
Application of Rank Correlation, Clustering and
Classification in Information Security

Gleb Beliakov1, John Yearwood2, Andrei Kelarev1
1School of Information Technology, Deakin University, 221 Burwood Hwy, Burwood 3125, Australia
2Graduate School of SITE, University of Ballarat, P.O. Box 663, Ballarat, Victoria 3353, Australia

Email: gleb@deakin.edu.au, andrei.kelarev@yahoo.com.au, j.yearwood@ballarat.edu.au

Abstract— This article is devoted to experimental investi-
gation of a novel application of a clustering technique
introduced by the authors recently in order to use robust and
stable consensus functions in information security, where it
is often necessary to process large data sets and monitor
outcomes in real time, as it is required, for example, for
intrusion detection. Here we concentrate on a particular
case of application to profiling of phishing websites. First,
we apply several independent clustering algorithms to a
randomized sample of data to obtain independent initial
clusterings. Silhouette index is used to determine the number
of clusters. Second, rank correlation is used to select a
subset of features for dimensionality reduction. We inves-
tigate the effectiveness of the Pearson Linear Correlation
Coefficient, the Spearman Rank Correlation Coefficient
and the Goodman–Kruskal Correlation Coefficient in this
application. Third, we use a consensus function to combine
independent initial clusterings into one consensus clustering.
Fourth, we train fast supervised classification algorithms on
the resulting consensus clustering in order to enable them
to process the whole large data set as well as new data. The
precision and recall of classifiers at the final stage of this
scheme are critical for effectiveness of the whole procedure.
We investigated various combinations of several correlation
coefficients, consensus functions, and a variety of supervised
classification algorithms.

Index Terms— consensus functions; clustering; classification;
phishing websites

I. INTRODUCTION

This article deals with the experimental investigation of
various combinations of rank correlation coefficients, con-
sensus functions and supervised classification algorithms
for the profiling of phishing websites. There are many
clustering algorithms known in the literature. However,
their outcomes depend on the random selection of initial
seeds. Our approach has been designed to enable the
application of consensus functions, since they can be
used to increase stability and robustness of the obtained
clusterings. The readers are referred to Section V for
preliminaries and background information on consensus
functions, see also [1] and [2] for additional references
and examples of recent results.

This paper is based on “An Application of Novel Clustering Tech-
nique for Information Security” by G. Beliakov, J. Yearwood, and A.
Kelarev, which appeared in the Proceedings of the Applications and
Techniques in Information Security (ATIS2011), Melbourne, Australia,
November 2011. c© 2012 IEEE.

The data sets in information security are very large and
often require real-time monitoring, which is necessary,
for example, for intrusion detection. This is why direct
applications of sophisticated consensus functions in this
area are computationally expensive. To overcome this dif-
ficulty, in [1] the authors have introduced a new approach
combining consensus functions with fast supervised clas-
sification algorithms.

The present paper is devoted to experimental inves-
tigation of the effectiveness of this technique for the
new application to profiling of phishing websites. This
application has not been considered before and belongs
to the information security domain that has been actively
investigated recently, as described by the Anti-Phishing
Working Group [3] and OECD Task Force on Spam [4],
see also [1] and [2]. We hope that the outcomes of our
experiments can also provide guidance for choosing di-
rections of future studies in other branches of information
security.

This novel technique makes it possible to utilize slow
and most reliable consensus functions at the initial stages
to obtain more robust clusterings. On the other hand, it
increases the speed of processing the whole large data
set and new samples by incorporating fast classification
algorithms in the final stage.

The paper is organised as follows. An outline of the
combined approach to clustering is given in Section II.
Section III is devoted to the preprocessing of data and
extraction of features for clustering algorithms. Section IV
contains a brief outline of clustering algorithms applied to
obtain an initial clustering ensemble for a small random-
ized sample of data. Section V contains background infor-
mation on consensus functions and concise preliminaries
on graph formulations and heuristics used to combine the
ensemble into one final consensus clustering. Section VI
deals with the supervised classification algorithms trained
on the consensus clustering. Experimental results are
summarized in Section VII. Section VIII presents the
conclusions.

II. OUTLINE OF THE COMBINED APPROACH TO
CLUSTERING

We investigated various combinations of rank corre-
lation coefficients and consensus functions in conjunc-
tion with fast supervised classification algorithms. This

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/212998036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

approach to clustering has several steps or stages. First, a
variety of independent clustering algorithms are applied
to a randomized sample of data. Second, rank correlation
is used to select a subset of features for dimensionality re-
duction. Our experiments investigated the effectiveness of
several correlation coefficients in this procedure. Third, a
consensus function is used to combine these independent
clusterings into one common consensus clustering. In fact,
we investigated the effectiveness of several consensus
functions in this scheme. Fourth, the consensus clustering
of the randomized sample is used as a training set to train
fast supervised classification algorithms. Finally, these
fast classification algorithms can be applied to classify
the whole large data set.

Our experiments investigated this approach for a par-
ticular case of profiling of phishing websites. Algorithms
for classification and clustering of phishing emails and
websites have been actively investigated recently and
many valuable results have been obtained, as discussed
for example, by the Anti-Phishing Working Group [3] and
OECD Task Force on Spam [4], see also [1] and [2] for
examples of recent results. Phishing usually involves acts
of social engineering attempting to extract confidential
details by sending emails with false explanations urging
users to provide private information that will be used for
identity theft. The users are then directed to a phishing
website, where they are asked to enter personal details,
such as credit card numbers, tax file numbers, bank
account numbers and passwords. For more comprehensive
information on phishing the readers are referred to the
Anti-Phishing Working Group [3] and OECD Task Force
on Spam [4].

Our experiments compared the effectiveness of several
correlation coefficients, CBGF, HBGF and IBGF consen-
sus functions and investigated the performance of their
various combinations with fast classification algorithms
incorporated in this scheme.

III. FEATURE EXTRACTION

A large data set of phishing websites has been supplied
by the industry partners of the Centre for Informatics
and Applied Optimization at the University of Ballarat.
Analogous data sets are available from the downloadable
databases at the PhishTank [5].

A flexible preprocessing and feature extraction system
has been implemented in Python for the purposes of
this investigation. It has been used to extract features
describing the content and html structure of the websites.

A collection of features was extracted by considering
each website according to the bag-of-words model, where
it is viewed as an unordered collection of words and
the grammar, structure and word order are ignorred.
We used the term frequency–inverse document frequency
word weights, or TF-IDF weights, to select features
for the clusterings. These weights are well known in
feature extraction for text categorization [6], [7], [8]. They
are defined using the following concepts and notation.
Suppose that we are extracting features from a data set

E, which consists of |E| websites. For a word w and a
website m, let N(w,m) be the number of times w occurs
in m. Suppose that a collection T = {t1, . . . , tk} of terms
t1, . . . , tk is being looked at. The term frequency of a
word w ∈ T in a website m is denoted by TF(w,m)
and is defined as the number of times w occurs in m,
normalized over the number of occurrences of all terms
in m:

TF(w,m) =
N(w,m)∑k
i=1N(ti,m)

. (1)

The document frequency of the word w is denoted by
DF(w) and is defined as the number of websites in the
given data set where the word w occurs at least once.
The inverse document frequency is used to measure the
significance of each term. It is denoted by IDF(w) and is
defined by the following formula

IDF(w) = log

(
|E|

DF(w)

)
. (2)

The term frequency–inverse document frequency of a
word w in website m, or TF-IDF weight of w in m is
defined by

TF-IDF(w,m) = TF(w,m)× IDF(w). (3)

We collected a set of words with highest TF-IDF scores in
all websites of the data set. For each website, the TF-IDF
scores of these words in the website were determined.
These weights and additional features were assembled
in a vector. In order to determine the TF-IDF scores
we used Gensim, a Python package for vector space
modelling of text documents using NumPy and SciPy.
In addition, we used features reflecting the html structure
of the websites and links to different URL domains or
numeric IP addresses.

We have also incorporated several features related to
the structure of the websites, including
• the number of images,
• sizes and quality of images,
• hidden fields or graphics,
• full HTML substitution in the links,
• links to webpages in other domains,
• inline embedding of scripts,
• loading external scripting code,
• unicode-obfuscated URLs,
• URLs beginning with IP addresses in links.

These features were assembled in an algebraic vector
space model representing the data set. A number of
independent initial clusterings were then obtained for the
feature vectors of the websites in the sample using the
following clustering algorithms.

IV. INDEPENDENT INITIAL CLUSTERINGS

Looking at the features extracted as described in Sec-
tion III, we used four clustering algorithms implemented
in WEKA, SimpleKMeans, Cobweb, EM and Farthest-
First, and obtained an ensemble of independent initial
clusterings C = {C(1), C(2), . . . , C(k)}, where, for each

clustering C(i), the whole data set D is a disjoint union
of the classes in this clustering so that

C(i) = {C(i)
1 , C

(i)
2 , . . . , C

(i)
ki
} and (4)

D = C
(i)
1 ∪̇C

(i)
2 ∪̇ . . . ∪̇C

(i)
ki
, (5)

for all i = 1, . . . , k.
SimpleKMeans is the classical k-mean clustering al-

gorithm described, for example, in [9], Section 3.3.2,
and [10], Section 4.8. This algorithm randomly chooses
k websites as centroids of clusters at the initialization
stage. Every other website is allocated to the cluster
of its nearest centroid. After that each iteration finds
new centroids of all current clusters as a mean of all
members of the cluster. This is equivalent to finding
the point such that the sum of all distances from the
new centroid to all other sequences in the cluster is
minimal. Then the algorithm reallocates all points to the
clusters of the new centroids. It proceeds iteratively until
the centroids stabilize. We used SimpleKMeans with the
default Euclidean distance.

The outcomes of the k-means algorithm often depend
on the initial selection of the very first centroids. The
outcome of the SimpleKMeans in the WEKA imple-
mentation depends on the value of the input parameter
“seed”. To overcome the dependence of the outcome on
the random choice of this parameter we run it with 10
random selections of the “seed”, as recommended in [11].

Cobweb is the WEKA implementation of the Cobweb
and Classit clustering algorithms described in [12] and
[13], respectively. EM is the expectation maximisation
algorithm in WEKA. It determines the probability of each
instance belonging to each of the clusters. It can be used
to assign every instance to the cluster where it belongs
with the highest probability. FarthestFirst is a WEKA im-
plementation of the clustering algorithm described in [14].
Cobweb, EM, FarthestFirst and SimpleKMeans produce
clusterings given a fixed number of clusters as an input
parameter.

In order to determine the appropriate number of clusters
we used Silhouette index. The Silhouette index of a clus-
tering is a robust measure of the quality of the clustering
introduced in [15]. The Silhouette index SI(x) of each
observation x is defined as follows. If x is the only point
in its cluster, then SI(x) = 0. Denote by a(x) the average
distance between x and all other points of its cluster. For
any other cluster C, let d(x,C) be the average distance
between x and all points of C. The minimum

b(x) = min{d(x,C) : x /∈ C} (6)

is the distance from x to its nearest cluster C to which x
does not belong. Finally, put

SI(x) =
b(x)− a(x)

max{a(x), b(x)}
(7)

The Silhouette index of the whole clustering is found as
the average index over all observations. The Silhouette in-
dex always belongs to [−1, 1]. The partition with highest
Silhouette index is regarded as optimal.

For each initial clustering algorithm and each value
of the “seed”, we repeated it several times increasing
the number of clusters, as recommended in [15]. The
clustering with the best Silhouette index was included in
the set of initial clusterings to be processed by consensus
clustering algorithm at the next stage. The same procedure
of determining the number of clusters was applied for
other initial clustering algorithms too.

All these initial clustering algorithms can process our
data without any additional data transformations or en-
coding. The outcomes of all of these clustering algorithms
often depend on the initial random selections made during
the start of their iterations. A standard method is to run
them for several random selections of initial parameters,
as in [11]. In WEKA, the outcomes of these algorithms
depend on their input parameter “seed”. We run each of
these algorithms for 10 random selections of the “seed”
and obtained a total of 40 initial clusterings. This provided
sufficient input for the consensus clustering algorithms
considered in the next section. Thus, we have used mul-
tiple start versions of the Cobweb, EM, FarthestFirst and
SimpleKMeans, which could process our sample directly
and produced sufficient input for the next stage of our
approach.

V. CONSENSUS FUNCTIONS FOR ENSEMBLE
CLUSTERINGS

The following three consensus functions have been
applied:

CBGF − Cluster-Based Graph Formulation,
HBGF − Hybrid Bipartite Graph Formulation,
IBGF − Instance-Based Graph Formulation

The final consensus clustering obtained by these con-
sensus functions was used to train fast classification
algorithms. It is therefore natural to assume that a con-
sensus function performs better in our scheme, if the
supervised classification algorithms are able to produce
higher precision and recall at the final stage.

Cluster-Based Graph Formulation, CBGF, is a graph-
based consensus function. It defines a complete weighted
undirected graph on the set of vertices consisting of all
the given clusters. The weight of each edge of this graph
is determined by a measure of similarity of the clusters
corresponding to the vertices. Namely, for two clusters C ′

and C ′′ the weight of the edge (C ′, C ′′) can be set equal
to

w((C ′, C ′′)) =
|C ′ ∩ C ′′|
|C ′ ∪ C ′′|

, (8)

known as the Jaccard index or Jaccard similarity co-
efficient, see [16], Chapter 2. In order to ensure that
clusters that have a lot of elements in common are
grouped together, the edges with lowest weights are then
eliminated by applying a graph partitioning algorithm.
Each element is then allocated to the new final cluster
where it occurs most frequently.

Hybrid Bipartite Graph Formulation, HBGF, is a con-
sensus function proposed in [17] and based on a bipartite

graph. It has two sets of vertices: clusters and elements of
the data set. A cluster C and an element d are connected
by an edge in this bipartite graph if and only if d belongs
to C. An appropriate graph partitioning algorithm is then
applied to the whole bipartite graph. The final clustering
is determined by the way it partitions all elements of the
data set. We refer to [17]–[19] for more details.

Instance-Based Graph Formulation, IBGF, is also a
consensus function based on a complete undirected
weighted graph. Vertices of the graph are all elements
of the data set. The edge (d′, d′′) has weight given by the
formula

w((d′, d′′)) =
∑

i=1,...,k; Ci(d′)=Ci(d′′)

1/k,

where Ci(x) stands for the cluster containing x in the i-th
clustering. This means that w((d′, d′′)) is the proportion
of clusterings where the clusters of d′ and d′′ coincide.
Then IBGF applies an appropriate graph partitioning
algorithm to divide the graph into classes. These classes
determine clusters of the final consensus clustering.

We used METIS graph partitioning software described
in [20]. The weights of edges in the input files of METIS
must all be strictly greater than zero, which means that
it can handle only complete weighted graphs. In order to
apply it to a bipartite graphs, we had to set the weights
of all edges not present in the graph to 1 and to rescale
the weight of all other edges by multiplying them with a
constant to make them larger than 10,000. This ensured
that METIS removed all nonexistent edges from the graph
and then continued analysing the resulting bipartite graph.

We used rank correlation to select the most essential
features for use in consensus functions. It ranks all
features with respect to their relevance and importance to
the problem. We investigated four well-known measures:
the Pearson Linear Correlation Coefficient, the Spearman
Rank Correlation Coefficient, Kendall Rank Correlation
Coefficient, KRCC, and the Goodman–Kruskal Correla-
tion Coefficient. They can help remove irrelevant features
with almost zero correlation to the cluster labels. As a
result the redundancy among similar selected features is
reduced. Other methods, such as symmetrical uncertainty
[21] and asymmetric dependency coefficient [22] are also
usable for feature ranking to measure the relevance of the
features.

First, we used the Pearson Linear Correlation Coeffi-
cient, PLCC, also known as Pearson’s Product-Moment
Correlation Coefficient, [8]. It is well known that it is
helpful in various situations and has low complexity [21],
[23]. The PLCC is calculated to assess the correlation
between the features and their class labels. It is defined
by the following formula [23]:

ρ(fr, I) =
cov(fr, I)
σ(fr)σ(I)

, (9)

where σ(I) is the standard deviation of the labels of
instances and the covariance cov(fr, I) between fr and I

is defined by

cov(fr, I) =

n∑
i=1

(f ′r − dir)(I ′ − Ii)

n
(10)

where Ii is the label of the instance di and I ′ is the mean
of labels of instances. The standard deviation σ(fr) can
be calculated as

σ(fr) =

√√√√ n∑
i=1

(f ′r − dir)2

n
(11)

and f ′r is the mean of the feature fr,

f ′r =

n∑
i=1

(dir)

n
. (12)

Second, we used the Spearman Rank Correlation Coef-
ficient, SRCC, also known as Spearman’s Rho [24], [25],
[8]. It assesses how well the relationship can be described
using a monotonic function, which does not have to be
linear. The SRCC % is a measure of association based on
the ranks of the data values. It is given by the formula

% =

∑
(Ri −R)(Si − S)√∑
(Ri −R)

∑
(Si − S)

, (13)

where Ri is the rank of the i-th x-value, Si is the rank
of the i-th y-value, R is the mean of the ranks of x-
values, and S is the mean of the ranks of y-values. The
values of % belong to the segment [−1; 1]. Values close to
1 indicate that there is a good correlation (described by
a monotonically increasing function). First, we obtained
initial clusterings for the small randomized sample and
all original features as described in Section IV. Then we
used these initial clusterings to find the Spearman Rank
Correlation Coefficients. For each numerical feature, we
numbered all clusters according to the mean value of
this feature for all instances of the cluster, and after that
ranked all values of the feature and the cluster numbers.
Numbering clusters in the order of the mean values of
the feature for all instances of each cluster is essential,
since it ensures that we only have to look at values of
SRCC close to 1 in our case. Having found the SRCC
for each feature, we ordered the original features by the
values of their Spearman Rank Correlation Coefficients.
The features with higher values were selected for the next
stage of our procedure.

Third, we used Kendall Rank Correlation Coefficient,
KRCC, also known as Kendall’s Tau, [24], [25], [8]. Our
experiments have shown that it produces outcomes very
similar to the SRCC, and so in this paper we include
only the tables of the precision and recall obtained with
the SRCC.

Fourth, we used the Goodman–Kruskal Correlation Co-
efficient, GKCC, also known as the Goodman–Kruskal’s
Gamma, [24], [25], [8]. It is defined as the difference
between the number of concordant pairs C and the

number of discordant pairs D of the two rankings, as
a proportion of all pairs, ignoring ties:

G = (C −D)/(C +D). (14)

GKCC tests for a weak monotonicity between the two
rankings. The value of GKCC ranges between +1 to -1,
and it is equal to 0 for independent variables.

We ranked all the preliminary variables according to
the values of their rank correlation coefficients. Different
testing data sets or clustering algorithms will produce
different ranking lists of the preliminary variables. The
principle is that, the higher the ranking of the feature, the
more relevant it is to the clustering result. This means
that not all of the features make the same contribution to
the clustering result. The least important features can be
regarded as redundant features and can be removed. The
quality of the clusters can be improved by eliminating
the influence of the redundant features, and the efficiency
of clustering algorithm can be increased by reducing
dimensionality and removing irrelevant features.

In order to determine the appropriate number of clusters
for the final consensus clustering we used Silhouette index
described in Section IV. We ran each consensus clustering
increasing the number of clusters from 2 to 30. The final
consensus clustering with the best Silhouette index was
then regarded as the final output of the whole process, as
illustrated in Figure 1.

VI. SUPERVISED CLASSIFICATION ALGORITHMS

We have compared the performance of these three
consensus functions and their combinations with several
supervised classification algorithms. The resulting con-
sensus clustering described in Section V was used to train
supervised classification algorithms. We investigated the
performance of all classifiers implemented in WEKA, and
have included in the tables of this paper the outcomes
of the following algorithms, which worked well in our
scheme:
• BayesNet – Bayes Network learning algorithm K2,

[26].
• DecisionTable, a decision table majority classifier

[27].
• IBk, a k-nearest neighbours classifier selecting an

appropriate value of k based on cross-validation,
[28].

• J48 classifier generating a C4.5 decision tree, [29].
• JRip classifier implementing a propositional rule

learner RIPPER, [30].
• HyperPipes, a simple and fast classifier, [26].
• LibLINEAR, a library for large linear classification,

[31].
• LibSVM, a library for Support Vector Machines,

[32]. It implements an SMO-type algorithm proposed
by [33].

• NaiveBayes classical algorithm, [10], [34].
• PART classifier generating decision list based on

partial C4.5 decision trees and separate-and-conquer,
[35].

• RBFNetwork implementing a normalized Gaussian
radial basis function network, [26].

• Ridor – a ripple down rule classifier, [26].
• SMO classifier using Sequential Minimal Optimiza-

tion for training a support vector classifier, [36]–[38],
• VFI – voting feature intervals classification due to

[39].
More information on these algorithms is given by [10],
[26], [28], [29], [33]–[35], [37], [39], [40].

The performance of the SMO, LibSVM and LibLIN-
EAR depends on the SVM type, the kernel and several
numerical parameters. We have considered all types of
SVMs and kernels in SMO, LibSVM and LibLINEAR
that could handle the format of our data without additional
preprocessing. For each of these cases, we used the
optimization procedure explained in [41]. More advanced
optimization techniques presented in [42] can also be
applied here.

VII. EXPERIMENTAL RESULTS

We have undertaken experimental investigation of the
novel approach to clustering for a randomized sample of
phishing websites. Our experiments have compared all
combinations of the PLCC, SRCC and KRCC correlation
coefficients with CBGF, HBGF and IBGF consensus
functions and classification algorithms listed above for
a randomized sample of 1024 websites. We used tenfold
cross validation to evaluate the weighted average precision
and recall of these classification algorithms comparing
them with the classes of the corresponding consensus
clustering.

The results of our experiments are summarized in
Tables V, VI, VII and VIII. The precision and recall for all
choices of kernels of the SMO, LibSVM and LibLINEAR
classifiers are assembled in Tables V and VI. Their best
results have been also included in Tables VII and VIII
for convenience of the readers. The outcomes show that
the combination of the Goodman–Kruskal Correlation
Coefficient, the Hybrid Bipartite Graph Formulation con-
sensus function, and the Sequential Minimal Optimization
classifier with the polynomial kernel achieved the best
precision and recall in these experiments.

VIII. CONCLUSION

This article investigated a novel approach to clustering
of information security data sets and presented experimen-
tal results for the particular case of application to profiling
phishing websites. Our method is based on combining
rank correlation coefficients and reliable consensus func-
tions with fast supervised classification algorithms. First,
we applied a variety of independent clustering algorithms
to a randomized sample of data. Silhouette index was used
to determine the number of clusters for these algorithms.
Second, rank correlation was used to select a subset of
features for dimensionality reduction. Our experiments
compared the effectiveness of four correlation coefficients
in this procedure: Pearson Linear Correlation Coeffi-
cient, PLCC, Spearman Rank Correlation Coefficient,

●
●

●
●

●

●

●

● ● ●

●
● ● ● ●

●

●

●

●

●

● ● ●
●

●

● ● ●

●

0 5 10 15 20 25 30

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Silhouette index assessment of the number of clusters

number of clusters

av
er

ag
e

S
ilh

ou
et

te
 in

de
x

best
9

Figure 1. Silhouette indices of the final consensus clusterings

SRCC, Kendall Rank Correlation Coefficient, KRCC,
and Goodman–Kruskal Correlation Coefficient, GKCC.
Third, we used efficient consensus functions to combine
these independent clusterings into one final consensus
clustering. We investigated and compared the effective-
ness of three consensus functions: Cluster-Based Graph
Formulation, CBGF, Hybrid Bipartite Graph Formulation,
HBGF, and Instance-Based Graph Formulation, IBGF.
Fourth, in order to enable processing of large data sets
and new data, the resulting consensus clustering of the
final randomized sample was used as a training set to
train fast supervised classification algorithms. These fast
classification algorithms were then used to classify the
whole large data set.

Our experiments compared the effectiveness of CBGF,
HBGF and IBGF consensus functions in conjunction
with various classification algorithms. The experimental
results have shown that the combination of the Goodman–
Kruskal Correlation Coefficient, Hybrid Bipartite Graph
Formulation consensus function and the Sequential Min-
imal Optimization classifier with the polynomial kernel
achieved the best precision and recall in this scheme.
This combination can be recommended for future imple-
mentations and applications for profiling of very large
data sets of phishing websites in order to prepare data
for subsequent forensic analysis based on the resulting
individual clusters.

ACKNOWLEDGMENT

The second author was supported by Queen Elizabeth II
Fellowship, Discovery grant DP0211866 and Linkage
grant LP0990908 from Australian Research Council. The
third author was supported by ARC Discovery grant
DP0449469. All authors were supported by a Ballarat-
Deakin collaboration grant.

The authors are grateful to three referees for thorough
reports with detailed comments and corrections, which
have helped to improve the text of this article.

REFERENCES

[1] R. Dazeley, J. Yearwood, B. Kang, and A. Kelarev, “Con-
sensus clustering and supervised classification for profiling

TABLE I.
PRECISION OF SMO, LIBSVM AND LIBLINEAR FOR PLCC

CBGF HBGF IBGF

SMO

normalized polynomial 82.523 86.558 83.262

polynomial kernel 83.117 89.368 85.394

Pearson universal 79.795 87.196 85.061

RBFKernel 72.409 80.264 75.785

LibSVM C-SVC

linear kernel 62.305 71.306 67.385

polynomial kernel 63.973 69.451 69.735

radial basis function 63.944 65.731 66.780

sigmoid kernel 5.358 1.430 3.272

LibSVM nu-SVC

linear kernel 61.829 72.097 69.555

polynomial kernel 60.229 59.812 60.934

radial basis function 51.084 54.907 54.476

sigmoid kernel 0.283 2.102 0.066

LibLINEAR

L2 loss svm (dual) 36.424 39.393 37.098

L1 loss svm (dual) 36.946 45.355 40.509

multi-class svm 55.893 62.003 57.362

TABLE II.
RECALL OF SMO, LIBSVM AND LIBLINEAR FOR PLCC

CBGF HBGF IBGF

SMO

normalized polynomial 82.525 86.558 83.260

polynomial kernel 83.118 89.370 85.396

Pearson universal 79.795 87.194 85.061

RBFKernel 72.408 80.265 75.786

LibSVM C-SVC

linear kernel 62.307 71.304 67.383

polynomial kernel 63.974 69.453 69.737

radial basis function 63.941 65.729 66.781

sigmoid kernel 5.359 1.432 3.273

LibSVM nu-SVC

linear kernel 61.830 72.096 69.554

polynomial kernel 60.229 59.812 60.936

radial basis function 51.082 54.908 54.475

sigmoid kernel 0.284 2.100 0.065

LibLINEAR

L2 loss svm (dual) 36.424 39.393 37.098

L1 loss svm (dual) 36.948 45.356 40.507

multi-class svm 55.893 62.001 57.362

TABLE III.
PRECISION OF CLASSIFIERS WITH CBGF, HBGF, IBGF FOR PLCC

CBGF HBGF IBGF

BayesNet 70.541 76.874 75.147

DecisionTable 65.923 71.955 64.624

IBk 78.091 83.981 80.987

J48 70.545 80.670 76.027

JRip 70.733 78.964 71.389

HyperPipes 54.593 56.560 56.732

LibLINEAR 55.893 62.003 57.362

LibSVM 63.973 69.451 69.735

NaiveBayes 62.546 66.328 64.041

PART 67.932 78.082 75.298

RBFNetwork 53.755 58.741 55.985

Ridor 62.905 68.268 61.313

SMO 83.117 89.368 85.394

VFI 58.227 62.603 59.409

TABLE IV.
RECALL OF CLASSIFIERS WITH CBGF, HBGF, IBGF FOR PLCC

CBGF HBGF IBGF

BayesNet 70.541 76.875 75.147

DecisionTable 65.925 71.956 64.623

IBk 78.089 83.982 80.989

J48 70.542 80.671 76.026

JRip 70.733 78.964 71.388

HyperPipes 54.592 56.558 56.732

LibLINEAR 55.893 62.001 57.362

LibSVM 63.974 69.453 69.737

NaiveBayes 62.544 66.326 64.042

PART 67.932 78.081 75.296

RBFNetwork 53.756 58.741 55.985

Ridor 62.905 68.269 61.311

SMO 83.118 89.370 85.396

VFI 58.229 62.603 59.407

phishing emails in internet commerce security,” in Knowl-
edge Management and Acquisition for Smart Systems and
Services, PKAW2010, Lecture Notes in Computer Science,
vol. 6232, 2010, pp. 235–246.

[2] J. Yearwood, D. Webb, L. Ma, P. Vamplew, B. Ofoghi,
and A. Kelarev, “Applying clustering and ensemble clus-
tering approaches to phishing profiling,” in Data Mining
and Analytics 2009, Proc. 8th Australasian Data Mining
Conference: AusDM 2009, CRPIT, vol. 101, 2009, pp. 25–
34.

[3] APWG, “Anti-Phishing Working Group,”
urlhttp://apwg.org/, accessed 15 December 2010.

[4] OECD, “Organisation for Economic Cooperation and De-
velopment, OECD task force on spam, OECD anti-spam

TABLE V.
PRECISION OF SMO, LIBSVM AND LIBLINEAR FOR SRCC

CBGF HBGF IBGF

SMO

- normalized polynomial 84.770 91.331 88.101

- polynomial kernel 87.441 94.759 90.726

- Pearson universal 84.236 91.936 87.557

- RBFKernel 76.766 82.844 79.028

LibSVM C-SVC

- linear kernel 68.173 74.573 71.797

- polynomial kernel 69.648 74.671 72.252

- radial basis function 65.949 71.525 68.961

- sigmoid kernel 2.506 2.042 1.883

LibSVM nu-SVC

- linear kernel 67.515 72.831 70.459

- polynomial kernel 60.460 65.254 63.405

- radial basis function 55.358 60.206 57.913

- sigmoid kernel 2.290 2.113 2.591

LibLINEAR

- L2 loss svm (dual) 40.040 43.750 41.823

- L1 loss svm (dual) 41.113 44.675 42.891

- multi-class svm 61.012 65.286 63.267

toolkit and its annexes,” http://www.oecd.org/dataoecd/63/
28/36494147.pdf, accessed 20 November 2011.

[5] PhishTank, “Developer information,” http://www.
phishtank.com/developer info.php, viewed 20 September
2011.

[6] T. Joachims, “A probabilistic analysis of the rocchio algo-
rithm with TF-IDF for text categorization,” in Proc. 14th
International Conference on Machine Learning, 1997, pp.
143–151.

[7] H. Liu and H. Motoda, Feature Extraction, Construction
and Selection: A Data Mining Perspective. Dordrecht:
Kluwer, 1988.

[8] NIST/SEMATECH, “E-handbook of statistical methods,”
http://www.itl.nist.gov/div898/handbook/, viewed 21 Octo-
ber 2011.

[9] A. Jain and R. Dubes, Algorithms for Clustering Data.
Upper Saddle River, NJ, USA: Prentice-Hall, 1988.

[10] I. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques. Amsterdam: Else-
vier/Morgan Kaufman, 2005.

[11] A. Jain, M. Murty, and P. Flynn, “Data clustering: a
review,” ACM Computing Surveys, vol. 31, pp. 264–323,
1999.

[12] D. Fisher, “Knowledge acquisition via incremental concep-
tual clustering,” Machine Learning, vol. 2, pp. 139–172,
1987.

[13] J. Gennari, P. Langley, and D. Fisher, “Models of incre-
mental concept formation,” Artificial Intelligence, vol. 40,
pp. 11–61, 1990.

[14] S. Hochbaum, “A best possible heuristic for the k-center
problem,” Mathematics of Operations Research, vol. 10,
pp. 180–184, 1985.

[15] P. Rousseeuw, “Silhouettes: a graphical aid to the interpre-

TABLE VI.
RECALL OF SMO, LIBSVM AND LIBLINEAR FOR SRCC

CBGF HBGF IBGF

SMO

- normalized polynomial 84.763 91.326 88.096

- polynomial kernel 87.443 94.760 90.727

- Pearson universal 84.222 91.921 87.542

- RBFKernel 76.707 82.783 78.966

LibSVM C-SVC

- linear kernel 68.185 74.585 71.806

- polynomial kernel 69.608 74.632 72.216

- radial basis function 65.697 71.270 68.709

- sigmoid kernel 2.624 2.159 2.000

LibSVM nu-SVC

- linear kernel 67.494 72.809 70.439

- polynomial kernel 60.534 65.329 63.477

- radial basis function 55.219 60.064 57.772

- sigmoid kernel 2.404 2.229 2.709

LibLINEAR

- L2 loss svm (dual) 39.995 43.703 41.779

- L1 loss svm (dual) 41.041 44.606 42.819

- multi-class svm 61.004 65.274 63.259

TABLE VII.
PRECISION OF CLASSIFIERS WITH CBGF, HBGF, IBGF FOR SRCC

CBGF HBGF IBGF

BayesNet 73.952 81.112 77.297

DecisionTable 67.505 73.394 70.635

IBk 80.792 87.195 83.775

J48 76.266 83.397 79.640

JRip 74.195 81.131 77.477

HyperPipes 55.380 59.686 57.198

LibLINEAR 61.012 65.286 63.267

LibSVM 69.648 74.671 72.252

NaiveBayes 66.115 71.053 68.312

PART 73.584 79.476 76.201

RBFNetwork 58.726 63.716 61.639

Ridor 64.307 69.406 66.633

SMO 87.441 94.759 90.726

VFI 61.678 66.935 64.590

tation and validation of cluster analysis,” J. Comp. Appl.
Math., vol. 20, pp. 53–65, 1987.

[16] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining, (First Edition). Boston, MA, USA: Addison-
Wesley, 2005.

[17] X. Fern and C. Brodley, “Solving cluster ensemble prob-
lems by bipartite graph partitioning,” in 21st International

TABLE VIII.
RECALL OF CLASSIFIERS WITH CBGF, HBGF, IBGF FOR SRCC

CBGF HBGF IBGF

BayesNet 73.941 81.103 77.287

DecisionTable 67.505 73.392 70.633

IBk 80.795 87.196 83.774

J48 76.269 83.397 79.644

JRip 74.195 81.131 77.476

HyperPipes 55.298 59.605 57.121

LibLINEAR 61.004 65.274 63.259

LibSVM 69.608 74.632 72.216

NaiveBayes 66.110 71.046 68.307

PART 73.582 79.473 76.195

RBFNetwork 58.726 63.715 61.641

Ridor 64.312 69.406 66.638

SMO 87.443 94.760 90.727

VFI 61.660 66.918 64.570

TABLE IX.
PRECISION OF SMO, LIBSVM AND LIBLINEAR FOR KRCC

CBGF HBGF IBGF

SMO

normalized polynomial 82.275 89.446 86.392

polynomial kernel 85.035 93.313 90.199

Pearson universal 82.154 90.692 86.994

RBFKernel 74.100 82.185 80.238

LibSVM C-SVC

linear kernel 69.852 73.033 68.161

polynomial kernel 69.914 74.748 69.517

radial basis function 65.649 72.981 67.877

sigmoid kernel 5.349 3.350 2.336

LibSVM nu-SVC

linear kernel 68.858 71.027 68.027

polynomial kernel 59.830 63.442 62.252

radial basis function 56.572 60.520 54.895

sigmoid kernel 4.735 2.159 4.154

LibLINEAR

L2 loss svm (dual) 41.196 44.240 39.293

L1 loss svm (dual) 39.862 43.767 44.358

multi-class svm 61.479 62.475 65.171

Conference on Machine Learning, ICML’04, vol. 69. New
York, NY, USA: ACM, 2004, pp. 36–43.

[18] A. Strehl and J. Ghosh, “Cluster ensembles – a knowl-
edge reuse framework for combining multiple partitions,”
J. Machine Learning Research, vol. 3, pp. 583–617, 2002.

[19] A. Topchy, A. Jain, and W. Punch, “Combining multiple
weak clusterings,” in IEEE International Conference on

TABLE X.
RECALL OF SMO, LIBSVM AND LIBLINEAR FOR KRCC

CBGF HBGF IBGF

SMO

normalized polynomial 82.274 89.447 86.390

polynomial kernel 85.035 93.314 90.201

Pearson universal 82.153 90.693 86.995

RBFKernel 74.101 82.184 80.237

LibSVM C-SVC

linear kernel 69.850 73.032 68.160

polynomial kernel 69.915 74.746 69.517

radial basis function 65.649 72.982 67.878

sigmoid kernel 5.348 3.350 2.337

LibSVM nu-SVC

linear kernel 68.861 71.028 68.026

polynomial kernel 59.831 63.442 62.252

radial basis function 56.573 60.519 54.897

sigmoid kernel 4.733 2.158 4.154

LibLINEAR

L2 loss svm (dual) 41.195 44.241 39.294

L1 loss svm (dual) 39.861 43.766 44.359

multi-class svm 61.480 62.474 65.170

TABLE XI.
PRECISION OF CLASSIFIERS WITH CBGF, HBGF, IBGF FOR KRCC

CBGF HBGF IBGF

BayesNet 71.738 78.649 74.681

DecisionTable 69.551 69.676 70.251

IBk 81.610 87.794 82.920

J48 75.302 81.006 78.669

JRip 74.918 80.225 77.095

HyperPipes 56.481 58.957 55.298

LibLINEAR 61.479 62.475 65.171

LibSVM 69.914 74.748 69.517

NaiveBayes 63.786 68.185 70.127

PART 74.310 75.865 75.760

RBFNetwork 57.941 64.090 63.067

Ridor 61.343 69.917 68.312

SMO 85.035 93.313 90.199

VFI 60.715 64.436 60.965

Data Mining, 2003, pp. 331–338.
[20] G. Karypis and V. Kumar, “Metis: A software package

for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices,”
University of Minnesota, Department of Computer Science
and Engineering, Army HPC Research Centre, Minneapo-
lis, Technical Report, 1998.

TABLE XII.
RECALL OF CLASSIFIERS WITH CBGF, HBGF, IBGF FOR KRCC

CBGF HBGF IBGF

BayesNet 71.738 78.649 74.682

DecisionTable 69.552 69.678 70.252

IBk 81.609 87.795 82.919

J48 75.304 81.007 78.671

JRip 74.916 80.225 77.095

HyperPipes 56.481 58.957 55.300

LibLINEAR 61.480 62.474 65.170

LibSVM 69.915 74.746 69.517

NaiveBayes 63.787 68.185 70.128

PART 74.310 75.863 75.760

RBFNetwork 57.939 64.092 63.069

Ridor 61.341 69.916 68.315

SMO 85.035 93.314 90.201

VFI 60.716 64.435 60.963

TABLE XIII.
PRECISION OF SMO, LIBSVM AND LIBLINEAR FOR GKCC

CBGF HBGF IBGF

SMO

normalized polynomial 87.941 94.039 90.871

polynomial kernel 89.460 96.798 93.222

Pearson universal 85.122 95.096 88.679

RBFKernel 78.120 84.699 79.237

LibSVM C-SVC

linear kernel 68.890 79.445 71.253

polynomial kernel 74.226 77.030 73.931

radial basis function 69.038 72.425 69.297

sigmoid kernel 3.901 3.015 0.039

LibSVM nu-SVC

linear kernel 72.314 76.149 73.842

polynomial kernel 59.326 66.251 63.978

radial basis function 58.169 61.328 60.879

sigmoid kernel 3.109 2.215 4.108

LibLINEAR

L2 loss svm (dual) 39.844 42.143 43.905

L1 loss svm (dual) 39.597 47.726 41.420

multi-class svm 65.681 69.315 64.760

[21] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” Journal of Machine Learning Research,
vol. 3, pp. 1157–1182, 2003.

[22] D. Sridhar, E. Bartlett, and R. Seagrave, “Information
theoretic subset selection for neural network models,”
Computers & Chemical Engineering, vol. 22, pp. 613–626,
1998.

TABLE XIV.
RECALL OF SMO, LIBSVM AND LIBLINEAR FOR GKCC

CBGF HBGF IBGF

SMO

normalized polynomial 86.689 93.310 90.712

polynomial kernel 89.306 97.761 94.127

Pearson universal 86.759 93.942 89.253

RBFKernel 77.288 83.634 82.719

LibSVM C-SVC

linear kernel 68.550 74.427 73.851

polynomial kernel 69.490 77.033 77.401

radial basis function 69.171 70.977 69.556

sigmoid kernel 0.341 1.541 4.773

LibSVM nu-SVC

linear kernel 70.052 75.046 74.891

polynomial kernel 60.537 69.804 65.771

radial basis function 58.797 64.382 58.831

sigmoid kernel 3.284 3.417 2.170

LibLINEAR

L2 loss svm (dual) 39.897 44.316 45.019

L1 loss svm (dual) 39.350 46.340 44.643

multi-class svm 63.726 64.615 63.241

TABLE XV.
PRECISION OF CLASSIFIERS WITH CBGF, HBGF, IBGF FOR GKCC

CBGF HBGF IBGF

BayesNet 76.754 84.991 82.397

DecisionTable 70.413 78.514 72.500

IBk 81.541 87.845 86.408

J48 77.093 85.858 80.078

JRip 76.432 81.829 79.472

HyperPipes 59.988 62.316 60.631

LibLINEAR 65.681 69.315 64.760

LibSVM 74.226 77.030 73.931

NaiveBayes 67.036 75.893 71.430

PART 75.048 79.226 77.220

RBFNetwork 60.633 64.450 64.452

Ridor 63.499 73.403 65.850

SMO 89.460 96.798 93.222

VFI 64.419 67.442 68.917

[23] Y. Hong, S. Kwong, Y. Chang, and Q. Ren, “Consensus
unsupervised feature ranking from multiple views,” Pattern
Recognition Letters, vol. 29, pp. 595–602, 2008.

[24] G. Corder and D. Foreman, Nonparametric Statistics for
Non-Statisticians: A Step-by-Step Approach. New York:
Wiley Interscience, 2009.

[25] M. Kendall and J. Gibbons, Rank Correlation Methods,

TABLE XVI.
RECALL OF CLASSIFIERS WITH CBGF, HBGF, IBGF FOR GKCC

CBGF HBGF IBGF

BayesNet 76.752 84.989 82.397

DecisionTable 70.414 78.516 72.502

IBk 81.542 87.847 86.408

J48 77.093 85.858 80.077

JRip 76.430 81.826 79.474

HyperPipes 59.987 62.317 60.629

LibLINEAR 63.726 64.615 63.241

LibSVM 69.490 77.033 77.401

NaiveBayes 67.035 75.893 71.431

PART 75.049 79.226 77.219

RBFNetwork 60.630 64.448 64.452

Ridor 63.499 73.401 65.850

SMO 89.306 97.761 94.127

VFI 64.417 67.441 68.915

5th ed. London: Oxford University Press, 1990.
[26] R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann,

A. Seewald, and D. Scuse, “Weka manual for version 3-
7-3,” urlhttp://www.cs.waikato.ac.nz/ml/weka/, viewed 15
August 2011.

[27] R. Kohavi, “The power of decision tables,” in 8th European
Conference on Machine Learning, 1995, pp. 174–189.

[28] D. Aha and D. Kibler, “Instance-based learning algo-
rithms,” Machine Learning, vol. 6, pp. 37–66, 1991.

[29] R. Quinlan, C4.5: Programs for Machine Learning. San
Mateo, CA: Morgan Kaufmann, 1993.

[30] W. Cohen, “Fast effective rule induction,” in Proc. 12th
Internat. Conf. Machine Learning, 1995, pp. 115–123.

[31] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin, “Liblinear - a library for large linear classifi-
cation,” Software available at http://www.csie.ntu.edu.tw/
∼cjlin/liblinear/, viewed 10 August 2011.

[32] C.-C. Chang and C.-J. Lin, “Libsvm – a library for support
vector machines,” Software available at http://www.csie.
ntu.edu.tw/∼cjlin/libsvm/, viewed 12 June 2011, 2001.

[33] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set se-
lection using second order information for training svm,”
J. Machine Learning Research, vol. 6, pp. 1889–1918,
2005.

[34] R. Duda, P. Hart, and D. Stork, Pattern Classification,
2nd ed. New York: Wiley, 2001.

[35] F. Frank and I. Witten, “Generating accurate rule sets
without global optimization,” in Proc. 15th Internat. Conf.
on Machine Learning, 1998, pp. 144–151.

[36] T. Hastie and R. Tibshirani, “Classification by pairwise
coupling,” in Advances in Neural Information Processing
Systems, 1998.

[37] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy,
“Improvements to Platt’s SMO algorithm for SVM classi-
fier design,” Neural Computation, vol. 13, no. 3, pp. 637–
649, 2001.

[38] J. Platt, “Fast training of support vector machines using
sequential minimal optimization,” in Advances in Kernel
Methods – Support Vector Learning, 1998.

[39] G. Demiroz and A. Guvenir, “Classification by voting
feature intervals,” in Proc. 9th European Conference on
Machine Learning, 1997, pp. 85–92.

[40] X. Wu, V. Kumar, J. Quinlan, J. Ghosh, Q. Yang, H. Mo-
toda, G. McLachlan, A. Ng, B. Liu, P. Yu, Z. Zhou,
M. Steinbach, D. Hand, and D. Steinberg, “Top 10 algo-
rithms in data mining,” Knowledge Inf. Systems, vol. 14,
pp. 1–37, 2007.

[41] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical
guide to support vector classification,” Dept. Computer
Science, National Taiwan University, http://www.csie.ntu.
edu.tw/∼cjlin, Initial version: 2003, last updated: April 15,
2010.

[42] G. Beliakov and J. Ugon, “Implementation of novel meth-
ods of global and non-smooth optimization: GANSO pro-
gramming library,” Optimization, vol. 56, pp. 543–546,
2007.

