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Abstract— This article is devoted to experimental investi-
gation of a novel application of a clustering technique
introduced by the authors recently in order to use robust and
stable consensus functions in information security, where it
is often necessary to process large data sets and monitor
outcomes in real time, as it is required, for example, for
intrusion detection. Here we concentrate on a particular
case of application to profiling of phishing websites. First,
we apply several independent clustering algorithms to a
randomized sample of data to obtain independent initial
clusterings. Silhouette index is used to determine the number
of clusters. Second, rank correlation is used to select a
subset of features for dimensionality reduction. We inves-
tigate the effectiveness of the Pearson Linear Correlation
Coefficient, the Spearman Rank Correlation Coefficient
and the Goodman–Kruskal Correlation Coefficient in this
application. Third, we use a consensus function to combine
independent initial clusterings into one consensus clustering.
Fourth, we train fast supervised classification algorithms on
the resulting consensus clustering in order to enable them
to process the whole large data set as well as new data. The
precision and recall of classifiers at the final stage of this
scheme are critical for effectiveness of the whole procedure.
We investigated various combinations of several correlation
coefficients, consensus functions, and a variety of supervised
classification algorithms.

Index Terms— consensus functions; clustering; classification;
phishing websites

I. INTRODUCTION

This article deals with the experimental investigation of
various combinations of rank correlation coefficients, con-
sensus functions and supervised classification algorithms
for the profiling of phishing websites. There are many
clustering algorithms known in the literature. However,
their outcomes depend on the random selection of initial
seeds. Our approach has been designed to enable the
application of consensus functions, since they can be
used to increase stability and robustness of the obtained
clusterings. The readers are referred to Section V for
preliminaries and background information on consensus
functions, see also [1] and [2] for additional references
and examples of recent results.

This paper is based on “An Application of Novel Clustering Tech-
nique for Information Security” by G. Beliakov, J. Yearwood, and A.
Kelarev, which appeared in the Proceedings of the Applications and
Techniques in Information Security (ATIS2011), Melbourne, Australia,
November 2011. c© 2012 IEEE.

The data sets in information security are very large and
often require real-time monitoring, which is necessary,
for example, for intrusion detection. This is why direct
applications of sophisticated consensus functions in this
area are computationally expensive. To overcome this dif-
ficulty, in [1] the authors have introduced a new approach
combining consensus functions with fast supervised clas-
sification algorithms.

The present paper is devoted to experimental inves-
tigation of the effectiveness of this technique for the
new application to profiling of phishing websites. This
application has not been considered before and belongs
to the information security domain that has been actively
investigated recently, as described by the Anti-Phishing
Working Group [3] and OECD Task Force on Spam [4],
see also [1] and [2]. We hope that the outcomes of our
experiments can also provide guidance for choosing di-
rections of future studies in other branches of information
security.

This novel technique makes it possible to utilize slow
and most reliable consensus functions at the initial stages
to obtain more robust clusterings. On the other hand, it
increases the speed of processing the whole large data
set and new samples by incorporating fast classification
algorithms in the final stage.

The paper is organised as follows. An outline of the
combined approach to clustering is given in Section II.
Section III is devoted to the preprocessing of data and
extraction of features for clustering algorithms. Section IV
contains a brief outline of clustering algorithms applied to
obtain an initial clustering ensemble for a small random-
ized sample of data. Section V contains background infor-
mation on consensus functions and concise preliminaries
on graph formulations and heuristics used to combine the
ensemble into one final consensus clustering. Section VI
deals with the supervised classification algorithms trained
on the consensus clustering. Experimental results are
summarized in Section VII. Section VIII presents the
conclusions.

II. OUTLINE OF THE COMBINED APPROACH TO
CLUSTERING

We investigated various combinations of rank corre-
lation coefficients and consensus functions in conjunc-
tion with fast supervised classification algorithms. This
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approach to clustering has several steps or stages. First, a
variety of independent clustering algorithms are applied
to a randomized sample of data. Second, rank correlation
is used to select a subset of features for dimensionality re-
duction. Our experiments investigated the effectiveness of
several correlation coefficients in this procedure. Third, a
consensus function is used to combine these independent
clusterings into one common consensus clustering. In fact,
we investigated the effectiveness of several consensus
functions in this scheme. Fourth, the consensus clustering
of the randomized sample is used as a training set to train
fast supervised classification algorithms. Finally, these
fast classification algorithms can be applied to classify
the whole large data set.

Our experiments investigated this approach for a par-
ticular case of profiling of phishing websites. Algorithms
for classification and clustering of phishing emails and
websites have been actively investigated recently and
many valuable results have been obtained, as discussed
for example, by the Anti-Phishing Working Group [3] and
OECD Task Force on Spam [4], see also [1] and [2] for
examples of recent results. Phishing usually involves acts
of social engineering attempting to extract confidential
details by sending emails with false explanations urging
users to provide private information that will be used for
identity theft. The users are then directed to a phishing
website, where they are asked to enter personal details,
such as credit card numbers, tax file numbers, bank
account numbers and passwords. For more comprehensive
information on phishing the readers are referred to the
Anti-Phishing Working Group [3] and OECD Task Force
on Spam [4].

Our experiments compared the effectiveness of several
correlation coefficients, CBGF, HBGF and IBGF consen-
sus functions and investigated the performance of their
various combinations with fast classification algorithms
incorporated in this scheme.

III. FEATURE EXTRACTION

A large data set of phishing websites has been supplied
by the industry partners of the Centre for Informatics
and Applied Optimization at the University of Ballarat.
Analogous data sets are available from the downloadable
databases at the PhishTank [5].

A flexible preprocessing and feature extraction system
has been implemented in Python for the purposes of
this investigation. It has been used to extract features
describing the content and html structure of the websites.

A collection of features was extracted by considering
each website according to the bag-of-words model, where
it is viewed as an unordered collection of words and
the grammar, structure and word order are ignorred.
We used the term frequency–inverse document frequency
word weights, or TF-IDF weights, to select features
for the clusterings. These weights are well known in
feature extraction for text categorization [6], [7], [8]. They
are defined using the following concepts and notation.
Suppose that we are extracting features from a data set

E, which consists of |E| websites. For a word w and a
website m, let N(w,m) be the number of times w occurs
in m. Suppose that a collection T = {t1, . . . , tk} of terms
t1, . . . , tk is being looked at. The term frequency of a
word w ∈ T in a website m is denoted by TF(w,m)
and is defined as the number of times w occurs in m,
normalized over the number of occurrences of all terms
in m:

TF(w,m) =
N(w,m)∑k
i=1N(ti,m)

. (1)

The document frequency of the word w is denoted by
DF(w) and is defined as the number of websites in the
given data set where the word w occurs at least once.
The inverse document frequency is used to measure the
significance of each term. It is denoted by IDF(w) and is
defined by the following formula

IDF(w) = log

(
|E|

DF(w)

)
. (2)

The term frequency–inverse document frequency of a
word w in website m, or TF-IDF weight of w in m is
defined by

TF-IDF(w,m) = TF(w,m)× IDF(w). (3)

We collected a set of words with highest TF-IDF scores in
all websites of the data set. For each website, the TF-IDF
scores of these words in the website were determined.
These weights and additional features were assembled
in a vector. In order to determine the TF-IDF scores
we used Gensim, a Python package for vector space
modelling of text documents using NumPy and SciPy.
In addition, we used features reflecting the html structure
of the websites and links to different URL domains or
numeric IP addresses.

We have also incorporated several features related to
the structure of the websites, including
• the number of images,
• sizes and quality of images,
• hidden fields or graphics,
• full HTML substitution in the links,
• links to webpages in other domains,
• inline embedding of scripts,
• loading external scripting code,
• unicode-obfuscated URLs,
• URLs beginning with IP addresses in links.

These features were assembled in an algebraic vector
space model representing the data set. A number of
independent initial clusterings were then obtained for the
feature vectors of the websites in the sample using the
following clustering algorithms.

IV. INDEPENDENT INITIAL CLUSTERINGS

Looking at the features extracted as described in Sec-
tion III, we used four clustering algorithms implemented
in WEKA, SimpleKMeans, Cobweb, EM and Farthest-
First, and obtained an ensemble of independent initial
clusterings C = {C(1), C(2), . . . , C(k)}, where, for each



clustering C(i), the whole data set D is a disjoint union
of the classes in this clustering so that

C(i) = {C(i)
1 , C

(i)
2 , . . . , C

(i)
ki
} and (4)

D = C
(i)
1 ∪̇C

(i)
2 ∪̇ . . . ∪̇C

(i)
ki
, (5)

for all i = 1, . . . , k.
SimpleKMeans is the classical k-mean clustering al-

gorithm described, for example, in [9], Section 3.3.2,
and [10], Section 4.8. This algorithm randomly chooses
k websites as centroids of clusters at the initialization
stage. Every other website is allocated to the cluster
of its nearest centroid. After that each iteration finds
new centroids of all current clusters as a mean of all
members of the cluster. This is equivalent to finding
the point such that the sum of all distances from the
new centroid to all other sequences in the cluster is
minimal. Then the algorithm reallocates all points to the
clusters of the new centroids. It proceeds iteratively until
the centroids stabilize. We used SimpleKMeans with the
default Euclidean distance.

The outcomes of the k-means algorithm often depend
on the initial selection of the very first centroids. The
outcome of the SimpleKMeans in the WEKA imple-
mentation depends on the value of the input parameter
“seed”. To overcome the dependence of the outcome on
the random choice of this parameter we run it with 10
random selections of the “seed”, as recommended in [11].

Cobweb is the WEKA implementation of the Cobweb
and Classit clustering algorithms described in [12] and
[13], respectively. EM is the expectation maximisation
algorithm in WEKA. It determines the probability of each
instance belonging to each of the clusters. It can be used
to assign every instance to the cluster where it belongs
with the highest probability. FarthestFirst is a WEKA im-
plementation of the clustering algorithm described in [14].
Cobweb, EM, FarthestFirst and SimpleKMeans produce
clusterings given a fixed number of clusters as an input
parameter.

In order to determine the appropriate number of clusters
we used Silhouette index. The Silhouette index of a clus-
tering is a robust measure of the quality of the clustering
introduced in [15]. The Silhouette index SI(x) of each
observation x is defined as follows. If x is the only point
in its cluster, then SI(x) = 0. Denote by a(x) the average
distance between x and all other points of its cluster. For
any other cluster C, let d(x,C) be the average distance
between x and all points of C. The minimum

b(x) = min{d(x,C) : x /∈ C} (6)

is the distance from x to its nearest cluster C to which x
does not belong. Finally, put

SI(x) =
b(x)− a(x)

max{a(x), b(x)}
(7)

The Silhouette index of the whole clustering is found as
the average index over all observations. The Silhouette in-
dex always belongs to [−1, 1]. The partition with highest
Silhouette index is regarded as optimal.

For each initial clustering algorithm and each value
of the “seed”, we repeated it several times increasing
the number of clusters, as recommended in [15]. The
clustering with the best Silhouette index was included in
the set of initial clusterings to be processed by consensus
clustering algorithm at the next stage. The same procedure
of determining the number of clusters was applied for
other initial clustering algorithms too.

All these initial clustering algorithms can process our
data without any additional data transformations or en-
coding. The outcomes of all of these clustering algorithms
often depend on the initial random selections made during
the start of their iterations. A standard method is to run
them for several random selections of initial parameters,
as in [11]. In WEKA, the outcomes of these algorithms
depend on their input parameter “seed”. We run each of
these algorithms for 10 random selections of the “seed”
and obtained a total of 40 initial clusterings. This provided
sufficient input for the consensus clustering algorithms
considered in the next section. Thus, we have used mul-
tiple start versions of the Cobweb, EM, FarthestFirst and
SimpleKMeans, which could process our sample directly
and produced sufficient input for the next stage of our
approach.

V. CONSENSUS FUNCTIONS FOR ENSEMBLE
CLUSTERINGS

The following three consensus functions have been
applied:

CBGF − Cluster-Based Graph Formulation,
HBGF − Hybrid Bipartite Graph Formulation,
IBGF − Instance-Based Graph Formulation

The final consensus clustering obtained by these con-
sensus functions was used to train fast classification
algorithms. It is therefore natural to assume that a con-
sensus function performs better in our scheme, if the
supervised classification algorithms are able to produce
higher precision and recall at the final stage.

Cluster-Based Graph Formulation, CBGF, is a graph-
based consensus function. It defines a complete weighted
undirected graph on the set of vertices consisting of all
the given clusters. The weight of each edge of this graph
is determined by a measure of similarity of the clusters
corresponding to the vertices. Namely, for two clusters C ′

and C ′′ the weight of the edge (C ′, C ′′) can be set equal
to

w((C ′, C ′′)) =
|C ′ ∩ C ′′|
|C ′ ∪ C ′′|

, (8)

known as the Jaccard index or Jaccard similarity co-
efficient, see [16], Chapter 2. In order to ensure that
clusters that have a lot of elements in common are
grouped together, the edges with lowest weights are then
eliminated by applying a graph partitioning algorithm.
Each element is then allocated to the new final cluster
where it occurs most frequently.

Hybrid Bipartite Graph Formulation, HBGF, is a con-
sensus function proposed in [17] and based on a bipartite



graph. It has two sets of vertices: clusters and elements of
the data set. A cluster C and an element d are connected
by an edge in this bipartite graph if and only if d belongs
to C. An appropriate graph partitioning algorithm is then
applied to the whole bipartite graph. The final clustering
is determined by the way it partitions all elements of the
data set. We refer to [17]–[19] for more details.

Instance-Based Graph Formulation, IBGF, is also a
consensus function based on a complete undirected
weighted graph. Vertices of the graph are all elements
of the data set. The edge (d′, d′′) has weight given by the
formula

w((d′, d′′)) =
∑

i=1,...,k; Ci(d′)=Ci(d′′)

1/k,

where Ci(x) stands for the cluster containing x in the i-th
clustering. This means that w((d′, d′′)) is the proportion
of clusterings where the clusters of d′ and d′′ coincide.
Then IBGF applies an appropriate graph partitioning
algorithm to divide the graph into classes. These classes
determine clusters of the final consensus clustering.

We used METIS graph partitioning software described
in [20]. The weights of edges in the input files of METIS
must all be strictly greater than zero, which means that
it can handle only complete weighted graphs. In order to
apply it to a bipartite graphs, we had to set the weights
of all edges not present in the graph to 1 and to rescale
the weight of all other edges by multiplying them with a
constant to make them larger than 10,000. This ensured
that METIS removed all nonexistent edges from the graph
and then continued analysing the resulting bipartite graph.

We used rank correlation to select the most essential
features for use in consensus functions. It ranks all
features with respect to their relevance and importance to
the problem. We investigated four well-known measures:
the Pearson Linear Correlation Coefficient, the Spearman
Rank Correlation Coefficient, Kendall Rank Correlation
Coefficient, KRCC, and the Goodman–Kruskal Correla-
tion Coefficient. They can help remove irrelevant features
with almost zero correlation to the cluster labels. As a
result the redundancy among similar selected features is
reduced. Other methods, such as symmetrical uncertainty
[21] and asymmetric dependency coefficient [22] are also
usable for feature ranking to measure the relevance of the
features.

First, we used the Pearson Linear Correlation Coeffi-
cient, PLCC, also known as Pearson’s Product-Moment
Correlation Coefficient, [8]. It is well known that it is
helpful in various situations and has low complexity [21],
[23]. The PLCC is calculated to assess the correlation
between the features and their class labels. It is defined
by the following formula [23]:

ρ(fr, I) =
cov(fr, I)
σ(fr)σ(I)

, (9)

where σ(I) is the standard deviation of the labels of
instances and the covariance cov(fr, I) between fr and I

is defined by

cov(fr, I) =

n∑
i=1

(f ′r − dir)(I ′ − Ii)

n
(10)

where Ii is the label of the instance di and I ′ is the mean
of labels of instances. The standard deviation σ(fr) can
be calculated as

σ(fr) =

√√√√ n∑
i=1

(f ′r − dir)2

n
(11)

and f ′r is the mean of the feature fr,

f ′r =

n∑
i=1

(dir)

n
. (12)

Second, we used the Spearman Rank Correlation Coef-
ficient, SRCC, also known as Spearman’s Rho [24], [25],
[8]. It assesses how well the relationship can be described
using a monotonic function, which does not have to be
linear. The SRCC % is a measure of association based on
the ranks of the data values. It is given by the formula

% =

∑
(Ri −R)(Si − S)√∑
(Ri −R)

∑
(Si − S)

, (13)

where Ri is the rank of the i-th x-value, Si is the rank
of the i-th y-value, R is the mean of the ranks of x-
values, and S is the mean of the ranks of y-values. The
values of % belong to the segment [−1; 1]. Values close to
1 indicate that there is a good correlation (described by
a monotonically increasing function). First, we obtained
initial clusterings for the small randomized sample and
all original features as described in Section IV. Then we
used these initial clusterings to find the Spearman Rank
Correlation Coefficients. For each numerical feature, we
numbered all clusters according to the mean value of
this feature for all instances of the cluster, and after that
ranked all values of the feature and the cluster numbers.
Numbering clusters in the order of the mean values of
the feature for all instances of each cluster is essential,
since it ensures that we only have to look at values of
SRCC close to 1 in our case. Having found the SRCC
for each feature, we ordered the original features by the
values of their Spearman Rank Correlation Coefficients.
The features with higher values were selected for the next
stage of our procedure.

Third, we used Kendall Rank Correlation Coefficient,
KRCC, also known as Kendall’s Tau, [24], [25], [8]. Our
experiments have shown that it produces outcomes very
similar to the SRCC, and so in this paper we include
only the tables of the precision and recall obtained with
the SRCC.

Fourth, we used the Goodman–Kruskal Correlation Co-
efficient, GKCC, also known as the Goodman–Kruskal’s
Gamma, [24], [25], [8]. It is defined as the difference
between the number of concordant pairs C and the



number of discordant pairs D of the two rankings, as
a proportion of all pairs, ignoring ties:

G = (C −D)/(C +D). (14)

GKCC tests for a weak monotonicity between the two
rankings. The value of GKCC ranges between +1 to -1,
and it is equal to 0 for independent variables.

We ranked all the preliminary variables according to
the values of their rank correlation coefficients. Different
testing data sets or clustering algorithms will produce
different ranking lists of the preliminary variables. The
principle is that, the higher the ranking of the feature, the
more relevant it is to the clustering result. This means
that not all of the features make the same contribution to
the clustering result. The least important features can be
regarded as redundant features and can be removed. The
quality of the clusters can be improved by eliminating
the influence of the redundant features, and the efficiency
of clustering algorithm can be increased by reducing
dimensionality and removing irrelevant features.

In order to determine the appropriate number of clusters
for the final consensus clustering we used Silhouette index
described in Section IV. We ran each consensus clustering
increasing the number of clusters from 2 to 30. The final
consensus clustering with the best Silhouette index was
then regarded as the final output of the whole process, as
illustrated in Figure 1.

VI. SUPERVISED CLASSIFICATION ALGORITHMS

We have compared the performance of these three
consensus functions and their combinations with several
supervised classification algorithms. The resulting con-
sensus clustering described in Section V was used to train
supervised classification algorithms. We investigated the
performance of all classifiers implemented in WEKA, and
have included in the tables of this paper the outcomes
of the following algorithms, which worked well in our
scheme:
• BayesNet – Bayes Network learning algorithm K2,

[26].
• DecisionTable, a decision table majority classifier

[27].
• IBk, a k-nearest neighbours classifier selecting an

appropriate value of k based on cross-validation,
[28].

• J48 classifier generating a C4.5 decision tree, [29].
• JRip classifier implementing a propositional rule

learner RIPPER, [30].
• HyperPipes, a simple and fast classifier, [26].
• LibLINEAR, a library for large linear classification,

[31].
• LibSVM, a library for Support Vector Machines,

[32]. It implements an SMO-type algorithm proposed
by [33].

• NaiveBayes classical algorithm, [10], [34].
• PART classifier generating decision list based on

partial C4.5 decision trees and separate-and-conquer,
[35].

• RBFNetwork implementing a normalized Gaussian
radial basis function network, [26].

• Ridor – a ripple down rule classifier, [26].
• SMO classifier using Sequential Minimal Optimiza-

tion for training a support vector classifier, [36]–[38],
• VFI – voting feature intervals classification due to

[39].
More information on these algorithms is given by [10],
[26], [28], [29], [33]–[35], [37], [39], [40].

The performance of the SMO, LibSVM and LibLIN-
EAR depends on the SVM type, the kernel and several
numerical parameters. We have considered all types of
SVMs and kernels in SMO, LibSVM and LibLINEAR
that could handle the format of our data without additional
preprocessing. For each of these cases, we used the
optimization procedure explained in [41]. More advanced
optimization techniques presented in [42] can also be
applied here.

VII. EXPERIMENTAL RESULTS

We have undertaken experimental investigation of the
novel approach to clustering for a randomized sample of
phishing websites. Our experiments have compared all
combinations of the PLCC, SRCC and KRCC correlation
coefficients with CBGF, HBGF and IBGF consensus
functions and classification algorithms listed above for
a randomized sample of 1024 websites. We used tenfold
cross validation to evaluate the weighted average precision
and recall of these classification algorithms comparing
them with the classes of the corresponding consensus
clustering.

The results of our experiments are summarized in
Tables V, VI, VII and VIII. The precision and recall for all
choices of kernels of the SMO, LibSVM and LibLINEAR
classifiers are assembled in Tables V and VI. Their best
results have been also included in Tables VII and VIII
for convenience of the readers. The outcomes show that
the combination of the Goodman–Kruskal Correlation
Coefficient, the Hybrid Bipartite Graph Formulation con-
sensus function, and the Sequential Minimal Optimization
classifier with the polynomial kernel achieved the best
precision and recall in these experiments.

VIII. CONCLUSION

This article investigated a novel approach to clustering
of information security data sets and presented experimen-
tal results for the particular case of application to profiling
phishing websites. Our method is based on combining
rank correlation coefficients and reliable consensus func-
tions with fast supervised classification algorithms. First,
we applied a variety of independent clustering algorithms
to a randomized sample of data. Silhouette index was used
to determine the number of clusters for these algorithms.
Second, rank correlation was used to select a subset of
features for dimensionality reduction. Our experiments
compared the effectiveness of four correlation coefficients
in this procedure: Pearson Linear Correlation Coeffi-
cient, PLCC, Spearman Rank Correlation Coefficient,
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Figure 1. Silhouette indices of the final consensus clusterings

SRCC, Kendall Rank Correlation Coefficient, KRCC,
and Goodman–Kruskal Correlation Coefficient, GKCC.
Third, we used efficient consensus functions to combine
these independent clusterings into one final consensus
clustering. We investigated and compared the effective-
ness of three consensus functions: Cluster-Based Graph
Formulation, CBGF, Hybrid Bipartite Graph Formulation,
HBGF, and Instance-Based Graph Formulation, IBGF.
Fourth, in order to enable processing of large data sets
and new data, the resulting consensus clustering of the
final randomized sample was used as a training set to
train fast supervised classification algorithms. These fast
classification algorithms were then used to classify the
whole large data set.

Our experiments compared the effectiveness of CBGF,
HBGF and IBGF consensus functions in conjunction
with various classification algorithms. The experimental
results have shown that the combination of the Goodman–
Kruskal Correlation Coefficient, Hybrid Bipartite Graph
Formulation consensus function and the Sequential Min-
imal Optimization classifier with the polynomial kernel
achieved the best precision and recall in this scheme.
This combination can be recommended for future imple-
mentations and applications for profiling of very large
data sets of phishing websites in order to prepare data
for subsequent forensic analysis based on the resulting
individual clusters.
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