16 research outputs found

    Weihrauch-completeness for layerwise computability

    Get PDF
    We introduce the notion of being Weihrauch-complete for layerwise computability and provide several natural examples related to complex oscillations, the law of the iterated logarithm and Birkhoff's theorem. We also consider hitting time operators, which share the Weihrauch degree of the former examples but fail to be layerwise computable

    Universality, optimality, and randomness deficiency

    Get PDF
    A Martin-Löf test UU is universal if it captures all non-Martin-Löf random sequences, and it is optimal if for every ML-test VV there is a c∈ωc∈ω such that ∀n(Vn+c⊆Un)∀n(Vn+c⊆Un). We study the computational differences between universal and optimal ML-tests as well as the effects that these differences have on both the notion of layerwise computability and the Weihrauch degree of LAYLAY, the function that produces a bound for a given Martin-Löf random sequence's randomness deficiency. We prove several robustness and idempotence results concerning the Weihrauch degree of LAYLAY, and we show that layerwise computability is more restrictive than Weihrauch reducibility to LAYLAY. Along similar lines we also study the principle RDRD, a variant of LAYLAY outputting the precise randomness deficiency of sequences instead of only an upper bound as LAYLAY

    On zeros of Martin-L\"of random Brownian motion

    Full text link
    We investigate the sample path properties of Martin-L\"of random Brownian motion. We show (1) that many classical results which are known to hold almost surely hold for every Martin-L\"of random Brownian path, (2) that the effective dimension of zeroes of a Martin-L\"of random Brownian path must be at least 1/2, and conversely that every real with effective dimension greater than 1/2 must be a zero of some Martin-L\"of random Brownian path, and (3) we will demonstrate a new proof that the solution to the Dirichlet problem in the plane is computable

    Comparing Representations for Function Spaces in Computable Analysis

    Get PDF
    This paper compares different representations (in the sense of computable analysis) of a number of function spaces that are of interest in analysis. In particular subspace representations inherited from a larger function space are compared to more natural representations for these spaces. The formal framework for the comparisons is provided by Weihrauch reducibility. The centrepiece of the paper considers several representations of the analytic functions on the unit disk and their mutual translations. All translations that are not already computable are shown to be Weihrauch equivalent to closed choice on the natural numbers. Subsequently some similar considerations are carried out for representations of polynomials. In this case in addition to closed choice the Weihrauch degree LPO∗ shows up as the difficulty of finding the degree or the zeros. As a final example, the smooth functions are contrasted with functions with bounded support and Schwartz functions. Here closed choice on the natural numbers and the lim degree appear.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A topological view on algebraic computation models

    Get PDF
    We investigate the topological aspects of some algebraic computation models, in particular the BSS-model. Our results can be seen as bounds on how different BSS-computability and computability in the sense of computable analysis can be. The framework for this is Weihrauch reducibility. As a consequence of our characterizations, we establish that the solvability complexity index is (mostly) independent of the computational model, and that there thus is common ground in the study of non-computability between the BSS and TTE setting

    Representations of Analytic Functions and Weihrauch Degrees

    Get PDF
    corecore