explains a 

state prediction and how users can choose what information they want to view. By implementing this 

functionality, it takes SAM capabilities beyond those of generic statistical classifiers that output a 

predicted state as either a label or integer. SAM uses theoretical understandings to justify to the user 

as to “why” a particular prediction is being made rather than simply positing the “what”.  

Like the FACS action units used to quantify facial muscle movements, similar speech characteristics 

are also common in different states, which served as the theoretical foundation for clustering level 3 

affective speech valences. Using this information, SAM is therefore capable of monitoring changes in 
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specific vocal characteristics based on its understanding of what characteristics are present in 

different expressions of states. An example of this functionality is shown in the report in Appendix P. 

Through the dialogue outputs shown in Appendices M and R for facial expression analysis and affective 

speech analysis respectively, SAM proves itself as a more advanced assessment system equipped with 

logical, highly accurate classifiers, and the ability to explain its decision-making processes across four 

levels of classification, for two input modalities. 

  5.2.5 Settings Window – GUI (SET) 

The purpose of this window is to give users the ability to login using username and password 

credentials as well as logging in the subject – which is the person in front of the peripheral devices 

(microphone and camera). The ‘user’ is the person using operational peripheral devices such as a 

mouse/touch pad/external display to operate SAM’s GUI to interpret its decision-making in real-time. 

In this case, SAM is treated as an intermediary agent between two parties. Note that the user and 

subject can also be the same person – as was the case when testing and prototyping the system and 

as such, SAM is treated as a secondary agent in a two-party interaction. The two situations described 

above are visualised in Figure 63. 

Figure 63: Dissecting the ‘user’ and ‘subject’ relationship with SAM wherein SAM can be  

  deployed as an intermediary agent (where there are two human parties) or a  

  secondary agent where  there is only one human party present. 

For the purpose of promoting accountability, SAM only recognises a user and subject if they have 

logged in using their credentials. Without doing so, SAM disables the ability to view classifier results 

as shown in Figure 54. Once SAM is aware of who is present in the interaction, it will enable the 

appropriate GUI buttons and functions so that it can then begin making predictions. Upon launching 

SAM’s GUI, users are to login their credentials using the settings GUI as well as getting the subject to 

input their credentials as well.  

Within SAM’s working memory, it contains two databases containing information of users and 

subjects that it has interacted with in the past, containing generic information such as: (i) Identification 

number, (ii) username, (iii) password, (iv) first name, (v) last name, (vi) email, (vii) phone number, (viii) 
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data creation date, (ix) data creation time and (x) permissions. The settings GUI window and its 

corresponding sub-windows are visualised in Figure 64. 

Analysing the GUI (SET) parent window and its children windows pictured around it in Figure 64, we 

see that in total there are seven new windows that can be spawned from the settings window, each 

being non-blocking as to not interrupt the main loop. The windows are numbered from 1-8, with green 

borders and numbered circles describing user-related windows and blue borders and numbered 

circles describing subject-related windows where: 

1. Current user details 

2. User login 

3. Create new user 

4. SAM user database 

5. Subject login 

6. Current subject details 

7. Create new subject 

8. SAM subject database 

With each new window, comes event handling functions. The flowcharts in this section visualise the 

flow of information through the settings window and how user and subject information is parsed from 

the back-end to the front-end. Through previous sections we have seen how the user and subject 

information is deployed in the main loop of the system. This section explores the concepts of users 

and subjects in more detail in relation to how this information is created and stored in SAM’s memory. 

Through Figures 65 – 68, we see how data is parsed throughout SAM with respect to handling the 

settings window events and values. As well as benefitting system accountability, integrating the 

knowledge of subjects and users establishes a foundation in which SAM may be deployed as an 

applicable system across various independent sectors. Regarding accountability and trust, there would 

be an immediate sense of distrust when decision-makers (users) and those affected (subjects) were 

not named or identified. Along with having a knowledge of date-time information, the simple task of 

assigning ID’s and having knowledge of who is involved in an interaction introduces a sense of 

transparency in a system as it puts names to the faces of decision makers and subjects.  

As mentioned prior, complex, highly-sensitive applications like security-related, clinical, and legal 

applications require a high degree of accountability given the risk of misclassification in these sectors 

[14, 15]. Thus, intelligent systems like SAM must be equipped with functions like the ones described 

in this section that promote accountability. 

Furthermore, when SAM interacts with users and subjects as a third party, having information like 

their names and understanding when they were added to the appropriate databases assists in making 

SAM a more intelligent system w.r.t to its communication and interaction capabilities. The next section 

is an in-depth exploration into SAM’s interaction capabilities, showing a culmination of working 

memory, hierarchical classification, dialogue, AXAI, transparency and reasoning. Through this multi-

faceted design, SAM’s interaction processes separate it from other intelligent systems and AI agents.
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Figure 64: SAM’s GUI (SET) settings window (middle) and the corresponding child windows that are spawned by pressing buttons leading from the 

  relevant arrows. The left side of the figure (green) highlights the four user-related and the right-hand side (blue) highlights the four subject-

  related windows. The window event handling functions are described through flowcharts in this section.  
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Figure 65: Setting window GUI (SET) event handling function block accessed by the main loop in Figure 49. This flowchart shows the relevance of user 

  and subject data manipulation in this part of SAM’s code. Looking at the bottom right of the figure there are event handling function blocks 

  for user/subject authentication, creation, and database visualisation, with these function blocks being visualised and discussed in this section. 
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Figure 66: User and subject creation event handling function block accessed by the GUI (SET) event handling function block shown in Figure 65. This 

  flowchart shows the error handling logic that are applied when attempting to add new users and subjects into SAM’s existing databases.  
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Figure 67: User and subject login window event handling function block – accessed by the GUI 

  (SET) event handling function block in Figure 65. This function uses the information 

  in SAM’s existing user and subject databases for authentication. 

 

Figure 68: User and subject database window event handling function block – accessed by the

  GUI (SET) event handling function block in Figure 65. This demonstrates the ability to 

  scroll through various pages of user and subject information that is contained in  

  SAM’s existing databases. 

5.2.6 SAM Interaction Window – GUI (INT) 

In the case of clinical, therapeutic, and social robotics applications, designing AI and robotic systems 

to be approachable and user-friendly is an important consideration [137-139]. Particularly, we see 

that the application of robotics in therapy is viewed fondly in regard to assisting children and people 

with learning disabilities [137, 139]. Thus, SAM was designed with user-friendly considerations in mind 

to further promote it as an applicable solution. Firstly, while describing itself a “State Assessment 

Module”, a simple, single-syllable name like “SAM” introduces a sense of approachability and 

simplicity that would make it easy to interact with SAM has knowledge of who it interacts with by 

exploiting its user and subject databases. By doing so, it introduces a sense of companionship that 

would be beneficial not only for children, but for the elderly as well [139, 140]. Combined with ASA 

capabilities and some of the affective computing applications discussed in Chapter 2, we can begin to 

see the cross-industry areas in which a system like SAM can be applied. 

SAM is equipped with an interaction interface, which allows users to communicate with SAM both 

verbally and non-verbally. SAM is equipped with 21 unique commands that can be triggered manually 

through the user interface window, or through speech, with the latter utilising SAM’s speech-to-text 
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functions. Furthermore, on the concept of companionship, implementing 2-way communication 

postulates a sense of advanced intelligence, as it shows that SAM can understand the linguistic content 

of speech and respond in an intelligent way. Thus, the 21 commands allow SAM to interact with users 

in a way that promotes some form of social intelligence that display SAM’s knowledge of for example: 

• Its own current state, 

• Its internal subject and user databases, 

• Current time and date information, 

• Its purpose, 

• What has been said during an interaction, 

• Emotions and affective state theory, 

• What facial and speech expressions it can ‘see’ and ‘hear’ respectively. 

The above summary of SAM’s interaction capabilities is an example of “working memory”, which 

describes brain systems that can access and manipulate stored information, be it in biological memory 

or digital memory banks, with the purpose of completing cognitive tasks [141]. Building upon the 

foundations of working memory, SAM uses the information stored in digital memory to respond to 

user commands using a text-to-speech engine that converts output strings in Tables 19-21 to 

synthesised, audio outputs. SAM’s ‘voice’ uses ‘Microsoft Mark’, a text-to-speech voice/narrator that 

was introduced in Windows 10. The decision was made to change the voice output from the default 

to Mark as the former was very robotic and the latter is more novel and has more understanding of 

phonetic structures in speech. Figure 45 shows the location of ‘modifiedMark’ in the SAM package.  

Through flowcharts, figures and tables in this section, SAM’s interaction capabilities will be explained. 

Figure 69 shows a screenshot of SAM’s GUI (INT) window. While looking relatively straight forward 

when compared to other windows that have been shown in previous sections in this chapter, the back-

end functions and logic that support this window are more complex.  

The window shown in Figure 69 has two dropdown boxes at the top, which allow users to change what 

level of classification SAM should be focusing on for both the facial and speech channels. The “Enable 

two-way communication” tick-box does precisely that. By ticking the box, the command dropdown 

box below and the “Send Command” button will be disabled, and users will need to refer to the list of 

commands to interact with SAM verbally (commands reported in Tables 19-21). The Status box on the 

bottom right assists users in understanding more information about the command that is being sent 

when using the dropdown box. 
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Figure 69: SAM Interaction GUI window layout, accessed via the “Interact with SAM” button on 

  the top right of the home screen.
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Prompt  Input Reasoning Base Output 

0 what expression does the person 
look like they are showing right now 

Decision based on the selected facial 
level 

Right now,  

1 what are you looking for Understanding the level of classification Based on my current facial expression classification level,  

2 how does the person sound right 
now 

Decision based on the selected vocal 
level 

Right now,  

3 what are you listening for Understanding the level of classification Based on my current speech classification level, 

4 who are you analysing Understanding who it 'thinks' it is 
looking at (current SUBJECT) 

I believe that I am looking at  

5 who is using you right now Understanding who it 'thinks' is using it 
(current USER) 

I believe that the person analysing my decisions is  

6 can you repeat what this person 
said during this interaction 

Knowledge of speech-to-text and what 
its heard 

During this interaction I have heard,  

7 tell me about yourself SAM will explain its purpose, 
development and functionality 

My name is SAM, which is short for the State Assessment Module. I was developed as a proof of 
concept for explainable, accountable, artificial intelligence, applied in the context of affective state 
assessment, and emotion recognition. Using my peripheral devices, I can sense facial expressions and 
speech, allowing me to recognise and understand emotions at different levels, on a continuous 
spectrum. Through my facial recognition abilities, I can also detect if a person is wearing a mask or 
not. By using this graphical user interface, you can monitor my decision-making processes in real-
time, and request for me to generate reports of my interactions. 

8 how long have you been in this 
interaction for 

Understanding of human perceptions of 
time using system clock 

I have been in this interaction for  

9 how do you know who is analysing 
your decisions 

Understanding of the USER database 
and the login process 

When a user enters their credentials, I am inclined to believe that they are the person who is 
analysing my decisions 

10 for how long have you known this 
user? 

Using the datetime data in the user 
database - memory 

I have known  

11 for how long have you known the 
person you are looking at? 

Using the datetime data in the subject 
database - memory 

I have known  

12 how are you able to analyse facial 
expressions 

Explains the process of facial expression 
classification 

I analyse facial expressions through my camera - which serves as my eyes. As you can see in the user 
interface, I draw a box around a face that I have detected, and then extract the features within the 
box. Depending on the chosen classifier level, I look for different features, and predict a state based 
on how my classification models were trained. The RAVDESS data-set was used to train the 
convolutional neural network models that allow me to make my predictions. 

13 how are you able to detect if 
someone is wearing a mask 

Explains the mask detection process I analyse faces using my camera. The first step is to detect whether the person is wearing a mask, I 
do this by only looking at the bottom half of a person’s face, and if I see that their face is covered, I 
am able to predict that the person is wearing a mask. My decision making processes when detecting 
a mask, come from training using the Masked-Face-Net data-set, and the RAVDESS data-set. I am 
able to identify a mask through a combination of linear discriminant analysis,  and support vector 
machine models. 
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14 how are you able to analyse speech Explains the process of speech 
expression classification 

I analyse changes in speech through my microphone peripheral device - which serves as my ears. The 
changing waveform that you see on the user interface, is the direct raw speech data that I am 
receiving in real-time. I will make a prediction on how a person sounds, approximately every 2 
seconds. In that time, I will wait and listen so that the length of what I am trying to predict, is the 
same as the data that was used to train my machine learning models. I then extract low level 
descriptor features, using the compare 2016 feature set, so that I can convert the raw speech data 
into a more understandable form. 

15 explain your facial expression 
classification tree 

Explains the facial decision tree I can classify facial expressions at four levels. At the first level, I look at changes in the level of 
activation, from neutral, to low, to high. At the second level, I look at facial expression changes 
associated with three state groups, and their corresponding similarities in muscle movements. 
Moving onto level three, I look deeper into classifying discrete states, and their corresponding, facial 
action muscle movement changes. Finally, at level four, I look at changes in temporal phase. This tells 
whether a person is activating toward a discrete state. Experiencing an activation of that state - 
which is the apex. Or, returning back to a more neutral state, which is called, offsetting. All of my 
prediction information, is available to you, through the relevant user interface windows. 

16 explain your speech classification 
tree 

Explains the speech decision tree I listen to speech on four levels. At the first level, I listen for changes in the level of activation, from 
neutral, to low, to high. Then, on level 2, I listen for changes in temporal phase, which tells me if a 
person is activating toward some state. Experiencing the apex of some state. Or offsetting from a 
state, toward a more neutral sounding speech. At level three, I listen for changes in valence, which 
can be high, or low, and correspond to two groups of states. These valence groups, are based on 
similarities in acoustic features. Finally, at the fourth level, once I understand the valence of the 
person, I listen closely, to changes that would correspond to a particular, more discrete state. I can 
then understand the difference in acoustic features, within that state group.  

17 can I shut you down Explains how users can shut it down Yes, you can shut me down by closing the home screen window, and removing me from my power 
source. Would you like to shut me down now? 

18 how can I check if you are working 
properly 

Explains any issues that could arise 
during operation 

First make sure that all my peripheral devices are plugged in, so that I can see, and hear. If you want 
me to understand what's being said in this conversation, make sure I am connected to the internet. 
Make sure that the lighting conditions are adequate, and consistent. Also, make sure that you have 
told me who you are, through the log-in screen, as well as made me aware of who I am looking at. 

19 do you have emotions of your own Explains that it can only recognise 
emotions, cannot synthesize (in its 
current form) 

No, in my current state, I do not have any emotions of my own, and I cannot synthesize artificial 
emotions. I can only recognise someone else's emotional state over time, based on how I classify 
their facial expressions, and speech. 

20 can you respond based on how a 
person is feeling 

Explains that it does not have the 
behavioural and psychological 
intelligence to respond based on a 
persons emotional state 

I don't possess the behavioural, and psychological intelligence, to respond to a person based on their 
emotional state. In theory, I could use a historical understanding of an interaction, but human 
emotions are so complex, that I would need to have an understanding of internal, and external 
contextual information, that is not available to me. 

Table 19: List of SAM’s interaction commands as well as the reasoning behind the inclusion of the command and the base string output to the user. 

  SAM’s text-to-speech engine uses commas and periods for pauses in speech outputs, making responses more realistic and loss robotic. 
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Key Output 

LVL1 which is level 1. I am looking for changes in facial expression activation levels, to show me if the person is experiencing a neutral, low, or highly activated state. 

LVL2.1 which is level 2 point 1. I am looking for macro-level changes in facial expression muscle groups, that are associated with different groups of emotions, or states. 

LVL2.2 which is level 2 point 2. I am looking for changes in facial expressions, that relate to one of three groups of states. pairing happiness and surprise. anger and disgust. and 
sadness and fear. 

LVL3.1 which is level 3 point 1. I am looking for changes across all facial muscles, and using Ekman's facial action coding system, this allows me to discern a particular emotion. 

LVL3.2 which is level 3 point 2. I am looking to predict one, of two emotions. Which is made easier for me, since I have already deduced the state group. 

LVL4 
Short 

which is non-verbose level 4. I am looking for changes in temporal phase, so that I can tell if a person is approaching a state, or emotion. Experiencing the apex of that state, 
or deactivating from it. 

LVL4 Long which is verbose level 4, I am looking for changes in muscle movements that, correspond to the activation, or deactivation of a particular state, or emotion. As well as the 
activation level. 

Table 20: Prompt Number 1 – extended dialogue outputs. These outputs are in response to the question “what are you looking for?”, allowing SAM to 

  identify what level of classification was chosen by the user for facial expression assessment, responding in the appropriate manner. 

Key Output 

LVL1 which is level 1. I am listening for changes in speech activation, that show me if the person is experiencing a neutral, low, or highly activated state. 

LVL2 which is level 2. I am listening for changes in temporal phase, so that I can tell if a person is approaching a state, or emotion. experiencing the apex of that state. Or 
deactivating from it. 

LVL3 
Short 

which is non-verbose level 3. I am listening for changes in speech that could tell me if a person is experiencing a high-valence, or a low-valence emotion or state. 

LVL3 Long which is verbose level 3 I am listening for changes in acoustic feature groups, that translate to high, and low valence emotions and states. 

LVL4 
Short 

which is non-verbose level 4. I am listening for changes in speech, that would tell me what discrete emotion is being expressed, as well as its temporal phase, and level 
activation. 

LVL4 Long which is verbose level 4. I am listening for changes in a wider range of acoustic features, that translate to specific emotions, at different activation levels, and temporal 
phases. 

Table 21: Prompt Number 3 – extended dialogue outputs. The above outputs are in response to “what are you listening for?”, where SAM identifies 

  the level of classification chosen by the user for affective speech assessment, responding accordingly. 
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Analysing Table 19 we see that prompt numbers: {0, 1, 2, 3} are related to SAM’s hierarchical classifier 

ensemble. The dialogue outputs attributed to {0, 2} are dependent on the prediction made at the 

instant that the command was sent and the level of classification that the user has chosen using the 

two dropdown boxes at the top of Figure 69. These dialogue outputs are as they were reported in 

Appendices M and R. Through prompt {6}, we see that SAM is capable of understanding the content 

of what was said during the interaction, having the ability to repeat this information back to the user. 

Locally storing this information could have the potential for much more advanced tasks using target-

word detection or natural language processing functions for example. 

Prompts {4, 5, 10, 11} show SAM’s understanding and manipulation of its user and subject databases. 

Once a user and subject has logged in, SAM trusts that the input information is correct and that the 

parties involved in the interaction are who they have logged in as (which SAM explains through prompt 

{9}. Regarding prompts {10, 11}, along with {8}, we see how SAM understands human perceptions of 

time. By referring to its internal clock and historical date-time information, SAM is able to output the 

number of months, days, hours, minutes that it knows a person as well as for how long it has been in 

operation for. 

Along with the responses to prompts {1, 3} shown in Tables 20 and 21, through prompts {7, 12, 13, 14, 

15, 16}, we see SAM’s ability to explain its decision-making and reasoning processes for everything 

that it does. This includes being able to explain and speak about: (i) its facial expression classification 

processes, (ii) its overall purpose, (iii) how it classifies speech signals, (iv) how it detects masks and 

visual occlusions. System transparency is improved by giving SAM the opportunity to explain this 

information to users, and by doing so, could make SAM a more trustworthy and acceptable system in 

domains where transparency is an important consideration. 

Prompts {17, 18} assist in the debugging process as discussed in [4, 70]. By giving users the ability to 

verbally shut down SAM, it retains the control that the user has, while also giving users the ability to 

still switch off the system if mouse and keyboard peripheral devices have been disconnected. The 

response to prompt {18} gives SAM the opportunity to assist users in the debugging process, allowing 

them to work through the steps that SAM provides to assist in troubleshooting. This command has the 

potential to be expanded on such that SAM could use its knowledge of its various statuses to point 

the user in the direction of what could be an issue.  

Finally, the responses to prompts {19, 20} give SAM the ability to respond to functionalities that it 

currently does not possess i.e.: the ability to synthesise artificial emotions of its own, and the ability 

to augment its responses based on a person’s current state. The ability to synthesise artificial emotions 

would highlight a potential “next step” for SAM, as a survey conducted in [141] shows that there are 

various ways of incorporating emotional speech synthesis including articulatory, data-based and 

hybrid synthesis approaches [142].  

If SAM had the ability to synthesise speech, one could argue that this can be used to augment its text-

to-speech responses based on a person’s current state. However, as SAM states in its response (in 

Table 20) and discussed in literature [80-83] and previous chapters of this work, human experiences 

and emotions are complex, and are the result of various dependent and independent, internal, and 

external events that would require far more research and development. For example, complex social 

constructs like break-ups, divorces, death, and humour are experienced differently and could be 
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dependent on: which party is affected, relationships, socio-economic status, anthropology, prior 

experiences. These constraints and variables highlight the difficulty in designing a machine to 

synthesise its emotions to respond in a ‘socially acceptable’ way. 

The flowcharts visualised in Figures 70-72 describe the logical and computational structure of how the 

commands discussed above are implemented in real-time, and how SAM manipulates various 

subfunctions and its working memory to complete various cognitive tasks. Analysing Figure 70, we see 

how the interaction window events are handled from the home screen and how the 2-way 

communication tick-box governs the ability to manually put in commands using the dropdown menu. 

The 2-way communication works through a similarity detection algorithm that calculates the similarity 

of two strings using the “Sequence Matcher” function that is part of Python’s difflib library. The 

sequence matcher algorithm is based on the Gestalt pattern matching algorithm derived in the late 

1980’s and can be used for detecting the similarity in two strings [143]. The algorithm (and Python’s 

difflib implementation) defines a ratio ‘𝐷𝑟’ between two strings ‘𝑆1’ and ‘𝑆2’ and can be described 

through the following governing equation: 

𝐷𝑟 =
2 ∙ ||{𝑆1}| ∩ |{𝑆2}||

|𝑆1| + |𝑆2|
 

where 𝐷𝑟 is directly proportional to the similarity between two strings. Through experimentation it 

was found that because some commands are similar in their structure, keywords needed to be added 

such that no two cases are unique, thus introducing a second instance of logic checking – which 

ensures that keywords in a command are spoken as well as similarity being greater than 80%. 

Through the initial event handling function we see that there are two additional larger function calls, 

these being “Handle Interaction Commands” and “Shutdown Sequence”. These function blocks are 

detailed in Figures 71 and 72, with the former highlighting where most of the logic is contained. The 

handling of user commands is done through a large switch-case statement, whether commands are 

verbal or manual, the index of the command is used for gathering the response, with these responses 

being reported in Tables 19-21.  

Through Figure 71, we see that this function block serves as SAM’s central communication node/hub, 

which communicates with various other subsystems to explain its decisions and decision-making and 

reasoning processes, while also highlighting a practical implementation of ‘working memory’ theory 

[141] in robotics and AI. Finally, we see that Figure 71 shows a call to the “temporal length calculation” 

function block which is displayed in Figure 72. The temporal length calculation function highlights 

SAM’s knowledge of human perceptions of time using current and historical datetime data and simple 

Boolean logic and arithmetic to report and communicate this information to users. 

Throughout the subsections of Sections 5.1/2, SAM’s various GUI functions and back- and front-end 

software components have been discussed. Through various flowcharts and screenshots of SAM’s GUI 

in operation, we see intricacies of the software design process and the attention to AXAI elements like 

comprehensibility, system accountability and predictive accuracy. However, confining SAM to being a 

static, software solution limits its true potential, as the ability to enhance existing robotic systems and 

surveillance infrastructures through a modular device is a key contribution that is proposed through 

this work. The following section discusses SAM as a fully-integrated, embedded system in more detail.

(37) 
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Figure 70: SAM Interaction window i.e., GUI (INT) event handling flowchart. This function block is called from the main loop and handles events  

  associated with user interactions with SAM including two-way communication. On the bottom right, we see further function calls, with  

  these functions being detailed in Figures 71 and 72. 
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Figure 71: This function block is called from the GUI (INT) event handling block visualised in Figure 70. This visualises the large ‘switch-case’ logic used 

  for handling SAM’s communication through commands and responses. The “Temporal length calculation” call is visualised in Figure 72. 
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Figure 72: (TOP): Shutdown Sequence function block, which shows how user inputs can be used to switch off SAM using voice commands. (BOTTOM): 

  The temporal length calculation function block which shows how SAM utilises its knowledge of current and historical datetime information.
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5.3 Integrating SAM as a Modular, Embedded System 

As discussed in Chapter 1 and reported throughout this work, SAM was designed to be a modular 

system, capable of being equipped into existing robotic and sensory infrastructures. Figure 63 

highlighted some of the peripheral devices needed for SAM’s operation. While this visualised how 

SAM could be used as a 2nd or 3rd party in an interaction, the previous sections looked primarily at the 

software that was embedded in SAM. 

This section aims to discuss SAM as a real-time, integrated embedded system, considering the 

hardware components and peripheral devices that are necessary for sensory, operational, and 

monitory functions. Furthermore, this section will establish a bill of software and hardware materials 

that would ensure that SAM’s design is replicable. Finally, this section will establish some of the 

achievements made and challenges faced throughout the development of SAM from Version 1 to its 

deployment as a functioning modular device. 

With the rise of robotics and autonomous systems over the last century and the increase in the volume 

of solutions that exist commercially [144-146], it was evident that SAM would be better suited as a 

solution to augment existing robotic systems, rather than presenting itself a kinematic robot. The 

humanoid robots discussed in [145] highlight the range of applications and sectors in which these 

systems have been applied including: defence, commercial and entertainment sectors. Social robotics 

and socially assistive robotic solutions [144, 146] also evidence a large corpus of unique robots that 

are designed to improve quality of life and for use in educational and clinical scenarios.  

The robotic systems in [144-146] describe a small portion of robotic systems that have been reported 

in literature and used throughout daily life. Ultimately, the relatively high saturation of “robots” 

means that there is less novelty in designing a humanoid robot with ASA capabilities for example. This 

highlights the novelty and importance of SAM. Designing a system that can be integrated into existing 

robotic infrastructures means that SAM is not limited in its application and mobility. 

After the software development process (finishing on version 5), the SAM software was ported onto 

a LattePanda V1.0 4G/64GB, a small form-factor, low-cost single board computer [147]. This hardware 

was previously used for implementing the ASAM as an embedded system design as reported in [1], 

which also discusses and compares six different solutions including: (i) Intel NCS2, (ii) LattePanda V1.0 

4G/64GB, (iii) LeMaker Hi-Key 970, (iv) BeagleBoard X-15, (v) Coral Dev Board, (vi) NVIDIA Jetson Nano.  

Initially, the NVIDIA Jetson Nano [140] was going to be experimented with. However, the “chip 

shortage” that occurred during the COVID-19 pandemic [149, 150] resulted in mass production line 

delays and adversely affected various industries that rely on semiconductors and integrated circuits. 

This shortage meant that lead times and costs for boards like the NVIDA Jetson Nano were very high 

throughout a large period of the development cycle of SAM. Thus, it was decided that SAM be 

prototyped on the LattePanda board that was available for use.  

When testing SAM as an embedded system, it was found that while it was objectively slower than 

when using a desktop or personal computer, it was still functioning well enough in real-time to a point 

where the computational power was not a heavy burden on performance. Figures 73-75 show the 

hardware implementation of SAM, visualising the development board, the external hardware, and an 

example of how SAM can be integrated into an existing system using a low-cost Zero-X Edge drone 

and attaching SAM to it using Go-Pro mounting clip accessories. 
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Figure 73: Exposed LattePanda 4G/64GB development board with peripheral devices connected. 

  Note that the peripheral devices connected are similar to those introduced in Figure 

  63. The devices connected in the figure are necessary for sensory, operational, and 

  monitory functions.  

 

Figure 74: Front, Top, Side, and Isometric views of SAM when housed in the protective  

  enclosure. The omnidirectional antenna attached to the top improves wireless  

  communication and changes the shape in which the signal is transmitted. 
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Figure 75: Example of SAM being equipped to an existing system via the Zero-X Edge drone. SAM 

  is mounted to the underside of the chassis using the Go-Pro accessories. 

Analysing Figure 73 we see that devices are connected using USB/HDMI and auxiliary connectors. 

Ideally, monitory, and operational devices would be wireless or sheathed in a long tether to ensure 

that the hardware is clean and that that the integrity and mobility of the system SAM is attached to is 

not compromised. In the case that SAM were connected to a stationary system e.g., for surveillance 

tasks, this would not be an adverse factor. 

Figures 73-75 have visualised SAM as a fully-integrated embedded system capable of being equipped 

into existing robotic infrastructures. While SAM was easily mounted under the Zero-X Edge drone, 

SAM’s load weighed at 544g i.e.: 

𝐹𝐿𝑜𝑎𝑑 = 𝑀 × 𝐴 

𝐹𝐿𝑜𝑎𝑑 = 0.544 ∗ 9.81 = 5.34𝑁 

Unfortunately, the load force ‘𝐹𝐿𝑜𝑎𝑑’ was too great for the drone in Figure 75, thus preventing SAM 

from being lifted off the ground when attached. Successfully attaching SAM to the device proved the 

concept that SAM could be equipped to existing systems. However, for the systems to operate without 

constraints, they would need to be capable of handling a 5.34𝑁 load. 
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Component Model Name Description and Purpose 

Single-board 
computer 

LattePanda 4G/64GB Handles all on-board processing and computation of code. Serves as 
SAM’s “brain”. 

Protective 
enclosure 

Aluminium alloy case 
for LattePanda V1.0 

Protection and cooling (through a 5V cooling fan) of the single-board 
computer. Also provides some ingress protection. 

Wi-Fi Antenna 2.4GHz 6dBi Antenna 
with u.FL/IPEX 
Connector 

Omnidirectional antenna for improving SAM’s wireless communication 
capabilities. 

SD Card SanDisk Extreme 
PLUS 128GB A2 SD 
Card 

Allows for local, on-board storage of SAM’s software and code as well as 
generated reports, classification models and log data, allowing for more 
freedom in regard to storage and memory. 

Mounting clips Go-Pro Grab Bag Allows SAM to be equipped to existing robotic systems through 
combinations of mounting clips and surface mounts. The current 
configuration as per Figures 74 and 75 uses two surface mounts (one on 
SAM and one on the system being mounted on), two mounting clips and 
an intermediate link. 

Camera and 
Microphone 
peripheral 
devices 

Microsoft LifeCam 
HD-3000 

720p, 16:9 HD camera and microphone input device, allowing for the 
monitoring and classification of facial expression and speech signals 
(including allowing speech-to-text functionality). 

Consistent light 
source 

VILTROX L116T RA 
CRI95 Super Slim LED 
Light Panel 

Analog light to provide consistent lighting conditions in a controlled 
environment. The VILTROX light has adjustable settings to vary 
brightness and light warmth from a cool light to a warm light. For 
experimentation, the settings were: 3900K and 97% brightness. 

Existing robotic 
system 

Zero-X Edge Drone Proof of concept of how SAM can be integrated into existing robotic 
infrastructures. The drone as shown in Figure 75 is a small-scale, 
quadrotor, wireless aerial drone. 

Software 
Prototyping 
Computer 

Dell XPS 13 9360 This PC was used for software prototyping and development including 
training/validating models, developing, testing and compiling code and 
documentation. 

Monitory 
device 

ASUS Monitor 1080p external display used to view SAM’s GUI when connected to the 
hardware device via an HDMI cable. 

Operational 
devices 

Standard USB mouse 
and keyboard 

Used in conjunction with the monitory device to simulate a user’s 
environment. The keyboard allows users and subjects to login and the 
mouse allows for navigation throughout the GUI windows. Two 
alternatives are that: (i) SAM could be equipped with a touch screen 
display to remove the need for a mouse device and (ii) SAM could be 
equipped with wireless mouse and keyboard devices to remove the 
number of physically connected devices. 

Table 22: Hardware bill of materials for the development stages and embedded system  

  implementation of SAM. Figures 73-75 show component integration into the design. 

  A system diagram showing how embedded system components are interfaced is 

  visualised in Figure 76. 
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Figure 76: Visualisation of how SAM interfaces with other devices and subsystems when  

  deployed as a hardware solution (as experimented with the LattePanda 4G/64GB 

  development board). 

Dissecting Figures 73-76 and Table 22, we can identify that there are three necessary subsystems 

required to fully deploy SAM as a hardware solution: (i) SAM itself, which has been ported and 

deployed on a physical device, (ii) the parent system, which would be equipped with the necessary 

peripheral devices such that it can be integrated with SAM, (iii) the monitoring station, which would 

comprise of a display and mouse/keyboard so that the user can: (i) assess the GUI, (ii) monitor SAM’s 

decision-making processes and, (iii) interact with the system. 

The tabular and graphical representations of the system in this section report the hardware and 

software used throughout prototyping and deployment phases of SAM. Table 23 describes the Python 

packages used for the overall functionality of the system, including model training, validation, and GUI 

design. Reporting hardware/software bills of materials and a visual representation of the embedded 

system ensures that replicability of this work is possible, with an extended description of the packages 

used shown in Appendix S. 
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Package  Version/Distribution Purpose 

Python 3.6.8 Python3 environment used for coding the project including designing, 
model training and all software components. 

time Dependent on Python dist. Allows for time-related functions and the manipulation of time variables. 

math Dependent on Python dist. Standard arithmetic and mathematical functions 

os Dependent on Python dist. Allows for interfacing with the operating system (OS) and manipulate 
files and directories. 

sys Dependent on Python dist. System specific parameters and functions – allows for interaction with 
the interpreter 

datetime Dependent on Python dist. Allows for the manipulation of time and date functions and variables. 

base64 Dependent on Python dist. 64-bit encoding function used to encode binary data. 

io Dependent on Python dist. Handling input and output streams 

threading Dependent on Python dist. Allows for manipulation and use of threading function – allowing for 
parallel thread operation. 

pickle Dependent on Python dist. For serializing and de-serializing (saving and loading) Python objects 
including ML models. 

random Dependent on Python dist. Random number generation and related functions. 

difflib Dependent on Python dist. Deployed for sequence comparing in this work. 

numpy 1.16.3 Advanced mathematical functions and allows for the manipulation of 
numpy arrays. 

pandas 1.1.5 Used for data analysis and manipulation, specifically in the case of 
aspects like dialogue and databases structures used in the system. 

csv 1.0 Allows for reading and writing of CSV files 

PySimpleGUI 4.56.0 An extensive library that allows for the creation of GUI elements and 
user-centred Python programs. 

scipy 1.4.1 Scientific computing package including additional data science, analytics 
and statistical functions and tools. 

reportlab 3.6.6 Used for generating pdf documents i.e., the generated reports that exist 
throughout. 

matplotlib 3.1.1 Graphical library for plotting functions. Used for generating graphical 
images present in the system. 

PIL 6.2.0 Python Image Library containing image processing functions and tools 
useful for pre-processing. 

cv2 4.5.1 OpenCV, an open-source computer vision package which includes facial 
recognition tools for example. 

pyaudio 0.2.11 Allows for audio data manipulation – pivotal for speech processing tasks.  

speech_ 
recognition 

3.8.1 Allows for speech recognition tasks 

soundfile 0.10.2 Another audio data manipulation library which was used with pyaudio 
for speech processing tasks 

pyttsx3 2.71 Python text-to-speech library, giving SAM the ability to communicate 
with users. 

sklearn 0.24.2 Sci-kit learn, a data analysis and machine learning library used in this 
work for generating ML Models 

opensmile 2.2.0 Python wrapper of the openSMILE (open-source Speech and Music 
Interpretation by Large-space Extraction) software 

TensorFlow 2.2.0 An additional machine learning and artificial intelligence library 

Keras 2.3.0 Allows for generating deep neural network models and CNNs. 

Table 23: Software bill of materials showing imported Python packages used throughout  

  development and deployment stages of SAM. This table does not include package 

  dependencies. A full list of packages produced through the ‘pip list’ command is  

  shown in Appendix S. 
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  5.3.1 Key Challenges Faced 

Throughout the various phases of this project from its inception to the ultimate deployment of SAM 

as a modular embedded system, there have been many challenges and achievements that have come 

as a result. This work has been a success and this thesis has detailed its achievements throughout 

previous chapters and sections and will continue to do so in the remaining chapters to follow. 

However, the process was not easy, and many challenges were faced throughout the research and 

development cycle. By identifying and reporting these challenges, it allows for an understanding of 

the journey that has been undertaken as well as a deeper understanding of what bottlenecks were 

faced throughout the development cycle and the overall research task. In summary, the key challenges 

that were encountered include: 

• Challenges faced in back-end development in regard to finding and selecting an adequate 

feature set, experimenting with the likes of GeMAPS and ComParE2016 feature sets. 

• A large amount of time was dedicated to tuning OpenCV parameters for facial recognition 

functionality as it was found that variables like ambient light conditions had a strong effect on 

facial recognition performance. 

• Challenges in regard to machine and deep learning model design, training, tuning, and 

validation were made more prominent due to the time taken to train, test, and re-train all the 

models that exist in the system – 43 classifiers in total to consider. 

• During the research and literature review stage, a lot of considerations were made in regard 

to how to split data at different classification levels, comparing literature-based and 

experimental-based models and architectures. 

• Getting the mask detection functionality to work properly in real-time was a difficult task 

despite having close to 100% separation and classification accuracy. One significant challenge 

was tuning the facial recognition function and lighting conditions to account for the visual 

occlusion as this would change the ‘shape’ of the face. 

• Regarding hardware and embedded system integration, there were challenges that arose with 

peripheral devices. Some microphones and cameras had connection issues and faulty wiring 

for example which resulted in different input devices being purchased and experimented with. 

• Another example of challenges faced with peripheral device integration included the shape of 

the camera lens. In earlier experiments it was found that the camera input device that was 

used had a curved, fisheye lens which distorted the input image. It was found that this 

adversely affected the classifier performance as facial features would be stretched and curved 

as a result. In response, other peripheral devices were purchased and experimented with. 

• The addition of the real-time speech recognition display on the GUI was a challenging task. In 

previous work, the wave form was updated and displayed to the user in chunks every 2 

seconds. Overcoming this hurdle was pivotal and a major goal in the initial stages of the 

project as real-time displays of raw speech data would improve the interpretability of input 

signals and would therefore improve system accountability. 

• Some hurdles were faced w.r.t creating user and subject databases in terms of the logic behind 

creating new users and subjects and what would constitute success and failure conditions.  
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• Regarding initial clustering experiments, other clustering approaches outside of cosine 

similarity-based clustering were explored. Comparing and understanding the pros and cons of 

each approach was a time-consuming task. 

• In previous versions of SAM, disconnecting a peripheral device like a microphone or camera 

would cause the system to crash. This was a crucial error condition that needed to be handled 

in a ‘cleaner’ way. Implementing the ability to seamlessly disconnect and reconnect peripheral 

devices without breaking the system was a challenging task that was eventually overcome, 

and vastly improved SAM’s usability. 

• Multi-threading and parallel processing introduced many challenges. Specifically, in this work 

there were challenges in regard to implementing text-to-speech and speech-to-text processes 

on separate threads. SAM had to be capable of ‘listening’ and ‘speaking’ while still processing 

input information and user commands. Thus, various threads needed to be executed such that 

these processes would work in parallel to the existing GUI threads. 

• Implementing all of the report generation functions throughout the system was a time-

consuming challenge. As shown in Section 4.2, the complexity of the code vastly increased 

from Version 1 → Version 2. This was directly attributed to the report generation functionality.  

• Giving SAM a ‘voice’ was challenging as it required changing the Windows registry and 

manipulating registry files (on both the embedded system’s on-board PC as well as on the PC 

used for prototyping and development).  

• Difficulties were faced when creating the SAM executable and porting it onto the embedded 

system. The challenges were due to dependencies where SAM could either be built on-board 

the LattePanda or could be distributed as a stand-alone executable. While being challenging, 

this issue was rectified swiftly and both solutions were valid.  

• As discussed in previous sections, the COVID-19 pandemic resulted in a “chip shortage” and 

major delays in lead times for components. As a result, procuring different development- and 

single-board computers was a challenge. Thus, making it necessary to test SAM on the 

LattePanda 4G/64GB development board.  

5.4 Assessing SAM using the AXAI Framework 

A survey was conducted to validate that SAM is an improvement on previous works, specifically the 

ASAM designed in 2019 [1, 19]. Given that SAM was developed with the AXAI framework at the core 

of its software design and development process, the initial hypothesis is that it would score highly in 

regard to predictive accuracy, comprehensibility, and system accountability vectors when assessing it 

using the AXAI framework. 

The survey consisted of eight assessors whose experiences and occupations included: engineering 

professionals, academics and biomedical and social sciences professionals. All assessors were given a 

guide on how to use and assess the system including a copy of the scoring criteria as shown in Table 

6. Assessors were then given a copy of SAM Version 1 and on average, spent approximately 15 minutes 

using the system. Assessors then reported their ‘𝑆𝐴’ and ‘ℂ’ component scores as shown in Table 24. 

Predictive accuracy vector components i.e.: (i) 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛, (ii) 𝑑𝑡𝑟𝑛, (iii) 𝑂𝑓𝑝 can be derived using 

information known at the time of training the models. Similar to the ASAM, the test/train data ratio 

was maintained at 80: 20 throughout all versions of SAM’s development, resulting in a normalised 

score of 𝑟𝑡𝑠𝑡−𝑡𝑟𝑛 = 1.0. As reported in previous sections, the RAVDESS dataset was used for model 
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training and validation, with facial expression samples amounting to 1500-2500 samples per class and 

speech classifiers being trained with 96 samples per class. Therefore, the 𝑑𝑡𝑟𝑛 parameter using both 

classifier modalities amount to a score of 4.46/5, which is a normalised score of 𝑑𝑡𝑟𝑛 = 0.892. The 

false-positive naming occurrences ‘𝑂𝑓𝑝’ can be determined through validation tasks, with SAM 

achieving an average naming error of 10.52% when considering both facial expression and speech 

classifiers. The naming error corresponds to a score of 4.965/5 i.e., 𝑂𝑓𝑝 = 0.993. Given the above 

derivations, the predictive accuracy can be calculated using (31): 

𝑃𝐴(𝕊, Ƥ) = √𝑟𝑡𝑠𝑡−𝑡𝑟𝑛
2 + 𝑑𝑡𝑟𝑛

2 + 𝑂𝑓𝑝
2  

                 = √12 + 0.8922 + 0.9932  

                 = √1 + 0.795664 + 0.986049  

                 = 1.66785  

The comprehensibility ‘|ℂ|’and system accountability ‘|𝑆𝐴|’ scores reported in Table 24, along with the 

𝑃𝐴 calculated above, can be used to compare the performance of SAM with those of the DAASAS and 

ASAM which were reported in Section 3.5. Analysing Figure 77, we see that SAM outperforms both 

systems and shows a quantifiable improvement in comprehensibility and system accountability, which 

was desired for it to be considered as an improvement on previous work. 

The results show that by incorporating AXAI into the software design and development process, one 

can improve the user experience while promoting explainability and transparency of internal system 

logic and decision-making processes. This survey, and the comparison with other systems shows that 

while SAM may not be a perfect execution of accountable, explainable AI, it is definitely a large step 

in the right direction. While the application of SAM is within the domain of affective computing and 

intelligent agents, the design process used is universal, and principles used for designing SAM from 

the first iteration to the last, can be translated into other domains and applications. 

 Assessor ID   

Score 

No. 

Sym-

bol 

1 2 3 4 5 6 7 8 Average using 5-

point score 

Normalised 

Average Score 

1 |ℂ|   1.275 

3 |𝑆𝐴| 1.453 

4 𝑇𝑖𝑡  3 5 3 5 5 4 3 4 4.00  

5 𝑇𝑝𝑟  5 3 3 3 4 3 1 4 3.25 

6 𝑇𝑝𝑛 5 5 2 4 4 4 2 4 3.75 

10 𝐼𝑖𝑛 5 5 4 4 4 4 4 5 4.38 

11 𝐼𝑝𝑟𝑜 5 3 2 4 5 3 3 3 3.50 

12 𝐼𝑜𝑢𝑡  5 5 4 4 5 5 4 5 4.63 

Table 24: SAM_V1 user experience and assessor scores using the 5-point scale identified in 

  Table 6. This table indicates the comprehensibility and system accountability of SAM. 
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Figure 77: AXAI capability comparison of DAASAS, ASAM and SAM systems, showing predictive 

  accuracy, comprehensibility, and system accountability scores and visualising them in 

  a 3-dimensional space. 
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Chapter 6:  Parallel Research and Other Contributions 

6.1 Blind Source Separation and Crowd Sentiment Analysis 

Chapters 1 and 2 introduced and discussed blind source separation (BSS) as an unsupervised learning 

technique and how it could be deployed as a technique to decompose signal mixtures for the purpose 

of estimating source signals given an observed signal mixture. The overall governing equations for BSS 

problems have been defined through (1) and (2) i.e.: 

𝐱(𝑡) = 𝐀𝐬(𝑡) + 𝐛(𝑡), 1 ≤ 𝑡 ≤ 𝑇 

𝐲(𝑡) = 𝐖𝐱(𝑡) = 𝐖𝐀𝐬(𝑡) 

where ‘𝐱(𝑡)’ is an observed signal, ‘𝐲(𝑡)’ is the estimated signals, ‘𝐀’ is the mixing matrix and ‘𝐖’ is 

the demixing matrix. However, as discussed in Section 2.1.1, there are various unique approaches that 

can be deployed to derive the demixing matrix parameters including ICA, MICA, and DTWCT for 

example. While Chapter 2 may have discussed the theoretical foundations of BSS, this section 

discusses how and where this theory can be applied i.e., through crowd sentiment analysis. 

As has been extensively discussed in this thesis and in previous work, human expressions are complex 

responses to internal and external stimuli, and these expressions can result in changes in speech as 

we aim to augment our vocal responses such that our feelings and intentions can be conveyed. Thus 

far, we have discussed how speech signals can be classified when a single speaker is being assessed. 

However, classifying the distribution of affective states in a group of speakers is yet to be attempted, 

thus highlighting the contribution of this work. 

 

Figure 78: Blind source separation and crowd sentiment analysis flowchart showing three major 

  stages of the process: Signal mixing (blue), blind source separation (orange) and vocal 

  feature extraction and classification (green).  

The purpose of this research is to combine BSS techniques with affective speech classification to 

separate speech mixtures and determine the affective states of speakers in a group/crowd scenario. 

The problem of separating and classifying speech signals when analysing a signal mixture is 

exacerbated by the structure of the mixture itself. The implication of this problem is that a mixture 

needs to be defined as being either Gaussian or non-Gaussian (identifying statistical dependence vs. 

independence) prior to commencing with solving the problem. 

If a group of speakers are engaging in separate, independent conversations and are experiencing 

different sentiments, an assumption would be that the signal mixture is non-Gaussian and that there 
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would be no mutual information contained in the mixture. Thus, an independent separation technique 

like Fast-ICA would be deployed for separation. Conversely, if mutual information does exist in a signal 

mixture and speakers are experiencing similar emotive experiences, a dependent component analysis 

would need to be deployed for separation (like MICA and DTCWT). 

The separation algorithm would then split the signal mixture into ‘𝑛’ estimated signals, one for each 

speaker in the group and the affective speech classification algorithm would be iteratively deployed 

for each estimated signal, determining the state of each speaker. By classifying the state of every 

speaker in a mixture, it therefore allows you to determine the distribution of states in a group/crowd. 

This allows for tasks such as group sentiment analysis as well as outlier detection. If a group containing 

twenty speakers classified nineteen as ‘happy’ speakers and one as ‘sad’, then this outlier could be 

identified as an observation that would need to be handled depending on what application this 

technology is being deployed in. We can therefore see that such a system could be applied in domains 

and sectors including: entertainment, public/national security, education, criminology. 

Through this research, it has been proved that group sentiment analysis can be achieved through a 

combination of BSS and affective speech classification under the assumptions of both statistical 

dependence and statistical independence. For BSS, two methods introduced in Section 2.1.1 were 

experimented with: (i) Fast-ICA, (ii) dual-tree complex wavelet transform. Spectral-, Frequency- and 

Amplitude-related features were then extracted from separated signals and a random forest classifier 

was deployed for classification using a discrete classification architecture (six or seven classes). The 

flowchart in Figure 78 visualises how speech data is manipulated throughout the process, including 

mixing, separation, and classification stages.  

The TESS, RAVDESS, CREMA-D and EMO-DB datasets (see Table 11) were all used throughout 

experimentation. For each dataset experiment, results were collated over the course of 100 tests 

where in each test, a unique combination of 5 randomly-selected samples were chosen for mixing, 

separation, and classification. The number of tests ‘𝑛𝑡𝑒𝑠𝑡𝑠’ is therefore defined by: 

𝑛𝑡𝑒𝑠𝑡𝑠 =
𝑛𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑛𝑚𝑖𝑥𝑡𝑢𝑟𝑒
 

where ‘𝑛𝑑𝑎𝑡𝑎𝑠𝑒𝑡’ defines the number of samples in a dataset and ‘𝑛𝑚𝑖𝑥𝑡𝑢𝑟𝑒’ is the number of samples 

that have been mixed i.e.: 𝑛𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 5. There are common key performance indicators (KPIs) used 

to measure separation performance in BSS literature, which model human perception [152-154]. 

These include: 

1. Source-to-distortion ratio (SDR) – reflecting the overall performance of the separation 

algorithm, modelled by: 

𝑆𝐷𝑅 = 10 log10 (
||𝑒𝑡𝑎𝑟𝑔𝑒𝑡||

2

||𝑒𝑖𝑛𝑡𝑒𝑟𝑓 + 𝑒𝑎𝑟𝑡𝑖𝑓||
2) 

2. Source-to-interferences ratio (SIR) – models the separation algorithm’s ability to isolate and 

remove interferences from a signal, modelled by: 

(38) 

(39) 

(40) 
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𝑆𝐼𝑅 = 10 log10 (
||𝑒𝑡𝑎𝑟𝑔𝑒𝑡||

2

||𝑒𝑖𝑛𝑡𝑒𝑟𝑓||
2) 

3. Source-to-artifacts ratio (SAR) – models the separation algorithm’s ability to isolate and 

remove noise from a signal, modelled by: 

  

𝑆𝐴𝑅 = 10 log10 (
||𝑒𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑒𝑖𝑛𝑡𝑒𝑟𝑓||

2

||𝑒𝑎𝑟𝑡𝑖𝑓||
2 ) 

These KPIs are derived through orthogonal projection decompositions as discussed in [153] and use 

four variables: (i) 𝑠𝑡𝑎𝑟𝑔𝑒𝑡, (ii) 𝑒𝑖𝑛𝑡𝑒𝑟𝑓, (iii) 𝑒𝑛𝑜𝑖𝑠𝑒 and (iv) 𝑒𝑎𝑟𝑡𝑖𝑓. Through the log-scale we can deduce 

that 𝑆𝐷𝑅, 𝑆𝐼𝑅 and 𝑆𝐴𝑅 are all measured in decibels (dB), where: 𝑑𝐵 ∝ separation performance. In 

literature [152, 153], it is stated that the source-to-distortion ratio is the most important separation 

metric thus, separation algorithms should be optimised to improve SDR. 

In this research task, 𝑆𝐷𝑅, 𝑆𝐼𝑅 and 𝑆𝐴𝑅 are measured for all signals that have been separated from a 

mixture, for all 𝑛𝑡𝑒𝑠𝑡𝑠 that have been conducted. Thus, calculating the mean separation performance 

for each algorithm applied for each dataset i.e.: 𝑆𝐷𝑅̅̅ ̅̅ ̅̅ , 𝑆𝐼𝑅̅̅ ̅̅ ̅ and 𝑆𝐴𝑅̅̅ ̅̅ ̅̅ . Classifier performances were 

measured using the validation classification accuracy defined by (33), i.e.: 

𝐴𝑐𝑐(%) =
𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
× 100%  

The experimentation results are reported in Table 24. All rows are an accumulation of results extracted 

across 𝑛𝑡𝑒𝑠𝑡𝑠 where 𝑛𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 5 with randomised mixing matrix ‘𝑨’ parameters. Speech signals are 

mixed, separated and classified as per the system architecture visualized in Figure 78. All separated 

speech signals were classified using the trained RFC models for predicting group emotive states in the 

group, the results of these experiments are represented through the classification accuracy columns. 

 Independent Component Analysis Dual-tree Complex Wavelet Transform 

Dataset 𝑺𝑫𝑹̅̅ ̅̅ ̅̅  

(dB) 

𝑺𝑰𝑹̅̅ ̅̅ ̅ 

(dB) 

𝑺𝑨𝑹̅̅ ̅̅ ̅̅  

(dB) 

Classification 

Accuracy (%) 

𝑺𝑫𝑹̅̅ ̅̅ ̅̅  

(dB) 

𝑺𝑰𝑹̅̅ ̅̅ ̅ 

(dB) 

𝑺𝑨𝑹̅̅ ̅̅ ̅̅  

(dB) 

Classification 

Accuracy (%) 

TESS 27.76 27.77 63.14 90.95 23.42 23.43 59.25 91.06 

RAVDESS 31.71 31.71 76.40 70.10 32.67 32.67 76.66 69.87 

CREMA-D 28.25 28.26 65.10 64.17 25.50 25.51 61.71 65.82 

EMO-DB 26.55 26.62 51.81 92.01 26.59 26.69 52.01 91.74 

   

Average 28.57 28.59 64.11 79.31 27.04 27.08 62.41 79.62 

Table 25: Performance metrics for the BSS and crowd sentiment analysis system when  

  experimenting on four datasets. 

Discussing Table 25, we see relatively consistent performances for 𝑆𝐷𝑅̅̅ ̅̅ ̅̅  and 𝑆𝐼𝑅̅̅ ̅̅ ̅ metrics for cases of 

both statistical dependence and independence, with 𝑆𝐴𝑅̅̅ ̅̅ ̅̅  displaying the highest variance for both. 

Similar to the stereo instantaneous mixture evaluation in [153], 𝑆𝐷𝑅̅̅ ̅̅ ̅̅  and 𝑆𝐼𝑅̅̅ ̅̅ ̅ are very similar for all 

cases, with the 𝑆𝐴𝑅̅̅ ̅̅ ̅̅  KPI being much higher in comparison. Observing high 𝑆𝐴𝑅̅̅ ̅̅ ̅̅  values evidence that 

both methods are very capable of isolating and removing noise from the signal. 

(41) 
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Across all datasets, the ICA algorithm produced greater separation performances on average when 

compared to the DTCWT method. Regarding the performances of datasets, we see experiments using 

the RAVDESS dataset provided the greater separation performances, but the EMO-DB dataset 

provided the best classification performances. 

A thorough investigation was conducted to find evidence of emotive state assessment in group 

scenarios using similar methods to those discussed in this report. The investigation found no evidence 

of such approaches, thus making one-to-one performance comparisons very difficult. While the 

separation of acoustic signals is prevalent across literature [152-156], a comparison can still be made 

in terms of separation in which our proposed method has proven to be very competitive.  

However, there is evidence of classifying affective speech in literature [21, 87]. A survey conducted in 

[21] reports classification accuracies between 43-85% for affective speech classifiers using a variety of 

methods, datasets, and features. Comparing the classification accuracy results reported in Table 25, it 

shows that in all cases, the system being discussed is competitive and, in some cases, outperforms 

those discussed in the survey. 

By comparing these results to those in literature, it shows that the presented BSS and crowd sentiment 

analysis system is technically capable of separating and classifying affective speech signals in mutually 

dependent and independent mixture conditions. Furthermore, the lack of similar approaches to group 

sentiment analysis in literature adds to the novelty of this work. If deployed, this system would be 

capable of equipping inspection systems with non-pervasive group sentiment analysis capabilities, 

allowing for the remote monitoring of intentions and moods in crowd and group scenarios. This 

highlights another application of affective speech classification, parallel to the work that has been 

discussed as part of SAM’s architecture. 

Future work could see this system being incorporated as an auxiliary function that exists as part of 

SAM’s classification architecture, using the inherent, continuous speech classification architecture in 

place of the speech classifier discussed as part of this work. Such an addition would expand SAM’s 

intelligence, making it capable of understanding changes in expressions for both single speakers and 

groups of speakers. 

6.2 Dynamic Micro-expression Detection using Hierarchical Clustering 

Through researching and developing SAM’s rule-based system and hierarchical classification network, 

some parallel work went into defining a rule-based system for defining micro-expressions in full-, 

upper- and lower-facial regions. Throughout this work, the concept of exposing black-box ML systems 

has been discussed. This research evidenced another way in which that goal can be achieved within 

the realm of affective state assessment systems. Furthermore, by considering micro-expressions of 

states, this work is built on the foundation (similar to SAM) that expressions are continuous and have 

temporal considerations [81-83, 130].  

The goal of this research task was to design a rule-based system capable of exploiting the continuous 

nature of expressions such that various levels of expressions of affective states across various facial 

regions could be classified i.e.: (i) Full-facial, macro-level expressions, (ii) Upper-facial, micro-level 

expressions and (iii) Lower-facial, micro-level expressions. 
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The construction of each of the above subsystems is built on the foundations of the cosine similarity-

based clustering approach discussed in Section 5.1, applied on the CK+ dataset [125]. To summarise, 

the CK+ dataset has continuous samples separated into seven classes: (i) happy, (ii) sadness, (iii) anger, 

(iv) fear, (v) disgust, (vi) surprise, (vii) contempt, with actors changing expressions from neutral to 

activated. The separation technique was applied to detect the similarity across a continuous sample 

and construct cluster boundaries transforming 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠: 7 → 21. 

Then, by deploying linear discriminant analysis (LDA), this allowed for the further separation of 

clustered samples and a projection onto a linear discriminant (LD) plane. The graphical representation 

of clusters on the LD plane prompted an investigation into the relationships between cluster centroids 

and how facial action units (as defined in Table 2) can be used to form a new, rule-based system for 

classifying the different levels of expressions, which is based on continuous muscle movements. 

Identifying some of the related works, research conducted in [119, 157-160] offer some unique 

examples of micro-expression detection and categorisation. Pfister et al. in [157] propose a framework 

for detecting spontaneous facial micro-expressions, using temporal interpolation for feature mapping, 

prior to implementing traditional machine learning classifiers like support vector machines, multiple 

kernel learning and random forests. Comparatively in [158], Xu et al. propose a “Facial Dynamics Map” 

which characterises micro-expression movements using granular pixel features and an algorithmic 

approach based on optical flow estimation. Their work employs a support vector machine classifier to 

identify and categorise different types of facial micro-expressions [158].  

Polikovsky et al. present an approach in [159] that uses the EMFACS as the basis for micro-expression 

detection. Their method divides full facial images into smaller facial regions based on action unit 

locations and a histogram of oriented gradients (HOG) approach is combined with a K-nearest 

neighbour classifier for the purpose of detecting micro-expression and action unit activations.  

Discussing the work in [119, 160], we see that rather than exploiting visual cues, the authors exploit 

thermal features for facial expression classification. Comparing their findings, in [119], we see that a 

feature comparison was reported, measuring both upper- and lower-facial region muscle activation 

temperatures when expressing different states whereas in [160], the authors report the differences 

in classifier performances when different sub-regions of the face are used for feature extraction. 

Comparing the parallel research discussed in this section to those related works [119, 157-160], the 

proposed solution not only successfully detects and classifies micro-expression activations in the 

upper and lower-facial regions, but also uses them as a vehicle for macro-level dynamic affective state 

assessment. The system is capable of classifying twenty-, upper- and lower-facial region micro-

expressions as well as twenty-one macro-level facial expressions, thus promising a robust affective 

state assessment solution that accounts for the multidimensional, dynamic nature of human 

expressions. Furthermore, the solution is unique when compared to the approach taken when 

designing SAM. 

A major benefit of deploying the LDA algorithm is its ability to optimise cluster centroid separation by 

maximising inter-cluster variance and minimising intra-cluster variance. Figures 78 and 79 visualise 

the raw clusters and the corresponding cluster centroid locations when applied to full facial expression 

image data. The raw, CK+ image data used to generate the cluster representations had been pre-
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processed by converting images to greyscale and rescaling them to 100x100 after the separation 

algorithm was applied. 

Analysing Figures 79 and 80 we observe that linear trends from _NEUTRAL → _PARTIAL → fully 

activated expressions for all states that have been modelled. Furthermore, when we look at the cluster 

centroids in Figure 80, we see that there are two continuous axes that could be used to model all 

expression changes on a linear discriminant space, these being: (i) Sadness (left) → Happiness (top 

right) and (ii) Anger (top left) → Surprise (bottom right). A clearer representation of these axes is 

shown in Figure 81. 

 

Figure 79: LDA clustering results of the initial, cosine similarity-separated full facial image data, 

  highlighting all samples from the CK+ datasets (21 classes). 
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Figure 80: Cluster centroids for each of the 21 macro-level states, with centroids calculated 

  using the raw cluster data in Figure 79. 

 

Figure 81: Visualisation of the two axes: (i) Sad-Happy and (ii) Anger-Surprise that can be  

  inferred from the projection and cluster centroids in Figures 79 and 80. 

But what do these axes represent in a theoretical sense? The linear discriminant space visualised in 

Figures 79-81 are low-dimensional linear discriminant representation of facial expressions, a mapping 

that corresponds with certain feature changes and variations in facial expressions at a higher level. 

We also see that the other three activated state centroids: contempt, disgust and fear reside on the 

two defined axes, with contempt existing at the intercept of the two axes, which is predictable given 

it is the most “neutral” expression relative to the other affective states being modelled. 
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Defining rules based on the logical foundations provided by the FACS presented in Table 2 and 

discussed prior, henceforth become very important. Comparing changes in muscle activations from 

state-to-state may help in indicating what these linear relationships actually represent in real-life and 

successfully doing so provides the foundation for a rule-based expert system capable of detecting and 

classifying micro-expressions.  

Comparing sadness and happiness muscle activations, one can then model state-to-state transitions, 

visualising how expressions change based on muscle movements as shown in Figure 82. Similarly, 

comparing anger and surprise muscle activations, we can model this transition, as visualised in Figure 

83. Note that in this case, both states evidence “raised upper eyelids” which is useful when attempting 

to derive a clearer relationship. Given the common facial muscles/areas used when changing 

expression from sadness → happiness and anger → surprise, we can define the following axis rules: 

Sadness-Happiness Axis Rule: Sadness and happiness share common facial muscle groups surrounding 

the mouth and cheek/eyelid regions, the axis that has been formed models the following 

transformations: (i) parallel relaxation of brows and raising of cheeks, (ii) raising of lip corners and 

mouth from an initial down-turned expression. 

Anger-Surprise Axis Rule: Anger and surprise share common facial muscle movements surrounding 

the mouth and eyebrow regions, sharing a consistent ‘raised upper eyelid’ activation. Therefore, the 

state-to-state transition models the following transformations: (i) Eyebrows raise from an initial 

frowned/depressed position, (ii) Mouth opens from an initial tightened expression. 

 

Figure 82: State-to-state transitions along the sadness-happiness axis as originally visualised in 

  Figure 81, showing examples of partial and neutral states as well. Facial images used 

  in this figure have been extracted from the CK+ dataset. 
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Figure 83: State-to-state transitions along the anger-surprise axis as originally visualised in  

  Figure 81, showing examples of partial and neutral states. 

 

State A → State B |𝚫𝑳𝑫𝟏| |𝚫𝑳𝑫𝟐| 

Anger → Happy 0.81695 0.16830 

Anger → Sadness 0.01590 0.21629 

Anger → Surprise 0.65633 0.67885 

Happy → Sadness 0.83285 0.38459 

Happy → Surprise  0.16062 0.84714 

Sadness → Surprise 0.67223 0.46255 

Table 26: State-to-state comparison table showing the difference in 𝑛𝑡ℎ linear discriminants – 

  𝐿𝐷𝑛. Highlighted values in the table display high and low |Δ𝐿𝐷𝑛| values. 

Expanding on the two axis rules that have been formed above, we may postulate an initial hypothesis 

in regard to what the X and Y axes represent in this case (i.e., linear discriminant 1 and 2 respectively). 

Let linear discriminant ‘𝑛’ be denoted by ‘𝐿𝐷𝑛’, Table 26 shows the |Δ𝐿𝐷𝑛| values when comparing 

states i.e., axis start and end points. Together, Table 26 and Figure 84 serve as the basis for developing 

and proving the rule-based micro-expression classifier that was developed as part of this research. 

Given all the graphical, logical, and theoretical evidence provided, the following hypotheses and 

macro-expression rules may be defined: 

1. 𝐿𝐷1  relates to the openness of the mouth and the lower region of the face given the following 

articles of evidence: 
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o Sadness and Anger share a low Δ𝐿𝐷1. The two common actions between the states 

are: “upper eyebrow frown” and “lips tightened/lowered corners”. 

o The presence of two common actions would be troublesome if not for the presence 

of the surprise and happiness states, which also share a low Δ𝐿𝐷1. The common action 

between surprise and happiness revolves around raised lip corners and ultimately, 

the shape of the mouth. 

2. 𝐿𝐷2 relates to the region around the eyes i.e., the eyelids and eyebrows – the upper facial 

region, evidenced by: 

o The Anger-Sadness transition in Table 26 shows both a low Δ𝐿𝐷1 and Δ𝐿𝐷2. If the 

initial hypothesis is that 𝐿𝐷1 is related to the mouth, then the second common action 

– “upper eyebrow frown” may be related to 𝐿𝐷2, which supports the upper facial 

region relationship. 

o Analysing Figure 84 and the transition from anger to happiness, we see that the eyes 

remain the same shape, with the largest variance evident between full to partial anger 

states when the frown is relaxed slightly. Removing the lower half of the face, we can 

observe that there are similarities between the brow/eye region of the two states. 

o The third article of evidence is the large variance between happiness and surprise. 

Given that the open mouth is deduced as being referred to by 𝐿𝐷1, we can clearly 

identify the difference between happiness and surprise frames in Figure 84 through 

the upper half region of the face, specifically the brow and eye regions, thus providing 

further evidence toward 𝐿𝐷2 relating to the upper facial region. 

Inferring the above rules for the macro-level assessment of facial expressions allows one to define a 

relationship that is capable of mapping statistical features with real-world features, while also 

providing a vehicle for transient macro-level facial expression classification – a concept that has been 

deployed as part of SAM’s classification architecture as discussed extensively in previous sections. 
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Figure 84: Visualised state-to-state transitions for anger, happiness, sadness, and surprise states. 

  Combined with Table 26, this figure assists in the mapping of 𝐿𝐷𝑛 features to real-

  world features as defined by the above rules. 

The above claims and hypotheses could be considered unsubstantiated if the necessary experiments 

are not conducted on top of these initial hypotheses. The upper- and lower-facial micro-expression 

analysis components of this research aim to prove the validity of 𝐿𝐷1 and 𝐿𝐷2 rules, while in itself, 

introducing a deeper analysis of dynamic facial expressions by focusing on continuous muscle 

movements in the upper and lower facial regions. 

Chapter 5 discussed the occlusion detection functionality, where the lower half of a facial image was 

used to detect if an obstruction like a face mask was present. A similar algorithm was deployed for 

splitting upper and lower facial image data when conducting this research, only that both the upper- 

and lower-facial image data was used rather than just the latter. Extracting this image data allowed 

for the classification of micro-expressions in upper and lower facial regions. If the initial hypotheses 

were correct, then there should be a very discernible trend between states at the micro-level as this 

would indicate that the projected feature ‘𝐿𝐷𝑛’ is related to a particular group of muscles. 

In this work, the macro-level linear discriminant features are defined by ‘𝐿𝐷𝑛’ – i.e., 𝐿𝐷1 = the lower 

facial region and 𝐿𝐷2 = upper facial region. Moving into micro-level analysis, let ‘𝑚’ describe the micro-
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level features contained within the higher, 𝑛𝑡ℎ level regions i.e., ‘𝐿𝐷𝑛.𝑚’. For example, 𝐿𝐷1.1 and 𝐿𝐷1.2 

describe micro-expressions in the lower facial region. 

As shown in Figure 85, the clusters share a similar 𝐿𝐷2.2 value, with the largest variance being in the 

direction of 𝐿𝐷2.1. We also see that the clusters trend linearly from anger to surprise along the 𝐿𝐷2.1 

axis. Note that fear and contempt states display large variances along the 𝐿𝐷2.2 axis, sharing common 

𝐿𝐷2.1 values (cluster centroid co-ordinates). Furthermore, it should be noted that contempt is an 

asymmetrical expression and as such could explain why it is such an outlier. But besides these two 

states, we see that the majority of expressions exist along the 𝐿𝐷2.1 axis. 

The Anger-Surprise Axis Rule defined previously modelled two transformations: “(i) Eyebrows raise 

from an initial frowned/depressed position, (ii) Mouth opens from an initial tightened position.” When 

combined with the hypothesis: “𝐿𝐷2 relates to the region around the eyes, eyelids, and brows – the 

upper facial region”, we can therefore state that the micro-level feature 𝐿𝐷2.1 refers to a translation 

of the eyebrows from an initial frowned/down-turned position to a raised position, making use of the 

medial frontalis, levator palpebrae superioris and corrugator supercilii facial muscles. 

The lower facial region i.e., 𝐿𝐷1 is more sparsely clustered in comparison to the upper facial region. 

Analysing Figure 86, we see that most states reside on one side of the spectrum, sharing a similar 

𝐿𝐷1.1 linear discriminant feature value, with happiness and its sub-states displaying the largest 

variance in 𝐿𝐷1.1. The notable trend observed in the lower region of the face is attributed to the micro-

level feature 𝐿𝐷1.2 – the y-axis, showing disgust (top) and surprise (bottom) as the two extremes. 

Figure 86 exhibits an axis that has been derived previously, only in this instance, it has been mapped 

from one feature space to another, this axis is the Sadness-Happiness axis, which varies in regard to 

the 𝐿𝐷1.1 feature. The Sadness-Happiness Axis Rule defined previously modelled the following two 

transformations: “(i) parallel relaxation of brows and raising of cheeks, (ii) raising of lip corners and 

mouth from a depressed initial condition”. The second transformation relates to the lower facial region 

feature. This transformation regarding lip corner movements may be the causal link between the 

micro-level feature 𝐿𝐷1.1 and the real world. Analysing the variations in 𝐿𝐷1.2, we see disgust and 

surprise on opposite sides of the spectrum. Recalling Table 25, the immediate hypothesis is that 𝐿𝐷1.2 

models the openness of the mouth, and the manipulation of the central lip muscles - orbicularis oris 

and levator labii superioris. 
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Figure 85: Two-dimensional linear discriminant space representation of the upper facial region, 

  visualising 𝐿𝐷2.1 and 𝐿𝐷2.2 micro-expression features. 

 

Figure 86: Two-dimensional linear discriminant space representation of the lower facial region, 

  visualising 𝐿𝐷1.1 and 𝐿𝐷1.2 micro-expression features. 



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

165 
 
 

The evidence provided by the micro-level LDA-derived clusters prove the validity of the macro-level 

inferences i.e.: 𝐿𝐷1 relates to the shape of the mouth and the lower facial region and 𝐿𝐷2 relates to 

the upper facial region. Moving into the micro-expression (𝑚𝑡ℎ level), we can define each axis as: 

• 𝐿𝐷1.1 = Lip corner muscles, modelling a translation from a down-turned shape to a lifted 

shape.  

• 𝐿𝐷1.2 = Models the “Openness” of the mouth and the manipulation of central lip muscles 

from closed to open. 

• 𝐿𝐷2.1 = Models a translation of the eyebrows from an initial frowned position to a raised 

position. 

• 𝐿𝐷2.2 = Used to identify expressions such as fear and contempt and asymmetrical movements 

outside of the spectrum from anger to surprise. 

Defining the governing hypotheses and establishing the rule-based system provides a justification and 

foundation for upper and lower facial expression classification with the former serving as the basis for 

the research reported in [25].  

To measure the classification capabilities of the proposed rule-based system, three traditional 

supervised learning methods were explored: (i) SVM, (ii) Random Forest, (iii) K-Nearest Neighbour, 

using linear discriminant features as classifier inputs. Model training was done using an 80/20 

train/validation split, using the CK+ dataset to train and assess the models. Validation accuracy was 

the metric used to compare classification performances as defined by (42).  

The bar graph in Figure 87 compares the performances of the three techniques when deployed for 

macro-level classification and upper- and lower-facial micro-expression classification. In this work, 

when comparing results, it is evident that lower facial region micro-expressions are classified with 

greater accuracy when compared to the upper-facial region and when classifying the full-facial region. 

The classification performances of the lower and upper facial micro-expression classifiers are 

consistent with the human observations made in [160, 161], stating that the classification of lower 

facial expressions is on average, more accurate than that of upper facial expressions. Looking at 

Figures 85 and 86, we can see why this may be the case. The lower facial region micro-expression 

clusters show a larger separation across 𝐿𝐷1.1 and 𝐿𝐷1.2 axes when compared to the upper facial 

region micro-expressions, primarily showing variations in the 𝐿𝐷2.1 axis for most states. However, 

through these findings, the importance of both upper- and lower-facial region muscle movements 

when expressing a particular state can still be observed. 

This research offered an alternative way of assessing continuous changes in facial expressions, 

particularly with respect to how labels could be changed by the developer to relay different 

information in a classification system. In a system like SAM, state information is shown to the user 

based on prediction results. However, using a system like the one discussed in this section, rather than 

saying “partially happy” or “apex sadness”, these outputs could be replaced by muscle movement 

actions based on the rule-based system that has been defined, showing changes in 𝐿𝐷𝑛.𝑚 features. 

Furthermore, as has been reported in [25], this work has shown the ability of a system to classify upper 

facial expressions, which would be a necessary addition to a system that operates in an environment 

where visual occlusions like protective face masks are present. Rather than stopping classification in 
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the presence of a visual occlusion, the upper facial expression classification system could be deployed 

to assess a person’s state using upper facial region features – similar to how we as humans have 

trained ourselves to analyse how a person is feeling when communicating with PPE and face masks. 

When comparing the performances of the classifiers designed for this research with those that have 

been designed for SAM, we see that classification has been improved, particularly when comparing 

full facial expression classifiers in Figures 29 and 87. This could be related to the use of the RAVDESS 

dataset for training SAM’s models or it could be related to the implementation of SAM’s hierarchical 

classifier ensemble, which shows that by clustering similar expressions and splitting a 21-state 

classifier into a combination of binary and ternary classifiers, performances can be improved. 

An argument could therefore be made that by applying the hierarchical classifier ensemble 

architecture for upper facial expression classification, one could theoretically improve the 

classification performances and implement the upper-facial micro-expression as part of a real-time 

system architecture – like SAM. This would be a functional improvement that would be explored in 

future work and future iterations of SAM. 

 

Figure 87: Comparison of classifier performances and validation accuracy when analysing full 

  facial expressions and upper- and lower-facial expressions. 
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Chapter 7:  Conclusion 
During the inception of this project, I posed the question: “How can I improve the way we perceive AI 

systems and interact with machines in general?”. While on the surface, this could be considered as a 

blanket statement, the seed was planted and from it grew the Accountable Explainable Artificial 

Intelligence (AXAI) framework, the State Assessment Module (SAM), and all other contributions that 

have been discussed in this work. In fact, the level in which this research has answered that question 

is greater than what was initially conceived. 

This thesis has explored many facets of engineering, software design, development, artificial 

intelligence, affective state assessment and human- and machine-centred decision-making. Largely 

through the AXAI framework and SAM, this work has contributed a wealth of knowledge to various 

fields of literature. 

There are several gaps in research corresponding to general machine learning/AI that stem from the 

major issue of “black-box” approaches and trust in AI systems for the general public. While explainable 

AI (XAI) has been posed as a solution, the fact remains that existing XAI solutions still struggle to 

address all of the issues that posed by the general population. A common fault is that black-box 

solutions lack explanatory reasoning and explainability thus highlighting a considerable gap that 

researchers need to bridge. Furthermore, with the inherent distrust and lack of reasoning, comes a 

need for quantitative assessment tools and regulation and legislation for AI systems. 

In extension to general machine learning and AI, there are various research gaps associated with 

affective state assessment, and ways that these systems can be improved going forward. A major 

research gap is that there is a lack of real-time AXAI and XAI-capable ASA system. While ASA systems 

have been deployed using facial expression and speech analysis, these systems are generally statistical 

classifiers and do not possess XAI or AXAI capabilities. Considering some of the potential and existing 

applications of ASA systems, there is a need for more accountable, transparent solutions, especially 

considering that human emotions and feelings are being used for decision-making processes. 

There is also a lack of dynamic continuous assessment solutions, which is a considerable issue when 

we account for the fact that human expressions are by nature – dynamic and continuous. By deploying 

discrete solutions, ASA systems fail to account for minor changes in features, temporal considerations, 

and micro-expressions. Through a literature survey it was also found that blind source separation has 

not been applied in the realm of ASA and there is a lack of research in which this common signal 

analysis technique has been applied in this domain. Finally, in light of the COVID-19 pandemic and the 

rise in the use of face masks and PPE, many existing ASA and facial expression recognition would be 

rendered obsolete by not accounting for the presence of visual occlusions, a research gap that would 

need to be addressed if we were to design adaptive systems rather than static ones. 

This work addresses the machine learning and AI-related research gaps through the AXAI framework 

and proves that transparent, explainable systems are possible through the deployment of SAM. The 

need for interpretable models and explainable systems has been an emerging discussion point in 

political, legal, academic, and professional sectors. As technology continues to advance, there needs 

to be systems in place that are capable of assessing and delineating AI and ML systems on the basis of 

their comprehensibility, accountability, and predictive accuracy. The novel, AXAI framework achieves 

this, and serves as a viable tool for assessing and comparing AI systems as reported in [107, 108].  



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

168 
 
 

Introducing accountability as an assessable element throughout the design process is a novel addition 

when compared to other XAI assessment solutions as these tend to define accountability assessment 

as a post-production task. Exploiting a comprehensive tool like the AXAI framework throughout the 

development cycle would improve the way AI and ML developers design systems, such that they could 

be optimised to improve the end-user experience and improve human-machine interactions. 

Through the design and development of SAM, this work has shown that using the AXAI framework to 

improve human-machine interaction is possible. SAM is an embedded, real-time, ASA system capable 

of classifying over 100 unique states across facial expression and paralinguistic fields. All of the ASA-

related gaps introduced in this work have been addressed through the development of SAM. The state 

assessment module exploits a hybrid learning model and a hierarchical classifier ensemble to achieve 

dynamic, continuous assessment across speech and facial expression modalities.  

This work has evidenced that SAM is highly accurate, boasting average classification accuracies of 

83.07% and 95.90% for facial expression and speech classifiers respectively. SAM is equipped with an 

intuitive, powerful GUI and a range of reporting, interaction and communication functions that allow 

it to explain its reasoning and decision-making processes to the user. An occlusion detection function 

that exploits a binary classifier to detect if a person for example is wearing a face mask is also 

embedded as part of SAM’s classification architecture. This work has also shown that it is possible to 

detect facial expression using the upper facial region in the event that an occlusion has been detected. 

Designing SAM as a modular, embedded system was a calculated decision. Robotic, autonomous, and 

complex hardware solutions exist all throughout literature and in the modern world. Therefore, 

designing SAM as a ‘robot’ with kinematic elements would not be a novel addition. I believe that SAM’s 

portability makes it more powerful, as it is capable of being equipped to any existing robotic and 

surveillance system that is equipped with the necessary peripheral devices including tools like drones 

as shown in Chapter 5. The ability to equip any robotic system with advanced emotional intelligence 

and affective state awareness adds to SAM’s novelty. 

Furthermore, this work has also shown the capabilities and benefits of incorporating blind source 

separation for group sentiment analysis. By separating speech signal mixtures and classifying them, it 

is proven that BSS can be an effective tool in the realm of affective computing and as discussed, many 

times prior, there is little-to-no evidence of BSS being applied in such a way, highlighting the novelty 

of the system introduced in this thesis, and the potential applications of such a system in security, 

entertainment, legal and commercial sectors.  

Summarising the structure of this thesis, Chapter 1 introduced the research and identified the main 

objectives, research gaps and significant contributions. Chapter 2 served as a literature review, 

discussing the background information and theory relevant to machine and deep learning, explainable 

AI, and affective computing. Chapter 3 introduced the AXAI framework and detailed the vectors and 

sub-components used to describe comprehensibility, accountability, and predictive accuracy metrics. 

Chapter 4 discussed software design and development principles and how the AXAI framework could 

be incorporated into the design of an AI system like SAM. 

Chapter 5 discussed the design and development of SAM from the ground-up, discussing front-end 

and back-end design choices and flowcharts and explaining the overall functionality and performance 

of the system. Chapter 5 also discussed SAM’s interactive elements and its deployment as a modular, 
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embedded system, proving how it could be deployed into existing robotic systems and infrastructures. 

Chapter 6 then discusses some of the parallel research efforts including blind source separation for 

group sentiment analysis and a dynamic rule-based system capable of upper- and lower-facial micro-

expression detection. 

Going forward, it is important to emphasise the importance of a tool like the AXAI framework and how 

researchers could draw from this research to improve AI system design and development processes. 

By incorporating elements of comprehensibility and accountability in AI system design would make 

systems more user-friendly and would enhance human-machine interactions in general. 

Regarding future work, there is an opportunity to improve the hardware that SAM exists on. As there 

are many single-board computers that exist on the market, it would be a wise task to experiment with 

performance speeds on different computers and development boards. In terms of functional 

improvements, as shown by the iterative approach reported in this thesis, there is always room for 

improvement and opportunities to advance the capabilities of SAM. Potentially, SAM could be 

equipped to have a contextual understanding of a person’s previous states (exploiting working 

memory and stored past interactions). This contextual knowledge would give SAM a more 

comprehensive understanding of who it is interacting with, and historical contexts could allow for an 

improvement in the way SAM interacts with users and subjects and vice-versa. 

As we look to improve the way we communicate and interact with machines, there is the potential for 

SAM to synthesise emotions and respond to a person based on their state. However, this addition 

would be very complex and requires a contextual understanding of various internal and external 

factors. But if completed, this would bring us closer to developing systems that are truly emotionally 

intelligent as they would have intelligence w.r.t to inputs and outputs. This could also lead to the 

addition of more commands as while SAM is capable of 21 commands, there is room for more. 

Transparency, accountability, and comprehensibility are necessary attributes that machine learning 

and AI systems must possess moving forward. Ultimately, the AXAI framework may not be the peak, 

but if it opens the door for further assessment tools and continues the discussion, then it has achieved 

its purpose. Regarding SAM, it has proven that systems can be designed with AXAI elements at the 

forefront and shows that the continuous, dynamic nature of human expressions can be accounted for 

in an ASA system. 

Improving human-machine interactions is no easy feat, and there are various considerations that need 

to be accounted for at a higher-level with tools like the AXAI framework and at a lower-level, with 

tools like SAM that account for and understand changes in affective states, emotions, and feelings. 

Humans are complex creatures, and our emotions drive a lot of our decision-making processes, so it 

is important that we design systems that understand what makes us innately human. 
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Appendices 

Appendix A:  SAM Version 1 Manifest File 
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Appendix B:  SAM Version 2 Manifest File 
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Appendix C:  SAM Version 3 Manifest File 
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Appendix D:  SAM Version 4 Manifest File 
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Appendix E:  SAM Version 5 Manifest File 
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Appendix F:  Home Screen Interaction Analytics Report Example
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Appendix G:  SAM Facial Expression Level 1 Generated Report 
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Appendix H:  SAM Facial Expression Level 2.1 Generated Report
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Appendix I:  SAM Facial Expression Level 2.2 Generated Report 
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Appendix J:  SAM Facial Expression Level 3.1 Generated Report 
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Appendix K:  SAM Facial Expression Level 3.2 Generated Report
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Appendix L:  SAM Facial Expression Level 4 Generated Report 
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Appendix M:   Collated SAM Facial Expression classifier dialogue responses for all windows 
LEVEL 1 – Neutral + Level of Activation 

No. HIGH/LOW Dialogue and Reasoning 

1 NEUTRAL This person looks like they are in a neutral state, due to the lack of noticeable movement around their face. 

2 LOW This person looks like they are in a low activation state due to the minor, noticeable muscle movements around their face. 

3 HIGH This person looks like they are in a high activation state, as I can see strong muscle movements around their face. 

LEVEL 2.1 – Generalized Muscle Movements 

No. HIGH/LOW State Group Dialogue and Reasoning 

1 LOW Happy||Surprise I see a slight change in mouth shape, and a combination of weak, lower and upper eyelid movements. 

2 LOW Anger||Disgust I see slightly raised lower eyelids, and slightly frowned eyebrows. 

3 LOW Sadness||Fear I see slight movements around the shape of their brows, specifically being slightly raised and frowned. 

4 HIGH Happy||Surprise I see a strong change in mouth shape and a combination of strong lower and upper eyelid movements. 

5 HIGH Anger||Disgust I see strong raised lower eyelids and very frowned eyebrows. 

6 HIGH Sadness||Fear I see strong movements around the shape of their brows, specifically noting they are raised and frowned. 

LEVEL 2.2 – General State Group 

No. HIGH/LOW State Group Dialogue and Reasoning 

1 LOW Happy||Surprise This person looks like they are either mildly happy, or mildly surprised. 

2 LOW Anger||Disgust This person looks like they are either mildly angry, or mildly disgusted. 

3 LOW Sadness||Fear This person looks like they are either mildly sad, or mildly scared. 

4 HIGH Happy||Surprise This person looks like they are either very happy, or very surprised. 

5 HIGH Anger||Disgust This person looks like they are either very angry, or very disgusted. 

6 HIGH Sadness||Fear This person looks like they are either very sad, or very scared. 

LEVEL 3.1 – Extended Muscle Movements 

No. HIGH/LOW State Group State Dialogue and Reasoning 

1 LOW Happy||Surprise Happy I see minor changes in mouth shape, as well as slightly raised lip corners, and lower eyelids. 

2 LOW Happy||Surprise Surprise I see a slightly open mouth, and slightly raised upper eyelids and eyebrows. 

3 LOW Anger||Disgust Anger I see tightened lips, slightly raised upper and lower eyelids, and some indication of frowned eyebrows. 

4 LOW Anger||Disgust Disgust I see a slightly raised upper lip, as well as raised lower eyelids and frowned eyebrows. 

5 LOW Sadness||Fear Sad I see slightly lowered lip corners, as well as some indications of raised and frowned eyebrows. 

6 LOW Sadness||Fear Fear I see a slightly open mouth, raised upper eyelids, and some indication of raised and frowned eyebrows. 

7 HIGH Happy||Surprise Happy I see a strong change in mouth shape, very raised lip corners, and raised lower eyelids. 

8 HIGH Happy||Surprise Surprise I see a very open mouth, and very raised upper eyelids and eyebrows. 
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9 HIGH Anger||Disgust Anger I see very tightened lips, very raised upper and lower eyelids, and frowned eyebrows. 

10 HIGH Anger||Disgust Disgust I see a strong raised upper lip, as well as raised lower eyelids, and frowned eyebrows. 

11 HIGH Sadness||Fear Sad I see strong lowered lip corners, as well as very raised and frowned eyebrows. 

12 HIGH Sadness||Fear Fear I see a very distinct mouth shape, raised upper eyelids, as well as very raised and frowned eyebrows. 

LEVEL 3.2 – Discrete State 

No. HIGH/LOW State Group State Dialogue and Reasoning 

1 LOW Happy||Surprise Happy I see minor changes in mouth shape, as well as slightly raised lip corners, and lower eyelids. 

2 LOW Happy||Surprise Surprise I see a slightly open mouth, and slightly raised upper eyelids and eyebrows. 

3 LOW Anger||Disgust Anger I see tightened lips, slightly raised upper and lower eyelids, and some indication of frowned eyebrows. 

4 LOW Anger||Disgust Disgust I see a slightly raised upper lip, as well as raised lower eyelids and frowned eyebrows. 

5 LOW Sadness||Fear Sad I see slightly lowered lip corners, as well as some indications of raised and frowned eyebrows. 

6 LOW Sadness||Fear Fear I see a slightly open mouth, raised upper eyelids, and some indication of raised and frowned eyebrows. 

7 HIGH Happy||Surprise Happy I see a strong change in mouth shape, very raised lip corners, and raised lower eyelids. 

8 HIGH Happy||Surprise Surprise I see a very open mouth, and very raised upper eyelids and eyebrows. 

9 HIGH Anger||Disgust Anger I see very tightened lips, very raised upper and lower eyelids, and frowned eyebrows. 

10 HIGH Anger||Disgust Disgust I see a strong raised upper lip, as well as raised lower eyelids, and frowned eyebrows. 

11 HIGH Sadness||Fear Sad I see strong lowered lip corners, as well as very raised and frowned eyebrows. 

12 HIGH Sadness||Fear Fear I see a very distinct mouth shape, raised upper eyelids, as well as very raised and frowned eyebrows. 

Level 4 – Temporal Phase: Verbose = 0 

No. HIGH/LOW State Group State Phase Dialogue and Reasoning 

1 LOW Happy||Surprise Happy Onset This person looks like they are approaching a mildly happy state. 

2 LOW Happy||Surprise Happy Apex This person looks like they are showing some signs of being mildly happy. 

3 LOW Happy||Surprise Happy Offset This person looks like they are exiting a mildly happy state. 

4 LOW Happy||Surprise Surprise Onset This person looks like they are approaching a mildly surprised state. 

5 LOW Happy||Surprise Surprise Apex This person looks like they are showing some signs of being mildly surprised. 

6 LOW Happy||Surprise Surprise Offset  This person looks like they are exiting a mildly surprised state. 

7 LOW Anger||Disgust Anger Onset This person looks like they are approaching a mild state of anger. 

8 LOW Anger||Disgust Anger Apex This person looks like they are in a mild state of anger. 

9 LOW Anger||Disgust Anger Offset  This person looks like they are exiting a mild state of anger. 

10 LOW Anger||Disgust Disgust Onset This person looks like they are approaching a mild state of disgust. 

11 LOW Anger||Disgust Disgust Apex This person looks like they are in a mildly disgusted state. 

12 LOW Anger||Disgust Disgust Offset  This person looks like they are exiting a state of mild disgust. 

13 LOW Sadness||Fear Sadness Onset This person looks like they are approaching a mildly sad state. 
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14 LOW Sadness||Fear Sadness Apex This person looks like they are mildly sad. 

15 LOW Sadness||Fear Sadness Offset  This person looks like they are exiting a slight mild of sadness. 

16 LOW Sadness||Fear Fear Onset This person looks like they are approaching a mild state of fear. 

17 LOW Sadness||Fear Fear Apex This person looks like they are experiencing a mild sense of far. 

18 LOW Sadness||Fear Fear Offset  This person looks like they are exiting a mild state of fear. 

19 HIGH Happy||Surprise Happy Onset This person looks like they are approaching a very happy state. 

20 HIGH Happy||Surprise Happy Apex This person looks like they are very happy. 

21 HIGH Happy||Surprise Happy Offset  This person looks like they are exiting a very happy state. 

22 HIGH Happy||Surprise Surprise Onset This person looks like they are approaching a very surprised state. 

23 HIGH Happy||Surprise Surprise Apex This person looks like they are very surprised. 

24 HIGH Happy||Surprise Surprise Offset  This person looks like they are exiting a very surprised state. 

25 HIGH Anger||Disgust Anger Onset This person looks like they are approaching a very angry state. 

26 HIGH Anger||Disgust Anger Apex This person looks like they are very angry. 

27 HIGH Anger||Disgust Anger Offset  This person looks like they are exiting a very angry state. 

28 HIGH Anger||Disgust Disgust Onset This person looks like they are approaching a very disgusted state. 

29 HIGH Anger||Disgust Disgust Apex This person looks like they are very disgusted. 

30 HIGH Anger||Disgust Disgust Offset  This person looks like they are exiting a very disgusted state. 

31 HIGH Sadness||Fear Sadness Onset This person looks like they are approaching a very sad state. 

32 HIGH Sadness||Fear Sadness Apex This person looks like they are very sad. 

33 HIGH Sadness||Fear Sadness Offset  This person looks like they are exiting a very sad state. 

34 HIGH Sadness||Fear Fear Onset This person looks like they are approaching a very fearful state. 

35 HIGH Sadness||Fear Fear Apex This person looks like they are in a high state of fear. 

36 HIGH Sadness||Fear Fear Offset  This person looks like they are exiting a very fearful state. 

Level 4 – Temporal Phase: Verbose = 1 

No. HIGH/LOW State Group State Phase Dialogue and Reasoning 

1 LOW Happy||Surprise Happy Onset This person looks like they are approaching a mild happy state, which I can see from the movement around the mouth, and 

general eyelid region, as well as the lip corners starting to raise. 

2 LOW Happy||Surprise Happy Apex This person looks like they are showing some signs of being happy by looking at their mouth, raised lower eyelids, and raised lip 

corners. 

3 LOW Happy||Surprise Happy Offset

  

This person looks like they are exiting a mild happy state, which I can tell by looking at the movements around the mouth and 

general eyelid region, as well as their lip corners returning to rest. 

4 LOW Happy||Surprise Surprise Onset This person looks like they are approaching a mildly surprised state, which I can see from the movement around the mouth, 

eyelid, and brow region. 
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5 LOW Happy||Surprise Surprise Apex This person looks like they are showing some signs of being surprised, which I can see from the shape of their mouth, raised 

upper eyelids, and raised eyebrows. 

6 LOW Happy||Surprise Surprise Offset  This person looks like they are exiting a mild surprised state, looking at the movements around the general eyelid region, as well 

their brow returning to rest. 

7 LOW Anger||Disgust Anger Onset This person looks like they are approaching a mild state of anger, which I can see from the movement around their eyes, 

eyebrows, and lips. 

8 LOW Anger||Disgust Anger Apex This person looks like they are in a mild state of anger by looking at their tightened lip, raised upper and lower eyelids, and 

frowned brows. 

9 LOW Anger||Disgust Anger Offset  This person looks like they are exiting a mild state of anger when I analyse the movements around their eyes, eyebrows, and lips 

as they appear to be returning to a rest position. 

10 LOW Anger||Disgust Disgust Onset This person looks like they are approaching a mild state of disgust, as I see some signs of movements around their eyes, 

eyebrows, and lips. 

11 LOW Anger||Disgust Disgust Apex This person looks like they are in a state of mild disgust, which I can see from their raised upper lip, raised lower eyelids, and 

frowned brows. 

12 LOW Anger||Disgust Disgust Offset  This person looks like they are exiting a state of mild disgust, since the movements around their eyes, eyebrows, and lips look as 

though they are returning to a resting position. 

13 LOW Sadness||Fear Sadness Onset This person looks like they are approaching a mildly sad state, as I see some signs of movement around the brows in particular. 

14 LOW Sadness||Fear Sadness Apex This person looks like they are quite sad, by looking at their lowered lip corners as well as their raised and frowned brows. 

15 LOW Sadness||Fear Sadness Offset  This person looks like they are exiting a mild state of sadness, by looking at the movements around their brows and lips, as they 

return to a resting position. 

16 LOW Sadness||Fear Fear Onset This person looks like they are approaching a mild state of fear, as I see some signs of movement around their eyes and brows. 

17 LOW Sadness||Fear Fear Apex This person looks like they are experiencing fear, by looking at the shape of their mouth, raised and frowned eyebrows as well as 

their raised upper eyelids. 

18 LOW Sadness||Fear Fear Offset  This person looks like they are exiting a state of fear, as analysing the movement around their eyes and mouth show that they are 

returning to a neutral position. 

19 HIGH Happy||Surprise Happy Onset This person looks like they are approaching a very happy state, as I see strong movements around the mouth, and general eyelid 

region, as well as the lip corners starting to raise. 

20 HIGH Happy||Surprise Happy Apex This person looks like they are very happy, by looking at the shape of their mouth, raised lower eyelids and raised lip corners. 

21 HIGH Happy||Surprise Happy Offset  This person looks like they are exiting a very happy state, by looking at the movements around the mouth and general eyelid 

region, as well as their lip corners returning to rest. 

22 HIGH Happy||Surprise Surprise Onset This person looks like they are approaching a very surprised state, because I see strong movements around the mouth and 

general eyelid region, as well as their eyebrows starting to raise. 

23 HIGH Happy||Surprise Surprise Apex This person looks like they are very surprised by looking at the shape of their mouth, raised upper eyelids, and raised eyebrows. 
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24 HIGH Happy||Surprise Surprise Offset  This person looks like they are exiting a very surprised state, looking at the movements around the general eyelid region, as well 

their eyebrows returning to rest. 

25 HIGH Anger||Disgust Anger Onset This person looks like they are approaching a very angry state, as I see strong movements around their eyes, eyebrows, and lips. 

26 HIGH Anger||Disgust Anger Apex This person looks like they are very angry, by looking at their tightened lip, raised upper and lower eyelids and frowned brows. 

27 HIGH Anger||Disgust Anger Offset  This person looks like they are exiting a very angry state, as I look at the movements around their eyes, eyebrows, and lips. They 

appear to be returning to rest. 

28 HIGH Anger||Disgust Disgust Onset This person looks like they are approaching a very disgusted state, looking at the strong movements around their eyes, eyebrows, 

and lips. 

29 HIGH Anger||Disgust Disgust Apex This person looks like they are very disgusted, looking at their raised upper lip, raised lower eyelids and frowned brows. 

30 HIGH Anger||Disgust Disgust Offset  This person looks like they are exiting a very disgusted state, as I see the movements around their eyes, eyebrows, and lips 

appear to be returning to rest. 

31 HIGH Sadness||Fear Sadness Onset This person looks like they are approaching a very sad state, looking at the strong movement around the brows in particular. 

32 HIGH Sadness||Fear Sadness Apex This person looks like they are very sad, looking at their lowered lip corners as well as their raised and frowned brows. 

33 HIGH Sadness||Fear Sadness Offset  This person looks like they are exiting a very sad state, looking at the movements around their brows and lips as they return to a 

resting position. 

34 HIGH Sadness||Fear Fear Onset This person looks like they are approaching a very fearful state, looking at the strong movement around their eyes and brows 

changing from rest. 

35 HIGH Sadness||Fear Fear Apex This person looks like they are in a high state of fear, as I can see the shape of their mouth, raised and frowned eyebrows as well 

as their raised upper eyelids. 

36 HIGH Sadness||Fear Fear Offset  This person looks like they are exiting a very fearful state, as I can see the movement around their eyes and mouth, as they return 

to a neutral position. 
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Appendix N:  SAM Affective Speech Assessment Level 1 Generated Report
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Appendix O:  SAM Affective Speech Assessment Level 2 Generated Report
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Appendix P:  SAM Affective Speech Assessment Level 3 Generated Report

 



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

228 
 
 

 



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

229 
 
 

 



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

230 
 
 

 



AXAI Incorporation Framework for a Real-Time Affective State Assessment Module Jordan Vice (2022) 

 

231 
 
 

Appendix Q:  SAM Affective Speech Assessment Level 4 Generated Report 
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Appendix R:   Collated SAM Affective speech classifier dialogue responses for all windows 
LEVEL 1 – Neutral + Level of Activation 

No. HIGH/LOW Dialogue and Reasoning 

1 NEUTRAL This person sounds like they are in a neutral state, due to the lack of changes in speech features that I can sense. 

2 LOW This person sounds like they are in a low activation state due to the minor, but noticeable changes in their speech. 

3 HIGH This person sounds like they are in a high activation state due to the very strong variations in their speech. 

LEVEL 2 – Temporal Phase 

No. HIGH/LOW Temporal Phase Dialogue and Reasoning 

1 LOW Onset This person sounds like they are approaching a mildly activated state. 

2 LOW Apex This person sounds like they are currently experiencing a mildly activated state. 

3 LOW Offset  This person sounds like they are exiting a mildly activated state. 

4 HIGH Onset This person sounds like they are approaching a very activated state. 

5 HIGH Apex This person sounds like they are currently experiencing a very activated state. 

6 HIGH Offset  This person sounds like they are exiting a very activated state. 

Level 3 – Valence and State Group: Verbose = 0 

No. HIGH/LOW Temporal Phase Valence Dialogue and Reasoning 

1 LOW Onset HIGH Valence It sounds like this person is either approaching a mildly happy, mildly angry, or mildly surprised state. 

2 LOW Onset LOW Valence It sounds like this person is either approaching a mildly sad, mildly scared, or mildly disgusted state. 

3 LOW Apex HIGH Valence It sounds like this person is either mildly happy, mildly angry, or mildly surprised state. 

4 LOW Apex LOW Valence It sounds like this person is either mildly sad, mildly scared, or mildly disgusted state. 

5 LOW Offset  HIGH Valence It sounds like this person is either exiting a mildly happy, mildly angry, or mildly surprised state. 

6 LOW Offset  LOW Valence It sounds like this person is either exiting a mildly sad, mildly scared, or mildly disgusted state. 

7 HIGH Onset HIGH Valence It sounds like this person is either approaching a very happy, very angry, or very surprised state. 

8 HIGH Onset LOW Valence It sounds like this person is either approaching a very sad, very scared, or very disgusted state. 

9 HIGH Apex HIGH Valence It sounds like this person is either very happy, very angry, or very surprised. 

10 HIGH Apex LOW Valence It sounds like this person is either very sad, very scared, or very disgusted. 

11 HIGH Offset  HIGH Valence It sounds like this person is either exiting a very happy, very angry, or very surprised. 

12 HIGH Offset  LOW Valence It sounds like this person is either exiting a very sad, very scared, or very disgusted. 

Level 3 – Valence and State Group: Verbose = 1 

No. HIGH/LOW Temporal Phase Valence Dialogue and Reasoning 

1 LOW Onset HIGH Valence I sense speech rate and pitch are slightly increasing, along with amplitude. 

2 LOW Onset LOW Valence I sense slight downward inflections, irregular speech patterns, and minor decreases in amplitude. 
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3 LOW Apex HIGH Valence I sense a slight increase in speech rate, pitch, and amplitude. 

4 LOW Apex LOW Valence I sense slight downward inflections in cadence, a mildly irregular voice quality, and a low amplitude. 

5 LOW Offset  HIGH Valence I sense that the speech rate, pitch, and amplitude are returning to a neutral level. 

6 LOW Offset  LOW Valence I sense the cadence and amplitude returning to a neutral level, and the voice quality becoming regular again. 

7 HIGH Onset HIGH Valence I sense speech rate and pitch are increasing, along with amplitude, at a very high rate. 

8 HIGH Onset LOW Valence I sense downward inflecting, irregular speech patterns, and the amplitude starting to decrease. 

9 HIGH Apex HIGH Valence I sense a high increase in speech rate, pitch, and amplitude. 

10 HIGH Apex LOW Valence I sense strong downward inflections in cadence, an irregular voice quality, and a very low amplitude. 

11 HIGH Offset  HIGH Valence I sense the speech rate, pitch and amplitude are returning to a neutral level. 

12 HIGH Offset  LOW Valence I sense the cadence and amplitude returning to a neutral level, and the voice quality becoming regular again. 

Level 4 – Discrete State: Verbose = 0 

No. HIGH/LOW Phase Valence State Dialogue and Reasoning 

1 LOW Onset HIGH Valence Happy This person sounds like they are approaching a mildly happy state. 

2 LOW Onset HIGH Valence Anger This person sounds like they are approaching a mild state of anger. 

3 LOW Onset HIGH Valence Surprise This person sounds like they are approaching a mildly surprised state. 

4 LOW Onset LOW Valence Sad This person sounds like they are approaching a mildly sad state. 

5 LOW Onset LOW Valence Fear This person sounds like they are approaching a mild state of fear. 

6 LOW Onset LOW Valence Disgust This person sounds like they are approaching a mildly disgusted state. 

7 LOW Apex HIGH Valence Happy This person sounds like they are mildly happy. 

8 LOW Apex HIGH Valence Anger This person sounds like they are mildly angry. 

9 LOW Apex HIGH Valence Surprise This person sounds like they are mildly surprised. 

10 LOW Apex LOW Valence Sad This person sounds like they are mildly sad. 

11 LOW Apex LOW Valence Fear This person sounds like they are in a mild state of fear. 

12 LOW Apex LOW Valence Disgust This person sounds like they are in a mildly disgusted state. 

13 LOW Offset HIGH Valence Happy This person sounds like they are exiting a mildly happy state. 

14 LOW Offset HIGH Valence Anger This person sounds like they are exiting a mild state of anger. 

15 LOW Offset HIGH Valence Surprise This person sounds like they are exiting a mildly surprised state. 

16 LOW Offset LOW Valence Sad This person sounds like they are exiting a mild state of sadness. 

17 LOW Offset LOW Valence Fear This person sounds like they are exiting a mild state of fear. 

18 LOW Offset LOW Valence Disgust This person sounds like they are exiting a mild state of disgust. 

19 HIGH Onset HIGH Valence Happy This person sounds like they are approaching a very happy state. 

20 HIGH Onset HIGH Valence Anger This person sounds like they are approaching a very angry state. 

21 HIGH Onset HIGH Valence Surprise This person sounds like they are approaching a very surprised state. 
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22 HIGH Onset LOW Valence Sad This person sounds like they are approaching a very sad state. 

23 HIGH Onset LOW Valence Fear This person sounds like they are approaching a high state of fear. 

24 HIGH Onset LOW Valence Disgust This person sounds like they are approaching a high state of disgust. 

25 HIGH Apex HIGH Valence Happy This person sounds like they are very happy. 

26 HIGH Apex HIGH Valence Anger This person sounds like they are very angry. 

27 HIGH Apex HIGH Valence Surprise This person sounds like they are very surprised. 

28 HIGH Apex LOW Valence Sad This person sounds like they are very sad. 

29 HIGH Apex LOW Valence Fear This person sounds like they are very scared. 

30 HIGH Apex LOW Valence Disgust This person sounds like they are very disgusted. 

31 HIGH Offset HIGH Valence Happy This person sounds like they are exiting a very happy state. 

32 HIGH Offset HIGH Valence Anger This person sounds like they are exiting a very angry state. 

33 HIGH Offset HIGH Valence Surprise This person sounds like they are exiting a very surprised state. 

34 HIGH Offset LOW Valence Sad This person sounds like they are exiting a very sad state. 

35 HIGH Offset LOW Valence Fear This person sounds like they are exiting a high state of fear. 

36 HIGH Offset LOW Valence Disgust This person sounds like they are exiting a high state of disgust. 

Level 4 – Discrete State: Verbose = 1 

No. HIGH/LOW Phase Valence State Dialogue and Reasoning 

1 LOW Onset HIGH Valence Happy This person sounds like they are approaching a mild happy state, as I sense some changes in their speech rate and pitch, as well as 

their voice getting a bit louder and breathier. 

2 LOW Onset HIGH Valence Anger This person sounds like they are approaching a mild state of anger due to some changes in their speech rate and pitch, as well as their 

voice getting a bit louder and breathier. 

3 LOW Onset HIGH Valence Surprise This person sounds like they are approaching a mildly surprised state, as I notice small changes in their speech rate, pitch, and overall 

voice quality. 

4 LOW Onset LOW Valence Sad This person sounds like they are approaching a mildly sad state as their voice quality is getting a little quiet, and slightly irregular, while 

their cadence seems to be changing slightly. 

5 LOW Onset LOW Valence Fear This person sounds like they are approaching a mild state of fear given it sounds like their voice is becoming slightly irregular, and I 

sense some variations in their speech rate and pitch. 

6 LOW Onset LOW Valence Disgust This person sounds like they are approaching a mildly disgusted state as I sense their voice is becoming slightly quiet and grumbly, 

with some changes in their speech rate and vocal pitch. 

7 LOW Apex HIGH Valence Happy This person sounds like they are quite happy, due to minor changes in speech rate and vocal pitch, showing an upward cadence, as 

well as their voice being louder, breathier and a bit more blaring.  

8 LOW Apex HIGH Valence Anger This person sounds like they are quite angry, as I sense minor tension and stresses in their voice, which is also louder and breathier, 

and is emphasized by the increase in their speech rate and vocal pitch. 
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9 LOW Apex HIGH Valence Surprise This person sounds like they are a little surprised, due to the slight increase in speech rate and vocal pitch, which shows quite a rapid 

upward cadence, as well as them sounding louder than normal. 

10 LOW Apex LOW Valence Sad This person sounds like they are quite sad, as I sense they are quieter than normal, with their voice sounding more slurred and 

resonant, along with their speech rate and pitch also being lower. 

11 LOW Apex LOW Valence Fear This person sounds like they are in a mild state of fear, as their voice is quite irregular, and there is an increase in their speech rate and 

pitch, as they articulate themselves with this sense of precision. 

12 LOW Apex LOW Valence Disgust This person sounds like they are in a mildly disgusted state, as I sense their voice is quieter and a bit grumbly, showing a slower speech 

rate and vocal pitch, emphasized by a slight downward cadence. 

13 LOW Offset HIGH Valence Happy This person sounds like they are exiting a mildly happy state, due to their speech rate and vocal pitch returning to a normal level, as 

well as their voice getting quieter and less breathy. 

14 LOW Offset HIGH Valence Anger This person sounds like they are exiting a mild sate of anger, due to their speech rate and vocal pitch returning to a normal level, with 

their general voice quality also returning to normal. 

15 LOW Offset HIGH Valence Surprise This person sounds like they are exiting a mildly surprised state, as I sense a quieter voice, as well as their speech rate, vocal quality 

and cadence returning to a more neutral level. 

16 LOW Offset LOW Valence Sad This person sounds like they are exiting a mild state of sadness, given it sounds like their voice is becoming less resonant and slurred, 

while their speech rate and pitch returning to a neutral level. 

17 LOW Offset LOW Valence Fear This person sounds like they are exiting a mild state of fear, given their voice sounds more regular, and their speech rate and pitch are 

returning to normal from an originally higher level. 

18 LOW Offset LOW Valence Disgust This person sounds like they are exiting a mild state of disgust as their voice is less grumbly, and slightly louder, while their speech rate 

and vocal pitch are returning to a normal level. 

19 HIGH Onset HIGH Valence Happy This person sounds like they are approaching a very happy state, due to the changes in their speech rate and pitch, as well as their 

voice getting louder and breathier. 

20 HIGH Onset HIGH Valence Anger This person sounds like they are approaching a very angry state as I sense changes in their speech rate and pitch, as well as their voice 

getting louder and breathier. 

21 HIGH Onset HIGH Valence Surprise This person sounds like they are approaching a very surprised state as I can hear changes in their speech rate and pitch, as well as their 

voice getting louder and breathier. 

22 HIGH Onset LOW Valence Sad This person sounds like they are approaching a very sad state, given it sounds like their voice is getting quiet and irregular, while their 

cadence could be trending downward. 

23 HIGH Onset LOW Valence Fear This person sounds like they are approaching a high state of fear, given it sounds like their voice is becoming irregular and I sense rapid 

changes in their speech rate and pitch. 

24 HIGH Onset LOW Valence Disgust This person sounds like they are approaching a high state of disgust given it sounds like their voice is becoming quiet and grumbly, and 

their speech rate, and vocal pitch are starting to lower. 
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25 HIGH Apex HIGH Valence Happy This person sounds like they are very happy, due to the change in speech rate and higher vocal pitch, showing an upward cadence, as 

well as their voice sounding very loud, blaring, and breathy.  

26 HIGH Apex HIGH Valence Anger This person sounds like they are very angry, as I sense the tension and stress in their voice, which is also very loud and breathy, not to 

mention the high vocal pitch and increase in their speech rate. 

27 HIGH Apex HIGH Valence Surprise This person sounds like they are very surprised, due to the increase in speech rate and vocal pitch, which shows a rapid upward 

cadence, as well as them generally sounding louder. 

28 HIGH Apex LOW Valence Sad This person sounds like they are very sad, as I sense they are quiet, with their voice sounding slurred and resonant, while also having a 

lower speech rate and vocal pitch, with a downward cadence. 

29 HIGH Apex LOW Valence Fear This person sounds like they are very scared, as I sense the irregularity in their voice, along with their very fast speech rate and very 

high pitch, while still articulating themselves very precisely. 

30 HIGH Apex LOW Valence Disgust This person sounds like they are very disgusted, as I sense their voice is very quiet and grumbly, showing a very slow speech rate and 

vocal pitch, emphasized by the downward cadence. 

31 HIGH Offset HIGH Valence Happy This person sounds like they are exiting a very happy state, due to their speech rate and vocal pitch returning to a normal level, as well 

as their voice getting quieter and less breathy. 

32 HIGH Offset HIGH Valence Anger This person sounds like they are exiting a very angry state, due to their speech rate and vocal pitch returning to a normal level, as well 

as their voice getting quieter and less breathy. 

33 HIGH Offset HIGH Valence Surprise This person sounds like they are exiting a very surprised state due to them getting quieter, as well as their speech rate and vocal pitch 

lowering, with their cadence returning to a more regular pace. 

34 HIGH Offset LOW Valence Sad This person sounds like they are exiting a very sad state, given it sounds like their voice is becoming less resonant and slurred, while 

also showing an increase in speech rate and pitch toward normal. 

35 HIGH Offset LOW Valence Fear This person sounds like they are exiting a high state of fear given their voice sounds more regular and their speech rate and pitch are 

returning to normal from a very high level. 

36 HIGH Offset LOW Valence Disgust This person sounds like they are exiting a high state of disgust as their voice is becoming less grumbly and quiet while their speech rate 

and vocal pitch return to a normal level from being very low. 
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Appendix S:  Full software bill of materials produced via command: ‘pip list’ 
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Abstract:  

Most affect classification schemes rely on near accurate single-cue models resulting in less than 

required accuracy under certain peculiar conditions. We investigate how the holism of a multimodal 

solution could be exploited for affect classification. This paper presents the design and 

implementation of a prototype, stand-alone, real-time multimodal affective state classification 

system. The presented system utilizes speech and facial muscle movements to create a holistic 

classifier. The system combines a facial expression classifier and a speech classifier that analyses 

speech through paralanguage and propositional content. The proposed classification scheme includes 

a Support Vector Machine (SVM) - paralanguage; a K-Nearest Neighbor (KNN) - propositional content 

and an InceptionV3 neural network - facial expressions of affective states. The SVM and Inception 

models boasted respective validation accuracies of 99.2% and 92.78%. 
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Abstract:  

Internationally, the recent pandemic caused severe social changes forcing people to adopt new 

practices in their daily lives. One of these changes requires people to wear masks in public spaces to 

mitigate the spread of viral diseases. Affective state assessment (ASA) systems that rely on facial 

expression analysis become impaired and less effective due to the presence of visual occlusions 

caused by wearing masks. Therefore, ASA systems need to be future-proofed and equipped with 

adaptive technologies to be able to analyze and assess occluded facial expressions, particularly in the 

presence of masks. This paper presents an adaptive approach for classifying occluded facial 

expressions when human faces are partially covered with masks. We deployed an unsupervised, 

cosine similarity-based clustering approach exploiting the continuous nature of the extended Cohn-

Kanade (CK+) dataset. The cosine similarity-based clustering resulted in twenty-one micro-expression 

clusters that describe minor variations of human facial expressions. Linear discriminant analysis was 

used to project all clusters onto lower-dimensional discriminant feature spaces, allowing for binary 

occlusion classification and the dynamic assessment of affective states. During the validation stage, 

we observed 100% accuracy when classifying faces with features extracted from the lower part of the 

occluded faces (occlusion detection). We observed 76.11% facial expression classification accuracy 

when features were gathered from the uncovered full-faces and 73.63% classification accuracy when 

classifying upper-facial expressions - applied when the lower part of the face is occluded. The 

presented system promises an improvement to visual inspection systems through an adaptive 

occlusion detection and facial expression classification framework. 
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Abstract:  

Independent, discrete models like Paul Ekman’s six basic emotions model are widely used in affective 

state assessment (ASA) and facial expression classification. However, the continuous and dynamic 

nature of human expressions often needs to be considered for accurately assessing facial expressions 

of affective states. This paper investigates how mutual information-carrying continuous models can 

be extracted and used in continuous and dynamic facial expression classification systems for 

improving the efficacy and reliability of ASA systems. A novel, hybrid learning model that projects 

continuous data onto a multidimensional hyperplane is proposed. Through cosine similarity-based 

clustering (unsupervised) and classification (supervised) processes, our hybrid approach allows us to 

transform seven, discrete facial expression models into twenty-one facial expression models that 

include micro-expressions. The proposed continuous, dynamic classifier was able to achieve greater 

than 73% accuracy when experimented with Random Forest, Support Vector Machine (SVM) and 

Neural Network classification architectures. The presented system was validated using the Ryerson 

Audio-Visual Database of Emotional Speech and Song (RAVDESS) and the extended Cohn-Kanade (CK+) 

dataset. 
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Abstract:  

Like other Artificial Intelligence (AI) systems, Machine Learning (ML) applications cannot explain 

decisions, are marred with training-caused biases, and suffer from algorithmic limitations. Their 

eXplainable Artificial Intelligence (XAI) capabilities are typically measured in a two-dimensional space 

of explainability and accuracy ignoring the accountability aspects. During system evaluations, 

measures of comprehensibility, predictive accuracy and accountability remain inseparable. We 

propose an Accountable eXplainable Artificial Intelligence (AXAI) capability framework for facilitating 

separation and measurement of predictive accuracy, comprehensibility and accountability. The 

proposed framework, in its current form, allows assessing embedded levels of AXAI for delineating ML 

systems in a three-dimensional space. The AXAI framework quantifies comprehensibility in terms of 

the readiness of users to apply the acquired knowledge and assesses predictive accuracy in terms of 

the ratio of test and training data, training data size and the number of false-positive inferences. For 

establishing a chain of responsibility, accountability is measured in terms of the inspectability of input 

cues, data being processed and the output information. We demonstrate applying the framework for 

assessing the AXAI capabilities of three ML systems. The reported work provides bases for building 

AXAI capability frameworks for other genres of AI systems. 
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Abstract:  

This paper builds upon the theoretical foundations of the Accountable eXplainable Artificial 

Intelligence (AXAI) capability framework presented in part one of this paper. We demonstrate 

incorporation of the AXAI capability in the real time Affective State Assessment Module (ASAM) of a 

robotic system. We show that adhering to the eXtreme Programming (XP) practices would help in 

understanding user behavior and systematic incorporation of the AXAI capability in Machine Learning 

(ML) systems. We further show that a collaborative software design and development process (SDDP) 

would facilitate identification of ethical, technical, functional, and domain-specific system 

requirements. Meeting these requirements would increase user confidence in ML and AI systems. Our 

results show that the ASAM can synthesize discrete and continuous models of affective state 

expressions for classifying them in real-time. The ASAM continuously shares important inputs, 

processed data and the output information with users via a graphical user interface (GUI). Thus, the 

GUI presents reasons behind system decisions and disseminates information about local reasoning, 

data handling and decision-making. Through this demonstrated work, we expect to move toward 

enhancing AI systems’ acceptability, utility and establishing a chain of responsibility if a system fails. 

We hope this work will initiate further investigations on developing the AXAI capability and use of a 

suitable SDDP for incorporating them in AI systems. 
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