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Abstract 
 

Frequency and Harmonics are two important parameters for power system control and 

protection, power system relaying, power quality monitoring, operation and control of 

electrical equipments. Some existing approaches of frequency and harmonics estimation 

are Fast Fourier Transform (FFT), Least Square (LS), Least Mean Square (LMS), 

Recursive Least Square (RLS), Kalman Filtering (KF), Soft Computing Techniques such 

as Neural Networks and Genetic Algorithms etc. FFT based technique suffers from 

leakage effect i.e. an effect in the frequency analysis of finite length signals and the 

performance is highly degraded while estimating inter-harmonics and sub-harmonics 

including frequency deviations. Recursive estimation is not possible in case of LS. LMS 

provides poor estimation performance owing to its poor convergence rate as the 

adaptation step-size is fixed. In case of RLS and KF, suitable initial choice of covariance 

matrix and gain leading to faster convergence on Mean Square Error is difficult. Initial 

choice of Weight vector and learning parameter affect the convergence characteristic of 

neural estimator. Genetic based algorithms takes more time for convergence.  

To achieve faster convergence and more accuracy in estimation, in this thesis a Variable 

Leaky Least Mean Square (VL-LMS) is proposed for frequency estimation. The proposed 

approach uses a variable leak adjustment technique to avoid drifting of the parameters 

involved in the estimation mechanism. A variable adaptation step-size is also 

incorporated in the algorithm to yield faster convergence. The performance of the 

proposed algorithm is studied through simulations and on experimental data for several 

critical cases such as in presence of noise, jump in frequency, harmonics and sub-

harmonics and inter-harmonics that often arise in a power system. These studies show 

that the VLLMS algorithm is superior to the existing ones in estimating power system 

frequency.  

Subsequently, a nonlinear state estimation technique for estimation of harmonics, inter-

harmonics and sub-harmonics based on Ensemble Kalman Filtering (EnKF) is proposed. 

This algorithm is suitable for problems having more numbers of variables. In harmonics 

estimation problem, there are twelve unknown variables for distorted signal containing 
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noise and d.c. offsets. EnKFs represent the distribution of power system states using a 

collection of state vectors known as ensemble, which replaces the covariance matrix by 

sample covariance computed from ensemble. The proposed EnKF estimation technique 

accurately estimates the harmonics, sub-harmonics and inter-harmonics including 

possible variations in amplitude in the time domain signal. Further, performance of the 

proposed EnKF method is compared with existing techniques such as Least Mean Square 

(LMS), Recursive Least Square (RLS), Recursive Least Mean Square (RLMS) and 

Kalman Filter (KF) algorithms, and it provides highly improved results with respect to 

tracking time and accuracy.   

The thesis also proposed four hybrid estimation algorithms such as KF-Adaline, RLS-

Adaline and RLS-BFO (Bacterial Foraging Optimization), Adaline-BFO, for estimation 

of power system frequency and harmonics. In case of KF-Adaline and RLS-Adaline, 

weights of the Adaline are updated using KF and RLS algorithm(s). Efficacies of the 

above hybrid estimation algorithms have been studied through simulation on numerical 

and experimental data that in terms of estimation accuracy, processing and tracking time, 

KF-Adaline outperforms RLS-Adaline. In this thesis, the proposed hybrid approaches to 

power system frequency and harmonics estimation first optimize the unknown parameters 

of the regressor of the input power system signal exploiting evolutionary optimization 

approach (BFO) and then RLS or Adaline are applied for achieving faster convergence in 

estimating the frequency and harmonics of distorted signal.  

The estimation achieved by application of the proposed estimation approaches are 

exploited to design a Hybrid Active Power Filter (HAPF) for achieving pure sinusoidal 

signal. A HAPF has been proposed that uses modified PWM control technique for 

elimination of harmonics in distorted power system signals. This filter uses the estimation 

obtained from KF-Adaline approach. The modified PWM control technique used in 

HAPF is based on comparing simultaneously a triangular high frequency carrier signal 

with a controlling signal and its 1800 out of phase signal. A laboratory prototype for 

HAPF with modified PWM control is developed for harmonics elimination in a distorted 

power system signal arising due to rectifier load. Simulation and experimentation are 

performed to verify the efficacy of the modified PWM control based HAPF. The above 

designed HAPF exhibits better filtering ability as compared to passive and active filters.  
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Chapter-1 

Introduction 
1.1 Background  

Frequency is an important operating parameter of a power system because it 

reflects the energy balance between load and generating power. Hence, frequency is 

regarded as an index of operating practices and utilities can able to know the system 

energy balance situations by observing frequency variations. Frequency variation occurs 

over a small allowable range depending upon the load condition. Deviation of the system 

frequency from nominal frequency results in a change in reactance of system, which 

influences different relay functionalities such as frequency relay used in load shedding, 

reactive power reduction or severe damage, may occur in the system devices. Therefore, 

for power system control and protection, power system relaying, power quality 

monitoring, operation and control of devices, accurate monitoring of power system 

frequency is important. Further, many power electronic equipments and arc furnaces etc. 

generate lots of harmonics and noise in modern power systems. It is therefore essential 

for utilities to develop a reliable method for measurement of frequency in presence of 

harmonics and noises. Since frequency variation is a dynamic phenomenon, the 

conventional phasor estimation techniques such as Discrete Fourier Transform (DFT), 

Least Square (LS) and Kalman Filtering may not be suitable for achieving accurate 

frequency estimation under dynamic conditions.  

Extensive usage of power electronic devices such as diodes, thyristor rectifiers, 

lighting equipments, uninterruptible power supplies (UPS) etc. introduces more amounts 

of harmonics to power system. But devices such as computers, UPS’s which inject 

harmonics in power system are worst affected as the harmonics content in power system 

increases. These power electronic devices are very much sensitive to harmonics and they 

malfunction in presence of harmonics. If suitable harmonics estimation and filtering are 

not undertaken then these devices may inject inter-harmonics and sub-harmonics to 

power system. Harmonic currents and voltages also yield increased I2R losses, over 
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voltage, saturation of transformer core and the reduction of the lifespan of sensitive 

equipments. The aforesaid adverse affects of harmonic necessitate guidelines to maintain 

acceptable harmonic labels in the power system. The interests in harmonic studies 

include modeling, measurements, mitigation and estimation of fundamental as well as 

harmonic components. Accurate analysis of power system measurements is essential to 

determine harmonic levels and effectively design harmonics filters. To provide the 

quality power, it is imperative to know the harmonic parameters such as magnitude and 

phase. This is essential for designing filters for eliminating and reducing the effects of 

harmonics in a power system.  Thus, harmonic estimation is one of the critical and 

challenging issues to while dealing with power system signals.  

 

1.2 A Review on Power System Frequency Estimation Algorithms 
This section reviews different power system frequency estimation techniques 

based on signal processing and soft computing techniques. 

 

1.2.1 Recursive Methods 
A Least Mean Square (LMS) algorithm in complex form has been presented by 

Pradhan et al. [1] to estimate power system frequency. A complex signal for LMS 

algorithm is derived from three-phase signal using βα −  transformation. This algorithm 

suffers poor convergence rate as the step size of the LMS is fixed. Variable step size is 

incorporated to enhance the convergence characteristics of standard LMS. This 

estimation of frequency is verified in the presence of noise, with frequency jump and 

with data collected from real time system. The presence of 3rd harmonic in the signal 

does not affect the performance of algorithm as 3rd harmonic component is eliminated 

during βα −  transformation. But the presence of 5th harmonic component affects the 

performance of the algorithm, so a Butterworth filter used for pre-filtering and the 

estimation is correct with very less error. For step change in frequency, estimation is 

found to be correct within 1/3rd of a cycle. They have collected power system voltage 

data in the laboratory by using a 16-channel data recorder at a sampling rate of 5 kHz. 
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Estimation achieved by using complex LMS was found to be correct with only peak-to-

peak variation in the estimation of 0.001Hz without using prefilter.  

A Variable Step Size LMS (VSSLMS) has been used in [4, 5] with a view to 

achieve more accuracy and better convergence in estimation over conventional LMS 

algorithm. It was observed that using VSSLMS un-correlated noise disturbances exist in 

the signal do not affect the estimation performance. Its step size is adjusted according to 

square of time averaging estimate of the autocorrelation of error and previous error. The 

auto-correlation error is a good measure of the proximity to the optimum and it rejects 

the effect of uncorrelated noise sequence in the step size update. The step size of the 

VSSLMS increases or decreases with the increase or decrease of mean square error of 

signal [4]. The convergence and steady state behavior of the algorithm are also analyzed. 

However this VSSLMS provides faster convergence at early stages of adaptation while 

there is little deviation in the later stage. In ref. [6], a new class of Gradient adaptive step-

size LMS algorithm has been presented that is one type of Variable Step Size-LMS 

(VSS-LMS) algorithm. As a fixed μ  may not respond to time varying signal parameters, 

authors in ref. [6] have demonstrated that by using a multiple step size parameter in 

LMS, one can overcome the above problem. Gradient adaptive step size LMS has been 

reported in [6] to outperform compared to Mathews [72] and Benveniste’s algorithm 

[73]. 

A variable Leaky LMS algorithm has been proposed in [7] to avoid the slow 

convergence of standard LMS algorithm. Where, a leak parameter γ  was used in the 

LMS algorithm. The name comes from the fact that when the input turns off, the weight 

vector of standard LMS stalls. However, at this time the weight vector of Leaky LMS 

leaks (spreads out). The Leaky LMS algorithm defined as adding zero mean white noise 

with autocorrelation matrix Iγ  to the input x . If nλλλ ......., 21 are the input eigen value 

spread of standard LMS algorithm. Then eigen spread in the Leaky LMS algorithm is 

),......,( 21 γλγλγλ +++ n . This means that if γ >=0,the new eigen value spread is less 

than initial eigen value spread  i.e.
min

max

min

max

λ
λ

γλ
γλ

≤
+
+ . Therefore, Leaky LMS’s worst-case 

transient performance is better than the standard LMS algorithm. This paper has also 
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discussed about when to adjust the leak and how much to adjust the leak. It is found that 

if error in VL-LMS is less than error in standard LMS, then leak is to be increased, 

otherwise it should be decreased. Regarding how much to increase or decrease the leak, 

they have explained a leak adjustment algorithm. They have also verified that VL-LMS 

outperforms the standard LMS algorithm.  

A modified Leaky LMS algorithm has been proposed in [8] which is unbiased 

and cost-effective because authors have solved the weight drift and bias problems of 

LMS and Leaky-LMS at an additional cost of only one comparison, one addition and one 

multiplication per iteration. The mean square error (MSE) performance of the adaptive 

algorithm (Leaky LMS) for Gaussian input data has been presented in ref. [9]. 

Inadequacy of excitation in the input sequence results in unbounded parameter estimates. 

This behavior causes degraded performances as a consequence of unbounded prediction 

error. The above problem has been stabilized by introducing leakage in the LMS 

algorithm. Therefore, the Leaky LMS algorithm was successful in abolishing “stalling” 

where gradient estimate is very less. It describes MSE analysis both for white input 

signal and for correlated input signal using Leaky LMS algorithm. A new adaptive 

filtering algorithm called subspace Leaky LMS has been designed in [10] to mitigate the 

problem of parameter drift of non-persistently exciting input signals. Algorithm proposed 

by the authors’ in [10] leaks only in the unexcited modes and introduces insignificant 

bias on retaining the low computational complexity of LMS.   

Tobias and Seara [11] described the adaptation path of an active noise and 

vibration control system having a nonlinear block cascaded with the adaptive filter. This 

type of nonlinearity is inherent in some of the components of an active control system 

(e.g. power amplifiers, sensors and actuators etc.). Weight updates equation has been 

derived by considering the gradient of the instantaneous cost function. A leak factor 

updatation algorithm has been proposed for variable leakage factor in VLLMS [11]. This 

leak adaptation in the proposed VLLMS has the advantage of using measurable signals in 

the system to perform the adjustment of the leak factor.  
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Douglas [12] compared the performance of two types of Leaky LMS adaptive 

filters. In one case, it is directly implemented and in another case, a random white noise 

is added to the input signal of LMS adaptive filter. The MSE analysis of second type of 

adaptive filter was reported to be worse than that of the Leaky LMS adaptive filter and 

this performance difference is quite large for large SNR and moderate values (10-5) of 

leakage factor. 

Frequency is considered as a state and estimated using extended complex Kalman 

Filter (ECKF) [13]. In this ECKF estimation method, the initial covariance matrix is 

chosen as IP ρ=0 , where ρ  >1. Estimation was performed under various system 

changing conditions such as presence of harmonics in the signal, sudden change in 

amplitude, phase and frequency of signal, presence of noise and unbalances in the 

magnitudes of phase voltages in three phases. At low values of SNR (20dB), 

convergences to the true frequency of the signal is achieved in almost 2 cycles (40ms) 

and if SNR value reduced to 20dB, time required for convergence reduces to less than 

20ms. It is found from the result that with increase in SNR value, the corresponding 

estimation error decreases. It was also verified in [13] that ECKF is very stable and yields 

accurate frequency estimation. However, this method suffers from the choice of initial 

co-variance matrix, which is the key factor for determining the speed of convergence of 

the algorithm. 

Huang et al. [14] proposed a robust algorithm based on an Extended Complex 

Kalman Filter (ECKF) for the estimation of power signal frequency. This algorithm is 

called robust because it suppressed the abnormalities from abnormal data (data that 

causes noises and disturbances in power systems as well as affect the accuracy of 

frequency estimation) of measurement and efficiency of frequency estimation is 

enhanced. They have verified the proposed approach using test signals, signals recorded 

from an arc furnace, signals obtained from the stainless steel factory and signals 

generated in the laboratory. It also shows that this new robust ECKF performs better than 

ECKF. Design of an Extended Complex Kalman Filter (ECKF) [15], [16] is discussed for 

measurement of power signal frequency. During the change in signal parameters, the 

covariance matrix and Kalman Gain should be reset to track them quickly. Authors have 
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used hysteresis type decision block to solve this type of problem. The authors determined 

hysteresis band by the nature of noise and nature of convergence. The test signal is 

derived using an experimental setup from the signal generator through an unshielded 

ribbon cable. A digital storage oscilloscope first measures signal frequency. Step change 

in frequency is realized by allowing sudden jump in the signal generator with 

introduction of delay subroutines. Kalman Filter resolves the distortion in the 

transmission line, which is introduced due to CT (or PT) and instrumentation cable.  

Kalman Filter in Linear form has been implemented [17] for estimation of 

phasors of single phase and three-phase system. Authors used a single state frequency 

estimation technique that avoids the stability problem like the previously proposed 

Kalman Filter. This algorithm is tested through both simulation and power system data 

collected in the laboratory using data acquisition card. They have verified that this 

algorithm performs well in both cases but they have not taken into account the frequency 

change in the system. Grimble et al. [18] considered a plant, where state estimates are 

needed for feedback control purposes and parameter estimates are needed for unknown 

and varying output disturbances. Authors have reduced the order of the Extended Kalman 

Filter by omitting the model constant states or parameter vectors. Disturbance model is 

obtained using a modification of Panuska’s model [74].  

A linear prediction method has been proposed in [19] for the estimation of real 

harmonic sinusoidal frequency of a signal. According to this method, fundamental 

frequency is first estimated by using the standard least square approach and final estimate 

has been obtained by optimizing a Weighted Least Square concept. Chan and So [19] 

presented an iterative weighted least square approach for estimation of real harmonic 

sinusoidal frequency but have not take into account the computation of sinusoidal 

amplitudes and phases. They also verified the fullifilment of Cramer-Rao Lower Bound 

for high SNR. A variable length sliding window block wise least square (VLSWBLS) 

method for parameter estimation is proposed in [20]. Both Least Square (LS) and 

Recursive Least Square (RLS) methods have been employed for parameter estimation. In 

order to avoid the weak tracking ability of Block wise Least Square (BLS), a sliding 

window block wise least square approach with an adjustable window length is proposed 
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to extend the LS approach for parameter estimation of the system with abrupt parameter 

changes. The proposed approach outperforms the Least Square algorithms significantly 

and has excellent tracking ability for abrupt parameter changes and steady state 

performance. Djuric et al. [21] proposed an algorithm, which is derived from Fourier, and 

Zero crossing technique is applied to cosine or sine components of original signal, which 

is corrupted by higher harmonics. Fourier and Zero crossing algorithms show high 

measurement accuracy over a wide frequency change. The proposed algorithm is verified 

using computer simulation, fields and laboratory tests. For the estimation of power 

system frequency, a method [22] based on adaptive notch filter has been proposed. A 

voltage or current signal with d.c component and noise is taken. Its performance is 

studied with various conditions such as in presence of harmonics, step variations of 

frequency, ramp variations of frequency, oscillatory variations of frequency, oscillatory 

variations of amplitude etc. Its performance is also compared with a phase-locked loop 

(PLL). It has been found that the dynamic performance of the proposed method is faster 

than that of using PLL. Owing to its simpler structure, it can be used for both hardware 

and software environments. This technique [23] is based on implementation of two 

orthogonal digital filters. It provides accurate estimates to a resolution of 0.01-0.02 Hz 

for near nominal, nominal and off-nominal frequencies in about 20ms. This technique is 

also tested with voltage signals from a dynamic frequency source and from a power 

system. This technique requires less computation and is suitable for microprocessor-

based relays. Karimi-Ghartemani and Iravani [24] implemented a method based on phase 

locked loop for estimation of power system frequency. The main features of this method 

are simple structure, robustness with respect to harmonics and variation of internal 

parameters, immune to noise and having negligible steady state error. 

 

1.2.2 Soft Computing approaches to Power System Frequency 

Estimation  
A technique based on fuzzy linear regression is proposed in [25] for frequency and 

harmonics evaluation in a power network, which used digitized voltage signals as fuzzy 
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numbers for estimation of frequency and harmonics components of voltage signal. They 

have investigated the effects of sampling frequency, data window size and degree of 

fuzziness on the estimated parameters. They have verified the proposed technique using 

simulated data but not verified using experimental data. 

An adaptive neural network is presented in [26] for estimation of power system 

frequency. Authors have used a linear adaptive neuron “Adaline” for identifying 

parameters of a discrete signal model of a power system voltage. They have adjusted 

parameter learning to get a stable difference error equation. Proposed algorithm is able to 

track the frequency over a wide range of frequency changes. This algorithm tracks the 

frequency at different conditions of power system and also immune to presence of 

harmonics and noise in signal.  

Neural network and genetic algorithm have been used in [27] for estimation of power 

system frequency. In that proposed algorithm, the learning of weights of neural network 

was carried out by genetic algorithm. They have compared the performance of this 

proposed technique with the conventional error back propagation and LMS algorithm. 

But they found that the proposed algorithm outperforms over other two. They have 

judged the performance using simulation only. 

A technique based on neural network has been proposed in [23] for real time 

application of frequency in a power network. They have represented frequency as a 

weight of neural network and adjusted it through a suitable learning process. They have 

judged the dynamic behavior and steady state accuracy of the proposed technique. It also 

able to track the change in power system frequency within very less time 

 
1.3 A Review on Power System Harmonic Estimation 

This section provides a review on Harmonics Estimation based on Signal Processing, 

and Soft Computing techniques such as Fuzzy Logic, Neural Network and Evolutionary 

Computation. 
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1.3.1 Recursive Methods 
Kennedy et al [37] proposed Kalman Filtering approach to harmonic analysis in 

power system. They used three test signals (Normal operating conditions, sudden drop in 

fundamental frequency and fault signal) for analyzing power system containing 5th, 7th, 

11th and 13th harmonic components with a Gaussian noise of standard deviations 0.01 

and a SNR of 40dB. First test signal considered was under normal operating condition, 

second was due to sudden drop in fundamental frequency and third was a fault signal. 

Both for linear and non-linear models estimation of harmonics has been carried out for 

the three test signals. In an unbalanced three-phase system, for the measurement of 

harmonics, the optimal locations of the installations of harmonic meters and optimal 

dynamic estimates of the harmonics injections are found out in ref. [38]. In this case, 

each harmonic injection has been treated as a random state model. Error covariance 

analysis of harmonic injection by the Kalman filter is used to determine the optimal 

metering locations. Estimation of harmonics [39] is necessary to minimize harmonic line 

currents and optimize the load power factor. It also discussed about estimation of 

harmonics with limited use of harmonic meters. The performance of proposed algorithm 

has been compared with EKF under different conditions such as normal load conditions, 

sudden load change, and presence of measurement bad data in IEEE 14 bus system [31]. 

They have verified that the proposed algorithm outperforms EKF.  

Beides and Heydt [40] estimated bus voltage magnitudes and phase angles of the 

fundamental and higher harmonics from noisy measurement using Kalman Filter method. 

This algorithm is also tested with IEEE 14 bus system. These results are helpful in 

studying the total harmonic distortion over a full cycle. It is also helpful in designing 

power filter to minimize harmonics.  

An approach combining both Fourier Linear Combiner and Extended Complex 

Kalman Filter (ECKF) has been proposed in [41] for power system harmonic estimation. 

Kalman Filter estimates amplitude and phase when frequency is fixed. However, when 

frequencies vary, it is unable to retune itself to the frequency changes. Similarly, Fourier 

Linear Combiner, using single layer neural network able to estimate harmonics at static 

frequency but during frequency change tracking time becomes much larger and there is 
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more error in estimation. Therefore, Dash et al. proposed a hybrid combination of 

Kalman Filter and Fourier Linear Combiner for time varying harmonics in presence of 

frequency changes. They have verified that proposed algorithm performed well even with 

frequency jump. A Discrete Kalman Filter (DKF) is designed in [42], which provides 

power system harmonics and unbalances to identify properly with minimum execution 

times. They compared for single phase and three phases line current signals of a 3 phase 

nonlinear load experimentally. The analyzed method has been implemented using Dspace 

(ds-1104) and able to track odd harmonics up to 19th order. This proposed 3 ωφ 3−  signal 

model could be used where low cost micro controllers and accurate measurements are 

required. 

Several variants of Recursive Least Square (LS) algorithms such as Weighted Least 

Square (WLS), Recursive Least Square information form (RLS-I), Recursive Least 

Square Covariance form (RLS-C), Extended Least Square form 1 (ELS-1) and Extended 

Least Square form 2 (ELS-2)  have been used in [43] for estimation of power system 

harmonics. They have used a noisy harmonic signal from an AC bus of a six-pulse 

rectifier as a test signal and applied various RLS algorithms to signals having different 

SNR values. Their analysis showed that good estimates of amplitudes and phases are 

produced even for 0 dB SNR. Therefore, this algorithm can be used for on-line 

implementation in a polluted power system.  

Three methods such as Discrete Fourier Transform (DFT), Least Square (LS) and 

Least Absolute Value (LAV) techniques are applied in [44] to the voltage harmonic 

estimation of a three-phase six-pulse converter. In case of ideal noise free data, all the 

algorithms have provided exact estimate of the harmonics for sufficiently high sampling 

rate. For noisy case, LS method provides good estimates for large number of samples at 

the same time DFT fails. However, LAV provides a better result for high range of 

samples.  

An online technique for estimation of parameters of harmonic signal based on LS and 

Total Least Square (TLS) optimization criteria has been presented in [45]. The network 

model under TLS criteria optimized the estimates assuming the fluctuation of frequency 

and sampling interval. On higher sampling frequencies, TLS estimates are better than LS 
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estimates. No real time data has been taken to validate the algorithm. A method based on 

Least Square has been presented in [46] to compute power system harmonic detection 

and Total Harmonic Distortion. The method has been compared with FFT and Kalman 

Filter. Simulation and experimental results showed that harmonic component detection 

scheme using Least Square method has great advantages over other methods because of 

its less computational cost when used for reconstructing the fundamental component and 

calculating the compensation current template online for active power filters. THD index 

can be calculated with little computational cost using this method as compared to other 

methods.  

Lobos et al. [47] discussed Linear Least Square method for harmonic detection in a 

power system using singular value decomposition (SVD). This method has been 

investigated under using simulated waveforms as well as current waveforms at the output 

of a three phase frequency converter supplying an induction motor load and found that it 

is very versatile and efficient method for detection and locations of all higher harmonics 

existing in the power system. It is also applicable for estimation of inter-harmonics in a 

power system.  

Dominguez et al. [48] presented the introduction of digital filter for estimation of 

harmonics components of signal. The digital filter charmDF (characteristic harmonics 

Digital Filter) incorporated on treatment of samples before applying Discrete Fourier 

Transform (DFT). The convergence of the algorithm during signal change is also 

improved. The main advantage is that same algorithm has been used during pre-fault and 

post-fault periods. So there is no need to know the time of occurrence of fault. But 

authors in [48] had not taken into account the effect of inter and sub-harmonics 

components. 

Tao et al. [49] proposed an approach based on M-Estimators (i.e a broad class of 

estimators, which are obtained as the minima of sums of functions of the data e.g. LS 

estimator and many Maximum-Likelihood estimators) for harmonic estimation to 

overcome the error in estimation in presence of noise in signal. The initial values for 

harmonic frequencies are acquired using Estimation of Signal Parameters via Rotational 
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Invariance Techniques (ESPIRIT) algorithm to avoid local minima and to improve the 

convergence rate of optimization.  

Yilmaz et al. [50] suggested parametric spectral estimation methods for the 

estimation of harmonics, inter-harmonics and sub-harmonics. Yule Walker, Burg, Co-

variance and Modified Co-variance methods were applied for estimation of harmonics. 

They have successfully determined both integer and non-integer multiple harmonics 

through computer simulations. A harmonic model based on Wavelet Transform (WT) has 

been proposed in [51] for online tracking of power system harmonics using Kalman 

Filtering. Authors have estimated the harmonics amplitudes and phase angles by solving 

the coefficient of wavelet and scaling functions. Also they have combined Kalman 

Filtering Technique with it for developing an online harmonic tracking method. A Morlet 

Wavelet Transform based approach for the study of time-varying power system 

harmonics has been proposed in [52], where time frequency localization characteristics 

are embedded in Wavelets. They have applied Wavelet Transform for visualizing the 

inrush current harmonics of transformer and for investigation of arc furnace generated 

signal. 

Mandel [53] suggested Ensemble Kalman Filter (EnKF) a recursive filter for 

harmonics estimation problem having large number of variables. It is a new version of 

the Kalman Filter and is an important data assimilation component of ensemble 

forecasting. This ref. described the derivation and practical implementation of the basic 

version of EnKF. Ref. [54] suggested that EnKF can be implemented without access to 

the observation matrix but only an observation function is required. When the data 

covariance matrix is easy to decompose, their EnKF is easy to implement. EnKFs 

represent the distribution of system state using a random sample, called an ensemble and 

Co-variance matrix is replaced by sample covariance of the ensemble. Gillijns et al. [47] 

suggested that classical Kalman filter provides a solution of state estimation for linear 

systems under Gaussian noise but estimation of nonlinear system using different 

algorithms have limited applicability and computationally expensive. Ensemble Kalman 

Filter (EnKF) is used as a nonlinear state estimation. It is widely used in weather 

forecasting, where models are nonlinear with high order. Initial states are also uncertain 

Chapter-1 Introduction



 13

and a large number of states are also available. The number of ensembles required in 

EnKF is heuristic. It was suggested in [55] that an ensemble of size 50 to 100 is often 

adequate for systems having thousands of states. They applied EnKF to three different 

examples, one linear and two non-linear for getting tradeoff between ensemble size and 

estimation accuracy.  

 

1.3.2 Soft Computing approaches to Power System Harmonics 

Estimation 
A technique based on Fuzzy LMS has been applied in [56] for estimation of 

harmonics voltage and current signals in power network. They have used fuzzy gain 

scheduling method for the adjustment of step size to provide faster convergence and 

noise rejection for tracking fundamental as well as harmonics components from signal.  

Joorabian et.al. [57] decomposed total harmonics estimation problem into a linear and 

non-linear problem. Linear Estimator (Least Square (LS)) has been used for amplitude 

estimation and an adaptive linear combiner “Adaline” which is very fast and simple is 

used for harmonics phase estimation. There is improvement in convergence and 

processing time using this algorithm. This algorithm estimates correctly for static, 

dynamic and fault signal, but estimation using inter and sub harmonic components is not 

discussed. Lai et al. [58] applied the Least Square technique with artificial neural 

networks to harmonic extraction in time varying situations. If there is any frequency drift 

in the signal, then conventional FFT based on fixed measurement window is unable for 

effective power system monitoring. However, this proposed method is capable of dealing 

simultaneously the measurement of varying frequency, amplitude and any harmonic 

components present in the power system. In this case, there is no restriction about 

evaluation of the number of harmonic component excepting increasing complexity of 

neural network as the number of harmonics components is increased. Using parallel 

processing one can solve this problem of high complexity. A new method called power 

system digital harmonics analyzer [59] for frequency and amplitudes of fundamental and 

higher harmonic estimation from a voltage or current signal has been presented. It 
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consists of three stages, first one for an adaptive filter of input signal, second for 

frequency estimation, third for harmonic amplitude estimation. Simulated data and data 

from experimental setup have been used. It provided accurate frequency estimates with 

errors in the range of 0.002 Hz and amplitude estimates with error in the range of 0.03% 

for SNR=60dB in about 25 ms. Dash et al. [60] applied a neural network approach that is 

adaptive by Widow-hoff delta rule for the estimation of harmonic components in a power 

system. The authors adjusted the learning parameter α so that error between the actual 

and desired output is minimized. Signals corrupted with random noise and decaying DC 

component, data collected from an AC system using resistance, inductance and data 

acquisition card have been applied to this proposed method. This method was able to 

track harmonics and DC components accurately in comparison to KF-based algorithm. 

The adaptive nature of the algorithm is suitable in tracking harmonics with time varying 

amplitudes and phase angles. Mori et al. [61] presented a method based on back 

propagation learning for feed-forward neural network for harmonics prediction. For the 

effectiveness of the proposed method, it has been applied to the voltage harmonics 

observed through a computer based measurement system and its performance has been 

compared with different conventional methods such as Autoregressive (AR) model, 

Integrated Autoregressive (IAR) model, Escalater (ES) algorithm, Kalman Filter, 

Recursive Least Square (RLS), Kawatake Hirasaka (KH) method, Normalized Karni 

Zeng (NKZ) method and Adaptive Auto regressive model. 

A neural network based algorithm has been developed in [62] to estimate both 

magnitude and phase up to eleventh harmonics (550 Hz) of a power system. They used a 

method for value determination of model parameters involving the noise environment. 

Performance of the proposed method is also tested with the conventional DFT method. It 

has fast response and high accuracy compared to DFT. Conventional FFT requires more 

than two cycles to detect component of harmonics but proposed approach takes ½ of the 

distorted wave as the input signal. So there is an improvement in the harmonic detection 

four times compared to FFT. Experimental results confirmed that proposed ANN model 

well performed in practice.  

 

Chapter-1 Introduction



 15

A number of hybrid algorithms such as Genetic Algorithm (GA), Genetic 

Algorithm-Least Square(GA-LS), Particle Swarm Optimization-Least Square(PSO-LS) 

and Adaptive neural Network(ANN) techniques has been proposed in  [63] for estimation 

of harmonics in a power system. Estimation of the magnitude and phase angle of the 

harmonics has been accomplished by analyzing the waveforms. Out of the above hybrid 

schemes of harmonics estimation, comparison in terms of processing time and percentage 

error suggests that ANN is the effective for the estimation of harmonics in a power 

system.  

Seifossadat et al. [64] presented an adaptive neural network based on Genetic 

Method called GAP (Genetic Adaline Perceptrons) for tracking the harmonics 

components of current and voltage waveforms in faulted power system. At each iteration 

of Adaline, Genetic Adaline Perceptrons (GAP) uses GA for selection of optimized value 

for learning parameter. The results were compared with DFT, KF, GA and Adaline 

methods. Results showed that GA has minimum deviation though it is not as fast as other 

methods like Adaline and GAP. The Adaline is the fastest and GA is most accurate. So 

authors had taken GAP as the trade off between speed and accuracy for harmonics 

evaluation in power system.   

Bettayeb and Qidwai [65] presented a new algorithm for estimation of harmonics 

using GA’s. The proposed algorithm estimates phase of power system signal using GA. 

After the estimation of phase, amplitude has been estimated using Least Square (LS) 

algorithm. Signals taken across load from a two-bus three-phase system with a full-wave 

six-pulse bridge rectifier were applied to this algorithm. Voltage data taken from an 

offshore industrial facility was also applied to this proposed algorithm and the algorithm 

performed well. They showed that there is an improvement of more than 60 % in 

convergence time of this proposed algorithm over the ordinary GA. With the use of fast 

machine such as Pentium 300MHz, convergence time reduces to few seconds. Thus 

online implementation is possible. 

Mishra [69] presented the foraging behavior of E. Coli bacteria to estimate the 

harmonic components present in power system voltage/current waveforms. The foraging 

strategy becomes adaptive by using Takagi-Sugeno scheme. Linear Least Square has 
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been combined with Bacterial Foraging and Takagi-Sugeno scheme for estimation of 

amplitude. The cost function that is to be optimized using bacteria foraging, has been 

taken as the sum of squares of the error of the estimated and actual signal. Validation of 

proposed hybrid method has been accomplished with data collected across the load of a 

three-phase system with a full-wave six-pulse bridge rectifier at the load bus. It was 

found that this hybrid method outperformed over DFT and its performance was 

satisfactory for change in parameters as well as for decaying DC-contaminated signal.  

Although RLS and ELS have been applied for power system harmonic estimation but 

the attention of many researchers have skipped in applying RLS and ELS to power 

system amplitude and frequency estimation problems with different signal to noise ratios 

and system changing condition. An immediate motivation was to apply RLS and ELS to 

frequency estimation problem on comparing their performance with Kalman Filter and 

LMS. LMS method applied to power system frequency estimation exhibits less speed of 

convergence and more estimation error. We have proposed a method called Variable 

Leaky LMS to avoid the aforesaid drawbacks of LMS in the power system frequency 

estimation problem. Several methods such as KF, CKF have been applied for power 

system harmonics estimation. But covariance matrix in case of Kalman Filtering can be 

replaced by sample covariance found from ensemble in EnKF and for high order system, 

maintenance of sample covariance is not difficult. Motivated by this benefit of EnKF we 

also attempt to apply this method for estimation of power system harmonics. Again for 

achieving better harmonic estimation accuracy, attempts have been made to combine 

some classical techniques such as RLS and Kalman Filter with soft computing techniques 

such as (Adaline and BFO) 

It is found in literature that most work consider validation of estimation methods 

using synthetic signal from power system. But it would be interesting to verify the 

estimation algorithms by using real time power system data or laboratory data. Hence, we 

have applied dataset obtained from a power plant and from experimental setup to 

frequency and harmonic estimation for validation. 
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1.4 Motivation of the work 
 Although RLS and ELS have been applied for power system harmonic estimation 

however attention has not been paid in applying RLS and ELS to power system 

frequency estimation problems. An immediate motivation was to apply RLS and ELS to 

frequency estimation problem on comparing their performance with available results.  

 To devise efficient power system frequency estimation methods.  

 To investigate the effectiveness of new signal processing techniques to power system 

harmonics estimation. 

 To exploit benefits of individual algorithms (RLS, ELS, KF, LMS) in developing  hybrid 

identification techniques employing both classical and soft computing techniques for 

both frequency and harmonics estimation.  

 Most works in literature consider validation of estimation methods using synthetic signal 

from power system. Tests have been carried out on dataset from a power plant and 

experimental setup for frequency and harmonics estimation.  

 For improvement in power quality, application of estimation algorithms may be 

exploited. 

1.5 Problem Statement 
The problem addressed in the thesis comprises of the following two sub problems as 

described below. 

1.5.1 Frequency Estimation Problem 

 
Fig. 1.1 Schematic of frequency estimation problem 
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GP  : Active Power Generation 

DP : Active Power Demand 

If  GD PP >  , then frequency )( f of the system decreases 

If  GD PP <  , then frequency )( f of the system increases 

The load in a power system is not constant and system frequency remains at its nominal 

value only when there is a match between active power demand and active power 

generation. During the period of load change, the nominal frequency deviates. Thus the 

power system voltage/current signal gets distorted. Deviation of system frequency from 

nominal frequency, is called frequency error fΔ , is an index of mismatch and can be used 

to send the appropriate command for changing the generation by adjusting Load 

Frequency Control (LFC). It is thus necessary to estimate power system frequency 

accurately before sending command to LFC to yield increase or decrease in generation. 

Thus, the frequency estimation problem is concerned with developing efficient 

algorithms with a view to obtain accurate estimation of frequency of the resulting 

distorted power system voltage signal. 

 

1.5.2 Harmonics Estimation Problem 

 
Fig. 1.2 Schematic of harmonics estimation problem 
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More usage of nonlinear loads such as power electronics devices introduces more 

amounts of harmonics into power system. As a matter of fact, power system voltage or 

current signal deviates from pure sinusoidal waveform and in particular the distortion of 

the current waveform becomes more complex. If suitable filtering is not undertaken then 

these devices will introduce inter-harmonics and sub-harmonic components to power 

system. Both harmonics and interharmonics have adverse effects on the power system 

operation. It is pertinent that accurate estimation of harmonics in distorted power system 

current/voltage signal to effectively design filters for eliminating harmonics. Hence, the 

harmonics estimation problem is intended to develop accurate estimation algorithms for 

obtaining amplitude and phase of the harmonics of the distorted voltage/current signal.  

 

1. 6 Objectives of the Thesis 
The following are the objectives of the Thesis. 

 To apply recursive algorithms such as RLS and ELS to power system frequency 

estimation problem and to compare these results with the available Kalman Filter and 

LMS based results. 

 Variable Leaky LMS is proposed to avoid less speed of convergence and more estimation 

error of LMS in the power system frequency estimation problem.  

 Covariance matrix in case of Kalman Filtering can be replaced by sample covariance 

found from ensemble in EnKF and for high order system; maintenance of sample 

covariance is not difficult.  

 To achieve accurate frequency and harmonic estimation, attempts have been made to 

combine some classical techniques such as RLS and Kalman Filter with soft computing 

techniques such as Adaline and BFO. 

 To validate the proposed estimation algorithms on data obtained from laboratory and 

industrial setup. 

 To exploit the efficacies of the developed estimation algorithms such as KF, Adaline and 

KF-Adaline for designing active power filters.   
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1.7 Thesis Organization 
The thesis is organized as follows 

Chapter-1 provides a brief background on the research area of estimation of 

frequency and harmonics in power system. It includes a critical review on research 

reported in frequency and harmonics estimation followed by motivation/objectives 

followed by statement of problem. It also provides the thesis organization.  

Chapter-2 presents the estimation of frequency of single phase and three-phase 

signals, by using different variants of recursive techniques such as RLS, ELS, Kalman 

Filter and LMS. Simulation studies are made by considering signals with different SNR 

values and with step change in frequency. The effectiveness of the recursive estimation 

algorithms in estimating power system frequency has been verified. This chapter also 

presents the estimation of frequency, which is an important power system parameter by 

Variable Leaky Least Mean Square (VLLMS) algorithm.  

In the first section of this chapter, LMS outperforms over KF but in second 

section, to enhance the convergence characteristics of the complex form of the LMS 

algorithm, a variable adaptation step-size is also incorporated. The proposed algorithm 

uses a quantized leak adjustment function to vary the leak. The performance of the new 

algorithm is studied through simulations at different situations of the power system. 

Proposed algorithm is verified using both simulation and experimental results.  

Chapter-3 depicts combined RLS-Adaline (Recursive Least Square and adaptive 

linear neural network) and KF-Adaline (Kalman Filter-Adaline) approaches for the 

estimation power system frequency. In the previous chapter, only signal processing 

techniques are described but in this chapter, we have switched over to combination of 

signal processing and soft computing technique for better accuracy and less tracking time 

of estimation. The neural estimator is based on the use of an adaptive perceptron 

comprising a linear adaptive neuron called Adaline. The weight of the Adaline is updated 

by Kalman Filter and Recursive Least Square algorithm (RLS). The estimators’ track the 

signal corrupted with noise and decaying DC components very accurately. The proposed 

approaches are tested in case of signal containing noise, harmonics, inter and sub-

harmonics and signal obtained from laboratory setup.  
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First section of this chapter gives idea about frequency estimation using combined 

signal processing and Neural Network technique. But in second section, Evolutionary 

Computational technique is hybridized with signal processing technique for frequency 

estimation. BFO is used for the optimization of the unknown parameters by minimization 

of the cost function, which is the sum of the squared error of the signal. Out put of BFO 

is taken as the initial weights of the Adaline in case of Adaline-BFO and of the RLS 

incase of RLS-BFO. Then weights are updated using each of the algorithms. Frequency 

of signal is estimated from the updated weights of the Adaline and RLS. Their 

effectiveness is tested on taking signal containing noise, harmonics, inter and sub 

harmonics and also from the experimental data obtained from laboratory setup. 

Chapter-4 suggests a nonlinear state estimation approach known as Ensemble 

Kalman Filtering (EnKF), for the detection of harmonics, inter-harmonics and sub-

harmonics in a power system. After the discussion of estimation of frequency in previous 

two chapters, estimation of power system harmonics is carried out in this chapter. EnKFs 

represent the distribution of systems state using a collection of state vectors known as 

ensemble and replaces the covariance matrix by sample covariance computed from 

ensemble. While EnKF estimation has not been studied except some specialized 

applications, it is widely used in weather forecasting, where model is having high order, 

initial states are highly uncertain and non-linearity is more. In EnKF, the number of 

ensembles required is heuristic. Not only integer multiple harmonics but also non-integer 

multiple harmonics are successfully determined using computer simulations. Further 

performances of the proposed method are compared with other existing techniques such 

as RLS, LMS, RLMS and KF algorithms.  

Chapter-5 describes a number of hybrid estimation algorithms such as combined 

RLS-Adaline and KF-Adaline for estimation of harmonic components of a power system. 

In chapter 4, only application of signal processing techniques have been described for 

harmonics estimation but in this chapter, we have switched over to combination of signal 

processing and soft computing technique for better accuracy and less tracking time of 

estimation. The way of implementation of these hybrid algorithms are the same as 

discussed in chapter 3 for frequency estimation.  The proposed approaches are tested for 
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static and dynamic signal, signal containing inter and sub-harmonics and signal obtained 

from laboratory setup.  

First section of this chapter gives idea about harmonics estimation using 

combined signal processing and Neural Network technique. But in second section, 

Evolutionary Computational technique is combined with signal processing technique for 

harmonics estimation. Here also the way of implementation of these hybrid algorithms 

are the same as discussed in chapter 3 for frequency estimation. Their effectiveness is 

also tested on taking signal containing harmonics, inter and sub harmonics and also from 

the experimental data obtained from laboratory setup. 

Chapter 6 describes the application of a hybrid algorithm (KF-Adaline) to design 

of a Hybrid Active Power Filter (HAPF) for power conditioning. After estimation of 

harmonics with the proposed KF-Adaline algorithm, HAPF with a modified PWM 

control (indirect current control technique for generation of switching signal) is applied 

for harmonics compensation in distorted power signals. The modified PWM control 

technique is based on comparing simultaneously a triangular high frequency carrier 

signal with a slow varying regulation signal and its opposite. The simulated results of this 

hybrid power filter using modified PWM technique are compared with the active and 

passive filter. The performance of HAPF is also verified from the experimental results by 

making a laboratory prototype setup. In all three cases of filters such as passive, active 

and hybrid, harmonics components are estimated using KF-Adaline estimation algorithm. 

The total harmonic distortion (THD) is reduced from 19.2% before compensation to 

1.82% after compensation using HAPF. 

Chapter 7 provides comprehensive summary and conclusions of all different 

estimation approaches for power system frequency and harmonics. It focuses on 

contributions of the thesis and scope for future work. 
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Chapter-2 

 Power system Frequency Estimation Using 
Recursive Algorithms  

 

 

2.1 Introduction 
 To ensure pure sinusoidal voltage or current signal in a power system i.e. for better power 

quality, it is intended that the power system should function without significant loss of 

performance. It deteriorates due to voltage surges, under voltage, over voltage, variation in 

frequency and variation in wave shape called harmonics. Hence, for improvement in power 

quality (issues of power quality related to frequency, is harmonics in power system), there is a 

need of fast and accurate estimation of supply frequency and voltage for an integrated power 

system, which may be corrupted by noise and higher harmonics. Owing to the power mismatch 

between the generation and load demand, there is a variation in system frequency from its 

normal value, which calls for a corrective action for its restoration to its original value. The 

problem of frequency estimation has been addressed using a large number of numerical 

methods such as Newton-Raphson, Weighted Least Square and adaptive FIR filtering from the 

digitized samples of the system voltage. The use of the zero crossing detection and calculation 

of the number of cycles within a predetermined time interval is one of the simple methods for 

determining the system frequency of a purely sinusoidal power system voltage waveform. 

However, signal processing techniques such as Discrete Fourier Transforms, Least Square Error 

technique [1], Kalman Filter [13, 41], Adaptive notch filters [75-78] have been used for 

frequency estimation of distorted power system signals. A large number of numerical 

techniques based on extending the measurement range of Least Square Error, Cramer-Rao 

bounds and Maximum Likelihood estimation and their practical implementations are reported 

in the literature [22-24] but these approaches suffer from yielding inaccurate results due to the 

presence of noise and harmonics and other system changing conditions such as change in fault 

inception angle and change in fault resistance. Although RLS and ELS methods are very 
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popular estimation techniques but unfortunately these have been overlooked for application to 

power system frequency estimation. Keeping this in mind, iterative techniques such as 

Recursive Least Square (RLS), Extended Least Square (ELS), Kalman Filter (KF) and Least 

Mean Square (LMS) are applied for estimation of power system frequency both for single 

phase and three-phase power system signals. In this chapter, these recursive techniques have 

been employed to obtain power system frequency estimation. Taking into account the real time 

power system signal, all the algorithms are implemented for frequency estimation at different 

SNR values and sudden change in frequency of signal. 

 

2.2 Recursive Estimation of Frequency of single-phase distrorted signal 

2.2.1 Recursive Least Square (RLS) Algorithm applied to Frequency 

Estimation 
Let a distorted power system signal buried with noise is represented by the following structure 

)()sin()( 101 ttAty εφω ++=                                                                                                  (2.1) 

To estimate the signal )(ty , the amplitude )( 1A , phase )( 1φ and frequency )( 0f , equation (2.1) 
can be written in discretized form as  

)(sincoscossin)( 01101 kkTAkTAky εφωφω ++=  
[ ][ ] )(cossin)( 00 kkTkTky T εβαωω +=                                                                       (2.2) 

where 
1111 cosφθα A==  

1121 sinφθβ A==  
Further notational simplification of (2.2) can be made by expressing this in regressor form 

given by  

)()()( kkHky εθ +=                                                                                                        (2.3) 

     where )(kε  is the noise of signal 

Using the RLS estimation technique, the parameters can be estimated using the following 

computing steps  

)()()1()( kkKkk εθθ +−=
∧∧

                                                                                                      (2.4) 

where =
∧

)(kθ current value of estimate 
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=−
∧

)1(kθ  Past value of estimate 

=)(kK  Kalman Gain 

 The error in the measurement is given by 

)1()()()( −−=
∧

kkHkyk T θε                                                                                                    (2.5) 
The gain K is updated using the following expression 

1)]()1()()[()1()( −−+−= kHkPkHIkHkPkK Tη                                                                              (2.6) 
 
where =)(kP Error Covariance matrix and )10( <<ηη = Forgetting factor 

The covariance matrix can be updated using the following updatation law as given by   

η/)1(])()([)( −−= kPkHkKIkP T                                                                                         (2.7) 
Equations (2.4) to (2.7) are initialized at 0=k . Initial covariance matrix )0(P  is usually chosen 

to be very large. i.e. IP δ= , where δ is a large number and I is a square identity matrix. 

                                                          
After getting the final estimate of [ ]Tβαθ = , the fundamental amplitude ( )1A and phase )( 1φ  

can be estimated as given below 

2
11

2
111 )sin()cos( φφ AAA +=  

22
1 βα +=A                                                                                                                         (2.8) 

α
βφ =1tan  

α
βφ 1

1 tan −=                                                                                                                              (2.9) 

                         
Once the estimates of amplitude and phase are obtained, then fundamental frequency )( 0f can be 

estimated as follows.  0f  is given by 
π
ω
2

0
0 =f can be evaluated from the noisy measurement )(ky  

using equation (2.1) as given below 

1
10

)()sin(
A
kykT =+φω  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+ −

1

1
10

)(sin
A
kykT φω  
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1
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= −
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kT
f                                                                                         (2.10) 

 

2.2.2 Extended Least Square (ELS) Algorithm for Frequency Estimation 
Same signal and model as described in section 2.2 (a) is also considered for estimation of 

frequency using ELS algorithm. Here, the estimation of the unknown parameter [ ]Tβαθ =  is 

done by rearranging the observation matrix H and the steps for the algorithms are given below. 
1)]()([)()1( −+=+ kHkHkPkP T                                                                                           (2.11) 

 
∧∧∧

−+++=+ )]()()1([)()1()()1( kkHkykHkPkk T θθθ                                                            (2.12) 

After updatation of the unknown parameters, frequency is estimated using equation (2.10) 
 
 
2.2.3 Kalman Filtering (KF) for frequency Estimation   
  The discretized voltages signal as described in section 2.2 (a) is also considered for applying 

KF to frequency estimation. The regressor form of signal as described in (2.3) is also taken. 

Then applying Kalman Filtering algorithm to (2.3), unknown parameters [ ]Tβαθ =  are 

estimated as follows 

1))1/(()1/()( −
∧∧

+−−= QHkkPHHkkPkK TT                                                                     (2.13) 

where K  is the Kalman gain, H  is the observation matrix, IP δ= is the covariance matrix, 

where δ is a large number and I is a square identity matrix. Q is the noise covariance of the 

signal. So the covariance matrix is related with Kalman gain with the following equation. 

)1/()()1/()/( −−−=
∧∧∧

kkPHkKkkPkkP                                                                             (2.14) 

Hence the updated estimated state is related with previous state with the following equation. 

))1/()()(()1/()/( −−+−=
∧∧∧

kkHkykKkkkk θθθ                                                                (2.15) 

After updatation of the unknown parameter matrix,θ  by Kalman Filtering, using equations 

(2.8-2.10), frequency is estimated. 
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2.2.4 Least Mean Square (LMS) Algorithm applied to frequency 

Estimation 
The same signal as described in (2.1) is considered again to apply LMS for frequency 

estimation. 

)()sin()( 101 ttAty εφω ++=  

Above equation can be rewritten in discretized form as 

)( )(
1

1φ+= Twj
k

keAimagy                                                                                                 (2.16) 

If 
∧

ky  is the estimated value of voltage at the kth instant, so equation (2.16) becomes  

 )( 1−

∧∧

= kkk yWimagy                                                                                                                 (2.17) 

∧

= Tj
k

keW ω                                                                                                                           (2.18) 

where kW  denotes the weight of the voltage signal,  
∧

ω  is the estimated angular frequency. 

The error signal in this case is 
∧

−= kkk yye                                                                                                                           (2.19) 

This algorithm minimizes the square of the error recursively by altering the complex weight 

vector kW  at each sampling instant using equation (2.18) as given below 

∧
∗

− += kkkkk yeWW μ1                                                                                                               (2.20) 

where * represents the complex conjugate of a variable. The step size kμ  is varied for 

achieving faster convergence of the LMS algorithm in the presence of noise. For complex 

states, the equations are modified as  
∗

+ += kkkk RRγλμμ 1                                                                                            (2.21) 

where kR  represents the autocorrelation of ke  and  1−ke  and 
∗

kR represents the complex 

conjugate of kR . It is computed as 
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11 )1( −− −+= kkkk eeRR ρρ                                                                                                       (2.22) 

where ρ  is an exponential weighting parameter and 10 << ρ , and )10( << λλ and 0>γ  

control the convergence time. 1−nμ  is set to maxμ  or minμ   when it falls below or above the 

lower and upper boundaries respectively. These values are chosen based on signal statistics. At 

each sampling interval, the frequency is calculated from (2.18) as 

TjTeW kk
Tj

k
k

∧∧

+==
∧

ωωω sincos  

)Im(sin kk WT =
∧

ω  

[ ])Im(sin 1
kk WT −

∧

=ω  

[ ])Im(sin
2

1 1
kk W

T
f −
∧

=
π

                                                                                                         (2.23) 

where kk fπω 2=  

Fig. 2.1a shows the implementation of RLS, ELS and KF based algorithms for power system 

frequency estimation and Fig. 2.1b describes the implementation of LMS algorithm for power 

system frequency estimation. Fig. 2.1 shows the implementation procedure of the three 

estimation algorithms (RLS, ELS, and KF) for estimation of frequency of power system signal 

given by (2.1). Fig. 2.2 shows the flow chart of the LMS algorithm for convenience in 

implementation.  
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1. Initialize Amplitude, phase, frequency and unknown parameter 

matrix 

2. Generate a power system signal 

3. Estimate the discretized signal using initial value of unknown 

parameter 

4. Evaluate: Estimation error = Actual signal - Estimated signal  

5. Update gain and covariance matrix 

6. Update unknown parameter 

7. If final iteration is not reached, go to step 4 

8. Estimate Amplitude, phase and followed by frequency using (2.8), 

(2.9) and (2.10) 

 

Fig. 2.1a Description of (RLS, ELS and KF) algorithms for Frequency Estimation 

 

1. Initialize WRfA ,,,,,,,, μγρλφ  

2. Generate a power system signal 

3. Estimate the discretized signal using initial value of weight vector 

4.  Evaluate: Estimation error = Actual signal - Estimated signal  

5. Update Auto correlation matrix and step size using (2.22) and (2.21) 

6. Update the weight vector using (2.20) 

7. If final iteration is not reached, go to step 4 

8. Estimate frequency from final updated weight vector using (2.23) 

 

Fig. 2.1b Description of LMS algorithm for Frequency Estimation 
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Fig.2.1c Estimation procedure for Recursive Estimation algorithms (RLS, ELS and KF)  
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Fig.2.2 Flow chart of the Estimation Scheme of LMS algorithm 
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 2.3 Results and Discussion (Single phase distorted signal) 
A synthetic signal of 1 p.u. amplitude, 50 Hz frequency and 0.5236 p.u. phase angle 

generated using MATLAB. Then the recursive algorithms (RLS, ELS, KF and LMS) are 

implemented for estimation of power system frequency with the sampling interval of 1ms at 

different SNR of 20, 30 and 40 dB. Estimation of frequency is done after the estimation of 

amplitude and phase of the single phase signal using equations (2.8) to (2.10) 

 

2.3.1 Comparison of Estimation performances (RLS, ELS, KF and 

LMS) at different SNRs. (Single phase signal) 
Table-2.1 

Parameters used for simulation studies (RLS, ELS, KF and LMS) 
 

Algorithms δ  η  ρ  λ  γ  Initial μ  Initial W

RLS 100 0.96 - - - - - 

ELS 100 - - - - - - 

KF 100 - - - - - - 

LMS - - 0.99 0.97 0.001 0.001 0.018 
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Fig.2.3 LMS estimation performance of Frequency of single phase signal (SNR 20dB) 
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Fig.2.4 LMS estimation performance of Frequency of single phase signal (SNR 30dB) 
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Fig.2.5 LMS estimation performance of Frequency of single phase signal 
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Fig.2.6 Performance comparison of LMS for MSE in estimation of Frequency of signal 
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Fig. 2.7 SNR (dB) vs. Estimation error in frequency of single phase signal (%) 

 
Table 2.1 shows the different values of parameters of different algorithms taken during 

simulation. Figures 2.3, 2.4 and 2.5 show estimated frequency using RLS, ELS, KF and LMS 

methods at SNR of 20, 30 and 40 dB respectively. From these figures it is clear that as SNR 

value increases estimation becomes more and more accurate in all the four cases but LMS 

outperforms over other three. Figure 2.6 shows Mean Squared Error in the estimation of 

frequency of signal at SNR 40 dB. It is found from the figure that maximum MSE in case of 

ELS with noise is of the order of 1 where as for RLS, it is of the order of 0.1. In case of LMS 

algorithm, MSE converges to zero over the samples. So in this case (frequency jump) also LMS 

outperforms over other three algorithms (RLS, ELS and KF). The comparison of estimation 

error using different algorithms is more clearly shown in Fig. 2.7 using bar charts. 
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2.3.2 Estimation performance comparison during sudden frequency 
change at SNRs (20dB, 30 dB and 40 dB) (Single phase signal) 

 

Figures 2.8, 2.9 and 2.10 show the estimation of power system frequency with a jump in 

frequency of 50 to 49 Hz at 20th sample of the signal by using all the four algorithms at SNR 

of 20, 30 and 40 dB respectively. In case of estimation using RLS and ELS, there is more 

oscillation in all figures. LMS algorithm estimates frequency accurately in case of jump i.e 

sudden change in frequency of signal, but within few initial samples (having very less tracking 

time) its estimation of frequency value rises to 50 Hz. The physical idea of taking jump is the 

sudden change in frequency of signal. It is found from the above figures that as SNR value 

increases, accuracy in estimation improves (SNR refers to signal to noise ratio and for increase 

in SNR, there in a reduction in noise level).  
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Fig.2.8 LMS estimation performance during sudden frequency change of 49 Hz from 50Hz (SNR 

20dB) 
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Fig.2.9 LMS estimation performance during sudden frequency change of 49 Hz from 50Hz 

(SNR 30dB) 
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Fig.2.10 LMS estimation performance during sudden frequency change of 49 Hz from 

50Hz (SNR 40dB) 
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2.4 Recursive Estimation of Frequency based on three-phase distorted 

signal 

2.4.1 RLS approach for frequency estimation: 
From the discrete values of the three-phase voltage signal of a power system, a complex 

voltage vector is formed using the well-known βα −  transformation [1, 13]. A non-linear state 

space formulation is then obtained for this complex signal and RLS approach is used to 

compute the true state of the model. As frequency is modeled as a state, the estimation of the 

state vector yields the unknown power system frequency.  

Continuous time representation of three phase voltages of power system is  
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The discrete representation of three phase voltages of a power system can be expressed as  
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                                                                                  (2.24) 

where va, vb and vc are three phase voltage signals. Vm is the amplitude of the signal, ω is the 

angular frequency, )(),(),( kkk cba εεε  are the noise terms, T is the sampling interval, k is the 

sampling instant, φ is the phase of fundamental component. The complex form of signal derived 

from the three-phase voltages is obtained by transform as mentioned below 
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A complex voltage can be obtained from above equation (2.25) as follows 

Chapter-2 Power system Frequency Estimation Using Recursive Algorithms



 39

)(
2
3)()()(

)(

)(

kAe

eVkjvkvkv

kTj

kTj
m

εφω

φω
βα

+=

=+=

+

+

                                                                                (2.26) 

where A is the amplitude of the signal and kε  is the noise component. 

Taking the states 1x  and 2x  as 

TkjTkekx kTj ωωω sincos)(1 +==                                                                                     (2.27) 

)(
2 )( φω += kTjAekx                                                                                                                  (2.28) 

The observation signal kv can be modeled in a state space form as 
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From equation (2.19) one can obtain 

[ ]10=H                                                                                                                             (2.31) 

Then RLS algorithm is applied to the above system equations (2.4) to (2.7).After the 

convergence of state vector is attained, the frequency is calculated from equation (2.27) as 
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π

                                                                                                 (2.32) 

where fπω 2=  

∧

f  is the estimated frequency of the signal 

where Im () stands for the imaginary part of a quantity. 
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2.4.2 Extended Least Square (ELS) approach for frequency estimation: 
After study on RLS applied to frequency estimation subsequently ELS has been applied for 

frequency estimation with a view to achieve better frequency estimation and easier computation 

due to lack of calculation of gain vector. Same model as described in RLS is used for the 

estimation of frequency using ELS. Unknown parameters in this case are estimated using 

equations (2.13) and (2.14). After estimation of unknown parameter, frequency is estimated 

using equation (2.32)  

 

2.4.3 Kalman Filtering (KF) application to frequency estimation: 
Kalman Filter [13, 14, 39-42] is a stochastic state estimator for parameter estimation. The 

discretized voltage signal as described in 2.4.1 is considered. Equations (2.24) to (2.31) 

describe observation plant model. Then applying Kalman Filtering algorithm to the above 

model i.e. using equations (2.13) to (2.15), unknown parameters are estimated. From the 

unknown parameter vector, frequency has been estimated using equation (2.32)  

 

2.4.4 LMS Algorithm application to frequency estimation: 
To enhance the convergence characteristics of frequency estimation of a power system 

signal, Least Mean Square algorithm is used where the formulated structure looks very simple 

and this algorithm is found to be accurate one under various systems changing condition to 

estimate correct measure of frequency. The complex voltage signal as expressed in Section 

2.4.1 is taken. 

The voltage (2.26) can be modeled as 

kTj
kk eVV ω

1−

∧

=                                                                                                                     (2.33) 

This model is utilized in the proposed frequency estimation algorithm and the scheme that 

describes the estimation process. The error signal in this case is 
∧

−= kkk VVe                                                                                                                            (2.34) 

where kV  is the estimated value of voltage at the kth instant. So Equation (2.33) can be rewritten 
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as 

1−

∧∧

= kkk VWV                                                                                                                           (2.35) 

∧

= Tj
k

keW ω                                                                                                                               (2.36) 

where kW denotes the weight of the voltage signal,  
∧

ω  is the estimated angular frequency. Then 

kW is updated using equations (2.20) to (2.22). Frequency is estimated using (2.23).  

 

2.5 Results and Discussions (Three phase distorted signal) 
A synthetic signal of 1 p.u amplitude, 50 Hz frequency and 0.5 p.u phase angle is 

generated in MATLAB platform. Then the algorithms such as RLS, ELS, KF and LMS have 

been implemented with a sampling time of 1 ms so that sampling frequency becomes 1 kHz 

which is required for power system signal. A three-phase signal with 1p.u amplitude in each 

phase is also generated using MATLAB with SNR of 20, 30 and 40 dB respectively. From the 

complex signal a two-phase signal is generated by βα −  transformation. The initial covariance 

matrix )0(P  is taken as Iδ  where I is the identity matrix and 1>δ . The observation vector 

H is taken as [ ]10 . The frequency estimation has been accomplished using the steps illustrated 

in the RLS, ELS and KF algorithms in section 2.3(a) to 2.3(c). Similarly for LMS algorithm the 

complex signal is also generated as that of the method adopted in other three algorithms. The 

complex weight matrix is updated with the right choice of step size )18.0( =μ and initial value 

of correlation matrix )0( =R . From the complex weight matrix the estimation of frequency is 

made using equation (2.23). All other parameters used for simulation studies of single phase 

signal as in Table 2.1 are also taken here. Results of estimating frequency using four different 

algorithms, namely RLS, ELS, KF and LMS are presented in this section. 
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2.5.1 Comparison of Estimation performances (RLS, ELS, KF and 

LMS) at different SNRs. (Three phase signal) 
Frequency estimation performances of RLS, ELS, KF and LMS at different SNRs of 20 dB, 30 

dB and 40 dB have been compared in figures 2.11 to 2.13. From these figures it is clear that as 

SNR value increases more accurate estimation in all the cases is achieved know that as SNR 

value goes on increasing estimation becomes more and more accurate in all the cases but LMS 

outperforms over other three so far as estimation error in frequency is concerned. 
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Fig.2.11 LMS estimation performance of Frequency of three phase signal (SNR 20dB)  
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Fig.2.12 LMS estimation performance of Frequency of three phase signal (SNR 30dB)  
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Fig.2.13 LMS estimation performance of Frequency of   three phase signal (SNR 40dB)  
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Fig.2.14 LMS estimation performance in MSE of frequency of three phase signal  
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Fig. 2.15 SNR (dB) vs. Estimation error in frequency of three phase signal (%) 
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Figure 2.14 shows MSE in the estimation of frequency of signal at SNR 40 dB. It is found from 

the figure that maximum MSE in case of RLS, ELS and KF with noise is of the order of 10-2. 

But MSE, in case of LMS algorithm, converges to zero over the samples. Hence in this case 

also LMS outperforms over other three algorithms (RLS, ELS and KF). Fig. 2.15 gives the 

comparison of estimation errors obtained using different algorithms. 

 

2.5.2 Estimation performance comparison during sudden frequency 

change at SNRs (20dB, 30 dB and 40 dB) (Three phase signal) 
Figures 2.16, 2.17 and 2.18 show the estimation of power system frequency with a jump in 

frequency of 50 to 49 Hz at 20th sample of the signal by using all the four algorithms with SNR 

of 20, 30 and 40 dB respectively. In case of estimation using RLS, ELS and KF, there are 

oscillations. LMS algorithm estimates frequency accurately with very less estimation error 

(0.02%) in case of jump, but within few initial samples (having very less tracking time) its 

estimation of frequency value rises to 50 Hz. It is found from the figures that as SNR value 

increases, accuracy in estimation improves. 
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Fig.2.16 LMS estimation performance during sudden frequency change of 49 Hz from 50Hz of 

three phase signal (SNR 20dB) 
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Fig.2.17 LMS estimation performance during sudden frequency change of 49 Hz from 50Hz of 

three phase signal (SNR 30dB) 
 

0 20 40 60 80 100

48.8

49

49.2

49.4

49.6

49.8

50

Sample No.

Fr
eq

ue
nc

y 
[H

z]

 

 
RLS
ELS
KF
LMS

 
Fig.2.18 LMS estimation performance during sudden frequency change of 49 Hz from 50Hz of 

three phase signal (SNR 40dB) 
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2.6 Proposed VLLMS Algorithm 
Least Mean Square algorithm [1], which is discussed in previous section of chapter 2, is 

adopted where the formulated structure looks very simple and this algorithm is found accurate 

under various systems changing condition to estimate correct measure of frequency. The LMS 

technique as cited possesses the advantages of simplicity in its underlying structure, 

computational efficiency, and robustness. However, such an algorithm suffers the problem of 

poor convergence rate as the adaptation step-size is fixed [1]. In case of LMS algorithm, since 

step size depends inversely on input power, when step size is small, it takes more time to learn 

about it’s input with minimum mean square error and vice versa. So it suffers the problem of 

poor convergence rate as the adaptation step-size is fixed and estimation error is more. To 

overcome this, time varying step-size is usually employed in the standard LMS algorithm [4]. 

In the proposed method both leakage factor and step size are updated for more accuracy and 

less computational burden in the estimation. A Variable Leaky LMS algorithm [7] has faster 

convergence and less computational burden.  It can be seen that the algorithm converges much 

slower along the worst-case eigen direction (the direction of the eigenvector corresponding to 

the smallest eigen value of auto correlation matrix) as opposed to the best-case eigen direction 

(the direction of the eigenvector corresponding to the largest eigen value). This disparity 

increases as the eigen value spread λmax/λmin increases. Thus, the key step in improving the 

transient performance of LMS lies in decreasing the input eigen value spread.  

 

In this chapter, a Variable Leaky LMS (VLLMS) [7], [9], [11] based frequency estimation 

technique is proposed which uses three-phase voltages. A complex signal is derived from the 

three-phase voltages using βα −  transformation [1]. As the signal in the model is complex, the 

Variable Leaky LMS algorithm applied is in complex form. Then proposed algorithm is 

implemented to find out the frequency of that signal. At different SNR, frequency of signal is 

estimated using the proposed algorithm. The proposed algorithm is implemented to estimate the 

frequency during sudden change in frequency of signal, in case of the presence of harmonics, 

sub and inter-harmonics in the signal. Frequency estimation of real data generated from the 

laboratory experiment is carried out. Finally, frequency estimation of the industrial data 

collected from generator terminals of an Aluminium industry is also implemented. In all cases 
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of estimation, the performance of the proposed algorithm is compared with that of LMS and 

VSS-LMS algorithms. Apart from the contributions of the chapter as cited above, one vital 

contribution of the chapter is the parameter drifting that does not allow the estimated values 

beyond limit gives advantage in implementing other correcting circuitry based on the estimator.  

 

2.6.1 Description on VLLMS algorithm 
 The basic block-diagram representation of an adaptive linear filtering scheme is shown in 

Fig. 2.19. The linear filter is given by 
T

n n ny w x= ,                                                                                                                    (2.37) 

where the subscript n  represents the discrete time-instant, m
nx ∈ℜ  is the input to the filter and  

m
nw ∈ℜ  is the filter gain that maps the input to the output ny ∈ℜ, which is required to be 

matched with a desired value nd . The objective is to tune nw  in such a way that the error  

n n ne d y= − ,                                                                                                                 (2.38) 
or a suitable function of it converges to certain optimal value. 

Several adaptive algorithms are available in literature for tuning nw . A conventional one is the 

LMS one in which the updatation is executed such that an instantaneous cost function defined 

as  
2

n nJ e=                                                                                                                             (2.39) 

converges to zero. However, use of such a cost function does not take care of the drifting of nw  

in presence of external disturbances resulting in high filter gains. This problem can be 

overcome by considering the Leaky LMS algorithm in which the cost function (2.39) is 

modified as 
2 T

n n n nJ e w wγ= + ,                                                                                                       (2.40) 

where 0 1γ≤ <  is to be chosen so as to avoid the parameter drifting. The additional term in 

(2.40),
T
n nw w , is known as the regularization component of it. Note that, selecting a constant γ  

may lead to over/under-parameterization of this regularization component. One way to avoid 

this is by using a variable γ , updatation of which may be governed by a suitable cost function. 
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Fig. 2.19 The Adaptive Linear Estimation Scheme 
 

This way, the cost function may further be modified from (2.40) as 
2 T

n n n n nJ e w wγ= + .                                                                                                         (2.41) 

The above cost function is used for updating nw   in the VLLMS algorithm.  

Now, one may try to define the adaptive laws for updating nw  and nγ .  First, for updating nw , 
following the classical steepest descent rule, one may write 

1
n

n n
n

J
w w

w
μ+

∂
= −

∂ ,                                                                                                         (2.42) 

where 0μ >  is a step-size parameter to be chosen by the designer. Obviously, choosing a 

constant μ  puts same weight on the correction term throughout the estimation process that 

may endure the convergence of the algorithm. Alternatively, for achieving faster convergence, 

one may use larger μ  initially when the error is large and smaller one when the estimator has 

converged around its optimal values. This feature may be incorporated using a variable step-
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size updatation scheme for μ  that yields a faster convergence [4]. Incorporating this, (2.42) 

may be modified as: 

1
n

n n n
n

J
w w

w
μ+

∂
= −

∂ ,                                                                                                         (2.43) 

where nμ  is a variable step-size parameter and may be updated following [4] as: 

2
1n n n neμ λμ γ+ = +                                                                                                            (2.44) 

Further, since we will be using this estimator for power system frequency estimation and it is 

well known that the desired signal nd  in our problem formulation (described in next section) 

may contain noises arising out from measurement or process disturbances, it will be better to 

incorporate a robust variable step-size algorithm of [5] rather than (2.44) that takes care of the 

effect of the external disturbances in the step-size update. To have such a facility, updatation of 

nμ  is required to utilize the autocorrelation of the error rather than the exact square of error 

value. Then (2.44) may be modified as:  
2

1n n n npμ λμ γ+ = + ,                                                                                                          (2.45) 
where np represents autocorrelation of ne and that can be computed for an ergodic process by 

using a time average of it that can be computed following [1] as:  

11 )1( −− −+= nnnn eepp ββ                                                                                           (2.46) 
Now, we are ready to obtain the final updatation equations for nw  and nγ . For this, in view of 

(2.38), one may write 

( )22 2 2T T
n n n n n n ne d w x d w x= + − .                                                                         (2.47) 

From the above, one obtains 

( )
2

2 2Tn
n n n n n n

n

e
w x d x e x

w
∂

= − = −
∂ .                                                                            (2.48) 

Using (2.41) in (2.43) and then using (2.48) in that, one obtains the corresponding update law as 

nnnnnnn xeww μγμ 2)21(1 +−=+                                                                                (2.49) 
Next, to update nγ , one may use the same steepest descent rule but with the cost function (2.39) 

since the parameter drift of nw  is no more required to be controlled. Hence, one may use the 

update law as 
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2

1
12

n
n n

n

eργ γ
γ+

−

∂
= −

∂ ,                                                                                                       (2.50) 

where 0ρ >  is also to be chosen by the designer. The derivative term in (2.50) may further be 

rewritten as  

2 2

1 1

T

n n n

n n n

e e w
wγ γ− −

⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

.                                                                                                     (2.51) 

Using (2.49), one may write 

1
1

2 −
−

−=
∂
∂

nn
n

n ww μ
γ

.                                                                                             (2.52) 

 
Substituting (2.48) and (2.52) into (2.51), and that in (2.50), one finally obtains 
 

11 2 −+ −= n
T
nnnnn wxeρμγγ .                                                                                       (2.53) 

 
This completes the VLLMS algorithm. The next section presents a formulation of the frequency 

estimation problem in the above framework. 

 

2.6.2 VLLMS based Frequency Estimation 
The discretized voltage signal described in previous chapter can be represented as  

)()
3
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2cos()(

)()cos()(
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knTVkV

knTVkV

cnmncn

bnmbn

anman

επφω

επφω

εφω

+++=

+−+=

++=

                                                                          (2.54) 

where , ,an bn cnV V V  are the voltages of the three phases at the thn instant, Vm is the maximum 

amplitude of the signal, ω is the angular frequency, T is the sampling interval, φ is the phase of 

fundamental component and , ,an bn cnε ε ε  are uncorrelated noises in the respective phases. 

The three-phase voltage (2.54) may be transformed to a complex quantity as 
n n nV V jVα β= + ,                                                                                                            (2.55) 

by using the well-known α-β  transformation [1], where 
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Replacing nominal voltages from (2.54) into (2.56), one obtains 
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Therefore, following (2.55), nV  may alternatively be represented using the Euler’s formula as 

)(

2
3 φω += nTj

mn eVV .                                                                                                          (2.58) 

Using a cumulative noise term nε , a discretized model of (2.58) may easily be written as 

nn
Tj

n VeV εω += −1 .                                                                                                              (2.59) 
Now, let n̂V  be the estimate of nV . Then, following (2.59) and considering ˆnω  be the estimate of 

ω at the thn instant one may write a linear filter corresponding to (2.37) as: 

1
ˆ ˆ
n n nV W V −= ,                                                                                                                     (2.60) 

where 
∧

= Tj
n

neW ω . The error signal corresponding to (2.38) may then be defined as 

n n ne V V
∧

= −                                                                                                                        (2.61) 
In the above model, the input of the filter, i.e. 1n̂V −  and the weight vector nW  both are complex. 

The VLLMS algorithm presented in Section 3.2 may now be applied in complex form to 

estimate the frequency.  

The algorithm minimizes the squared of the error by recursively altering the complex weight 

vector nW  at each sampling instant. In (3.13) section 2.3 replacing w  by W  and nx by *
nV , 

nW can be updated as 

∗
+ +−= nnnnnnn VeWW μγμ 2)21(1                                                                                        (2.62) 

where μ  is constant step size , nμ  is variable step size and  *  represents the complex 

conjugate of that value and the variable step size nμ  is varied [4] for better convergence of the 

VL-LMS algorithm in the presence of noise. For complex states, the equation (2.45) becomes  
∗

+ += nnnnn PPγλμμ 1                                                                                                   (2.63) 
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where nP represents the autocorrelation of ne and 1−ne , where ne and 1−ne  are the errors at n th 

and )1( −n th  instant and nP is computed as [1] 

11 )1( −− −+= nnnn eePP ββ                                                                                               (2.64) 
β : exponential weighting parameter(  10 << β )     

λ : constant )10( << λ   

:γ  control the convergence time )0( >γ  

In (2.53) section 2.3, replacing T
nx by nV

∧

 and 1−nw  by 1−nW . The variable leakage factor nγ  
can be adjusted as 

11 2 −

∧

+ −= nnnnnn WVeρμγγ                                                                                                (2.65) 

1+nμ  is set to maxμ  or minμ  when it falls below or above the lower and upper boundaries, 

respectively. These values are chosen based on signal statistics. At each sampling interval, we 

can estimate the frequency from the updated value of nW  i.e 
∧

= Tj
n

neW ω as 

)Im()sin( nn WT =
∧

ω  

[ ])Im(sin
2

1 1
nn W

T
f −=

π
                                                                                                      (2.66) 

A flow chart of the above algorithm is presented in Fig. 2.20 for convenience in 
implementation. 
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Fig. 2.20 Flow chart of the Estimation Scheme of VLLMS algorithm 
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2.7 Simulation Results (Frequency Estimation using VLLMS 

Algorithm) 

2.7.1 Sinusoidal Signal in presence of noise 
To have a simulation, note that, one first requires setting values of the parameters βλ,  and, and 

the initial values of γ,0P and W for running the algorithm. Table 2.2 shows the values of 

parameters taken during simulation. In fact maxμ is usually used to ensure that the mean square 

error (MSE) of the algorithm remains bounded and minμ is used to provide a minimum level of 

tracking ability [4]. Next, we present the performance of the algorithm in estimating frequency 

in different simulated cases along with the results obtained using LMS [1] and VSSLMS [4] 

algorithms. MATLAB-SIMULINK is used for this purpose. For simulation studies we consider 

different cases of simulated signal that may represent several well-known properties of real-

time power system voltage signal. First we start a sinusoidal signal with random noises that 

may arise due to measurement errors or external disturbances in the system. 

Table 2.2 
Parameters used for simulation studies (VLLMS) 

 

Parameters λ  β  ρ  
Initial 
γ  

Initial 

0P  
Initial 

W  
maxμ  minμ  

Values 0.97 0.99 1.1 0.01 0 0.018 0.008 0.0001 
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Fig.2.21 VLLMS estimation performance of frequency with noise (SNR 10dB) 
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Fig.2.22 VLLMS estimation performance of frequency with noise (SNR 20 dB) 
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Fig.2.23 VLLMS estimation performance of frequency with noise (SNR 30dB) 
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Fig.2.24 VLLMS estimation performance of frequency with noise (SNR 40dB) 
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Fig.2.25 Estimation error in Frequency (LMS, VSSLMS and VLLMS) 
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Fig.2.26 Mean Squared Error in estimation of Frequency (LMS, VSSLMS and VLLMS) 
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Fig. 2.27 SNR (dB) vs. Estimation error in frequency (%) (LMS, VSSLMS and VLLMS) 
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Fig.2.28 Variation of Leakage Factor of VLLMS algorithm 
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A 50 Hz signal with constant frequency but with random noises is generated with a 1-

millisecond sampling interval. The performances of different algorithms for SNRs of 10 dB, 20 

dB and 40 dB are shown respectively in Figs. 2.21, 2.22 and 2.23. It is clear that with the 

increase in signal to noise ratio, there is expectedly more accuracy in the estimation irrespective 

of the algorithm used. For further analysis, we consider only the 40 dB SNR case since in the 

other cases the errors using the existing algorithms are quite large. Fig. 2.24 and 2.25 show 

respectively the error in frequency estimation and its MSE values using different methods. 

These figures show that the error is minimized in case of the present VLLMS algorithm. Also, 

we present the estimated voltage signal using different methods, an MSE of which is shown in 

Fig.2.26. The comparison of estimation error using different algorithms is more clearly shown 

in Fig. 2.27 using bar charts. It is noted that in case of present algorithm, the estimation 

accuracy is more as compared to LMS and VSSLMS algorithms. An interesting reader may see 

the variation of the Leakage factor in Fig. 2.28. 

 
Table 2.3 

Comparative Assessment of LMS, VSSLMS and VLLMS Methods 
 

Parameter LMS 
VSSL

MS 
VLLMS 

Frequency 49.7473 49.7682 49.7767 

Deviation (%) 1.0044 0.9628 0.9458 

Computational 

time (seconds) 
0.3120 0.2970 0.2500 

 
A comparative assessment among these four methods taking into account a 50 Hz signal at 

SNR of 40 dB is presented in Table-2.3. From this table we conclude that deviation (%) in 

frequency and computational time are minimum in case of VL-LMS Algorithm also the 

accuracy in estimation of frequency (49.7767Hz) is more as compared to other three 

algorithms. The computation time is also less in the VLLMS algorithm compared to others that 

favor the feasibility of its real time implementation. 
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2.7.2 Jump in frequency in the signal 
The next case is considered to be the performance of the algorithm in presence of jump in 

frequency (sudden change in frequency of signal). For this, we consider that the frequency 

changes from 50 Hz to 49 Hz. Two sub cases, one as it changes after the convergence of the 

algorithm and the other as the change occurs within one cycle. The corresponding results are 

shown in Figs. 2.29 and 2.30. Note that, in these cases also, the present algorithm outperforms 

the existing ones. 
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Fig. 2.29 VLLMS estimation performance during sudden frequency change of 49 Hz from 50 

Hz (SNR 40 dB) 
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Fig. 2.30 VLLMS estimation performance during sudden frequency change of 49 Hz from 50 
Hz within one cycle (SNR 40 dB) 

 

2.7.3 In the presence of Harmonics 
Next, we consider the problem of estimating fundamental frequency from signals having 

harmonics content in them. The common case of 3rd harmonic is considered. Fig. 2.31 shows 

the three-phase voltage signal containing this harmonic. Fig. 2.32 shows the estimation of 

frequency using different algorithms from the signal with harmonics. It can easily be concluded 

that a comparatively better performance is obtained in case of VLLMS algorithm 
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Fig. 2.31 Three phase signal-containing harmonics 
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Fig. 2.32 VLLMS estimation performance of frequency in presence of harmonics 
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2.7.4 In the presence of Sub harmonics and Inter Harmonics 
To evaluate the performance of the proposed algorithm in the estimation of a signal in the 

presence of Sub-harmonics and inter-harmonics, these components are added into the original 

signal. The frequency of sub-harmonic is 20 Hz, the amplitude is set as 0.5 p.u. and the phase is 

equal to 75 degrees. The frequency, amplitude and phase of the inter-harmonics is 140 Hz, 0.25 

p.u. and 65 degrees respectively. Fig. 2.33 shows the three-phase signal containing sub and 

inter-harmonics. 
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Fig. 2.33 Three-phase signal containing sub and inter harmonics 
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Fig. 2.34 VLLMS estimation performance of frequency in presence of sub and inter harmonics 

 

Fig. 2.34 shows the estimation of fundamental frequency in presence of sub and inter-

harmonics and is found that estimation is very much accurate in case of VSS-LMS and VL-

LMS algorithm but there is small error in case of LMS algorithm.  

 

2.8 Experimental Studies 
So far performances of different algorithms have been studied on simulated signals. It would 

be interesting to have the same on some experimental data that captures many more features 

arises due to measurement and instrumentation for obtaining these. This section presents such 

studies. 

2.8.1 Validation on real-time ( Laboratory Setup) data 
First we consider data collected from a laboratory setup. The data is obtained in laboratory 

from the supply on normal working day as per the experimental setup shown in Fig. 2.35 and 

laboratory prototype in Fig. 2.36. 
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Specifications of the Instruments used are: 

1. Rheostats: 100Ω , 5 A (3 in no.)  

2. Non-linear load: 3 Phase diode bridge rectifier with a 5 Ω  resistor in series with a 100 mH 

inductor at the d.c side. 

 3. Digital Storage Oscilloscope (Make-Falcon): Band Width-25 MHz, Sample rate-100 MS/s, 

Channels-2, Record length-5000 data points, PC Connectivity- USB Port and PC 

Communication software. 

4. PC: 1.46 GHz CPU and 1GB RAM, Notebook PC  

. The voltage waveform is stored in a Digital Storage Oscilloscope and then through PC 

Communication software, data is acquired to the personal computer. The used PC had a 1.46 

GHz CPU and 1GB RAM. The sampling time in this case is fixed at 0.04ms. Comparison of 

estimated frequency with respect to a 50 Hz constant frequency is shown in Figs. 2.37 and is 

found that LMS is better compared to the others. 

Fig.2.35Experimental setup for online data generation 
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Fig. 2.36 Photograph of laboratory setup for online data generation 
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Fig.2.37 Estimation of frequency of real data using recursive methods 
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Fig. 2.38 VLLMS estimation performance of frequency of real data 

 

Comparison of estimated frequency using LMS and its modified algorithms w.r.t. a 50 Hz 

constant frequency is shown in Fig. 2.38. Clearly it continues showing that VLLMS is better 

compared to the others. 

 
2.8.2 Validation on real-time ( Industrial Setup) data 

Three phase voltage signals, generated at the terminals of the generators installed at the 

Captive Power Plant, National Aluminium Company (NALCO), India are collected at a 

sampling rate of 1 KHz. Figure 2.39 shows the schematic for the data collection set up that 

involves Voltage Transformers (VT) to facilitate the measurement. Voltage of 10.5 KV is 

generated at the terminals of the generator. The generated voltage is fed to 10.5KV/220KV 

Generator Transformer (GT). The output of GT is fed to bus bar. For acquiring digital voltage 

data, the generator is connected to 10.5KV/110KV VT. The output of VT is fed to Automatic 

Voltage Transducer (AVT) of input range is 0-15 KV and output range 4-20 mA. Current signal 

of mA range is fed to DDCMIS (Digital Distributed Control Monitory Information System). 
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DDCMIS provides digital data of Generator MW, MVA, pf, voltage and current. For our work, 

we obtained 3 phase digital voltage data from the output of DDCMIS. Fig. 2.40 shows the 

performance of the algorithms and is seen that proposed algorithm has superior performance in 

the estimation of frequency from the industrial data. 

 

 
 

Fig. 2.39 Schematic diagram of collecting industrial data 
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Fig.2.40 Estimation of frequency of industrial data using recursive methods  
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Fig.2.41 VLLMS estimation performance of frequency of industrial data 
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Fig. 2.41 shows the performance of using LMS and its modified algorithms and is seen 

that proposed algorithm i.e VLLMS has superior performance in the estimation of frequency 

from the industrial data. 

2.9 Chapter Summary 

This chapter mainly consists of two aspects. First section of this chapter presents the 

estimation of frequency of a power system signal by various recursive estimation techniques 

such as RLS, ELS, KF and LMS. However, initialization of covariance matrix is very important 

for RLS, ELS and KF algorithms because improper choice may lead to more computational 

time and more estimation error. LMS algorithm seems to be very complex due to the 

implementation of correlation matrix and proper choice of step size. From each case of 

simulation and experimental results both for single phase and three phase cases, it is concluded 

that LMS outperforms over other three algorithms. Second aspect of this chapter is proposition 

of an LMS based algorithm with variable leakage called VLLMS algorithm to estimate the 

frequency of power system. It has been shown that this algorithm is superior than other existing 

algorithms applied to the frequency estimation problem. Both simulation and experimental 

studies have been performed to study the efficacy of the proposed algorithm. Moreover, it has 

been observed that the proposed algorithm not only superior in minimizing the error but also 

superior in terms of convergence rate and computational aspect. Also, the variation of 

estimation error is minimum with respect to the SNR variations as compared to other existing 

algorithms. 

 
 
 
 
 
 
 

Chapter-2 Power system Frequency Estimation Using Recursive Algorithms



 72

Chapter -3 
 

Development of Hybrid Algorithms for 
Power System Frequency Estimation  

 
 
3.1 Introduction 

Chapter 2 discusses frequency estimation of power system signals by using different 

signal processing techniques such as RLS, ELS, KF and LMS. In case of RLS, ELS and 

KF, initial choice of Co-Variance matrix and gain is difficult. LMS suffers from the 

problem of poor convergence rate as the adaptation step-size is fixed and estimation error is 

more. In order to obtain more accurate estimation, hybrid estimation algorithms by both 

signal processing and soft computing techniques are proposed in this chapter. The proposed 

hybrid estimation algorithms include RLS-Adaline (Recursive Least Square and Adaptive 

Linear Neural Network) and KF-Adaline (Kalman Filter Adaline) approaches to estimation 

of frequency of a power system. The inspiration of developing hybrid estimation algorithm 

evolved from good features of both Adaline and Recursive estimates. Previously, neural 

estimator was found to be an effective estimator [26, 75-76]. It consisted of an adaptive 

perceptron of neuron called Adaline. Since KF and RLS both are recursive in nature, online 

estimation is possible and KF can be used for both filtering and estimation, KF and RLS 

algorithms have been employed in the proposed hybrid algorithm for updating the weight in 

Adaline. Both RLS-Adaline and KF-Adaline estimators’ track the power system signal in 

different cases such as signal corrupted with noise, in presence of harmonics and in 

presence of sub harmonics and inter harmonics.  

Evolutionary Computation technique [65-66, 77-82] is a population based search 

algorithm; it works with a population of strings that represent different potential solutions. 

It enhances its search capability and the optima can be located more quickly when applied 

to complex optimization problems. An evolutionary computation technique called Bacterial 

Foraging Optimization (BFO) has been also exploited in this chapter for the development of 
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RLS-BFO and Adaline-BFO to power system frequency estimation. BFO is one of the 

recent bio-inspired computing used by many researchers in different areas of optimization. 

Mishra [69] applied BFO to estimate the harmonic components present in power system 

voltage/current waveforms. BFO rests on a simple principle of the foraging (food 

searching) behavior of E.Coli bacteria in human intestine. There are mainly four stages 

such as chemotaxis, swarming, reproduction and elimination and dispersal. In chemotactic 

stage, bacteria can move in a predefined direction or changes its direction of motion. In 

swarming, each bacterium provides signal to other bacterium to move together. In 

reproduction, healthiest bacteria split into two and less healthy bacteria die.  In elimination 

and dispersal phase, a sudden unforeseen event occurs, which may drastically alter the 

smooth process of evolution and cause the elimination of the set of bacteria and/or disperse 

them to a new environment. Most ironically, instead of disturbing the usual chemo tactic 

growth of the set of bacteria, this unknown event may place a newer set of bacteria nearer 

to the food location.  

Two combined approaches namely RLS-BFO and Adaline-BFO have been 

considered for the improvement in % age error of estimation, processing time of 

computation and estimation performance in different situations such as presence of 

harmonics, sub harmonics and inter harmonics in the signal as compared to BFO algorithm. 

The performances of frequency tracking of the proposed approaches are validated taking 

the data generated from laboratory setup as well as data collected from industry.  

 
3.2 Hybrid Adaline Methods for Frequency estimation: 

Fig. 3.1 shows the structure of hybrid Adaline estimation scheme. Firstly input 

(system structure matrix) is applied to Adaline structure. Output of Adaline (estimated 

signal) is then compared with the actual signal  and the error so obtained is minimized by 

updating the weights of the Adaline using RLS/KF algorithm. In this section, frequency 

estimation using two new hybrid algorithms i.e RLS-Adaline and KF-Adaline methods are 

presented. 
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Fig. 3.1 Schematic of hybrid Adaline structure 

 
3.2.1 Recursive Least Square-Adaptive Linear Neural Network 

(RLS-Adaline) approach: 
From the discrete values of the three-phase voltage signal of a power system, a complex 

voltage vector is formed using the well-known βα −  transformation [1, 13]. A non-linear 

state space formulation is then obtained for this complex signal and Recursive Least Square 

(RLS) approach is used to compute the true state of the model. As frequency is modeled as 

a state, the estimation of the state vector yields the unknown power system frequency. The 

discrete representation of three phase voltages of a power system may be expressed as 

follows  

)()
3

2cos()(

)()
3

2cos()(

)()cos()(

kkTVkv

kkTVkv

kkTVkv

cmc

bmb

ama

επφω

επφω

εφω

+++=

+−+=

++=

                                                                              (3.1) 

where va, vb and vc are three phase voltage signals. Vm is the amplitude of the signal, ω is the 
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the sampling instant, φ is the phase of fundamental component. The complex form of signal 

derived from the three-phase voltages is obtained by βα −  transform as mentioned below 

))(866.0)(866.0(
3
2)(

))(5.0)(5.0)((
3
2)(

kvkvkv

kvkvkvkv

cb

cba

−=

−−=

β

α

                                                                          (3.2) 

A complex voltage can be obtained from above equation as follows 

)(

)()()(
)( kAe

kjvkvkv
Tkj εφω
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+=
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+Δ

                                                                                                   (3.3) 
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                                                                             (3.4) 

where A is the amplitude of the signal and kε  is the noise component. 

Taking 1w  and 2w  as the state variables one can write 

TkjTkekw kTj ωωω sincos)(1 +==                                                                                  (3.5) 

)(
2 )( φω += kTjAekw                                                                                                              (3.6) 

[ ]TkwkwkW )()()( 21=                                                                                                       

The observation signal vk can be modeled in a state space form as 
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                                        Fig.3.2 Block diagram of Hybrid-Adaline for frequency estimation 

 

Fig.2 shows the block diagram of Adaline containing states, actual and estimated signal. 

From equation (3.8)  

[ ] [ ]1021 == xxX                                                                                                         (3.9) 

Using equations (3.5) and (3.6) to (3.9), one gets 

)()( kXWky =                                                                                                                  (3.10) 

RLS estimation technique can be applied to the power system estimation problem for which 

equation (3.8) is the appropriate representation (Regressor form). 

)()()1()( kkKkWkW ε+−=
∧∧

                                                                                           (3.11) 

where =
∧

)(kW current value of estimate 

=−
∧

)1(kW  Past value of estimate 

=)(kK Gain 

 The error in the measurement is given by 

)1()()( −−=
∧

kWXkyk Tε                                                                                          (3.12)  
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The gain K is updated using the following expression 

 
1])1([)1()( −−+−= XkPXIXkPkK Tλ                                                                                 (3.13)  

 
where =)(kP Error Covariance matrix 

)10( << λλ = Forgetting factor 

The covariance matrix updatation is as follows  

λ/)1(])([)( −−= kPXkKIkP T                                                                                    (3.14) 
Equations (3.9) to (3.12) are initialized at 0=k . The choice of initial covariance matrix 

)0(P  is large. Usually a value i.e IP α= , where α is a large number and I is a square 

identity matrix is chosen. After the convergence of state vector is attained, the frequency is 

calculated from equation (3.5) as 

kTjekwkW ω==
∧

)()( 111  

∧

= ))(Im()sin( 11 kWkTω  

)))((Im(sin
2

1
11

1
∧

−
∧

= kW
T

f k π
                                                                                        (3.15) 

∧

f  is the estimated frequency of the signal 

 

3.2.2 Kalman Filter-Adaptive Linear Neural Network (KF-

Adaline) approach for frequency estimation: 
The discretized voltage signal as described in 3.1(a) is considered. The equations (3.1) to 

(3.10) are taken into account.  

Using the Kalman Filtering estimation technique to (3.10), the parameters are estimated 

using the formula given by  

1))1/(()1/()( −
∧∧

+−−= QXkkPXXkkPkK TT                                                             (3.16) 

where K  is the Kalman gain, X  is the observation vector, P  is the covariance matrix, 

Q is the noise covariance of the signal. 

The covariance matrix is related with Kalman gain with the following equation. 
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)1/()()1/()/( −−−=
∧∧∧

kkPXkKkkPkkP                                                                     (3.17) 

The updated estimated state is related with previous state with the following equation. 

))1/()()(()1/()/( −−+−=
∧∧∧

kkWXkykKkkWkkW                                                    (3.18) 

After the final updatation of the state vector, the frequency is calculated from equation 

(3.15). 

 
3.3 Results and Discussions (Frequency Estimation using RLS-

Adaline and KF-Adaline) 

3.3.1 Sinusoidal Signal in presence of noise 
A 50 Hz signal of 1 p.u. amplitude and 0.5 p.u. phase angle with random noises is 

generated with a 1ms sampling interval. Table 3.1 shows the different values of 

parameters taken for two algorithms during both simulation and experimentation work. 

Table-3.1 
                               Parameters used in Algorithms  (RLS-Adaline and KF-Adaline) 

 δ  η  0α  β  λ  

RLS-Adaline 100 0.96 0.01 100 0.01 

KF-Adaline 100 - 0.01 100 0.01 

 

The performances of RLS-Adaline and KF-Adaline algorithms for SNRs of 20 dB, 

30 dB and 40 dB are shown respectively in Figs. 3.3, 3.4 and 3.5. From these Figs., it is 

clear that with the increase in signal to noise ratio, there is expectedly more accuracy in 

the estimation. Further analysis is made considering the 40 dB SNR case as in the other 

cases; the errors using the existing algorithms are quite large. Fig. 3.6 shows MSE values 

using different methods. These figures show that the error is less (5.47×10 -5) in case of 

KF-Adaline algorithm.  
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Fig.3.3 KF-Adaline estimation performance of frequency (SNR 20 dB) 
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Fig.3.4 KF-Adaline estimation performance of frequency (SNR 30 dB) 
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Fig.3.5 KF-Adaline estimation performance of frequency (SNR 40 dB) 
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Fig. 3.6 MSE in the estimation of Frequency (RLS-Adaline and KF-Adaline) 
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3.3.2 Jump in frequency in the signal 
The next case is considered to be the performance of the algorithm in presence of jump 

in frequency. For this, we consider that the frequency changes from 50 Hz to 49 Hz. Fig. 

3.7, 3.8 and 3.9 show the estimation of frequency during sudden change in frequency at 

SNR of 20, 30 and 40 dB respectively. Both the algorithms (i.e RLS-Adaline and KF-

Adaline) estimate frequency accurately but performance of KF-Adaline is little better 

(providing less estimation error i.e 0.113) than RLS-Adaline. 
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Fig. 3.7 KF-Adaline estimation performance of frequency during frequency jump (SNR 20 dB) 
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Fig. 3.8 KF-Adaline estimation performance of frequency during frequency jump (SNR 30 dB) 
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Fig. 3.9 KF-Adaline estimation performance of frequency during frequency jump (SNR 40 dB) 
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3.3.3 In the presence of Harmonics 
Next we consider the problem of estimating fundamental frequency from signals having 

harmonics content in them. The common case of 3rd harmonic is considered. Fig. 3.10 

shows the estimation of frequency using different algorithms from the signal with 

harmonics. It is verified from the above Fig. that a comparatively better performance (less 

estimation error i.e 0.1503) is obtained in case of KF-Adaline algorithm. 
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Fig. 3.10 KF-Adaline estimation performance of Frequency in presence of harmonics 

 

3.3.4 In the presence of Sub Harmonics and Inter Harmonics 
To evaluate the performance of the proposed algorithms (RLS-Adaline and KF-

Adaline) in the estimation of frequency of signal in the presence of sub-harmonics and 

inter-harmonics, these sub and inter harmonics components are added into the original 

signal as given in equation (3.1). The frequency of sub-harmonic is 20 Hz, the amplitude 

is set as 0.5 p.u. and the phase is equal to 75 degrees. The frequency, amplitude and phase 

of the inter-harmonic is 140 Hz, 0.25 p.u. and 65 degrees respectively. Fig. 3.11 shows the 
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estimation of fundamental frequency in presence of sub-harmonics and inter-harmonics 

and is found that estimation is more accurate (less estimation error i.e. 0.163) in case of 

KF-Adaline algorithm than the RLS-Adaline. 
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Fig. 3.11 KF-Adaline estimation performance of Frequency in presence of sub-harmonics 
and inter harmonics 

 
3.4 Experimental Results 

3.4.1 Validation on real-time ( Laboratory Setup) data 
To decide real-time application of the proposed RLS-Adaline and KF-Adaline algorithms 

applied for frequency estimation, datasets were obtained from the experiment conducted 

in the laboratory (Fig. 2.35 section 2.8.1). Fig. 3.12 shows the estimation of frequency of 

signal using both the algorithms from the real data obtained from the experiment. From 

this Fig. 3.12, it is found that the performance in estimation using KF-Adaline is better 

(less estimation error i.e. 0.1632) as compared to RLS-Adaline. 

 

Chapter-3 Developement of Hybrid Algorithms for Power System Frequency Estimation



 85

3.4.2 Validation on real-time (Industrial Setup) data 
Apart from simulation and laboratory data, the efficacies of the proposed algorithm RLS-

Adaline and KF-Adaline have been applied to data collected from an aluminium industry. 

The considered industrial setup is described in Fig. 2.39 (section 2.8.2). The estimated 

frequency of industrial data is shown in Fig. 3.13 and it is observed from the figure that 

the estimation using KF-Adaline is better  (less estimation error i.e 0.1863) as compared to 

RLS-Adaline. 
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Fig. 3.12 KF-Adaline estimation performance of Frequency of real data 
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Fig. 3.13 KF-Adaline estimation performance of Frequency of industrial data 

 

3.5 Hybrid BFO Methods for Frequency estimation 

 
 

Fig. 3.14 Schematic of the estimation problem 
 

Fig. 3.14 shows the structure of the estimation problem. First input signal is fed to 

BFO algorithm and unknown parameter vectors such as [ ]TkwkwkW )()()( 21=  are 
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optimized using this algorithm. Then optimized output of BFO algorithm is taken as the 

initial value of weight of Adaline/ RLS algorithm. Output of Adaline/RLS (Estimated signal) 

is compared with the actual signal and the error obtained, is minimized by updating the 

weight of the Adaline/RLS. From the final updated weight of the Adaline/RLS, frequency of 

signal is estimated using (3.15). 

 

3.5.1 Proposed RLS-BFO Combined Approach to Frequency 
Estimation 

Same signal as described by (3.1) is considered. The steps from (3.1) to (3.10) are 

followed. Then parametric form of the signal such as )()( kXWky =  is taken. Where X is 

given by (3.9) and W is given by (3.8). The unknown parameter is optimized using BFO 

algorithm. The optimized output of BFO algorithm is taken as the initial values of unknown 

parameter )(W  for estimation using RLS. The vector of unknown parameter can be updated 

using (3.11)-(3.14). After updating of unknown parameter vector, frequency of signal is 

estimated using (3.15) 

 

Table: 3.2 Parameters of BFO 

 
Name of  

parameters 

Sample 

No. 

No. of 

parameters 

to be 

optimized 

Swimming  

length 

No. of  

Chemotactic  

iterations 

No. of 

reproduction 

steps 

Max. no. of 

elimination 

dispersal 

events. 

Probability  

of  elimination   

and dispersal 

cell-to-cell attractant  

repellant effect 

Symbol S  p  
sN  cN  reN  edN  edP  

repellantrepellant

attractattract

h
d

ω
ω
,

,,
 

 

 

 The proposed RLS-BFO algorithm is discussed below  

1.Initialization of BFO Parameters 

2. Elimination-dispersal loop: 1+= ll  

3. Reproduction loop: 1+= mm   

4. Chemo taxis loop: 1+= nn  
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a) For Si ....2,1=  Compute 2
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2 ])()([)(),,,( ∑ ∑
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ω
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),,,( lmniJJ swlast =  

End of for loop 

b)  For Si ....2,1= take the tumbling /swimming decision 

• Tumble 

          Generate a random vector )(iΔ , on [-1, 1] 

i) Update parameter 

)()(

)()(),,(),,1(
ii

iiCulmnxlmnx
T

ii

ΔΔ

Δ
×+=+  

  ii) Compute: ),,1,( lmniJ +   

      )),,1(),,,1((),,1,(),,1,( lmnPlmnxJlmniJlmniJ i
ccsw ++++=+  

• Swim 

Let 0=nswim ;( counter for swim length) 

While sNnswim <   

Let  1+= nswimnswim  

If  lastsw JlmniJ <+ ),,1,(   (if doing better), 

  ),,1,( lmniJJ swlast +=    

)()(

)()(),,(),,1(
ii

iiCulmnxlmnx
T

ii

ΔΔ

Δ
×+=+  

Then ),,1( lmnxi +  is used to compute the new ),,1,( lmniJ +   

Else sNnswim =   

This is the end of the while statement. 

Chapter-3 Developement of Hybrid Algorithms for Power System Frequency Estimation



 89

c) Go to the next sample )1( +i  if Si ≠  [i.e. go to b] to process the next 

sample. 

d) If min )(J  is less than the tolerance limit then break all the loops. 

5. If ,cNJ <  go to 4, continue chemotaxis as life of bacteria is not over. 

6.  Reproduction  
a) For the given m and l , and for each i=1,2,3….S, let 

∑
+

=

=
1

1
),,,(

CN

j
swhealth lmniJJ  Sort parameter in ascending healthJ   

b) 2/SSr =  parameters with highest healthJ  will be removed and other rS  

no. of set of parameters with the best value split  

7. If reNm <  go to 3, start the next generation in the chemo tactic loop. 

8. Elimination-dispersal  

For i=1, 2…S, with Ped, eliminate and disperse each set of parameters  

9. If            , go to 2; other wise end 

10. Obtain optimized values for Weights (parameters) 

11. Employ RLS for final updating of Weights using (3.11)-(3.14). 

12. Estimate frequency of signal from updated Weights using (3.15) 

 
 
3.5.2 Proposed Adaline-BFO Combined Approach to Frequency 
Estimation 
 
The steps as described are followed till the unknown parameter is optimized using BFO 

algorithm. The optimized output of BFO algorithm is taken as the initial values of unknown 

parameter )(W for estimation using Adaline. 

Fig.3.1 shows the block diagrammatic representation of the Adaline. Product of input signal 

and weight of the Adaline gives the estimated output and is compared with the desired 

output. The error obtained, is minimized by updating the weight of the Adaline. 

The input to the Adaline from (3.9) is 
 

edNl <
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[ ] [ ]1021 == xxX   
where X  is the system structure matrix and )()( kXWky =  
The optimized output of the unknown parameter using BFO algorithm is taken as the 

initial values of the weight vector of Adaline (3.8) and is updated using a modified 

Widrow-Hoff delta rule as  

XX
SkekWkW T+

+=+
λ
α )()()1(                                                                                       (3.22) 

 
where )(XSGNS =                                                                                                      (3.23) 
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22,...,2,1 += Ni  

20 << α  
 
The learning parameter α can be adapted using the following expression: 
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⎞
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⎝
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k
k

1
)( 0                                                                                                            (3.25) 

where 0α  is the initial learning rate and β  is decaying rate constant. λ  Is a small 

quantity and is usually chosen to make 

0≠+ XX Tλ  
After updating of weight vector of the Adaline, Frequency of signal is estimated using 
(3.15) 
 

Fig.3.15 desrcibes the flow chart of the proposed Adaline-BFO/RLS-BFO algorithm. In 

this figure, BFO is applied first and then output of BFO, which is taken as initial weight 

of the Adaline/RLS is then updated to minimize the error between the estimated and the 

desired output.  
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Fig. 3.15 Flow chart of the proposed Hybrid Algorithm 
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3.6 Results and Discussions (Frequency estimation using RLS-BFO and 
Adaline-BFO) 

Table-3.3 
Values of parameters used for simulation and experimental work (BFO, RLS-BFO 

and Adaline-BFO) 
0α  β  λ  S  p  

sN  cN reN edN edP C(i) dattract, wattract hrepellant wrepellant

0.01 100 0.01 100 2 3 3 7 7 0.25 0.001 0.05 0.3 0.05 10 

 

3.6.1 Sinusoidal Signal in presence of noise 
Table 3.3 shows the values of different parameters used in RLS-BFO and Adaline-BFO 

algorithms for the estimation of power system frequency. 
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Fig. 3.16 Adaline-BFO estimation performance of Frequency (SNR 20 dB) 
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Fig. 3.17 Adaline-BFO estimation performance of Frequency (SNR 30 dB) 
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Fig. 3.18 Adaline-BFO estimation performance of Frequency (SNR 40 dB) 
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Fig. 3.19 Mean Square Error in the Estimation of Frequency of signal 

 

Figs. 3.16-3.18 show a comparative estimation frequency of signal using BFO, RLS-BFO 

and Adaline-BFO algorithms at SNR of 20, 30 and 40 dB respectively. From these figures, it 

is verified that Adaline-BFO estimates more accurately (less estimation error i.e 0.0373 in 

case of Adaline-BFO at 40dB) compared to other two. Fig. 3.19 shows MSE in the estimation 

of signal using these three algorithms. MSE performance of Adaline-BFO is comparatively 

better (Adaline-BFO: 0.0081, RLS-BFO: 0.0129, BFO: 0.0168) as compared to other two. 

 

3.6.2 In presence of Harmonics 
The problem of estimating fundamental frequency from signals containing 3rd harmonics is 

considered. Fig. 3.20 shows the estimation of frequency using different algorithms from the 

signal with harmonics. It is found that a comparatively better performance(less estimation 

error i.e 0.0548) is obtained in case of Adaline-BFO algorithm as compared to other two. 
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Fig. 3.20 Adaline-BFO estimation performance of Frequency in presence of harmonics 

 

3.6.3 In the presence of Sub-harmonics and Inter-harmonics 
For evaluation of the performance of the proposed algorithm in the estimation of 

frequency of signal in the presence of Sub-harmonics and inter-harmonics, these components 

are added into the original signal. The frequency of sub-harmonic is 20 Hz, the amplitude is 

set as 0.5 p.u. and the phase is equal to 75 degrees. The frequency, amplitude and phase of 

the inter-harmonic is 140 Hz, 0.25 p.u. and 65 degrees respectively. 
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Fig. 3.21 Adaline-BFO estimation performance of Frequency in presence of sub and inter 

harmonics 
 

Fig. 3.21 shows the estimation of fundamental frequency in presence of sub and inter-

harmonics and is found that estimation is more accurate (i.e estimation error of 0.2859) in 

case of Adaline-BFO as compared to other two. 
 

3.7 Experimental Results 

3.7.1 Validation on real-time (Laboratory Setup) data 
For real time application of the algorithms in estimating frequency in a power 

system, data i.e obtained in a laboratory environment from the supply on normal working 

day of the laboratory as per the experimental setup discussed in section 2.3(a) of fig. 2.19 is 

taken. 
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Fig. 3.22 Adaline-BFO estimation performance of Frequency of real data 
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Fig. 3.23 Adaline-BFO estimation performance in MSE of Frequency of real data 
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Fig. 3.22 shows the estimation of frequency of signal using three algorithms on 

real data obtained from the experiment. Fig. 3.23 shows the MSE in the estimation of 

frequency of signal from the real data. From these Figs., it is found that Adaline-BFO 

provides an improved performance (less estimation error of 0.0956) as compared to other 

two. 

 

3.7.2 Validation on real-time (Industrial setup) data 
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Fig. 3.24 Adaline-BFO estimation performance of Frequency of industrial data 

 

For verification of algorithms with industrial data, data is collected from captive power 

plant of an aluminium industry as per the setup discussed in section 2.3(b) of Fig. 2.21. 

The estimated frequency of industrial data is shown in Fig. 3.24 and it is observed that 

the estimation using Adaline-BFO is better (less estimation error of 0.1246) as compared 

to RLS-BFO. 
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3.8 Chapter Summary 
In this chapter, four new hybrid algorithms such as RLS-Adaline, KF-Adaline, 

RLS-BFO and Adaline-BFO are discussed. The performances of the first two proposed 

hybrid algorithms i.e RLS-Adaline and KF-Adaline are dependent on the initial choice of 

weight vector W  and Covariance matrix P . By using an optimal choice of weight vector, 

faster convergence to the true value of signal parameter can be achieved. After the 

optimization of the weight vector, online tracking of frequency of signal can be carried 

out. Both the algorithms track the frequency of signal at different level of noises and 

different signal changing conditions but the performance of tracking using KF-Adaline is 

better than RLS-Adaline. The performances of the next two proposed hybrid BFO 

algorithms i.e RLS-BFO and Adaline-BFO are very dependent on the initial choice of 

maximum and minimum value of unknown parameters taken. In this work, we have 

taken maximum and minimum values as 10% deviation from their actual values. By 

using an optimal choice of parameters, faster convergence to the true value of signal 

parameter can be achieved. All the algorithms track the frequency of signals very well 

but the performance of tracking using Adaline-BFO is better compared to BFO and RLS-

BFO algorithms.  
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Chapter-4 

Power system Harmonics Estimation using 
Recursive Algorithms 

     

    4.1 Introduction 
In an ac electrical power network, periodical distortions of current and voltage waveforms are 

unavoidable due to the increasing use of nonlinear and time varying devices. If a voltage or 

current waveform contains sinusoidal components other than the fundamental frequency, the 

waveform includes harmonics and the quality of power deteriorates due to presence of 

harmonics. The major components of causing harmonic pollution in industrial and commercial 

power systems are the increasing usage of non-linear loads such as diode, thyristor rectifiers, 

lighting equipments, uninterruptible power supplies (UPS), arc furnaces and adjustable speed 

motor drives etc. As a result harmonics, sub-harmonics and inter-harmonics are present in 

current and voltage waveforms. The main sources of inter-harmonics and sub-harmonics are 

electronics devices such as cycloconverters, which are used in wide range of applications such 

as rolling mill, linear motor drives and static VAR systems. Furthermore, arcing loads such as 

welders and arc furnaces are other sources of inter-harmonics. Both harmonics and inter-

harmonics have quite negative impacts on power networks and customers. Negative effects of 

harmonics are increased I2R losses, over voltage, unbalancing and mal-operations of the relays 

and saturation of transformer core. Thus, harmonic estimation is one of the critical and 

challenging issues while dealing with power system signals.  

Recent literature [39-68] presents different techniques on power system harmonics estimation. 

In order to get the voltage and current frequency spectrum from discrete time samples, most 

frequency domain harmonic analysis algorithms are based on the Fast Fourier transform 

(FFT). However, FFT based technique suffers from leakage effect i.e an effect in the 

frequency analysis of finite length signals or finite length segments of infinite signals where it 

appears as if some energy has ‘leaked’ out of the original signal spectrum into other 

frequencies and its performance highly degrades while estimating inter and sub-harmonics, 
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including frequency deviations. Kalman Filter [37-39] is one of the robust algorithms for 

estimating the magnitudes of sinusoids of known frequencies embedded in an unknown 

measurement noise. But this algorithm [74] fails to track any dynamic changes of signal such 

as sudden changes in amplitude, phase or frequency of signal.  

 

Recently, for more accuracy in estimation, Artificial Intelligence techniques such as fuzzy 

logic, neural network and evolutionary computations find extensive applications to harmonic 

estimation. Dash et al. [60] have used an algorithm based on an adaptive neural network, 

which was reported to track dynamic amplitude better as compared to the classical Kalman 

filtering approach. However, the initial choice of weight vector and learning parameters may 

affect the convergence characteristics of the neural network. Qidwai and Betayeb [65-66] use 

Genetic algorithm (GA), for this purpose. This method provides good results but main 

disadvantage is that is takes more time for convergence.  

To overcome the problems faced in above mentioned techniques, EnKF algorithm for the 

estimation of harmonics is proposed. EnKF [53-55] is a recursive filter, which can be applied 

for problems with large number of variables. The Kalman Filter assumes all Probability 

density functions (pdfs) are Gaussian and use Bayesian update for change of mean and 

covariance matrix, maintenance of covariance matrix is computationally difficult due to its 

inverse operation for high dimensional systems. EnKF represents the distribution of system 

state by a collection of state vectors, known as ensemble and it replaces the covariance matrix 

by sample covariance, which is computed from the ensemble and is computationally feasible 

(due to lack of inverse operation) for high dimensional systems. Hence for accurate estimation 

of power system parameters such as amplitude, phase and frequency, Ensemble Kalman Filter 

(EnKF) algorithm may be a suitable candidate.  

 

4.1.1 Causes and effects of integer and non-integer harmonics 
Inter-harmonics are the components of frequency that are not integer multiples of the system 

fundamental frequency. Sub-harmonics are the inter-harmonics having frequency lower than 

the fundamental frequency. Both harmonics and inter-harmonics have quite negative impacts 

on power networks and customers. The customer produced harmonics are injected back into 
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the rest of the system. Thus harmonic pollution propagates all over the electrical distribution 

networks and undesired problems caused by the mis-operation of the electrical devices may 

occur. Subsequently, operation of electrical devices on the network may be adversely affected. 

Harmonics and inter-harmonics causes increase in heat of the transformers as a result, it draws 

high current magnitude. So saturation of transformer occurs and there is increase in eddy 

current loss. There will be the error in measurement of energy meter in networks and plants 

distorted by harmonics and inter-harmonics. There will also be loss in efficiency of turbo-

generator due to its sub synchronous oscillation.  

 
4.1.2 Causes and effects of decaying DC offset  
Electrical signals may include harmonics and decaying dc offsets, especially in a transient 

state. The objective of estimation of dc offset is to remove these components [83-84] at the 

stage of signal processing so that error in analog-digital conversion may be minimized in the 

protection algorithm. Performance of DFT filter is also affected if the signal contains decaying 

dc component. These are of exponential type and mainly appear in current signals when short 

circuit occurs in electric power system. The initial value and time constant of this component 

depend on the time of short circuit (fault incipient angle) and on the X/R ratio of the circuit 

involved in the fault. When the signal analyzed includes an exponentially decaying, phase 

estimated using DFT has an error of up to 15%.  

 
4.2 Harmonics Estimation Using Different Algorithms 

4.2.1 Harmonics Estimation using Least Mean Square (LMS) 

algorithm 
Let us assume the voltage or current waveforms of the known fundamental angular 

frequency ω  as the sum of harmonics of unknown magnitudes and phases. The general form 

of the waveform is  

∑
=

+−++=
N

n
dcdcnnn ttAtAty

1
)()exp()sin()( εαφω                                                                               (4.1) 
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where N  is the number of harmonics. 02 fnn πω = ; 0f is the fundamental frequency; )(tε is the 

additive noise; )exp( tA dcdc α− is the dc offset decaying term. 

After discretization of Eq. (4.1) with a sampling period,T  one obtains the following 

expressions  

∑
=

+−++=
N

n
dcdcnnn kkTAkTAky

1
)()exp()sin()( εαφω                                                                              (4.2) 

Invoking Taylor series expansion of the dc decaying term,  )exp( tA dcdc α−  and retaining only 

first two terms of the series yields  

kTAAy dcdcdcdc α−=                                                                                                              (4.3) 

 Using Eq. (4.3) in Eq. (4.2), )(ky can be obtained as  

∑
=

+−++=
N

n
dcdcdcnnn kkTAAkTAky

1
)()sin()( εαφω                                                           (4.4) 

For estimation amplitudes and phases Eq.(4.4) can be rewritten as  

∑
=

+−++=
N

n
dcdcdcnnnnnn kkTAAkTAkTAky

1
)(]sin)cos(cos)sin([)( εαφωφω       (4.5) 

      Eq. (4.5) can be rewritten in parametric form as follows   

XkHky )()( =  
T

NN kTkTkTkTkTkH ]1)cos()sin(...)cos()[sin()( 11 −= ωωωω                        (4.6) 

The vector of unknown parameter 
T

NNNN kXkXkXkXkXkXkX )]()()()(...)()([)( 221221221 ++−=                                                         (4.7) 

T
dcdcdcnnnn AAAAAAX ])sin()cos(...)sin()cos([ 1111 αφφφφ=                                     (4.8) 

The LMS algorithm is applied to estimate the state. The algorithm minimizes the square of the 

error recursively by altering the unknown parameter kX  at each sampling instant using 

equation (4.9) given below 
∧

− += kkkkk yeXX μ1                                                                                                     (4.9) 

where the error signal is 
∧

−= kkk yye         
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The step size kμ  is varied for better convergence of the LMS algorithm in the presence of 
noise.  

2
1 kkk Rγλμμ +=+                                                                                                      (4.10) 

where kR  represents the autocorrelation of ke  and  1−ke . It is computed as 

11 )1( −− −+= kkkk eeRR ρρ                                                                                                     (4.11) 

where ρ  is an exponential weighting parameter and 10 << ρ , and )10( << λλ and 0>γ  

control the convergence time. 

After the updating of the vector of unknown parameter using LMS algorithm, amplitudes, 

phases of the fundamental and nth harmonic parameters and dc decaying parameters are 

derived as  

 ( )2
12

2
2 −+= NNn XXA                                                                                                           (4.12) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

12

21tan
N

N
n X

X
φ                                                                                                                (4.13) 

12 += Ndc XA                                                                                                                           (4.14) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

+

12

22

N

N
dc X

X
α                                                                                                                      (4.15)  

 

    4.2.2 Harmonics Estimation using RLS algorithm 
The signal as described in section 4.2.1 is taken; the vector of unknown parameter X , as in 

(4.7) is updated using RLS as 

X is updated using Recursive Least Square Algorithm as 

)1()1()()1( +++=+
∧∧

kekKkXkX                                                                                       (4.16) 
Error in measurement is 

)()1()1()1( kXkHkyke T
∧

+−+=+                                                                                         (4.17) 
 
The gain K is related with covariance of parameter vector  

1)]1()()1(1)[1()()1( −++++=+ kHkPkHkHkPkK T                                                 (4.18) 
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The updated covariance of parameter vector using matrix inversion lemma 

)(])1()1([)1( kPkHkKIkP T++−=+                                                                               (4.19) 

These equations are initialized by taking some initial values for the estimate at instants )(, tt θ  

and P . As the choice of initial covariance matrix is large it is taken as IP α= , where α is a 

large number and I is a square identity matrix. 

After the updating of the vector of unknown parameters using Recursive Least Square (RLS) 

algorithm, amplitudes, phases of the fundamental and nth harmonic parameters and dc 

decaying parameters can be derived using (4.12)-(4.15)  

 

4.2.3 Harmonics Estimation using Recursive Least Mean Square 

(RLMS) algorithm 
After the updating of the vector of unknown parameter using Recursive Least Square (RLS) 

algorithm, updated values of unknown parameters are taken as initial values of unknown for 

LMS algorithm. Then unknown parameters are updated using LMS algorithm. 

 
4.2.4 Harmonics Estimation using Kalman Filter (KF) algorithm 

The signal as described in section 4.2.1 is taken; the vector of unknown parameters X , as in 

(4.7) is updated using Kalman Filter algorithm as 
1))()1/()(()()1/()( −+−−= QkHkkPkHkHkkPkG TT                                                 (4.20) 

G  is the Kalman gain, H is the observation vector, P  is the covariance matrix, Q is the noise 

covariance of the signal. 

The covariance matrix is related with Kalman gain as given in the following equation. 

)1/()()()1/()/( −−−= kkPkHkGkkPkkP                                                                       (4.21) 

The updated estimated state vector is related with previous state vector as follows. 

))1/()()()(()1/()/( −−+−=
∧∧∧

kkXkHkykGkkXkkX                                                       (4.22) 

After the updating of weight vector, amplitudes, phases of the fundamental and nth harmonic 

parameters and dc decaying parameters are found out using (4.12)-(4.15)  
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4.2.5 Harmonics Estimation using Ensemble Kalman Filter (EnKF) 

algorithm 
The EnKF is a Monte Carlo approximation (useful for modeling with significant uncertainty 

in inputs) of the Kalman filter, which avoids evolving the covariance matrix of the probability 

density function (pdf) of the state vector x . In this case, the distribution is represented by a 

sample, which is called an ensemble 

 
],,,[ 21 NxxxX L=                                                                                                                (4.23) 

 
X is an Nn × matrix whose columns are the ensemble members, and it is called the prior 

ensemble. Ensemble members form a sample from the prior distribution. As every EnKF step 

ties ensemble members together so they are not independent. Signal data )(ty  is arranged as a 

Nm × matrix 

 
The vector of unknown parameter/ Ensemble as in (4.7) and (4.8) is given by 

T
NNNN kXkXkXkXkXkXkX )]()()()(...)()([)( 221221221 ++−=

T
dcdcdcnnnn AAAAAAX ])sin()cos(...)sin()cos([ 1111 αφφφφ=  

is updated using Ensemble Kalman Filtering as 

The ensemble mean and covariance are 

∑
=

=
Q

k
kX

Q
XE

1
)(1)(                                                                                                         (4.24) 

and  
1−

=
Q
GGC

T
                                                                                                                       (4.25) 

where 

)( XEXG −=                                                                                                                    (4.26) 

The updated ensemble is then given by 

)()( 1 HXyRHCHCHXX TT −++= −
∧

                                                                             (4.27) 

Where, columns of X represent a sample from the prior probability distribution and columns of 
∧

X will form a sample from the posterior probability distribution. The EnKF is now obtained 

by replacing the state covariance P  in Kalman gain matrix 1)( −+= RHPHPHK TT  by the 
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sample covariance C  computed from the ensemble members (also called as ensemble 

covariance), where R is a covariance matrix, it is always positive semi definite and usually 

positive definite, so the inverse of above exists. 

After the updating of the vector of unknown parameter using Ensemble Kalman 

Filtering algorithm, amplitudes, phases of the fundamental and nth harmonic parameters and 

dc decaying parameters are are found out using (4.12)-(4.15).  

 

      Description of EnKF algorithm based harmonics estimation  

1. Initialize Amplitude, phase, frequency of fundamental and harmonics 

components, dc decaying components and ensemble vector  

2. Generate a power system signal containing fundamental and higher 

order harmonics as per (4.28) 

3. Discretize it and model in parametric form using (4.6) 

4. Evaluate: Estimation error = Actual signal - Estimated signal (using 

initial ensemble in parametric form)  

5. Find mean and covariance of ensemble using (4.24-4.26)  

6. Update ensemble vector as per (4.27) 

7. If final iteration is not reached, go to step 4 

8. Estimate Amplitude, phase of fundamental and harmonic components 

and dc decaying components using (4.12)-(4.15). 

 

 

 

 

 

 

 

4.3 Simulation Studies and Results 
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4.3.1 Static signal corrupted with random noise and decaying DC 

component 
To evaluate the performance of the proposed algorithm in estimating harmonics 

amplitude and phase, Numerical experiments implemented in MATLAB have been performed. 

The power system signal used for the estimation, besides the fundamental frequency, contains 

higher harmonics of the 3rd, 5th, 7th, 11th and a slowly decaying DC component. This kind of 

signal is typical in industrial load comprising power electronic converters and arc furnaces [60]. 

)()5exp(5.0)3011sin(1.0
)367sin(15.0)455sin(2.0)603sin(5.0)80sin(5.1)(

0

0000

ttt
ttttty

εω

ωωωω

+−+++

+++++++=
       (4.28) 

The signal is corrupted by random noise randnt 05.0)( =ε  of zero mean, normal distribution 

and unity variance. 

Table 4.1 shows the different parameters used during simulation work 

 

Table-4.1 
Parameters used for simulation (RLS, LMS, KF, RLMS and EnKF) 

 
Algorithms R δ  η  ρ  λ  γ  Initial μ Initial W

RLS - 100 0.96 - - - - - 

LMS - - - 0.99 0.97 0.001 0.001 0.018 

KF )(100 100100×I 100 - - - - - - 

RLMS - 100 0.96 0.99 0.97 0.001 0.001 0.018 

EnKF )(100 100100×I - - - - - - - 
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Fig.4.1 Actual and Estimated signal using RLS, KF, EnKF, LMS and RLMS 
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Fig.4.2 EnKF estimation performance of amplitude of fundamental component of signal 
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Fig.4.3 EnKF estimation performance of phase of fundamental component of signal 
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Fig.4.4 EnKF estimation performance of amplitude of 3rd harmonic component of signal 
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Fig.4.5 EnKF estimation performance of phase of 3rd harmonic component of signal 
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Fig.4.6 EnKF estimation performance of amplitude of 5th harmonic component of signal 
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Fig.4.7 EnKF estimation performance of phase of 5th harmonic component of signal 
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Fig.4.8 EnKF estimation performance of amplitude of 7th harmonic component of signal 
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Fig.4.9. EnKF estimation performance of phase of 7th harmonic component of signal 
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Fig.4.10. EnKF estimation performance of amplitude of 11th harmoniccomponent of signal 
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Fig.4.11 EnKF estimation performance of phase of 11th harmonic component of signal 

 

Fig. 4.1 shows actual vs. estimated value of signal using five different algorithms. Actual 

vs estimated signal almost matches with each other with little deviation in case of KF 

algorithm. Fig. 4.2-4.11 show the tracking of fundamental, 3rd, 5th, 7th and 11th harmonics 

signal components in presence of random noise and decaying dc components using LMS, 

RLS, RLMS, KF and EnKF algorithms. KF, RLS and RLMS are tuned optimally by properly 

choosing the co-variance and noise variance matrices. In EnKF, the covariance matrix is 

replaced by sample covariance computed from ensemble. Using Kalman Filter results in 

oscillations in the estimated amplitude of fundamental and harmonics components in the 

presence of a distorted signal and noise. Time required to reach the actual values for the 

fundamental and harmonics components is 0.02 seconds or more on a 50 Hz system. Using 

RLS, the exact value of fundamental and harmonics components are obtained roughly in 0.01 

sec. based on a 50 Hz waveform in presence of random noise and decaying dc components. In 

case of LMS and RLMS, the reference value is tracked within 0.0025 seconds. However, 

using EnKF, the reference value is tracked within less than 0.0025 seconds, which can be 
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marked in a zoomed figure. These results are quite significant in tracking steady-state 

fundamental and harmonics components of a power system over a period of 24 hours for the 

assessment of power quality and harmonics distortions. 
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Fig. 4.12 Estimation of fundamental and harmonics components of signal (EnKF) 
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Fig.4.13 Estimation of amplitude of all harmonics component of signal using EnKF 
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Fig.4.14 Estimation of phase of all harmonics component of signal using EnKF 
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Fig.4.15 EnKF estimation performance of dc component of signal 
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Fig.4.16 EnKF estimation performance of decaying dc offset of signal 
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Fig. 4.17 Comparison of Estimation of amplitude of 3rd harmonic component of signal using bar chart 
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Fig. 4.18 Comparison of Estimation of phase of 3rd harmonic component of signal using bar chart 
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Fig.4.19. EnKF estimation performance of Mean Squared Error of signal 

Fig. 4.12 shows the segregation of estimation of fundamental and all the harmonics of that 

signal using Ensemble Kalman Filter. From the figure, it is seen that highly accurate 

estimation is obtained in each case of estimation. Fig. 4.13 and 4.14 show the estimation 

of amplitude and phase of all harmonics components using EnKF. From the Figs., it is 

clear that EnKF accurately estimate the harmonics components in presence of noise and 

decaying dc-offsets. Fig. 4.15 and 4.26 show the estimation of dc component and decaying 

dc-offsets of signal using all the five algorithms with more accuracy in estimation using 

EnKF. Fig. 4.17 and 4.18 give a comparison of estimation of 3rd harmonic amplitude and 

phase of signal with 20 dB and 30 dB noises. From these two figs. concluded that 

estimation using EnKF is more accurate (amplitude 0.505 and phase 59.7-60 degrees) as 

compared to other four. Fig. 4.19 shows the comparison of MSE using the above five 

algorithms. From the figure, it is observed that MSE becomes zero after 0.015 seconds 

using KF algorithm but using LMS, RLS, RLMS and EnKF, the MSE becomes zero 

initially.  
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Table 4.2 
Performance comparison  of EnKF in presence of harmonics and d.c. offsets 

 
Methods Parameters Fund- 3rd 5th 7th 11th Adc αdc Comp. time (s) 

f(Hz) 50 150 250 350 550 

A (V) 1.5 0.5 0.2 0.15 0.1 Actual 

ϕ(°) 80 60 45 36 30 

0. 5 5  

A (V) 1.484 0.4852 0.1706 0.1535 0.0937 

Deviation (%) 1.040 2.9507 14.682 2.3597 6.2761 

ϕ(°) 80.57 60.30 47.098 34.354 25.300 
DFT 

Deviation (°) 0.570 0.3002 2.0985 1.646 4.6993 

0.385 -  

A (V) 1.476 0.502 0.232 0.167 0.123 

Deviation (%) 1.541 0.450 16.42 11.55 23.46 

ϕ(°) 79.30 59.306 46.497 37.321 35.80 
LMS 

Deviation (°) 0.699 0.693 1.497 1.321 5.8 

0. 512 4.8 0.348 

A (V) 1.483 0.503 0.196 0.153 0.113 

Deviation (%) 1.131 0.76 1.795 2.530 13.829 

ϕ(°) 78.57 58.381 42.908 34.189 32.682 
RLS 

Deviation (°) 1.506 1.618 2.091 1.810 2.682 

0. 504 4. 5 0.114 

A (V) 1.506 0.503 0.225 0.158 0.095 

Deviation (%) 0.453 0.681 12.69 5.717 4.922 

ϕ(°) 80.25 59.839 46.827 34.464 34.994 
KF 

Deviation (°) 0.253 0.161 1.827 1.535 4.994 

0. 503 4. 6 0.360 

A (V) 1.492 0.497 0.197 0.151 0.103 

Deviation (%) 0.536 0.437 1.320 0.994 3.036 

ϕ(°) 79.79 59.779 44.638 36.921 28.633 
RLMS 

Deviation (°) 0.427 0.22 0.386 0.921 1.366 

0.483 4. 1 1.418 

A (V) 1.498 0.501 0.200 0.151 0.0989 

Deviation (%) 0.113 0.191 0.198 0.909 1.088 

ϕ(°) 79.97 59.964 44.613 35.854 29.948 
EnKF 

Deviation (°) 0.028 0.035 0.361 0.145 0.051 

0. 499 5.05 0.097 
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Table 4.2 gives the simulation results obtained by the LMS, RLS, RLMS, KF and the 

proposed EnKF method.  Table shows that harmonics parameters obtained with the 

proposed approach exhibits the best estimation precision where the largest amplitude 

deviation is 1.0882% occurred at the 11th harmonics estimation and the largest phase angle 

deviation is 0.3610 occurred at the 5th harmonics estimation.  

 

4.3.2 Estimation of harmonics in presence of amplitude drift 
For considering the real time situations of a power system signal, abrupt change in 

amplitude of signal is taken into account in this section. Cases of 3rd and 5th harmonic 

component changes are considered. 3rd harmonic component of signal is allowed to 

change from 0.5 p.u. to 2 p.u. at 0.05 second and similarly 5th harmonic component is 

allowed to change from 0.2 p.u. to 1 p.u. at 0.05 second in the signal given in (4.28) 
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Fig.4.20. EnKF estimation performance of amplitude of 3rd harmonic component during 

amplitude drift 
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Fig.4.21. EnKF estimation performance of phase of 3rd harmonics component during 

amplitude drift 
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Fig.4.22. EnKF estimation performance of amplitude of 5th harmonics component during amplitude 

drift 
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Fig.4.23. EnKF estimation performance of phase of 5th harmonic component during amplitude drift 

 
Fig. 4.20-4.23 show the estimation of 3rd and 5th harmonics amplitudes and phases 

using the above five algorithms. It is observed that all algorithms track the change in 

amplitude from 0.5 to 2.0 p.u. in 3rd harmonics case and 0.2 to 1.0 p.u. in 5th harmonics 

case with oscillations in estimation using KF. But regarding the estimation of phase in 

two cases, it is same to that of that of the case of without amplitude drift as discussed 

earlier.  

 

4.3.3 Effect of frequency drift on harmonics estimation 
 Effects of frequency drift on the estimation are also considered in presence of 

random noise. Here, it is assumed that a large value of frequency drift 0.1=Δf  Hz at 0.05 

sec., restored to original frequency of 50 Hz at 0.07 sec.  
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Fig.4.24. EnKF estimation performance of signal during frequency drift 

 

From Fig. 4.24 it is found that the estimated signal during frequency change almost 

matches with actual in all cases having deviation in the estimation using KF algorithm 

during initial 0.01 sec. of signal and more accurate estimation (estimated signal matches 

with actual) using EnKF algorithm. But for small drift i.e. 0.1Hz or less, there may be no 

change in the waveform of signal. 

 
4.3.4 Harmonics estimation of signal in presence of inter and sub-

harmonics 
To evaluate the performance of the proposed algorithm in the estimation of a signal in the 

presence of sub-harmonics and inter-harmonics, a sub-harmonic and two inter-harmonics 

components are added to the original signal as given in (4.28). The frequency of sub-

harmonic is 20 Hz, the amplitude is set to be 0.5 p.u. and the phase is equal to 75 degrees. 

The frequency, amplitude and phase of one of the inter-harmonics are 130 Hz, 0.25p.u. 

and 65 degrees respectively. The frequency, amplitude and phase of the other inter-

harmonic are 180 Hz, 0.35p.u. and 10 degrees respectively.  
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Fig.4.25. EnKF estimation performance of sub-harmonics having amplitude 0.5 p.u. 
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Fig.4.26. EnKF estimation performance of sub-harmonics having phase 750 
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Fig.4.27. EnKF estimation performance of inter-harmonics having amplitude 0.25 p.u. 
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Fig.4.28. EnKF estimation performance of inter-harmonics having phase 650 
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Fig.4.29. EnKF estimation performance of inter-harmonics having amplitude 0.35 p.u. 
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Fig.4.30. EnKF estimation performance of inter-harmonics having phase 100 
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Fig. 4.25-4.30 show the estimation of amplitudes and phases of a sub-harmonic 

and two inter-harmonics. The time required to track the actual values for the sub-

harmonics and inter-harmonics components using KF algorithm is 0.04 second or more. 

Using RLS, time required to track the actual value is 0.02 second or more. LMS and 

RLMS track the actual value within 0.0025 second. But using EnKF, the estimation is 

accurate with very less tracking time i.e less than 0.0025sec. 

Table 4.3 gives the estimation results of power system signal having two inter 

harmonics and one sub-harmonic component using DFT, LMS, RLS, KF, RLMS and 

EnKF algorithms. This table shows that the performance of estimation using EnKF is the 

best (less % age in deviation in estimation of amplitude, less deviation is estimation of 

phase, less amount of computational time) as compared to other five methods. The largest 

amplitude deviation is 0.349% occurred at 11th harmonic estimation and the largest phase 

angle deviation is 0.43210 occurred at 7th harmonic estimation.  
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Table 4.3  
Performance comparison of EnKF  in presence of inter-harmonicsand sub-harmonics 

Method

s 
Param- Sub Fund- 3rd Inter1 Inter2 5th 7th 11th 

f(Hz) 20 50 150 180 230 250 350 550 

A (V) 0.5 1.5 0.5 0.25 0.35 0.2 0.15 0.1 Actual 

ϕ(°) 75 80 60 65 10 45 36 30 

A (V) 0.5102 1.5083 0.4719 0.2401 0.3434 0.201 0.1720 0.0969 

Deviation (%) 5.1297 0.5521 5.6245 3.9713 1.8814 0.849 14.662 3.0767 

ϕ(°) 72.027 79.847 57.551 62.410 11.149 41.009 38.786 21.863 
DFT 

Deviation (°) 2.9723 0.153 2.449 2.5895 1.1495 3.990 2.7861 8.1364 

A (V) 0.4955 1.4771 0.5025 0.2481 0.3513 0.2331 0.1676 0.1237 

Deviation (%) 1.878 1.527 0.5007 0.7568 0.3844 16.553 11.725 23.7136 

ϕ(°) 74.423 79.294 59.298 63.565 10.979 46.495 37.333 35.8216 
LMS 

Deviation (°) 0.5764 0.7053 0.7016 1.435 0.9793 1.495 1.3339 5.8216 

A (V) 0.490 1.483 0.494 0.263 0.354 0.228 0.155 0.0995 

Deviation (%) 2.942 1.085 1.072 5.534 1.177 14.273 3.946 0.5361 

ϕ(°) 73.351 78.111 58.086 61.894 11.49 46.793 34.858 34.541 
RLS 

Deviation (°) 1.648 1.888 1.913 3.105 1.49 1.797 1.1419 4.541 

A (V) 0.492 1.496 0.503 0.254 0.358 0.205 0.161 0.117 

Deviation (%) 1.508 0.240 0.657 1.859 2.322 2.957 7.918 17.222 

ϕ(°) 75.353 80.244 59.613 64.218 8.680 42.204 37.109 35.316 
KF 

Deviation (°) 0.353 0.244 0.386 0.782 1.319 2.792 1.109 5.316 

A (V) 0.4971 1.4925 0.4975 0.246 0.3510 0.201 0.146 0.1010 

Deviation (%) 0.5842 0.5015 0.5021 1.509 0.2729 0.813 3.141 1.0081 

ϕ(°) 74.432 79.548 59.677 64.559 10.405 43.454 35.566 32.446 
RLMS 

Deviation (°) 0.5678 0.451 0.322 0.440 0.405 1.54 0.433 2.446 

A (V) 0.5051 1.497 0.501 0.2500 0.3505 0.1997 0.1499 0.1003 

Deviation (%) 0.0203 0.167 0. 313 0.0098 0.1410 0.1747 0.0917 0. 349 

ϕ(°) 75.311 79.888 59.853 64.782 10.219 44.952 35.567 29.883 
EnKF 

Deviation (°) 0.311 0.111 0.1462 0.2178 0.219 0.048 0.4321 0.1164 
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The performance indexε , used to evaluate the quality of estimates  
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where )(ky  and 
∧

)(ky are actual and estimated signal respectively. In this case the 
significance of the performance index ε  is that it provides the accuracy of the estimation 
algorithm. Less the value of ε , means more accuracy of estimation and vice versa. 

 
                          Table 4.4 

Comparison of Performance Index of different methods   (RLS, LMS, KF, 
RLMS and EnKF) 

 
 

 

 

 

 

 

 

The performance indices of all the five algorithms are given in Table 4.4. From which it 

can be seen that EnKF achieves a significant improvements in terms of reducing error for 

harmonics estimation in comparison to four other algorithms 

 

4.3.5 Harmonic Estimation of a Dynamic Signal 
 

To examine the performance of EnKF algorithm in tracking harmonics and its 

robustness in rejecting noise, a time-varying signal of the form as given below is 

considered 

)()455sin()}(2.0{

)603sin()}(5.0{)80sin()}(5.1{)(
0

05

0
03

0
01

ttta

ttattaty

εω

ωω

++++

+++++=
                                (4.30) 

is used where the amplitude modulating parameters )(),( 21 tata and )(3 ta are 

tftfa 511 2sin05.02sin15.0 ππ +=                                                                             (4.31) 

SNR LMS RLS KF RLMS EnKF 

     No noise 6.2583 0.0583 0.0197 4.5163 7.6×10-4 

40 dB 7.8445 0.0636 0.04 4. 5550 0.0041 

20 dB 8.0444 0.8921 0.6477 5.2386 0.4272 

10 dB 14.3639 5.253 12.710 11.8722 4.323 

0 dB 23.9864 46.286 35.483 27.407 17.0657 
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tftfa 533 2sin02.02sin05.0 ππ +=                                                                             (4.32) 

tftfa 515 2sin005.02sin025.0 ππ +=                                                                             (4.33) 

0.11 =f Hz. 0.33 =f Hz. 0.65 =f Hz. In the above example, the random noise )(tε has a 

normal distribution of zero mean, unity variance and amplitude of randn05.0 .  
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Fig.4.31 EnKF estimation performance of amplitude of fundamental component of 

dynamic signal 
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Fig.4.32 EnKF estimation performance of phase of fundamental component of dynamic signal 
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Fig.4.33 EnKF estimation performance of amplitude of 3rd harmonic component of dynamic signal 
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Fig.4.34 EnKF estimation performance of phase of 3rd harmonics component of dynamic 

signal 
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Fig.4.35 EnKF estimation performance of amplitude of 5th harmonic component of dynamic signal 
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Fig.4.36 EnKF estimation performance of phase of 5th harmonics component of dynamic 

signal 
 

The estimation of time varying fundamental, 3rd and 5th harmonics signal in the presence 

of random noise is shown in Fig. 4.31-4.36. It is observed that there is more deviation in 

estimation using KF but using other four algorithms, the estimated value closely matches 

with the actual with more accurate estimation using EnKF algorithm. 
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                       Table- 4.5 
Performance comparison of EnKF for Dynamic Signal 

 
Methods Param- Fund- 3rd 5th 

f(Hz) 50 150 250 

A (V) 1.5701 0.5447 0.2101 Actual 

ϕ(°) 80 60 45 

A (V) 1.5628 0.5424 0.2091 

Deviation (%) 0.4731 0.4730 0.4095 

ϕ(°) 79.5999 59.7005 44.7744 
LMS 

Deviation (°) 0.4001 0.2995 0.2256 

A (V) 1.5701 0.5447 0.2101 

Deviation (%) 0.0119 0.0432 0.0162 

ϕ(°) 79.9975 59.987 44.9615 
RLS 

Deviation (°) 0.0025 0.013 0.0385 

A (V) 1.5701 0.5447 0.2101 

Deviation (%) 0.0119 0.0432 0.0157 

ϕ(°) 80 60.0001 45.0003 
KF 

Deviation (°) 2.57×10-5 5.316×10-5 2.615×10-4 

A (V) 1.5629 0.5423 0.2091 

Deviation (%) 0.4650 0.4856 0.4716 

ϕ(°) 79.6063 59.6928 44.7805 
RLMS 

Deviation (°) 0.3937 0.3072 0.2195 

A (V) 1.57 0.5447 0.2101 

Deviation (%) 0.007 0.0432 0.0032 

ϕ(°) 80 60 45 
EnKF 

Deviation (°) 2.57×10-5 4.5×10-5 5.812×10-7 
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Table 4.5 gives the simulation results of the dynamic signal as given by (4.29). 

This table shows that for the dynamic signal estimation, all the methods discussed in this 

thesis give accurate estimation but the accuracy using EnKF is better( least % deviation 

in amplitudes least deviations in phase angles) as compared to other four methods. 

 

4.3.6 Harmonics tracking in faulted power systems 
The proposed EnKF method is applied to track time varying harmonics components of a 

transmission system during L-G fault condition as given in (4.37). A single line to ground 

fault on the A phase of a transmission line was simulated using SIMULINK. A fault 

resistance of 0.001 Ω  is assumed between the A-phase and ground. The measurements 

are sampled using a sampling frequency of 5 kHz.  
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Fig. 4.37 EnKF estimation performance of signal for the fault current data 

 

From Fig.4.37, it is seen that the estimation using EnKF closely matches with actual fault 

signal as compared to other four methods. Table 4.6 shows the comparison of 
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performance indices of five algorithms for the case of estimation of fault data. EnKF 

shows better performance on estimation compared to other four methods. 

 
                 Table 4.6 

Comparison of Performance Indices of estimation of different methods (RLS, LMS, 
KF, RLMS and EnKF) on L-G fault data  

 
Parameter LMS RLS KF RLMS EnKF 

ε 7. 1629 6.1075 3. 3452 5. 2 1.1254 

 
4.4 Experimental Studies and Results 
For real time application of the algorithms in estimating harmonics in a power system, 

data i.e obtained in a laboratory environment from the supply on normal working day of 

the laboratory as per the experimental setup discussed in section 2.8.1 of Fig. 2.35 is 

taken. 
 

0 0.005 0.01 0.015 0.02 0.025
-20

-15

-10

-5

0

5

10

15

20

Time [s]

A
m

pl
itu

de
 [v

ol
t]

 

 

actual
RLS
KF
EnKF
LMS
RLMS

 
Fig. 4.38 EnKF estimation performance of signal from experimental data 
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              Table 4.7 
                 Comparison of Performance Index of Experimental Data    (RLS, LMS, 

KF, RLMS and EnKF) 
 

Parameter LMS RLS KF RLMS EnKF 

ε 4.6169 2.4985 7.4718 2. 5653 0.1156 

 
Fig. 4.38 shows the estimation of signal using above five algorithms from the data 

obtained from the laboratory experiment. In the figure, the estimated waveform 

approaches the actual over the cycle. The performance index (to evaluate the quality of 

estimates) of estimation is calculated for the five algorithms and the results are given in 

Table 4.6. EnKF yeilds the more accurate estimation result (since it has smallest 

performance index (around 0.11%)), which is acceptable. From Fig. 4.39, the estimated 

waveform is very close to the real one in first half cycle and small deviation is there in 

second half cycle. Hence, the obtained results are satisfactory for the application with real 

data. 

    The proposed EnKF estimation algorithm is developed to overcome the estimation 

problems in high dimensional system, because in that case the maintenance of covariance 

matrix in Kalman Filter is computationally not feasible (due to its inverse operation for 

high dimensional systems). EnKF replaces the covariance matrix by the sample 

covariance derived from ensemble and ensemble is operated as if a random sample. Since 

large matrix multiplication for evaluating the covariance matrix is absent in case of 

EnKF, so computational time required is less in case of EnKF. In case of highly nonlinear 

dynamics, Kalman Filtering approach fails in propagating the error covariance but this 

proposed approach can be applicable for highly uncertain and nonlinear system. In case 

of Kalman Filter the sample points are chosen deterministically, but in case of EnKF, the 

number of ensemble required is heuristic. So one of the critical issues of discussion is the 

accuracy of state estimation as a function of ensemble size. 
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4.5 Chapter Summary 
In this chapter, a new algorithm called EnKF for accurate estimation of 

amplitudes and phases of the harmonics contained in a voltage or current waveform for 

power quality monitoring is presented. Several computer simulation tests have been 

conducted to estimate harmonics in a power system signal corrupted with noise and 

decaying dc components to assess the speed of convergence and tracking accuracy of the 

Ensemble Kalman Filtering algorithm. The proposed EnKF based harmonic estimation 

algorithm estimates amplitude and phase of the harmonics accurately during amplitude 

and frequency drift of the signal. EnKF algorithm can be used to estimate the inter-

harmonics and sub-harmonics and the estimation accuracy is found to be satisfactory. 

Also this algorithm estimates accurately the signal in L-G fault condition. From the 

results presented in section 4.5 of this chapter it is clear that excellent estimation 

accuracy (in terms of % age deviation in amplitude, deviation in phase angle and 

computational time) and convergence speed is achieved by using EnKF algorithm in 

comparison to other five algorithms (DFT, RLS, LMS, RLMS and KF). The efficacy of 

the proposed EnKF algorithm is also validated using laboratory test data.  
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Chapter-5 

Harmonics Estimation Using Hybrid Algorithms 
 

 

5.1 Introduction 
Harmonics estimation of power system signals using different signal processing 

techniques such as RLS, LMS, RLMS, KF and EnKF are discussed in chapter 4. With a 

view to achieve further improvement in % error in estimation, processing time, 

performance in presence of inter and sub-harmonic components and reduction in tracking 

time, hybrid estimation algorithms involving signal processing and soft computing 

techniques are used in this chapter. The chapter first presents combined RLS-Adaline 

(Recursive Least Square and Adaptive Linear Neural Network) and KF-Adaline (Kalman 

Filter Adaline) approaches for the estimation of harmonic components of distorted 

signals. Kalman Filter and RLS carry out the weight updating in Adaline. The estimators’ 

track the signal corrupted with noise and decaying DC components very accurately. 

Adaptive tracking of harmonic components of a power system can easily be done using 

these algorithms. The proposed approaches are tested both for static and dynamic signal. 

These approaches are also able to track the harmonics components in presence of inter 

and sub harmonics.  

Exploiting good features of optimization, using Genetic Algorithm (GA), power 

system harmonics estimation was proposed in [65] using GA. In the above GA based 

harmonic estimation scheme, phases are estimated using GA, subsequently amplitudes of 

signal is estimated by using Least Square method. It has been observed that the time of 

convergence is improved using combined LS and GA approach to harmonics estimation. 

But there is some poor performance exhibited by GA-LS approach. These deficiencies 

are degradation in efficiency in case of highly correlated parameters and premature 

convergence of the GA.  
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Two new algorithms such as RLS-BFO and Adaline-BFO, for the estimation of 

both the phases and amplitudes of integral harmonics, sub-harmonics and inter-harmonics 

as well as their deviations has been proposed in this chapter. Above two combined 

approaches have been proposed for achieving improvement in % error in estimation of 

signal, processing time and performance in presence of change in amplitude and phase 

angle of harmonic components. 

The tracking performances of the proposed approaches are validated taking the 

data generated from laboratory setup. There is an improvement in convergence and 

processing time on using these algorithms. 

 
5.2 Hybrid Adaline approaches for Harmonics estimation: 

5.2.1 RLS- Adaline based Harmonics Estimation  
Consider the signal described in (4.1) in chapter 4. Discretizing this using (4.2) and then 

rewriting it, one obtains (4.5). The signal given in (4.5) can be written in parametric form 

as     

WkXky )()( =                                                                                                                  (5.1) 

where )(kX is the observation matrix and the parameter vector W  are defined in eq.(5.2) 
and (5.3) respectively.   
 

T
NN kTkTkTkTkTkX ]1)cos()sin(...)cos()[sin()( 11 −= ωωωω                (5.2) 

The weight vector of the Adaline 

T
NNNN kWkWkWkWkWkWkW )]()()()(...)()([)( 221221221 ++−=                                         (5.3) 

 

Fig. 5.1 shows the block diagram of RLS-Adaline structure of implementation for the 

estimation of power system harmonics. nXXXX ...,, 321 are the inputs to Adaline. After 

multiplication of the input with the weight vector gives the estimated output )(ky
∧

. 

Reference output )(ky is compared with the estimated output )(ky
∧

 and the error so 

obtained is minimized by updating the weights of the Adaline using RLS algorithm. 
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Fig.5.1 Structure of RLS-Adaline 

 
The weight vector of the Adaline is updated using RLS algorithm as 

)1()1()()1( +++=+
∧∧

kekKkWkW                                                                                (5.4) 
Error in measurement is given by 

)()1()1()1( kWkxkyke T
∧

+−+=+                                                                                    (5.5) 
The gain K is related with the covariance of parameter vector as follows 

1)]1()()1(1)[1()()1( −++++=+ kxkPkxkxkPkK T                                                            (5.6) 

The updated covariance of parameter vector using matrix inversion lemma is given as 

)(])1()1([)1( kPkxkKIkP T++−=+                                                                           (5.7) 
 
After the updating the weight vector using RLS algorithm, amplitudes, phases of the 

fundamental and nth harmonic parameters and dc decaying parameters can be derived as 

follows 

( )2
12

2
2 −+= NNn WWA                                                                                                      (5.8)  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

12

21tan
N

N
n W

W
φ                                                                                                          (5.9) 

12 += Ndc WA                                                                                                                   (5.10) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

+

12

22

N

N
dc W

W
α                                                                                                              (5.11) 
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Because 

T
dcdcdcnnnn AAAAAAW ])sin()cos(...)sin()cos([ 1111 αφφφφ=                     (5.12) 

 
5.2.2 KF- Adaline based Harmonics Estimation 
 
As described in Fig. 5.1, Fig. 5.2 shows the structure of KF-Adaline for power system 

harmonics estimation. Only difference is here the weights of the Adaline are updated 

using Kalman Filter algorithm. 

 
Fig.5.2 Structure of KF-Adaline 

 

The signal as described in section 5.2.a is taken; the weight vector of Adaline as in (5.3) 

is updated using Kalman Filter algorithm as 

1))()1/()(()()1/()( −+−−= QkxkkPkxkxkkPkG TT                                                            (5.13) 
 

G  is the Kalman gain, x  is the observation vector, P  is the covariance matrix, Q is the 

noise covariance of the signal. 

So the covariance matrix is related with Kalman gain with the following equation. 

)1/()()()1/()/( −−−= kkPkxkGkkPkkP                                                                  (5.14) 
The updated estimated state is related with previous state with the following equation. 
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))1/()()()(()1/()/( −−+−=
∧∧∧

kkWkxkykGkkWkkW                                                (5.15) 
 
After the updating of weight vector using KF algorithm, amplitudes, phases of the 

fundamental and nth harmonic parameters and dc decaying parameters are estimated 

using (5.8) – (5.11)  

 

5.3 Simulation Results 

5.3.1 Static signal corrupted with random noise and decaying DC 

component 
The power system signal used for the estimation, besides the fundamental 

frequency, contains higher harmonics of the 3rd, 5th, 7th, 11th and a slowly decaying DC 

component. This kind of signal is typical in industrial load comprising power electronic 

converters and arc furnaces. The signal as given in (4.28) of chapter- 4 is considered. The 

values of different parameters of two hybrid algorithms are taken as per the data given in 

Table 3.1 of chapter-3. The estimation results of fundamental as well as harmonic 

components of amplitudes and phases of the signal using two hybrid algorithms are 

presented next. 
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Fig.5.3 Comparison of Actual and Estimated values of synthetic signal (RLS-Adaline and 

KF-Adaline) 
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Fig.5.4 KF-Adaline estimation performance of amplitude of fundamental component of signal 
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Fig. 5.5 KF-Adaline estimation performance of amplitude of 3rd harmonic component of signal 
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Fig. 5.6 KF-Adaline estimation performance of amplitude of 5th harmonic component of signal 
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Fig. 5.7 KF-Adaline estimation performance of amplitude of 7th harmonic component of signal 
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Fig. 5.8 KF-Adaline estimation performance of amplitude of 11th harmonic component of signal 
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Fig. 5.9 KF-Adaline estimation performance of dc component of signal 

Fig. 5.3 shows the comparison of actual and estimated signal obtained by using 

RLS-Adaline and KF-Adaline algorithms. It is seen from the above Fig. that actual signal 

and estimated signal closely match with each other in both of estimation algorithms. Fig. 

5.4 shows the comparative estimation of fundamental amplitude of the signal using both 

RLS-Adaline and KF-Adaline methods. In case of RLS-Adaline, estimated amplitude 

oscillates between 1.47 p.u. to 1.51p.u. but KF-Adaline estimates fundamental amplitude 

as 1.5 p.u. Fig. 5.5 provides a comparative estimation of third harmonic component of the 

considered signal using the above two methods. In the estimation using RLS-Adaline, 

during first few initial times period estimation is 0.535 p.u. after that it settles around 

0.515 p.u. KF-Adaline estimates third harmonics amplitude as 0.502 p.u. Fig.5.6 shows 

the estimated result of 5th harmonic amplitude using both the algorithms. RLS-adaline 

estimates 5th harmonics amplitude between 0.19 to 0.22 p.u., having more oscillations 

during initial time period. But the estimated value of fifth harmonic component using KF-

Adaline is 0.202 p.u. Fig. 5.7 gives the estimated result of 7th harmonic component of 

signal using the two algorithms. RLS-Adaline estimates it around 0.155 p.u. but 
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oscillation varies from 0.145 to 0.16 p.u. KF-Adaline estimates 7th harmonic component 

as 0.149 p.u., which is more accurate. Fig. 5.8 provides a comparative estimation of 11th 

harmonic component of signal using both the algorithms. RLS-Adaline estimates it 

between 0.09 to 0.13 p.u. with its oscillations  around 0.11 p.u. but KF-Adaline estimates 

it as 0.101 p.u. Fig. 5.9 shows the comparative estimation of dc component of signal 

using both the algorithms. Estimated value of signal using KF-Adaline is 0.496 p.u. but 

its value, using RLS-Adaline varies from 0.492 to 0.525 p.u. and it settles at 0.495 p.u. So 

we found that the estimation using KF-Adaline is more accurate compared to RLS-

Adaline. 

0 0.02 0.04 0.06 0.08 0.1
79.75

79.8

79.85

79.9

79.95

80

80.05

80.1

80.15

80.2

Time [s]

Ph
as

e 
[d

eg
.]

 

 
rls-adaline
kf-adaline

 
Fig.5.10 KF-Adaline estimation performance of phase of fundamental component of signal 
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Fig.5.11 KF-Adaline estimation performance of phase of 3rd harmonic component of signal 
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Fig.5.12 KF-Adaline estimation performance of phase of 5th harmonic component of signal 
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Fig.5.13 KF-Adaline estimation performance of phase of 7th harmonic component of signal 
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Fig.5.14 KF-Adaline estimation performance of phase of 11th harmonic component of signal 
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Fig.5.15 KF-Adaline estimation performance of MSE of static signal 

 

Figures 5.10-5.14 show the tracking performances of the fundamental, 3rd, 5th, 7th 

and 11th harmonic component of signal in presence of random noise and decaying DC 

component using RLS-Adaline and KF-Adaline methods. In the above estimation 

process, KF-Adaline is tuned optimally by properly choosing the covariance and noise 

covariance matrices. The time required for trapping the fundamental and harmonic is 

approximately 0.02 sec. (20 samples) for RLS-Adaline method but KF-Adaline traps the 

fundamental and harmonic components initially with more correct estimation. Fig.5.15 

shows the comparative estimation of Mean Square Error (MSE) of signal using the two 

algorithms. From the figure, it is found that, MSE performance in case of KF-Adaline is 

comparatively better than RLS-Adaline method. 
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5.3.2 Estimation of harmonics in presence of amplitude drift 
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Fig. 5.16 KF-Adaline estimation performance of 3rd harmonic component of signal 
during amplitude change 

 

Fig.5.16 shows the tracking of 3rd harmonic component of signal, when its 

amplitude suddenly changes from 0.5 p.u. to 0.6 p.u. at 0.05 sec. From the figure 5.15, it 

is seen that both the methods track the 3rd harmonic component but tracking by KF-

Adaline is comparatively better.  

Table 5.1 gives the harmonic estimations obtained by the RLS-Adaline, KF-

Adaline methods. In contrast, the final harmonics parameters obtained with the proposed 

approach exhibit the best estimation precision where the largest amplitude deviation is 

1.0928% occurred at the 3rd harmonics estimation and the largest phase angle deviation is 

2.48290 occurred at the 11th harmonics estimation also the computational time required 

using KF-Adaline is less compared to RLS-Adaline.  
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Table 5.1  
Performance comparison of RLS-Adaline and KF-Adaline in presence of harmonics 

 

Method

s 
Param- Fund- 3rd 5th 7th 11th 

Compu. 

time 

(sec.) 

f(Hz) 50 150 250 350 550 

A (V) 1.5 0.5 0.2 0.15 0.1 Actual 

ϕ(°) 80 60 45 36 30 

 

A (V) 1.4808 0.5070 0.1972 0.1458 0.1018 

Deviation (%) 1.2807 1.3985 1.3822 2.7884 1.7560 

ϕ(°) 78.5142 58.4516 43.118 34.8884 34.4097 

RLS-

Adaline 

Deviation (°) 1.4858 1.5484 1.882 1.1116 4.4097 

0.3575 

A (V) 1.4996 0.5055 0.1999 0.1490 0.0991 

Deviation (%) 0.0284 1.0928 0.0621 0.6897 0.9189 

ϕ(°) 80.2181 59.6455 
43.817

2 
35.4725 32.4829 

KF-

Adaline 

Deviation (°) 0.2181 0.3545 1.1828 0.5275 2.4829 

0.0827 

 

5.3.3 Harmonics Estimation of Signal in presence of Inter and Sub-

Harmonics 
To evaluate the performance of the proposed algorithm in the estimation of a signal in the 

presence of sub-harmonics and inter-harmonics, a sub-harmonic and two inter-harmonics 

components are added to the original signal. The frequency of sub-harmonic is 20 Hz, the 

amplitude is set to be 0.505 p.u. and the phase is equal to 75 degrees. The frequency, 

amplitude and phase of one of the inter-harmonic is 130 Hz, 0.25p.u. and 65 degrees 

respectively. The frequency, amplitude and phase of the other inter-harmonic is 180 Hz, 

0.35p.u. and 10 degrees respectively.  
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Fig.5.17 KF-Adaline estimation performance of amplitude of sub-harmonic component 

of signal 
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Fig.5.18 KF-Adaline estimation performance of phase of sub-harmonic component of 

signal 
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Fig.5.19 KF-Adaline estimation performance of amplitude of inter-harmonic1 of signal 
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Fig.5.20 KF-Adaline estimation performance of phase of inter-harmonic1 of signal  
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Fig.5.21 KF-Adaline estimation performance of amplitude of inter-harmonic2 of signal  
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Fig.5.22 KF-Adaline estimation performance of phase of inter-harmonic2 of signal  
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Figures 5.17-5.22 show the estimation of amplitudes and phases of a sub-

harmonic and two inter-harmonics. The time required to reach the reference values for 

the sub-harmonics and inter-harmonics components is 0.02 sec. using KF-Adaline 

algorithm. Using RLS-Adaline, time required to reach the reference value is 0.03 sec. 

Table 5.2 gives the simulation results of the signal having two inter harmonics 

and one sub-harmonic component using RLS-Adaline and KF-Adaline methods. It shows 

that as a whole the performance of estimation using KF-Adaline is better as compared to 

RLS-Adaline. The largest amplitude deviation is 8.4476% occurred at 11th harmonics 

estimation and the largest phase angle deviation is 4.05010 occurred at 11th harmonics 

estimation. 

Table 5.2  
Performance comparison of RLS-Adaline and KF-Adaline with inter and sub-Harmonics 

 
Methods Paramete- Sub Funda- 3rd Inter1 Inter2 5th 7th 11th 

f(Hz) 20 50 150 180 230 250 350 550 

A (V) 0.5 1.5 0.5 0.25 0.35 0.2 0.15 0.1 Actual 

ϕ(°) 75 80 60 65 10 45 36 30 

A (V) 0.49 1.484 0.491 0.264 0.351 0.203 0.154 0.1 

Deviation 

(%) 
2.836 1.019 1.651 5.689 0.346 1.559 3.274 0.401 

ϕ(°) 73.10 78.113 57.80 61.51 11.35 41.77 38.15 39.141

RLS-

Adaline 

Deviation 

(°) 
1.898 1.886 2.196 3.489 1.35 3.227 2.151 9.141 

A (V) 0.494 1.5 0.5 0.253 0.361 0.204 0.143 0.091 

Deviation 

(%) 
1.063 0.046 0.12 1.51 3.168 2.039 4.119 8.447 

ϕ(°) 75.11 80.245 59.939 65.206 8.927 42.92 34.97 34.05 

KF-

Adaline 

Deviation 

(°) 
0.114 0.245 0.06 0.206 1.097 2.074 1.022 4.05 
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In the simulation studies the performance index ε is given by 
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where )(ky  and 
∧

)(ky are actual and estimated signal respectively. In this case the 
significance of the performance index ε  is that it provides the accuracy of the estimation 
algorithm. Less the value of ε , means more accuracy of estimation and vice versa. 

 
 

Table 5.3  
Comparison of Performance Indices (RLS-Adaline and KF-Adaline) 

 
SNR RLS-Adaline KF-Adaline 

No noise 0.0583 0.0197 

40 dB 0.0636 0.04 

20 dB 0.8921 0.6477 

10 dB 12.710 5.253 

 

The estimation results of RLS-Adaline and KF-Adaline are given in Table 5.3. From 

which it can be seen that KF-Adaline achieves a significant improvements in terms of 

reducing error for harmonics estimation in comparison to RLS-Adaline. 

 

5.3.4 Harmonic Estimation of a Dynamic Signal 
To examine the performance of RLS-Adaline algorithm in tracking harmonics and 

its robustness in rejecting noise, a time-varying signal of the form (4.30) of chapter 4 is 

used. The variations of fundamental, 3rd and 5th harmonics components of signal w.r.t 

time are given in (4.31)-(4.33). 

Where 0.11 =f Hz 0.33 =f Hz. 0.65 =f Hz. 
And random noise )(tμ  is same as in the case of static signal. 
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Fig.5.23 Comparison of actual and estimated wave forms of dynamic signal (RLS-

Adaline and KF-Adaline). 
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Fig.5.24 KF-Adaline estimation performance of amplitude of fundamental component of 

dynamic signal 
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Fig.5.25 KF-Adaline estimation performance of amplitude of third harmonic component 

of dynamic signal 
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Fig.5.26 KF-Adaline estimation performance of amplitude of fifth harmonic component 

of dynamic signal 
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Fig.5.27 KF-Adaline estimation performance of phase of fundamental component of 

dynamic signal 
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Fig.5.28 KF-Adaline estimation performance of phase of third harmonic component of 

dynamic signal 
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Fig.5.29 KF-Adaline estimation performance of phase of fifth harmonic component of 

dynamic signal 
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Fig.5.30 KF-Adaline estimation performance of MSE of dynamic signal 
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Fig.5.23 shows the actual vs. estimated value of signal using RLS-Adaline and KF-

Adaline algorithms. In both the cases actual and estimated value closely matches with 

each other. Fig. 5.24-5.26 show the tracking of fundamental, 3rd and 5th harmonic 

component of amplitude of a dynamic signal using both RLS-Adaline and KF-Adaline 

methods. In all the three cases RLS-Adaline provides oscillatory estimation but KF-

Adaline provides more accurate and consistent performance. Figs 5.27-5.29 show the 

tracking of fundamental, 3rd and 5th harmonic components of phases of a dynamic signal 

using both the methods. Both the methods estimates correctly but KF-Adaline 

performance is better having negligible oscillations. Fig.5.30 provides a comparative 

performance of Mean Square Error (MSE) of signal. KF-Adaline performance is slightly 

better in MSE analysis 

Table 5.4  
Performance comparison of RLS-Adaline and KF-Adaline for Dynamics Signal 

 
Methods Parameters Fundamen

tal 

3rd 5th Computatio-

nal time 

(seconds) 

f(Hz) 50 150 250 

A (V) 1.5701 0.5447 0.2101 

Actual 

ϕ(°) 80 60 45 

 

A (V) 1.5699 0.5447 0.2101 

Deviation (%) 0.0242 0.0435 0.0021 

ϕ(°) 79.9942 60.0037 44.9651 

RLS-

Adaline 

Deviation (°) 0.0058 0.0037 0.0349 

1.233 

A (V) 1.5701 0.5447 0.2101 

Deviation (%) 0.0117 0.0427 0.0151 

ϕ(°) 80 59.9999 44.9996 

KF-Adaline 

Deviation (°) 4.44×10-6 7.51×10-5 3.65×10-4 

0.878 

 
Table 5.4 gives the simulation results of the dynamic signal. Table shows that for the 

dynamic signal estimation, both the methods discussed in this chapter give accurate 
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estimation but the accuracy using KF-Adaline is slightly better as compared to RLS-

Adaline method. 

 

5.4 Experimental Studies and Results 
For real time application of the algorithms in estimating harmonics in a power system, 

data i.e obtained in a laboratory environment on running a DG set on normal working day 

of the laboratory as per the experimental setup discussed in section 4.4 of chapter 4 is 

taken. Fig. 5.31 shows the estimation of signal using both the algorithms from the real data 

obtained from the experiment. From this Fig., it is concluded that the estimated waveform 

is very close to the real one in first half cycle and small deviation is there in second half 

cycle. Hence the obtained results are satisfactory for the application with experimental 

data.  
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Fig. 5.31 KF-Adaline estimation performance of signal from real data 
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Table 5.5 
 Comparison of Performance Index of Experimental Data (RLS-Adaline and KF-

Adaline) 
 

Parameter RLS-Adaline KF-Adaline 

ε 7.4718 2.4985 

 
For the purpose of estimation, the performance index is calculated for the two 

algorithms based on equation (5.21) and the results are given in Table 5.5. In this case KF-

Adaline obtains the most accurate estimation result since it has less performance index 

(around 2.5%), which is acceptable.  

 

5.5 Hybrid BFO Methods for Harmonics estimation 
The Schematic as described in section 3.2.2 and Fig. 3.14 for frequency 

estimation is used for harmonics estimation. First input signal is fed to BFO algorithm 

and unknown parameters are optimized using this algorithm. Then optimized output of 

BFO algorithm is taken as the initial value of weight of Adaline/ RLS algorithm. Output 

of Adaline/RLS is compared with the desired output and the error obtained, is minimized 

by updating the weight of the Adaline/RLS. From the final updated weight of the 

Adaline/RLS, amplitudes and phases of the fundamental and harmonics components are 

determined. 

 
5.5.1 Proposed RLS-BFO Combined Approach to Harmonic 

Estimation 
Same signal as described by (4.1) is considered. The steps from (4.1) to (4.5) are 

followed. Then parametric form of the signal such as XtHty )()( =  is taken. Where )(tH is 

given by (4.6) and X is given by (4.7) and (4.8). The optimized output of the unknown 

parameter using BFO algorithm is taken as the initial values of unknown parameter )(X  

for estimation using RLS. The vector of unknown parameter can be updated using (4.16)-

(4.19). After updating of unknown parameter vector, amplitudes, phases of the 
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fundamental and nth harmonic parameters and dc decaying parameters are estimated 

using equations (4.12)-(4.15). 

 
5.5.2 Proposed Adaline-BFO Combined Approach to Harmonics 

Estimation 
The general form of the waveform of (4.1) of previous chapter is taken. The 

waveform is discretized as per (4.2). It is then rewritten as (4.5), on approximating 

decaying term using first two terms of Taylor series expansion.  

The signal (4.5) in parametric form may be written as  

WkXky )()( =                                                                                                                (5.17) 

The equation (5.1)) gives an idea of using an adaptive linear combiner comprising a 

neural network called ‘Adaline’ to estimate the components of the harmonics. Fig.5.1 of 

previous chapter shows the block diagrammatic representation of the Adaline. Product of 

input signal and weight of the Adaline gives the estimated output and is compared with 

the desired output. The error obtained, is minimized by updating the weight of the 

Adaline. 

The input to the Adaline is 
 

T
NN kTkTkTkTkTkX ]1)cos()sin(...)cos()[sin()( 11 −= ωωωω    

 
The weight vector of the Adaline 
 

T
NNNN kWkWkWkWkWkWkW )]()()()(...)()([)( 221221221 ++−=   

 
The optimized output of the unknown parameter using BFO algorithm is taken as the 

initial values of the weight vector of Adaline and is updated using a modified Widrow-

Hoff delta rule as  

 

)()(
)()()1(

kXkX
UkekWkW T+

+=+
λ

α                                                                             (5.18) 

 
where ))(( kXSGNU =                                                                                                 (5.19) 
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⎩
⎨
⎧

<−
>+

=
0,1
0,1

)(
i

i
i X

X
XSGN                                                                                               (5.20) 

22,...,2,1 += Ni  
20 << α  

 
The learning parameter α can be adapted using the following expression: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

β

α
α

k
k

1
)( 0                                                                                                            (5.21) 

where 0α  is the initial learning rate and β  is decaying rate constant. λ  Is a small 

quantity and is usually chosen to make 

0)()( ≠+ kXkX Tλ  
After updating of weight vector of the Adaline, amplitudes and phases of the 

fundamental and nth harmonic parameters and dc decaying parameters are estimated 

using (5.8)-(5.11).  

where 
 

T
dcdcdcnnnn AAAAAAW ])sin()cos(...)sin()cos([ 1111 αφφφφ=   

Flow chart as described in Fig. 3.15 is also used for the estimation of harmonics in a 

power system signal.  

 

5.6 Simulation Results and Discussions 

5.6.1 Static signal corrupted with random noise and decaying DC 

component. 
The power system signal corrupted with random noise and decaying DC 

component is taken. The signal used for the estimation, besides the fundamental 

frequency, contains higher harmonics of the 3rd, 5th, 7th, 11th and a slowly decaying DC 

component. This kind of signal is typical in industrial load comprising power electronic 

converters and arc furnaces. The signal as in (4.26) of previous chapter is taken. The 

signal is corrupted by random noise )(01.0)( trandt =μ  having normal distribution with 

zero mean and unity variance. In the simulation work, in harmonics estimation, the 
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values of different parameters taken during both simulation and experimentation work 

are given in Table 5.6. The no. of parameters to be optimized, p =12 (without inter and 

sub-harmonics case), p =18 (with inter and sub-harmonics case) are taken. 

Table-5.6 
Values of parameters used for simulation and experimental work (BFO, RLS-BFO 

and Adaline-BFO) 
0α  β  λ  S  p  

sN  cN reN edN edP C(i) dattract, wattract hrepellant wrepellant

0.01 100 0.01 100 12, 

18 

3 5 10 10 0.25 0.001 0.05 0.3 0.05 10 
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Fig. 5.32 Comparison of Actual vs. Estimated output of signal (40 dB) (BFO, RLS-BFO 

and Adaline-BFO) 
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Fig. 5.33 Actual vs. Estimated output of signal (20 dB) (BFO, RLS-BFO and Adaline-

BFO) 
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Fig. 5.34 Actual vs. Estimated output of signal (10 dB) (BFO, RLS-BFO and Adaline-

BFO) 
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Figures 5.32-5.34 compares actual and estimated value of signal using three algorithms 

with SNR values of 40, 20 and 10 dB respectively .It is seen that at 40 dB SNR value the 

estimated value closely matches with the actual value but as SNR value of signal 

decreases, there is more deviations of estimated value from actual value 
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Fig. 5.35 Estimation of Amplitude of Fundamental and Harmonics components of signal 

using RLS-BFO 
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Fig.5.36 Estimation of Amplitude of Fundamental and Harmonics components of signal 

using Adaline-BFO 
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Fig. 5.37 Estimation of phase of Fundamental and Harmonic Components of signal using 

RLS-BFO  
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Fig. 5.38 Estimation of Phase of Fundamental and Harmonics Components of signal 

using Adaline-BFO 
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Fig. 5.39 Estimation of signal having fundamental and all the harmonics using RLS-BFO 
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Fig. 5.40 Estimation of signal having fundamental and all the harmonics using Adaline-

BFO 
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Fig. 5.41 Adaline-BFO estimation performance of MSE of signal 
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Figs. 5.35 and 5.36 estimate amplitudes of fundamental as well as harmonic 

components contained in the signal using RLS-BFO and Adaline-BFO algorithms 

respectively. Figs. 5.37 and 5.38 show the estimation of phases of fundamental and 

harmonic components using RLS-BFO and Adaline-BFO respectively. From these four 

figs., we come to conclude that both the algorithms track the fundamental as well as 

harmonic components accurately. Fig. 5.39 and 5.40 separately estimates fundamental 

and harmonic components contained in the signal using RLS-BFO and Adaline-BFO 

respectively. Fig.5.41 shows the comparative estimation of Mean Square Error (MSE) of 

signal using the two algorithms. From the figure, it is found that, MSE performance in 

case of Adaline-BFO and RLS-BFO is comparatively better than BFO 
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Fig. 5.42 Comparison of Estimation of amplitude of Fundamental component of signal 

(BFO, RLS-BFO and Adaline-BFO) 
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Fig. 5.43 Comparison of Estimation of amplitude of 3rd Harmonic component of Signal 

(BFO, RLS-BFO and Adaline-BFO) 
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Fig. 5.44 Comparison of Estimation of amplitude of 5th Harmonic component of 

Signal (BFO, RLS-BFO and Adaline-BFO) 
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Fig. 5.45 Comparison of Estimation of amplitude of 7th Harmonic component of 

Signal (BFO, RLS-BFO and Adaline-BFO) 
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Fig. 5.46 Comparison of Estimation amplitude of 11th Harmonic component of Signal 

(BFO, RLS-BFO and Adaline-BFO) 
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Figs. 5.42-5.46 show a comparison of estimation of amplitudes of fundamental, 3rd, 5th, 

7th and 11th harmonics components of signal respectively using BFO, RLS-BFO and 

Adaline-BFO algorithms. From these figures, it is verified that Adaline-BFO estimates 

fundamental as well as harmonic components more accurately compared to other two. 
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Fig. 5.47 Comparison of Estimation of phase of Fundamental component of Signal 

(BFO, RLS-BFO and Adaline-BFO) 
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Fig. 5.48 Comparison of Estimation of phase of 3rd Harmonic component of Signal (BFO, 

RLS-BFO and Adaline-BFO) 
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Fig. 5.49 Comparison of Estimation of phase of 5th Harmonic component of Signal 

(BFO, RLS-BFO and Adaline-BFO) 
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Fig. 5.50 Comparison of Estimation of phase of 7th Harmonic component of Signal 

(BFO, RLS-BFO and Adaline-BFO) 
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Fig. 5.51 Comparison of Estimation of phase of 11th Harmonics component of Signal 

(BFO, RLS-BFO and Adaline-BFO) 
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Figures 5.47-5.51 show a comparative estimation of phases of fundamental, 3rd, 

5th, 7th and 11th harmonics components signal respectively using BFO, RLS-BFO and 

Adaline-BFO algorithms. Adaline-BFO also gives more correct estimation compared to 

other two in these figures. 

Table 5.5 gives the simulation results obtained by using the BFO, RLS-BFO and  

Adaline-BFO algorithms. The harmonic parameters obtained with Adaline-BFO exhibit 

the best estimation precision where the largest amplitude deviation is 1.746% occurred at 

the 11th harmonics estimation and the largest phase angle deviation is 0.85160 occurred at 

the 7th harmonics estimation.  

Table-5.7 
Performance Comparison of BFO, RLS-BFO and Adaline-BFO in presence of noise 

and d.c. offsets 

Method

s 
Param- Fund- 3rd 5th 7th 11th 

Comp. 

time 

(sec.) 

f(Hz) 50 150 250 350 550 

A (V) 1.5 0.5 0.2 0.15 0.1 Actual 

ϕ(°) 80 60 45 36 30 

 

A (V) 1.4878 0.5108 0.1945 0.1556 0.1034 

Deviation (%) 0.8147 2.1631 2.7267 3.7389 3.4202 

ϕ(°) 80.4732 57.9005 45.8235 34.5606 29.127 
BFO 

Deviation (°) 0.4732 2.0995 0.8235 1.4394 0.873 

10. 931 

A (V) 1.4942 0.4986 0.2019 0.1526 0.0977 

Deviation (%) 0.384 0.2857 0.9607 1.7609 2.3218 

ϕ(°) 80.3468 58.5461 45.6977 34.8079 30.1675 

RLS-

BFO 

Deviation (°) 0.3468 1.4539 0.6977 1.1921 0.1675 

9. 546 

A (V) 1.5042 0.4986 0.2018 0.1507 0.0986 

Deviation (%) 0.2777 0.2857 0.9021 0.4369 1.746 

ϕ(°) 80.2338 59.3487 45.1327 36.8516 29.9361 

Adaline

-BFO 

Deviation (°) 0.2338 0.6513 0.1327 0.8516 0.0639 

9.345 
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5.6.2 Harmonics Estimation of signal in presence of inter and sub-

harmonics 
To evaluate the performance of the Adaline-BFO algorithm in the estimation of a 

signal in the presence of sub-harmonics and inter-harmonics, a sub-harmonic and two 

inter-harmonics components are added to the original signal. The frequency of sub-

harmonic is 20 Hz, the amplitude is set to be 0.505 p.u. and the phase is equal to 75 

degrees. The frequency, amplitude and phase of one of the inter-harmonic is 130 Hz, 

0.25p.u. and 65 degrees respectively. The frequency, amplitude and phase of the other 

inter-harmonic is 180 Hz, 0.35p.u. and 20 degrees respectively. 
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Fig. 5.52 Comparison of Actual vs. Estimated signal in presence of sub-harmonic and 

inter-harmonics (BFO, RLS-BFO and Adaline-BFO) 
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Fig. 5.53 Adaline-BFO estimation performance of amplitude of sub-harmonic component of 

signal 
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Fig.5.54 Adaline-BFO estimation performance of amplitude of inter-harmonic1 

component of signal 
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Fig. 5.55 Adaline-BFO estimation performance of amplitude of inter-harmonic2 component of 

signal  
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Fig. 5.56 Adaline-BFO estimation performance of phase of sub-harmonic component of 
signal  
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Fig. 5.57 Adaline-BFO estimation performance of phase of inter-harmonic1 component 

of signal  
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Fig. 5.58 Adaline-BFO estimation performance of phase of inter-harmonic2 component 

of signal  
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Fig. 5.52 shows the comparative estimation of actual and estimated signal using 

the three algorithms. In this case estimated signal of three algorithms are more or less 

match with the true value. Fig. 5.53-5.58 show the estimation of amplitudes and phases 

of a sub-harmonic and two inter-harmonics using the three algorithms. Using Adaline-

BFO, the estimation is very perfect with most of the sample converge towards the 

reference value in each case of estimation. 

Table-5.8  
Comparison of BFO, RLS-BFO and Adaline-BFO in presence of Inter and Sub-Harmonics 

Methods Parameters Sub 
Fund- 

 
3rd Inter1 Inter2 5th 7th 11th 

Compu. 

time (s) 

f(Hz) 20 50 150 180 230 250 350 550 

A (V) 0.505 1.5 0.5 0.25 0.35 0.2 0.15 0.1 Actual 

ϕ(°) 75 80 60 65 20 45 36 30 

 

A (V) 0.525 1.478 0.487 0.266 0.372 0. 205 0.146 0. 101 

Deviation 

(%) 
3.995 1.410 2.457 6.557 6.529 2. 576 2.417 1. 55 

ϕ(°) 74.48 79.83 61.231 63.99 19.688 47. 698 36.73 29.392 

BFO 

Deviation (°) 0.514 0.163 1.231 1.009 0.311 2.698 0.736 0.607 

13.833 

A (V) 0.511 1.508 0.492 0.258 0.363 0.201 0.152 0.101 

Deviation 

(%) 
1.190 0.571 1.588 3.237 3. 965 0.785 1.425 1.48 

ϕ(°) 74.81 79.91 59.076 65.34 19.723 46. 278 35.38 30.43 

RLS-

BFO 

Deviation (°) 0.183 0.085 0.924 0.344 0.276 1. 278 0.618 0.433 

12.837 

A (V) 0.507 1.502 0.495 0.249 0.339 0. 200 0.147 0.100 

Deviation 

(%) 
0.494 0.195 0.956 0.204 2.875 0. 454 1.414 0.802 

ϕ(°) 80.11 80.06 60.06 65.19 19.867 45.95 36.44 30.064 

Adaline-

BFO 

Deviation (°) 0.117 0.064 0.065 0.190 0.132 0.959 0.447 0.064 

12.669 
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Table-5.6 gives the simulation results of the signal having two inter harmonics 

and one sub-harmonic component, using BFO and RLS-BFO and Adaline-BFO 

algorithms. It shows that as a whole the performance of estimation using Adaline-BFO is 

better as compared to other two. The largest amplitude deviation is 2.875% occurred at 

230 Hz inter-harmonic estimation and the largest phase angle deviation is 1.95930 

occurred at 5th harmonics estimation. 

In the simulation studies the performance index ε is estimated by 

100
)(

))()((

1

2

1

2

×
−

=

∑

∑

=

=
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N

k

N

k

ky

kyky
ε  

where )(ky  and 
∧

)(ky are actual and estimated signal respectively. In this case the 

significance of the performance index ε  is that it provides the accuracy of the estimation 

algorithm. Less the value of ε , means more accuracy of estimation and vice versa. 

 
Table-5.9 

Comparison of Performance Index (BFO, RLS-BFO and Adaline-BFO) 
 

SNR BFO RLS-BFO 
Adaline-

BFO 

No noise 0.1178 0.0870 0.0640 

40 dB 0.1381 0.0923 0.0720 

20 dB 0.8073 0.7870 0.6834 

10 dB 5.2549 4.5482 4.4051 

0 dB 45.4871 32.8243 31.9521 

 
The estimation results of BFO, RLS-BFO and the Adaline-BFO scheme are given in 

Table 6.3, from which it can be seen that Adaline-BFO achieves a significant 

improvements in terms of reducing error for harmonics estimation in comparison to BFO 

and RLS-BFO. 
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5.7 Experimental Studies and Results 
 

Real-time voltage data generation was accomplished in a laboratory environment from 

the mains supply as described in experimental setup in section 2.3.1 in chapter 2. Fig. 

5.59 shows the estimation of signal using all the three algorithms from the real data 

obtained from the experiment. From Fig. 5.59, it is clear that the estimated waveform 

follows the real waveform over one cycle. 
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Fig. 5.59 Adaline-BFO estimation performance of signal from real data 

 
Table-5.10 

Comparison of Performance Index on estimation of Experimental Data 
 

Parameter BFO RLS-

BFO 

Adaline-

BFO 

ε 11.0512 10.9613 10.6253 
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The performance index of estimation of real data is calculated for the three algorithms 

and the results are given in Table-5.8. In this case Adaline-BFO obtains the most accurate 

estimation result. Hence the obtained results are satisfactory for the application with real 

data. 

 
5.8 Chapter Summary 

In this chapter, four new hybrid algorithms such as RLS-Adaline, KF-Adaline, 

RLS-BFO and Adaline-BFO applied to harmonics estimation have been described . The 

performances RLS-Adaline and KF-Adaline are dependent on the initial choice of weight 

vector W  and Covariance matrix P . By using an optimal choice of weight vector, faster 

convergence to the true value of signal parameter can be achieved.  After the 

optimization of the weight vector, online tracking of the changes in amplitudes and 

phases of the fundamental and harmonic components in presence of noise and decaying 

dc components can be carried out. Both the algorithms track the fundamental and 

harmonic signals very well for both static and dynamic signal but the performance of 

tracking using KF-Adaline is better than RLS-Adaline. The performances of the two 

proposed hybrid BFO algorithms i.e RLS-BFO and Adaline-BFO are dependent on the 

initial choice of maximum and minimum values of unknown parameters taken. In this 

work, we have taken maximum and minimum values as 10% deviation from their actual 

values. By using an optimal choice of parameters, faster convergence to the true value of 

signal parameter can be achieved. All the algorithms track the fundamental as well as 

harmonics components of signals very well but the tracking performance using Adaline-

BFO is better compared to BFO and RLS-BFO algorithms.  
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Chapter-6 

Hybrid Active Power Filter Design 
 

6.1. Introduction 

In chapters 4 and 5 different signal processing and hybrid techniques applied to 

power system harmonics estimation are discussed. After estimation of the harmonic 

components in the power system, the design of Hybrid Active Power Filter is discussed 

in this chapter for elimination of these. It may be noted that passive filters were 

conventionally used to reduce harmonics in power system whilst capacitor banks brings 

improvement in power factor of AC loads. However, passive filters are incapable of 

filtering in the highly transient conditions, where the distortion present in a system is 

highly unpredictable [85-87]. The major drawbacks of passive filters are their large size, 

fixed compensation and resonance phenomena. Since the conventional passive filter is 

not able to provide a complete elimination, recently some Active Power Filters (APFs) 

have been widely used for the compensation of harmonics in electric power system. 

Shunt active power filter operates on the principle of injecting harmonic current into the 

power system with the same magnitudes as the harmonics current generated by a 

nonlinear load but with 1800 phase shift [87-90]. A controlled voltage source inverter is 

required to generate the compensating currents [91-92]. Active power filters are able to 

damp harmonics resonance between the passive filter and source impedance. But use of 

only active filter is a very expensive solution as it requires comparatively high power 

converter ratings. Taking into account the advantages of passive and active filters, hybrid 

power filters [94-95] are designed. They are capable of controlling the voltage variations 

and distortions as well as suppression of harmonics. These hybrid filters [98-104] have a 

wide range of spectrum, ranging from those available in the market to those under 

research and development. They are based on cutting-edge power electronics technology 
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which includes power conversion circuits, semiconductor devices, analog/digital signal 

processing, voltage/current sensors, and control theory. 

In active and hybrid power filters [94-97], a number of control strategies such as 

Hysteresis and sliding mode control techniques may be used to regulate the current 

produced by the voltage source inverter. But in those cases frequency is variable [93]. 

Hence, there may be difficulty in the design as well as in the control of noise level. PWM 

control technique [85] can eliminate these problems but signal can be altered due to 

dynamic response of current feedback loop, thereby reducing the ability of signal to 

compensate fast current transitions. 

In this thesis, to achieve more accurate estimation, a combination of signal 

processing and soft computing technique is proposed for frequency and harmonics 

estimation. This chapter describes combined KF-Adaline (Kalman Filter Adaline) 

approach to estimation of harmonics content of power system signal. The neural 

estimator is based on the use of an adaptive perceptron comprising a linear adaptive 

neuron called Adaline. Kalman Filter has been employed in the proposed hybrid 

algorithm for updating the weight in Adaline. Performances of KF-Adaline have been 

compared with only KF and Adaline algorithms. After estimation of harmonics with the 

proposed algorithm, a modified PWM control technique is applied to HAPF for 

harmonics compensation in distorted power signals. The modified PWM control 

technique is based on comparing simultaneously a triangular high frequency carrier 

signal with a controlling signal and its 1800 out of phase signal. The simulated results of 

this hybrid power filter using modified PWM technique are compared with the active and 

passive filter. The performance of HAPF is also verified uaing experimental studies on a 

laboratory prototype.  
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6.2 Classification of Harmonics Filters 

6.2.1 Passive Harmonic Filters 
Passive harmonic filters consisting of inductors, capacitors and/or resistors can be 

classified into tuned filters and high-pass filters. They are connected in parallel with 

nonlinear loads such as power converters, ac electric arc furnaces, and so on.  

 

 
                                                       (a)                           (b) 

Fig. 6.1 Passive tuned filters (a) Single tuned. (b) Double tuned. 

 
                                             (a)                        (b)                       (c) 

Fig. 6.2 Passive high-pass filters. (a) First order (b) Second order (c) Third order 

 

Figs. 6.1 and 6.2 show circuit configurations of the passive filters on a per-phase 

base. Out of them, the combination of four single-tuned filters tuned to the 5th , 7th , 11th , 

and 13th harmonic frequencies and a second-order high-pass filter tuned around the 17th 

harmonic frequency are widely used in a high-power three-phase thyristor rectifier[86]. 

The main objective of providing a passive filter to a nonlinear load is to provide low-
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impedance paths for specific harmonic frequencies, thereby resulting in absorbing the 

dominant harmonic currents flowing out of the load. Though a second-order high-pass 

filter provides good filtering performance in a wide frequency range, it produces higher 

fundamental-frequency loss compared to a single-tuned filter. In case of inductive loads, 

power factor correction to some extent is carried out by a Passive harmonic filter.  

 

Harmonic series and/or parallel resonances between the passive filter and the 

power system impedance may occur at a lower frequency than each tuned frequency. A 

passive filter may sink some specific harmonic currents from other nonlinear loads. Due 

to this, a passive filter may become overloaded and ineffective. Before installing a careful 

consideration should be made taking into account the harmonics resonance and 

overloading effect.  

 

6.2.2 Active Harmonic Filters 
So far as circuit configurations are concerned, Active filters can be classified into shunt 

active filters and series active filters. But, shunt active filters are preferred to series active 

filters in terms of design and function.  

 
Fig. 6.3 Single-phase or three-phase shunt active filter 

 

Fig. 6.3 shows a system configuration of a single-phase or three-phase shunt active filter 

for harmonic “current” filtering of a single-phase or three-phase diode rectifier with a 

capacitive dc load. Active filters are generally connected in parallel with the harmonic-

vs 

is L
iL

iF 
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producing load with or without a transformer. The active filter can be controlled by 

extracting harmonic current from the detected load current by drawing the compensating 

current from the utility supply voltage, so as to cancel out the harmonic current. The 

function of an ac inductor that is installed at the ac side of the diode rectifier is to operate 

the active filter stably and properly. 

 
Fig. 6.4 Single-phase or three-phase series active filter. 

 

Fig. 6.4 shows the system configuration of a single-phase or three-phase series active 

filter for harmonic “voltage” filtering of a single-phase or three-phase diode rectifier with 

a capacitive load. The series active filter is connected in series with the supply voltage 

through a three-phase transformer or three single-phase transformers. Like the shunt 

active filter, the series active filter is controlled on extracting the harmonic current from 

the detected supply current by means of digital signal processing or by applying the 

compensating voltage across the primary of the transformer, which results in significantly 

reducing the supply harmonic current when the feedback gain is set to be high.  

 

 

 

 

 

vs 

is 
vAF 
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6.2.3 Hybrid Harmonic Filters 

 
Fig. 6.5 Combination of a series active filter and a shunt passive filter 

 
Fig. 6.6 Series connection of an active filter and a passive filter 

 

Figs. 6.5 [94-95] and 6.6 [96-97] show the simplified circuit diagrams of the hybrid 

filters. The idea of the two hybrid filters motivates power electronics 

researchers/engineers for development of various hybrid active filters, focusing on their 

practical uses [98-104]. The two hybrid filters (Fig. 6.7 and Fig. 6.8) are based on 

combinations of an active filter, a three-phase transformer (or three single-phase 

transformers), and a passive filter containing two single-tuned filters to the fifth- and 

seventh-harmonic frequencies and a second-order high-pass filter tuned around the 11th 

harmonic frequency. These hybrid filters may be slightly different in circuit configuration 

but they are almost the same in operating principle and filtering performance. Such type 

is 
vAF iL 

iF 

5th 7th

is iL 

iF 

5th 7th
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of combination with the passive filter makes it possible to significantly reduce the rating 

of the active filter. Active filter not only compensates the harmonic currents produced by 

the thyristor rectifier but also achieves “harmonic isolation” between the supply and the 

load [94-95]. As a result, harmonic resonance effect and flow of harmonic current in the 

supply is restricted.  

 

6.3. Description of the studied system 
Figure 6.7 shows the system under study where a non-linear load (rectifier load) is 

connected across an a.c supply. Due to the presence of nonlinear load, with the 

introduction of harmonics, source current waveform becomes distorted. The main 

objective of this work is to mitigate the harmonic content of the source current signal.  

 

Fig.6.7 Studied system 

 
6.4. KF-Adaline algorithm for harmonic estimation 

KF-Adaline based algorithm for harmonics estimation as discussed in 5.2.2 is 

applied here for estimation of different order of the harmonics content at different cases 

of source current signal i.e without using filter, with passive filter, with active filter and 

with HAPF.  
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6.5. Proposed HAPF Method of Harmonics Filtering 
Proposed single phase HAPF as shown in Fig. 6.8 consists of a full-bridge 

voltage-source inverter, a DC side capacitor Cdc, an inductor Lc and a transformer. The 

primary winding of the transformer is connected to AC mains and secondary is connected 

to PWM inverter. The inductance through which the inverter is connected to power 

supply network firstly acts as a controller of the active filter current and secondly acts as 

a first order passive filter attenuating the high frequency ripples generated by the inverter. 

The filter acts as a current source, which cancels the current type harmonics and supplies 

the necessary reactive energy needed by the non-linear load. A single phase diode bridge 

rectifier feeding R-L circuit acts as a non-linear load. 

 

 
 

Fig.6.8 Single phase shunt hybrid power filter 

 

Performance of an active power filter is greatly influenced by the method used for 

extracting the current reference. The demodulation method of the single-phase circuits is 

Cdc 
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used to obtain current reference. In the indirect current control strategy, the switching 

signals for HAPF devices are obtained by comparing the fundamental active source 

current that constitutes the reference ( si
∗

) and sensed ( si ) source current. 

Refering to Fig. 6.7, the current of the non-linear load is given by 

∑ ∑
∞

=

∞

=

−+−=−=
1 2

11 )sin()sin()sin()(
k

ks
k

LksLksLksL kIIkIi φθφθφθθ                            (6.1) 

The fundamental component Lfi and the harmonic components Lki of the load current 

Li are given as follows: 

)sin( 11 φθ −= sLLf Ii                                                                                                       (6.2) 

∑
∞

=

−=
2

)sin(
k

ksLkLk kIi φθ                                                                                               (6.3) 

Again, the fundamental current is divided into two currents: 

The fundamental active current, sLLfa Ii θφ sincos 11=  

The fundamental reactive current, sLLfr Ii θφ cossin 11=  

The objective of the work is to eliminate harmonics. Therefore, the reference current of 

the active filter si
∗

is equal to fundamental active current Lfai  

)( LfrLkLLfas iiiii +−==
∗

                                                                                               (6.4) 

For simplifying the filtering of the load current, Lki , fundamental component is 

transformed into DC component by multiplying both sides of Eq. (6.1) by sθsin . 

∑
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−+−=
2

11 sin)sin(sin)sin(sin)(
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1
1 )sin(sin)2cos(

2
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2 k
ksLkss

LL kIII
φθθφθφ                                          (6.5) 

Eq. (6.5) shows the presence of DC component and the AC components of which the 

minimum frequency is equal to twice the frequency of the network. So a low pass filter 

with a low cut-off frequency is used to prevent the high frequency component entering 

the output. The filtered output current is given by 

Chapter-6 Hybrid Active Power Filter Design



 199

1
1 cos

2
)sin( φθ L

filteredsL
I

i =  

The error between the reference value dcV
∗

and the sensed feedback value dcV is passed 

through a PI controller giving a signal which is added to Lfi2 , that gives peak value of the 

reference current. For reconstituting the fundamental active current, peak value is 

multiplied by sθsin . The block diagram of the proposed control algorithm with active 

filter is shown in Fig.6.9 

 

Fig. 6.9 Proposed indirect current control algorithm of active power filter system 

 

6.5.1. Generation of Gating Signals 
The operation of the switches of the inverter can be controlled by using PWM techniques. 

There are different methods of PWM techniques such as single PWM, multiple PWM and 

sinusoidal PWM techniques. Control of the switches for modified PWM technique 

requires comparing simultaneously a triangular high frequency carrier signal with a slow 

varying regulation signal and its 1800 out of phase signal. In this technique, two reference 

signals are required for comparing the triangular signal to obtain pulses that are required 

to operate the switches as shown in Fig. 1. Basic idea to produce switching signals using 

modified PWM Technique is shown in Fig. 6.10.  
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Fig. 6.10 Modified PWM generator  

 

The current reference si
∗

, obtained from the Modified PWM control algorithm is 

compared with the sensed signal si . The error obtained is fed to a current controller with 

limiter at its output. The signal obtained from the controller and its 1800 out of phase is 

compared with a high frequency triangular wave, generating the gating signal as shown in 

Fig.6.11. Accordingly, the corresponding IGBTs will be made on or off number of times 

over the cycle. Hence, the output current of the PWM inverter can be controlled by 

means of proposed control strategies which will be useful for elimination of source 

harmonics present due to the non-linear load. In addition, simulated waveforms before 

and after filtering can be analyzed by using KF-Adaline algorithm for detailed estimation 

of harmonics present in the signal.  

 

Fig. 6.11 Principle of generation of gating signals 
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6.6 Results and Discussion 
In order to validate the accuracy of the Shunt Hybrid Power Filter with the 

proposed Modified PWM control algorithm, the system described in section 3 has been 

modeled and simulated using MATLAB/SIMULINK. The objective of the simulation is 

to examine the superiority in performance of HAPF as compared to Passive as well as 

Active Power Filter applied to the studied system. The system parameters used in these 

simulations are given in Table 6.1  

 

Table 6.1 System Parameters for different types of Filter 

Line voltage and frequency 

 

sv =120 V (rms), 60=sf Hz 

 

Line Impedance 

 

Ω= 1.0sR , 1=sL mH 

 
Voltage source type of non-linear 

load impedance 

 

Ω= 3LR , 10=LL mH 

 
Shunt passive power filter parameter 

 
1.0=cL mH, 7=cC μF 

 

Shunt active power filter parameter 

 

350=dcV V and 1000=dcC μF 

 

 
6.6.1 Simulation results with passive filter 

The load current Li , shunt passive filter current ci , supply current si and supply 

voltage sv are shown in Fig 6.12. The harmonics spectra of the supply current without 

and with shunt passive filter are shown in Figs. 6.13 and 6.14 respectively. The Total 

Harmonics Distortion (THD) is reduced from 19.46% before compensation to 8.75% 

after compensation 
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Fig. 6.12 Simulated waveforms with a shunt passive power filter 
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Fig.6.13 Source current spectrum without using filter 
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Fig.6.14 Source current spectrum using passive filter 

 

6.6.2 Simulation Results with Active Power Filter (APF) 
Fig.6.15 shows the load current Li , shunt active filter current ci , supply current si and 

supply voltage sv  of a nonlinear load connected to AC mains. It is observed that the 

steady state waveforms are close to fully compensated harmonics of source current. The 

harmonic spectrum of the source current using active power filter is shown in Fig. 6.16. 

The total harmonics distortion of the source current is reduced from 19.46 % before 

compensation to 4.67% after compensation.    
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Fig. 6.15 Simulated waveforms with a shunt active power filter 
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Fig.6.16 Source current spectrum using active filter 
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6.6.3 Simulation results with HAPF 
The load current Li , shunt passive filter current ci , supply current si and supply 

voltage sv are shown in Figure 6.17. The harmonic spectrum of the source current is 

shown in Figure 6.18. The total harmonic distortion (THD) is reduced from 19.2% before 

compensation to 1.82% after compensation. 
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Fig. 6.17 Simulated waveforms with HAPF 
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Fig. 6.18 Source current spectrum using hybrid filter 

 

6.6.4 Harmonics Estimation results using KF-Adaline Algorithm 
KF-Adaline Method of Estimation of Harmonics has been discussed in section 3. 

Here we have taken the simulated waveforms of the proposed model by using the 

MATLAB-SIMULINK. The data obtained from the distorted signal has been fed into the 

MATLAB program for detailed analysis (like THD, each harmonics contents and LOH 

etc.) of those distorted signals before and after filtering. Table 6.2 shows the values of 

different parameters used in different algorithms in both simulation and experimentation 

work. 
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Table-6.2 
                   Parameters used in Algorithms (KF, Adaline and KF-Adaline) 
 

 δ  0α  β  λ  

KF 100 - - - 

Adaline - 0.01 100 0.01 

KF-Adaline 100 0.01 100 0.01 

 

Figs. 6.19 to 6.23 show the comparison of estimation of 3rd, 5th, 7th, 9th and 11th 

harmonics components of source current signal for without filtering and passive, active 

and hybrid filtering cases. From these four figures, it is found that in case of hybrid filter, 

harmonics components are minimized in all cases of estimation. Figure 6.24 shows the 

comparison of MSE in the estimation of signal in different cases and it is found that MSE 

is also minimized in case of Hybrid filter. Comparison of performances of estimation for 

passive, active and HAPF cases using KF, Adaline and KF-Adaline method are shown in 

figures 6.25, 6.26 and 6.27 respectively. From these figures, it is found that KF-Adaline 

outperforms over KF and Adaline in estimation of harmonics and HAPF outperforms 

over active and passive filters in elimination of harmonics. 
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Fig.6.19 Performance comparison of hybrid filter for 3rd harmonic signal 
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Fig.6.20 Performance comparison of hybrid filter for 5th harmonic signal 
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Fig.6.21 Performance comparison of hybrid filter for 7th harmonic signal 
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Fig.6.22 Performance comparison of hybrid filter for 9th harmonic signal 
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Fig.6.23 Performance comparison of hybrid filter for 11th harmonic signal 
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Fig.6.24 Performance comparison of hybrid filter for MSE of signal 
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Fig.6.25 Comparison of source current spectrum of Passive Filter using different methods 
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Fig.6.26 Comparison of source current spectrum of Active Filter using different methods 
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Fig.6.27 Comparison of source current spectrum of HAPF using different methods 
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Table 6.3 shows the comparative assessment of different estimation and harmonics 

elimination techniques. On comparing the actual values of harmonics obtained from 

SIMULINK, it is found that more accuracy in estimation is found using KF-Adaline 

method and more amounts of harmonics is eliminated using HAPF. 

 

Table 6.3 Comparison of Estimation and Elimination Techniques 

 Passive Filter Active Filter HAPF 
Har- 
order 

Actual 
Values KF Ada. KF-

Ada. 
Actual 
Values KF Ada. KF- 

Ada. 
Actual 
Values KF Ada. KF- 

Ada 
1 20.44 20.45 20.43 20.443 20.44 20.47 20.44 20.447 20.44 20.47 20.44 20.441
3 1.81 2.3 2 1.805 0.49 0.55 0.52 0.486 0.33 0.4 0.45 0.332 
5 0.37 0.45 0.42 0.364 0.26 0.4 0.32 0.256 0.10 0.4 0.3 0.110 
7 0.23 0.3 0.27 0.234 0.13 0.2 0.18 0.131 0.08 0.02 0.08 0.082 
9 0.13 0.2 0.15 0.131 0.06 0.18 0.1 0.061 0.05 0.21 0.1 0.06 
11 0.08 0.13 0.1 0.084 0.03 0.11 0.08 0.031 0.03 0.11 0.01 0.033 
13 0.06 0.12 0.09 0.067 0.02 0.1 0.06 0.026 0.03 0.17 0.06 0.034 
15 0.04 0.09 0.07 0.044 0.02 0.12 0.04 0.024 0.02 0.13 0.02 0.02 
17 0.04 0.06 0.047 0.040 0.01 0.18 0.07 0.018 0.01 0.16 0.06 0.01 
19 0.02 0.07 0.04 0.028 0.01 0.14 0.03 0.013 0.01 0.13 0.03 0.01 

 

6.6.5. Experimental results 
In order to validate the results obtained by simulation, a laboratory prototype has been 

built as shown in Fig. 6.28. The experimental setup parameters are: 1 kVA diode rectifier 

is taken as the non-linear load, the input supply voltage is 60 V, 50 Hz. The APF is made 

of 4 IGBT modules. The DC voltage is set at 150 V, filter inductor of 0.5 mH and DC bus 

capacitor of 1000µF. The switching frequency of the IGBT devices is 5 kHz. The source 

current waveform is stored in a Digital Storage Oscilloscope and then through 

Oscilloscope software, data is acquired to the personal computer. The used PC has a 1.46 

GHz CPU and 1GB RAM. The sampling time in this case is fixed at 0.05ms. 
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Fig. 6.28 Experimental setup for Harmonic elimination using HAPF 
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Fig.6.29 Experimental waveform of (a) source current without HAPF (b) source current 

with HAPF. 
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Fig.6.30 Source current spectrum without using filter 
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Fig.6.31 Comparison of Source current spectrum of HAPF using different methods 
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The steady state waveforms of the HAPF are shown in Fig. 6.29. Frequency spectra of 

source current before and after filtration using different methods are shown in figures 

6.30 and 6.31 respectively. The THD of this current is reduced from 34.8 % to 3.4 %. 

From the results, it is clear that the HAPF using modified PWM technique has better 

ability to compensate the low frequency harmonics.  

 

6.7. Chapter Summary 
In this chapter, a comparative analysis of the performance of passive, active and 

hybrid power filters is presented. Simulation results show that the performance of shunt 

hybrid power filter is much better than other two. Harmonics components of signal in all 

the three cases are estimated by using KF-Adaline algorithm. The Total Harmonics 

Distortions (THD) of the shunt hybrid power filter using indirect current control 

algorithm is reduced to 1.82%, which is minimum among the three cases of filtering. This 

shunt hybrid power filter is effective and economic for solving harmonic problem in large 

capacity non-linear load. The real time simulation confirms the superiority of modified 

PWM control based HAPF. 
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Chapter-7 

Summary and Conclusions  
 

In this chapter, the conclusions of overall thesis are presented and some suggestions for 

future work are also proposed.  

 
7.1 Summary of the Thesis Work 

The thesis has mainly investigated on frequency and harmonics estimation of 

signal and development of HAPF with control technique for power conditioning. The 

novelty of the present work is the introduction of VLLMS to frequency estimation, EnKF 

to harmonics estimation and hybrid algorithms for both frequency and harmonics 

estimation. Finally the applications of hybrid algorithm to power system filter design for 

power conditioning. 

 

• The problems and brief review of earlier techniques to power system frequency and 

harmonics estimation are discussed.  

 

• Estimation of frequency of distorted signals, firstly using variants of recursive techniques 

such as RLS, ELS, Kalman Filter and LMS are presented. LMS outperforms over other 

three algorithms. For improvement in computational time and estimation error, secondly, 

a Variable Leaky Least Mean Square (VLLMS) algorithm based power system frequency 

estimation is proposed, a variable adaptation step size is introduced in estimation process. 

A quantized leak adjustment function is used for variation of leak. The performances of 

the new algorithm are studied at different situations of power system. The efficacies of 

the algorithm are verified on both simulation and experimental results.  
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• Four new hybrid algorithms (RLS-Adaline, KF-Adaline, RLS-BFO and Adaline-BFO) 

for power system frequency estimation are suggested. Initial choice of weight vector and 

Covariance matrix determines performance of RLS-Adaline and KF-Adaline algorithms. 

After the adaptation of the weight vector using RLS/KF algorithms, frequency of signal is 

estimated from updated weights. KF-Adaline performs better than RLS-Adaline at 

different level of noises and different signal changing conditions of power system. The 

performances of the next two proposed hybrid BFO algorithms i.e RLS-BFO and 

Adaline-BFO are dependent on the initial choice of maximum and minimum value of 

unknown parameters taken. If optimal choices of parameters are used, signal parameters 

can be converged faster. It is found that Adaline-BFO outperforms over BFO and RLS-

BFO both in simulation and experimental results.  

 

• A new algorithm called EnKF, for accurate estimation of amplitudes and phases of the 

harmonics contained in a voltage or current signal for power quality monitoring is 

suggested. Previously EnKF estimation has not been applied to power system area except 

some specialized applications such as weather forecasting, where initial states of model 

are highly uncertain and non-linear. Integer and non-integer multiple of harmonics, dc 

decaying offsets are successfully determined using EnKF by computer simulations. In case of 

fault condition, this algorithm is able to estimate the signal accurately. Results presented 

in this chapter indicate excellent accuracy (in terms of % age deviation in amplitude, 

deviation in phase angle and computational time) and convergence speed of the new 

algorithm in comparison to DFT, RLS, LMS, RLMS and KF algorithms. Laboratory test 

data is also used for validation of convergence property of the proposed EnKF algorithm. 

 

• Harmonics estimation using combined signal processing and Neural Network technique 

(RLS-Adaline and KF-Adaline) is described. Subsequently, Evolutionary Computational 

technique such as Bacterial Foraging Optimization (BFO) is combined with signal 

processing or neural network technique for harmonics estimation. The way of 

implementation of the hybrid algorithms such as RLS-BFO and Adaline-BFO are the 

same as for frequency estimation but only there is change in number of unknown 
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parameters to be optimized. The performances of the proposed evolutionary computation 

hybrid approaches (RLS-BFO, Adaline-BFO) have been compared taking into account 

different power system changing conditions such as presence of inter and sub-harmonics 

in signal and also on data obtained from laboratory experiments. 

 

• The application of hybrid algorithm (KF-Adaline) for designing a Hybrid Active Power 

Filter to mitigate the harmonic content of signal is presented. A comparative analysis of 

the performances of different estimation and elimination techniques are presented. 

Comparison shows that estimation using KF-Adaline is better than KF and Adaline 

algorithms. Similarly performance of harmonics mitigation using HAPF is better 

compared to passive and active filter. The Total Harmonics Distortions (THD) of HAPF 

using indirect current control algorithm is reduced to 1.82%, which is minimum among 

the three cases of filtering. Experimental results also confirm the superiority of modified 

PWM control based HAPF. 

 

7.2 Thesis Contributions  
The contributions of the Thesis are as follows. 

 

• Critical assessment such as tracking time, computational time and estimation error of 

various estimation techniques applied to power system frequency and harmonics 

estimation. 

 

• Development of improved LMS algorithm (VLLMS) for power system frequency 

estimation with introduction of a leakage factor and variable step size to avoid short 

comings such as poor convergence rate, more estimation error and more computational 

burden of the conventional LMS. 

 

• The problems of KF applied to power system harmonics estimation such as maintenance 

of covariance matrix for higher order system and accurate tracking of harmonics in 
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system changing conditions have been resolved by applying EnKF under different real 

time power system situations.  

 

• Developed two hybrid algorithms by hybridizing signal processing techniques such as 

RLS and KF with a neural network i.e RLS-Adaline and KF-Adaline for frequency and 

harmonics estimation. Frequency and Fundamental as well as harmonics components of 

amplitudes and phases are estimated for different cases of power system signal. These 

algorithms are also experimentally verified. 

 

• Developed algorithms on hybridizing signal processing technique such as RLS and a 

neural network (Adaline) with Evolutionary computation Techniques such as RLS-BFO 

and Adaline-BFO for frequency and harmonics estimation with verification both through 

simulation taking different types of signals and experimentally by generating data in 

laboratory. 

 

• Designed a HAPF for mitigation of harmonics occurring in a power system. Compared 

simulated results of HAPF with active and passive filter. Simulated results are also 

experimentally verified on laboratory prototype setup.  

 

7.3 Conclusions 
The research studies conducted resulted the following conclusions 

• Four numbers of recursive algorithms such as RLS, ELS, KF and LMS have been applied 

to power system frequency estimation. Out of these algorithms LMS provides better 

estimation results compared to other three. 

• For achieving more accuracy in estimation, step size of LMS is adapted and variation of 

leakage factor is introduced in the new proposed algorithm called VLLMS algorithm. It is 

found that estimation accuracy, tracking and computational time in case of VLLMS is 

better than LMS and VSSLMS algorithm. 

• For harmonics estimation, a nonlinear state estimation approach called Ensemble Kalman 

Filter is developed. In case of EnKF, covariance matrix of Kalman Filter is replaced by 
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sample covariance and it is more feasible than covariance matrix. Estimation 

performance of EnKF is verified both by simulation and experimentation. 

• Four hybrid algorithms such as RLS-Aadaline, KF-Adaline, RLS-BFO and Adaline-BFO 

are proposed. The efficacies of KF-Adaline and Adaline BFO are also verified using both 

simulation and experimental data. 

• After estimation of harmonic content of distorted signal using different techniques, a 

Hybrid Active Power Filter with a modified PWM control technique is designed to 

eliminate the harmonic content present in source current signal. 

 

7. 4 Future Scope of Work 
• The proposed research work can be extended to design and develop a novel Hybrid 

Active Power Filter (HAPF) with a FPGA based digital controller for effective 

elimination of harmonics and reactive power compensation. With the advance of FPGA 

devices and integrated circuits (IC) technology, high efficient digital controller can be 

implemented in only one digital circuit. The control algorithms have been developed in 

VHSIC hardware description language (VHDL). This method is as flexible as any 

software solution, like developing the control algorithms in C-language for a DSP. 

Another important advantage of VHDL is that it is technology independent. The same 

algorithm can be synthesized into any FPGA and even has a possible direct path to a 

custom chip.  

• This FPGA based controller can be applied to Aircraft electrical power system. It consists 

of mainly two or more engine driven generators to supply AC loads throughout the 

aircraft. Aircrafts need both AC and DC power. Transformer Rectifier Units (TRUs) 

convert AC power to DC power. These rectifier units are the main sources of harmonic 

generator in the aircraft Electric Power System. Increasing harmonics lead to malfunction 

of most sensitive equipments and circuits in the aircraft. Our future work in this area is to 

measure the harmonic content in the aircraft electric power system signal and then to 

design filter for effective mitigation of harmonic contents. 
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• Integrating Distributed Generation (DG) into electricity distribution network settles new 

needs for power quality monitoring because distributed generation units are usually 

connected to weak distribution network. DG units are likely to affect the system 

frequency. Since they are often not equipped with a load frequency control, so connecting 

a large no. of DG units to the grid should be carefully evaluated and planned. In future, 

this work can be extended by applying all the estimation techniques that are applied in 

the thesis, to power quality issues of distributed generation and simultaneously try to 

eliminate the harmonic content of the signal using suitable filtering techniques.  

 

• Estimation of Frequency and Harmonics problems can also be extended in nonlinear 

frame work where techniques such as Nonlinear Least Square, ∞H  (Nonlinear setting) 

and EKF (Nonlinear setting) can be applied with further comparative assessment of the 

methods presented in the thesis. 
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