3 research outputs found

    Weighting Policies for Robust Unsupervised Ensemble Learning

    Get PDF
    The unsupervised ensemble learning, or consensus clustering, consists of finding the optimal com- bination strategy of individual partitions that is robust in comparison to the selection of an algorithmic clustering pool. Despite its strong properties, this approach assigns the same weight to the contribution of each clustering to the final solution. We propose a weighting policy for this problem that is based on internal clustering quality measures and compare against other modern approaches. Results on publicly available datasets show that weights can significantly improve the accuracy performance while retaining the robust properties. Since the issue of determining an appropriate number of clusters, which is a primary input for many clustering methods is one of the significant challenges, we have used the same methodology to predict correct or the most suitable number of clusters as well. Among various methods, using internal validity indexes in conjunction with a suitable algorithm is one of the most popular way to determine the appropriate number of cluster. Thus, we use weighted consensus clustering along with four different indexes which are Silhouette (SH), Calinski-Harabasz (CH), Davies-Bouldin (DB), and Consensus (CI) indexes. Our experiment indicates that weighted consensus clustering together with chosen indexes is a useful method to determine right or the most appropriate number of clusters in comparison to individual clustering methods (e.g., k-means) and consensus clustering. Lastly, to decrease the variance of proposed weighted consensus clustering, we borrow the idea of Markowitz portfolio theory and implement its core idea to clustering domain. We aim to optimize the combination of individual clustering methods to minimize the variance of clustering accuracy. This is a new weighting policy to produce partition with a lower variance which might be crucial for a decision maker. Our study shows that using the idea of Markowitz portfolio theory will create a partition with a less variation in comparison to traditional consensus clustering and proposed weighted consensus clustering

    Weighted voting-based consensus clustering for chemical structure databases

    No full text
    The cluster-based compound selection is used in the lead identification process of drug discovery and design. Many clustering methods have been used for chemical databases, but there is no clustering method that can obtain the best results under all circumstances. However, little attention has been focused on the use of combination methods for chemical structure clustering, which is known as consensus clustering. Recently, consensus clustering has been used in many areas including bioinformatics, machine learning and information theory. This process can improve the robustness, stability, consistency and novelty of clustering. For chemical databases, different consensus clustering methods have been used including the co-association matrix-based, graph-based, hypergraph-based and voting-based methods. In this paper, a weighted cumulative voting-based aggregation algorithm (W-CVAA) was developed. The MDL Drug Data Report (MDDR) benchmark chemical dataset was used in the experiments and represented by the AlogP and ECPF-4 descriptors. The results from the clustering methods were evaluated by the ability of the clustering to separate biologically active molecules in each cluster from inactive ones using different criteria, and the effectiveness of the consensus clustering was compared to that of Ward's method, which is the current standard clustering method in chemoinformatics. This study indicated that weighted voting-based consensus clustering can overcome the limitations of the existing voting-based methods and improve the effectiveness of combining multiple clusterings of chemical structures
    corecore