71 research outputs found

    Computational aspects of cellular intelligence and their role in artificial intelligence.

    Get PDF
    The work presented in this thesis is concerned with an exploration of the computational aspects of the primitive intelligence associated with single-celled organisms. The main aim is to explore this Cellular Intelligence and its role within Artificial Intelligence. The findings of an extensive literature search into the biological characteristics, properties and mechanisms associated with Cellular Intelligence, its underlying machinery - Cell Signalling Networks and the existing computational methods used to capture it are reported. The results of this search are then used to fashion the development of a versatile new connectionist representation, termed the Artificial Reaction Network (ARN). The ARN belongs to the branch of Artificial Life known as Artificial Chemistry and has properties in common with both Artificial Intelligence and Systems Biology techniques, including: Artificial Neural Networks, Artificial Biochemical Networks, Gene Regulatory Networks, Random Boolean Networks, Petri Nets, and S-Systems. The thesis outlines the following original work: The ARN is used to model the chemotaxis pathway of Escherichia coli and is shown to capture emergent characteristics associated with this organism and Cellular Intelligence more generally. The computational properties of the ARN and its applications in robotic control are explored by combining functional motifs found in biochemical network to create temporal changing waveforms which control the gaits of limbed robots. This system is then extended into a complete control system by combining pattern recognition with limb control in a single ARN. The results show that the ARN can offer increased flexibility over existing methods. Multiple distributed cell-like ARN based agents termed Cytobots are created. These are first used to simulate aggregating cells based on the slime mould Dictyostelium discoideum. The Cytobots are shown to capture emergent behaviour arising from multiple stigmergic interactions. Applications of Cytobots within swarm robotics are investigated by applying them to benchmark search problems and to the task of cleaning up a simulated oil spill. The results are compared to those of established optimization algorithms using similar cell inspired strategies, and to other robotic agent strategies. Consideration is given to the advantages and disadvantages of the technique and suggestions are made for future work in the area. The report concludes that the Artificial Reaction Network is a versatile and powerful technique which has application in both simulation of chemical systems, and in robotic control, where it can offer a higher degree of flexibility and computational efficiency than benchmark alternatives. Furthermore, it provides a tool which may possibly throw further light on the origins and limitations of the primitive intelligence associated with cells

    Design and Development of an Automated Mobile Manipulator for Industrial Applications

    Get PDF
    This thesis presents the modeling, control and coordination of an automated mobile manipulator. A mobile manipulator in this investigation consists of a robotic manipulator and a mobile platform resulting in a hybrid mechanism that includes a mobile platform for locomotion and a manipulator arm for manipulation. The structural complexity of a mobile manipulator is the main challenging issue because it includes several problems like adapting a manipulator and a redundancy mobile platform at non-holonomic constraints. The objective of the thesis is to fabricate an automated mobile manipulator and develop control algorithms that effectively coordinate the arm manipulation and mobility of mobile platform. The research work starts with deriving the motion equations of mobile manipulators. The derivation introduced here makes use of motion equations of robot manipulators and mobile platforms separately, and then integrated them as one entity. The kinematic analysis is performed in two ways namely forward & inverse kinematics. The motion analysis is performed for various WMPs such as, Omnidirectional WMP, Differential three WMP, Three wheeled omni-steer WMP, Tricycle WMP and Two steer WMP. From the obtained motion analysis results, Differential three WMP is chosen as the mobile platform for the developed mobile manipulator. Later motion analysis is carried out for 4-axis articulated arm. Danvit-Hartenberg representation is implemented to perform forward kinematic analysis. Because of this representation, one can easily understand the kinematic equation for a robotic arm. From the obtained arm equation, Inverse kinematic model for the 4-axis robotic manipulator is developed. Motion planning of an intelligent mobile robot is one of the most vital issues in the field of robotics, which includes the generation of optimal collision free trajectories within its work space and finally reaches its target position. For solving this problem, two evolutionary algorithms namely Particle Swarm Optimization (PSO) and Artificial Immune System (AIS) are introduced to move the mobile platform in intelligent manner. The developed algorithms are effective in avoiding obstacles, trap situations and generating optimal paths within its unknown environments. Once the robot reaches its goal (within the work space of the manipulator), the manipulator will generate its trajectories according to task assigned by the user. Simulation analyses are performed using MATLAB-2010 in order to validate the feasibility of the developed methodologies in various unknown environments. Additionally, experiments are carried out on an automated mobile manipulator. ATmega16 Microcontrollers are used to enable the entire robot system movement in desired trajectories by means of robot interface application program. The control program is developed in robot software (Keil) to control the mobile manipulator servomotors via a serial connection through a personal computer. To support the proposed control algorithms both simulation and experimental results are presented. Moreover, validation of the developed methodologies has been made with the ER-400 mobile platform

    Intelligent Control and Path Planning of Multiple Mobile Robots Using Hybrid Ai Techniques

    Get PDF
    This work reports the problem of intelligent control and path planning of multiple mobile robots. Soft computing methods, based on three main approaches i.e. 1) Bacterial Foraging Optimization Algorithm, 2) Radial Basis Function Network and 3) Bees Algorithm are presented. Initially, Bacterial foraging Optimization Algorithm (BFOA) with constant step size is analyzed for the navigation of mobile robots. Then the step size has been made adaptive to develop an Adaptive Bacterial Foraging Optimization (ABFO) controller. Further, another controller using radial basis function neural network has been developed for the mobile robot navigation. Number of training patterns are intended to train the RBFN controller for different conditions arises during the navigation. Moreover, Bees Algorithm has been used for the path planning of the mobile robots in unknown environments. A new fitness function has been used to perform the essential navigational tasks effectively and efficiently. In addition to the selected standalone approaches, hybrid models are also proposed to improve the ability of independent navigation. Five hybrid models have been presented and analyzed for navigation of one, two and four mobile robots in various scenarios. Comparisons have been made for the distance travelled and time taken by the robots in simulation and real time. Further, all the proposed approaches are found capable of solving the basic issues of path planning for mobile robots while doing navigation. The controllers have been designed, developed and analyzed for various situations analogous to possible applications of the robots in indoor environments. Computer simulations are presented for all cases with single and multiple mobile robots in different environments to show the effectiveness of the proposed controllers. Furthermore, various exercises have been performed, analyzed and compared in physical environments to exhibit the effectiveness of the developed controllers

    Adaptive Control for Power System Voltage and Frequency Regulation

    Get PDF
    Variable and uncertain wind power output introduces new challenges to power system voltage and frequency stability. To guarantee the safe and stable operation of power systems, the control for voltage and frequency regulation is studied in this work. Static Synchronous Compensator (STATCOM) can provide fast and efficient reactive power support to regulate system voltage. In the literature, various STATCOM control methods have been discussed, including many applications of proportional–integral (PI) controllers. However, these previous works obtain the PI gains via a trial and error approach or extensive studies with a tradeoff of performance and applicability. Hence, control parameters for the optimal performance at a given operating point may not be effective at a different operating point. To improve the controller’s performance, this work proposes a new control model based on adaptive PI control, which can self-adjust the control gains during disturbance, such that the performance always matches a desired response in relation to operating condition changes. Further, a new method called the flatness-based adaptive control (FBAC), for STATCOM is also proposed. By this method, the nonlinear STATCOM variables can easily and exactly be controlled by controlling the flat output without solving differential equations. Further, the control gains can be dynamically tuned to satisfy the time-varying operation condition requirement. In addition to the voltage control, frequency control is also investigated in this work. Automatic generation control (AGC) is used to regulate the system frequency in power systems. Various control methods have been discussed in order to design control gains and obtain good frequency response performances. However, the control gains obtained by existing control methods are usually fixed and designed for specific scenarios in the studied power system. The desired response may not be obtained when variable wind power is integrated into power systems. To address these challenges, an adaptive gain-tuning control (AGTC) for AGC with effects of wind resources is presented in this dissertation. By AGTC, the PI control parameters can be automatically and dynamically calculated during the disturbance to make AGC consistently provide excellent performance under variable wind power. Simulation result verifies the advantages of the proposed control strategy

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Study on Parametric Optimization of Fused Deposition Modelling (FDM) Process

    Get PDF
    Rapid prototyping (RP) is a generic term for a number of technologies that enable fabrication of physical objects directly from CAD data sources. In contrast to classical methods of manufacturing such as milling and forging which are based on subtractive and formative principles espectively, these processes are based on additive principle for part fabrication. The biggest advantage of RP processes is that an entire 3-D (three-dimensional) consolidated assembly can be fabricated in a single setup without any tooling or human intervention; further, the part fabrication methodology is independent of the mplexity of the part geometry. Due to several advantages, RP has attracted the considerable attention of manufacturing industries to meet the customer demands for incorporating continuous and rapid changes in manufacturing in shortest possible time and gain edge over competitors. Out of all commercially available RP processes, fused deposition modelling (FDM) uses heated thermoplastic filament which are extruded from the tip of nozzle in a prescribed manner in a temperature controlled environment for building the part through a layer by layer deposition method. Simplicity of operation together with the ability to fabricate parts with locally controlled properties resulted in its wide spread application not only for prototyping but also for making functional parts. However, FDM process has its own demerits related with accuracy, surface finish, strength etc. Hence, it is absolutely necessary to understand the shortcomings of the process and identify the controllable factors for improvement of part quality. In this direction, present study focuses on the improvement of part build methodology by properly controlling the process parameters. The thesis deals with various part quality measures such as improvement in dimensional accuracy, minimization of surface roughness, and improvement in mechanical properties measured in terms of tensile, compressive, flexural, impact strength and sliding wear. The understanding generated in this work not only explain the complex build mechanism but also present in detail the influence of processing parameters such as layer thickness, orientation, raster angle, raster width and air gap on studied responses with the help of statistically validated models, microphotographs and non-traditional optimization methods. For improving dimensional accuracy of the part, Taguchi‟s experimental design is adopted and it is found that measured dimension is oversized along the thickness direction and undersized along the length, width and diameter of the hole. It is observed that different factors and interactions control the part dimensions along different directions. Shrinkage of semi molten material extruding out from deposition nozzle is the major cause of part dimension reduction. The oversized dimension is attributed to uneven layer surfaces generation and slicing constraints. For recommending optimal factor setting for improving overall dimension of the part, grey Taguchi method is used. Prediction models based on artificial neural network and fuzzy inference principle are also proposed and compared with Taguchi predictive model. The model based on fuzzy inference system shows better prediction capability in comparison to artificial neural network model. In order to minimize the surface roughness, a process improvement strategy through effective control of process parameters based on central composite design (CCD) is employed. Empirical models relating response and process parameters are developed. The validity of the models is established using analysis of variance (ANOVA) and residual analysis. Experimental results indicate that process parameters and their interactions are different for minimization of roughness in different surfaces. The surface roughness responses along three surfaces are combined into a single response known as multi-response performance index (MPI) using principal component analysis. Bacterial foraging optimisation algorithm (BFOA), a latest evolutionary approach, has been adopted to find out best process parameter setting which maximizes MPI. Assessment of process parameters on mechanical properties viz. tensile, flexural, impact and compressive strength of part fabricated using FDM technology is done using CCD. The effect of each process parameter on mechanical property is analyzed. The major reason for weak strength is attributed to distortion within or between the layers. In actual practice, the parts are subjected to various types of loadings and it is necessary that the fabricated part must withhold more than one type of loading simultaneously.To address this issue, all the studied strengths are combined into a single response known as composite desirability and then optimum parameter setting which will maximize composite desirability is determined using quantum behaved particle swarm optimization (QPSO). Resistance to wear is an important consideration for enhancing service life of functional parts. Hence, present work also focuses on extensive study to understand the effect of process parameters on the sliding wear of test specimen. The study not only provides insight into complex dependency of wear on process parameters but also develop a statistically validated predictive equation. The equation can be used by the process planner for accurate wear prediction in practice. Finally, comparative evaluation of two swarm based optimization methods such as QPSO and BFOA are also presented. It is shown that BFOA, because of its biologically motivated structure, has better exploration and exploitation ability but require more time for convergence as compared to QPSO. The methodology adopted in this study is quite general and can be used for other related or allied processes, especially in multi input, multi output systems. The proposed study can be used by industries like aerospace, automobile and medical for identifying the process capability and further improvement in FDM process or developing new processes based on similar principle

    Evolving machine learning and deep learning models using evolutionary algorithms

    Get PDF
    Despite the great success in data mining, machine learning and deep learning models are yet subject to material obstacles when tackling real-life challenges, such as feature selection, initialization sensitivity, as well as hyperparameter optimization. The prevalence of these obstacles has severely constrained conventional machine learning and deep learning methods from fulfilling their potentials. In this research, three evolving machine learning and one evolving deep learning models are proposed to eliminate above bottlenecks, i.e. improving model initialization, enhancing feature representation, as well as optimizing model configuration, respectively, through hybridization between the advanced evolutionary algorithms and the conventional ML and DL methods. Specifically, two Firefly Algorithm based evolutionary clustering models are proposed to optimize cluster centroids in K-means and overcome initialization sensitivity as well as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature selection model is developed for automatic identification of the most effective feature subset and reduction of feature dimensionality for tackling classification problems. Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long Short-Term Memory method is devised for automatic generation of the optimal topological and learning configurations for Convolutional Neural Network-Long Short-Term Memory networks to undertake multivariate time series prediction problems. Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic limitations embedded in the search mechanisms of the three employed evolutionary algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, the constraint of the diagonal movement in Firefly Algorithm, as well as the acute contraction of search territory in Grey Wolf Optimizer, respectively. The remedy strategies include the diversification of guiding signals, the adaptive nonlinear search parameters, the hybrid position updating mechanisms, as well as the enhancement of population leaders. As such, the enhanced Particle Swarm Optimization, Firefly Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality on complex search landscapes embedded in data mining problems, owing to the elevated search diversity as well as the achievement of advanced trade-offs between exploration and exploitation

    Signal Processing and Soft Computing Approaches to Power Signal Frequency and Harmonics Estimation

    Get PDF
    Frequency and Harmonics are two important parameters for power system control and protection, power system relaying, power quality monitoring, operation and control of electrical equipments. Some existing approaches of frequency and harmonics estimation are Fast Fourier Transform (FFT), Least Square (LS), Least Mean Square (LMS), Recursive Least Square (RLS), Kalman Filtering (KF), Soft Computing Techniques such as Neural Networks and Genetic Algorithms etc. FFT based technique suffers from leakage effect i.e. an effect in the frequency analysis of finite length signals and the performance is highly degraded while estimating inter-harmonics and sub-harmonics including frequency deviations. Recursive estimation is not possible in case of LS. LMS provides poor estimation performance owing to its poor convergence rate as the adaptation step-size is fixed. In case of RLS and KF, suitable initial choice of covariance matrix and gain leading to faster convergence on Mean Square Error is difficult. Initial choice of Weight vector and learning parameter affect the convergence characteristic of neural estimator. Genetic based algorithms takes more time for convergence

    Development of new parameter extraction schemes and maximum power point controllers for photovoltaic power systems

    Get PDF
    In the recent years, in every parts of the world, focus is on supplementing the conventional fossil fuel based power generation with power generated from renewable sources such as photovoltaic (PV) and wind systems. PV technology is one of the fastest growing energy technologies in the world owing to its abundant availability. But unfortunately, the cost of PV energy is higher than that of other electrical energy from other conventional sources.Therefore, a great deal of research opportunities lie in applying power electronics and control technologies for harvesting PV power at higher efficiencies and efficient utilization. Simulation and control studies of a PV system require an accurate PV panel model. Further, for efficient utilization of the available PV energy, a PV system should operate at its maximum power point (MPP). A maximum power point tracker (MPPT) is needed in the PV system to enable it to operate at the MPP.The output characteristic of a PV system is non-linear and its output power fluctuates to a large extent in accordance with the variation of solar irradiance and temperature. A lot of research is being pursued on this area and several MPPT techniques have been proposed and implemented. But, still there is a lot of scope on designing new parameter extraction algorithms to achieve fast and accurate extraction of PV panel parameters. Further, there is need of development of efficient MPPT algorithms that can be adapted to different weather conditions with minimal fluctuations in input PV current and voltage.The work described in the thesis involves development of some new parameter extraction and robust adaptive MPPT algorithms. Two parameter extraction algorithms have been proposed namely a hybrid Newton Raphson method (hybrid NRM) and an evolutionary computational technique called Bacterial Foraging Optimization (BFO). These two parameter extraction techniques are found to be extracting parameters of a PV panel accurately in all weather conditions with less computational overhead. Further, these two parameter extraction techniques do not suffer from singularity problem during convergence. BFO technique being a global optimization technique provides accurate PV panel parameters

    Energy Efficient Routing Algorithms for Wireless Sensor Networks and Performance Evaluation of Quality of Service for IEEE 802.15.4 Networks

    Get PDF
    The popularity of Wireless Sensor Networks (WSN) have increased tremendously in recent time due to growth in Micro-Electro-Mechanical Systems (MEMS) technology. WSN has the potentiality to connect the physical world with the virtual world by forming a network of sensor nodes. Here, sensor nodes are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the network‘s lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. In this thesis, clustering based routing protocols for WSNs have been discussed. In cluster-based routing, special nodes called cluster heads form a wireless backbone to the sink. Each cluster heads collects data from the sensors belonging to its cluster and forwards it to the sink. In heterogeneous networks, cluster heads have powerful energy devices in contrast to homogeneous networks where all nodes have uniform and limited resource energy. So, it is essential to avoid quick depletion of cluster heads. Hence, the cluster head role rotates, i.e., each node works as a cluster head for a limited period of time. Energy saving in these approaches can be obtained by cluster formation, cluster-head election, data aggregation at the cluster-head nodes to reduce data redundancy and thus save energy. The first part of this thesis discusses methods for clustering to improve energy efficiency of homogeneous WSN. It also proposes Bacterial Foraging Optimization (BFO) as an algorithm for cluster head selection for WSN. The simulation results show improved performance of BFO based optimization in terms of total energy dissipation and no of alive nodes of the network system over LEACH, K-Means and direct methods. IEEE 802.15.4 is the emerging next generation standard designed for low-rate wireless personal area networks (LR-WPAN). The second part of the work reported here in provides performance evaluation of quality of service parameters for WSN based on IEEE 802.15.4 star and mesh topology. The performance studies have been evaluated for varying traffic loads using MANET routing protocol in QualNet 4.5. The data packet delivery ratio, average end-to-end delay, total energy consumption, network lifetime and percentage of time in sleep mode have been used as performance metrics. Simulation results show that DSR (Dynamic Source Routing) performs better than DYMO (Dynamic MANET On-demand) and AODV (Ad–hoc On demand Distance Vector) routing protocol for varying traffic loads rates
    corecore