10 research outputs found

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Numerical scalar curvature deformation and a gluing construction

    Get PDF
    In this work a new numerical technique to prepare Cauchy data for the initial value problem (IVP) formulation of Einstein's field equations (EFE) is presented. Our method is directly inspired by the exterior asymptotic gluing (EAG) result of Corvino (2000). The argument assumes a moment in time symmetry and allows for a composite, initial data set to be assembled from (a finite subdomain of) a known asymptotically Euclidean initial data set which is glued (in a controlled manner) over a compact spatial region to an exterior Schwarzschildean representative. We demonstrate how (Corvino, 2000) may be directly adapted to a numerical scheme and under the assumption of axisymmetry construct composite Hamiltonian constraint satisfying initial data featuring internal binary black holes (BBH) glued to exterior Schwarzschild initial data in isotropic form. The generality of the method is shown in a comparison of properties of EAG composite initial data sets featuring internal BBHs as modelled by Brill-Lindquist and Misner data. The underlying geometric analysis character of gluing methods requires work within suitably weighted function spaces, which, together with a technical impediment preventing (Corvino, 2000) from being fully constructive, is the principal difficulty in devising a numerical technique. Thus the single previous attempt by Giulini and Holzegel (2005) (recently implemented by Doulis and Rinne (2016)) sought to avoid this by embedding the result within the well known Lichnerowicz-York conformal framework which required ad-hoc assumptions on solution form and a formal perturbative argument to show that EAG may proceed. In (Giulini and Holzegel, 2005) it was further claimed that judicious engineering of EAG can serve to reduce the presence of spurious gravitational radiation - unfortunately, in line with the general conclusion of (Doulis and Rinne, 2016) our numerical investigation does not appear to indicate that this is the case. Concretising the sought initial data to be specified with respect to a spatial manifold with underlying topology R×S² our method exploits a variety of pseudo-spectral (PS) techniques. A combination of the eth-formalism and spin-weighted spherical harmonics together with a novel complex-analytic based numerical approach is utilised. This is enabled by our Python 3 based numerical toolkit allowing for unified just-in-time compiled, distributed calculations with seamless extension to arbitrary precision for problems involving generic, geometric partial differential equations (PDE) as specified by tensorial expressions. Additional features include a layer of abstraction that allows for automatic reduction of indicial (i.e., tensorial) expressions together with grid remapping based on chart specification - hence straight-forward implementation of IVP formulations of the EFE such as ADM-York or ADM-York-NOR is possible. Code-base verification is performed by evolving the polarised Gowdy T³ space-time with the above formulations utilising high order, explicit time-integrators in the method of lines approach as combined with PS techniques. As the initial data we prepare has a precise (Schwarzschild) exterior this may be of interest to global evolution schemes that incorporate information from spatial-infinity. Furthermore, our approach may shed light on how more general gluing techniques could potentially be adapted for numerical work. The code-base we have developed may also be of interest in application to other problems involving geometric PDEs

    Annual Research Report 2021

    Get PDF

    Scientific Report 2006

    Get PDF

    Reduction of transhorizon radio interference in satellite earth stations

    Get PDF

    Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry

    Get PDF
    This volume is the proceedings of the sixth General Meeting of the International VLBI Service for Geodesy and Astrometry (IVS), held in Hobart, Tasmania, Australia, February 7-13, 2010. The contents of this volume also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/gm2010. The keynote of the sixth GM was the new perspectives of the next generation VLBI system under the theme "VLBI2010: From Vision to Reality". The goal of the meeting was to provide an interesting and informative program for a wide cross-section of IVS members, including station operators, program managers, and analysts. This volume contains 88 papers. All papers were edited by the editors for usage of the English language, form, and minor content-related issues

    Exploratory search in time-oriented primary data

    Get PDF
    In a variety of research fields, primary data that describes scientific phenomena in an original condition is obtained. Time-oriented primary data, in particular, is an indispensable data type, derived from complex measurements depending on time. Today, time-oriented primary data is collected at rates that exceed the domain experts’ abilities to seek valuable information undiscovered in the data. It is widely accepted that the magnitudes of uninvestigated data will disclose tremendous knowledge in data-driven research, provided that domain experts are able to gain insight into the data. Domain experts involved in data-driven research urgently require analytical capabilities. In scientific practice, predominant activities are the generation and validation of hypotheses. In analytical terms, these activities are often expressed in confirmatory and exploratory data analysis. Ideally, analytical support would combine the strengths of both types of activities. Exploratory search (ES) is a concept that seamlessly includes information-seeking behaviors ranging from search to exploration. ES supports domain experts in both gaining an understanding of huge and potentially unknown data collections and the drill-down to relevant subsets, e.g., to validate hypotheses. As such, ES combines predominant tasks of domain experts applied to data-driven research. For the design of useful and usable ES systems (ESS), data scientists have to incorporate different sources of knowledge and technology. Of particular importance is the state-of-the-art in interactive data visualization and data analysis. Research in these factors is at heart of Information Visualization (IV) and Visual Analytics (VA). Approaches in IV and VA provide meaningful visualization and interaction designs, allowing domain experts to perform the information-seeking process in an effective and efficient way. Today, bestpractice ESS almost exclusively exist for textual data content, e.g., put into practice in digital libraries to facilitate the reuse of digital documents. For time-oriented primary data, ES mainly remains at a theoretical state. Motivation and Problem Statement. This thesis is motivated by two main assumptions. First, we expect that ES will have a tremendous impact on data-driven research for many research fields. In this thesis, we focus on time-oriented primary data, as a complex and important data type for data-driven research. Second, we assume that research conducted to IV and VA will particularly facilitate ES. For time-oriented primary data, however, novel concepts and techniques are required that enhance the design and the application of ESS. In particular, we observe a lack of methodological research in ESS for time-oriented primary data. In addition, the size, the complexity, and the quality of time-oriented primary data hampers the content-based access, as well as the design of visual interfaces for gaining an overview of the data content. Furthermore, the question arises how ESS can incorporate techniques for seeking relations between data content and metadata to foster data-driven research. Overarching challenges for data scientists are to create usable and useful designs, urgently requiring the involvement of the targeted user group and support techniques for choosing meaningful algorithmic models and model parameters. Throughout this thesis, we will resolve these challenges from conceptual, technical, and systemic perspectives. In turn, domain experts can benefit from novel ESS as a powerful analytical support to conduct data-driven research. Concepts for Exploratory Search Systems (Chapter 3). We postulate concepts for the ES in time-oriented primary data. Based on a survey of analysis tasks supported in IV and VA research, we present a comprehensive selection of tasks and techniques relevant for search and exploration activities. The assembly guides data scientists in the choice of meaningful techniques presented in IV and VA. Furthermore, we present a reference workflow for the design and the application of ESS for time-oriented primary data. The workflow divides the data processing and transformation process into four steps, and thus divides the complexity of the design space into manageable parts. In addition, the reference workflow describes how users can be involved in the design. The reference workflow is the framework for the technical contributions of this thesis. Visual-Interactive Preprocessing of Time-Oriented Primary Data (Chapter 4). We present a visual-interactive system that enables users to construct workflows for preprocessing time-oriented primary data. In this way, we introduce a means of providing content-based access. Based on a rich set of preprocessing routines, users can create individual solutions for data cleansing, normalization, segmentation, and other preprocessing tasks. In addition, the system supports the definition of time series descriptors and time series distance measures. Guidance concepts support users in assessing the workflow generalizability, which is important for large data sets. The execution of the workflows transforms time-oriented primary data into feature vectors, which can subsequently be used for downstream search and exploration techniques. We demonstrate the applicability of the system in usage scenarios and case studies. Content-Based Overviews (Chapter 5). We introduce novel guidelines and techniques for the design of contentbased overviews. The three key factors are the creation of meaningful data aggregates, the visual mapping of these aggregates into the visual space, and the view transformation providing layouts of these aggregates in the display space. For each of these steps, we characterize important visualization and interaction design parameters allowing the involvement of users. We introduce guidelines supporting data scientists in choosing meaningful solutions. In addition, we present novel visual-interactive quality assessment techniques enhancing the choice of algorithmic model and model parameters. Finally, we present visual interfaces enabling users to formulate visual queries of the time-oriented data content. In this way, we provide means of combining content-based exploration with content-based search. Relation Seeking Between Data Content and Metadata (Chapter 6). We present novel visual interfaces enabling domain experts to seek relations between data content and metadata. These interfaces can be integrated into ESS to bridge analytical gaps between the data content and attached metadata. In three different approaches, we focus on different types of relations and define algorithmic support to guide users towards most interesting relations. Furthermore, each of the three approaches comprises individual visualization and interaction designs, enabling users to explore both the data and the relations in an efficient and effective way. We demonstrate the applicability of our interfaces with usage scenarios, each conducted together with domain experts. The results confirm that our techniques are beneficial for seeking relations between data content and metadata, particularly for data-centered research. Case Studies - Exploratory Search Systems (Chapter 7). In two case studies, we put our concepts and techniques into practice. We present two ESS constructed in design studies with real users, and real ES tasks, and real timeoriented primary data collections. The web-based VisInfo ESS is a digital library system facilitating the visual access to time-oriented primary data content. A content-based overview enables users to explore large collections of time series measurements and serves as a baseline for content-based queries by example. In addition, VisInfo provides a visual interface for querying time oriented data content by sketch. A result visualization combines different views of the data content and metadata with faceted search functionality. The MotionExplorer ESS supports domain experts in human motion analysis. Two content-based overviews enhance the exploration of large collections of human motion capture data from two perspectives. MotionExplorer provides a search interface, allowing domain experts to query human motion sequences by example. Retrieval results are depicted in a visual-interactive view enabling the exploration of variations of human motions. Field study evaluations performed for both ESS confirm the applicability of the systems in the environment of the involved user groups. The systems yield a significant improvement of both the effectiveness and the efficiency in the day-to-day work of the domain experts. As such, both ESS demonstrate how large collections of time-oriented primary data can be reused to enhance data-centered research. In essence, our contributions cover the entire time series analysis process starting from accessing raw time-oriented primary data, processing and transforming time series data, to visual-interactive analysis of time series. We present visual search interfaces providing content-based access to time-oriented primary data. In a series of novel explorationsupport techniques, we facilitate both gaining an overview of large and complex time-oriented primary data collections and seeking relations between data content and metadata. Throughout this thesis, we introduce VA as a means of designing effective and efficient visual-interactive systems. Our VA techniques empower data scientists to choose appropriate models and model parameters, as well as to involve users in the design. With both principles, we support the design of usable and useful interfaces which can be included into ESS. In this way, our contributions bridge the gap between search systems requiring exploration support and exploratory data analysis systems requiring visual querying capability. In the ESS presented in two case studies, we prove that our techniques and systems support data-driven research in an efficient and effective way

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. β-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 μl) and activities (≤ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)

    11th International Coral Reef Symposium Proceedings

    Get PDF
    A defining theme of the 11th International Coral Reef Symposium was that the news for coral reef ecosystems are far from encouraging. Climate change happens now much faster than in an ice-age transition, and coral reefs continue to suffer fever-high temperatures as well as sour ocean conditions. Corals may be falling behind, and there appears to be no special silver bullet remedy. Nevertheless, there are hopeful signs that we should not despair. Reef ecosystems respond vigorously to protective measures and alleviation of stress. For concerned scientists, managers, conservationists, stakeholders, students, and citizens, there is a great role to play in continuing to report on the extreme threat that climate change represents to earth’s natural systems. Urgent action is needed to reduce CO2 emissions. In the interim, we can and must buy time for coral reefs through increased protection from sewage, sediment, pollutants, overfishing, development, and other stressors, all of which we know can damage coral health. The time to act is now. The canary in the coral-coal mine is dead, but we still have time to save the miners. We need effective management rooted in solid interdisciplinary science and coupled with stakeholder buy in, working at local, regional, and international scales alongside global efforts to give reefs a chance.https://nsuworks.nova.edu/occ_icrs/1000/thumbnail.jp

    Business Cycles in Economics

    Get PDF
    The business cycles are generated by the oscillating macro-/micro-/nano- economic output variables in the economy of the scale and the scope in the amplitude/frequency/phase/time domains in the economics. The accurate forward looking assumptions on the business cycles oscillation dynamics can optimize the financial capital investing and/or borrowing by the economic agents in the capital markets. The book's main objective is to study the business cycles in the economy of the scale and the scope, formulating the Ledenyov unified business cycles theory in the Ledenyov classic and quantum econodynamics
    corecore