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Abstract. This paper considers several representations of the analytic
functions on the unit disk and their mutual translations. All translations
that are not already computable are shown to be Weihrauch equivalent
to closed choice on the natural numbers. Subsequently some similar con-
siderations are carried out for representations of polynomials. In this case
in addition to closed choice the Weihrauch degree LPO∗ shows up as the
difficulty of finding the degree or the zeros.
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1 Introduction

In order to make sense of computability questions in analysis, the spaces of
objects involved have to be equipped with representations: A representation
determines the kind of information that is provided (or has to be provided)
when computing on these objects. When restricting from a more general to more
restrictive setting, there are two options: Either to merely restrict the scope to
the special objects and retain the representation, or to actually introduce a new
representation containing more information.

As a first example of this, consider the closed subsets of [0, 1]
2

and the closed

convex subsets of [0, 1]
2

(following [8]). The former are represented by an enu-
meration of open balls exhausting their complement. The latter are represented
as the intersection of a decreasing sequence of rational polygons. Thus, prima
facie the notion of closed set which happens to be convex and convex closed set
are different. In this case it turns out they are computably equivalent after all
(the proof, however, uses the compactness of [0, 1]

2
).

This paper focuses on a different example of the same phenomenon: The dif-
ference between an analytic function and a continuous function that happens to
be analytic. It is known that these actually are different notions. Sections 3.1
and 3.2 quantify how different they are using the framework of Weihrauch
reducibility. As a further example Sections 3.3 and 3.4 consider continuous
functions that happen to be polynomials versus analytic functions that happen



to be polynomials versus polynomials. All translations turn out to be either com-
putable, or Weihrauch equivalent to one of the two well-studied principles CN
and LPO∗. The results are summarized in Figure 3 on Page 11 and Figure 5 on
Page 13.

The additional information one needs about an analytic function over a con-
tinuous function can be expressed by a single natural number – the same holds
for the other examples studied. Thus, this can be considered as an instance of
computation with discrete advice as introduced in [20]. That finding this number
is Weihrauch equivalent to CN essentially means that while the number can be
chosen to be verifiable (i.e. wrong values can be detected eventually), this is the
only computationally relevant restriction on how complicated the relationship
between object and associated number can be.

Before ending this introduction, we shall briefly mention two alternative per-
spectives on the phenomenon: Firstly, recall that in intuitionistic logic a negative
translated statement behaves like a classical one, and that double negations gen-
erally do not cancel. In this setting the difference boils down to considering either
analytic functions or continuous functions that are not not analytic. Secondly,
from a topological perspective, Weihrauch equivalence of a translation to CN
implies that the topologies induced by the representations differ. Indeed, the
suitable topology on the space of analytic functions is not just the subspace
topology inherited from the space of continuous functions but in fact obtained
as a direct limit.

A version of this paper containing all the proofs can be found on the arXiv
[17].

2 Background

This section provides a very brief introduction to the required concepts from
computable analysis, Weihrauch reducibility, and then in more detailed intro-
duction of the representations of analytic functions that are considered. For a
more in depth introduction into computable analysis and further information,
the reader is pointed to the standard textbook in computable analysis [19], and
to [14]. Also, [18] should be mentioned as an excellent source, even though the
approach differs considerably from the one taken here. The research programme
of Weihrauch reducibility was formulated in [2], a more up-to-date introduction
to Weihrauch reducibility can be found in the introduction of [3].

2.1 Represented Spaces

Recall that a represented space X = (X, δX) is given by a set X and a partial
surjection δX :⊆ NN → X from Baire space onto it. The elements of δ−1X (x)
should be understood as encodings of x and are called the X-names of x. Since
Baire space inherits a topology, each represented space can be equipped with
a topology: The final topology of the chosen representation. We usually refrain
from mentioning the representation of a represented space in the same way as



the topology of a topological space is usually not mentioned. For instance the set
of natural numbers is regarded as a represented space with the representation
δN(p) := p(0). Therefore, from now on denote by N not only the set or the
topological space, but the represented space of natural numbers. If the
set that is to be represented already inherits a topology, we always choose the
representation such that it fits the topology. This can be checked easily for
the case N above, where the final topology of the representation is the discrete
topology.

If X is a represented space and Y is a subset of X, then Y can be turned into
a represented space by considering the range restriction of the representation of
X on it. We denote the represented space arising in this way by X|Y . Note that
here only set inclusion is considered. The set Y may be a subset of many different
represented spaces and the restrictions need not coincide. They often turn out
to be inappropriate. We use the same notation X|Y if Y is a represented space
already. In this case, however, no information about the representation of Y is
carried over to X|Y.

The remainder of this section introduces the represented spaces that are
needed for the content of the paper.

Sets of Natural Numbers. Let O(N) resp. A(N) denote the represented
spaces of open resp. closed subsets of N. The underlying set of both O(N)
and A(N) is the power set of N. The representation of O(N) is defined by

δO(N)(p) = O ⇔ O = {p(n)− 1 | p(n) > 0}.

That is: A name of an open set is an enumeration of that set, however, to include
the empty set, the enumeration is allowed to not return an element of the set in
each step. The closed sets A(N) are represented as complements of open sets:

δA(N)(p) = A ⇔ δO(N)(p) = Ac.

Normed Spaces, R, C, C(D). Given a triple M = (M,d, (xn)n∈N) such that
(M,d) is a separable metric space and xn is a dense sequence,M can be turned
into a represented space by equipping it with the representation

δM(p) = x ⇔ ∀n ∈ N : d(x, xp(n)) < 2−n.

In this way R, Rd, C (where the dense sequences are standard enumerations
of the rational elements) and C([0, 1]), C(D) (where D is a compact subset of
Rd and the dense sequences are standard enumerations of the polynomials with
rational coefficients) can be turned into represented spaces.

Sequences in a Represented Space. For a represented space X there is a
canonical way to turn the set of sequences in X into a represented space XN:



Let 〈·, ·〉 : N×N→ N be a standard paring function (i.e. bijective, recursive with

recursive projections). Define a function 〈·〉 :
(
NN)N → NN by

〈(pk)k∈N〉(〈m,n〉) := pm(n).

For a represented space X define a representation of the set XN of the sequences
in the set X underlying X by

δXN(〈(pk)k∈N〉) = (xk)k∈N ⇔ ∀m ∈ N : δX(pm) = xm.

In particular the spaces RN and CN of real and complex sequences are considered
represented spaces in this way. Also C(D)N briefly shows up in Section 3.2.

2.2 Weihrauch Reducibility

Recall that a multivalued function f from X to Y (or X to Y) is an assignment
that assigns to each element x of its domain a set f(x) of acceptable return
values. Multivaluedness of a function is indicated by f : X ⇒ Y. The domain of
a multivalued function is the set of elements such that the image is not empty.
Furthermore, recall that we write f :⊆ X→ Y if the function f is allowed to be
partial, that is if its domain can be a proper subset of X.

Definition 1. A partial function F :⊆ NN → NN is a realizer of a multivalued
function f :⊆ X ⇒ Y if δY(F (p)) ∈ f(δX(p)) for all p ∈ δ−1X (dom(f)) (compare
Figure 1).

NN

X

NN

Y
f

δX δY

F

Fig. 1. Realizer

A function between represented spaces is called com-
putable if it has a computable realizer, where computabil-
ity on Baire space is defined via oracle Turing machines (as
in e.g. [6]) or via Type-2 Turing machines (as in e.g. [19]).
The computable Weierstraß approximation theorem can
be interpreted to state that an element of C([0, 1]) is com-
putable if and only if it has a computable realizer as func-
tion on the represented space R.

Every multivalued function f :⊆ X ⇒ Y corresponds to a computational
task. Namely: ‘given information about x and the additional assumption x ∈
dom(f) find suitable information about some y ∈ f(x)’. What information about
x resp. f(x) is provided resp. asked for is reflected in the choice of the repre-
sentations for X and Y. The following example of this is very relevant for the
content of this paper:

Definition 2. Let closed choice on the integers be the multivalued function
CN :⊆ A(N) ⇒ N defined on nonempty sets by

y ∈ CN(A)⇔ y ∈ A.

The corresponding task is ‘given an enumeration of the complement of a set
of natural numbers and provided that it is not empty, return an element of the



set’. CN does not permit a computable realizer: Whenever a machine decides
that the name of the element of the set should begin with n, it has only read a
finite beginning segment of the enumeration. The next value might as well be n.

From the point of view of multi-valued functions as computational tasks, it
makes sense to compare their difficulty by comparing the corresponding multival-
ued functions. This paper uses Weihrauch reductions as a formalization of such a
comparison. Weihrauch reductions define a rather fine pre-order on multivalued
functions between represented spaces.

Definition 3. Let f and g be partial, multivalued functions between represented
spaces. Say that f is Weihrauch reducible to g, in symbols f ≤W g, if there
are computable functions K :⊆ NN × NN → NN and H :⊆ NN → NN such
that whenever G is a realizer of g, the function F := (p 7→ K(p,G(H(p)))) is a
realizer for f .

name of some y ∈ f(x)

H

name of x ∈ dom(f)

name of z

G

name of g(z)

K F

Fig. 2. Weihrauch re-
duction

H is called the pre-processor and K the post-
processor of the Weihrauch reduction. This definition
and the nomenclature is illustrated in Figure 2. The
relation ≤W is reflexive and transitive. We use ≡W

to denote that reductions in both directions exist and
<W the other reduction does not exist. The equiva-
lence class of a multivalued function with respect to
the equivalence relation ≡W is called the Weihrauch
degree of the function. A Weihrauch degree is called
non-computable if it contains no computable function.

The Weihrauch degree corresponding to CN
has received significant attention (see for instance
[1,2,3],[10,11,12,13]). In particular, as shown in [15],
a function between computable Polish spaces is
Weihrauch reducible to CN if and only if it is piece-
wise computable or equivalently is effectively ∆0

2-
measurable.

For the purposes of this paper, the following repre-
sentatives of this degree are also relevant:

Lemma 1 ([16]). The following are Weihrauch equivalent:

– CN, that is closed choice on the natural numbers.
– max :⊆ O(N)→ N defined on the bounded sets in the obvious way.
– Bound :⊆ O(N) ⇒ N, where n ∈ Bound(U) iff ∀m ∈ U : n ≥ m.

In the later chapters of this paper another non-computable Weihrauch degree
is encountered: LPO∗. Here, LPO is short for ‘limited principle of omniscience’.
We refrain from stating LPO∗ explicitly as it would need more machinery than
we introduced. Instead we characterize it by specifying the representative that
is used in the proofs: Consider the function

minB : NN → N, p 7→ min{p(n) | n ∈ N}.



Here, the index B is for Baire space and to distinguish the function from the
integer minimum function used on the right hand side of the definition.

Proposition 1. minB is a representative of the Weihrauch degree LPO∗.

LPO∗ is also called the Weihrauch degree of finitely many mind changes: To
obtain the minimum of an element of Baire space you may guess that it is the
smallest value assumed on arguments up to n, and you will only be wrong a
finite number of times.

To give a little more intuition as to why this Weihrauch degree shows up in
this paper, note the following: LPO∗ is derived from the maybe simplest non-
computable Weihrauch degree LPO : NN → {0, 1} defined via

LPO(p) :=

{
1 if p is the zero function, i.e. ∀n : p(n) = 0.

0 otherwise.

In computable analysis LPO shows up as the Weihrauch degree of the equality
test for real (or complex) numbers 6= : R×R. Now, LPO∗ corresponds to carrying
out a fixed finite but arbitrary high number of equality tests on the real or
complex numbers. It is known that LPO <W LPO∗ <W CN.

2.3 Representations of Analytic Functions

Recall that a function is analytic if it is locally given by a power series:

Definition 4. Let D ⊆ C be a set. A function f : D → C is called analytic, if
for every x0 ∈ D there is a neighborhood U of x0 and a sequence (ak)k∈N ∈ CN

such that for each x ∈ U ∩D

f(x) =
∑
k∈N

akx
k.

The set of analytic functions is denoted by Cω(D). Each analytic function is
continuous, that is Cω(D) ⊆ C(D). If D is open, the analytic functions on D are
smooth, i.e. infinitely often differentiable. An analytic function can be analyti-
cally extended to an open superset of its domain.

Definition 5. A pair (x, (ak)k∈N) is called germ of f ∈ Cω(D) if x is an ele-
ment of D and (ak)k∈N ∈ CN is a series expansion of f around x.

As long as the domain is connected, an analytic function is uniquely determined
by each of its germs. The one to one correspondence of germs and analytic
functions only partially carries over to the computability and complexity realm:
It is well known that an analytic function on the unit disk is computable if
and only if the germ around any computable point of the domain is computable
[5]. However, the proofs of these statements are inherently non-uniform. The
operations of obtaining a germ from a function and a function from a germ are



discontinuous and therefore not computable [9]. This paper classifies them to be
Weihrauch equivalent to closed choice on the naturals in Theorems 3 and 4.

There is a more suitable representation for the analytic functions than the
restriction of the representation of continuous functions. This representation has
been investigated by different authors for instance in [4],[7],[9]. For simplicity we
restrict to the case of analytic functions on the unit disk. Thus, let D denote the
closed unit disk from now on. And let Um denote the open ball Brm(0) of radius

rm := 2
1

m+1 around zero. Recall from the introduction that the space C(D) of
continuous functions is represented as a metric space (where C is identified with
R2).

Definition 6. Let Cω(D) denote the represented space of analytic func-
tions on D, where the representation is defined as follows: A q ∈ NN is a name
of an analytic function f on D, if and only if f extends analytically to the clo-
sure of Uq(0), the extension is bounded by q(0) and n 7→ q(n + 1) is a name of
f ∈ C(D).

Note that the representation of Cω(D) arises from the restriction of the rep-
resentation of continuous functions by adding discrete additional information.
This information is quantified by the advice function AdvCω :⊆ C(D) → N
whose domain are the analytic functions and that on those is defined by

AdvCω (f) := {q(0) | q is a Cω(D)-name of f)}
= {m ∈ N | f has an analytic cont. to Um bounded by m}.

(1)

This function turns up in the results of this paper. In the terminology of [4], one
would say that Cω(D) arises from the restriction C(D)|Cω(D) by enriching with
the discrete advice AdvCω .

The topology induced by the representation of Cω(D) is well known and used
in analysis: It can be constructed as a direct limit topology and makes Cω(D) a
so called Silva-Space. For more information on this topology and its relation to
computability and complexity theory also compare [7].

Consider the set of germs around zero, i.e. of power series with radius of
convergence strictly larger than 1. Since the base point 0 is fixed, it is often
omitted and the germ identified with a sequence. This set may be represented
as follows:

Definition 7. Let O denote the represented space of germs around zero, where
the representation is defined as follows: A q ∈ NN is a name of a germ (0, (ak)k∈N),
if and only if

∀k ∈ N : |ak| ≤ 2−
k

q(0)+1 q(0)

and n 7→ q(n+ 1) is a name of the sequence (ak)k∈N as element of CN.

As above, this representation is related to the restriction of the representation
of CN by means of the advice function AdvO :⊆ CN ⇒ N whose domain are the
sequences with radius of convergence strictly larger than one and that is defined



on those by

AdvO((ak)k∈N) := {q(0) | q is a O-name of (ak)k∈N}

= {n ∈ N | ∀k ∈ N : |ak| ≤ 2−
k

n+1 · n}
(2)

Again, the topology induced by this representation is well known and used in
analysis: It is the standard choice of a topology on the set of germs and can be
introduced as a direct limit topology.

Proofs that the following holds can be found in [4] or [9]:

Theorem 1 (computability of summation). The assignment

O → Cω(D), (ak)k∈N 7→

(
x 7→

∑
k

akx
k

)

is computable.

A proof of the following can be found in [4]:

Theorem 2. Differentiation is computable as mapping from Cω(D) to Cω(D).

3 The Results

We open this chapter with an addition to Lemma 1. Given p ∈ NN denote the
support of this function by supp(p) := {n ∈ N | p(n) > 0}. Furthermore, for a
set A denote the number of elements of that set by #A.

Lemma 2. The function Count :⊆ NN → N, defined via

dom(Count) = {p ∈ NN | supp(p) is finite} Count(p) = #supp(p)

is Weihrauch equivalent to CN, that is: Closed choice on the naturals.

3.1 Summing Power Series

In Section 2.3 it was mentioned that the operation of summing a power series is
not computable on CN. Recall that AdvO was the advice function of the repre-
sentation of the represented space O of germs around zero of analytic functions
on the unit disk. The computational task corresponding to this multivalued func-
tion is to find from a sequence that is guaranteed to have radius of convergence
bigger than one a constant witnessing the exponential decay of the absolute
value of the coefficients (compare eq. (2) on page 8). Theorem 1 states that
summation is computable on O. Therefore, the advice function AdvO cannot
be computable. The following theorem classifies the difficulty of summing power
series and AdvO in the sense of Weihrauch reductions.

Theorem 3. The following are Weihrauch-equivalent:



– CN, that is: Closed choice on the naturals.
– Sum, that is: The partial mapping from CN to C(D) defined on the sequences

with radius of convergence strictly larger than one by

Sum((ak)k∈N)(x) :=
∑
k∈N

akx
k.

I.e. summing a power series.
– AdvO, that is: The function from eq. (2) on page 8. I.e. obtaining the con-

stant from the series.

Proof (ideas). Build a Weihrauch reduction circle:

CN ≤W Sum: Lemma 2 permits to replace CN by Count. Let the pre-processor
assign to p ∈ NN the sequence

ak :=

{
1 if p(k) > 0

0 if p(k) = 0
.

For the post-processor use a realizer of the evaluation in 1.
Sum ≤W AdvO: Follows from Theorem 1.
AdvO ≤W CN: Let the pre-processor be the function that maps a given name

p of (ak)k∈N ∈ Cω to an A(N)-name of the set AdvO((ak)k∈N). Note that
an enumeration of the complement of this set can be extracted from p as

follows: For all k and m ∈ N dovetail the test |ak| > 2−
k

m+1m. If it holds for
some k, return m as an element of the complement. Applying closed choice
to this set will give result in a valid return value.

3.2 Differentiating Analytic Functions

In Section 2.3 it was remarked that it is not possible to compute the germ of
an analytic function just from a name as continuous function. The proof that
this is in general impossible from [9], however, argues about analytic functions
on an interval. The first lemma of this chapter proves that for analytic functions
on the unit disk it is possible to compute a germ if its base point is well inside
of the domain. We only consider the case where the base point is zero, but the
proof works whenever a lower bound on the distance of the base point to the
boundary of the disk is known.

Lemma 3. Germ, that is: The partial mapping from C(D) to CN defined on
analytic functions by mapping them to their series expansion around zero, is
computable.

Proof (sketch). Use the Cauchy integral Formula.

The next theorem is very similar to Theorem 3. Both the advice func-
tion AdvCω and computing a germ around a boundary point are shown to be
Weihrauch equivalent to CN. Note that the coefficients of the series expansion
(ak)k∈N of an analytic function f around a point x0 are related to the derivatives
f (k) of the function via k!ak = f (k)(x0). Therefore, computing a series expansion
around a point is equivalent to computing all the derivatives in that point.



Theorem 4. The following are Weihrauch equivalent:

– CN, that is closed choice on the naturals.
– Diff, that is the partial mapping from C(D) to C defined on analytic functions

by
Diff(f) := f ′(1).

I.e. evaluating the derivative of an analytic function in 1.
– AdvCω , that is the function from eq. (1). I.e. obtaining the constant from the

function.

Proof (outline). By building a circle of Weihrauch reductions:

CN ≤W Diff: Use Lemma 2 and show Count ≤W Diff instead. For the prepro-
cessor fix a computable sequence of analytic functions fn : D → C such that
f ′n(1) = 1 and |fn(x)| < 2−n for all x ∈ D (compare Figure 4). For p ∈ NN

consider the function
f(x) :=

∑
n∈supp(p)

fn(x).

Note that applying Diff to the function f results in

Diff(f) = f ′(1) =
∑

n∈supp(p)

f ′n(1) = #supp(p).

Therefore, the post-processor K(p, q) := q results in a Weihrauch reduction.
Diff ≤W AdvCω : Use Theorem 2.
AdvCω ≤W CN: Theorem 3 proved that AdvO ≡W CN.

Let the pre-processor be a realizer of the function Germ from Lemma 3.
Applying AdvO will return a constant n for the sequence. Set m := 4(n+1)2,

then for |x| ≤ 2
1

m+1 ≤ 2
1

2(n+1)∣∣∣∣∣∑
k∈N

akx
k

∣∣∣∣∣ ≤∑
k∈N

2−
k

2(n+1)n =
1

1− 2−
1

2(n+1)

n ≤ 4(n+ 1)2 = m.

Therefore, the sum can be evaluated to an analytic function bounded by m
on B

2
1

m+1
(0) and m is a valid value for the post-processor.

Recall from the introduction that C(D)|Cω(D) resp. CN|O denote the repre-

sented spaces obtained by restricting the representation of C(D) resp. CN to
Cω(D), resp. O. Theorems 1, 3 and 4 and Lemma 3 are illustrated in fig. 3.

3.3 Polynomials as Finite Sequences

Consider the set C[X] of polynomials with complex coefficients in one variable
X. There are several straightforward ways to represent polynomials. The first
one that comes to mind is to represent a polynomial by a finite list of complex
numbers. One can either demand the length of the list to equal the degree of the
polynomial or just to be big enough to contain all of the non-zero coefficients.
The first option fails to make operations like addition of polynomials computable.
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dash: ≡W CN

line: ≡W idNN

Fig. 3. The results of Theorems 1, 3 and 4 and Lemma 3.

Definition 8. Let C[X] denote the represented space of polynomials, where
p ∈ NN is a C[X]-name of P if p(0) ≥ deg(P ) and n 7→ p(n+ 1) is a Cp(0)-name
of the first p(0) coefficients of P .

0 1

f0f0f0

f1

f2

f3

Fig. 4. fn(x) := (x− xn)−2n+1

for appropriate xn.

Let Cm[X] denote the set of monic polyno-
mials over C, i.e. the polynomials with leading
coefficient equal to one. Make Cm[X] a repre-
sented space by restricting the representation of
C[X]. Monic polynomials are important because
it is possible to compute their roots – albeit in an
unordered way. To formalize this define a repre-
sentation of the disjoint union C× :=

∐
n∈N Cn as

follows: A p ∈ NN is a name of x ∈ C× if and only
if x ∈ Cp(0) and n 7→ p(n+1) is a Cp(0) name of x.
Note that the construction of the representation
of C[X] is very similar. The only difference being
that vectors with leading zeros are not identified
with shorter vectors.

Now, the task of finding the zeros in an unordered way can be formalized by
computing the multivalued function that maps a polynomial to the set of lists
of its zeros, each appearing according to its multiplicities:

Zeros : C[X] ⇒ C×, P 7→

(a1, . . . , adeg(P )) | ∃λ : P = λ

deg(P )∏
k=1

(X − ak)

 (3)

The importance of Cm[X] is reflected in the following well known lemma:

Lemma 4. Restricted to Cm[X] the mapping Zeros is computable.



The main difficulty in computing the zeros of an arbitrary polynomial is to
find its degree. A polynomial of known degree can be converted to a monic poly-
nomial with the same zeros by scaling. On C[X] consider the following functions:

– deg: The function assigning to a polynomial its degree.
– Dbnd: The multivalued function where an integer is a valid return value if

and only if it is an upper bound of the degree of the polynomial.

Dbnd is computable by definition of the representation of C[X]. The mapping
deg, in contrast, is not computable on the polynomials, however, the proof of
Lemma 4 includes a proof of the following:

Lemma 5. On Cm[X] the degree mapping is computable.

The next result classifies finding the degree, turning a polynomial into a monic
polynomial and finding the zeros to be Weihrauch equivalent to LPO∗.

Proposition 2. The following are Weihrauch-equivalent to LPO∗:

– deg, that is the mapping from C[X] to N defined in the obvious way.
– Monic, that is the mapping from C[X] to Cm[X] defined on the non-zero

polynomials by

P =

deg(P )∑
k=0

akX
k 7→

deg(P )∑
k=0

ak
adeg(P )

Xk.

– Zeros :⊆ C[X] ⇒ C×, mapping a non-zero polynomial to the set of its zeros,
each appearing according to its multiplicity (compare eq. (3)).

3.4 Polynomials as Functions

As polynomials induce analytic functions on the unit disk, the representations
of Cω(D) and C(D) can be restricted to the polynomials. The represented spaces
that result from this are Cω(D)|C[X], resp. C(D)|C[X]. Here, the choice of the
unit disk D as domain seems arbitrary: A polynomial defines a continuous resp.
analytic function on the whole space. The following proposition can easily be
checked to hold whenever the domain contains an open neighborhood of zero
and, since translations are computable with respect to all the representations we
consider, if it contains any open set.

Denote the versions of the degree resp. degree bound functions that take con-
tinuous resp. analytic functions by degC(D), DbndC(D) resp. degCω(D), DbndCω(D).
When polynomials are regarded as functions, resp. analytic functions, these maps
become harder to compute.

Theorem 5. The following are Weihrauch-equivalent:

– CN, that is: Closed choice on the naturals.
– DbndCω(D), that is: Given an analytic function which is a polynomial, find

an upper bound of its degree.



– degCω(D): Given an analytic function which is a polynomial, find its degree.

Proof. CN ≤W DbndCω(D): Use Lemma 1 and reduce to Bound instead. For an

enumeration p of a bounded set consider P (X) :=
∑

2−max{n,p(n)}Xp(n). A
Cω(D)-name of the function f corresponding to P can be computed from p.
Let the pre-processor H be a realizer of this assignment. Set K(p, q) := q.

DbndCω(D) ≤W degCω(D): Is trivial.

degCω(D) ≤W CN: By Lemma 1 replace CN with max. Let p be a Cω(D)-name
of the function corresponding to some polynomial P . Use Lemma 3 to ex-
tract a CN-name q of the series of coefficients. Define the pre-processor by
H(p)(〈m,n〉) := n + 1 if the dyadic number encoded by q(〈m,n〉) is bigger
than 2−m and 0 otherwise. Set K(p, q) := q.

From the proof of the previous theorem it can be seen, that stepping down
from analytic to continuous functions is not an issue. For sake of completeness we
add a slight tightening of the third item of Theorem 4 and state this as theorem:

Theorem 6. The following are Weihrauch-equivalent to CN:

– degC(D): Given a continuous function which is a polynomial, find its degree.

– DbndC(D): Given an analytic function which is a polynomial, find an upper
bound of its degree.

– AdvCω |C[X]: Given a continuous function which happens to be a polynomial,
find the constant needed to represent it as analytic function.

DbndCω(D) may be regarded as the advice function of C[X] over Cω(D):
The representation where p is a name of a polynomial P if and only if p(0) =
DbndCω(D) and n 7→ p(n+1) is a Cω(D)-name of P is computationally equivalent
to the representation of C[X]. The same way, DbndC(D) can be considered an
advice function of C[X] over C(D).

Figure 5 illustrates Lemma 4, Proposition 1 and Theorems 5 and 6.

deg

N

Cm[X]

id

C[X]

id

Monic

Cω(D)|C[X]

id

id

C(D)|C[X]

id

N

Dbnd
dash: ≡W CN

. . . .dots: ≡W LPO∗

line: ≡W idNN

Fig. 5. The result of Lemma 4, Proposition 1 and Theorems 5 and 6.



4 Conclusion

Many of the results proved in Section 3 work for more general domains: Lemma 3
generalizes to any computable point of the interior of an arbitrary domain. It
can be made a uniform statement by including the base point of a germ. In this
case for the proof to go through computability of the distance function of the
complement of the domain of the analytic function is needed.

Another example is the part of Theorem 4 that says finding a germ on the
boundary is difficult. In this case a disc of finite radius touching the boundary
in a computable point is needed. Alternatively, a simply connected bounded
Lipshitz domain with a computable point in the boundary can be used. Also in
this case it seems reasonable to assume that a uniform statement can be proven.

Furthermore, after considering polynomials and analytic functions [7] also
investigates representations for the set of distributions with compact support.
In the same vain as in this paper one could compare these representation and
the representation of distributions as functions on the spaces of test functions.
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16. Pauly, A., Davie, G., Fouché, W.: Weihrauch-completeness for layerwise com-
putability. arXiv:1505.02091 (2015)

17. Pauly, A., Steinberg, F.: Representations of analytic functions and Weihrauch de-
grees. arXiv:1512.03024

18. Pour-El, M.B., Richards, J.I.: Computability in analysis and physics. Perspectives
in Mathematical Logic, Springer-Verlag, Berlin (1989), http://dx.doi.org/10.

1007/978-3-662-21717-7

19. Weihrauch, K.: Computable analysis. Texts in Theoretical Computer Science.
An EATCS Series, Springer-Verlag, Berlin (2000), http://dx.doi.org/10.1007/
978-3-642-56999-9, an introduction

20. Ziegler, M.: Real computation with least discrete advice: a complexity theory
of nonuniform computability with applications to effective linear algebra. Ann.
Pure Appl. Logic 163(8), 1108–1139 (2012), http://dx.doi.org/10.1016/j.apal.
2011.12.030

Acknowledgements. The work has benefited from the Marie Curie Inter-
national Research Staff Exchange Scheme Computable Analysis, PIRSES-GA-
2011- 294962. The first author was supported partially by the ERC inVEST
(279499) project, the second by the International Research Training Group 1529
‘Mathematical Fluid Dynamics’ funded by the DFG and JSPS.


