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Abstract 

Despite the great success in data mining, machine learning and deep learning models are 

yet subject to material obstacles when tackling real-life challenges, such as feature 

selection, initialization sensitivity, as well as hyperparameter optimization. The 

prevalence of these obstacles has severely constrained conventional machine learning 

and deep learning methods from fulfilling their potentials. In this research, three 

evolving machine learning and one evolving deep learning models are proposed to 

eliminate above bottlenecks, i.e. improving model initialization, enhancing feature 

representation, as well as optimizing model configuration, respectively, through 

hybridization between the advanced evolutionary algorithms and the conventional ML 

and DL methods. 

Specifically, two Firefly Algorithm based evolutionary clustering models are proposed 

to optimize cluster centroids in K-means and overcome initialization sensitivity as well 

as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature 

selection model is developed for automatic identification of the most effective feature 

subset and reduction of feature dimensionality for tackling classification problems. 

Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long 

Short-Term Memory method is devised for automatic generation of the optimal 

topological and learning configurations for Convolutional Neural Network-Long Short-

Term Memory networks to undertake multivariate time series prediction problems. 

Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic 

limitations embedded in the search mechanisms of the three employed evolutionary 

algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, 

the constraint of the diagonal movement in Firefly Algorithm, as well as the acute 

contraction of search territory in Grey Wolf Optimizer, respectively. The remedy 

strategies include the diversification of guiding signals, the adaptive nonlinear search 

parameters, the hybrid position updating mechanisms, as well as the enhancement of 

population leaders. As such, the enhanced Particle Swarm Optimization, Firefly 

Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality 

on complex search landscapes embedded in data mining problems, owing to the 

elevated search diversity as well as the achievement of advanced trade-offs between 

exploration and exploitation. 
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The proposed evolving K-means clustering, evolving feature selection, and evolving 

Convolutional Neural Network-Long Short-Term Memory models are evaluated using a 

variety of real-life clustering, classification, and time series forecasting problems, 

respectively. The empirical results indicate that the proposed evolving machine learning 

and deep learning methods obtain significantly superior performances on majority of the 

employed data mining tasks and demonstrate great effectiveness in eliminating the 

sensitivity of centroid initialization in K-means, determining the most effective feature 

subset, as well as identifying the optimal learning and topological configurations for 

Convolutional Neural Network-Long Short-Term Memory networks, respectively. The 

above advantages of the proposed evolving models over baseline methods are further 

ascertained by the statistical test results.  
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Chapter 1  

Introduction 

Machine Learning (ML) algorithms are not omnipotent when confronted with real-life 

complex challenges. Their performances are significantly influenced by a variety of 

nondeterministic factors, such as the validity of raw data sets available for mining, the 

quality of initialized seeds of model parameters, as well as the suitability of predefined 

settings of model configurations.  As a result, some of the most arduous challenges in 

ML arise from the above uncertainties, e.g. feature selection, initialization sensitivity, 

and hyperparameter optimization. It requires not only profound understandings about 

the investigated problems, but also considerable efforts with the optimization of model 

parameters and configurations, to overcome above obstacles in data mining and fully 

unleash the potential of ML algorithms. Moreover, the above process is unlikely to be 

accomplished manually or in deterministic manners, owing to the complexities of real-

life problems as well as the stochastic properties of ML models. As such, this research 

aims to devise distinctive automatic learning processes with minimum human 

intervention to: 1) enhance feature representation, 2) improve model initialization 

condition, 3) optimize model hyperparameters, respectively, through the leverage of 

advanced evolving search capabilities of evolutionary algorithms (EAs). 

1.1 Background 

1.1.1 Introduction of machine learning 

Learning is a many-faceted phenomenon which includes the acquisition of new 

declarative knowledge, the development of motor and cognitive skills through 

instruction or practice, the organization of new knowledge into general and effective 

representations, as well as the discovery of new facts and theories through observation 

and experimentation [1]. Since the inception of the computer era, great efforts have been 

made to implant such intelligence of learning into computers, empowering machines to 

perform various tasks that require thinking, reasoning, and decision making, in order to 

maximize the probability of achieving a specific goal. Hence, it gave rise to a novel 

research discipline, i.e. Artificial Intelligence (AI), which contains diverse research 

topics, such as ML, Evolutionary Computation (EC), Fuzzy Logic, Probabilistic 

Modelling [2]. 
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ML is the study of computer algorithms that improve automatically through experience 

[3]. It is a branch of AI based on the idea that systems can learn from historical 

experiences, identify patterns, and make decisions with minimal human interventions. 

ML approaches can be broadly classified into three categories, i.e. supervised learning, 

unsupervised learning and reinforcement learning [4]. The aim of supervised learning is 

to learn the mapping from the input features to the output labels, whereas in 

unsupervised learning the aim is to discover the regularities and structures embedded in 

the input features without assistance of label information. In addition, reinforcement 

learning is a way of programming learning agents by reward and punishment to 

maximize the cumulative reward without requirement of specifying how the task is to be 

accomplished [5]. ML algorithms have been applied to tackle a wide range of practical 

problems, e.g. computer vision (CV) [6], natural language processing (NLP) [7], robot 

control [8], computer-aided diagnosis [9], recommender systems [10], automated 

planning and scheduling [11]. ML has become the research hotspot owing to its 

advanced performances in a great variety of real-life applications as well as the recent 

significant breakthroughs in the development of deep neural networks (DNNs), e.g. 

Convolutional Neural Networks (CNNs) [12], Generative Adversarial Networks (GANs) 

[13]. 

1.1.2 Bottlenecks of machine learning 

Despite the great efficacy of ML in data mining, several bottlenecks still exist with 

respect to feature engineering, model initialization, as well as configuration 

identification. They have severely confined ML models from fulfilling their potentials 

and achieving optimal performances when tackling real-life problems. The mitigation of 

above ML obstacles entails significant knowledge barriers owing to the requirement of 

diverse expertise with respect to the investigated problem domains, the ML algorithms, 

as well as the advanced optimization techniques. These bottlenecks are introduced and 

discussed in detail as follows. 

1.1.2.1 Feature selection 

The digital revolution has prompted data explosion in many fields, such as social media, 

security, and business [14]. The term of “Big Data” is invented to describe the resulted 

large amount of data, which is characterized by its volume, velocity, variety, value as 

well as veracity [15]. Data mining in practice often involves with Big Data which 
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possesses a great variety of complexities, such as high dimensionalities, noises and poor 

qualities, redundant features, unstructured formats, as well as imbalanced distributions. 

These challenging factors could undermine the validity of raw data sets, and result in 

inauthentic representations of the investigated problems, therefore compromising the 

process of knowledge discovery. In order to overcome above challenges, diverse feature 

engineering techniques have been developed to transform raw data sets into enhanced 

feature representations of the underlying problems, upon which the generalization 

capability of ML models can be significantly boosted [16]. 

As one of the most important feature engineering techniques, feature selection has 

gained many research attentions [17]. It reduces feature dimensionality and facilitates 

the performance of ML models effectively by selecting a subset of the most relevant and 

informative features from the original feature space. To be specific, the high 

dimensionality of the raw data set increases the likelihood of containing redundant, 

irrelevant, and contradictory features. The presence of them severely undermines the 

knowledge discovery process owing to the complex interactions among input features as 

well as the spurious representations of the investigated problems. Moreover, the high 

dimensionality is also likely to incur “curse of dimensionality”, which is characterized 

by the increased sparsity of data instances owing to the rapid expansion of feature space 

[18]. As a result, the amount of data required for successful knowledge discovery grows 

exponentially as the feature dimensionality increases. As such, dimensionality reduction 

through feature selection plays a significant role in both enhancing the validity of 

feature representations and overcoming “curse of dimensionality”. Despite being 

considered as one of the most challenging and time-consuming tasks, feature selection 

has become an indispensable component in data mining and knowledge discovery [19, 

20]. 

1.1.2.2 Initialization sensitivity 

The second bottleneck in ML is initialization sensitivity, which refers to the sensitivity 

of model performance to initialized conditions. This phenomenon can be widely 

observed from iterative refinement clustering algorithms, such as Gaussian Mixture 

Model (GMM) [21], and K-means (KM) [22], in which a deterministic mapping 

mechanism is defined to derive a fitted model from a randomly initialized one. Despite 

the employment of different clustering objectives, e.g. maximization of likelihood of 

sample distributions in GMM, and minimization of intra-cluster distances in KM, 
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clustering algorithms that employ iterative refinement mechanisms commonly subject to 

local stagnation owing to the lack of capability of conducting global search [23]. As a 

consequence, their performances largely depend on initialized settings of model 

parameters. In addition to unsupervised learning, the problem of initialization sensitivity 

is also present in supervised learning, such as feedforward neural networks (FNNs) [24, 

25], and DNNs [26]. 

More specifically, optimization lies at the heart of ML and the training of ML models 

can be reduced to a core optimization problem in which internal model parameters are 

optimized with respect to the defined loss function [27]. The above optimization process 

can be extremely challenging owing to the nonconvex complex search landscapes, the 

obstruction of saddle points and local optima traps, as well as the immense search 

dimensionalities. Therefore, a variety of iterative search methods have been developed 

for the identification of the optimal learnable parameters for ML models, such as 

Expectation-Maximization (EM) algorithm, and Stochastic Gradient Descent (SGD) 

[28]. Essentially, these iterative methods can be characterised as a greedy local search 

operation which starts from a randomly initialized position within search bound. Despite 

the advantages in convergence, these iterative methods are prone to local stagnation, 

especially when the initialized position is in the vicinity of local optima traps. As a 

result, model parameters can be poorly fitted and model performance compromised. 

Therefore, the quality of initialized settings of model parameters plays a significant role 

in determining training efficiency as well as learning efficacy for ML models [29-31]. In 

this research, initialization sensitivity in KM clustering, i.e. the susceptibility of KM 

algorithm to its initialized cluster centroids, is specifically targeted owing to the 

prevalence of the problem [22], as well as the popularity of KM clustering in the domain 

of unsupervised learning [32]. 

1.1.2.3 Hyperparameter optimization 

In addition to feature selection and initialization sensitivity, hyperparameter 

optimization is another significant barrier in data mining [33]. There are generally two 

types of parameters in ML models. The first is those internal to learning algorithms, 

such as network weights and biases in artificial neural networks (ANNs). They are 

estimated automatically through model fitting process on training sets. The second is 

those external to learning algorithms, namely hyperparameters. They prescribe 

configurations as well as leaning properties of ML models, such as the number of layers 
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in ANNs, and then number of nearest neighbours in K-Nearest Neighbours (KNN). 

Unlike internal parameters, hyperparameters must be defined prior to the training stage 

and cannot be optimized during the fitting process [34]. Hence, the choice of 

hyperparameters plays a significant role in the performance of ML models [35]. 

Hyperparameter optimization is a critical component of developing effective ML 

models which are capable of accommodating specific characteristics of the problem at 

hand. Its potent has been extensively verified by existing studies across a great variety 

of ML algorithms, e.g. Random Forest (RF) [36], Support Vector Machine (SVM) [37], 

and ANNs [38]. The empirical study even discovered that hyperparameter optimization 

is often more important than the choice of ML algorithms in data mining [39]. 

Moreover, hyperparameter optimization has become even more important in the domain 

of deep learning (DL) [40, 41]. Specifically, the great success of DNNs on a variety of 

applications can be primarily ascribed to the nature of being deep. It enables networks to 

extract and learn meaningful feature representations from raw data sets automatically 

without manual engineering. Hyperparameters in DNNs need to be tuned carefully since 

they are involved in determining topologies of networks, e.g. the total number of 

convolutional layers, the number and size of filters contained in each convolutional 

layer. Besides above, certain hyperparameters related to training properties also bear 

responsibilities for learning efficiency as well as learning outcome, e.g. the learning rate 

(LR), batch size, and optimizer type [42]. As the depth increases in DNNs, the number 

of hyperparameters grows exponentially in networks [43]. As a result, it becomes 

extremely challenging to identify the optimal topological and learning configurations for 

DNNs, owing to the huge amount of possibilities in terms of hyperparameter 

combinations as well as the sophisticated interactions and cascade effects among 

different components in DNNs. 

1.2 Motivation 

The above three major bottlenecks in ML, i.e. feature selection, initialization sensitivity, 

as well as hyperparameter optimization, have significantly confined ML and DL models 

from fulfilling their potentials when undertaking real-life challenges. It is unlikely to 

eliminate them in simple deterministic manners or by manual efforts, owing to the 

complexities of the problem, e.g. stochastic nature of ML algorithms as well as the 

sophisticated interplay among diverse variables. Despite the distinctiveness in their 
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respective scenarios, the above three obstacles in ML are identical in their natures. 

Intrinsically, they can all be treated as complex non-convex optimization problems with 

high-dimensional search landscapes, teeming with local optima traps, saddle points, and 

deceptive slops [28]. In this regard, the elimination of above three major obstacles in 

ML inevitably requires powerful search mechanisms, which are capable of escaping 

from stagnation at local optima traps effectively and attaining the global optimality 

efficiently in a complex high-dimensional search space. 

As such, in this research I resort to advanced EAs to address above three challenges in 

ML and data mining, owing to their flexibility in variable encoding and problem 

representation, superiority in escaping from local optima traps, as well as self-

adaptability for the attainment of the global optimality [44, 45]. EAs represent a family 

of population-based metaheuristic optimization algorithms in EC. EAs can be generally 

categorized into two main classes, according to the difference of their underlying 

mechanisms, i.e. biological evolution and swarm behaviours [46, 47]. Specifically, 

algorithms in the first class search for global optimality by following Darwin’s theory of 

evolution, i.e. reproduction, mutation, recombination, and selection, whereas those in 

the second class mimic the collective behaviours of the organized group of animals in 

nature, e.g. fish schooling and wolf hunting, and seek for global optimality by 

employing a population of simple agents interacting locally with each other [48].  

Despite the employment of distinctive search operations, all EAs employ the same two 

essential components in their search mechanisms, i.e. exploration and exploitation [49]. 

During exploration, individuals in the population explore the search space on a global 

scale by conducting large jumps and generating offspring solutions far from the parents 

with sufficient diversities. As a result, the exploration enables search agents to escape 

from local optima traps as well as increases the coverage of search territory, hence 

facilitating the attainment of the global optimality. On the other hand, it could also result 

in slow convergence and higher computational efforts since the yielded solutions can be 

very distant from the global optima. In contrast, exploitation enables agents to search on 

a local scale and focus on promising regions represented by the elicit solutions found so 

far. Therefore, the magnitude of changes among solutions during the exploitation stage 

is much smaller than that during the exploration stage. As opposed to exploration, 

exploitation prompts convergence of the population while suffering from local 

stagnation. 
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In essence, a fine trade-off between exploration and exploitation serves as the bedrock 

of the attainment of global optimality in EAs [50]. However, it still remains an open 

question regarding the realization of such balance between the above two distinctive 

search norms, owing to the complex nature of the problem. This balance could be 

affected by many factors, such as detailed search mechanisms and behaviours, settings 

and tunings of search parameters, during the optimization process. More importantly, 

there is no universal solution with respect to the achievement of the trade-off between 

exploration and exploitation and it could vary from problem to problem [51].  

Hence, this reality serves as a major motivation in this research. Instead of directly 

applying EAs in their original forms, the inherent constraints with respect to search 

mechanisms and diversities embedded in the classical EAs are identified. Moreover, 

comprehensive remedy strategies are proposed to overcome above intrinsic limitations 

and achieve enhanced trade-offs between exploration and exploitation over the search 

process. These strategies include the rectified search operations, the diversified guiding 

signals, the modified settings and tunings of search parameters, as well as the tailored 

designs of hybrid search behaviours over the course of optimization. The proposed 

enhanced EAs are subsequently employed for the development of evolving ML and DL 

methods to tackle the abovementioned three bottlenecks in ML and data mining, i.e. 

feature selection, initialization sensitivity, and hyperparameter optimization, 

respectively. As such, the process of knowledge discovery and pattern recognition can 

be greatly facilitated owing to the identification of authentic feature representations as 

well as the devising of more effective ML and DL models with optimal configurations 

and improved learning parameters. 

1.3 Research aims and objectives 

This research aims to develop evolving ML and DL models to overcome the limitations 

of the conventional ML and DL methods and facilitate knowledge discovery when 

undertaking various real-life challenges, including classification, clustering, and time 

series prediction. The proposed evolving models target at three major obstacles in ML 

and data mining, i.e. feature selection, initialization sensitivity, as well as 

hyperparameter optimization, respectively. Three objectives are designed accordingly to 

deliver the overall research aim as follows: 
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1) To develop an evolutionary KM clustering model capable of overcoming the 

problem of sensitivity to initialized cluster centroids, for undertaking clustering 

challenges. 

2) To design an evolutionary feature selection model capable of automatic 

identification of the most effective feature subset, for undertaking classification 

challenges. 

3) To devise an evolving Convolutional Neural Network-Long Short-Term 

Memory (CNN-LSTM) method capable of automatic generation of the 

customized CNN-LSTM networks with the optimal topological and learning 

configurations, for undertaking time series forecasting challenges. 

1.4 Contribution 

The main contributions in this research are highlighted as follows: 

1) The first major contribution is the proposal of two modified Firefly Algorithm 

(FA) models for the mitigation of initialization sensitivity and local optima traps 

in the conventional KM clustering [52]. 

 

Two modified FA models, namely inward intensified exploration FA (IIEFA) 

and compound intensified exploration FA (CIEFA), are proposed to increase 

search diversification and efficiency. Firstly, a randomized control matrix is 

proposed in IIEFA to replace the attractiveness coefficient in the original FA 

model, in order to intensify exploitation diversity. It enables the diagonal-based 

search paradigm in the original FA model to be elevated to a multi-dimensional 

region-based search mechanism with greater diversities in search scales and 

directions. Secondly, besides the above strategy, the capability of global 

exploration is further enhanced in CIEFA by dispersing and relocating fireflies 

with high similarities to unexploited regions outside the scope between fireflies 

in comparison. This enables the movement of fireflies to be diversified and 

search space expanded, therefore less likely to be trapped at local optima. The 

search efficiency is also improved owing to the guarantee of sufficient variance 

between fireflies in comparison, especially in the early convergence stage. 
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The proposed FA models are incorporated into the conventional KM clustering 

to overcome initialization sensitivity and local stagnation. The ALL-IDB2 

database, a skin lesion data set, and a total of 15 UCI data sets are employed to 

evaluate clustering efficiency of the proposed FA models. For each clustering 

task, five performance indicators are calculated, i.e. intra-cluster distances, 

accuracy, sensitivity, specificity, and FscoreM. The empirical results indicate 

that the proposed FA based clustering methods demonstrate great efficacy and 

efficiency in identifying superior configurations of cluster centroid in both high- 

and low-dimensional scenarios, in comparison with the conventional KM 

clustering algorithm, five classical search methods, as well as five advanced FA 

variants. The optimized cluster centroids are capable of yielding more compact 

clusters with superior performance scores. Moreover, between the two proposed 

models, CIEFA offers a better option, as compared with IIEFA, to deal with 

challenging clustering tasks such as data samples with high dimensionality, 

noise, and complicated distributions, owing to its enhanced exploration 

capability attributed by dispatching fireflies with high similarities to the 

unexploited search space. 

 

2) The second major contribution is the proposal of an enhanced Particle Swarm 

Optimization (PSO) model for undertaking diverse feature selection tasks and 

improving classification performance. 

 

In order to overcome two major shortcomings of the original PSO model, i.e. 

premature convergence and weak local exploitation capability around near 

optimal solutions, the proposed PSO model employs four key strategies: 1) a 

swarm leader enhancing mechanism using skewed Gaussian distributions, 2) a 

worst solution enhancing scheme incorporating a global best solution mirroring 

action and a Differential Evolution (DE)-based mutation operation, 3) a 

diversity-enhanced PSO evolving strategy incorporating multiple local and 

global optimal indicators and chaotic inertia weight based on Logistic map, and 

4) an intensified spiral exploitation scheme. The aforementioned first two 

proposed strategies elevate the utilisation and exploitation of acquired 

knowledge in the swarm from two perspectives, i.e. introducing a self-
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improving operation for the global best solution and facilitating the 

communication and cooperation among elite solutions through DE mutation 

operations during the process of enhancing weak solutions. On the other hand, 

the last two strategies optimize the search behaviour to increase the capability of 

acquiring new knowledge by constructing delicate search actions with multiple 

optimal signals to elevate both the diversification of exploration and the 

intensification of exploitation. 

 

A total of 9 UCI data sets and the ALL-IDB2 database with a wide spectrum of 

dimensionalities, i.e. from 30 to 10000, are employed to evaluate effectiveness 

of the proposed PSO model on undertaking diverse feature selection tasks. The 

empirical results indicate that the proposed PSO model demonstrates significant 

superiority in achieving better trade-off between feature elimination and 

performance improvement, and outperforms five classical search methods and 

five advanced PSO variants, statistically. The advantages of the proposed PSO 

model become more evident on highly complex feature selection tasks owing to 

higher performance gaps ascribed by more successful identifications of the most 

discriminative and effective features. 

 

3) The third major contribution is the proposal of an enhanced Grey Wolf 

Optimizer (GWO) model for automatic identification of the optimal topological 

configurations and learning hyperparameters for CNN-LSTM networks to 

undertake time series prediction problems [53]. 

 

In order to overcome stagnation at local optima and slow convergence rate in 

the original GWO model, the proposed GWO method incorporates four 

distinctive strategies: 1) a nonlinear adjustment of search coefficient capable of 

extending search territory during exploration and confining the search range 

during exploitation, 2) a chaotic weight allocation mechanism for three 

dominant wolf leaders using the sinusoidal chaotic map, 3) a local exploitation 

scheme based on enhanced spiral search with symmetrical oscillations, 4) 

probability distribution-based leader enhancement. The proposed strategies 

enhance search diversity by expanding exploration space as well as diversifying 

the guiding signals in a periodical manner. In addition, search efficiency and 
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convergence rate are also improved owing to the assurance of dominance of the 

best wolf leader as well as the intensified local exploitation around the optimal 

signals at the final stage of the search. As such, the proposed GWO variant is 

capable of achieving better trade-offs between search diversification and 

intensification, therefore increasing the likelihood of attaining global optimality.  

 

The enhanced GWO model is subsequently employed to devise the network 

representation of the proposed CNN-LSTM model for tackling time series 

problems. The optimized evolving CNN-LSTM architecture is evaluated on 

three time series problems, i.e. energy consumption forecast, PM2.5 pollution 

prediction, and human activity recognition (HAR). The proposed evolving time 

series forecasting model significantly outperforms those yielded by four 

classical search methods and three advanced GWO and PSO variants on all 

employed time series tasks, as evidenced by statistical test results. Moreover, 

the empirical results indicate that the optimized CNN-LSTM networks by the 

proposed GWO model are characterized by a higher number of filters in the 

convolutional layers and moderate settings in terms of the numbers of nodes in 

the LSTM layer and the fully connected layer. As such, the identified optimal 

network configurations are able to thoroughly examine the interactions among 

time series variables, and provide efficient network representational capacities 

without suffering from either overfitting or underfitting issues. 

1.5 Thesis layout 

The rest of the thesis is organised as follows.  

Chapter 2 introduces the preliminary concepts and essential models with respect to 

classification, clustering, DL and EC, respectively. Moreover, it also provides an up-to-

date literature review on the study of hybridization between ML and EC models, 

including evolutionary feature selection, evolutionary KM clustering, as well as 

evolving DNNs methods. 

Chapter 3 presents the proposed FA-based evolutionary KM clustering models. Two 

FA variants are proposed to optimize the configuration of cluster centroids in KM, 

namely IIEFA and CIEFA. The proposed IIEFA employs matrix-based search 

parameters to elevate exploitation capability, whereas the proposed CIEFA further 



12 

 

enhances IIEFA by incorporating a dispersing mechanism to increase search diversity. 

The proposed FA-based KM clustering models are evaluated using 16 clustering tasks 

as well as five performance criteria, i.e. the sum of intra-cluster distances, average 

accuracy, average sensitivity, average specificity, and macro-average F-score. Their 

performances are compared against the conventional KM clustering and ten baseline 

search methods. 

Chapter 4 presents the proposed PSO-based evolutionary feature selection model. The 

strategies incorporated in the proposed PSO variant are analysed in detail, including the 

leader mutation, the worse solution enhancement, the guiding signal diversification, as 

well as the spiral local exploitation. A comprehensive evaluation is conducted for the 

proposed PSO model, using a total of ten feature selection tasks with a wide spectrum of 

dimensionalities, three performance indicators, i.e. classification accuracy, number of 

selected features, and F-score measure, as well as ten baseline search methods for 

comparison. 

Chapter 5 presents the proposed GWO-based evolving CNN-LSTM time series 

forecasting model. The strategies employed in the proposed GWO variant are analysed 

in detail, i.e. the nonlinear search territory adjustment, the chaotic leadership 

competition, the symmetric spiral exploitation action, as well as the Lévy flight-based 

leader enhancement. The enhanced GWO variant is employed for evolving generation 

of the optimal topological configurations and learning hyperparameters for the proposed 

CNN-LSTM architecture. This proposed evolving CNN-LSTM method is evaluated 

using two time series prediction problems and another time series classification problem. 

Its performance is compared with the CNN-LSTM model with default settings and 

seven baseline hybrid CNN-LSTM methods. 

Chapter 6 summarizes the whole research. It provides conclusions and 

recommendations for future research directions. 
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Chapter 2  

Preliminaries and Literature Review 

In this chapter, the fundamental concepts and essential models involved in this research 

are introduced, including EC, clustering, classification, feature selection, as well as DL. 

Moreover, the state-of-the-art studies on the hybridization between EC and ML models 

are reviewed, such as evolutionary feature selection, evolutionary KM clustering, and 

evolving DNNs. 

2.1 Evolutionary computation 

EC is a subfield of computational intelligence, which tackles optimization problems in a 

stochastic manner by simulating the procedure of natural selection and the survival of 

the fittest [54]. EAs are a family of metaheuristic optimization methods in EC which 

employ population-based evolving organisms to supervise individual solutions to move 

towards promising search territory iteratively and search for the global optima. In 

principle, EAs can be classified into two categories, according to their inherent 

differences of the operating mechanisms. Specifically, in the first category optimization 

algorithms apply mechanisms inspired by the Darwin’s theory of evolution and search 

operations are executed by following the generic framework of the biological evolution, 

which consists of several genetic operators, such as selection, reproduction, as well as 

mutation, e.g. Genetic Algorithm (GA) [55], Differential Evolution (DE) [56], Memetic 

Algorithm (MA) [57]. In the second category, optimization algorithms are developed 

based on nature-inspired collective behaviours, e.g. bird flocking, wolf hunting, fish 

schooling, and individual search agent interacts with each other locally to facilitate the 

exchange of information as well as the acquirement of novel understandings of the 

search landscape, e.g. PSO [58], Ant Colony Optimisation (ACO) [59], FA [60], 

Cuckoo Search (CS) [61], GWO [62], Moth-Flame Optimisation (MFO) [63], 

Dragonfly Algorithm (DA) [64], Bat Algorithm (BA) [65], Flower Pollination 

Algorithm (FPA) [66], Gravitational Search Algorithm (GSA) [67]. Characterised by 

the simplicity, scalability, and advanced capabilities in searching for global optimality, 

EAs have been widely applied to tackle complex and multimodal NP-hard problems, e.g. 

automatic control, path planning, combinatorial optimization, the design and training of 

neural networks. In this section, three of the most popular models in EAs, i.e. PSO, FA, 
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and GWO, are elaborated and their state-of-the-art variants reviewed. Moreover, some 

latest EAs are also introduced. 

2.1.1 Particle Swarm Optimization 

2.1.1.1 Classical PSO 

PSO is a population-based self-adaptive optimisation technique developed by Eberhart 

and Kennedy [58] based on swarm social behaviours, such as fish in a school and birds 

in a flock. The PSO algorithm conducts search in the landscape of objective function by 

adjusting trajectories of individual particles in a quasi-stochastic manner [68, 69]. Each 

particle adjusts its velocities and positions by following its own best experience in 

history and the global best solution of the swarm. Unlike conventional EAs [70, 71], 

PSO does not employ any crossover or mutation operators. In the original PSO model, 

the update of the velocity 𝑣𝑖𝑑
𝑡+1 and position 𝑥𝑖𝑑

𝑡+1 of the 𝑖th particle at the 𝑑th dimension 

are prescribed in Eqs. 2.1 and 2.2. 

𝑣𝑖𝑑
𝑡+1 = 𝑤𝑣𝑖𝑑

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑

𝑡 )   (2.1) 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1        (2.2) 

where 𝑣𝑖 and 𝑥𝑖 represent the velocity and position of the 𝑖th particle, while 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 and 

𝑔𝑏𝑒𝑠𝑡  represent the historical best solution of the 𝑖 th particle and the global best 

solution, respectively. Besides that, 𝑐1 and 𝑐2 denote position constants, while 𝑟1 and 𝑟2 

are random values generated from [0, 1]. Moreover, 𝑡  and 𝑤  represent the current 

iteration number and the inertia weight, respectively. 

As one of the most acknowledged EAs, PSO has been widely adopted in various 

optimisation problems owing to its simplicity, fast convergence speed, as well as 

effectiveness and robust generalization capability. In PSO, each particle adjusts its 

search trajectory by learning from two historical best experiences, i.e. its own best 

position and the global best solution. Despite its great efficiencies, PSO suffers from 

local optima traps as well as inefficient fine-tuning capabilities owing to the dictation of 

global best signals as well as its position adjustment mechanisms [72-74]. As an 

example, PSO lacks the operation of exchanging information between particles owing to 

the fact that only the global best solution is exploited as the reference for coevolution 

[75]. Secondly, the swarm often tends to revisit previously explored regions due to the 

strict adherence to the historical best experiences of each particle [76]. These limitations 
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in the original PSO model severely constrain search diversity and search scope, hence 

resulting in early stagnation and premature convergence. 

2.1.1.2 PSO variants 

Many PSO variants have been proposed in existing studies to overcome the above 

limitations, i.e. local optima traps and premature convergence, from different 

perspectives, e.g. utilisation of adaptive and chaotic parameters [77, 78], exploration of 

various topology structures [79], as well as hybridisation with other distinctive search 

methods [80, 81]. Chen et al. [82] proposed a dynamic PSO with escaping prey schemes 

(DPSOEP). In DPSOEP, a total of 200 swarm particles are categorized into three groups 

according to their fitness values, i.e. ‘preys’ (top ranked 15 particles), ‘strong particles’ 

(the remaining top ranked 160 particles), and ‘weak particles’ (the rest of the particles), 

to simulate hunting and escaping behaviours observed in nature. Three different search 

behaviours are designed for particles for the above three groups accordingly to enhance 

search diversity. Specifically, Lévy flights are employed to enable ‘preys’ to escape 

from local optima while the original PSO position updating operation is conducted by 

those ‘strong particles’ to accelerate convergence. Besides that, the ‘weak particles’ 

adjust their positions by learning from the mean position of the ‘strong particles’ using a 

multivariate normal distribution. The DPSOEP was firstly evaluated on 13 non-convex 

and piecewise benchmark functions and compared against seven PSO variants, i.e. 

DMS-PSO (dynamic multi-swarm PSO), RPSO (PSO with the ring lattice topology), 

SLPSO (self-learning PSO), HPSO-TVAC (self-organizing hierarchical PSO with time-

varying acceleration coefficients), APSO (adaptive PSO), CLPSO (comprehensive 

learning PSO), and ALC-PSO (PSO with an aging leader and challengers), as well as 

seven classical and recently proposed search algorithms, i.e. GSO (Group Search 

Optimiser), BBO (Biogeography-based Optimisation), CMA-ES (Covariance Matrix 

Adaption Evolution Strategy), DE, BFO (Bacterial Foraging Optimisation), FFA (Fruit 

Fly Algorithm), and FA. Additionally, the DPSOEP model demonstrates great 

advantages over a number of other baseline models and provides higher applicability 

and practicality when tested on two other economic dispatch problems. Li et al. [83] 

proposed a multi-information fusion “triple variables with iteration” inertia weight PSO 

(MFTIWPSO) model to enhance the population diversity. The MFTIWPSO model 

adopts a multi-information inertia weight adjustment strategy which generates 

dimensional-wise inertia weight using particle velocity, position, random disturbance, 
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the number of iterations, as well as inertia weight score from the last iteration. Their 

PSO variant was employed to search for the optimality on 22 test functions and fine-

tune SVM hyper-parameters, i.e. the penalty factor and the kernel parameter, on six 

classification tasks. The results indicate that the MFTIWPSO model significantly 

outperforms six baseline models, i.e. RANDPSO (PSO with random inertia weight), 

LHNPSO (low-discrepancy sequence initialized PSO with high-order nonlinear time-

varying inertia weight), AIWPSO (PSO with adaptive inertia weight), DESIWPSO 

(double exponential self-adaptive inertia weight PSO), and SAIWPSO (stability-based 

adaptive inertia weight PSO). Cai et al. [84] proposed an efficient sequential 

approximation optimisation assisted PSO (SAOPSO) algorithm to improve the 

computational efficiency for expensive optimisation problems. In SAOPSO, the 

sequential approximation optimisation (SAO) is employed to improve each personal 

historical best solution by conducting the sampling operation in a local region. As a 

result, the optimisation efficiency is improved owing to the enhancement of the 

cognitive ability for swarm particles. The SAOPSO was evaluated by undertaking 36 

numerical benchmark problems, as well as the optimisation of the design of bearings in 

all-direction propeller. The results indicate that the SAOPSO model demonstrates great 

advantages and outperforms 8 baseline methods, i.e. SPSO (a surrogate-assisted PSO), 

TRGA (trust region based GA), TRMPS (trust region based mode pursuing sampling 

algorithm), SA-COSO (the surrogate-assisted cooperative swarm optimisation 

algorithm), ESAO (evolutionary sampling assisted optimisation algorithm), TMAO 

(two-level multi-surrogate assisted optimisation method), EGO (efficient global 

optimisation), and SAORBF (RBF-based sequential approximation optimisation).  

Li et al. [85] proposed a competitive and cooperative PSO method with information 

sharing mechanism (CCPSO-ISM). It particularly intensifies the utilisation of historical 

personal best solutions of the particle swarm. Specifically, the global and personal best 

solutions in the original PSO model are replaced by a vector named ccBest (competition 

and cooperation best). Each dimension of ccBest is determined based on the cooperation 

probability P. When the cooperation probability P is lower than a random value 

generated in the range of [0, 1], the dimension of ccBest is inherited from the 

corresponding dimension of the fittest solution among K randomly chosen personal best 

solutions. Otherwise it is inherited from the particle’s own personal best solution. The 

neighbourhood size K increases linearly along with the iteration number. The CCPSO-
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ISM was evaluated using 16 unimodal and multimodal benchmark functions. The results 

indicate that CCPSO-ISM demonstrates advantages on multimodal functions with many 

local optima, and outperforms PSO, LPSO (PSO with a topology of a ring lattice), FDR-

PSO (fitness-distance-ratio based PSO), FIPS (the fully informed particle swarm), and 

CLPSO. Xia et al. [86] proposed an eXpanded PSO (XPSO), which expands the social 

component from one exemplar, i.e. the global best solution, to two exemplars, i.e. the 

global best solution and the local best solution in its neighbourhood. Besides that, XPSO 

assigns different forgetting abilities on the expanded exemplars to further enhance the 

search diversity for each particle. Acceleration coefficients in the position updating 

operation are adjusted using Gaussian distribution prescribed by the historical 

knowledge from elite individuals. In addition, the consecutive generations of the 

stagnancy of the global best solution are adopted as a criterion for the adjustment of 

acceleration coefficients and reselection of neighbours. The XPSO model was evaluated 

on CEC2013 test suite with 28 complex benchmark functions. The results indicate that 

XPSO yields the most promising performance on the test suite, and outperforms three 

other search algorithms, i.e. SaDE (self-adaptive DE), CMAES (evolution strategy with 

covariance matrix adaptation), PBILc (population-based incremental learning to 

continuous search spaces), as well as nine advanced PSO variants, i.e. Frankenstein’s 

PSO [87], OLPSO (orthogonal learning PSO) [88], DEPSO (hybridization of DE and 

PSO) [89], PSODDS (PSO with distance based dimension selection) [90], CCPSO-ISM 

(competitive and cooperative PSO with information sharing mechanism) [85], SRPSO 

(self-regulating PSO) [91], HCLPSO (heterogeneous comprehensive learning PSO) [92], 

GLPSO (genetic learning PSO) [93], and EPSO (ensemble PSO) [94].  

2.1.2 Firefly Algorithm 

2.1.2.1 Classical FA 

FA model performs the search operation according to the foraging behaviours of 

fireflies [60]. In FA, a swarm of fireflies is initiated randomly, and each firefly denotes 

one initial solution. A fitness score is calculated based on the objective function for each 

firefly, which is then assigned as the light intensity. According to [60], fireflies with 

lower light intensities are attracted to those with strong illuminations in the 

neighbourhood, as defined in Eq. 2.3. 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) + 𝛼𝑡𝜀𝑡          (2.3) 
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where 𝑖 and 𝑗 denote fireflies with lower and higher light intensities, respectively, while 

𝑥𝑖
𝑡 and 𝑥𝑗

𝑡 denote the current positions of fireflies 𝑖 and 𝑗 at the 𝑡𝑡ℎ iteration, respectively. 

Parameter 𝛽0 is the initial attractiveness while 𝛾 is the light absorption coefficient, and 

𝑟𝑖𝑗  denotes the distance between fireflies 𝑖  and 𝑗 . In addition, 𝛼𝑡  is a randomization 

coefficient, while 𝜀𝑡 is a vector of random numbers drawn from a Gaussian distribution 

or a uniform distribution. 

The major advantage of FA lies in its attraction mechanism. The attractiveness-based 

movements enable the firefly swarm to automatically subdivide into subgroups, where 

each group swarms around one mode or a local optimum solution [60, 95]. When the 

population size is sufficiently higher than the number of local optima, the subdivision 

ability in FA is able to find all optima simultaneously in principle, and, therefore, attain 

the global optima. This automatic subdivision ability enables the FA model to tackle 

optimisation problems characterised as highly nonlinear and multimodal, with many 

local optima traps. 

Despite the abovementioned advantages, there are certain limitations in search 

diversification imposed by the strict obedience of biological laws in the original FA 

model. These limitations are rarely addressed in the existing literature. Specifically, the 

position updating strategy in FA in Eq. 2.3 is constructed according to the firefly 

foraging behaviours, which is employed to guide one firefly to approach another with a 

higher light intensity by multiplying the position difference of these two fireflies (𝑥𝑗
𝑡 −

𝑥𝑖
𝑡) with their relative attractiveness component (𝛽0𝑒−𝛾𝑟𝑖𝑗

2

). While the inheritance of 

biological laws enables one firefly to approach another with a more favourable position, 

the dimensionality and diversity through the approaching process are severely 

constrained, since the movement can only happen on the diagonal direction composed 

by two fireflies, in accordance with the formula. As illustrated in Figure 2-1, in a two-

dimensional scenario, there are two fireflies, 𝑖 and 𝑗. If we view both fireflies as vectors, 

the position difference of these two fireflies (𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) can be represented by the dotted 

line denoted as ∆𝑝 in Figure 2-1. The calculation of attractiveness practically imposes 

one constant isotropic factor (𝛽0𝑒−𝛾𝑟𝑖𝑗
2

) on all dimensions of the position difference 

between fireflies 𝑖 and 𝑗, causing the lack of variance among different dimensions. As a 

result, instead of exploring flexibly in the entire solution space, the fireflies can merely 

move along the specific diagonal trajectory between two fireflies in comparison, and the 
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search area is shrunk drastically from a two-dimensional rectangular enclosed with dash 

lines into a one-dimensional vector in dotted line, as shown in Figure 2-1. Therefore, 

the chances of finding the global optima are reduced, since search diversification is 

constrained severely owing to the limitations of the biological laws in the original FA 

model. 

 

2.1.2.2 FA variants 

While the original FA model demonstrates some unique properties in its search 

mechanism, it  suffers from slow convergence and high computational complexity, 

owing to its behaviour of following all brighter fireflies in the neighbourhood [96]. 

Additionally, fireflies can fall into stagnation during the search process, as the distance 

between fireflies increases and the attractiveness component (𝛽0𝑒−𝛾𝑟𝑖𝑗
2

) approaches zero. 

Many FA variants have been proposed to overcome these problems by increasing the 

exploration ability and search diversification of the original FA model. The strategies 

employed to improve the original FA model can be generally categorized into three 

groups, i.e. adaptive processes of parameter tuning, population diversification, and 

integration of hybrid search patterns [97]. Ozsoydan and Baykasoglu [98] proposed a 

quantum firefly swarm model to tackle multimodal dynamic optimization problems. 

Four strategies were incorporated into their model: (1) multi-swarms based search; (2) 

two types of movements undertaken by neutral and quantum fireflies respectively in 

each sub-swarm; (3) simplification of firefly position updating; and (4) employment of 

two sub-swarm prioritizing techniques, i.e. sequential selection and roulette wheel 

selection. The quantum firefly swarm model was evaluated with the Moving Peaks 

Benchmark problem to locate and track the moving optima. The obtained results 

Figure 2-1 The movement of fireflies in a two-dimensional search space (∆𝑝 denotes the 

position difference between fireflies 𝑖 and 𝑗) 
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indicated that the quantum firefly swarm model was competitive and promising in 

comparison with 13 well-known algorithms in dynamic optimization problems, 

including mCPSO-with anticonvergence, mCPSO-without anticonvergence, mQSO-

with anticonvergence, mQSO-without anticonvergence, SPSO, rSPSO, BSPSO, RWS, 

and SPSO-PD. Banerjee et al. [99] proposed a Repulsion-Propulsion FA (PropFA) 

model by incorporating three strategies, i.e. (1) introduction of adaptive mechanisms for 

both randomization coefficient 𝛼𝑡 and light absorption coefficient 𝛾, (2) incorporation 

of the global best solution as a component for swarm position update, and (3) 

replacement of the Euclidean distance measurement with Manhattan distance 

measurement. Three ratios were yielded to construct the adaptive search parameter 

mechanisms based on a short term memory of the last positions and light intensities of 

fireflies. The PropFA model was evaluated using 18 classical benchmark functions, 14 

additional functions of CEC-2005, and 28 functions of CEC-2013. The results 

demonstrated the competitiveness of the PropFA model in finding better solutions in 

comparison with PSO, EDA (Estimation of Distribution Algorithms), RC-EA (Mutation 

Step Co-evolution), RC-Memetic (Real-Coded Memetic Algorithm), CMA-ES 

(Covariance Matrix Adaptation Evolution Strategy) on CEC-2005 benchmark functions, 

and SHADE, CoDE (DE with composite trial vector generation strategies and control 

parameters), Jade (Adaptive DE with optional external archive) on CEC-2013 

benchmark functions. The PropFA model was also employed to estimate the spill area 

of a fast expanding oil spill, and the PropFA-based confinement strategy proved to be 

successful. 

Baykasoglu and Ozsoydan [100] proposed a variant of FA, i.e. FA2, with two strategies: 

(1) replacing the exponential function with an inverse function of distance as the 

attractiveness coefficient, and (2) constructing a threshold probability for a firefly’s 

position to be updated or otherwise. The FA2 model was tested by both static and 

dynamic multidimensional knapsack problems. The obtained results indicated that FA2 

was more effective than GA, DE, and FA. Sadhu et al. [101] proposed a Q-learning 

induced FA (QFA) model. Q-learning was used to generate light absorption coefficient 

𝛾 and randomization coefficient 𝛼𝑡 with a fitness rank based rewarding and penalizing 

mechanism. The generated pair, < 𝛾, 𝛼𝑡 >, was capable of producing high-performing 

fireflies in each step. The QFA model was tested with fifteen benchmark functions in 

CEC 2015, and with a real-world path planning problem of a robotic manipulator with 
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various obstacles. The empirical results confirmed the superiority of the QFA model in 

terms of solution quality and run-time complexity in comparison with other algorithms, 

e.g. AFA (adaptive FA), DEsPA (Differential Evolution with success-based parameter 

adaption), SRPSO (Self-regulating PSO), SDMS-PSO2 (Self adaptive dynamic multi-

swarm PSO), SLPSO (social learning PSO), and LFABC (Levy flight Artificial Bee 

Colony). Zhang et al. [102] proposed a modified FA model for feature selection by 

incorporating three strategies, i.e. the improved attractiveness operations guided by SA-

enhanced neighbouring and global optimal signals, chaotic diversified search 

mechanisms, and diversion of weak solutions. The modified FA model was tested with 

feature selection problems using 29 classification and 11 regression benchmark data sets. 

The experimental results indicated that the proposed FA variant outperformed 11 

classical search methods in undertaking diverse feature selection tasks, i.e. PSO, GA, 

FA, SA, CS, Tabu Search (TS), DE, Bat Swarm Optimization (BSO), DA, Ant-Lion 

Optimization (ALO), Memetic Algorithm with Local Search Chain (MA-LS), and 10 

popular FA variants, i.e. FA with neighbourhood attraction (NaFA) [96], SA 

incorporated with FA (SFA) [103], SA incorporated with both Levy flights and FA 

(LSFA) [103], Opposition and Dimensional FA (ODFA) [104], FA with Logistic map as 

the randomization search parameter (CFA1) [105], FA with Gauss map as the 

attractiveness coefficient (CFA2) [106],  FA with a variable step wise (VSSFA) [107], 

FA with a random attraction (RaFA) [108], a modified FA incorporating chaotic Tent 

map and global best based search operation (MCFA) [109], and a hybrid multi-objective 

FA (HMOFA) [110]. 

FA and its variants have also been widely used for solving multimodal optimisation 

problems. Gandomi et al. [111] applied FA to a set of seven mixed variable structural 

optimization problems with nonlinearity and multiple local optima. The empirical 

results indicated that FA was more efficient than other metaheuristic algorithms, such as 

PSO, GA, and Harmony Search (HS), on these optimization tasks. Nekouie and 

Yaghoobi [112] proposed a hybrid method on the basis of FA for solving multimodal 

optimisation problems. In their study, KM was used to cluster the FA population into 

several subpopulations. FA with a roaming technique was employed to identify multiple 

local optima, while SA was used to further improve the local promising solutions. A set 

of 15 multimodal test functions was used to evaluate the effectiveness of the hybrid 

model. The empirical results demonstrated its great advantages over other methods such 
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as Niche GSA (NGSA), r2PSO (a l-best PSO with a ring topology and each member 

interacting with its immediate member on its right), r3PSO (a l-best PSO with a ring 

topology and each member interacting with its immediate members on both its left and 

right), r2PSO-lhc (r2PSO with no overlapping neighbourhoods), FER-PSO (Fitness 

Euclidean-distance Ratio based PSO), and SPSO (Speciation-based PSO). Zhang et al. 

[113] proposed a modified FA model for ensemble model construction for classification 

and regression problems. Their FA variant embedded attractiveness strategies guided by 

both neighbouring and global promising solutions, as well as evading mechanisms with 

the consideration of local and global worst experiences. Their FA variant was evaluated 

with standard, shifted, and composite test functions, as well as the Black-Box 

Optimization Benchmarking test suite and several high-dimensional UCI data sets. The 

experimental results indicated that their FA model outperformed several state-of-the-art 

FA variants and classical search methods in solving diverse complex unimodal and 

multimodal optimization and ensemble reduction problems. Yang [114] proposed a 

multi-objective FA model (MOFA) for solving optimization problems with multiple 

objectives and complex nonlinear constraints. Evaluated with five mathematical 

artificial landscapes with convex, nonconvex, discontinuous Pareto fronts, and complex 

Pareto sets, the empirical results indicated that MOFA outperformed seven established 

multi-objective algorithms, i.e. vector evaluated GA (VEGA), Non-dominated Sorting 

GA II (NSGA-II), multi-objective DE (MODE), DE for multi-objective optimization 

(DEMO), multi-objective Bees algorithms (Bees), and Strength Pareto Evolutionary 

Algorithm (SPEA). A comprehensive review on evolutionary algorithms for multimodal 

optimization is also provided in [115].  

2.1.3 Grey Wolf Optimizer 

2.1.3.1 Classical GWO 

GWO is a SI algorithm proposed recently according to the social dominant hierarchy 

and group hunting operations observed among grey wolves [62]. In a wolf pack, there 

are four different levels in terms of the positions in the social hierarchy, i.e. wolf alpha 

(α), wolf beta (β), wolf delta (δ), and wolf omega (ω). Those wolves from the top three 

hierarchies, i.e. α, β, and δ, are responsible for decision making during hunting whereas 

wolves at the bottom of the hierarchical ladder, i.e. ω, are subordinated to those from 

higher levels unconditionally.  
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In GWO, each wolf represents a solution initialized randomly. The wolves with highest 

three fitness scores are labelled as α, β, and δ, respectively, and assume the leadership to 

guide the movement of the whole wolf pack. The search mechanism of GWO is based 

on the encircling hunting mechanism observed within the grey wolf pack in nature as 

well as the supposition that three dominant wolves retain better knowledge regarding the 

location of the prey/optimality than their comrades. Henceforth, each wolf updates its 

position in reference to the three top leaders in the wolf pack, i.e. α, β, and δ, 

respectively, in a manner as instructed in Eqs. 2.4 - 2.9. The arithmetic average of the 

above three position adjustments is then adopted as the target position for each wolf to 

be dispatched to, as indicated in Eq. 2.10. 

𝐷𝛼,𝑗
𝑡+1 = |𝐶1𝑋𝛼,𝑗

𝑡 − 𝑋𝑖,𝑗
𝑡 |        (2.4) 

𝐷𝛽,𝑗
𝑡+1 = |𝐶2𝑋𝛽,𝑗

𝑡 − 𝑋𝑖,𝑗
𝑡 |        (2.5) 

𝐷𝛿,𝑗
𝑡+1 = |𝐶3𝑋𝛿,𝑗

𝑡 − 𝑋𝑖,𝑗
𝑡 |        (2.6) 

𝑋𝑎𝑑1,𝑗
𝑡+1 = 𝑋𝛼,𝑗

𝑡 − 𝐴1𝐷𝛼,𝑗
𝑡+1        (2.7) 

𝑋𝑎𝑑2,𝑗
𝑡+1 = 𝑋𝛽,𝑗

𝑡 − 𝐴2𝐷𝛽,𝑗
𝑡+1        (2.8) 

𝑋𝑎𝑑3,𝑗
𝑡+1 = 𝑋𝛿,𝑗

𝑡 − 𝐴3𝐷𝛿,𝑗
𝑡+1        (2.9) 

𝑋𝑖,𝑗
𝑡+1 = (𝑋𝑎𝑑1,𝑗

𝑡+1 + 𝑋𝑎𝑑2,𝑗
𝑡+1 + 𝑋𝑎𝑑3,𝑗

𝑡+1 ) 3⁄       (2.10) 

𝐶 = 2𝑟𝑎𝑛𝑑         (2.11) 

𝐴 = (2𝑟𝑎𝑛𝑑 − 1)𝑎        (2.12) 

𝑎 = 2(1 −
𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
)        (2.13) 

where 𝑋𝑖,𝑗
𝑡  denotes the element of the 𝑖-th wolf on 𝑗-th dimension under the 𝑡-th iteration. 

𝑋𝛼, 𝑋𝛽, and 𝑋𝛿 represent positions of the three leading wolves α, β, and δ respectively, 

whereas 𝐷𝛼 , 𝐷𝛽 , and 𝐷𝛿 represent distance measures, and 𝑋𝑎𝑑1 , 𝑋𝑎𝑑2 , and 𝑋𝑎𝑑3 

represent position adjustments, in reference to the above three dominant wolves i.e. α, β, 

and δ, respectively. Besides the above, 𝐴 and 𝐶 are two search coefficients related to 

position updating where 𝐴1, 𝐴2, 𝐴3 are the three instantiations of parameter 𝐴, and 𝐶1, 

𝐶2 , 𝐶3  are the three instantiations of parameter 𝐶 . 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟  denotes the maximum 

iteration number, whereas 𝑟𝑎𝑛𝑑 is a random number in the range of [0, 1]. In addition, 

𝑎 denotes the exploration rate linearly decreasing from 2 to 0 as iteration increases. 

In principle, GWO possesses many merits in comparison with previous classical search 

methods (e.g. PSO and GA), owing to the employment of multiple-leader guided search 
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as well as dynamic fine-tuning of the search scopes. However, it also suffers from 

inefficiencies owing to the acute shrinkage of the search territory as well as the 

undermined representation of the leadership hierarchy. 

 

Figure 2-2 Exploitation (|A|<1) vs. Exploration (|A|>1) in GWO [60] 

To be specific, in the original GWO model, 𝑎 is an essential search parameter, capable 

of regulating the transition from exploration to exploitation during the search iterations. 

The parameter 𝑎 dictates the search boundary and radius of the wolf population through 

regulating the magnitude of the step size 𝐴, as shown in Eq. 2.13. Specifically, as 

illustrated in Figure 2-2, the wolves conduct exploration and jump out of the search 

range between itself and the prey when  |𝐴| > 1 . This can only happen when the 

exploration rate 𝑎 > 1, according to Eq. 2.12. In contrast, the exploitation between the 

wolf and the prey can be deployed when  |𝐴| < 1. The linearly decreasing pattern of 

parameter 𝑎 adopted in the original GWO, as shown in Eq. 2.13, unequivocally result in 

a rapid contraction of the search boundary, which severely confines the exploration 

capability of the wolf population, especially at the first half of the search course when 

extensive explorations are required to escape from local optima traps. Besides above, 

the static and equal division of the leadership among three strongest wolves over the 

whole search course contradicts its strategy of hierarchical division within the wolf 

community in principle, and largely confines the capability of fine-tuning around the 

obtained global best solution. Hence, this lack of prioritizing operators among dominant 

wolf leaders results in a slow convergence rate, therefore compromising search 

efficiency.  

2.1.3.2 GWO variants 

As analysed above, GWO suffers from evident disadvantages such as local stagnation, a 

slow convergence rate, as well as deficiency in fine-tuning around the best swarm leader 

[116-118]. Many efforts have been made in existing studies to mitigate the above 
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drawbacks to enhance the search efficiency of GWO. Ozsoydan [119] proposed three 

GWO variants, i.e. prioGWO, learnGWO, and prLeGWO, to investigate the effects of 

dominant wolves in GWO. In prioGWO, three dominant wolves rearrange their 

positions within themselves by following the position updating formula in the original 

GWO, prior to guiding the movement of the rest of the wolf pack. In learnGWO, 

dedicated learning curves are developed to gradually increase the dominance of wolf α, 

while decreasing that of wolves β and δ over the iterative process. Besides the above, 

prLeGWO incorporates both strategies employed in prioGWO and learnGWO. These 

GWO variants are evaluated on multiple tasks, i.e. unconstraint test functions, the 

uncapacitated facility location problem (UFLP), as well as the 0-1 knapsack problem. 

The results indicate the effectiveness of their GWO variants in comparison with five 

baseline models, i.e. PSO, GWO, a continuous PSO with a local search (CPSO), an 

adapted Artificial Bee Colony for binary optimization (ABCbin), and Weighted 

Superposition Attraction (WSA). Luo [120] proposed an enhanced GWO (EGWO) 

model which dynamically estimates the location of the prey using weight-based 

aggregation of the three dominant wolf leaders. The weights are generated using 

normalised random numbers within [0, 1]. A strict hierarchical order is established by 

assigning weights based on the rankings of fitness scores of the three dominant wolves, 

i.e. larger weights for wolves with higher rankings. Subsequently, wolves update their 

positions under the guidance of this estimated location of the prey. The EGWO model is 

evaluated on 30-dimensional and 100-dimensional CEC2017 test functions, as well as 

two engineering applications, and significantly outperforms the original GWO, a fuzzy 

hierarchical GWO, and a random walk GWO. Gupta and Deep [121] proposed a 

modified GWO method based on random walks (RW-GWO). Specifically, the three 

dominant wolves are further improved by conducting random jumps, with steps 

generated from Cauchy distribution. RW-GWO is evaluated on 10-dimensional and 30-

dimensional CEC2014 test functions, and demonstrates significant superiorities in 

comparison with baseline models, e.g. GSA, CS, Laplacian Biogeography-Based 

Optimization (LX-BBO).  

Wang and Li [116] proposed an improved GWO (IGWO) by incorporating biological 

evolution and survival of the fittest principle into the evolving process of GWO. 

Specifically, a DE-based breeding operation is applied to the three dominant wolf 

leaders. A crossover operation is then used with the yielded offspring and each 
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individual wolf solution as the parent chromosomes. Besides the above, a dynamic 

number of weak individuals are eliminated from the population and replaced by 

randomly generated new solutions, according to the principle of the survival of the 

fittest. The IGWO model is evaluated on the twelve benchmark functions and 

outperforms GWO, DE, PSO, ABC, and CS, statistically. Emary et al. [122] proposed a 

GWO variant, i.e. experienced GWO (EGWO), in which reinforcement learning is 

employed to yield the exploration rate, i.e. parameter 𝑎 in GWO, for each individual 

wolf based on its past experience in each iteration. Specifically, a state-action model is 

mapped using a neural network with a single hidden layer to maximize the reward 

function, in which the input is the change state of the fitness score in every two 

successive iterations, and the output is the action set for the adjustment of exploration 

rate, i.e. increasing, decreasing, and maintaining the current value of 𝑎. As such, the 

parameter 𝑎 can be specifically tailored for each individual wolf by the mapped network, 

according to its own previous experience and performance, to bestow the freedom of 

choosing between exploration and exploitation on each individual wolf per se, instead of 

following the same regulation of parameter 𝑎 collectively. The effectiveness of EGWO 

is evaluated on 21 feature selection tasks and 10 ANN weight adaptation tasks. The 

results indicate significant advantages of EGWO over the original GWO, PSO and GA. 

Moreover, Tu et al. [123] proposed a hierarchy strengthened GWO (HSGWO) model 

which incorporates an elite learning operator, an opposition-based learning strategy, a 

DE operator, a hybrid total-dimensional and one-dimensional update strategy, as well as 

a perturbed operator. The enhanced elite learning strategy ensures dominant wolves only 

learn from those with higher rankings, hence mitigating distractions from less advanced 

solutions, whereas opposition-based learning enables dominant wolves to conduct 

extensive explorations. The remaining wolf solutions are able to choose between the 

original GWO and DE models to update their positions, in either all dimensions or only 

one sub-dimension. Moreover, a fraction of wolf candidates is replaced with solutions 

yielded from perturbations of randomly selected individuals from the wolf pack. 

HSGWO is evaluated on the CEC2014 test functions as well as 13 feature selection 

tasks and outperforms baseline models, e.g. Salp Swarm Algorithm (SSA), and 

differential mutation and novel social learning PSO (DSPSO). 

Moreover, Gupta and Deep [124] proposed a memory-based GWO (mGWO) model. It 

incorporates the personal best experiences, randomly selected wolf solutions, a 
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crossover operation, and a greedy selection strategy for position updating. The personal 

historical best experience is employed in two distinctive manners to yield two respective 

candidate solutions for the current individual under each iteration. Specifically, the first 

candidate is generated by replacing the position of the wolf in the current iteration with 

its historical best experience in the position updating equations of the original GWO 

algorithm. The second candidate is yielded by a local search mechanism involving the 

historical best experience, as well as two randomly selected wolf solutions in the 

neighbourhood. Subsequently, a crossover operation is performed on both candidates, 

and the offspring solutions are adopted as the new individuals for the next generation. 

Besides that, a greedy selection strategy is enforced between the wolf solutions of two 

consecutive iterations, and the best one is retained. The mGWO model is evaluated with 

the CEC2014 and CEC2017 benchmark test functions, as well as six practical 

engineering design problems. It outperforms numerous classical search methods, e.g. 

PSO, Firefly Algorithm (FA), and advanced GWO variants including Oppositional 

GWO (OGWO) and Improved GWO (IGWO) on unimodal, multimodal, and composite 

benchmark functions. Ibrahim et al. [125] proposed an improved GWO variant 

(COGWO2D) that incorporates four strategies. They are a logistic chaotic map, an 

Opposition-Based Learning (OBL) mechanism, a DE position updating scheme, and a 

disruption operator. The logistic map is used for chaotic population initialization. The 

OBL mechanism is applied to generate the opposite counterparts. The final collection of 

the initialized solutions is selected from the above combined sets according to the 

fitness eminence. Then, the original GWO and DE updating mechanisms are combined 

in parallel for position updating. In addition, the disruption operator is employed to 

increase the search diversity for those wolf solutions distant from the current swarm 

leader, while intensifying local exploitation for the remaining wolf individuals located 

in the vicinity of the current global best solution. Evaluated with the CEC2005 and 

CEC2014 benchmark functions and a feature selection task, the COGWO2D model 

significantly outperforms other nine competitors, including WOA, SSA, Ant Lion 

Optimizer (ALO), DE, and CS. Al-Betar et al. [126] investigated the impacts of 

different natural selection methods on the performance of GWO. In addition to the 

greedy selection of the top three wolf leaders employed in the original GWO model, 

five additional selection paradigms are explored, i.e. the tournament selection, 

proportional selection, stochastic universal sampling selection, linear rank selection, and 

random selection. Evaluated with 23 benchmark functions, GWO with the tournament 
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selection achieves the best performances, outperforming several classical search 

methods, e.g. GA and PSO. GWO with the random selection obtains the worst 

optimization results. The research provides good insight on the common dilemma of 

employing elicit signals and introducing random perturbations in developing 

metaheuristic algorithms. Wen et al. [127] proposed an inspired GWO (IGWO) model. 

It employs a logarithmic decay function to adjust search parameter a and a modified 

position updating mechanism incorporating the mean position of three wolf leaders, the 

personal historical best experience, and the global best solution, for imitation of the 

position updating technique in PSO. Evaluated with four high-dimensional benchmark 

test functions and three practical engineering design problems, IGWO outperforms the 

original GWO model, four advanced GWO variants, and four other search methods. 

Saxena et al. [128] proposed a β-Chaotic map enabled GWO (β-GWO) model. It 

modifies the linearly decreasing search parameter a by adding a β function-based 

chaotic sequence. This design enables the preservation of the exploration virtue 

throughout the iterative process. Evaluated with the CEC2017 benchmark test functions 

and two practical engineering design problems, β-GWO outperforms four classical 

search methods, including GSA and Flower Pollination Algorithm (FPA), and five 

advanced GWO variants, including OGWO and Grouped GWO (GGWO), with 

statistical significance. 

2.1.4 Other latest evolutionary algorithms 

In addition to the above three popular methods, other innovative search mechanisms 

have been further developed to improve the robustness and applicability of EAs. A 

review on the latest models is presented below. Inspired by the oscillation mode and 

food search patterns of slime mould in nature, Li et al. [129] proposed a Slime Mould 

Algorithm (SMA). It incorporates three types of movements in cascade as well as in 

conjugation with oscillated search parameters for position updating. Specifically, for 

producing high-quality slime mould solutions, a local exploitation operation is 

conducted in all directions to further refine search individuals. The current low-quality 

positions are replaced with the new ones yielded by the global best and two other 

randomly selected individuals. To further increase search diversity, the slime mould 

population is replenished with new individuals randomly generated according to a 

predefined probability-based condition. Evaluated with 33 benchmark test functions and 

four practical engineering problems, the SMA model significantly outperforms a 
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number of classical and advanced search methods, e.g. MFO and Comprehensive 

Learning PSO (CLPSO). Askari et al. [130] proposed a Heap-based Optimizer (HBO) 

by simulating various interactions in a corporate rank hierarchy. A 3-ary heap structure 

according to the fitness values is established on the population. A cascade search 

mechanism incorporating three search scenarios is developed, i.e. moving towards the 

immediate superior solution in the higher hierarchy (boss), moving towards a fitter 

solution within the same hierarchy (colleague), and retaining the current position (self-

contribution). Evaluated with 97 benchmark test functions and three practical 

engineering problems, the HBO model outperforms seven well-known search 

algorithms, including Multi-Verse Optimizer (MVO), GSA, PSO, and CS. Inspired by 

the gradient-based Newton’s method, Ahmadianfar et al. [131] proposed a Gradient-

based Optimizer (GBO). It incorporates a gradient search rule and a local escaping 

operator. The gradient search rule applies a gradient-based mechanism to drive the 

individuals to approach the global best solution, while retaining search diversity through 

the employment of randomly selected individuals in the neighbourhood during the 

position updating process. Besides that, a local escaping operator for overcoming the 

local optima traps is developed by further introducing newly generated individuals into 

the population to participate in the competition. Evaluated with 28 benchmark test 

functions and six engineering problems, it significantly outperforms five classical search 

methods, i.e., GWO, CS, ABC, WOA and Interactive Search Algorithm (ISA). 

Heidari et al. [132]  proposed a Harris Hawk Optimization (HHO) algorithm. It mimics 

the hunting mechanism of Harries hawks. During exploration, two position updating 

options are developed, i.e. adjusting position in reference to the global best solution, or 

randomly selected solutions in the neighbourhood corresponding to two perching 

choices of hawks, i.e. the family member and the rabbit, during hunting, respectively. 

To facilitate exploitation, four local search mechanisms are designed to approach the 

global best solution by adopting different search coefficient vectors, in simulation of 

besiege processes of hawks. Evaluated with 29 benchmark test functions and six 

engineering optimization problems, HHO outperforms a number of classical search 

models, including FPA and MFO, significantly. 

Overall, EC methods demonstrate significant advantages in solving complex 

optimisation problems, especially those with sophisticated search landscapes as well as 

complex variable interactions, such as NP-hard problems, owing to their superior global 
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exploration capabilities as well as effective adaptation mechanisms to escape from local 

optima traps [133]. In this research, advanced EAs are introduced to devise enhanced 

evolving ML and DL methods which are capable of overcoming some of the most 

challenging optimization scenarios in ML, i.e. the selection of the most effective feature 

subset (feature selection), the optimization of initialized clustering centroids in KM 

(initialization sensitivity), as well as the identification of the optimal learning and 

topological configurations for DNNs (hyperparameter optimization). Subsequently, the 

fundamental concepts and essential models in ML and DL, as well as the state-of-the-art 

studies on the hybridization between ML and EC models are presented as follows. 

2.2 Clustering analysis 

Clustering analysis is one of the fundamental methods of discovering and understanding 

underlying patterns embodied in data by partitioning data objects into several clusters 

according to measured intrinsic characteristics or similarity [134]. As a result of the 

clustering process, data samples with high similarity are grouped in the same cluster, 

while those with distinctions are categorized into different clusters. Clustering analysis 

has been widely adopted by many disciplines, such as image segmentation [135-141], 

text mining [142-144], bioinformatics [145, 146], wireless sensor networks [147, 148], 

and financial analysis [149]. In general, conventional clustering algorithms can be 

broadly categorized into two groups: partitional and hierarchical methods. The 

partitional methods divide data samples into several clusters simultaneously, whereas 

the hierarchical methods build a hierarchy of clusters, either in an agglomerative 

(merging similar clusters) or divisive (dividing each cluster into smaller ones) mode 

[134]. 

2.2.1 K-means clustering 

KM clustering is one of the most popular partitional methods, and is widely used owing 

to its simplicity, efficiency, and ease of  implementation [134]. The KM clustering 

algorithm partitions data samples into different clusters based on distance measures. It 

finds a partition such that the squared error between the empirical mean of a cluster and 

the points in the cluster is minimized [134]. Let 𝑂 = {𝑂1, 𝑂2, … ,𝑂𝑛} be a set of 𝑛 data 

samples to be clustered into a set of 𝐾 clusters, 𝐶 = {𝐶𝑖, 𝑖 = 1, … ,𝑘}. The goal of KM 

clustering is to minimize the sum of the squared error over all 𝑘  clusters, which is 

defined as follows: 
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  𝐽(𝐶) = ∑ ∑ (𝑂𝑙 − 𝑍𝑖)2
𝑂𝑙∈𝐶𝑖

𝑘
𝑖=1           (2.14) 

where 𝐶𝑖, 𝑍𝑖, 𝑂𝑙, and 𝑘 represent the 𝑖𝑡ℎcluster, the centroid for 𝑖𝑡ℎ cluster, data samples 

belonging to the 𝑖𝑡ℎcluster, and the total number of clusters, respectively. 

In KM clustering, cluster centroids are initialized randomly. Data samples are assigned 

to the closest cluster, which is determined by the distances between the corresponding 

centroid and data samples. The centroid of each cluster is updated by calculating the 

mean value of all data samples within the respective cluster. Then, the process of 

partitioning data samples into the corresponding clusters is repeated according to the 

updated cluster centroids until the specified termination criteria are met. The KM 

clustering algorithm shows impressive performances for a wide range of applications, 

including computer vision [150], pattern recognition [151] and information retrieval 

[152]. It often serves as a pre-processing method for other complex models to provide 

an initial configuration.  

Despite the abovementioned merits, KM clustering suffers from a number of limitations, 

such as initialization sensitivity [134, 153], susceptibility to noise [154, 155], and 

vulnerability to undesirable sample distributions [155], owing to its restrictive 

assumptions and operating mechanisms. Specifically, real-life clustering tasks pose 

diverse challenges to KM clustering, owing to complexity embedded in data samples, 

such as immense dimensionality, disturbance of noise and outliers, irregular, sparse, and 

imbalanced sample distributions, and clusters with overlap or narrow class margins 

[134]. These complexities overtly violate restrictive assumptions embedded in KM, i.e. 

spherical sample distributions and evenly sized clusters, therefore leading to limitations 

in interpretability for such complex data distributions [154, 155]. Moreover, KM suffers 

from initialization sensitivity and local optima traps owing to its operating mechanism 

of local search around the configuration of initial centroids [134, 153]. The process of 

minimizing the sum of intra-cluster distances in KM is, in essence, a local search 

surrounding the initial centroids. As a result, the performance of KM heavily depends 

on the initial configuration of cluster centroids. In addition, owing to its operating 

mechanisms and the randomness during centroid initialization, KM is more likely to 

suffer from local optima traps. 
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2.2.2 Fuzzy C-means clustering 

In addition to KM, fuzzy C-means is another popular clustering method. In KM, a hard-

clustering process is employed where each data instance can only be assigned to a single 

cluster unequivocally with its intra-cluster neighbours. This mechanism is incompetent 

in dealing with data sets that possess overlapping cluster distributions with ambiguous 

boundaries. In contrast, fuzzy C-means [156] enables fuzzy partition where each sample 

can belong to multiple clusters simultaneously, by evaluating membership degrees of 

each data sample with respect to all clusters, respectively. The sum of least squared 

errors over all clusters weighted by the memberships is employed as the objective 

function to be minimized, as shown in Eq. 2.15. 

𝐽𝑓(𝐶) = ∑𝑖=1
𝑘 ∑𝑙=1

𝑛 (𝑤𝑙𝑖)𝑚(𝑂𝑙 − 𝑍𝑖)2        (2.15) 

𝑤𝑙𝑖 =
1

∑𝑗=1
𝑘 (

‖𝑂𝑙−𝑍𝑖‖

‖𝑂𝑙−𝑍𝑗‖
)

2
𝑚−1

          (2.16) 

𝑍𝑖 =
∑𝑙=1

𝑛 (𝑤𝑙𝑖)𝑚
𝑂𝑙

∑𝑙=1
𝑛 (𝑤𝑙𝑖)𝑚           (2.17) 

where 𝐶𝑖, 𝑍𝑖, 𝑂𝑙, 𝑘, and 𝑛 represent the 𝑖𝑡ℎcluster, the fuzzy centroid of 𝑖𝑡ℎ cluster, data 

samples partially belonging to the 𝑖𝑡ℎ cluster, the total number of clusters, and the 

number of data samples, respectively. Besides above, 𝑤𝑙𝑖 denotes the membership of the 

𝑙-th data sample with respect to the 𝑖-th cluster, whereas 𝑚 is the fuzzy exponent that 

controls the fuzziness of the membership function. 

The fuzzy partition is performed through the minimization of the objective function, as 

shown in Eq. 2.15, by updating the memberships and cluster centres iteratively. The 

membership function is defined in Eq. 2.16. The yielded membership values are within 

the range of [0, 1], whereby values close to one imply a high degree of similarity 

between the sample and the cluster while values close to zeros signify little similarity 

between them [156]. The cluster centres are computed using the weighted averages of 

the data samples, as shown in Eq. 2.17.  

Fuzzy C-means has been applied to a wide range of problem domains, e.g. image 

segmentation [157], signal processing [158], fuzzy time series [159], owing to its 

effectiveness in dealing data sets with ambiguous boundaries and overlapped 
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distributions. Nevertheless, fuzzy C-means is sensitive to data noises and imaging 

artefacts since it does not consider the local relationship between pixels [160]. Also, it 

requires more computational efforts than KM clustering. 

2.2.3 Evolving K-means clustering 

As characterised by their powerful search capability in terms of exploration and 

exploitation, EAs have been widely employed to assist KM to escape from local optima 

traps by exploring and obtaining more optimized configurations of cluster centroids. 

The negative impacts imposed by challenging real-life data can, therefore, be mitigated 

owing to more accurate cluster identification resulted from the optimized centroids. The 

effectiveness of such hybrid clustering models has been extensively validated by 

empirical studies, e.g. TS [161, 162], Simulated Annealing (SA) [163], GA [164], 

Artificial Bee Colony (ABC) [165, 166], ACO [167, 168], PSO [168-170], CS [170, 

171], FA [172, 173], GSA [174, 175], Black Hole Algorithm (BHA) [176], and Big 

Bang-Big Crunch algorithm (BB-BC) [177]. 

Karaboga and Ozturk [165] proposed an ABC-based clustering method by incorporating 

the original ABC model with KM clustering. The ABC-based clustering method was 

evaluated using 13 UCI data sets. The obtained results demonstrated the 

competitiveness of the combination of ABC with KM clustering in managing clustering 

tasks in comparison with those of PSO and nine classification techniques (e.g. Bayes 

Net, MultiLayer Perceptron Artificial Neural Network (MLP), Radial Basis Function 

Artificial Neural Network (RBF), Naïve Bayes Tree (NBTree), and Bagging). Shelokar 

et al. [167] incorporated the original ACO model with KM clustering. Two simulated 

and three UCI data sets were used to evaluate the performance of the proposed ACO-

based clustering method. The ACO-based clustering method showed advantages in 

comparison with SA, GA, and TS in terms of quality of solution, average number of 

function evaluations, and processing time. Chen and Ye [169] proposed a PSO-based 

clustering method (PSO-clustering) and evaluated its performance on four artificial data 

sets. The obtained results indicated a better performance of PSO-clustering over those of 

KM and Fuzzy C-Means clustering algorithms. Senthilnath et al. [172] employed FA for 

clustering analysis. The performance of the FA-based clustering method was tested with 

13 UCI data sets. The FA model demonstrated superiority in terms of clustering error 
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rates and computational efficiency over ABC, PSO, and nine other traditional 

classification methods (e.g. Bayes Net, MLP, and RBF). 

Hatamlou et al. [174] formulated a hybrid clustering method, namely GSA-KM, by 

combining GSA and KM clustering. The GSA-KM method was tested with five UCI 

data sets. It demonstrated advantages in terms of quality of solutions and convergence 

speed in comparison with seven well-known algorithms, i.e. KM clustering, GA, SA, 

ACO, PSO, GSA, and Honey Bee Mating Optimization (HBMO). Hatamlou [176] also 

employed BHA to enhance the KM clustering performance. The BHA-based clustering 

method was tested with six UCI data sets. It demonstrated a better performance in 

comparison with those of KM clustering, GSA, and PSO. Moreover, Hatamlou et al. 

[177] also applied the Big Bang-Big Crunch algorithm (BB-BC) to clustering analysis. 

The BB-BC results outperformed those of KM clustering, GA, and PSO with several 

UCI data sets. 

A number of modified metaheuristic search algorithms are available to further improve 

the performance of the original metaheuristic algorithm-based clustering methods. Das 

et al. [166] proposed a modified Bee Colony Optimization (MBCO) model by adopting 

both fairness and cloning concepts. The introduction of a fairness concept allowed bees 

with low probabilities to have a chance to be selected for enhancing search diversity. 

The employed cloning concept enabled the global best solution to be kept in the next 

iteration to accelerate convergence. Two hybrid clustering methods, namely MKCLUST 

and KMCLUST, were subsequently constructed based on MBCO. Additionally, a 

probability based selection method was introduced to allocate the remaining unassigned 

data samples to clusters. The MBCO method was evaluated with seven UCI data sets. It 

outperformed some existing algorithms, e.g. ACO, PSO, and KM clustering, while the 

proposed hybrid MKCLUST and KMCLUST models, on average, outperformed some 

existing hybrid methods, e.g. K-PSO (combination of PSO and KM), K-HS 

(combination of Harmony Search and KM), and IBCOCLUST (improved BCO 

clustering algorithm). In Niknam and Amiri [168], a hybrid evolutionary clustering 

model, namely FAPSO-ACO-K, was proposed by combining three traditional 

algorithms, i.e. FAPSO (fuzzy adaptive PSO), ACO, and KM. The proposed model was 

tested with four artificial and six UCI data sets. FAPSO-ACO-K was able to resolve the 

problem of initialization sensitivity in KM clustering. It outperformed other algorithms, 

such as PSO, ACO, SA, PSO-SA (combination of PSO and SA), ACO-SA (combination 
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of ACO and SA), PSO-ACO (combination of PSO and ACO), GA, and TS. Boushaki et 

al. [171] constructed a quantum chaotic Cuckoo Search (QCCS) algorithm using chaotic 

maps and nonhomogeneous update based on the quantum theory to increase global 

exploration. The QCCS model was tested with six UCI data sets. QCCS outperformed 

eight well-known methods, including GQCS (genetic quantum CS), HCSDE (hybrid CS 

and DE), KICS (hybrid KM and improved CS), CS, QPSO (quantum PSO), KCPSO 

(hybrid KM chaotic PSO), GA, and DE, for solving clustering problems. In Zhou and Li 

[173], two FA variants, namely the probabilistic firefly KM (PFK) and the greedy 

probabilistic firefly KM (GPFK), were proposed for data clustering. The PFK model 

employed a cluster channel array to store the probability of each data object belonging 

to each cluster in the encoding system. Instead of moving towards all brighter fireflies 

as in PFK, the GPFK algorithm adopted a greedy search strategy, in which each firefly 

only moved towards the brightest firefly in the swarm. The PFK and GPFK models 

outperformed KM clustering and FA based on the evaluation of four UCI data sets. 

Hassanzadeh and Meybodi [178] proposed a modified FA model (MFA) for clustering 

analysis. The MFA model not only employed neighbouring brighter fireflies but also the 

global best solution to provide guidance for the search process. The MFA model was 

evaluated with five UCI data sets. It outperformed three other clustering methods, 

including KM, PSO, and KPSO. Han et al. [175] proposed a modified GSA model for 

clustering analysis, namely BFGSA. The mean position of the seven nearest neighbours 

of the global best solution was used to enable the leader to escape from the local optima 

traps. Based on 13 UCI data sets, BFGSA outperformed nine classical search methods, 

including GSA, PSO, ABC, FA, KM, NM-PSO (fusion of Nelder-Mead simplex and 

PSO), K-PSO (fusion of KM and PSO), K-NM-PSO (fusion of KM, Nelder-Mead 

simplex and PSO), and CPSO (Chaotic PSO) [175]. A comprehensive survey on 

metaheuristic algorithms for partitioning clustering can be found in Nanda and Panda 

[179]. 

2.3 Feature selection and classification 

The knowledge discovery processes in real-world applications often involve data sets 

with large numbers of features [180]. The high dimensionalities of data sets increase the 

likelihood of overfitting and impair generalization capability. Besides that, the inclusion 

of redundant or even contradictory features can also severely reduce the performance of 

ML algorithms [181]. As a result, feature selection and dimensionality reduction 
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become critical to overcome the above challenges by eliminating irrelevant and 

redundant features while identifying the most effective and discriminative ones [102, 

182].  

2.3.1 Classification 

Classification is a sub-category of supervised learning which predicts labels of new 

observations based on the mapping from a set of features of training samples to the 

corresponding categorical class labels [183]. The authenticity of this mapping 

relationship between sample features and labels is crucial to classification performance. 

In other words, the identification of authentic feature representations with investigated 

problems is prerequisite for learning discriminative characteristics with respect to 

different categories and distinguishing data samples effectively. Moreover, the selection 

of appropriate classifiers also plays a critical role in determining classification 

performance. Currently, a variety of classifiers have been developed, e.g. Logistic 

Regression [184], Naïve Bayes Classifier [185], KNN [186], SVM [187], Decision Tree 

(DT) [188], RF [189], and ANNs [190], for tackling a wide range of real-life complex 

problems, such as image classification [191], handwriting recognition [192], spam 

filtering [193], speech recognition [194]. 

2.3.1.1 K-Nearest Neighbours 

KNN [186] is one of the most popular classifiers owing to its simplicity and robust 

performance on large-scale training sets. It is a non-parametric classification technique 

that essentially relies on the fundamental assumption that observations with similar 

characteristics will tend to have similar outcomes. In KNN, an object is classified by the 

plurality vote of its neighbours whereby the most common label among its K nearest 

neighbours is assigned to the object. The similarity represented by distance measures 

plays an important role in the performance of KNN. Hence, a variety of distance 

measures have been developed in existing studies, such as Euclidean, Mahalanobis, 

Manhattan, Minkowski, Hamming, and Chebychev [195], distances. 

Since few assumptions regarding the underlying data distributions are required, KNN is 

considered one of the most popular choices for undertaking classification problems in 

absence of any prior knowledge. Despite its simplicity and effectiveness, KNN is 

subject to expensive computational cost and intensive memory consumption, owing to 

the calculation of the distance measure from the instance to be classified to each stored 
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observation. Moreover, KNN is sensitive to data noise and subject to curse of 

dimensionality. Its performance also largely depends on the selection of an appropriate 

value for K, i.e. the number of nearest neighbours [196]. 

2.3.1.2 Support Vector Machine 

SVM [187] is another popular classification algorithm. SVM creates a hyperplane that 

separates data samples into distinctive classes with the maximum margin, to reduce 

generalization error. Therefore, the instances from separate categories are divided by a 

clear gap owing to the maximization of the distance between the hyperplane and the 

nearest sample in SVM. The data samples which determine the position and orientation 

of hyperplane are hence named support vectors.  

SVM is capable of performing nonlinear classifications through the employment of 

diverse kernel functions. To be specific, data samples are mapped into a hyperspace by 

the employed kernel function, such that the complicated sample distributions can be 

separated more easily. Functions commonly used as kernels include polynomial, 

sigmoid, radial basis function, as well as multi-layered perceptron [190]. Despite its 

good theoretical foundations and generalization capabilities, SVM still suffers from 

certain limitations, such as difficulty in the identification of the optimal kernel functions, 

high algorithmic complexity, as well as underperformance on noisy and imbalanced data 

sets [197]. 

2.3.2 Feature selection 

The real-life classification problems often involve data sets with a significant number of 

features [198]. The high dimensionalities of real-life data sets increase the likelihood of 

overfitting and impair generalization capability owing to the inclusion of redundant or 

even contradictory features. Therefore, it is crucial to select the most discriminative 

features from raw data sets and enhance feature representations before feeding them into 

the classification algorithms as the inputs. 

Feature selection approaches can be broadly divided into two categories, i.e. filter and 

wrapper methods. The filter approaches rank features individually based on certain 

statistical criteria, such as chi-square test [199], mutual information [200], Pearson 

correlation coefficients [201] etc. Features with higher rankings indicate their superior 

importance to the problem domain. However, it is challenging to identify the cut-off 
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point for selecting the most important features using filter methods. Besides that, the 

individual-based ranking mechanisms are incapable of measuring the confounding 

effects of feature interactions and feature composition [180]. In contrast, instead of 

measuring the impact of individual features to feature selection tasks, the wrapper 

methods evaluate the quality of various feature subsets by taking feature interaction into 

account, using the learning algorithm wrapped inside. Moreover, search strategies used 

to identify important feature subsets in the wrapper-based methods are generally divided 

into two categories, i.e. greedy search and stochastic search [180]. Greedy search, such 

as forward and backward selection, identifies local optimal solutions by following the 

problem-solving heuristic at each search step, whereas stochastic search based on EC is 

able to explore complex effects of feature interactions comprehensively owing to the 

significant capabilities of EAs in finding global optimality. 

2.3.3 Evolutionary feature selection methods 

EAs have been widely employed to comprehensively explore complex effects of feature 

interactions owing to their significant capabilities in finding global optimality [182]. In 

EAs-based feature selection methods, the coevolution mechanisms based on diverse 

evolving operators, e.g. crossover and mutation, are capable of producing various 

feature representations of the original problem in a single run. Therefore, the 

confounding effects of feature interactions can be thoroughly explored through the 

evaluation of validity of various feature constitutions during the iterative process. The 

effectiveness and superiority of various EAs over other methods in undertaking feature 

selection tasks have been extensively verified by existing studies, such as feature 

optimisation using GA [202], DE [203, 204], PSO [205, 206], FA [102, 207], ACO 

[208], GWO [209], WOA [210], and SCA [211]. 

As one of the most well-known EAs, PSO and its variants have been widely employed 

as the search engine in wrapper-based feature selection methods owing to its fast 

convergence speed and powerful discriminative search capabilities. Xue et al. [205] 

proposed two PSO-based multi-objective feature selection algorithms to achieve the 

trade-off between minimising the number of features and maximising classification 

accuracy. The first algorithm, i.e. NSPSOFS, incorporates the nondominated sorting 

from one of the most popular evolutionary multi-objective techniques, i.e. NSGAII 

(nondominated sorting GA II), into PSO to conduct multi-objective feature selection, 
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while the second feature selection model, i.e. CMDPSOFS, was proposed based on the 

idea of crowding, mutation, and dominance to enhance search diversity. In CMDPSOFS, 

a crowding factor together with a binary tournament selection is used to filter out certain 

crowed nondominated solutions. Additionally, the whole swarm is divided into three 

groups for the application of different mutation operators. Specifically, uniform 

mutation is operated on one group to enhance global search capabilities while non-

uniform mutation is applied to a second group to improve local search capabilities. The 

third group operates without a mutation operator. Evaluated on 12 benchmark data sets, 

the NSPSOFS and CMDPSOFS models achieved better performance than those of LFS 

(Linear Forward Selection), GSBS (Greedy Stepwise Backward Selection), PSO (PSO 

with single objective function), 2SFS (PSO with a two-stage fitness function), NSGAII, 

SPEA2 (Strength Pareto Evolutionary Algorithm 2), and PAES (Pareto Archived 

Evolutionary Strategy). In particular, CMDPSOFS outperformed all baseline methods in 

terms of selecting fewer features as well as achieving higher classification performance. 

Gu et al. [212] employed a newly proposed Competitive Swarm Optimiser, i.e. CSO, to 

undertake high-dimensional feature selection tasks. In CSO, the swarm is randomly 

divided into two sub-swarms and pairwise competitions are conducted between particles 

from each sub-swarm. The winner particle in the competition is passed on to next 

generation while the defeated particle updates its position by learning from the position 

of winner particle in the cognitive component as well as the mean position of the swarm 

in the social component. Besides that, a social factor is employed to control the 

influence of the mean position of the swarm. The CSO model was evaluated on six 

challenging feature selection tasks with high dimensionalities from 360 to 6598. The 

empirical results indicates that CSO significantly outperforms PSO, PCA (Principal 

Component Analysis), as well as four PSO-based feature selection algorithms proposed 

by Xue et al. [206] with various initialisation strategies.  

Moradi and Gholampour [213] proposed a hybrid PSO variant, i.e. HPSO-LS, for 

feature selection by integrating a local search strategy into the original PSO model. Two 

operators, i.e. “Add” and “Delete”, are employed to enhance the local search of PSO. 

Specifically, the “Add” operator inserts the dissimilar features into the particle, while 

similar features are deleted from the particle by the “Delete” operator. Evaluated on 13 

benchmark classification problems, HPSO-LS significantly outperforms four well-

known filter-based feature selection methods, i.e. information gain, term variance, fisher 
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score and mRMR (minimum redundancy maximum relevance), as well as four classical 

methods, i.e. GA, PSO, ACO, and SA. Another hybrid PSO model, i.e. HPSO-SSM, 

was proposed by Chen et al. [74], which incorporates a spiral search mechanism for 

feature selection. Specifically, the Logistic chaotic map was used to generate the inertia 

weight. Subsequently, two dynamic nonlinear correction factors were employed as 

weights for the current position and velocity respectively in the original position 

updating formula to increase search scope. A spiral-based search action was also 

adopted to increase local exploitation capability. Evaluated on 20 UCI data sets, the 

results indicate that HPSO-SSM significantly outperforms other classical search 

methods, i.e. BBO, WOA, ABC, KH (Krill Herd algorithm), DE, and SCA, as well as 

several up-to-date feature selection methods, i.e. HPSO-LS, PSO(4–2),  PSOLDA (a 

PSO approach for enhancing classification accuracy rate of Linear Discriminant 

Analysis), CatfishBPSO (binary PSO with catfish effect), WOASAT-2 (hybrid WOA 

with SA), ISEDBFO (improved swarming and elimination-dispersal BFO algorithm), 

and CMPSO (PSO with crossover and mutation operation). Tan et al. [214] proposed a 

hybrid learning PSO, i.e. HLPSO, to identify the most significant and discriminative 

elements from shape, colour, and texture features extracted from non-melanoma and 

melanoma dermoscopic images for the identification of malignant skin lesions. In 

HLPSO, the swarm is divided into two sub-swarms with top 50% ranked particles stored 

in one sub-swarm and the remaining particles stored in another sub-swarm. Three 

probability distributions, i.e. Gaussian, Cauchy, and Levy distributions, are used to 

conduct local jumps for the top 50% promising particles in the first sub-swarm, whereas 

three search mechanisms are conducted for the lower ranking particles in the second 

sub-swarm, i.e. a spiral search action based on the personal and global best solutions, 

and two modified FA operations guided by a randomly selected neighbouring brighter 

solution and the mean position of all brighter neighbouring solutions, respectively. The 

two sub-swarms merge after a number of iterations, then the crossover and mutation 

operators are employed to generate new offspring solutions using the top ranked 

particles as parents. HLPSO was evaluated using 11 basic benchmark functions, CEC 

2014 test suite and two dermoscopic skin lesion data sets for feature selection. The 

evaluation results indicate that HLPSO demonstrates superior advantages in identifying 

the most discriminative lesion features and searching for the optimality of test functions 

with complex landscapes. The model significantly outperforms three classical search 

methods, i.e. PSO, FA, and MFO, five PSO variants, i.e. ELPSO (enhanced Leader 
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PSO), AGPSO (autonomous group PSO), DNLPSO (dynamic neighbourhood learning 

PSO), GPSO (genetic PSO), and GMPSO (PSO with GA and mutation techniques of 

Gaussian, Cauchy and Levy distributions), as well as five FA variants, i.e. FA with 

neighbourhood attraction (NaFA), MFA (a modified FA), VSSFA (FA with a variable 

step size), CFA1 (chaotic FA with Logistic map), and CFA2 (chaotic FA with Gauss 

map).  

Moreover, Basset et al. [209] proposed a GWO variant integrated with a two-phase 

mutation, i.e. TMGWO, for feature selection. In each iteration, the two mutation 

operations are enforced on the best wolf solution by randomly deselecting the identified 

features and randomly adding unselected ones, respectively. As such, the exploitation 

capability during the process of feature selection is enhanced, owing to the simulation of 

the effects of reducing irrelevant features as well as adding informative ones, through 

the above two mutation operations. Evaluated on 35 UCI data sets, the devised 

TMGWO significantly outperformed a number of advanced search methods, e.g. Crow 

Search Algorithm (CSA), Multi-Verse Optimizer (MVO), and Non-Linear PSO 

(NLPSO). Faris et al. [215] proposed a novel feature selection method, i.e. TVBSSA-

RWN, which incorporates a time-varying hierarchal binary Salp Swarm Algorithm 

(TVBSSA) and Random Weight Network (RWN). Specifically, instead of employing 

only one leader, a dynamic time-varying scheme of linearly increasing the number of 

leaders and decreasing the number of followers is designed for the construction of the 

leadership hierarchy in the salp swarm. Hence, the exploration capability is significantly 

enhanced owing to the increased proportion of large jumps across the search territory 

conducted by salp leaders. Moreover, Random Weight Network (RWN) is employed as 

the classifier in their proposed wrapper-based feature selection method. Beside the 

above, both the feature selection scheme and the number of neurons in the hidden layer 

of RWN are encoded in salp individuals for evolution. A fitness function incorporating 

the classification performance, the selected number of features, as well as the 

complexity of the generated RWN, is employed for fitness evaluation. TVBSSA-RWN 

was evaluated using 20 UCI data sets and significantly outperformed a number of 

existing feature selection methods, e.g. GA-KNN, PSO-KNN, binary GWO-RWN, and 

binary GSA-RWN. Souza et al. [216] proposed a binary Coyote Optimization 

Algorithm (BCOA) for feature selection. Intrinsically, in BCOA, the coyote population 

is divided into several sub-swarms with equal number of individuals. Each coyote 
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updates its position under the influence of the fittest coyote individual, the median 

individual in terms of the fitness rankings, as well as two randomly selected individuals, 

in the sub-swarm. Moreover, the worst coyote solution in each sub-swarm is replaced by 

the offspring solution yielded through the recombination of the elements from random 

selected individuals as well as random values within the decision bound. Besides the 

above, a v-shaped transfer function is developed for the binary transformation of coyote 

solutions. The Naïve Bayes classifier is employed for fitness evaluation in the wrapper-

based feature selection method. Evaluated on seven UCI data sets, the results indicate 

that BCOA significantly outperforms a number of evolutionary feature selection 

methods, e.g. binary DA, binary Crow Search Algorithm (BCSA), as well as the 

classical methods, e.g. Sequential Forward Selection (SFS), Sequential Backward 

Selection (SBS). Moreover, the comprehensive reviews on the applications of  EC 

techniques in tackling feature selection problems can also be found in [17, 182]. 

2.4 Deep neural networks 

Despite its effectiveness and extensive applications, conventional ML techniques are 

subject to many limitations in terms of capabilities in processing large-scale natural data 

sets in their raw forms, e.g. images, videos, and texts. It requires significant amount of 

domain expertise and dedicated efforts to engineer raw data sets for extraction of 

appropriate feature representations, upon which ML algorithms are able to discover the 

underlying patterns embedded in the training data sets and generalise well on unseen 

data sets [217]. However, the recent rapid progress in DL has turned the tide of the 

traditional feature engineering and hand-crafted feature extraction. As representation 

learning based methods, DNNs are capable of automatic identification of effective 

feature representations with respect to the investigated problems at multiple levels, with 

higher-level features formed by the composition of features from lower levels of the 

hierarchy, owing to the stack of multiple feature-extracting layers in networks. Several 

essential DNNs models are introduced as follows. 

2.4.1 Convolutional Neural Networks 

CNNs [218] are a class of DNNs which retrieve data patterns automatically through the 

aggregation of feature maps at different levels. As shown in Figure 2-3, feature 

representation is learned through the collaboration of multiple layers with different 

functions, i.e. the convolutional layer (Conv), the rectified linear unit layer (ReLU), the 
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pooling layer (Pooling), as well as the fully connected layer (FC). Specifically, the 

convolutional layers perform convolution operations between learnable kernels and 

local regions of input data to produce various feature maps. The ReLU layers conduct 

elementwise activations to introduce nonlinearity to the network, whereas the pooling 

layers perform downsampling operations to reduce spatial size of the representation. As 

such, the high-level features can be extracted effectively from the raw data through the 

stack of the above three different types of layers. In addition, the fully connected layers 

perform nonlinear combinations on the acquired high-level features and classify the 

subject.  

CNNs are capable of learning complex patterns by amplifying discriminant variations 

and supressing irrelevant ones contained in the input data through successive 

transformation of representations acquired by previous layers in networks. Since the 

breakthrough achieved by AlexNet on large-scale image classification [219], a great 

variety of network topologies and architectures have been developed to enhance 

network performances when undertaking diverse real-life challenges, e.g. Very deep 

Convolutional Networks (VGG) [220], Residual Neural Network (ResNet) [221], 

Inception Networks [222], You Only Look Once (YOLO) [223], Region with 

Convolutional Neural Network (R-CNN) [224], Generative Adversarial Networks 

(GANs) [13], etc. The above variants of CNNs have achieved state-of-the-art results on 

many challenging tasks of interest, e.g. semantic segmentation [225], image 

classification [226], object detection [227]. 

 

Figure 2-3 The illustration of the architecture of a vanilla CNN 
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2.4.2 Long Short-Term Memory 

In addition to CNNs, Recurrent Neural Networks (RNNs) is another important class of 

DNNs. RNNs are capable of modelling implicit compositional representations in the 

temporal domain by incorporating previous experiences into the internal memory cells. 

However, the training of RNNs can be extremely difficult, especially when facing the 

tasks in which the temporal contingencies span long intervals, owing to the suffering of 

gradient vanishing and exploding [228]. Hence, LSTM [229] was invented to resolve 

above disadvantages of RNNs. In LSTM, a dedicated highway is formed to transport 

essential temporal information down to the entire cell chain, through the employment of 

multiple gate units, i.e. the forget, input, and output gates. The above gate units control 

information flow and modify cell memory by removing irrelevant information and 

selectively introducing new information in the cell states. The formulae of the gate units 

employed in LSTM are provided in Eqs. 2.18 - 2.23. 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)       (2.18) 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)        (2.19) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)       (2.20) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 𝑐̃𝑡         (2.21) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)       (2.22) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡)         (2.23) 

where 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 denote the forget, input, and output gates, respectively, whereas 𝑥𝑡, ℎ𝑡, 

𝑐𝑡, 𝑐̃𝑡 represent the input data, the hidden state, the cell state, as well as the modulated 

input, at the time step 𝑡, respectively. Besides, 𝑊𝑥𝑓, 𝑊𝑥𝑖, 𝑊𝑥𝑜 represent the weights of 

the input 𝑥𝑡 for the forget, input, and output gates, respectively, whereas 𝑊ℎ𝑓, 𝑊ℎ𝑖, 𝑊ℎ𝑜 

denote the weights of the previous hidden state ℎ𝑡−1  for the above three gates, 

respectively. Moreover, 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜  are the bias for the three gates in the neuron, 

respectively. 𝜎 and 𝑡𝑎𝑛ℎ represent sigmoid and hyperbolic tangent activation functions, 

respectively. 
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Figure  2-4 The illustration of a building block in LSTM 

As shown in Figure 2-4, LSTM memory cell contains three types of gate units for the 

processing of cell information, i.e. forget gate 𝑓𝑡, input gate 𝑖𝑡, and output gate 𝑜𝑡, as 

well as two types of activation functions, i.e. sigmoid function 𝜎 and hyperbolic tangent 

function 𝑡𝑎𝑛ℎ. The sigmoid function 𝜎 squashes cell values into [0, 1] to regulate the 

flow of the information through the gate, i.e. 0 means no flow, 1 means complete flow, 

whereas the hyperbolic tangent function 𝑡𝑎𝑛ℎ squashes cell values into [-1, 1], allowing 

for both increase and decrease of the cell states.  

The concatenation of the input data 𝑥𝑡 and the previous hidden state ℎ𝑡−1 is fed into 

each of the three gate units to yield numerical values for the control of information flow 

in the cell, respectively. Specifically, the values yielded by the forget gate 𝑓𝑡 tend to 

remove nonessential information from the previous cell state 𝑐𝑡−1, as shown in Eq. 2.18. 

The values generated by the input gate 𝑖𝑡 determine the amount of new information to 

be stored in the current cell state 𝑐𝑡, as shown in Eqs. 2.19 - 2.21. Moreover, the values 

produced by the output gate 𝑜𝑡 determine the amount of the information to be passed on 

to future memory cells from the current cell state 𝑐𝑡, as shown in Eqs. 2.22 and 2.23. As 

such, this design of the gate units enables LSTM to capture complex and long-term 

dependencies more effectively, owing to its capabilities of retaining effective 

contingencies from previous cell sates and supressing nonessential information without 

suffering from gradient vanishing. 

2.4.3 Convolutional Neural Network-Long Short-Term Memory 

In order to harness the advantages from distinctive DL models, advanced composite 

networks through the hybridization of different network structures have been explored 
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in existing studies. The typical instance is the hybridization between CNN and LSTM, 

namely CNN-LSTM [230], as shown in Figure 2-5. 

CNN-LSTM networks have attracted many research attentions owing to its great 

advantages in combining the strength of automatic feature extraction in CNN, as well as 

the capability of capturing long-term dependencies in LSTM. The convolutional layer in 

CNN-LSTM disentangles the cross-correlations while preserving deterministic and 

stochastic trends embedded among the input time series. Therefore, it produces more 

accurate feature representations, which enables LSTM layers to learn temporal 

dependencies more precisely. The CNN-LSTM networks have been applied to tackle a 

variety of time series prediction and classification problems successfully, e.g. stock 

market forecasting [231], named entity recognition [232], textual sentiment analysis 

[233, 234], machine translation [235], facial expression recognition [236] and image 

description generation [237]. 

2.4.4 Evolving deep neural networks 

The performance of DNNs is largely dependent on the configurations of their respective 

architectures and hyperparameter settings. However, the search for the optimal network 

configuration is extremely challenging owing to network complexity and heavy 

computational cost of the learning processes. As characterised with superb global search 

capabilities, EAs have been leveraged to evolve deep learning neural networks for the 

identification of the optimal learning configurations as well as the discovery of 

innovative network structures. 

Sun et al. [238] proposed an automatic CNN architecture design method based on the 

GA. In this method, a generic CNN structure consisting of predefined building blocks is 

employed as the foundation for the automatic architecture generation. Specifically, a 

Figure 2-5 The illustration of the architecture of CNN-LSTM 
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building block with two convolutional layers and one skip connection is employed for 

the benefits of increasing network depth without risking gradient vanishing, whereas the 

fully connected layers are discarded for the consideration of reducing the likelihood of 

overfitting resulted from the dense connection. As a result, parameters encoded in the 

GA chromosomes include filter numbers of convolutional layers in each building block 

and the pooling layer type, with the length of chromosomes representing the depth of 

the network. The population undergoes the evolving process of the crossover operation, 

as well as the mutation process. The latter incorporates four options, i.e. adding a skip 

layer, adding a pooling layer, removing the layer at the selected position, and changing 

the parameters of the building block randomly. Their proposed method is evaluated on 

CIFAR10 and CIFAR100 data sets. The results indicate its great superiorities in 

improving classification performance while significantly reducing the amount of 

parameters, in comparison with manually designed CNNs, e.g. Resnet (depth=110), as 

well as the models derived from the combined schemes of automatic and manual tuning, 

e.g. Efficient Architecture Search (EAS) and Differential Architecture Search (DARTS). 

Sun et al. [239]  proposed an evolving deep CNN (EvoCNN) model based on the GA 

for image classification. A variable-length gene encoding strategy is formulated to 

represent each potential network configuration. Two statistical measures, i.e. the mean 

and standard deviation values, are used to represent the weight parameters in the 

encoding strategy. During fitness evaluation, Gaussian distribution is employed to 

decode the weights based on the two statistical measures. The network architecture 

recommended by each chromosome as well as its corresponding decoded weights is 

adopted in fitness evaluation. Besides the classification performance (i.e. the mean and 

standard deviation of the classification error rates), the network parameter size is also 

considered in chromosome evaluation. A slack binary tournament selection strategy is 

devised for the parent chromosome selection where the mean classification performance 

and the parameter size are used as the threshold criteria. A unit alignment crossover 

operator is proposed to exchange gene information of the two parent solutions with 

different lengths. Evaluated with nine popular image classification data sets (e.g. 

Fashion, Rectangle, MNIST and its variant data sets), the EvoCNN model outperforms a 

number of competitive benchmark deep architectures. 

Deep network generation with ResNet and DenseNet blocks based on the GA is 

examined by Sun et al. [240]. Specifically, an automatically evolving CNN (AE-CNN) 
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model is designed to yield the CNN architectures with residual and dense connectivity. 

A one-point crossover operator is used for offspring solution generation, while three 

types of mutation operations (i.e. adding, removing, and modifying) are employed to 

further configure the networks. Evaluated with the CIFAR10 and CIFAR100 data sets, 

the AE-CNN model performs favourably as compared with a number of hand-crafted 

architectures and automatically devised networks from some existing methods. Despite 

the promising results and the great potential of the evolutionary deep learning models 

with respect to knowledge discovery, they are inadvertently subject to a considerably 

high computational cost. To overcome this drawback, Sun et al. [241] proposed an end-

to-end performance predictor (E2EPP). A random forest is used to predict the network 

performance. The AE-CNN model is initially employed to produce a set of CNN 

architectures. These network configurations are subsequently encoded into numerical 

decision variables, which are used in conjunction with the corresponding network 

accuracy rates for training the random forest-based performance predictor. Specifically, 

a predictor pool is generated, where each base tree model is trained using data samples 

containing randomly selected subsets of features. To increase ensemble robustness, a 

subset of base evaluators is selected to evaluate any newly created architectures based 

on their prediction performances with respect to the current best CNN architecture. The 

E2EPP model outperforms two existing performance predictors and advanced deep 

networks in terms of classification performance and computational efficiency. 

Martín et al. [242] employed a Hybrid Statistically-driven Coral Reef Optimization 

(HSCRO) algorithm to reconstruct the fully connected layers in VGG-16 for two 

purposes, i.e. reducing the amount of parameters and improving model performance. 

Each coral individual represents a set of fully connected layers in VGG-16. Four types 

of parameters are encoded in each layer, i.e. activation function, number of neurons, 

matrix of connection weights, and bias. The HSCRO model incorporates four 

evolutionary operators, i.e. asexual reproduction, sexual reproduction, settlement, and 

depredation, to emulate the reproduction process of coral reefs. In addition, a stratified 

mutation scheme is designed in which 20% of best individuals undergo parametric 

mutations on weights and biases, whereas the remaining 80% of individuals experience 

structural mutations, i.e. mutations on activation functions, the number of nodes, and 

node connections, during the evolving process. The identified best solution is further 

fine-tuned using stochastic gradient descent (SGD) optimizer. The proposed evolving 
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CNN model is tested on two image classification data sets, i.e. CIFAR10 and CINIC10, 

capable of reducing 90% of the connection weights while improving the classification 

accuracy as compared with the VGG-16 model. 

In addition to evolving CNN models, there are also studies on evolving RNN and LSTM 

models. Rawal and Miikkulainen [243] proposed a Genetic Programming (GP) based 

evolving LSTM architecture generation system, capable of constructing layered network 

structures from a single recurrent node design. The recurrent node is encoded as a tree 

structure with two types activation operations, i.e. linear activations with two elements 

(add and multiply), and nonlinear activations with one element (tanh, sigmoid, or relu). 

A homologous crossover operator is designed to yield offspring solutions by crossing 

over the same regions of the two parents represented in tree structures during 

reproduction. Besides that, three types of mutation operations are designed for the 

evolution of tree solutions, i.e. (1) replacing one activation operation with another 

within the same category, (2) inserting a new branch at a random position in a tree, and 

(3) shrinking a branch by replacing it with a randomly selected operation employed in 

this branch. Also, individual solutions with previously explored branch structures 

undergo repeated mutation procedures until new tree structures are generated, to 

maintain population diversity. In addition, two architecture generation schemes are 

experimented, i.e. a homogenous evolving process using a single recurrent node within 

a LSTM layer vs. a heterogenous evolving process using the combination of nodes with 

different structures. Their evolving LSTM model is evaluated using two tests, i.e. a 

language modelling test and an automatic music transcription test, and outperforms 

existing advanced models, e.g. the neural architecture search method (NAS) and 

Recurrent Highway Network (RHN). Kim and Cho [244] developed a PSO-based 

evolving CNN-LSTM network for the prediction of energy consumption. The original 

PSO algorithm is applied to search for the optimal hyperparameters of CNN-LSTM, e.g. 

filter numbers and sizes in convolutional layers, and the number of hidden nodes in 

recurrent layers, for retrieving energy consumption patterns. The results indicate that 

their evolving CNN-LSTM model significantly outperforms classical models, e.g. 

Linear Regression, DT, and RF, for energy consumption prediction. Xue et al. [245] 

proposed an evolving CNN-LSTM method to tackle the inventory forecast problem. 

PSO and two DE variants, i.e. DE with binominal and exponential crossover operators 

respectively, are employed for the identification of the optimal CNN-LSTM 
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hyperparameters, including the filter number and size in the convolutional layer, pooling 

type, pooling size, and stride size with respect to the pooling layer, as well as dropout 

rate and the numbers of nodes in LSTM layer and dense layer, respectively. The results 

indicate that the DE with exponential crossover operator achieves the best performance 

in forecasting inventory and demonstrates more advantages on identifying proper CNN-

LSTM hyperparameters in comparison with PSO as well as DE with binominal 

crossover operator. Furthermore, a systematic review on designing deep neural networks 

using neuro-evolution is provided in [246]. 

2.5 Summary 

EC optimization techniques have become powerful tools to eliminate noises and 

redundant features in raw data sets, mitigate inherent limitations residing in 

conventional ML models, as well as discover effective and innovative network 

topologies for DL models. A great variety of hybrid models between EC and ML have 

been developed in existing studies, and it is unlikely to cover all of them in detail in this 

thesis. Therefore, in this chapter, the state-of-the-art hybrid models of interest in relation 

to feature selection, cluster centroids optimization, as well as neural architecture search 

are reviewed particularly. Besides above, three popular models in EAs are introduced, 

namely PSO, FA, and GWO. Their limitations are analysed in detail and serve as the 

motivations for proposing enhanced optimization methods. The proposed improved EAs 

are employed to overcome three challenging obstacles in ML and data mining, i.e. 

initialization sensitivity, feature selection, and hyperparameter optimization, as 

presented in Chapters 3, 4, and 5, respectively.     
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Chapter 3  

Evolutionary K-means Clustering with Enhanced Firefly 

Algorithms 

In this chapter, two variants of the FA, namely inward intensified exploration FA 

(IIEFA) and compound intensified exploration FA (CIEFA), are proposed for 

undertaking the obstinate problems of initialization sensitivity and local optima traps of 

the KM clustering model. To enhance the capability of both exploitation and exploration, 

matrix-based search parameters and dispersing mechanisms are incorporated into the 

two proposed FA models. Specifically, the attractiveness coefficient is replaced with a 

randomized control matrix in the IIEFA model to release FA from the constraints of 

biological law, as the exploitation capability in the neighbourhood is elevated from a 

one-dimensional to multi-dimensional search mechanism with enhanced search diversity 

in scopes, scales, and directions. Besides that, a dispersing mechanism is employed in 

the CIEFA model to dispatch fireflies with high similarities to new positions out of the 

close neighbourhood to perform global exploration. This dispersing mechanism ensures 

sufficient variance between fireflies in comparison to increase search efficiency. The 

ALL-IDB2 database, a skin lesion data set, and a total of 15 UCI data sets are employed 

to evaluate efficiency of the proposed FA models on clustering tasks. The minimum 

Redundancy Maximum Relevance (mRMR)-based feature selection method is also 

adopted to reduce feature dimensionality. The empirical results indicate that the 

proposed FA models demonstrate statistically significant superiority in both distance 

and performance measures for undertaking diverse clustering tasks, in comparison with 

conventional KM clustering, five classical search methods, and five advanced FA 

variants. 

3.1 The proposed evolutionary K-means clustering models 

FA is chosen to construct the hybrid clustering models owing to its unique property of 

automatic subdivision and its advantages in tackling multimodal optimisation problems 

with sub-optimal distraction and high nonlinearity [95, 111-114, 247]. However, the 

original FA model has certain limitations in terms of search diversity and efficiency. 

More specifically, search diversity of FA is severely constrained owing to its diagonal-

based search paradigm resulted from the strict adherence to the biological laws, as 
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analysed in detail in Section 2.1.2. As a consequence, it is likely that fireflies tend to 

overlook promising search directions and dimensions inadvertently distant from the 

prescribed diagonal trajectory during movement. On the other hand, search efficiency in 

FA is also undermined owing to the lack of consideration in terms of fitness 

distinctiveness when one firefly approaches other brighter ones in the neighbourhood. 

As a result, many movements may become futile and ineffective, unable to navigate 

fireflies to a more promising region, since there is little difference between fitness 

scores before and after the movement. Therefore, two modified FA models are proposed, 

namely IIEFA and CIEFA, to overcome limitations of the original FA model and 

mitigate the problems of initialization sensitivity and local optima traps of KM 

clustering. The proposed models intensify the diversification of exploration both in the 

neighbourhood and global search space, and lift the constraints of the biological laws in 

the original FA model. We introduce the proposed models in detail in the following sub-

sections. 

3.1.1 The proposed inward intensified exploration FA (IIEFA) model 

The aim of IIEFA is to expand the one-dimensional search in the original FA model to a 

multi-dimensional scale by replacing the attractiveness term 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

 with a random 

matrix 𝜇, as illustrated in Eq. 3.1.  

𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝝁 (𝒙𝑗
𝑡 − 𝒙𝑖

𝑡) + 𝛼𝑡𝜺𝑡       (3.1) 

𝛼𝑡+1 = 𝛼𝑡𝜃         (3.2) 

where 𝝁 denotes a control matrix where each element is drawn from [0, 1] randomly, 

while 𝛼𝑡  denotes an adaptive randomization step based on a geometric annealing 

schedule. 𝜃 is a constant value which is employed to gradually diminish the randomness 

imposed by the adaptive step 𝛼𝑡  and achieve the trade-off between exploration and 

exploitation through the search process course. Specifically, large settings for 𝜃  are 

likely to undermine search efficiency owing to the overwhelming impacts of large 

random jumps, whereas small settings for 𝜃 result in premature convergence owing to 

the lack of search randomness. According to [60], 𝜃 is recommended to have a value in 

the range of 0.95 to 0.99. We set  𝜃  to 0.97 in this study, in accordance with the 

recommendation in [60] and several trial-and-error results in our experiments. This 

adaptive randomization step enables the search process to start with a larger random 
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step to increase global exploration and fine-tune the solution vectors in subsequent 

iterations with a smaller search parameter. 

By multiplying the control matrix, 𝜇, each dimension of the position difference (𝒙𝑗
𝑡 − 𝒙𝑖

𝑡) 

between two fireflies is assigned with a unique random number in [0, 1], therefore being 

shrunk disproportionately with various magnitudes. Subsequently, the resulting 

solutions after this operation can be any vectors originated from the current firefly 

solution, randomly distributed in the rectangular area in comparison with residing in the 

dotted diagonal line as in original FA model, as illustrated in Figure 2-1. The random 

control matrix operation possesses two-fold advantages. Firstly, the search directions in 

the neighbourhood are not constrained to the diagonal line, but become more diversified. 

Secondly, the movement scales become more diverse owing to the impact of various 

magnitudes on each dimension. Figure 2-1 provides an example of possible directions 

and scales in the neighbourhood search, indicated by vectors with arrows within the 

rectangular. Therefore, IIEFA possesses a better search capability by extending 

exploration of fireflies from a one-dimensional diagonal direction to a multi-

dimensional space in the neighbourhood. In other words, exploration of the swarm 

increases along with the firefly congregation process. This first proposed FA variant is 

hereby characterized as an inward intensified exploration FA model. The pseudo-code 

of IIEFA is presented in Algorithm 3-1.  

Algorithm 3-1 – The pseudo-code of the proposed IIEFA model

1 Start 

2 Initialize a population of 𝑚 fireflies 

3 Initialize randomization parameter 𝛼𝑡 and set experimental parameters 

4 Define the objective function/light intensity 𝐼 = 𝑓(𝑥) 

5 Calculate light intensity for each firefly 

6 While (t< Max iteration) or (other converging criteria not being met) 

7 { 

8  For 𝑖 <= 𝑚 

9  { 

10   For 𝑗 <= 𝑚 
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11   { 

12    If  𝐼𝑖 <  𝐼𝑗  

13   { 

14     Generate a control matrix 𝜇 

15     Update the position of firefly 𝑖 by moving towards 

firefly 𝑗 using Eq. 3.1 

16              } End If 

17  Check the new position not to exceed the range of problem variables 

18   } End For 

19  } End For 

20 Update the randomization step 𝛼𝑡 using Eq. 3.2 

21 } End While 

22 Export the global best position 𝑃𝑔, and global best fitness value 𝐼𝑔 

23 End
 

3.1.2 The proposed compound intensified exploration FA (CIEFA) model 

In the original FA model, after being initiated, the whole firefly swarm tends to 

congregate continuously until convergence at one point. As such, the search process can 

be deemed as an inward contracting process, no matter how early the search stage is, or 

how close or similar two neighbouring fireflies are. Consequently, the approaching 

movement between fireflies with similar light intensities (i.e. fitness scores) at an early 

stage is more likely to result in waste of the resource, since the fitness score of the 

current firefly is very unlikely to be drastically improved under this circumstance by 

following the neighbouring slightly better solution, but with a high probability of being 

trapped in local optima. Therefore, we propose the second FA variant, i.e. a compound 

intensified exploration FA (CIEFA) model, by integrating both inward and outward 

search mechanisms to overcome this limitation inherent in the original FA model. This 

new CIEFA model is produced based on the first IIEFA model. Specifically, CIEFA 

combines the inward exploration strategy embedded in IIEFA with a newly proposed 

dispersing mechanism based on dissimilarity measures to increase diversification. Eq. 

3.3 defines the proposed dissimilarity measure 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 between two fireflies. 
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𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = (𝐼𝑗
𝑡 − 𝐼𝑖

𝑡) (𝐼𝑔
𝑡 − 𝐼𝑖

𝑡)⁄       (3.3) 

where 𝐼𝑖
𝑡 and 𝐼𝑗

𝑡  represent the fitness scores of fireflies 𝑖 and 𝑗 , respectively, in the 

𝑡𝑡ℎiteration, while 𝑔 represents the current global best solution, and 𝐼𝑔
𝑡 denotes its fitness 

score in the 𝑡𝑡ℎ iteration. 

As illustrated in Eq. 3.3, we employ 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  to distinguish fireflies with weak or 

strong light intensity differences to that of the current firefly, whereby the neighbouring 

solutions, with 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 0.5, are labelled as ‘ineffective individuals’, whereas 

those with distinctive variance in light intensities, i.e. 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 > 0.5, are labelled 

as ‘effective individuals’, through the position updating process. Eqs. 3.4 and 3.5 define 

the outward search operation for the ‘ineffective individuals’, with 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 0.5. 

This new outward search operation enables firefly 𝑖  to not only perform local 

exploitation of firefly 𝑗, but also force firefly 𝑖 to jump out of the space between 𝑖 and 𝑗 

so as to explore an outer space. It expands search exploration of the weaker firefly 𝑖 to 

accelerate convergence. On the contrary, when 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 > 0.5 , the inward 

intensified exploration formula in IIEFA is used to dispatch firefly 𝑖 using ‘effective 

individuals’.  

𝒙𝑖
𝑡+1 = 𝒙𝑗

𝑡 + 𝝋 𝝉 (𝒙𝑗
𝑡 − 𝒙𝑖

𝑡) + 𝛼𝑡𝜺𝑡      (3.4) 

𝝉 = (1 − 𝑡 𝑇𝑡𝑜𝑡𝑎𝑙⁄ ) (1 + 𝝁)       (3.5) 

In Eq. 3.4, 𝝉 denotes a step control matrix for this new outward operation, while 𝝋 

represents a direction control matrix with each element being drawn randomly from -1 

and 1. The step control matrix, 𝝉, for the outward search operation is further defined in 

Eq. 3.5, where 𝑡 represents the current iteration number while 𝑇𝑡𝑜𝑡𝑎𝑙 is the maximum 

number of iterations. Parameter 𝝁 denotes the control matrix that consists of random 

numbers in [0, 1], as defined earlier in IIEFA, with the same feature dimension as that 

of the firefly swarm.  

The step control matrix, 𝝉, is employed to regulate the extent of outward exploration in 

each dimension and the balance between exploration and exploitation through the whole 

search process. Owing to the randomness introduced by the control matrix, 𝝁, in IIEFA, 

as defined in Eq. 3.1, the elements in 𝝉 possess different values from each other, but all 

follow the same trend of variation as the iteration number builds up. As an example, the 
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change of one element from 𝝉 against the iteration number is illustrated in Figure 3-1. 

This example element in 𝝉 decreases from 2 to 0, governing the exploration scale on 

each dimension as the count of iterations builds up. The exploration operation is 

conducted outwardly when the element in 𝝉 is greater than 1, otherwise the exploration 

operation is performed inwardly. 

 

Figure 3-1 An example of the change of one element from the step control matrix, 𝜏, 

through iterations 

Based on the variance of the element in Figure 3-1, it is observed that the whole search 

process of ‘ineffective individuals’ with low fitness dissimilarities (𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 0.5) 

goes through three stages as the iteration builds up. In the first stage, the outward 

exploration action dominates the first 50 (out of 200) iterations approximately, where 

the ‘ineffective individuals’ are dispersed to explore a greater unexploited search 

domain. In the second stage, both inward and outward explorations reside in the 50th-

90th iterations, in order to balance between exploitation and exploration. In the third 

stage, the inward exploration operation replaces the outward exploration movement, and 

takes control once the number of iterations exceeds 90, as the whole swarm gradually 

congregates and converges altogether. It should be noted that the iteration numbers used 

for the division of three search modes fluctuate slightly around the thresholds given in 

the illustrated example in Figure 3-1, since the randomness of 𝝁 affects the magnitude 

of elements in 𝜏 delicately. Nevertheless, the general adaptive patterns coherently apply 

to the whole search process with respect to all dimensions in fireflies. Moreover, each 

element (either -1 or 1) in 𝝋  controls the direction of the movement along each 
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corresponding dimension, which enables fireflies to fully explore and exploit the search 

space.  

The whole search process of ‘ineffective individuals’ with low dissimilarity levels 

(𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 0.5) is depicted in Figure 3-2. With the assistance of three different 

position updating operations (indicated in three colours) in Figure 3-2, not only the 

search diversity in direction and scope among fireflies with high similarities is improved 

significantly and local stagnation is mitigated effectively. The search efficiency is also 

enhanced because of the guarantee of heterogeneity between fireflies in movement. On 

the other hand, the movement of ‘effective individuals’ with distinctive position 

variance follows the same strategy in IIEFA, as illustrated in Eq. 3.1. In short, CIEFA 

enhances diversity of exploration one step further, and inherits all merits by combining 

both inward and outward intensified exploration mechanisms. 

Moreover, according to the empirical results, the proportion of calling the dispersing 

search mechanism in CIEFA for ‘ineffective individuals’ among the total number of 

position updating varies slightly, and is dependent on the parameter settings (e.g. the 

maximum number of iterations and the size of the firefly population) as well as the 

problems at hand (e.g. the employed data sets). Taking the Sonar data set as an example, 

the proportion of running the dispersing mechanism varies between 40% and 52% for 

each trial with a population of 50 fireflies and a maximum number of 200 iterations. The 

average proportion of calling the dispersing mechanism in CIEFA over a series of 30 

trials is 47.18% under the same setting. The pseudo-code of CIEFA is provided in 

Algorithm 3-2. 
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Figure 3-2 Distribution of the updated positions of firefly 𝑖 through iterations in the 

CIEFA model in a two-dimensional search space when 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 0.5 

Algorithm 3-2 – The pseudo-code of the proposed CIEFA model

1 Start 

2 Initialize a swarm of 𝑚 fireflies 

3 Initialize randomization parameter 𝛼𝑡 and set experiment parameters 

4 Define the objective function/light intensity 𝐼 = 𝑓(𝑥) 

5 Calculate light intensity for each firefly 

6 While (t< Max iteration) or (other converging criteria not being met) 

7 { 

8  For 𝑖 <= 𝑚  

9  { 

10   For 𝑗 <= 𝑚 

11  { 

12    If  𝐼𝑖 <  𝐼𝑗   

13    { 

14      Calculate 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 using Eq. 3.3 

15       Generate a random matrix 𝜇  

16    If 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 < 0.5 
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17    { 

18       Calculate control matrix 𝜏 using Eq. 3.5 

19      Generate direction matrix 𝜑 

20       Update position of firefly 𝑖 by moving towards 

       𝑗 using Eq. 3.4 

21    Else 𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ 0.5 

22      Update position of firefly 𝑖 by moving towards 

 𝑗 using Eq. 3.1 

23    } End If 

24   Check the new position not to exceed the range of variables 

25   } end if 

26   } End For 

27 } End For 

28  Update 𝛼𝑡 using Eq. 3.2 

29 } End While 

30 Export the global best position 𝑃𝑔, and the global best fitness value 𝐼𝑔 

31 End
 

3.1.3 The proposed clustering approach based on the IIEFA and CIEFA 

models 

The proposed IIEFA and CIEFA algorithms are subsequently employed to construct two 

novel clustering models to undertake initialization sensitivity and local optima traps of 

the original KM clustering algorithm. The flowchart and pseudo-code of the proposed 

clustering method are presented in Figure 3-3 and Algorithm 3-3, respectively. 

Algorithm 4-3 – The pseudo-code of the proposed clustering method

1 Start 

2 Import data sets and set initial parameters 

3 Initialize a firefly swarm 𝑆 as a series of possible cluster centroids 

4 Run KM on the data set and generate the initial cluster centroids 𝐶𝑜 as a seed solution   
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5 Replace the first firefly in the swarm 𝑆 with 𝐶𝑜 

6 while (t< Max iteration) or (other termination criteria not being met) 

7 { 

8  Use each firefly as the centroids to cluster the data based on Euclidean distance 

9  Evaluate fitness value/light intensity of each firefly using the sum of  

intra-cluster distance measure 𝑓 as defined in Eq. 3.6 in Section 3.2.3 

10 Update firefly positions using the proposed IIEFA/CIEFA models 

11 } End While 

12 Export the global best position 𝑃𝑔, and the global best fitness value 𝐼𝑔 

13 End
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Figure 3-3 Flowchart of the proposed clustering method 

In order to improve search efficiency and increase convergence, a seed solution for 

cluster centroids is generated firstly by the original KM clustering algorithm, and is used 

to replace the first firefly in the swarm. The similarities among data samples are 

measured by the Euclidean distance during the partitioning process. Quality of the 

centroid solution represented by each firefly is evaluated based on the sum of intra-

cluster distance measures. The search process and movement patterns of the swarm are 

governed and regulated by the proposed IIEFA and CIEFA models. Benefited from the 
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enhanced diversity of the search scopes, scales, and directions in IIEFA and CIEFA, a 

cluster centroid solution with a better quality is identified through the intensified 

neighbouring and global search processes, and the possibility of being trapped in local 

optima is significantly reduced. 

Moreover, as mentioned earlier, nearly all the hybrid KM-based clustering models 

partition data samples into the corresponding clusters based on the Euclidean distance, 

and quality of clustering centroids is improved by minimising the sum of intra-cluster 

distance measures. Therefore, irrelevant and redundant features contained in the data 

samples can negatively impact the distance-based clustering measures, since the 

distance measures under such circumstances are not able to represent the compactness 

of the clusters accurately. Owing to the high dimensionality of some of the data sets 

evaluated in this study, e.g. 80 for ALL, 72 for Ozone, and 60 for Sonar, and the 

implementation of feature selection on the these data sets as validated in previous 

studies [102, 248], we employ mRMR [249] to conduct feature dimensionality reduction 

and improve clustering performance by eliminating redundant and irrelevant features. A 

comprehensive evaluation of the proposed clustering method is presented in the next 

section. 

3.2 Evaluation and discussion 

To investigate the clustering performance in an objective and comprehensive manner, 

the proposed FA models are evaluated and compared with not only FA related methods, 

but also several other classical metaheuristic search methods. In view of their novelties 

and contributions to the development of a variety of metaheuristic algorithms, GA and 

ACO are two most successful metaheuristic search methods [250]. As such, we evaluate 

and compare the proposed IIEFA and CIEFA models against GA [55], ACO [251], and 

four other classical methods i.e. KM clustering, FA [60], Dragonfly (DA) [64], and Sine 

Cosine Algorithm (SCA) [252], as well as five FA variants i.e. CFA1 [105], CFA2 

[106], NaFA [96], VSSFA [107], and MFA [178]. Each optimization model is 

integrated with KM clustering for performance comparison. A total of ten data sets 

characterised with a wide range of dimensionalities are evaluated with five performance 

indicators, namely sum of intra-cluster distances (i.e. fitness scores), average accuracy 

[253], average sensitivity, average specificity and macro-average F-score (Fscore𝑀) 

[253]. To ensure a fair comparison, we employ the same number of function evaluations 
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(i.e. population size × the maximum number of iterations) as the stopping criterion for 

all the search methods. The population size and the maximum number of iterations are 

set to 50 and 200, respectively, in our experiments. We also employ 30 independent 

runs in each experiment, in order to mitigate the influence of fluctuation of the results. 

3.2.1 Parameter settings 

The parameter settings of search methods employed in our study are adopted in 

accordance with recommendations in their original studies. As such, the following 

initial parameters are applied to both the original FA model and FA variants, in 

accordance with the empirical study in [247], i.e. initial attractiveness=1.0, absorption 

coefficient=1.0, and randomization parameter=0.2, while the proposed IIEFA and 

CIEFA models employ randomized search parameters as indicated in Section 3.1. The 

details of parameter settings for each search method are listed in Table 3-1. 

Table 3-1 Parameters settings for each algorithm 

Algorithms Parameters 

FA [247] initial attractiveness = 1.0, absorption coefficient = 1.0, randomization 

parameter = 0.2,  

adaptive coefficient = 0.97  

CFA1 

[105] 

chaotic component = 𝛿 × 𝑥(𝑛), where 𝛿 = 1 − |
𝑛−1

𝑛
|0.25, 𝑥(𝑛) represents 

chaotic variable generated by Logistic map, and 𝑛  represents current 

iteration number. Other parameters are the same as those of FA. 

CFA2 

[106] 

attractiveness coefficient = Gauss map, with the rest parameters the same 

as those of FA 

NaFA [96] size of neighbourhood brighter fireflies=3,  other parameters the same as 

those of FA 

VSSFA 

[107] 

adaptive randomization step =  0.4/(1 + 𝑒𝑥𝑝(0.015 × (𝑡 −

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)/3)), 

where 𝑡  and 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  represent current and maximum iteration 

numbers, respectively. 

Other search parameters are the same as those of FA.   

DA [64] separation factor = 0.1, alignment factor = 0.1, cohesion factor = 0.7, 

food factor = 1, 
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enemy factor = 1, inertial weight = 0.9 − 𝑚 × ((0.9 − 0.4)/

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛,  

where 𝑚  and 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  represent current and maximum iteration 

numbers, respectively. 

SCA [252] 𝑟1 = 𝑎 − 𝑡 × 𝑎/𝑇 , where 𝑎 = 3  and 𝑡  and 𝑇  represent current and 

maximum iteration numbers, respectively.   𝑟2 = 2𝜋 × 𝑟𝑎𝑛𝑑 ,  𝑟3 =

2 × 𝑟𝑎𝑛𝑑, 𝑟4 = 𝑟𝑎𝑛𝑑 

MFA [178] Parameter settings are the same as those of FA 

GA [60] crossover probability=0.8, mutation probability=0.05 

ACO [251] locality of the search process = 10−4, pheromone evaporation rate = 0.85 

IIEFA control matrix 𝜇 ∈ (0, 1), with other search parameters the same as those 

of FA 

CIEFA step control matrix 𝜏 = (1 − 𝑡 𝑇𝑡𝑜𝑡𝑎𝑙⁄ ) × (1 + 𝜇) , where 𝑡 𝑎𝑛𝑑 𝑇𝑡𝑜𝑡𝑎𝑙 

represent current and maximum iteration numbers, respectively. Other 

search parameters are the same as those of FA. 

 

3.2.2 Data sets 

Clustering performance is significantly influenced by characteristics of data samples, 

such as data distribution, noise, and dimensionality. Therefore, the following data sets 

with various characteristics from different domains are used to investigate efficiency of 

the proposed models. Specifically, we employ the ALL-IDB2 database [254], denoted 

as ALL (Acute Lymphoblastic Leukaemia), and nine data sets from the UCI machine 

learning repository [255], namely Sonar, Ozone, Wisconsin breast cancer diagnostic 

data set (Wbc1), Wisconsin breast cancer original data set (Wbc2), Wine, Iris, Balance, 

Thyroid, and E.coli, for evaluation. Among the selected data sets, Sonar, Ozone and 

ALL possess relatively high feature dimensionality, i.e. 60, 72, and 80, respectively. 

The remaining data sets have comparatively smaller feature dimensions (i.e. 9 for Wbc2, 

4 for Iris and 5 for Thyroid). Additionally, owing to the fact that data samples are 

extremely imbalanced between classes in certain data sets, e.g. E.coli, we only select 

those classes with relatively sufficient number of samples for clustering performance 

comparison. The main characteristics of the employed data sets are illustrated in Table 

3-2. 
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The employed data sets impose various challenges on clustering analysis. As an 

example, the ALL data set used in [248, 256] is obtained from the analysis of the ALL-

IDB2 microscopic blood cancer images. The essential features, such as colour, shape, 

and texture details, were extracted from this ALL-IDB2 data set, and a feature vector of 

80 dimensions was obtained for each white blood cell image [63]. This image data set 

poses diverse challenges to classification/clustering models, owing to the complex 

irregular morphology of nucleus, variations in terms of the nucleus to cytoplasm ratio, 

as well as the subtle differences between the blast and normal blood cells, which bring 

in noise and sub-optimal distraction in the follow-on clustering process for 

lymphoblastic and lymphocyte identification. Other UCI data sets also contain similar 

challenging factors. Therefore, a comprehensive evaluation of the proposed clustering 

models can be established owing to diversity of the employed challenging data sets in 

terms of sample distribution and dimensionality. 

Table 3-2 Ten selected data sets for evaluation  

Data set Number of attributes Number of classes Missing values Number of instances 

Sonar 60 2 No 140 

Ozone 72 2 No 196 

ALL 80 2 No 100 

Wbc1 30 2 No 569 

Wbc2 9 2 No 683 

Wine 13 3 No 178 

Iris 4 3 No 150 

Balance 4 2 No 576 

Thyroid 5 3 No 90 

E.coli 7 3 No 150 

 

3.2.3 Performance comparison metrics 

Five performance indicators are employed to evaluate the clustering performance, 

namely the sum of intra-cluster distances (i.e. fitness scores), average accuracy, average 

sensitivity, average specificity, and macro-average F-score (Fscore𝑀)  [253]. The first 

distance-based metric is used to indicate the convergence speed of the proposed models, 

while the last four metrics are used as the main criteria for clustering performance 

comparison. We introduce each performance metric in detail, as follows. 
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1. Sum of intra-cluster distances: This measurement is obtained by the summation of 

distances between the data samples and their corresponding centroids, as defined in Eq. 

3.6. The smaller the sum of intra-cluster distances, the more compact the partitioned 

clusters. Similar to KM clustering, the proposed models employ the sum of intra-cluster 

distances as the objective function, which is minimized during the search process. 

𝑓(𝑂, 𝐶) = ∑ ∑ √(𝑂𝑙 − 𝑍𝑖)2
𝑂𝑙∈𝐶𝑖

𝑘
𝑖=1        (3.6) 

where 𝐶𝑖 and 𝑍𝑖, represent the 𝑖𝑡ℎcluster and the centroid of the 𝑖𝑡ℎ cluster, while 𝑂𝑙 and 

𝑘  denote the data belonging to the 𝑖𝑡ℎ cluster, and the total number of clusters, 

respectively. 

2. Average accuracy: The mean clustering accuracy is obtained by averaging the 

accuracy rate of each class, as defined in Eq. 3.7. The merit of this performance metric 

is that it treats all classes equally, rather than being dominated by classes with a large 

number of samples [253].   

Ave_accuracy =
∑

𝑡𝑝𝑖+𝑡𝑛𝑖
𝑡𝑝𝑖+𝑓𝑛𝑖+𝑓𝑝𝑖+𝑡𝑛𝑖

𝑘
𝑖=1

𝑘
            (3.7) 

where 𝑡𝑝𝑖, 𝑓𝑛𝑖, 𝑓𝑝𝑖, and 𝑡𝑛𝑖 represent true positive, false negative, false positive, and 

true negative of the 𝑖𝑡ℎ cluster, respectively. 

3. Average sensitivity: As defined in Eq. 3.8, sensitivity (i.e. recall) is used to measure 

the proportion of correctly identified positive samples over all positive samples in the 

data set. Similar to the average accuracy, the macro-average of sensitivity is calculated, 

in order to ascertain all classes are treated equally for multi-class clustering tasks [253]. 

Ave_sensitivity =
∑

 𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑛𝑖

𝑘
𝑖=1

𝑘
           (3.8) 

4. Average specificity: Specificity is used to identify the proportion of correctly 

identified negative samples over all negative samples in the data set [253]. Eq. 3.9 is 

used to obtain the macro-average specificity for multiclass tasks. 

 Ave_specificity =
∑

 𝑡𝑛𝑖
𝑡𝑛𝑖+𝑓𝑝𝑖

𝑘
𝑖=1

𝑘
           (3.9) 
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5. Macro-average F-score (Fscore𝑀): Fscore𝑀 is a well-accepted performance metric, 

which is calculated based on the macro-average of precision and recall scores [253], as 

defined in Eqs. 3.10 - 3.12. 

𝐹𝑠𝑐𝑜𝑟𝑒𝑀 =
(𝜎2+1)∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀∗𝑅𝑒𝑐𝑎𝑙𝑙𝑀

𝜎2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀+𝑅𝑒𝑐𝑎𝑙𝑙𝑀
        (3.10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 =
∑

 𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑝𝑖

𝑘
𝑖=1

𝑘
         (3.11) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑀 =
∑

 𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑛𝑖

𝑘
𝑖=1

𝑘
          (3.12) 

where 𝜎 =1, in order to obtain equal weightings of precision and recall. 

For each data set, a total of 30 runs with each search method integrated with the KM 

clustering algorithm are conducted. The average performance over 30 runs for each 

performance metric is calculated and used as the main criterion for comparison. 

3.2.4 Feature selection and clustering performance evaluation 

As mentioned earlier, owing to the high dimensionality of Sonar, Ozone, and ALL data 

sets, and the possibility of the inclusion of redundant features, mRMR [249] is used to 

conduct feature dimensionality reduction and to investigate its underlying impact on the 

clustering performance. The clustering results before and after feature selection for each 

data set are shown in Tables 3-3 - 3-12, respectively. For the three high-dimensional 

data sets, namely ALL, Sonar, and Ozone, the numbers of selected features are 9, 17, 

and 22 from the original 80, 60, and 72 features, respectively. These feature sizes are 

obtained based on trial-and-error, which yield the best performance for nearly all 

evaluated models. The findings on feature selection are also consistent with those of 

existing studies [102, 248], where the ranges of selected feature numbers are 9-36 [248], 

15-20 [102], and 18-25 [102] for ALL, Sonar, and Ozone, respectively, therefore 

ascertaining efficiency of the mRMR-based feature selection method employed in this 

research. 

The empirical results indicate that in combination with feature selection, the clustering 

performance is improved for most test cases. As an example, for the ALL data set 

illustrated in Table 3-3, the number of features is reduced from the original 80 to 9, 

while the mean accuracy, sensitivity, specificity, and Fscore𝑀 of the proposed CIEFA 
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model over 30 runs increase significantly, i.e. from 51.23% to 80.4%, 51.67% to 

74.67%, 50.8% to 86.13%, and 51.27% to 78.73%, respectively. The selected features 

include the cytoplasm and nucleus areas, ratio between the nucleus area and the 

cytoplasm area, form factor, compactness, perimeter and eccentricity, which represent 

the most significant clinical factors for blood cancer diagnosis [248, 256, 257]. This in 

turn also indicates that some redundant or even contradictory features exist in the 

original data set [248], which may deteriorate the performance of clustering models 

drastically. Such findings also apply to other data sets, especially the high-dimensional 

ones [102]. The only exception is the low-dimensional Balance data set, as shown in 

Table 3-7, where the full feature set (i.e. a total of only four features) yields the best 

performance for nearly all the clustering models. In short, it is essential to eliminate 

redundant and irrelevant features to enhance the clustering performance. 

Table 3-3 The mean clustering results over 30 independent runs on the ALL data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

80 

(full 

set) 

fitness 293.53 293.71 294.33 943.13 294.32 294.35 294.33 294.33 294.13 459.26 294.34 294.32 294.33 

accuracy 0.5137 0.5123 0.5140 0.5157 0.5147 0.5127 0.5133 0.5143 0.513 0.5133 0.5133 0.5150 0.5143 

Fscore𝑀 0.5145 0.5127 0.5038 0.5161 0.5115 0.5118 0.5062 0.5053 0.5137 0.3647 0.5191 0.5103 0.5187 

sensitivity 0.5187 0.5167 0.4967 0.5193 0.5113 0.5147 0.5020 0.4993 0.5180 0.5153 0.5287 0.5087 0.5267 

specificity 0.5087 0.5080 0.5313 0.5120 0.5180 0.5107 0.5247 0.5293 0.5080 0.5113 0.4980 0.5213 0.5020 

9 

fitness 90.481 89.649 92.611 96.48 90.519 92.097 93.052 90.883 89.683 111.08 90.782 90.448 91.309 

accuracy 0.7893 0.804 0.7307 0.7693 0.7703 0.7437 0.7197 0.7740 0.7850 0.6267 0.7570 0.7943 0.7527 

Fscore𝑀 0.7767 0.7873 0.7063 0.7557 0.7702 0.7130 0.7017 0.7611 0.7763 0.6178 0.7336 0.7841 0.7260 

sensitivity 0.7593 0.7467 0.6953 0.7427 0.788 0.6807 0.7107 0.7527 0.7713 0.7260 0.724 0.7727 0.7067 

specificity 0.8193 0.8613 0.7660 0.7960 0.7527 0.8067 0.7287 0.7953 0.7987 0.5273 0.7900 0.8160 0.7987 

 

Table 3-4 The mean clustering results over 30 independent runs on the Sonar data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

60 

(full 

set) 

fitness 160.54 160.73 161.22 195.35 160.85 161.42 160.98 161.31 161.05 242.81 160.92 161.14 160.75 

accuracy 0.5610 0.5631 0.5669 0.5655 0.5624 0.5643 0.5657 0.5645 0.5657 0.5307 0.5629 0.5624 0.5629 

Fscore𝑀 0.5553 0.5698 0.5549 0.5664 0.5500 0.5526 0.5583 0.5532 0.5635 0.3944 0.5613 0.5636 0.5671 

sensitivity 0.5552 0.5862 0.5500 0.5781 0.5443 0.5486 0.5590 0.5500 0.5700 0.4324 0.5681 0.5724 0.5814 
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specificity 0.5667 0.5400 0.5838 0.5529 0.5805 0.58 0.5724 0.579 0.5614 0.6290 0.5576 0.5524 0.5443 

17 

fitness 75.85 75.884 76.487 46.251 76.529 76.38 76.381 76.461 76.187 101.95 76.344 75.952 76.470 

accuracy 0.7100 0.7110 0.6733 0.6764 0.6717 0.6669 0.6779 0.6719 0.6760 0.6183 0.6750 0.7088 0.6769 

Fscore𝑀 0.7072 0.7090 0.6677 0.6814 0.6546 0.6601 0.6722 0.6461 0.6623 0.5466 0.6772 0.7019 0.6776 

sensitivity 0.7110 0.7157 0.6829 0.7224 0.6538 0.6862 0.6867 0.6243 0.6633 0.5267 0.7048 0.7024 0.7024 

specificity 0.7090 0.7062 0.6638 0.6305 0.6895 0.6476 0.669 0.7195 0.6886 0.7100 0.6452 0.7152 0.6514 

 

Table 3-5 The mean clustering results over 30 independent runs on the Ozone data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

72 

(full 

set) 

fitness 514.11 514.38 515.29 1507.7 515.23 515.23 515.23 515.29 514.77 844.99 515.3 515.07 515.44 

accuracy 0.7333 0.7330 0.7366 0.7369 0.7362 0.7361 0.7352 0.7364 0.7337 0.5631 0.7367 0.7367 0.7367 

Fscore𝑀 0.7167 0.7316 0.7221 0.7543 0.7374 0.7434 0.7429 0.7065 0.7353 0.4209 0.7312 0.7412 0.7127 

sensitivity 0.7000 0.7554 0.7136 0.8313 0.7701 0.7932 0.7932 0.6565 0.7677 0.4949 0.7463 0.7830 0.6793 

specificity 0.7667 0.7105 0.7595 0.6425 0.7024 0.6789 0.6772 0.8163 0.6997 0.6313 0.7272 0.6905 0.7942 

22 

fitness 301.26 301.34 302.19 517.76 302.22 302.29 302.22 302.25 301.9 414.87 301.89 301.42 302.24 

accuracy 0.7604 0.7577 0.7490 0.7488 0.7495 0.7497 0.7491 0.7491 0.7500 0.5648 0.7500 0.7531 0.7495 

Fscore𝑀 0.7524 0.7466 0.7408 0.7349 0.7438 0.7362 0.7359 0.7433 0.7318 0.3792 0.7419 0.7433 0.7407 

sensitivity 0.7435 0.7310 0.7391 0.7184 0.7503 0.7204 0.7197 0.749 0.7007 0.4173 0.7401 0.7347 0.7381 

specificity 0.7772 0.7844 0.7588 0.7793 0.7486 0.7789 0.7786 0.7493 0.7993 0.7122 0.7599 0.7714 0.7609 

 

Table 3-6 The mean clustering results over 30 independent runs on the Thyroid data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

5 

(full 

set) 

fitness 113.26 111.65 115.03 196.65 119.24 116.51 114.97 117.87 114.15 124.5 114.28 114.12 113.54 

accuracy 0.8235 0.8277 0.8133 0.8215 0.7911 0.8173 0.8205 0.8032 0.8128 0.8321 0.8165 0.8126 0.822 

Fscore𝑀 0.7539 0.7688 0.7508 0.7638 0.7090 0.7482 0.7582 0.7256 0.7398 0.7981 0.7575 0.7392 0.7667 

sensitivity 0.7352 0.7415 0.7200 0.7322 0.6867 0.7259 0.7307 0.7048 0.7193 0.7481 0.7248 0.7189 0.7330 

specificity 0.8676 0.8707 0.86 0.8661 0.8433 0.863 0.8654 0.8524 0.8596 0.8741 0.8624 0.8594 0.8665 

4 

fitness 96.297 96.599 99.808 142.21 99.661 99.979 100.49 99.364 97.743 107.3 99.36 96.794 100.56 

accuracy 0.8748 0.8637 0.8101 0.8057 0.8084 0.8069 0.802 0.8116 0.8346 0.841 0.8121 0.8514 0.8044 

Fscore𝑀 0.8377 0.8204 0.7628 0.753 0.7611 0.7543 0.7505 0.7719 0.7813 0.8013 0.7649 0.8010 0.7467 

sensitivity 0.8122 0.7956 0.7152 0.7085 0.7126 0.7104 0.703 0.7174 0.7519 0.7615 0.7181 0.7770 0.7067 
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specificity 0.9061 0.8978 0.8576 0.8543 0.8563 0.8552 0.8515 0.8587 0.8759 0.8807 0.8591 0.8885 0.8533 

 

Table 3-7 The mean clustering results over 30 independent runs on the Balance data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

4 

(full 

set) 

fitness 1002.9 1003.1 1003.9 1866.6 1004.2 1003.9 1003.7 1003.6 1003.1 1011.2 1003.3 1003 1003.4 

accuracy 0.8047 0.7923 0.7733 0.7546 0.7494 0.7581 0.7538 0.7725 0.7858 0.7549 0.7993 0.7991 0.7956 

Fscore𝑀 0.8045 0.7923 0.7735 0.7518 0.7475 0.758 0.7537 0.7726 0.7857 0.7522 0.7991 0.7991 0.7955 

sensitivity 0.8038 0.7925 0.7749 0.7478 0.7459 0.7574 0.7536 0.7727 0.7855 0.7491 0.7985 0.799 0.7953 

specificity 0.8056 0.7921 0.7718 0.7613 0.7529 0.7588 0.7539 0.7723 0.7860 0.7606 0.8001 0.7993 0.7959 

3 

fitness 821.70 821.77 824.55 1300.6 824.56 824.67 824.6 826.58 821.75 826.52 821.86 821.52 823.14 

accuracy 0.7344 0.7344 0.7004 0.7042 0.6939 0.7164 0.7135 0.6747 0.7331 0.7269 0.7372 0.7355 0.7217 

Fscore𝑀 0.7342 0.7349 0.7002 0.7073 0.6923 0.7202 0.7134 0.6719 0.7321 0.7303 0.7377 0.7356 0.7200 

sensitivity 0.7338 0.7362 0.7012 0.7126 0.6896 0.7281 0.7162 0.6718 0.7303 0.7394 0.7392 0.7359 0.7167 

specificity 0.735 0.7325 0.6997 0.6957 0.6983 0.7047 0.7109 0.6777 0.7359 0.7144 0.7352 0.7352 0.7267 

 

Table 3-8 The mean clustering results over 30 independent runs on the E.coli data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

7 

(full 

set) 

fitness 257.63 251.13 260.17 473.53 259.33 257.07 257.73 260.05 253.28 252.78 261.52 244.09 257.85 

accuracy 0.7739 0.7945 0.7769 0.8883 0.7756 0.771 0.7704 0.7641 0.7893 0.929 0.7633 0.8154 0.7769 

Fscore𝑀 0.6992 0.7248 0.6692 0.8341 0.6687 0.6605 0.6574 0.6503 0.6935 0.8971 0.6498 0.7491 0.6701 

sensitivity 0.6609 0.6918 0.6653 0.8324 0.6633 0.6564 0.6556 0.6462 0.684 0.8936 0.6449 0.7231 0.6653 

specificity 0.8304 0.8459 0.8327 0.9162 0.8317 0.8282 0.8278 0.8231 0.842 0.9468 0.8224 0.8616 0.8327 

5 

fitness 196.23 196.23 198.08 321.05 198.03 196.53 198.2 197.91 197.72 238.63 198.00 197.64 197.96 

accuracy 0.9644 0.9644 0.9564 0.9406 0.9563 0.961 0.9557 0.9575 0.9556 0.931 0.9566 0.9566 0.9536 

Fscore𝑀 0.9474 0.9474 0.9352 0.9109 0.9349 0.9421 0.934 0.9368 0.9337 0.9005 0.9355 0.9354 0.9308 

sensitivity 0.9467 0.9467 0.9347 0.9109 0.9344 0.9416 0.9336 0.9362 0.9333 0.8964 0.9349 0.9349 0.9304 

specificity 0.9733 0.9733 0.9673 0.9554 0.9672 0.9708 0.9668 0.9681 0.9667 0.9482 0.9674 0.9674 0.9652 

 

Table 3-9 The mean clustering results over 30 independent runs on the Wbc1 data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 
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30 

(full 

set) 

fitness 2280.8 2281.5 2293.9 11575 2293.8 2293.9 2293.7 2293.8 2286 2800.3 2293.5 2285.9 2293.8 

accuracy 0.9147 0.9145 0.9114 0.9097 0.9108 0.9113 0.9105 0.9111 0.9129 0.7230 0.9100 0.9142 0.9110 

Fscore𝑀 0.9092 0.9039 0.9047 0.9051 0.9081 0.899 0.8963 0.8949 0.909 0.6082 0.8978 0.9064 0.8986 

sensitivity 0.9056 0.8953 0.8986 0.9016 0.9067 0.8846 0.8813 0.8759 0.9066 0.6242 0.8845 0.8986 0.8844 

specificity 0.8990 0.9088 0.8894 0.8845 0.8804 0.9032 0.9058 0.9119 0.8925 0.6558 0.9022 0.8984 0.9031 

20 

fitness 1761.4 1761.6 1768.7 6887.6 1768.7 1768.7 1768.7 1768.7 1764.7 2220.2 1768.7 1762.1 1768.7 

accuracy 0.9461 0.9448 0.9332 0.9332 0.9332 0.9332 0.9332 0.9332 0.9385 0.813 0.9332 0.9393 0.9332 

Fscore𝑀 0.9361 0.9394 0.9230 0.9276 0.9215 0.9261 0.9291 0.9184 0.9295 0.7795 0.9276 0.9372 0.9322 

sensitivity 0.9141 0.9290 0.9028 0.9185 0.8976 0.9133 0.9237 0.8871 0.9110 0.7803 0.9185 0.9358 0.9341 

specificity 0.9470 0.9285 0.9237 0.908 0.9289 0.9133 0.9028 0.9394 0.9298 0.7290 0.9080 0.9069 0.8924 

 

Table 3-10 The mean clustering results over 30 independent runs on the Wbc2 data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

9 

(full 

set) 

fitness 1092.1 1092 1098.3 2724.4 1102.7 1102.9 1100 1102.8 1093.7 1327.3 1093.5 1092.1 1093.1 

accuracy 0.9693 0.9692 0.9629 0.9560 0.9563 0.9559 0.9604 0.9562 0.9683 0.9542 0.9684 0.9679 0.9680 

Fscore𝑀 0.9662 0.9661 0.9588 0.9562 0.9538 0.9489 0.9555 0.9525 0.9623 0.9462 0.9646 0.9640 0.9637 

sensitivity 0.9667 0.9666 0.9561 0.9568 0.9522 0.9421 0.9525 0.9495 0.962 0.9365 0.9646 0.9639 0.9646 

specificity 0.9667 0.9666 0.9580 0.9367 0.9423 0.9511 0.9539 0.9446 0.9682 0.9500 0.9660 0.9655 0.9649 

7 

fitness 931.67 931.67 933.94 1819.8 934.25 935.78 933.42 933.96 932.27 1104.8 932.17 931.68 931.67 

accuracy 0.9649 0.9649 0.9647 0.9649 0.9644 0.9649 0.9648 0.9647 0.9649 0.949 0.9649 0.9649 0.9649 

Fscore𝑀 0.9629 0.9629 0.9619 0.9629 0.9607 0.9613 0.9597 0.9572 0.9621 0.9451 0.9652 0.9629 0.9660 

sensitivity 0.9624 0.9624 0.9613 0.9624 0.9603 0.9604 0.9583 0.9554 0.9614 0.9408 0.9654 0.9624 0.9663 

specificity 0.9584 0.9584 0.9593 0.9584 0.9599 0.9604 0.9624 0.9652 0.9594 0.9305 0.9555 0.9584 0.9545 

  

Table 3-11 The mean clustering results over 30 independent runs on the Wine data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

13 

(full 

set) 

fitness 456.78 452.06 461.45 1282.9 451.84 453.8 453.8 461.93 451.34 580.06 449.81 451.65 451.75 

accuracy 0.9485 0.9705 0.9372 0.9654 0.9669 0.9607 0.9598 0.9301 0.9689 0.7876 0.9747 0.9692 0.9683 

Fscore𝑀 0.9295 0.9577 0.921 0.9544 0.9561 0.9492 0.9447 0.9099 0.9566 0.7048 0.9649 0.9586 0.9579 

sensitivity 0.9318 0.9617 0.9198 0.9567 0.9585 0.9507 0.9492 0.9110 0.9610 0.7041 0.9682 0.9613 0.9603 

specificity 0.9618 0.9784 0.9546 0.9749 0.9762 0.9718 0.9711 0.9493 0.9777 0.8383 0.9816 0.9781 0.9772 
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9 

fitness 348.48 339.84 342.74 744.96 344.93 345.01 342.78 342.76 346.88 431.28 342.6 342.05 340.52 

accuracy 0.9484 0.98 0.9663 0.9665 0.9578 0.9587 0.9649 0.9664 0.9518 0.9109 0.9665 0.9676 0.9735 

Fscore𝑀 0.9242 0.9713 0.9519 0.9538 0.9393 0.942 0.9499 0.9536 0.9313 0.8818 0.9517 0.953 0.9622 

sensitivity 0.9286 0.9749 0.9563 0.9573 0.9442 0.9466 0.9546 0.9572 0.9368 0.8790 0.9561 0.9562 0.9662 

specificity 0.9619 0.9858 0.9751 0.9759 0.9687 0.9697 0.9741 0.9758 0.9638 0.9325 0.9755 0.9764 0.9809 

 

Table 3-12 The mean clustering results over 30 independent runs on the Iris data set 

Feature 

number 
Criteria IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

4 

(full 

set) 

fitness 130.24 131.37 133.09 150.75 132.49 131.94 133.62 133.09 131.57 161.79 132.18 129.71 130.04 

accuracy 0.8818 0.8744 0.8677 0.8653 0.8735 0.8714 0.8659 0.8704 0.8742 0.8739 0.8738 0.8876 0.8855 

Fscore𝑀 0.8228 0.8117 0.8018 0.7987 0.8106 0.8080 0.7993 0.8061 0.8116 0.8253 0.8110 0.8315 0.8284 

sensitivity 0.8227 0.8116 0.8016 0.7980 0.8102 0.8071 0.7989 0.8056 0.8113 0.8109 0.8107 0.8313 0.8282 

specificity 0.9113 0.9058 0.9008 0.899 0.9051 0.9036 0.8994 0.9028 0.9057 0.9054 0.9053 0.9157 0.9141 

2 

fitness 42.932 42.932 43.226 17.927 43.243 43.296 43.199 43.225 42.942 57.223 42.956 42.932 42.992 

accuracy 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9587 0.9733 0.9733 0.9733 

Fscore𝑀 0.9602 0.9602 0.9602 0.9602 0.9602 0.9602 0.9602 0.9602 0.9602 0.9432 0.9602 0.9602 0.9602 

sensitivity 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9573 0.9600 0.9600 0.9600 

specificity 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9787 0.9800 0.9800 0.9800 

 

3.2.5 Performance comparison and analysis 

As mentioned earlier, five metrics are used for clustering performance comparison, 

namely the fitness scores on the sum of intra-cluster distances, average accuracy, 

average sensitivity, average specificity, and macro-average F-score (Fscore𝑀). Since 

the best performances are achieved using the identified significant feature subsets in 

most test cases for nearly all the methods, we employ the enhanced results obtained in 

combination with feature selection for further analysis and comparison. The detailed 

evaluation results over 30 runs for each performance measure after feature selection are 

shown in Tables 3-13 – 3-17. 

Table 3-13 The mean results of the minimum intra-cluster distance measure over 30 

runs 

Dataset 
Feature 

size 
IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 
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Thyroid 4 96.297 96.599 99.808 142.21 99.661 99.979 100.49 99.364 97.743 107.3 99.36 96.794 100.56 

Sonar 17 75.85 75.884 76.487 46.251 76.529 76.38 76.381 76.461 76.187 101.95 76.344 75.952 76.47 

Balance 4 1002.9 1003.1 1003.9 1866.6 1004.2 1003.9 1003.7 1003.6 1003.1 1011.2 1003.3 1003 1003.4 

E.coli 5 196.23 196.23 198.08 321.05 198.03 196.53 198.2 197.91 197.72 238.63 198 197.64 197.96 

Ozone 22 301.26 301.34 302.19 517.76 302.22 302.29 302.22 302.25 301.9 414.87 301.89 301.42 302.24 

ALL 9 90.481 89.649 92.611 96.48 90.519 92.097 93.052 90.883 89.683 111.08 90.782 90.448 91.309 

Wbc1 20 1761.4 1761.6 1768.7 6887.6 1768.7 1768.7 1768.7 1768.7 1764.7 2220.2 1768.7 2285.9 1768.7 

Wbc2 9 1092.1 1092.0 1098.3 2724.4 1102.7 1102.9 1100.0 1102.8 1093.7 1327.3 1093.5 1092.1 1093.1 

Wine 9 348.48 339.84 342.74 744.96 344.93 345.01 342.78 342.76 346.88 431.28 342.6 342.05 340.52 

Iris 2 42.932 42.932 43.226 17.927 43.243 43.296 43.199 43.225 42.942 57.223 42.956 42.932 42.992 

 

With respect to the fitness scores, i.e. the intra-cluster distance measure, as shown in 

Table 3-13, IIEFA and CIEFA achieve the minimum distance measures in eight out of 

ten data sets in total. Specifically, IIEFA yields the minimum intra-cluster measures 

with five data sets based on the average performance over 30 runs, i.e. Thyroid, Balance, 

E.coli, Ozone, and Wbc1, while CIEFA achieves the minimum fitness scores with four 

data sets, i.e. E.coli, ALL, Wbc2, and Wine. Moreover, KM clustering produces the 

minimum intra-cluster measures with the Sonar and Iris data sets in combination with 

mRMR-based feature selection, although IIEFA and CIEFA achieve the minimum 

objective function evaluation scores when the full feature sets for both Sonar and Iris 

data sets are used. Overall, in comparison with the six classical methods i.e. GA, ACO, 

DA, SCA, FA, KM, and other five FA variants i.e. CFA1, CFA2, NaFA, VSSFA, and 

MFA, both IIEFA and CIEFA models demonstrate faster convergence rates and great 

superiority over other methods in identifying enhanced centroids that lead to more 

compact clusters. The proposed search mechanisms account for the enhanced global 

exploration capability of IIEFA and CIEFA in comparison with those of other classical 

methods and FA variants in attaining the global best solutions. 

Table 3-14 The mean results of average accuracy after feature selection over 30 runs 

Dataset 
Feature 

size 
IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Thyroid 4 0.8748 0.8637 0.8101 0.8057 0.8084 0.8069 0.802 0.8116 0.8346 0.841 0.8121 0.8514 0.8044 

Sonar 17 0.71 0.711 0.6733 0.6764 0.6717 0.6669 0.6779 0.6719 0.676 0.6183 0.675 0.7088 0.6769 

Balance 4 0.8047 0.7923 0.7733 0.7546 0.7494 0.7581 0.7538 0.7725 0.7858 0.7549 0.7993 0.7991 0.7956 
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E.coli 5 0.9644 0.9644 0.9564 0.9406 0.9563 0.961 0.9557 0.9575 0.9556 0.931 0.9566 0.9566 0.9536 

Ozone 22 0.7604 0.7577 0.749 0.7488 0.7495 0.7497 0.7491 0.7491 0.75 0.5648 0.75 0.7531 0.7495 

ALL 9 0.7893 0.804 0.7307 0.7693 0.7703 0.7437 0.7197 0.774 0.785 0.6267 0.757 0.7943 0.7527 

Wbc1 20 0.9461 0.9448 0.9332 0.9332 0.9332 0.9332 0.9332 0.9332 0.9385 0.813 0.9332 0.9142 0.9332 

Wbc2 9 0.9693 0.9692 0.9629 0.956 0.9563 0.9559 0.9604 0.9562 0.9683 0.9542 0.9684 0.9679 0.968 

Wine 9 0.9484 0.98 0.9663 0.9665 0.9578 0.9587 0.9649 0.9664 0.9518 0.9109 0.9665 0.9676 0.9735 

Iris 2 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9733 0.9587 0.9733 0.9733 0.9733 

 

Table 3-15 The mean results of Fscore𝑀 after feature selection over 30 runs 

Dataset 
Feature 

size 
IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Thyroid 4 0.8377 0.8204 0.7628 0.753 0.7611 0.7543 0.7505 0.7719 0.7813 0.8013 0.7649 0.801 0.7467 

Sonar 17 0.7072 0.709 0.6677 0.6814 0.6546 0.6601 0.6722 0.6461 0.6623 0.5466 0.6772 0.7019 0.6776 

Balance 4 0.8045 0.7923 0.7735 0.7518 0.7475 0.758 0.7537 0.7726 0.7857 0.7522 0.7991 0.7991 0.7955 

E.coli 5 0.9474 0.9474 0.9352 0.9109 0.9349 0.9421 0.934 0.9368 0.9337 0.9005 0.9355 0.9354 0.9308 

Ozone 22 0.7524 0.7466 0.7408 0.7349 0.7438 0.7362 0.7359 0.7433 0.7318 0.3792 0.7419 0.7433 0.7407 

ALL 9 0.7767 0.7873 0.7063 0.7557 0.7702 0.713 0.7017 0.7611 0.7763 0.6178 0.7336 0.7841 0.726 

Wbc1 20 0.9361 0.9394 0.923 0.9276 0.9215 0.9261 0.9291 0.9184 0.9295 0.7795 0.9276 0.9064 0.9322 

Wbc2 9 0.9662 0.9661 0.9588 0.9562 0.9538 0.9489 0.9555 0.9525 0.9623 0.9462 0.9646 0.964 0.9637 

Wine 9 0.9242 0.9713 0.9519 0.9538 0.9393 0.942 0.9499 0.9536 0.9313 0.8818 0.9517 0.953 0.9622 

Iris 2 0.9602 0.9602 0.9602 0.9602 0.9602 0.9602 0.9602 0.9602 0.9602 0.9432 0.9602 0.9602 0.9602 

 

In terms of mean accuracy and Fscore𝑀, as shown in Tables 3-14 – 3-15, the proposed 

models achieve the best scores for all the data sets over 30 runs. With respect to the 

mean accuracy rates shown in Table 3-14, IIEFA achieves the highest average accuracy 

rates over 30 runs with seven data sets (i.e. Thyroid, Balance, E.coli, Ozone, Wbc1, 

Wbc2 and Iris), while CIEFA achieves the best results with five data sets (i.e. Sonar, 

E.coli, ALL, Wine, and Iris). Both IIEFA and CIEFA demonstrate a clear advantage 

over other methods with four data sets, i.e. Thyroid, Sonar, Balance, and ALL. 

Pertaining to the Fscore𝑀 measure shown in Table 3-15, IIEFA and CIEFA achieve the 

best average scores over 30 runs with six data sets, i.e. Thyroid, Balance, E.coli, Ozone, 

Wbc2, and Iris for IIEFA and Sonar, E.coli, ALL, Wbc1, Wine, and Iris for CIEFA, 

respectively. Similar to the accuracy indicator, a clear performance distinction can be 
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observed between the proposed models and other methods with respect to the Fscore𝑀 

results.  

Table 3-16 The mean results of average sensitivity after feature selection over 30 runs 

Dataset 
Feature 

size 
IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Thyroid 4 0.8122 0.7956 0.7152 0.7085 0.7126 0.7104 0.703 0.7174 0.7519 0.7615 0.7181 0.777 0.7067 

Sonar 17 0.711 0.7157 0.6829 0.7224 0.6538 0.6862 0.6867 0.6243 0.6633 0.5267 0.7048 0.7024 0.7024 

Balance 4 0.8038 0.7925 0.7749 0.7478 0.7459 0.7574 0.7536 0.7727 0.7855 0.7491 0.7985 0.799 0.7953 

E.coli 5 0.9467 0.9467 0.9347 0.9109 0.9344 0.9416 0.9336 0.9362 0.9333 0.8964 0.9349 0.9349 0.9304 

Ozone 22 0.7435 0.731 0.7391 0.7184 0.7503 0.7204 0.7197 0.749 0.7007 0.4173 0.7401 0.7347 0.7381 

ALL 9 0.7593 0.7467 0.6953 0.7427 0.788 0.6807 0.7107 0.7527 0.7713 0.726 0.724 0.7727 0.7067 

Wbc1 20 0.9141 0.929 0.9028 0.9185 0.8976 0.9133 0.9237 0.8871 0.911 0.7803 0.9185 0.9358 0.9341 

Wbc2 9 0.9667 0.9666 0.9561 0.9568 0.9522 0.9421 0.9525 0.9495 0.962 0.9365 0.9646 0.9639 0.9646 

Wine 9 0.9286 0.9749 0.9563 0.9573 0.9442 0.9466 0.9546 0.9572 0.9368 0.879 0.9561 0.9562 0.9662 

Iris 2 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9573 0.9600 0.9600 0.9600 

 

Table 3-17 The mean results of average specificity after feature selection over 30 runs 

Dataset 
Feature 

size 
IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Thyroid 4 0.9061 0.8978 0.8576 0.8543 0.8563 0.8552 0.8515 0.8587 0.8759 0.8807 0.8591 0.8885 0.8533 

Sonar 17 0.709 0.7062 0.6638 0.6305 0.6895 0.6476 0.669 0.7195 0.6886 0.71 0.6452 0.7152 0.6514 

Balance 4 0.8056 0.7921 0.7718 0.7613 0.7529 0.7588 0.7539 0.7723 0.786 0.7606 0.8001 0.7993 0.7959 

E.coli 5 0.9733 0.9733 0.9673 0.9554 0.9672 0.9708 0.9668 0.9681 0.9667 0.9482 0.9674 0.9674 0.9652 

Ozone 22 0.7772 0.7844 0.7588 0.7793 0.7486 0.7789 0.7786 0.7493 0.7993 0.7122 0.7599 0.7714 0.7609 

ALL 9 0.8193 0.8613 0.766 0.796 0.7527 0.8067 0.7287 0.7953 0.7987 0.5273 0.79 0.816 0.7987 

Wbc1 20 0.947 0.9285 0.9237 0.908 0.9289 0.9133 0.9028 0.9394 0.9298 0.729 0.908 0.9069 0.8924 

Wbc2 9 0.9667 0.9666 0.958 0.9367 0.9423 0.9511 0.9539 0.9446 0.9682 0.95 0.966 0.9655 0.9649 

Wine 9 0.9619 0.9858 0.9751 0.9759 0.9687 0.9697 0.9741 0.9758 0.9638 0.9325 0.9755 0.9764 0.9809 

Iris 2 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9787 0.9800 0.9800 0.9800 

 

Moreover, the observed advantages of IIEFA and CIEFA are further reinforced by the 

results of sensitivity and specificity, as shown in Tables 3-16 – 3-17. With respect to 

sensitivity and specificity, IIEFA achieves the highest scores for both metrics with five 
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data sets (i.e. Thyroid, Balance, E.coli, Wbc2, and Iris), while CIEFA achieves the best 

results for both metrics with three data sets (i.e. E.coli, Wine, and Iris). This indicates 

that both CIEFA and IIEFA outperform other baseline models with most of the 

employed data sets. They are capable of clustering and recognising data samples from 

different classes effectively.  

Overall, the average accuracy, sensitivity, specificity and Fscore𝑀  results evidently 

indicate the superiority of IIEFA and CIEFA over other search methods, in terms of 

robustness and flexibility, for both high- and low-dimensional clustering problems in 

combination with feature selection. In particular, the proposed models outperform five 

other FA variants significantly in nearly all the test cases. Moreover, CIEFA 

demonstrates an evident advantage on the Wine data set than IIEFA on all five 

performance metrics, while attaining results similar to those of IIEFA with the rest of 

the data sets. Besides that, nearly all methods achieve similar scores on all five 

performance measures on the Iris data set (except for SCA). Since only two significant 

features are identified and remained after feature selection for the Iris data set, the 

complexity of this clustering task is significantly reduced.  

The underlying reasons for the advantage demonstrated by IIEFA and CIEFA can be 

ascribed to the enhanced capability of exploration and exploitation contributed by the 

proposed search strategies. The first proposed mechanism is to intensify inward 

exploration by replacing the attractiveness coefficient with a random search matrix. The 

diversity of search directions, scales, and spaces is enhanced significantly, therefore 

improving the exploration ability and mitigating the constraints of biological laws. The 

second strategy is to intensify outward exploration by relocating the ‘ineffective fireflies’ 

to a greater and extended space out of the neighbourhoods of fireflies in comparison in 

the early stage of the search process. The search territory of firefly swarms is further 

expanded, therefore facilitating the ability of global exploration. With intensified 

neighbouring and global exploration from the above two strategies plus the advantages 

of automatic subdivision inherited from the original FA model [60], the probability of 

being trapped in local optima is reduced effectively, while the diversity of movement is 

enhanced significantly for the proposed FA models. Evidenced by the experimental and 

statistical results, these advantages enable the proposed FA models to undertake 

challenging clustering tasks with high dimensionality, noise, and less separable clusters, 

e.g. the ALL data set. 
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In contrast, some limitations related to search diversity and search efficiency can be 

identified in classical search methods according to empirical studies. As an example, 

Radcliffe and Surry [258] indicated that the GA-based clustering algorithms in some 

cases suffered from degeneracy resulted from the phenomenon of multiple 

chromosomes representing the same or very similar solutions [258]. Such degeneracy 

could lead to inefficient coverage of the search space, since the centroid solutions with 

the same or very similar configurations are repeatedly explored [259]. Moreover, 

multiple occurrences of the strongly favourable individuals in the GA can lead to the 

reproduction of many highly correlated offspring solutions, therefore reducing diversity 

of the population and resulting in premature convergence. Similarly, in ACO, the effect 

of emphasizing short paths diminishes, and search stagnation emerges when the quality 

of solutions becomes closer as the differences between individuals decrease [260]. 

Premature convergence can also occur in ACO as the sub-optimal solutions dominate 

the search process at an early stage, and the parameter of trail persistence is not tuned 

properly [251, 261, 262]. Consequently, owing to the potential local optima traps (GA) 

and search stagnation (ACO) without proper counteracting strategies, classical 

evolutionary algorithms such as GA and ACO are less competitive in comparison with 

the proposed CIEFA and IIEFA models based on results from the abovementioned five 

metrics including intra-cluster distances, accuracy, Fscore𝑀, sensitivity and specificity, 

as illustrated in Tables 3-13 – 3-17. Similar limitations are also applied to other FA 

variants. As an example, in the MFA model [178], each firefly not only moves towards 

all brighter fireflies in its neighbourhood, but also moves towards the swarm leader at 

the same time. The search diversity and exploration capability of the firefly swarm are 

obstructed owing to the continuous exposure to attraction of the global best solution 

during the search process. Consequently, the firefly swarm is more likely to converge 

prematurely, and be trapped in local optima. 

Overall, owing to the assistance of the two proposed strategies, CIEFA and IIEFA are 

able to overcome local optima traps and outperform classical search methods, i.e. GA, 

ACO, FA, DA and SCA. They also outperform advanced FA variants employed in this 

study, i.e. CFA1, CFA2, NaFA, VSSFA, and MFA. Additionally, the merits of the 

proposed strategies also indicate that a strict adherence to biological laws imposes 

certain constraints on the exploration ability of heuristic search algorithms. As a result, 

the original biological laws from nature need to be further extracted and refined to best 
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facilitate the effectiveness and discard potential restrictions in the development of 

metaheuristic algorithms. Furthermore, there is other insightful research on 

metaheuristic algorithms, which provides promising directions for future investigation 

[250]. 

3.2.6 Statistical tests 

To examine the significance of the performance difference between the proposed 

models and baseline methods, both Friedman and Wilcoxon rank sum tests are 

conducted. 

3.2.6.1 The Friedman test 

In the Friedman test, a test statistic 𝑄 is constructed based on the mean rankings of test 

treatments, which can be approximated by a chi-squared distribution. Then, the null 

hypothesis that K treatments come from the same population is tested according to the 

p-values given by 𝑃(𝜒𝑘−1
2 > 𝑄) [263, 264]. The Friedman test is conducted with respect 

to three main comprehensive performance metrics (intra-cluster distance measures, 

average clustering accuracy, and Fscore𝑀) for IIEFA and CIEFA. Tables 3-18 – 3-19 

show the mean ranking results of the three performance metrics for the CIEFA and 

IIEFA models, respectively. For each metric, the mean ranking of each method is 

obtained by averaging its rankings over ten data sets based on the results shown in 

Tables 3-13 – 3-15. The significance level is set to 0.05 (i.e. 𝛼 = 0.05 ) as the 

confidence level in all test cases. Tables 3-20 – 3-21 show the details of statistical test 

results for the CIEFA and IIEFA models, respectively. 

Table 3-18 The mean ranking results based on the Friedman test for the CIEFA model 

Algorithms 
Mean ranking 

based on distance  
Algorithms 

Mean ranking based 

on 1/Accuracy 
Algorithms 

Mean ranking based 

on 1/Fscore𝑀 

CIEFA 1.40 CIEFA 1.80 CIEFA 1.80 

GA 3.25 GA 3.95 GA 4.20 

DA 4.05 MFA 4.70 MFA 4.90 

MFA 4.70 DA 5.25 ACO 5.80 

ACO 6.20 ACO 6.10 VSSFA 6.45 

VSSFA 6.80 VSSFA 6.50 DA 6.50 

FA 7.45 FA 7.25 FA 6.80 

NaFA 7.65 CFA2 7.65 KM 7.25 

CFA1 7.75 CFA1 7.90 CFA1 7.70 
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CFA2 7.85 KM 8.00 CFA2 7.80 

KM 9.70 NaFA 8.10 NaFA 8.00 

SCA 11.20 SCA 10.80 SCA 10.80 

 

Table 3-19 The mean ranking results based on the Friedman test for the IIEFA model 

Algorithms 
Mean ranking 

based on distance  
Algorithms 

Mean ranking based 

on 1/Accuracy 
Algorithms 

Mean ranking based 

on 1/Fscore𝑀 

IIEFA 2.40 IIEFA 2.60 IIEFA 2.60 

GA 3.10 GA 3.85 GA 4.10 

DA 3.90 MFA 4.70 MFA 4.90 

MFA 4.60 DA 5.15 ACO 5.80 

ACO 6.10 ACO 6.10 VSSFA 6.35 

VSSFA 6.70 VSSFA 6.40 DA 6.40 

FA 7.35 FA 7.15 FA 6.70 

NaFA 7.55 CFA2 7.55 KM 7.15 

CFA1 7.65 CFA1 7.80 CFA1 7.60 

CFA2 7.75 KM 7.90 CFA2 7.70 

KM 9.70 NaFA 8.00 NaFA 7.90 

SCA 11.20 SCA 10.80 SCA 10.80 

 

Table 3-20 Statistical results of the Friedman test for the CIEFA model 

Algorithms Chi-Square 𝑝-Value Hypothesis 

fitness 65.948929 7.1418E-10 Rejected 

1/Accuracy 52.348099 2.3578E-07 Rejected 

1/Fscore𝑀 45.847933 3.0000E-06 Rejected 

 

Table 3-21 Statistical results of the Friedman test for the IIEFA model 

Algorithms Chi-Square 𝑝-Value Hypothesis 

fitness 59.698571 1.0547E-08 Rejected 

1/Accuracy 46.035280 3.0000E-06 Rejected 

1/Fscore𝑀 39.724308 4.0000E-05 Rejected 

As indicated in Tables 3-18 – 3-19, the proposed CIEFA and IIEFA models dominate 

the highest rankings, and demonstrate clear advantages in the performance metrics of 

intra-cluster distance measure, accuracy, and Fscore𝑀  with the Friedman test. In 
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comparison with the five FA variants, i.e. VSSFA, NaFA, CFA1, CFA2, and MFA, the 

proposed models achieve significant improvements in all three performance metrics, 

indicating the advantages of the proposed search mechanisms. The proposed FA models 

also outperform KM and five classical search methods, i.e. GA, ACO, FA DA, and SCA. 

Comparatively, the CIEFA model achieves a better ranking than that of the IIEFA 

model in overall evaluation based on the experimental results. Furthermore, as indicted 

in Tables 3-20 – 3-21, the 𝑝-values of the Friedman test are all lower than 0.05 with 

respect to each metric for both the IIEFA and CIEFA models, which suggest an overall 

statistically significant difference between the mean ranks of IIEFA and CIEFA as 

compared with  those of other test algorithms.  

3.2.6.2 The Wilcoxon rank sum test 

The Wilcoxon rank sum test is conducted based on the mean accuracy rates of all the 

methods to further indicate the statistical distinctiveness of the proposed FA models 

against each baseline method. As indicated in Tables 3-22 – 3-23, the majority of the 

test results are lower than 0.05 for both CIEFA and IIEFA models, which indicate the 

proposed FA models significantly outperform 11 baseline algorithms with respect to 

most of data sets from the statistical perspective. The Iris data set is an exception since 

all the algorithms except for SCA achieve the same highest accuracy of 97.33% with 

feature selection. Moreover, as shown in Tables 3-22 – 3-23, in comparison with 

CIEFA, IIEFA demonstrates higher frequencies of insignificant difference in clustering 

accuracy as compared with those of the baseline models. This tendency becomes more 

evident on the ALL data set, since IIEFA does not show statistically significant 

differences as compared with seven baseline methods, i.e. KM, CFA1, VSSFA, DA, 

MFA, GA, and ACO, while for CIEFA, a similar case only occurs to two baseline 

methods, i.e. GA and VSSFA. This phenomenon may be attributed to the challenging 

factors of the ALL data set, owing to its high dimensionality and highly inseparable data 

distributions caused by the subtle differences between the normal and blast cases. On 

the other hand, the advantage demonstrated by CIEFA over IIEFA on the ALL data set 

can be ascribed to the proposed dispersing mechanism, which further enhances the 

exploration capability on the basis of IIEFA and reduces the probability of being 

trapped in local optima. Therefore, CIEFA is capable of delivering better clustering 

performances than those of IIEFA in tackling data samples with complex distributions 

and narrow class margins. 
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Table 3-22 The Wilcoxon rank sum test results of the proposed CIEFA model 

Dataset FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Thyroid 2.02E-06 7.99E-07 1.45E-06 9.95E-07 5.99E-07 1.90E-06 1.56E-02 4.01E-02 3.70E-06 9.33E-01 1.32E-06 

Sonar 1.07E-08 6.06E-06 1.51E-06 3.81E-08 6.03E-06 7.21E-09 9.00E-08 8.32E-11 2.55E-07 6.49E-01 4.03E-06 

Balance 2.89E-05 5.54E-07 4.18E-08 7.98E-08 1.72E-09 3.84E-06 1.41E-01 6.85E-03 3.91E-03 1.80E-02 1.14E-03 

E.coli 2.15E-02 2.84E-05 1.10E-02 6.45E-04 2.77E-03 1.61E-01 1.37E-03 4.43E-12 1.10E-02 1.32E-03 1.42E-04 

Ozone 2.88E-11 3.21E-11 1.80E-11 1.45E-11 2.53E-11 2.53E-11 8.57E-12 1.73E-11 8.57E-12 2.42E-06 1.80E-11 

ALL 1.18E-04 1.30E-02 4.02E-02 5.81E-04 3.58E-04 9.88E-01 1.52E-02 1.48E-09 2.67E-02 6.04E-01 3.64E-03 

Wbc1 5.01E-13 5.01E-13 5.01E-13 5.01E-13 5.01E-13 5.01E-13 6.11E-11 1.54E-11 5.01E-13 6.83E-12 5.01E-13 

Wbc2 3.10E-10 3.44E-13 5.47E-13 4.39E-13 5.65E-11 3.41E-13 3.33E-04 5.94E-11 1.45E-05 2.96E-11 6.48E-02 

Wine 3.49E-08 5.59E-09 1.13E-09 7.21E-09 4.17E-10 2.62E-09 3.93E-05 6.38E-12 2.68E-07 6.67E-08 2.28E-09 

Iris 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 4.91E-04 1.00E+00 1.00E+00 1.00E+00 

 

Table 3-23 The Wilcoxon rank sum test results of the proposed IIEFA model 

Dataset FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Thyroid 3.42E-08 1.99E-08 3.03E-08 2.67E-08 1.39E-08 4.85E-08 9.74E-04 3.09E-03 6.11E-08 8.32E-02 2.77E-08 

Sonar 1.19E-08 1.79E-05 4.80E-06 9.18E-08 1.48E-05 7.40E-09 2.83E-07 9.03E-11 6.19E-07 8.06E-01 1.10E-05 

Balance 2.55E-05 6.22E-07 5.33E-08 9.90E-08 2.81E-09 5.25E-06 7.79E-02 3.41E-03 4.40E-03 1.58E-02 1.32E-03 

E.coli 2.15E-02 2.84E-05 1.10E-02 6.45E-04 2.77E-03 1.61E-01 1.37E-03 4.43E-12 1.10E-02 1.32E-03 1.42E-04 

Ozone 1.34E-12 1.65E-12 6.09E-13 4.40E-13 1.06E-12 1.06E-12 2.05E-13 7.73E-12 2.05E-13 8.43E-11 6.09E-13 

ALL 5.87E-03 3.38E-01 5.44E-01 2.56E-02 7.92E-03 4.48E-01 2.79E-01 5.78E-09 2.93E-01 4.64E-01 1.18E-01 

Wbc1 6.47E-13 6.47E-13 6.47E-13 6.47E-13 6.47E-13 6.47E-13 2.20E-11 1.86E-11 6.47E-13 8.41E-12 6.47E-13 

Wbc2 4.99E-11 1.58E-13 2.59E-13 2.05E-13 1.20E-11 1.57E-13 2.47E-05 3.31E-11 5.19E-07 7.15E-13 5.56E-03 

Wine 3.52E-04 1.43E-04 4.12E-05 1.21E-04 2.83E-05 9.41E-05 1.15E-02 4.99E-07 9.77E-04 5.90E-04 8.17E-05 

Iris 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 4.91E-04 1.00E+00 1.00E+00 1.00E+00 

 

In summary, the proposed IIEFA and CIEFA models outperform other algorithms in 

clustering problems from two perspectives, i.e. (1) constructing more compact clusters 

with fast convergence rates, and (2) improving clustering performance in terms of 

accuracy, sensitivity, specificity and Fscore𝑀  measurements, with fewer parameter 

settings. Moreover, CIEFA demonstrates more advantages than IIEFA especially with 

data sets containing inseparable and less compact clusters (i.e. ALL) owing to its 
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enhanced exploration capability. Despite a wide variety of characteristics demonstrated 

by the above ten data sets, the real-life clustering tasks can pose greater challenges for 

the proposed clustering models owing to the soaring feature dimensionalities and more 

complex cluster distributions. Subsequently, we further examine the efficiency of the 

proposed models against other baseline models by undertaking three additional 

clustering tasks with both high dimensionalities and larger number of class categories. 

3.3 Evaluation on high-dimensional clustering tasks with complex 

cluster distributions 

With the competence of the proposed IIEFA and CIEFA models being verified both 

theoretically and experimentally above, we further extend our evaluations to more 

challenging clustering tasks with both high dimensionalities and complex cluster 

distributions as an attempt to examine the performance of the proposed methods more 

comprehensively. The extended evaluation is conducted on the basis of three additional 

high-dimensional UCI data sets, i.e. Drivface, Micromass, and Gas Sensor Array Drift 

(Sensor). The dimensionalities of Driveface, Micromass, and Sensor data sets are 6400, 

1300, and 128 respectively, while the numbers of classes for these data sets are 3, 5, and 

5, respectively. The details of the data sets are provided in Table 3-24. These data sets 

pose significant challenges to any clustering models owing to the considerable 

expansion of their dimensionalities, as well as the large numbers of class categories and 

more complex cluster distributions, as compared with our previous experimental studies 

and related research. We inherent the same experimental settings for each method as 

those provided in Section 3.2.1, i.e. population=50, maximum number of iteration=200 

and runs=30. The clustering results of intra-cluster distance, accuracy, and FscoreM 

over 30 runs are illustrated in Tables 3-25 – 3-27, respectively. 

Table 3-24 Three high-dimensional data sets with multiple classes for further evaluation 

Data set Number of attributes Number of classes Missing values Number of instances 

Drivface 6400 3 No 81 

Micromass 1300 5 No 180 

Sensor 128 5 No 415 

As shown in Tables 3-25 – 3-27, the advantages of the proposed CIEFA and IIEFA 

models are further ascertained by the empirical results on these high-dimensional data 

sets. Specifically, as indicated in Table 3-25, with respect to the distance measure, 
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CIEFA yields the smallest intra-cluster distances on both the Micromass and Sensor 

data sets, while IIEFA produces the most compact clusters with the smallest intra-

cluster distance on Drivface data set. Moreover, as depicted in Tables 3-26 – 3-27, the 

proposed CIEFA model achieves the best accuracy rates as well as FscoreM results on 

all the three data sets, followed closely by those of IIEFA. Both proposed models show 

better performances than those of all the baseline methods. 

Table 3-25 The mean results of the minimum intra-cluster distance measure on high-

dimensional data sets over 30 runs 

Dataset IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Drivface 4849.4 4869.6 4857.9 322247 4948.2 4908.6 4919.2 4938.4 4926.9 6161.3 5015.5 4942.9 4922.1 

Micromass 656.91 653.41 673.38 2626.3 677.28 664.91 667.21 671.38 671.86 813.75 672.43 666.89 674.51 

Sensor 426.26 422.13 446.94 534.03 439.08 435.31 435.34 449.97 440.72 1171.9 438.28 443.84 440.46 

 

Table 3-26 The mean results of average accuracy on high-dimensional data sets over 30 

runs 

Dataset IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Drivface 0.7687 0.7748 0.7561 0.7583 0.7558 0.7424 0.7484 0.7536 0.7556 0.6593 0.7479 0.7605 0.7588 

Micromass 0.8582 0.8644 0.819 0.831 0.8101 0.8381 0.8316 0.8256 0.8177 0.833 0.8221 0.8387 0.8177 

Sensor 0.8118 0.8187 0.7928 0.8006 0.7959 0.7965 0.8003 0.7882 0.7922 0.7652 0.799 0.7968 0.7944 

 

Table 3-27 The mean results of Fscore𝑀 on high-dimensional data sets over 30 runs 

Dataset IIEFA CIEFA FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Drivface 0.6524 0.6618 0.6502 0.6573 0.6401 0.6403 0.6436 0.6484 0.6433 0.5526 0.6355 0.6535 0.6551 

Micromass 0.6332 0.6402 0.5397 0.5607 0.5158 0.5638 0.5535 0.54 0.512 0.6082 0.5529 0.5631 0.5289 

Sensor 0.6089 0.6255 0.531 0.556 0.5399 0.5472 0.5602 0.5182 0.5259 0.5125 0.5573 0.5508 0.5373 

Furthermore, we conduct the Wilcoxon rank sum test based on the accuracy rates 

obtained on above three high-dimensional data sets to further indicate the superiority of 

the proposed models over baseline methods. The statistical test results for CIEFA and 

IIEFA are provided in Tables 3-28 – 3-29, respectively. As shown in Tables 3-28 – 3-

29, the majority of test results are lower than the threshold of 0.05 for both CIEFA and 

IIEFA. This indicates the statistical advantage of the proposed models over 11 baseline 

methods by delivering significantly better clustering results on the employed high-
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dimensional data sets. Some baseline algorithms also exhibit competitive performance 

in some test cases on certain data sets, i.e. CFA1 and GA shows similar result 

distributions to those of CIEFA on Drivface and Micromass, respectively, while CFA1 

and CFA2 have similar performances as those of IIEFA on Drivface and Micromass, 

respectively, with GA obtaining similar results to those of IIEFA for Micromass and 

Sensor, respectively.   

Table 3-28 The Wilcoxon rank sum test results of the proposed CIEFA model on high-

dimensional data sets 

Dataset FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Drivface 3.44E-03 1.74E-02 7.51E-02 4.09E-03 1.23E-03 3.15E-02 3.15E-02 4.94E-10 4.24E-03 1.38E-02 2.67E-02 

Micromass 3.32E-04 2.66E-03 6.60E-04 4.18E-02 2.69E-02 2.90E-03 7.93E-04 9.29E-05 3.53E-03 7.67E-02 1.14E-04 

Sensor 4.57E-06 6.13E-04 4.15E-04 6.02E-05 1.24E-04 1.88E-06 1.96E-05 5.68E-11 7.21E-04 2.12E-04 8.80E-05 

 

Table 3-29 The Wilcoxon rank sum test results of the proposed IIEFA model on high-

dimensional data sets 

Dataset FA KM CFA1 CFA2 NaFA VSSFA DA SCA MFA GA ACO 

Drivface 4.06E-03 2.21E-02 1.17E-01 5.99E-03 1.40E-03 4.54E-02 4.62E-02 4.35E-10 5.61E-03 1.74E-02 3.65E-02 

Micromass 1.49E-04 4.60E-03 9.77E-04 6.58E-02 3.57E-02 1.96E-03 4.83E-04 6.52E-05 5.02E-03 9.20E-02 8.36E-05 

Sensor 4.18E-04 4.33E-02 3.42E-02 1.91E-03 1.84E-02 5.71E-05 1.63E-03 3.64E-11 3.94E-02 5.49E-02 3.97E-03 

It is inevitable to face the challenge of the curse of dimensionality when dealing with 

such high-dimensional data sets. With respect to clustering analysis in our study, the 

curse of dimensionality exacerbates the adversity of searching for the optimal centroids 

during the clustering process from two perspectives. Firstly, the diagonal-based search 

prescribed in the original FA model is likely to omit potential promising areas due to the 

constraints in its search directions and scales. The situation becomes worsened on high-

dimensional data sets owing to the considerable expansion of the search space as the 

problem dimensionality increases, as well as the resulting oversight of even larger 

search sub-spaces. Therefore, the exploration capabilities of the search methods in 

directions and scales have great impact on model performance for the clustering tasks 

on such high-dimensional data sets. The proposed models are able to release the search 

operation from the diagonal-based search in the original FA model to the region-based 

multi-dimensional exploration with a greater variety of directions and scales to address 

the above challenges.  
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Secondly, as analysed in [265], when tackling high-dimensional clustering tasks, the 

sparse distribution of high-dimensional data sets makes the calculation of the intra-

cluster distance measures less respondent to the shift of initial centroids. This could 

result in pre-mature convergence and early stagnation. To overcome such barriers, the 

CIEFA model employs a dispatching mechanism to scatter fireflies with high 

similarities to other unexploited territories to increase search diversity and avoid local 

optima traps. Such search capabilities become vital when dealing with high-dimensional 

large search spaces and sparse data distribution. 

In summary, the proposed CIEFA and IIEFA models demonstrate significant 

advantages in dealing with high-dimensional data sets over the baseline methods owing 

to wider and more effective exploration of the search space and the enhanced population 

and search diversity. Nevertheless, clustering on high-dimensional data sets still remains 

a challenging topic owing to the possible presence of the redundant, noisy and irrelevant 

features that can severely affect performance. Other search strategies and feature 

selection models will also be explored to further enhance model efficiency in dealing 

with high-dimensional clustering tasks in future studies.  

3.4 Further comparison and analysis between IIEFA and CIEFA 

Although the distinctiveness between IIEFA and CIEFA is evident on certain 

challenging data sets, i.e. ALL, IIEFA and CIEFA in general demonstrate similar 

performances on other clustering tasks evaluated so far. CIEFA shows slightly better 

mean clustering performances over 30 runs on the above three high-dimensional 

clustering tasks with multiple clusters, but the performance differences between the two 

models are not distinctive. To better distinguish between CIEFA and IIEFA, both 

models are further evaluated with another four challenging high-dimensional data sets, 

i.e. a skin lesion data set (denoted as Lesion) [266], as well as three UCI data sets [255], 

i.e. Human Activity (Activity), Libras Movements (Libras), and Mice Protein 

Expression (Protein). The skin lesion data set is used in [266], which extracted shape, 

colour, and texture features of 660 dermoscopic skin lesion images from the Edinburgh 

Research and Innovation (Dermofit) lesion data set [267]. A 98-dimension feature 

vector for each skin lesion image was then obtained to represent the lesion information 

for subsequent clustering analysis. Moreover, the dimensionalities of the Human 

Activity, Libras, and Mice Protein data sets are 560, 90, and 77, respectively. In this 
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research, we employ three classes for the Libras data set and two classes for the Skin 

Lesion, Human Activity and Mice Protein data sets respectively. Details of the data sets 

are shown in Table 3-30. For each high-dimensional data set, a total of 30 runs are 

conducted for each proposed model. In order to fully evaluate the model efficiency, no 

feature selection is applied. The detailed clustering results are provided in Table 3-31. 

Table 3-30 Four additional high-dimensional data sets for further comparison between 

IIEFA and CIEFA 

Data set Number of attributes Number of classes Missing values Number of instances 

Activity 560 2 No 600 

Lesion 98 2 No 660 

Protein 77 2 No 300 

Libras 90 3 No 72 

As illustrated in Table 3-31, the empirical results of the CIEFA model for these high-

dimensional data sets demonstrate sufficient advantages over those of IIEFA according 

to five performance metrics, i.e. intra-cluster distances, accuracy, sensitivity, specificity, 

and FscoreM, over 30 runs. As an example, the CIEFA model achieves higher average 

accuracy rates of 67.12%, 80.20%, 76.62%, and 79.07% for the Human Activity, Skin 

Lesion, Mice Protein, and Libras data sets, respectively, while maintaining lower intra-

cluster distances with these data sets. In contrast, the IIEFA model produces 

comparatively slightly lower accuracy rates of 64.36%, 78.54%, 72.38%, and 78.01% 

for the Human Activity, Skin Lesion, Mice Protein, and Libras data sets, respectively, 

while producing slightly higher intra-cluster distances. A similar observation can be 

obtained for the other three performance metrics, i.e. sensitivity, specificity, and 

FscoreM, for both models on most of the test cases. This indicates that the CIEFA 

model offers a better option, as compared with IIEFA, to undertake high-dimensional 

clustering tasks. This finding is also identical to that obtained by the experimental 

studies using the other three high-dimensional data sets as discussed in Section 3.3. 

Table 3-31 The mean clustering results over 30 independent runs with four high-

dimensional data sets 

Criteria 

Human Activity 

(560 dim) 

Skin Lesion  

(98 dim) 

Mice Protein  

(77 dim) 
Libras (90 dim) 

IIEFA CIEFA IIEFA CIEFA IIEFA CIEFA IIEFA CIEFA 

fitness 12785 12582 5399.8 5352.8 2345.0 2307.1 466.05 462.95 
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accuracy 0.6436 0.6712 0.7854 0.802 0.7238 0.7662 0.7801 0.7907 

Fscore𝑀 0.6056 0.6841 0.8036 0.8103 0.7086 0.7523 0.6883 0.6994 

sensitivity 0.6303 0.7123 0.7898 0.7750 0.7562 0.7180 0.6693 0.6861 

specificity 0.6568 0.6300 0.7800 0.8344 0.6913 0.8144 0.8342 0.8431 

As discussed above, complexity of clustering tasks is significantly increased on these 

high-dimensional data sets owing to a higher probability of inclusion of noise and 

redundant or contradictory features. The clustering tasks could be even more 

challenging especially when the data samples are not well-separated, and their 

distributions are far different from compact spherical. As an example, the skin lesion 

data set [266] consists of two types of lesions, benign and malignant. The appearance 

difference between these two types of lesions in terms of shape, colour and texture can 

be very subtle, which sometimes causes confusion even to dermatologists, therefore 

posing great challenges on the clustering tasks. In other words, this high-dimensional 

skin lesion data set contains highly inseparable and non-compact clusters. The enhanced 

exploration capability acquired from the additional dispersing mechanism in CIEFA 

accounts for its efficiency in identifying optimal centroids for this challenging lesion 

problem, as well as other UCI data sets, as compared with IIEFA. 

In summary, the dispersing mechanism in CIEFA is able to boost the exploration 

capability by dispatching fireflies with high similarities in fitness values to the extended 

and unexploited search space. As such, the probability of identifying optimal centroids 

closer to the global optima is increased with the assistance of intensified local 

exploration as well as the expanded search territory. Therefore, CIEFA offers a better 

option, as compared with IIEFA, to deal with challenging clustering tasks such as data 

samples with high dimensionality, noise, and complicated distributions. 

3.5 Summary 

In this chapter, two FA variants, namely IIEFA and CIEFA, have been proposed to 

undertake the problems associated with initialization sensitivity and local optima traps 

of the conventional KM clustering algorithm. Two new strategies have been proposed in 

IIEFA and CIEFA to increase search diversification and efficiency. Firstly, the 

attractiveness coefficient in the original FA model is substituted by a randomized 

control matrix, therefore the one-dimensional search strategy in the original FA model is 

elevated to a multi-dimensional search mechanism with greater search scales and 
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directions for exploration in the neighbourhood. Secondly, in the early stage of the 

search process, a firefly solution sharing a high similarity with another is relocated to a 

new position outside the scope between the two fireflies in comparison. As such, the 

chances of identifying global optima and avoiding local optima are enhanced, owing to 

the fact that fireflies with high similarities are dispersed and the distribution of the 

whole swarm is more diversified. Therefore, the search efficiency is improved with the 

guarantee of sufficient variance between fireflies in comparison at the early 

convergence stage. The performances of IIEFA- and CIEFA-enhanced KM clustering 

methods are first investigated with ALL and 9 other UCI data sets, which include both 

high-dimensional and low-dimensional problems. In combination with mRMR-based 

feature selection, the proposed methods show superiority over the KM clustering 

algorithm, five classical search methods, and five other FA variants in terms of the 

convergence speed and clustering performance with respect to average accuracy rates, 

sensitivity, specificity, and macro-average F-score (Fscore𝑀) over 30 runs. The results 

have been ascertained using Friedman and Wilcoxon rank sum tests. In short, the 

proposed search strategies account for the improved efficiency in enhancing the cluster 

centroids of original KM clustering, which in turn overcome the local optima traps. 

Moreover, we conduct a further evaluation using three additional high-dimensional UCI 

data sets with their full dimensionalities, and the results reinforce the effectiveness and 

advantage of the proposed methods over other baseline models in dealing with high-

dimensional clustering tasks. Lastly, a dedicated comprehensive study has also been 

conducted to further identify the distinctiveness between IIEFA and CIEFA using four 

additional high-dimensional data sets. The empirical results indicate that CIEFA 

outperforms IIEFA in dealing with challenging clustering tasks with noise, complicated 

data distributions, and non-compact and less separable clusters, owing to its enhanced 

exploration capability and expanded search territory.    
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Chapter 4  

Evolutionary Feature Selection Using Enhanced Particle 

Swarm Optimisation 

In this chapter, a comprehensive PSO variant is proposed to undertake feature selection 

tasks. It overcomes two major shortcomings of the original PSO model, i.e. premature 

convergence and weak local exploitation capability around near optimal solutions. The 

proposed PSO variant employs four major strategies, i.e. (1) a swarm leader enhancing 

mechanism using skewed Gaussian distributions, (2) a chaotic-embedded mutation 

scheme for worst solution enhancement based on the best leader mirroring and chaotic 

DE operations, (3) a diversity-enhanced evolving PSO operation using superior local 

and global best signals, and (4) an intensified local exploitation search action based on 

the swarm leader oriented logarithmic spiral operation. The first two strategies enhance 

the exploitation of acquired knowledge by introducing a self-improving process for the 

global best solution as well as facilitating communication and cooperation among elite 

solutions accumulated through the evolving process for weak solution enhancement, 

while the last two strategies elevate the capability of discovering new knowledge by 

constructing delicate search behaviours signified by enhanced local and global best 

indicators to increase search intensification and diversification and achieve an optimised 

trade-off between them using a dynamic switching probability schedule. As such, the 

proposed PSO model is able to effectively avoid being trapped in local optima and 

increase the likelihood of attaining global optimality. A total of 9 UCI data sets and the 

ALL-IDB2 data set with a wide spectrum of dimensionalities, i.e. from 30 to 10000, are 

employed to evaluate effectiveness of the proposed PSO model on undertaking diverse 

feature selection tasks. The empirical results indicate that the proposed PSO model 

demonstrates significant superiority in achieving better trade-off between reducing 

feature number and improving classification performance, and outperforms five 

classical search methods and five state-of-the-art PSO-based feature selection models, 

statistically. The advantages of the proposed PSO model become more evident on 

highly complex feature selection tasks owing to higher performance gaps ascribed by 

more successful identifications of the most discriminative and effective features. 
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4.1 The proposed evolutionary feature selection model 

The real-life classification problems often involve data sets with high dimensionalities, 

and it is computationally impractical to conduct an exhaustive search of all possible 

feature subsets to identify the optimal feature representation [268]. Moreover, the search 

landscape becomes extremely complicated owing to the sophisticated confounding 

effects of various feature interactions in terms of redundancy and complementarity 

[198]. Therefore, effective and robust search methods are required to thoroughly explore 

complex effects of feature interactions while satisfying the constraints of practicality in 

term of computational cost to undertake feature selection tasks. As such, a PSO based 

evolutionary feature selection method is proposed to boost classification performance by 

automatically identifying the most effective feature subset and reducing feature 

dimensionality. 

4.1.1 The proposed enhanced PSO model 

In this section, we propose a comprehensive PSO variant for feature selection to 

overcome two major shortcomings embedded in the original PSO model, i.e. premature 

convergence and weak local exploitation capability around near optimal solutions [269]. 

The proposed PSO variant employs four major strategies, including (1) a swarm leader 

enhancing mechanism based on skewed Gaussian distributions, (2) a chaotic-embedded 

mutation scheme for worst solution enhancement, (3) a diversity-enhanced evolving 

position updating strategy based on ameliorated 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡, and (4) an intensified 

local exploitation search action based on a 𝑔𝑏𝑒𝑠𝑡 oriented logarithmic spiral operation. 

The implementation of above four mechanisms is capable of increasing population and 

search diversification, therefore increasing the likelihood of attaining global optimality 

as compared with the original PSO algorithm. 

The swarm particles are firstly initialized using Logistic map, with subsequent fitness 

evaluation to identify 𝑝𝑏𝑒𝑠𝑡  for each particle and 𝑔𝑏𝑒𝑠𝑡  of the overall swarm. In each 

iteration, the search process starts with the 𝑔𝑏𝑒𝑠𝑡 enhancing operation using Gaussian 

distributions with positive, negative, and zero skewness, respectively. It enables 𝑔𝑏𝑒𝑠𝑡 to 

explore further enhancement on feature selection by conducting distinctive local 

exploitation. Then two mutation operations for worst solution enhancement are 

employed to enhance the three weakest particles in the swarm as well as to increase 

population diversity. Specifically, the global worst particle is replaced by a new solution 
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generated by dimension-wise mutations of the 𝑔𝑏𝑒𝑠𝑡 solution, while the last second and 

third particles are substituted by individuals generated by DE operations. Moreover, the 

fitter offspring solutions are accepted directly, while a window is opened for the 

acceptance of a small proportion of poor mutated solutions in the early search stage 

following an annealing schedule to further expand search territory. Next, positions of 

particles are updated according to two distinctive moving strategies to increase search 

diversification. Unlike the conventional PSO operation, the first moving mechanism 

employs rectified forms of 𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡, as well as the Logistic map-oriented chaotic 

inertia weight to increase global exploration. Specifically, the global best experience in 

the original PSO operation is ameliorated by adopting the mean position of two 

individuals, i.e. the 𝑔𝑏𝑒𝑠𝑡  solution and a remote neighbouring superior 𝑝𝑏𝑒𝑠𝑡  solution 

possessing the highest dissimilarity to 𝑔𝑏𝑒𝑠𝑡  in position. Similarly, the local best 

solution is ameliorated by adopting the mean position of the particle’s own 𝑝𝑏𝑒𝑠𝑡 and 

another randomly chosen superior 𝑝𝑏𝑒𝑠𝑡  solution in the neighbourhood to gain more 

momentums during the search process. As a result, the search diversity of the swarm is 

enhanced significantly owing to the dynamic changes of both local and global best 

experiences through an iterative process as compared with those of the original PSO 

operation, therefore is less likely to be trapped in local optima. The second position 

updating strategy employs a logarithmic spiral search mechanism oriented by 𝑔𝑏𝑒𝑠𝑡 to 

intensify local exploitation. A dynamic switching probability is designed to enable the 

search process to balance between the above two proposed first (global) and second 

(local) search operations. It ensures diverse global exploration using the first search 

action incorporating the ameliorated PSO moving strategy in the early search stage 

while executing sufficient local exploitation in subsequent iterations using the second 

operation integrating the logarithmic spiral search mechanism. Overall, the Gaussian 

distribution based 𝑔𝑏𝑒𝑠𝑡  enhancement, the mutation strategies for the enhancement of 

the worst solutions, exploration schemes assisted by ameliorated 𝑔𝑏𝑒𝑠𝑡 , 𝑝𝑏𝑒𝑠𝑡 , and 

Logistic map, as well as the intensified fine-tuning capability using the spiral search 

operation, cooperate with and benefit from each other to effectively avoid being trapped 

in local optima and increase the likelihood of attaining global optimality. Each of the 

four major strategies is introduced with detailed motivations and analysis as follows. 
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4.1.1.1 A swarm leader enhancing mechanism 

In the context of feature selection, both the elimination of critical features and the 

inclusion of contradictory attributes can impose significant consequences on 

classification performance. Therefore, a swarm leader enhancing mechanism using the 

skewed Gaussian distributions is proposed to equip 𝑔𝑏𝑒𝑠𝑡  with further discriminative 

capabilities to address the above adversaries accordingly. As shown in Eq. 4.1, 𝑔𝑏𝑒𝑠𝑡 is 

mutated successively based on three Gaussian distributions with different skewness 

settings. Specifically, Gaussian distribution with a positive skewness (right-skewed) is 

likely to generate more negative scores than positive ones, which can be used to 

simulate the effect of further eliminating noisy or irrelevant features on the basis of the 

𝑔𝑏𝑒𝑠𝑡 solution in each iteration. In contrast, the Gaussian distribution with a negative 

skewness (left-skewed) has the effects of gaining significant features owing to the 

production of more positive values during mutation. Additionally, the standard Gaussian 

distribution (non-skewed) is also employed to conduct local exploitation of 𝑔𝑏𝑒𝑠𝑡 with 

neutrality in determining feature numbers. As a result, this leader enhancing mechanism 

enables 𝑔𝑏𝑒𝑠𝑡 to be further improved under the scenarios where 𝑔𝑏𝑒𝑠𝑡 might be trapped, 

i.e. eliminating effective features or incorporating noisy or irrelevant attributes. 

𝑔𝑏𝑒𝑠𝑡𝑑
′ = 𝑔𝑏𝑒𝑠𝑡𝑑 + 𝛼  𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(ℎ)  (𝑈𝑑 − 𝐿𝑑)    (4.1) 

where 𝑔𝑏𝑒𝑠𝑡𝑑
′  represents the enhanced global best solution. The parameter 𝛼 denotes 

the step size and is assigned as 0.1 based on the recommendations of related studies 

[270], while ℎ represents the skewness of the Gaussian distribution and is set as -1, 1 

and 0 for left-, right- and non-skewed Gaussian distributions respectively based on 

extensive trial-and-error processes. Besides that, 𝑈𝑑 and 𝐿𝑑 represent upper and lower 

boundaries of the 𝑑-th dimension respectively. 

4.1.1.2 Mutation-based worst solution enhancement 

The lack of exploitation of local elite solutions and the sole reference to the global best 

solution during the coevolution among different particles are highly responsible for the 

local stagnation and premature convergence in the original PSO method. We 

subsequently further exploit acquired elite solutions in the swarm by conducting the 

mirroring mutation on the swarm leader and DE-based mutation on local elite solutions 

for the enhancement of the weakest particles.  
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Firstly, a 𝑔𝑏𝑒𝑠𝑡-based local mutation scheme is proposed to enhance the global worst 

solution in the swarm. As in Eq. 4.2, the new particle is produced by conducting 

mirroring effects and reversing the sign of 𝑔𝑏𝑒𝑠𝑡 with a certain mutation probability, 𝑟𝑚𝑢, 

in each dimension. This simulates the effect of randomly activating or deselecting some 

of features on the basis of the current best feature subset represented by 𝑔𝑏𝑒𝑠𝑡. As a 

result, the dimension-wise mutation has a great advantage in identifying different 

discriminative features as well as eliminating noisy or contradictory ones through 

iterations. In short, the 𝑔𝑏𝑒𝑠𝑡 -based local mutation scheme guarantees the balance 

between preserving effective information captured by the current 𝑔𝑏𝑒𝑠𝑡  solution and 

introducing beneficial stochastic perturbations to create new momentum for 𝑔𝑏𝑒𝑠𝑡  to 

escape from the local optimum.  

𝑥𝑑
𝑛𝑒𝑤 = {

−𝑔𝑏𝑒𝑠𝑡𝑑    𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 𝑟𝑚𝑢,
𝑔𝑏𝑒𝑠𝑡𝑑         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

      (4.2) 

where 𝑟𝑚𝑢 represents the mutation probability and is set as 0.9 based on trial-and-error 

and recommendations in related studies [271]. When a randomly generated value is 

more than or equals to 𝑟𝑚𝑢, the new offspring is assigned with the value of the mirroring 

−𝑔𝑏𝑒𝑠𝑡 solution in the 𝑑-th dimension, otherwise it is assigned with the value of 𝑔𝑏𝑒𝑠𝑡 

solution in that dimension. This operation is used to yield a new solution to replace the 

worst particle in the swarm if it is fitter.  

Secondly, a DE-based global mechanism is proposed to improve the last second and 

third worst individuals in the swarm. Specifically, it produces new particles by 

following mutation and crossover operations of DE using three 𝑝𝑏𝑒𝑠𝑡 solutions randomly 

selected from the collection of all 𝑝𝑏𝑒𝑠𝑡 individuals in the swarm, as shown in Eqs. 4.3 

and 4.4. The differential weight 𝐹 in Eq. 4.3 is generated using Sinusoidal chaotic map 

to increase the variety of the perturbation for the donor vector, 𝑥𝑑
𝑑𝑜𝑛𝑜𝑟,  in each 

dimension. As a result, the obtained donor vector can be more diversified in its 

directions and scales as compared with those yielded by the original DE method with a 

fixed weight. Furthermore, the crossover parameter 𝐶𝑟 is generated by Logistic chaotic 

map to introduce more randomness to the crossover process in each dimension and 

exploit more possibilities of feature interaction on a global scale. When a randomly 

generated value is more than 𝐶𝑟, the current dimension in the new solution is inherited 

from the corresponding dimension of the personal best solution, otherwise it is inherited 
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from that of the above newly generated donor solution. Owing to the adoption of several 

distinctive personal best solutions in the search operations, this DE-based global 

mutation operation is able to increase population diversity significantly when 𝑝𝑏𝑒𝑠𝑡 

solutions of the particles illustrate sufficient variance from one another in the early 

search stage.  

𝑥𝑑
𝑑𝑜𝑛𝑜𝑟 = 𝑝𝑏𝑒𝑠𝑡𝑑

1 + 𝐹  (𝑝𝑏𝑒𝑠𝑡𝑑
2 − 𝑝𝑏𝑒𝑠𝑡𝑑

3)     (4.3) 

𝑥𝑑
𝑛𝑒𝑤 = {

𝑥𝑑
𝑑𝑜𝑛𝑜𝑟    𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑟,

𝑝𝑏𝑒𝑠𝑡𝑖𝑑         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
      (4.4) 

where 𝑝𝑏𝑒𝑠𝑡𝑑
1, 𝑝𝑏𝑒𝑠𝑡𝑑

2 and 𝑝𝑏𝑒𝑠𝑡𝑑
3 represent three randomly selected 𝑝𝑏𝑒𝑠𝑡 solutions of 

the swarm particles in the 𝑑-th dimension while 𝑝𝑏𝑒𝑠𝑡𝑖 represents the 𝑝𝑏𝑒𝑠𝑡 solution of 

the current particle 𝑖. 𝑥𝑑
𝑑𝑜𝑛𝑜𝑟and 𝑥𝑑

𝑛𝑒𝑤 denote the donor and the new solutions in the 𝑑-

th dimension respectively. Besides that, 𝐹 and 𝐶𝑟 represent the differential weight and 

the crossover factor respectively.  

The newly generated fitter solution is accepted directly while the acceptance of a 

weaker mutated solution is determined by an annealing schedule, as defined in Eq. 4.5. 

𝑝 = 𝑒𝑥𝑝 (−
∆𝑓

𝑇
) > 𝛿        (4.5) 

where 𝑇  represents the temperature for controlling the annealing process and ∆𝑓 

indicates the fitness difference between the mutated and the original solution. The 

constant 𝛿  is a randomly generated value in the range of [0, 1]. A linear cooling 

schedule is employed to decrease the temperature, i.e. 𝑇 = 𝜎𝑇, whereas 𝜎 is assigned as 

0.9 based on the recommendations in the existing studies [272]. With investigation, the 

proportion of the accepted poor offspring solutions in the total amount of generated 

mutated solutions is generally between 3%~5%. Therefore, this annealing schedule 

opens a window for a beneficial infiltration of mutated solutions to expand search 

territory.  

The above two mutation operations based on the DE and 𝑔𝑏𝑒𝑠𝑡  mirroring operations 

operate in parallel to combine their distinctive merits together during the search process, 

i.e. fully utilizing diverse 𝑝𝑏𝑒𝑠𝑡 experiences especially in the early search stage using the 

DE-based global mutation action, as well as fully exploiting the near optimal region in 
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the final converging stage using the 𝑔𝑏𝑒𝑠𝑡-based local mutation operation, to improve 

weak particles in the swarm. 

4.1.1.3 Diversity-enhanced PSO evolving strategy 

The search in the original PSO operation is likely to stagnate especially when 𝑔𝑏𝑒𝑠𝑡 

moves to a local optima and the difference between the current position of the particle 

and its historical best is too small to create sufficient momentum for the particle to 

escape. In order to address such limitations in the original PSO model, we construct 

delicate search behaviours with two distinctive evolving mechanisms, i.e. a diversity-

enhanced PSO evolving strategy and an intensified spiral exploitation action, to elevate 

both the diversification of exploration and the intensification of exploitation. Besides 

that, a dynamic switching probability schedule is also proposed to achieve the best 

trade-off between these two mechanisms and exploit merits from both search operations 

to the maximum extent. We firstly upgrade the position updating strategy in the original 

PSO operation by introducing ameliorated 𝑝𝑏𝑒𝑠𝑡  and 𝑔𝑏𝑒𝑠𝑡 , combined with Logistic 

chaotic map, to enhance search diversity and avoid local stagnation. As indicated in Eq. 

4.6, the global best experience is ameliorated by adopting the mean position of two 

solutions, i.e. the 𝑔𝑏𝑒𝑠𝑡 solution and a neighbouring superior 𝑝𝑏𝑒𝑠𝑡 solution, i.e. 𝑝𝑏𝑒𝑠𝑡𝐷 , 

possessing the highest dissimilarity to 𝑔𝑏𝑒𝑠𝑡. The dissimilarity measure between 𝑔𝑏𝑒𝑠𝑡 

and any 𝑝𝑏𝑒𝑠𝑡  solution is determined by the number of distinctive units in their binary 

forms, which are converted by following existing studies [205, 206]. In other words, the 

𝑝𝑏𝑒𝑠𝑡 solution that has the least number of the shared selected features in comparison 

with those recommended by 𝑔𝑏𝑒𝑠𝑡 is selected as 𝑝𝑏𝑒𝑠𝑡𝐷. Moreover, as defined in Eq. 

4.7, the local best experience is ameliorated by adopting the mean position of particle’s 

own 𝑝𝑏𝑒𝑠𝑡  and another randomly chosen superior 𝑝𝑏𝑒𝑠𝑡  solution, i.e. 𝑝𝑏𝑒𝑠𝑡𝑅 ,  in the 

neighbourhood. Eq. 4.8 is used to conduct position updating which employs the 

enhanced global and local optimal signals defined in Eqs. 4.6 and 4.7, respectively.  

𝑔𝑏𝑒𝑠𝑡𝑑
𝑀 = (𝑔𝑏𝑒𝑠𝑡𝑑 + 𝑝𝑏𝑒𝑠𝑡𝑑

𝐷) 2⁄       (4.6) 

𝑝𝑏𝑒𝑠𝑡𝑑
𝑀 = (𝑝𝑏𝑒𝑠𝑡𝑖𝑑 + 𝑝𝑏𝑒𝑠𝑡𝑑

𝑅) 2⁄        (4.7) 

𝑣𝑖𝑑
𝑡+1 = 𝜎𝑣𝑖𝑑

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑑
𝑀 − 𝑥𝑖𝑑

𝑡 ) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑑
𝑀 − 𝑥𝑖𝑑

𝑡 )   (4.8) 

where 𝑝𝑏𝑒𝑠𝑡𝐷 represents the 𝑝𝑏𝑒𝑠𝑡  solution with highest dissimilarity to 𝑔𝑏𝑒𝑠𝑡 among all 

neighbouring superior 𝑝𝑏𝑒𝑠𝑡  solutions, while 𝑝𝑏𝑒𝑠𝑡𝑅  represents a randomly chosen 
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𝑝𝑏𝑒𝑠𝑡  solution. Besides the above, 𝑔𝑏𝑒𝑠𝑡𝑀  and 𝑝𝑏𝑒𝑠𝑡𝑀  represent the enhanced global 

and local optimal indicators in the proposed position updating strategy respectively, 

while 𝑡  denotes the current iteration number, and  𝜎 represents the inertia weight 

generated by the Logistic chaotic map. 

As such, the search diversity can be improved from two perspectives. Firstly, the 

ameliorated 𝑔𝑏𝑒𝑠𝑡 , i.e. 𝑔𝑏𝑒𝑠𝑡𝑀 , enables particles to conduct a region-based search by 

navigating the swarm to move towards wider search domains signified by the mean 

position of 𝑔𝑏𝑒𝑠𝑡 and 𝑝𝑏𝑒𝑠𝑡𝐷, as compared to 𝑔𝑏𝑒𝑠𝑡-based single-solution attraction in 

the original PSO operation. For each particle, the choice of 𝑝𝑏𝑒𝑠𝑡𝐷 can be different in 

each iteration owing to the dynamic evolving process of the swarm and adaptation of 

superior solutions in the neighbourhood. As a result, the search diversity can be 

significantly improved in terms of search directions and scopes through the iterative 

process. Secondly, the ameliorated 𝑝𝑏𝑒𝑠𝑡 , i.e. 𝑝𝑏𝑒𝑠𝑡𝑀 , guarantees that sufficient 

dynamic distractions can be obtained from the cognitive component (𝑝𝑏𝑒𝑠𝑡𝑑
𝑀 − 𝑥𝑖𝑑

𝑡 ) 

owing to the randomness in choosing 𝑝𝑏𝑒𝑠𝑡𝑅  from its neighbourhood personal best 

experiences. In comparison with the above proposed operation, the cognitive component 

in the original PSO action can be trivial since each particle always refers to its own 

historical best solution through the iterative process. As a result, the ameliorated 𝑝𝑏𝑒𝑠𝑡 , 

i.e. 𝑝𝑏𝑒𝑠𝑡𝑀, can effectively produce enough momentum and enable particles to jump 

out of local optima traps. Additionally, the Logistic chaotic map is also employed to 

update inertial weight and further increase search diversity. In general, this diversity-

enhanced position updating strategy not only significantly increases the momentum 

produced by cognitive component (𝑝𝑏𝑒𝑠𝑡𝑑
𝑀 − 𝑥𝑖𝑑

𝑡 ), but also efficiently improves the 

exploration capability of the social component (𝑔𝑏𝑒𝑠𝑡𝑑
𝑀 − 𝑥𝑖𝑑

𝑡 ), therefore is more likely 

to overcome stagnation. 

4.1.1.4 Intensified spiral exploitation scheme 

An intensified spiral exploitation scheme is also introduced to overcome the limitations 

of fine-tuning capability in near optimal regions in the original PSO model. The 

logarithmic spiral search is originally proposed in the Moth-Flame optimisation 

algorithm [63]. We employ this spiral operation to fine-tune the swarm particles in final 

iterations. By conducting this local spiral search action, a search space of hyper-ellipse 

around 𝑔𝑏𝑒𝑠𝑡 is constructed on each dimension using the spiral function as defined in 
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Eqs. 4.9 and 4.10, as compared with a linear approaching strategy in the original PSO 

model. Each particle conducts the local exploitation based on its distinctive distance 

from 𝑔𝑏𝑒𝑠𝑡, represented by 𝐷. This local search scheme enables particles to scrutinize 

the neighbourhood of 𝑔𝑏𝑒𝑠𝑡  in all directions with various scales. As a result, the 

exploitation around near-optimal solution can be significantly intensified as compared 

with that of the original PSO mechanism.   

𝑥𝑖𝑑
𝑡+1 = 𝐷 exp(𝑏𝑙) cos(2𝜋𝑙) + 𝑔𝑏𝑒𝑠𝑡𝑑      (4.9) 

𝐷 = |𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑
𝑡 |        (4.10) 

where 𝐷 denotes the distance between 𝑔𝑏𝑒𝑠𝑡 and particle 𝑖 in the 𝑑-th dimension, while 

𝑏 is a constant to control the shape of logarithmic spiral, with 𝑙 as a random number in 

the range of [-1,1]. Moreover, we also propose a dynamic switching probability 

schedule with the attempt to achieve a trade-off between global exploration and local 

exploitation in the proposed PSO variant, as demonstrated in Eq. 4.11. 

𝑝𝑠𝑤𝑖𝑡𝑐ℎ = 1 − (𝑖𝑡𝑒𝑟 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟⁄ )2      (4.11) 

where 𝑝𝑠𝑤𝑖𝑡𝑐ℎ  denotes the switching probability, while 𝑖𝑡𝑒𝑟  and 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟  represents 

the current and maximum iteration numbers respectively. 

In each iteration, when the switching probability 𝑝𝑠𝑤𝑖𝑡𝑐ℎ  is higher than a randomly 

generated value in the range of [0, 1], i.e. 𝑝𝑠𝑤𝑖𝑡𝑐ℎ > 𝑟𝑎𝑛𝑑 , the diversity-enhanced 

global search operation discussed in Section 4.1.1.3 based on ameliorated 𝑝𝑏𝑒𝑠𝑡  and 

𝑔𝑏𝑒𝑠𝑡  as well as Logistic chaotic map is executed. Otherwise the intensified spiral 

exploitation search scheme depicted in this section is conducted instead. In general, the 

proposed dynamic schedule of  𝑝𝑠𝑤𝑖𝑡𝑐ℎ not only ensures sufficient global exploration 

opportunities to identify promising regions in the early search stage, but also guarantee 

thorough exploitations in near optimal region before converging in the final iterations. 

This smooth transition between exploration and exploitation can maximise the 

advantages of the proposed search mechanisms, hence reducing the likelihood of 

converging prematurely. 

The proposed PSO variant is illustrated in Algorithm 4-1 with the flowchart shown in 

Figure 4-1. 
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Figure 4-1 Flowchart of the proposed PSO variant 

Algorithm 4-1 – The Pseudo-code of the Proposed PSO Algorithm 

1    Start 

2    Initialize a particle swarm using Logistic chaotic map 

3    Evaluate each particle using the objective function 𝑓(𝑥) and identify the 𝑝𝑏𝑒𝑠𝑡 

      solution of each particle, and the global best solution, 𝑔𝑏𝑒𝑠𝑡 

4    Construct a 𝑊𝑜𝑟𝑠𝑡_𝑚𝑒𝑚𝑜𝑟𝑦 which stores the three weakest particles with the 

      lowest fitness values, and identify the worst solution as 𝑔𝑤𝑜𝑟𝑠𝑡 
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5    While (termination criteria are not met) 

6    { 

7     Implement the swarm leader enhancement using Gaussian distribution with 

positive, negative and zero skewness respectively, as defined in Eq. 4.1 

8 For (each particle 𝑖  in the population) do 

9 { 

10  If (particle 𝑖 belongs to 𝑊𝑜𝑟𝑠𝑡_𝑚𝑒𝑚𝑜𝑟𝑦) 

11  { 

12   If (particle 𝑖 is 𝑔𝑤𝑜𝑟𝑠𝑡) 

13   { 

14    Construct an offspring by employing the local mutation 

     operation based on 𝑔𝑏𝑒𝑠𝑡 as defined in Eq. 4.2 

15   Else 

16    Construct an offspring by employing the DE-based 

     global mutation operation based on three randomly 

     selected 𝑝𝑏𝑒𝑠𝑡 solutions as defined in Eqs. 4.3 and 4.4 

17    Evaluate the offspring solution and update the position 

for particle 𝑖 in 𝑊𝑜𝑟𝑠𝑡_𝑚𝑒𝑚𝑜𝑟𝑦 based on the 

annealing schedule as defined in Eq. 4.5 

18   } End If 

19   Update 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 solutions 

20  } End If 

21 } End For 

22 For (each particle 𝑖 in the population) do 

23 {   

24  If 𝑅𝑎𝑛𝑑< 𝑝𝑠𝑤𝑖𝑡𝑐ℎ 

25  { 

26   Establish a memory of 𝑔𝑟𝑜𝑢𝑝𝑖 which includes all neighbouring 

    𝑝𝑏𝑒𝑠𝑡 solutions with higher or equal fitness scores than that of 

    the 𝑝𝑏𝑒𝑠𝑡 solution of the current particle 𝑖, i.e. 𝑝𝑏𝑒𝑠𝑡𝑖 

27   Identify the neighbouring fitter 𝑝𝑏𝑒𝑠𝑡 solution in 𝑔𝑟𝑜𝑢𝑝𝑖 with 

    the highest dissimilarity to 𝑔𝑏𝑒𝑠𝑡, denoted as 𝑝𝑏𝑒𝑠𝑡𝐷 

28   Calculate the ameliorated 𝑔𝑏𝑒𝑠𝑡 solution, i.e. 𝑔𝑏𝑒𝑠𝑡𝑀, by 

    averaging the following two solutions, i.e. 𝑝𝑏𝑒𝑠𝑡𝐷 and 𝑔𝑏𝑒𝑠𝑡, 

    as indicated in Eq. 4.6 
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29   Randomly select another neighbouring fitter 𝑝𝑏𝑒𝑠𝑡 solution 

    from 𝑔𝑟𝑜𝑢𝑝𝑖, denoted as 𝑝𝑏𝑒𝑠𝑡𝑅 

30   Calculate the ameliorated 𝑝𝑏𝑒𝑠𝑡 solution, i.e. 𝑝𝑏𝑒𝑠𝑡𝑀 , by 

averaging 𝑝𝑏𝑒𝑠𝑡𝑅  and the personal best solution of particle 𝑖, 
𝑝𝑏𝑒𝑠𝑡𝑖, as in Eq. 4.7 

31   Conduct position updating using 𝑔𝑏𝑒𝑠𝑡𝑀 and 𝑝𝑏𝑒𝑠𝑡𝑀 for 

    particle 𝑖 as defined in Eq. 4.8 

32  Else 

33   Move particle 𝑖 around 𝑔𝑏𝑒𝑠𝑡 by following a logarithmic spiral 

    search path as shown in Eq. 4.9 

34  } End If 

35 } End For 

36 For (each particle 𝑖  in the population) do 

37 {   

38  Evaluate each particle 𝑖 using the objective function 

39  Update 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 solutions 

40 } End For 

41    } End While 

42    Output 𝑔𝑏𝑒𝑠𝑡 

43    End 

4.1.2 The proposed evolutionary feature selection model based on the 

enhanced PSO variant 

The proposed PSO variant is integrated with a KNN classifier to conduct fitness 

evaluation during the search process. Eq. 4.12 defines the objective function which is 

used to assess the fitness of each particle.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥) = 𝑘1 ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥 + 𝑘2 ∗ (𝑛𝑢𝑚_𝑜𝑓_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑥)−1   (4.12) 

where 𝑘1  and 𝑘2  denote weights for the classification accuracy and the number of 

selected features, respectively. We assign 𝑘1 = 0.9  and 𝑘2 = 0.1  by following the 

recommendations of the previous studies [102, 273]. 

The fitness function is able to maximize the classification accuracy while reducing the 

number of selected features. The particles are initialized with continuous values in each 

dimension using the Logistic map at the beginning of the search process. We convert 
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each element of each particle into a binary value, i.e. 1 or 0, representing the selection (1) 

or rejection (0) of a particular feature for fitness evaluation. KNN with 5 neighbours 

recommended by related studies [74, 274] is then used to evaluate the fitness of the 

selected feature subset prescribed in the binary vector. A 10-fold cross-validation is 

employed to assess the classification performance of each recommended feature subset 

based on the training set. In the testing phase, the most optimal feature subset 

represented by 𝑔𝑏𝑒𝑠𝑡 is used to evaluate the model performance on the test data set. 

In the proposed PSO model, particles undergo three evolving stages successively, i.e. (1) 

the swarm leader enhancing stage, (2) the chaotic-embedded mutation process for the 

worst solution improvement, (3) the swarm evolving stage using either the diversity-

enhanced PSO mechanism or the intensified spiral exploitation scheme. Overall, the 

exploration capability is significantly strengthened by incorporating chaotic swarm 

initialisations, the local and global mutation schemes based on the best leader mirroring 

and chaotic DE operations, and the region-based position updating search strategy with 

enhanced local and global best signals, while the exploitation capability is enhanced by 

deploying Gaussian distribution-based swarm leader enhancement and dimension-wise 

spiral-shaped neighbouring search in all directions as compared with the original PSO 

model. As such, the impacts of complex interactions among features on classification 

performance can be thoroughly examined, and hence the authentic and effective feature 

representation with respect to the investigated problem is more likely to be identified by 

the proposed PSO variant. 

4.2 Evaluation and discussion 

We employ a total of ten data sets to investigate the efficiency of the proposed PSO 

variant on feature selection. The employed data sets pose diverse challenges on feature 

selection problems owing to a great variety of dimensionalities as well as complicated 

class distributions. The proposed PSO algorithm is integrated with a KNN-based 

wrapper model to obtain the optimal feature subset, where the number of the nearest 

neighbour is set to 5 according to recommendations in previous studies [74, 274]. Three 

performance indicators are investigated to examine the effectiveness of the proposed 

PSO variant in undertaking feature selection tasks, i.e. classification accuracy, number 

of selected features, and F-score. Furthermore, we compare feature selection 

performance of the proposed model against five classical search algorithms, i.e. PSO 
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[275], DE [56], SCA [252], DA [276], and GWO [62], as well as five PSO variants, i.e. 

Competitive Swarm Optimiser (CSO) [212, 277], hybrid PSO with spiral-shaped 

mechanism (HPSO-SSM) [74], binary PSO (BPSO) [278], modified binary PSO with 

local search and a swarm variability controlling scheme (MBPSO) [279], and binary 

PSO with catfish effect (CatfishBPSO) [280]. To ensure a fair comparison, we employ 

the same number of function evaluations (i.e. population size × the maximum number of 

iterations) as the stopping criterion for all search methods. In our experiments, the 

population size and the maximum number of iterations are set as 30 and 100 

respectively based on trial and error. We also conduct 30 runs in each experiment to 

mitigate influence of accidental factors. 

4.2.1 Data sets 

We employ the ALL-IDB2 database [254], denoted as ALL, for Acute Lymphoblastic 

Leukaemia diagnosis, as well as nine other UCI data sets [255], namely Arcene, 

MicroMass, Parkinson’s disease (Parkinson), Human activity recognition (Activity), 

LSVT voice rehabilitation (Voice), Grammatical facial expressions (Facial Expression), 

Heart disease (Heart), Ionosphere, and Wisconsin breast cancer diagnostic data set 

(Wdbc), for evaluation. The details of each data set are illustrated in Table 4-1. These 

data sets pose diverse challenges on any feature selection models owing to a great 

variety of dimensionalities and class numbers, as well as complex data distributions. 

Specifically, the dimensionality of the employed data sets spans from 30 to 10000, 

while the number of the classes ranges from 2 to 10. Six data sets with more than 300 

features are characterised as high-dimensional data sets, i.e. Arcene (10000), MicroMass 

(1300), Parkinsons (753), Activity (561), Voice (310), and Facial Expression (301), 

while the remaining four data sets are characterised as low-dimensional ones, i.e. ALL 

(80), Heart (72), Ionosphere (33), and Wdbc (30). Moreover, according to previous 

studies  [248, 256, 281], the employed data sets contain significant challenging factors 

which can severely affect classification performance, e.g. ALL [248, 256] and 

MicroMass [281]. As an example, the ALL-IDB2 data set poses great challenges for the 

reliable identification of lymphoblast cells owing to diverse complex irregular 

morphologies of nuclei, variations in terms of the nucleus to cytoplasm ratio, as well as 

the subtle differences between the blast and normal blood cells. Overall, a 

comprehensive evaluation can be established for the proposed PSO variant owing to the 
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diversity of employed data sets in terms of dimensionality, number of the classes, and 

sample distributions.  

Table 4-1 Ten selected data sets for evaluation 

Data set Number of attributes Number of classes Number of instances 

Arcene 10000 2 200 

MicroMass 1300 10 360 

Parkinsons 753 2 756 

Activity 561 6 1000 

Voice 310 2 126 

Facial Expression 301 2 1062 

ALL 80 2 180 

Heart 72 4 124 

Ionosphere 33 2 253 

Wdbc 30 2 569 

 

4.2.2 Parameter settings 

We compare the proposed PSO variant against ten baseline methods, i.e. five classical 

search algorithms, i.e. PSO, DE, SCA, DA, and GWO, and five advanced PSO variants, 

i.e. CSO, HPSO-SSM, BPSO, MBPSO, and CatfishBPSO. The parameter settings for 

each baseline method employed in this study are in accordance with recommendations 

in their original studies. The detailed parameters for the proposed PSO model and ten 

baseline methods are presented in Table 4-2. 

Table 4-2 Parameter settings of each algorithm 

Algorithm Parameters 

PSO [275] cognitive component 𝑐1 = 2, social component 𝑐2 = 2,  

inertial weight 𝑤 = 0.9 − 𝑚 × ((0.9 − 0.4)/𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, where 𝑚 and 

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟  denote the current and maximum iteration numbers, 

respectively.  

DE [56] differential weight 𝐹 ∈ (0, 1), crossover parameter 𝐶𝑟 = 0.4. 

SCA [252] 𝑟1 = 𝑎 − 𝑚 × 𝑎/𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, where 𝑎 = 3. 𝑟2 = 2𝜋 × 𝑟𝑎𝑛𝑑,   

𝑟3 = 2 × 𝑟𝑎𝑛𝑑,  
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and 𝑟4 = 𝑟𝑎𝑛𝑑. 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are four main search parameters. 

DA [276] separation factor = 0.1, alignment factor = 0.1, cohesion factor = 0.7, 

food factor = 1, enemy factor = 1,  

inertial weight = 0.9 − 𝑚 × ((0.9 − 0.4)/𝑚𝑎𝑥_𝑖𝑡𝑒𝑟. 

GWO [62] 𝐴 = 2 × 𝑎 × 𝑟1 − 𝑎, where 𝑎 is linearly decreasing from 2 to 0, and 

𝑟1 ∈ (0, 1) . 𝐶 = 2 × 𝑟2 , where 𝑟2 ∈ (0, 1) . 𝐴  and 𝐶  are both 

coefficient vectors. 

CSO [212] 𝑟1 , 𝑟2 , 𝑟3  ∈ (0, 1) , where 𝑟1 , 𝑟2 , and 𝑟3  are search parameters 

randomly selected within [0, 1]. controlling parameter Φ = 0.1. 

HPSO-SSM 

[74] 

cognitive component 𝑐1 = 2, social component 𝑐2 = 2,  

inertial weight 𝑤 = Logistic map. 

𝑅1 = 1/(1 + 𝑒𝑥𝑝 (𝑎 × (−min (𝑆𝑃)/max (𝑆𝑃)))𝑡 , where 𝑆𝑃  is the 

particle position vector, while 𝑡 is the current iteration, and 𝑎 = 2. 

𝑅2 = 1 − 𝑅1. 

BPSO [278] cognitive component 𝑐1  = 2, social component 𝑐2  = 2, 𝑤𝑚𝑎𝑥  = 0.9, 

𝑤𝑚𝑖𝑛 = 0.01,  

inertial weight 𝑤 = 𝑤𝑚𝑎𝑥 − 𝑚 × (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)/𝑚𝑎𝑥_𝑖𝑡𝑒𝑟. 

MBPSO [279] cognitive component 𝑐1 = 2, social component 𝑐2 = 2, inertial weight 

𝑤 = 1.4, 

mutation probability 𝑟𝑚𝑢 = 1/𝑁𝑡 , where 𝑁𝑡  represents the 

dimensionality of the problem. 

CatfishBPSO 

[280] 

cognitive component 𝑐1 = 2, social component 𝑐2 = 2,  

inertial weight 𝑤 = 1, replacing rate = 0.1. 

Proposed PSO cognitive component 𝑐1 = 2, social component 𝑐2 = 2, inertial weight 

𝑤 = Logistic map, mutation probability threshold  𝑟𝑚𝑢 = 0.9. 

 

4.2.3 Results and discussion 

A comprehensive evaluation on the proposed PSO variant is established from three 

perspectives, i.e. (1) undertaking ten challenging feature selection tasks with a great 

variety of dimensionalities, (2) comparing against ten baseline search methods including 

five classical and up-to-date metaheuristic optimisation algorithms, as well as five 

advanced PSO variants from existing literatures, and (3) adopting three different 



105 

 

performance measures, i.e. classification accuracy, number of selected features, and the 

F-score measure. A total of 30 runs are conducted in each experiment to mitigate the 

influence of accidental factors and ensure fair comparison. The mean results over 30 

independent runs are listed in Tables 4-3 – 4-5 for classification accuracy, F-score, and 

the number of selected features, respectively. The best results are marked in bold 

accordingly. 

Table 4-3 The mean results of the classification accuracy over 30 runs 

Data sets PSO DE SCA DA GWO CSO 
HPSO-

SSM 

Catfish 

BPSO 
BPSO MBPSO 

Proposed 

PSO 

Arcene 0.7217 0.7244 0.7372 0.7183 0.7211 0.7372 0.7122 0.7100 0.7111 0.7117 0.7411 

MicroMass 0.5897 0.6052 0.6061 0.5933 0.6124 0.5409 0.5903 0.5836 0.5758 0.5785 0.6455 

Parkinsons 0.7949 0.7990 0.7922 0.7862 0.7940 0.7985 0.8000 0.7994 0.7988 0.7962 0.8115 

Activity 0.8813 0.8919 0.8826 0.8785 0.8929 0.8876 0.8860 0.8785 0.8725 0.8775 0.9025 

Voice 0.8237 0.8149 0.8202 0.8272 0.8219 0.7789 0.8237 0.8193 0.8263 0.8246 0.8526 

Facial 

Expression 
0.7187 0.6748 0.6891 0.6635 0.6844 0.6861 0.6914 0.6998 0.7170 0.7274 0.7351 

ALL 0.8951 0.9167 0.9037 0.9025 0.8858 0.8728 0.8944 0.9123 0.8938 0.8988 0.9185 

Heart 0.5963 0.6435 0.6620 0.5537 0.6398 0.5713 0.6444 0.5769 0.5815 0.5750 0.6731 

Ionosphere 0.8171 0.8285 0.8320 0.8101 0.8197 0.8184 0.8189 0.8066 0.8276 0.8110 0.8351 

Wdbc 0.9520 0.9534 0.9191 0.9458 0.9386 0.8828 0.9261 0.9497 0.9501 0.9454 0.9571 

 

With respect to classification accuracy as illustrated in Table 4-3, the proposed PSO 

variant achieves the highest accuracy scores on all ten classification tasks with a great 

variety of dimensionalities, i.e. from 30 to 10000, and outperforms the ten baseline 

algorithms consistently. Among high-dimensional feature selection tasks with more than 

300 features, the proposed PSO variant achieves accuracy rates of 90.25%, 85.26%, and 

81.15% on Activity, Voice, and Parkinsons data sets, respectively. Among low-

dimensional data sets, the proposed PSO achieves the accuracy rates of 95.71%, 91.85%, 

and 83.51% on Wdbc, ALL, and Ionosphere, respectively. The above observations 

indicate the effectiveness of the proposed PSO variant in undertaking both the high-

dimensional and low-dimensional feature selection tasks. Moreover, the empirical 

results also reveal the great advantages of the proposed model over the ten baseline 

methods, especially on MicroMass and Heart data sets. Specifically, the proposed PSO 
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model achieves the accuracy rate of 64.55% and 67.31% on MicroMass and Heart data 

sets, respectively. For the MicroMass data set, it outperforms the top three best 

performed classical search methods, i.e. GWO, SCA, and DE, by 3.31%, 3.94%, and 

4.03%, respectively, as well as the top three PSO variants, i.e. HPSO-SSM, 

CatfishBPSO, and MBPSO, by 5.52%, 6.19%, and 6.70%, respectively. With respect to 

Heart data set, it outperforms the top three best performed classical search methods, i.e. 

SCA, DE, and GWO, by 1.11%, 2.96%, and 3.33%, respectively, as well as the top 

three PSO variants, i.e. HPSO-SSM, BPSO, and CatfishBPSO, by 2.87%, 9.16%, and 

9.62%, respectively. Moreover, similar or even larger performance gaps between the 

proposed PSO variant and other baseline models can also be observed for these two sets 

owing to the fact that all of classification accuracy rates obtained by these remaining 

baseline methods are all less than 60%. We analyse the performance gaps caused by the 

challenging factors of these two data sets and the superiority of the proposed model 

below.  

With respect to the MicroMass data set, the identification of bacterial species is rather 

challenging owing not only to massive dimensionality (i.e. 1300) and a large number of 

species (i.e. 10), but also to the various complexities imposed by polymicrobial samples 

[281]. These polymicrobial samples were generated by mixing two bacterial strains with 

different taxonomic proximities, which are characterised by the variance in terms of 

bacterial species, genera and Gram types. Some bacterial species used for mixing are 

highly indistinguishable, e.g. Bacillus cereus and Bacillus thuringiensis, Escherichia 

and Shigella genus [282]. Besides that, a total of nine different concentration ratios were 

also employed when mixing bacterial strains, i.e. 1:0, 10:1, 5:1, 2:1, 1:2, 1:5, 1:10, 0:1, 

which significantly increases the variance of samples within the same class by diluting 

the proportion of critical features and amplifying the distraction from irrelevant and 

noisy information. As a result, it is extremely challenging to classify those 

polymicrobial samples correctly owing to the confounding effects imposed by the 

interference of various concentration scenarios and existence of indistinguishable 

species. Those evident performance gaps on the MicroMass data set indicate great 

advantages of the proposed PSO model over other baseline search methods in 

successfully identifying bacterial species out of numerous distraction factors. Those 

bacterial strain features selected by the proposed PSO variant effectively capture the 

critical characteristics of bacterial species and remain robust under various 
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environmental changes, such as concentration ratios and types of bacterial strains used 

for mixture, therefore resulting in a higher classification accuracy rate.  

The effectiveness of the proposed PSO model can be ascribed to the cooperation 

between the proposed swarm leader enhancing scheme, diversity-enhanced movements 

and parallel mutation operations. The leader enhancing scheme enables the global best 

solution to conduct various local jumps to escape from stagnations caused by omitting 

essential features or including noisy ones. The proposed moving strategy diversifies 

search directions and expands search territory by incorporating three improvements, i.e. 

region-based search, dynamic cognitive distractions and chaotic-based inertia. Besides 

that, the chaotic-embedded local 𝑔𝑏𝑒𝑠𝑡  mirroring and DE-based global mutation 

schemes in parallel further endow the swarm with enormous opportunities to escape 

from local optima traps. The above three strategies are able to support each other as 

augmentations when one of them fails to overcome the local stagnation individually. In 

contrast, search strategies in baseline models are too monotonous to escape from 

complex local optima traps in NP-hard problems, such as feature selection tasks. Overall, 

as a result of the proposed comprehensive counter strategies of local optima traps, the 

search diversity and robustness are significantly enhanced in the proposed PSO model, 

therefore the likelihood of ascertaining the global best solution, i.e. identification the 

best feature subset with essential features being included and noisy ones excluded, is 

significantly improved. 

Likewise, the diagnosis of coronary heart disease is also considered a challenging 

problem owing to a great variety of class categories and complex characteristics 

embedded in those employed features, i.e. demographic, symptom and examination, 

laboratory, ECG, fluoroscopy as well as echo [283]. We employ the Cleveland heart 

disease database [284] not only to diagnose coronary heart disease, but also to 

distinguish three different severity levels of disease symptoms developed through the 

chronical long-term condition of heart failure. As a result, the feature selection tasks 

become more challenging owing to the ambiguous fuzzy boundaries between different 

classes as compared to the common binary classification scenario for distinguishing 

normal from diseased cases. With inspection, the feature subsets generated by the 

proposed PSO model contain the following critical factors, e.g. chest pain type, serum 

cholestoral, fasting blood sugar, maximum heart rate, exercise induced angina, and ST 
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depression etc., which have been identified as essential features for the diagnosis of 

heart disease in the existing studies [285, 286].  

Furthermore, the significant performance gaps achieved by the proposed PSO variant 

over other baseline models indicate the effectiveness of the proposed PSO variant in 

identifying the most discriminative features which can better represent the main 

characteristics of each severity level of heart disease and reflect the nuance changes 

between them. This effectiveness in identifying the most discriminative features in 

classification tasks with ambiguous fuzzy boundaries can also be ascribed to the 

cooperative mechanism of the above proposed strategies, i.e. the swarm leader 

enhancing scheme, diversity-enhanced movements and parallel mutation operations. 

Each of them cooperates with each other to enhance search diversity and reduce the 

likelihood of being trapped at local optima. Overall, the empirical results indicate the 

significant superiority of the proposed PSO model over other baseline methods in 

undertaking feature selection tasks with higher complexities and sophistications, e.g. 

various distraction factors in sample distributions, and large intra-class and small inter-

class variations. 

Table 4-4 The mean results of the F-score over 30 runs 

Data sets PSO DE SCA DA GWO CSO 
HPSO-

SSM 

Catfish 

BPSO 
BPSO MBPSO 

Proposed 

PSO 

Arcene 0.6759 0.6757 0.6963 0.6780 0.6783 0.6959 0.6646 0.6574 0.6573 0.6590 0.6977 

MicroMass 0.6349 0.6469 0.6428 0.6314 0.6445 0.5982 0.6350 0.6275 0.6219 0.6200 0.6759 

Parkinsons 0.8691 0.8712 0.8670 0.8631 0.8686 0.8701 0.8720 0.8719 0.8716 0.8702 0.8798 

Activity 0.8864 0.8962 0.8874 0.8833 0.8971 0.8930 0.8901 0.8838 0.8783 0.8824 0.9067 

Voice 0.7180 0.7381 0.7265 0.7316 0.7208 0.6890 0.7339 0.7328 0.7368 0.7399 0.7764 

Facial 

Expression 
0.6458 0.6191 0.6288 0.6175 0.6287 0.5670 0.6292 0.6342 0.6527 0.6556 0.6572 

ALL 0.9204 0.9345 0.9250 0.9266 0.9084 0.9037 0.9168 0.9331 0.9195 0.9241 0.9361 

Heart 0.6039 0.6502 0.6661 0.5616 0.6436 0.5823 0.6513 0.5881 0.5904 0.5788 0.6783 

Ionosphere 0.8439 0.8516 0.8550 0.8375 0.8427 0.8418 0.8452 0.8371 0.8521 0.8380 0.8562 

Wdbc 0.9340 0.9355 0.8836 0.9246 0.9146 0.8286 0.8957 0.9308 0.9312 0.9239 0.9415 

 

The effectiveness of the proposed PSO model is further ascertained by the results of the 

F-score measure as shown in Table 4-4. The proposed model achieves the highest F-
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score results on all ten data sets and demonstrates great advantages over the ten baseline 

algorithms, i.e. PSO, DE, SCA, DA, GWO, CSO, HPSO-SSM, CatfishPSO, BPSO, and 

MBPSO. Similar to the accuracy measures, the advantages on F-score become more 

evident on feature selection tasks embedded with higher complexities owing to greater 

performance gaps between the proposed PSO variant and the baseline search methods. 

To be specific, the F-score results achieved by the proposed PSO variant on MicroMass, 

Voice, and Heart data sets, are 67.59%, 77.64%, 67.83% respectively. With respect to 

the Voice data set, the proposed PSO model outperforms the three best performed 

classical search methods, i.e. DE, DA, and SCA, by 3.83%, 4.48%, 4.99%, as well as 

top three PSO variants, i.e. MBPSO, BPSO, and HPSO-SSM, by 3.65%, 3.96%, and 

4.25%, respectively. For the MicroMass data set, it outperforms the top three best 

performed classical search methods, i.e. DE, GWO, and SCA, by 2.90%, 3.14%, and 

3.31%, as well as the top three PSO variants, i.e. HPSO-SSM, CatfishBPSO, and BPSO, 

by 4.09%, 4.84%, and 5.4%, respectively. With respect to Heart data set, it outperforms 

the three best performed classical search algorithms, i.e. SCA, DE, and GWO, by 1.22%, 

2.81%, and 3.47%, as well as top three PSO variants, i.e. HPSO-SSM, BPSO, and 

CatfishBPSO, by 2.70%, 8.79%, and 9.02%, respectively. Such evident performance 

gaps are present or become more apparent or severe for other weaker baseline methods. 

Overall, the F-score measures further reinforce the effectiveness and the superiority of 

the proposed PSO model over other classical and advanced search methods in 

undertaking diverse feature selection tasks, especially those with higher sophistications 

of complex sample distributions. 

Table 4-5 The mean results of the number of selected features over 30 runs 

Data sets PSO DE SCA DA GWO CSO 
HPSO-

SSM 

Catfish 

BPSO 
BPSO MBPSO 

Proposed 

PSO 

Arcene 3976.07 4046.13 3388.57 3695.37 2770.40 2545.30 3967.17 4424.80 4977.17 4973.97 3395.03 

MicroMass 548.63 527.20 439.77 485.93 330.57 1123.00 554.27 588.77 646.23 641.53 461.30 

Parkinsons 323.30 310.20 266.33 283.20 209.80 492.03 323.57 361.63 378.07 374.40 273.07 

Activity 237.63 222.90 184.03 208.23 146.27 394.37 232.67 255.67 277.17 277.80 194.00 

Voice 128.03 121.37 108.27 118.13 86.70 64.97 122.03 140.20 152.90 148.20 108.57 

Facial 

Expression 
131.40 112.83 88.37 72.00 80.73 60.10 84.63 121.60 146.2 141.97 92.73 

ALL 26.53 23.03 18.37 29.47 12.80 9.53 25.37 28.83 35.40 33.27 18.97 

Heart 28.80 23.87 20.87 27.83 17.77 56.73 26.43 31.93 34.03 30.87 21.83 
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Ionosphere 12.47 9.30 9.63 11.83 9.40 9.60 11.30 13.10 12.53 10.63 10.30 

Wdbc 9.93 5.47 3.87 9.40 4.73 3.40 4.67 10.37 10.83 6.83 9.80 

 

With respect to the number of selected features, CSO selects the least features on five 

data sets, i.e. Arcene, Voice, Facial Expression, ALL and Wdbc, while GWO obtains 

the smallest feature sizes on four data sets, i.e. MicroMass, Parkinsons, Activity, and 

Heart. Owing to the excessive elimination of essential features, CSO achieves the lowest 

classification accuracy rates on Voice, ALL and Wdbc data sets. As an example, CSO 

obtains an accuracy rate of 77.89% with an average of 64.97 features being selected on 

Voice data set over a set of 30 runs. In contrast, other search methods all achieve 80%+ 

accuracy scores while selecting more than 100 features except for GWO where 86.7 

features are selected on average. This indicates that CSO falls into local optima on this 

Voice data set during training which leads to the stagnation in performance. According 

to the fitness evaluation illustrated in Eq. 4.12, this phenomenon in turn results in the 

severe removal of features in order to further improve the fitness scores. As such, very 

small feature subsets are identified during the feature selection process, which may not 

be able to capture sufficient characteristics for the Voice data set and lead to the severe 

performance deterioration in the test stage.  

On the contrary, the proposed PSO variant succeeds in achieving a more efficient trade-

off between eliminating redundant features and improving performance. It selects 

comparatively smaller feature subsets than those of most of the search methods e.g. DE, 

DA and HPSO-SSM methods in most of the test cases while achieving the highest 

accuracy rates and the F-score measures on all ten test data sets. In particular, the 

proportions of eliminated features by the proposed PSO model are 66.05%, 64.51%, 

63.73%, 65.41%, 64.98%, and 69.19%, on six high-dimensional data sets, i.e. Arcene, 

MicroMass, Parkinsons, Activity, Voice, and Facial Expression, respectively. In short, 

the empirical results indicate the significant capabilities of the proposed PSO variant in 

removing irrelevant and noisy features while identifying the most discriminative and 

effective ones without falling into local optima traps. 

The Wilcoxon rank sum test is conducted based on the mean classification accuracy to 

further indicate the statistical distinctiveness of the proposed PSO model against 

baseline methods. As illustrated in Table 4-6, the majority of test results are lower than 
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0.05, which indicates that the proposed PSO model significantly outperforms ten 

baseline models on the majority of the employed data sets. Besides that, the advantages 

demonstrated by the proposed PSO model become even more evident on classification 

tasks which are embedded with higher dimensionalities and sophisticated class 

distributions. Specifically, a total of four cases occur among sixty evaluations (6 high-

dimensional data sets × 10 baseline algorithms) on high-dimensional data sets, where 

the proposed model does not show statistically significant differences from other models, 

i.e. SCA and CSO on Arcene, PSO and MBPSO on Facial Expression, while a total of 

seven cases of insignificant differences among forty evaluations (4 low-dimensional 

data sets × 10 baseline algorithms) happen on low-dimensional data sets. As an example, 

the proposed PSO model reveals similar performances to those of three search methods, 

i.e. DE, SCA, and BPSO, respectively, on Ionosphere data set of 30 features. In contrast, 

it demonstrates significant statistical distinctiveness from every baseline model on four 

high-dimensional data sets, i.e. Micromass (1300), Parkinson (753), Activity (561), and 

Voice (310). Overall, the statistical results further prove the significant superiorities of 

the proposed PSO model over the classical search methods and PSO variants, especially 

in undertaking feature selection tasks with higher complexities and sophistications. 

Table 4-6 The Wilcoxon rank sum test results of the proposed PSO model 

Data sets PSO DE SCA DA GWO CSO 
HPSO- 

SSM 

Catfish 

BPSO 
BPSO MBPSO 

Arcene 1.53E-02 3.53E-02 8.75E-01 2.44E-02 1.93E-02 6.16E-01 1.48E-03 4.41E-04 6.08E-04 6.28E-04 

MicroMass 2.47E-04 7.55E-03 8.69E-03 3.50E-04 4.11E-02 1.05E-09 2.12E-04 2.90E-05 5.30E-06 1.13E-05 

Parkinsons 1.65E-03 3.15E-02 6.60E-03 1.99E-05 2.38E-03 3.35E-02 4.69E-02 4.52E-02 3.93E-02 3.31E-02 

Activity 3.93E-06 6.61E-03 1.27E-04 1.40E-05 1.19E-02 4.51E-05 1.05E-03 1.49E-07 1.07E-08 2.12E-08 

Voice 3.21E-02 6.20E-03 9.98E-03 4.48E-02 2.78E-02 9.85E-04 3.35E-02 4.04E-03 2.91E-02 1.83E-02 

Facial Expression 5.24E-01 8.72E-05 1.23E-03 1.75E-06 5.63E-04 4.14E-05 5.06E-04 4.69E-03 1.92E-02 3.40E-01 

ALL 7.85E-03 7.75E-01 4.79E-02 2.92E-02 3.45E-03 1.35E-03 3.82E-02 4.76E-01 1.98E-03 3.11E-02 

Heart 1.44E-04 2.16E-02 2.94E-01 2.20E-09 3.15E-02 1.21E-09 3.84E-02 1.29E-06 2.87E-07 1.26E-07 

Ionosphere 1.16E-02 6.10E-01 8.11E-01 1.15E-03 4.18E-02 3.82E-02 2.77E-02 2.06E-04 7.87E-01 4.58E-03 

Wdbc 2.48E-02 5.23E-01 3.02E-05 1.30E-02 3.54E-02 5.44E-09 1.84E-04 1.84E-02 1.82E-02 4.16E-03 

 

This effectiveness in constructing simplified but valid feature subsets while improving 

classification performance can be ascribed to the incorporation of the proposed search 
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strategies, i.e. (1) the swarm leader enhancing mechanism based on skewed Gaussian 

distributions, (2) the chaotic-embedded local 𝑔𝑏𝑒𝑠𝑡  mirroring and DE-based global 

mutation schemes, (3) the diversity-enhanced evolving strategies based on ameliorated 

𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡, and (4) the 𝑔𝑏𝑒𝑠𝑡 oriented intensified spiral exploitation. The first two 

strategies elevate the mining and utilisation of acquired knowledge in the swarm from 

two perspectives, i.e. introducing a self-improving process for the global best solution 

and facilitating the communication and cooperation among elite solutions accumulated 

through the evolving process for weak solution enhancement. Specifically, the swarm 

leader enhancing mechanism improves the quality of the global best solution by the 

endowment of the capability of further acquiring effective features and of abandoning 

noisy features, prescribed by Gaussian distributions with skewness. This scheme enables 

the global best solution to escape from local optima by gaining momentum from three 

possible self-improving processes, i.e. gaining features, losing features, and random 

jump with neutrality of above two effects. Therefore, the obtained feature subsets 

represented by the global best solutions are less likely to fall into overfitting problems 

caused by the stagnation at local optima traps. Moreover, the local and global mutation 

schemes for weak solution enhancement boost both population diversity and search 

scope by hybridising elite personal best solutions with DE updating rules and imposing 

mirroring effects on the global best solution. As a result, the effective information stored 

in elite solutions can be fully exploited and permutated. The search territory is hence 

expanded and fitter solutions are produced to replace worse individuals.  

In contrast, the last two strategies optimise the search behaviour to enhance the 

capability of acquiring new knowledge through the whole search process. Delicate 

search behaviours with two distinctive evolving mechanisms are constructed to elevate 

both the diversification of exploration and the intensification of exploitation. 

Specifically, the first evolving strategy enhances exploration diversity by employing 

three improvements, i.e. conducting region-based search in social component, applying 

dynamic distractions in cognitive component, and utilising chaotic inertia weight. In 

region-based search, the swarm is navigated towards a promising search domain 

signified by the mean position between the 𝑔𝑏𝑒𝑠𝑡 solution and the personal best solution 

which possesses the highest dissimilarity to 𝑔𝑏𝑒𝑠𝑡 among all neighbouring fitter 𝑝𝑏𝑒𝑠𝑡 

solutions. As a result, each particle is capable of conducting diversified search by 

aiming at various search directions and distinctive search regions, owing to the dynamic 
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adaptations of superior 𝑝𝑏𝑒𝑠𝑡  solutions in the neighbourhood. On the other hand, the 

effect of cognitive component is also diversified by following both the current particle’s 

personal best solution and an additional fitter 𝑝𝑏𝑒𝑠𝑡 solution which is randomly selected 

in the neighbourhood. This mechanism enables particles to escape from local stagnation 

by creating additional dynamic momentums through iterative process. Moreover, the 

Logistic map is also employed to generate inertia weight and introduce chaotic 

perturbations into the search process. The above three improvements, i.e. region-based 

search, dynamic distractions, and chaotic-based inertia, incorporated in the first 

evolving strategy, are able to significantly enhance search diversity in terms of 

expanding search scopes and differentiating search directions, therefore reducing the 

likelihood of being trapped at the local optima. The second evolving strategy intensifies 

local exploitation by conducting a spiral search around the global best solution. This 

exploitation scheme overcomes the weakness of fine-tuning capability in the original 

PSO model and enables the particles to scrutinize the neighbourhood of 𝑔𝑏𝑒𝑠𝑡  in all 

directions with various scales. As a result, the above two evolving strategies enable the 

exploration to be more diversified and the fine-tuning process to be more intensified in 

the swarm, therefore increasing the capability of discovering new knowledge, i.e. fitter 

solutions, through the overall search process. 

Overall, the proposed PSO variant improves the utilisation of the acquired knowledge 

by conducting local and global mutation schemes on elite solutions using Gaussian 

distributions and chaotic DE actions, and enhances the capability of acquiring new 

knowledge by a careful consideration on the elevation of exploration and exploitation, 

between the region-based search strategy with enhanced local and global leaders, and 

the logarithmic spiral search surrounding the global best solution. With enhancement in 

search and population diversity resulted from above proposed mechanisms, the original 

feature space can be thoroughly explored and a greater search territory can be covered, 

while the stagnation at local optima traps can be effectively prevented.  

In contrast, for the employed baseline classical search methods, certain limitations have 

been identified in previous studies and widely discussed in the research community. 

Specifically, DE suffers from premature convergence owing to a limited amount of 

exploratory moves. In other words, the search can be severely compromised owing to 

the failure of generating promising solutions within a limited number of function 

evaluations [287]. GWO demonstrates a strong bias towards the origin of the coordinate 
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system attributed by its simulated model [120], as well as proneness to stagnation at 

local optima traps [288], while DA suffers from poor exploitation capability owing to 

the fact that it does not keep track of elite solutions[289]. In addition, the majority of the 

employed PSO variants only equip improvements from the perspective of either 

exploration or exploitation capability, rather than comprehensively taking into account 

the trade-off between above two operations. Overall, the proposed PSO model 

demonstrates great superiorities over baseline methods in attaining the global optimality 

owing to a delicate consideration of both the global exploration and local exploitation, 

as well as the enhanced population diversity entailed by both the local and global 

mutation schemes on elite solutions. Therefore, the proposed model is capable of 

improving classification performance by identifying the most discriminative features 

and eliminating noisy and irrelevant ones as evidenced by above evaluation and 

statistical test results. 

4.3 Summary    

In this chapter, a PSO variant has been proposed to overcome drawbacks of premature 

convergence and inefficient fine-tuning capability of the original PSO model, as well as 

undertake challenges of complex fitness landscapes embedded in feature selection tasks. 

The proposed PSO model incorporates four distinctive strategies to elevate the 

exploitation of elite solutions accumulated through the iterative process as well as 

enhance the capability of identifying undiscovered promising solutions in a global scale 

through a careful design of delicate search behaviours. Firstly, a swarm leader 

enhancing mechanism is proposed to endow the global best solution with the capability 

of conducting local jumps with customized characteristics prescribed by Gaussian 

distributions with positive, negative and zero skewness respectively. This operation 

enables the global best solution to escape from local optima traps induced by either 

eliminating effective features or incurring conflictive ones. Secondly, the mirroring and 

DE-based mutation operations based on the swarm leader and the local elite solutions 

respectively are employed in parallel to enhance three weakest solutions in each 

iteration. These mutation-based strategies improve population diversity and expand the 

search territory owing to the hybridising effects of elite solutions in the swarm. Thirdly, 

the diversity-enhanced PSO evolving strategy is employed by incorporating three 

improvements, i.e. conducting region-based search in social component, applying 

dynamic distractions in cognitive component, and utilising chaotic inertia weight. As a 
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result, the exploration capability is significantly elevated by the enhanced coevolution 

process owing to the dynamic references to multiple distinctive leaders in both the 

cognitive and social components. Lastly, a logarithmic spiral search is further deployed 

to strengthen fine-tuning capability to thoroughly exploit the near-optimal region. 

Overall, the first two strategies enhance the exploitation of acquired knowledge by 

conducting various local jumps on the global best solution as well as facilitating 

cooperation and communication among local elite solutions for worst solution 

enhancement, while the last two strategies elevate the capability of discovering new 

knowledge by constructing delicate search behaviours which both boost exploration and 

exploitation capabilities through the iterative process. As such, the proposed PSO model 

is less likely to be trapped in local optima and more likely to attain the global optimality. 

The performance of the proposed PSO model has been investigated by undertaking 

feature selection tasks using the ALL-IDB2 database and 9 other UCI data sets with 

diverse dimensionalities from 30 to 10000. The results indicate that the proposed PSO 

model demonstrates great advantages in undertaking both the low-dimensional and 

high-dimensional feature selection tasks by obtaining the highest classification 

performances on the employed ten data sets and achieving a better trade-off between 

feature selection and classification performance. It significantly outperforms five 

classical search methods as well as five advanced PSO-based feature selection models, 

as evidenced by the classification accuracy rates and F-score measures as well as the 

statistical test results. These advantages generally become more evident on high-

dimensional feature selection tasks owing to the effectiveness of the proposed strategies 

in terms of enhancing exploration and exploitation capabilities as well as sufficient 

mutation-based local optima escaping mechanisms. Overall, the proposed PSO model 

demonstrates great advantages in undertaking feature selection tasks, especially those 

with higher complexities and sophistications, e.g. various distraction factors in sample 

distributions, and large intra-class and small inter-class variations, owing to the 

enhancement of population and search diversities endowed by the employed four 

strategies. 
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Chapter 5  

Evolving CNN-LSTM Models for Time Series Prediction 

Using Enhanced Grey Wolf Optimizer 

In this chapter, an enhanced GWO model is proposed for the devising of evolving CNN-

LSTM networks for time series analysis. In order to overcome the stagnation at local 

optima traps and a slow convergence rate of the original GWO algorithm, the newly 

proposed variant incorporates several distinctive search mechanisms, i.e. a nonlinear 

exploration scheme for dynamic search territory adjustment, a chaotic leadership 

dispatching strategy among the dominant wolves, a rectified spiral local exploitation 

action, as well as probability distribution-based leader enhancement. Evolving CNN-

LSTM models are subsequently devised using the proposed GWO variant, where the 

network topology and learning hyperparameters are optimized for time series prediction 

and classification. Evaluated using UCI energy consumption, PM2.5 concentration and 

human activity recognition data sets, the proposed GWO-optimized CNN-LSTM 

models demonstrate statistically significant superiority over those yielded by several 

classical search methods and advanced GWO and PSO variants. The empirical results 

also indicate that the deep networks devised by the proposed GWO algorithm illustrate 

superior representational capacities to not only effectively capture the vital feature 

interactions, but also encapsulate sophisticated dependencies in complex temporal 

contexts, in comparison with those yielded by the baseline methods. 
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5.1 The proposed evolving time series prediction model 

The study on time series analysis is driven by the desire to not only understand the past but 

also predict the future [290]. A time series is a sequence of data measured chronologically at 

a uniform time interval. Time series measurements are prevalent in various domains, such as 

weather forecast [291], financial market prediction [292], physiological assessment [293] 

and video analysis [294]. Over the last several decades, many efforts have been made to 

develop effective time series forecasting models which can be classified into three categories: 

1) statistical models, e.g. auto-regressive moving average (ARMA) [295] and auto-

regressive integrated moving average (ARIMA) [296]; 2) machine learning models, e.g. 

Support Vector Regression (SVR) [297] and ANNs [298]; 3) deep learning models, e.g. 

RNNs [299] and LSTM [229]. In particular, the LSTM network is regarded as the state-of-

the-art time series forecasting model owing to its capability of learning long-term temporal 

dependences through the design of gated units integrating activations of sigmoid and 

hyperbolic tangent functions.  

Despite the progress achieved by LSTM, multi-variate time series forecasting remains a 

challenging task owing to the complex factors embedded in real-life sequential data, such as 

sophisticated dependencies, irregularity, randomness, cross-correlation among variables, as 

well as data noise [300, 301]. Besides that, hyperparameters in relation to the configuration 

of LSTM, e.g. the number of hidden nodes, as well as the learning properties during the 

training process, e.g. learning rate, play vital roles in affecting the performance of the LSTM 

networks [302, 303]. However, the identification of the optimal hyperparameter settings for 

LSTM networks remains a challenging task owing to the complexity of the problems at hand 

and the requirement of profound domain knowledge. The traditional manual trial-and-error 

fine-tuning process is likely to result in sub-optimal model representational capacities and 

ill-performed learning parameters, therefore compromising the performance of LSTM 

networks. In order to resolve the aforementioned challenges of the time series data as well as 

optimal learning configuration identification of LSTM networks, we incorporate two 

automatic processes into the vanilla LSTM structure, i.e. automatic feature extraction and 

optimal network configuration identification, to enhance the performance of the monotonous 

LSTM networks in tackling time series prediction. Essentially, CNNs are hybridized with 

LSTM to extract fundamental features from the input sequence automatically and construct 

more accurate feature representations of the investigated time series tasks. Moreover, an 

evolving process is introduced for the generation of the optimal configurations of the hybrid 

deep network by exploiting the strength of the advanced SI algorithm, i.e. GWO [62].  
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To be specific, the proposed evolving time series prediction model consists of two major 

components, i.e. the proposed CNN-LSTM network and the GWO variant. The CNN-LSTM 

network is the core component to make prediction based on data sequences whereas the 

proposed GWO variant is employed to search for the optimal hyperparameters for the 

devised CNN-LSTM model. In CNN-LSTM, the time series data are served as the input to 

the convolutional layers in order to extract main features surrounded by the temporal context 

and reduce irrelevant variations. The obtained feature maps are then fed into the LSTM 

layers to analyse temporal variations and learn long-term dependencies. The fully connected 

layer is applied subsequently to conduct nonlinear transformations on the extracted features 

and produce prediction results. As discussed earlier, the performance of deep CNN-LSTM 

model is significantly influenced by the quality of hyperparameter settings, such as the 

number of filters in convolutional layers, the number of hidden nodes in the LSTM layer, as 

well as the learning configurations, e.g. learning rate, which determine the representational 

capacity and the training properties of the employed model. Therefore, an enhanced GWO 

model is proposed to automatically identify the optimal configuration of such 

hyperparameters for the devised CNN-LSTM network. The identified optimized CNN-

LSTM model is subsequently used to undertake time series prediction and classification. 

The details of the proposed GWO and CNN-LSTM models are introduced as follows. 

Figure 5-1 depicts the diagram of the proposed GWO-based evolving CNN-LSTM time 

series forecasting model. 

Figure 5-1 The diagram of the proposed GWO-based evolving CNN-LSTM time series 

forecasting model where each wolf represents a set of network topology and learning 

hyperparameters for evolution 
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5.1.1 The proposed GWO variant 

As mentioned in Section 2.1.3, GWO is a recently developed SI algorithm which 

demonstrates robust and advanced search capabilities by the mechanism of following the 

guidance of top three swarm leaders, i.e. wolves α, β, and δ, as well as a dedicated design of 

the transition from exploration to exploitation, i.e. the exploration rate 𝑎 . Despite these 

merits, the original GWO algorithm still suffers from severe obstacles of local optima traps, 

owing to its search bias, especially towards the origin of the coordinate system [120, 304], as 

well as the limitations of search diversity. Moreover, the static and equal division of the 

leadership among three strongest wolves over the whole search course contradicts its 

strategy of hierarchical division within the wolf community in principle, and largely 

confines the capability of fine-tuning around the obtained global best solution.  

Therefore, in this research, we propose four distinctive mechanisms to resolve the 

abovementioned restrictions and enhance the global exploration and local exploitation of the 

original GWO algorithm. Firstly, a nonlinear adjustment of the exploration rate 𝑎′  is 

proposed to replace 𝑎  and advance the search transition between exploration and 

exploitation, by delaying the shrinkage of the search territory during exploration while 

concentrating the detection on the promising neighbourhood around wolf leaders during 

exploitation. Secondly, a sinusoidal chaotic map is employed to generate dynamic yet 

clamped weights, to simulate benevolent competitions among the three dominant wolves, α, 

β, and δ, for leading the wolf pack. As such, a trade-off between reinforcing the leadership 

of the best individual and diversifying the distractions of the second and third best solutions 

can be achieved. Furthermore, a damped odd function with the shrinking amplitude is 

proposed to deploy a fine-tuning local search process around the swarm leader in the final 

stage to accelerate convergence. Lastly, the Lévy flight is employed to further enhance the 

quality of three leading wolves α, β and δ, in each iteration, to overcome early stagnation.  

 

5.1.1.1 A nonlinear exploration factor for adjustment of search boundary 

In the original GWO algorithm, the transition from exploration to exploitation is governed 

by the exploration rate 𝑎 as defined in Eq. 2.13 in Section 2.1.3, which decreases linearly 

from 2 to 0 as the iteration builds up. This linear changing pattern largely confines search 

performance, owing to the lack of distinction among search behaviours from different search 

stages, i.e. exploration and exploitation. To be specific, the search parameter 𝑎 determines 

how far individual wolves could jump in reference to the leader wolves, through 

manipulating the magnitude of step size 𝐴, and 𝐴| ⩽ |𝑎|  is always satisfied through the 

search process, as prescribed in Eq. 2.12. As discussed earlier, this indicates that 𝑎 is the 
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determining factor that controls the search territory boundary. The linear decrease of 𝑎 

adopted in the original GWO results in the acute shrinkage of search territory during 

exploration as well as the lack of search attention on the promising vicinity of wolf leaders 

during exploitation. Nonlinear functions, such as trigonometric, exponential, and 

logarithmic-based functions, offer extraordinary flexibilities in composing curves with 

diverse geometric characteristics. Therefore, in this study I resort to the nonlinear functions 

to tailor the dynamic change of the boundary of search territory in the proposed GWO 

variant. A nonlinear exploration factor 𝑎′ is proposed to overcome the above disadvantages 

of 𝑎 in the original GWO model. The motivation is to achieve enhanced trade-offs between 

search exploration and exploitation through the bespoke adjustment of the boundary of 

search territory over the iterative process. The formulae related to the newly proposed 

exploration factor 𝑎′ are presented in Eqs. 5.1 and 5.2. 

𝑎′ = 2 (cos (
(𝑡𝑎𝑛ℎ𝜃)2+(𝜃 sin 𝜋𝜃)𝑛

(𝑡𝑎𝑛ℎ1)2

𝜋

2
))

2

                         (5.1) 

𝜃 =
𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
                   (5.2) 

where 𝑡  and 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟  represent the current and the maximum numbers of iterations 

respectively, whereas 𝜃  is the quotient of 𝑡  divided by 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟.  The coefficient 𝑛 

determines the descending slop of the search parameter 𝑎′ over the search process. Based on 

trial-and-error, 𝑛 = 5 is adopted in this research. Figure 5-2 demonstrates the plot of the 

proposed nonlinear exploration rate 𝑎′ , against the linear decreasing 𝑎  adopted in the 

original GWO algorithm as defined in Eq. 2.13. 

 

The proposed nonlinear search parameter 𝑎′ is employed to replace 𝑎 in the original GWO 

algorithm, to generate step size 𝐴′ for the movement of each individual wolf with respect to 

each wolf leader, i.e. α, β, and δ, as shown in Eqs. 5.3 and 5.6. Except for the step size 𝐴′, 

Figure 5-2 The proposed nonlinear 𝑎′ vs. linear 𝑎 in the original GWO 
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the movement mechanism towards each wolf leader remains the same to that of the original 

GWO model, as defined in Eqs. 2.4 - 2.9 in Section 2.1.3. 

𝐴′ = (2𝑟𝑎𝑛𝑑 − 1)𝑎′                 (5.3) 

𝑋𝑎𝑑1,𝑗
𝑡+1 = 𝑋𝛼,𝑗

𝑡 − 𝐴1
′ 𝐷𝛼,𝑗

𝑡+1                 (5.4) 

𝑋𝑎𝑑2,𝑗
𝑡+1 = 𝑋𝛽,𝑗

𝑡 − 𝐴2
′ 𝐷𝛽,𝑗

𝑡+1                 (5.5) 

𝑋𝑎𝑑3,𝑗
𝑡+1 = 𝑋𝛿,𝑗

𝑡 − 𝐴3
′ 𝐷𝛿,𝑗

𝑡+1                 (5.6) 

where 𝐴′ is the step size yielded by the proposed search parameter 𝑎′. Three step sizes, i.e. 

𝐴1
′ , 𝐴2

′ , and 𝐴3
′  are yielded for the movements towards three dominant wolves, i.e. α, β, and 

δ, respectively, for each individual wolf under position updating. In addition, 𝑋𝑎𝑑1, 𝑋𝑎𝑑2, 

and 𝑋𝑎𝑑3 denote the position adjustments with respect to α, β, and δ, respectively. 𝐷𝛼,𝑗
𝑡+1, 

𝐷𝛽,𝑗
𝑡+1 and 𝐷𝛿,𝑗

𝑡+1 are obtained using Eqs. 2.4 - 2.6 in Section 2.1.3. 

As shown in Figure 5-2, in comparison with the linear adjustment of 𝑎 adopted by the 

original GWO algorithm, the proposed nonlinear exploration factor 𝑎′ decreases with gentle 

gradients both at the beginning and end of the search course. As a result, the search 

boundary can be upheld at a high level with minor contraction and the search territory is 

significantly expanded during the exploration stage, whereas the local detections become 

more concentrated on the vicinity of promising solutions owing to the confined search 

boundary during the exploitation stage. Such advantages become strengthened when 

deploying 𝑎′ to the movement of each individual wolf towards each of the three dominant 

wolves, i.e. α, β, and δ. Therefore, the search diversification is significantly enhanced while 

the search intensification is greatly intensified. As such, a superior transition from 

exploration to exploitation can be achieved by the proposed nonlinear exploration rate 𝑎′, in 

comparison with the linear decreasing parameter 𝑎 in the original GWO algorithm. 

5.1.1.2 Chaotic dominance of wolf leaders  

In the original GWO algorithm, although motivated by the social hierarchy observed among 

grey wolves, the leadership within the wolf pack is evenly divided and assumed by three 

dominant leaders, which remains static over the whole iteration course, regardless of the 

difference of the fitness scores of the wolf leaders. This lack of prioritizing operators among 

dominant wolf leaders results in a slow convergence rate, therefore compromising search 

efficiency [116, 305]. Motivated by diverse strategies proposed to establish dynamic and 

strict social leadership hierarchies in GWO, e.g. dedicated learning curves [119] and the 

assignment of random weights according to fitness scores [120], we employ the sinusoidal 

chaotic map to generate weight factors prioritizing the dominance of the best leader wolf α, 

as shown in Eq. 5.7, whereas the leadership factors for wolves β and δ are determined 
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subsequently in accordance with that of wolf α, as indicated in Eq. 5.8. The position 

updating mechanism with the updated dominance factors is presented in Eq. 5.9. 

𝑤𝑡+1 = 2.3 𝑤𝑡
2
 sin(𝜋𝑤𝑡)                 (5.7) 

𝑤𝑡+1
′ = 0.5(1 − 𝑤𝑡+1)                 (5.8) 

𝑋𝑖
𝑡+1 = 𝑤𝑡+1𝑋𝑎𝑑1

𝑡+1 + 𝑤𝑡+1
′ 𝑋𝑎𝑑2

𝑡+1 + 𝑤𝑡+1
′ 𝑋𝑎𝑑3

𝑡+1                        (5.9) 

where 𝑤𝑡  and 𝑤𝑡+1 represent the weight coefficients of the position adjustment 𝑋𝑎𝑑1 with 

respect to wolf α in the 𝑡-th and (𝑡 + 1)-th iterations, respectively, while 𝑤𝑡+1
′  represents the 

weight coefficient for both position adjustments 𝑋𝑎𝑑2 and 𝑋𝑎𝑑3 with respect to wolves β and 

δ, respectively in the (𝑡 + 1)-th iteration. 

The proposed chaotic dominance scheme is capable of achieving better trade-offs between 

reinforcing the leadership of the best wolf solution (single-leader guided search) and 

diversifying the guiding signals (multi-leader guided search). As illustrated in Figure 5-3, 

the employed sinusoidal chaotic map produces dynamic values roughly within the range of 

[0.5, 0.9], which are adopted to represent the irregular characteristic of the leadership of the 

most dominating wolf α. The proposed leadership assignment scheme simulates a 

centralized wolf regime in which wolf α is bestowed with the highest authority and the 

leadership assumed by wolf α is greater than the combined power of wolves β and δ. As a 

result, the search procedure becomes more focused on promising territories represented by 

wolf α, mitigating the negative impacts of malignant distractions and futile movements 

caused by less promising leader signals. As such, the convergence speed becomes faster and 

the search efficiency improves. 

 

Figure 5-3 The sinusoidal chaotic map used for generating the leadership factors of the most 

dominating wolf α 

In addition, the chaotic map oriented dynamic dominance of wolf α increases search 

diversity by diversifying guiding signals, in comparison with the static and equal leadership 
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operation employed in the original GWO method. Specifically, as the weight coefficients 

fluctuate periodically between [0.5, 0.9], the dominance level of wolf α varies accordingly 

over the whole iterative process. The rivalry from wolves β and δ intensifies and becomes 

equivalent to that of wolf α when the weight coefficient produced by the chaotic map is 

equivalent to 0.5. As a result, the distraction imposed by wolves β and δ can effectively 

dilute the dominance of wolf α and divert the undergoing search trajectory to an unexploited 

new region. As shown in Figure 5-3, such drastic changes in leadership assumptions occur 

more frequently in the middle of the search process, i.e. between 30-60 iterations, which can 

effectively prevent the wolf pack from being trapped in local optima and reduce the 

likelihood of premature stagnation.   

Moreover, the employed dynamic rivalry of the dominance among three leading wolves 

assimilates merits from both multi-leader and single-leader guided search procedures.  

Specifically, the significant dominance of wolf α, induced by the relatively larger weight 

coefficient 𝑤𝑡+1as indicated in Eq. 5.7, enables GWO to emulate the efficiency of the single 

best-leader guided search, whereas the equivalent rivalry from wolves β and δ, induced by 

comparatively smaller weight coefficient 𝑤𝑡+1
′  as defined in Eq. 5.8, allows the proposed 

model to leverage the strength of global exploration from the multi-leader guided search. In 

contrast, existing studies [119, 120] in reinforcing the leadership of wolf α generally fail to 

consider the influence of the confrontation from the perspective of the combined power of 

wolves β and δ. In addition, the lack of variance in leadership contention in those studies 

also increases the risk of local stagnations. 

Overall, the proposed chaotic leadership assignment among the elite wolf circle in 

conjunction with the nonlinear adjustment of search boundary enables the modified GWO 

algorithm to achieve more efficient trade-offs between exploration and exploitation from 

two levels, i.e. the independent movement with respect to each wolf leader, and the 

aggregation of the leaders. 

5.1.1.3 A dedicated leader exploitation scheme  

The constant adherence to the guidance of three best wolves through the whole iterative 

process propels the search diversity of GWO. On the other hand, it also constrains the 

capability of concentrating on local detection around the identified best solution. We 

subsequently propose a damped function with decremental amplitudes to produce a variety 

of step sizes for the local exploitation and fine-tuning around wolf α at the final search stage 

(𝑡 ≥ 80), as well as to guarantee the convergence of the wolf population. The damped 

function is illustrated in Eq. 5.10 whereas the position updating equation based on generated 

step size is presented in Eq. 5.12. 
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𝜆 = 𝑓 𝑒3𝑟2/2 cos(𝜋𝑟) sin(𝜋𝑟)              (5.10) 

𝑓 = 1 − 0.05(𝑡 − 80)               (5.11) 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝛼,𝑗

𝑡 − 𝜆|𝑋𝛼,𝑗
𝑡 − 𝑋𝑖,𝑗

𝑡 |                        (5.12) 

where 𝜆  and 𝑓  denote the yielded step size and the amplitude of the damped function 

respectively, while 𝑋𝑖,𝑗
𝑡+1  represents the element of wolf 𝑖  at 𝑗-th dimension in (𝑡 + 1)-th 

iteration. Besides the above, 𝑟 is a random value in the range of [-1, 1], and 𝑋𝛼 denotes the 

position of the best wolf leader α.  

Figure 5-4 The proposed damped function in Eq. 5.10 when 𝑓 = 1 

As shown in Figure 5-4, the proposed formula is an odd function with damped oscillations 

along the 𝑥 axis. When 𝑥 is in the clamp between [-1, 1], the range of the highest crest and 

trough is [-1.3, 1.3], whereas that of the second highest crest and trough is [-0.6, 0.6]. As a 

result, wolf solutions are capable of conducting large jumps from all directions radiated from 

wolf α when |𝑟| > 0.5 , as well as performing granular movements when |𝑟| < 0.5. 

Moreover, the symmetry of the function with respect to the coordinate origin induces an 

even distribution of generated steps in both the positive and negative realms. This enables 

the simulation of individual wolves to approach wolf α as well as distance from it with an 

equal probability. Furthermore, a decremental amplitude 𝑓 is applied to gradually flatten the 

fluctuation and shrink the search radius as the iteration builds up. The intensification of the 

detection around the best solution is therefore strengthened through this dedicated local 

exploitation scheme.  

As depicted in Figure 5-5, we further compare the above proposed formula in Eq. 5.10 with 

the damped function employed in the spiral search mechanism in MFO [63] defined in Eq. 

5.13.  

𝑦 = 𝑒𝑏𝑟 cos(2𝜋𝑟)                (5.13) 

λ
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where 𝑏 is a constant and set as 1 while 𝑟 is a random value in the range of [-1, 1]. Besides 

that, 𝑦 is the yielded step size. 

 

Figure 5-5 The comparison between proposed damped function and the damped function 

applied in MFO 

Firstly, the damped function in MFO does not possess any symmetrical properties. Secondly, 

it does not involve any dynamic granular changes in its search scale. As a result, the 

variance of the oscillated scales and the imbalance of the probabilities between generating 

identical (positive values) and reverse (negative values) search directions can result in 

obstinate search bias and incomplete coverage of the search territory, which could lead to 

further degradation of search efficiency and local intensification. In contrast, the proposed 

strategy is able to effectively accelerate convergence as well as intensify the local 

exploitation around the identified best leader owing to the increased diversity in terms of 

scales and symmetric directions of search steps. 

5.1.1.4 Wolf leaders enhancement using Lévy flight 

The quality of the dominant leaders is crucial to the performance of GWO owing to the 

excessive adoption of multiple leaders in the search process. We therefore implement a Lévy 

flight random walk as defined in Eq. 5.14 to further improve the quality of three leading 

wolves successively. 

𝑋𝐿,𝑗
′ = {

𝑋𝐿,𝑗 + 𝜉 𝑋𝜎,𝑗      𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5

𝑋𝐿,𝑗                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
             (5.14) 

where 𝑋𝐿 and 𝑋𝐿
′  represent the positions of each wolf leader before and after performing a 

random walk in Lévy distribution, respectively, whereas 𝑋𝜎 represents a distinctive second 

wolf leader selected among α, β and δ as a distraction signal. Also, 𝜉 denotes the step size 

generated from the Lévy distribution [306]. 

λ
 



126 

 

The Lévy jumps are only implemented on dimensions where determinants are higher than 

0.5. Only the mutated offspring solutions with improved fitness scores are retained. For each 

leader undergoing mutation, a second distinctive dominant leader is randomly selected and 

employed to introduce distinguishing factors. This distraction from a different leading wolf 

can effectively prevent the vanishing of the jump momentum resulted from the stagnation at 

local optima located next to the coordinate origin, i.e. 𝑋𝐿,𝑗 = 0 . In short, this leader 

enhancement operation based on Lévy flight enables the wolf pack to jump out of local 

optima traps and increases the likelihood of attaining global optimality. 

Algorithm 5-1 The proposed GWO model 

1    Start 

2    Initialize a grey wolf population 

3    Evaluate each individual using the objective function 𝑓(𝑥) and identify three dominant 

      wolves with the best fitness scores, denoted as 𝑋𝛼 , 𝑋𝛽 ,  and 𝑋𝛿, respectively 

4    While (𝑡 < 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟) 

5    {  

6     Update the exploration rate 𝑎′ by Eqs. 5.1 and 5.2 

7 Generate dominance factors for three wolf leaders, i.e. 𝑤 for wolf α and 𝑤′ for wolves 

β and δ, using Eqs. 5.7 and 5.8 

8     For (each leader) do 

9     { 

10  Conduct leader enhancement using Lévy flight as defined in Eq. 5.14 

11     } End For 

12     If (𝑡 < 0.8 × 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟)  

13     { 

14      For (each wolf 𝑖 in the population) do 

15      { 

16       Generate step size 𝐴′using Eq. 5.3 

17    Calculate distance measures, 𝐷𝛼, 𝐷𝛽,  and 𝐷𝛿 , by Eqs. 2.4 - 2.6 

18   Update the position with respect to 𝑋𝛼 , 𝑋𝛽 , 𝑎𝑛𝑑 𝑋𝛿, by  

Eqs. 5.4 - 5.6, 5.9 

19      } End For 

20     Else     𝑡 ≥ 0.8 × 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 

21      For (each wolf 𝑖 in the population) do 

22      { 

23   Conduct local exploitation around the best leader 𝑋𝛼 with dynamic 

steps by Eqs. 5.10 and 5.12 



127 

 

24      } End For 

25     } End If 

26     For (each wolf 𝑖 in the population) do 

27     { 

28  Calculate the fitness score of  𝑖 

29      Update three dominant leaders 𝑋𝛼 , 𝑋𝛽 , 𝑎𝑛𝑑 𝑋𝛿 

30     } End For 

31    } End While 

32    Output the most optimal solution 𝑋𝛼 

33    End 

The pseudo-code of the proposed GWO variant is provided in Algorithm 5-1. Overall, the 

proposed GWO variant employs four strategies to enhance search diversity while 

accelerating convergence, i.e. a nonlinear adjustment of search boundary, a chaotic 

dominance rivalry among leading wolves, a dynamic leader exploitation operation using an 

enhanced spiral search procedure, as well as a Lévy flight mutation operation based on the 

dominant wolves. As such, these proposed strategies enhance the original GWO algorithm 

from three perspectives, i.e. adjusting the search parameters, modifying position updating 

rules and search courses, as well as enhancing promising leader signals. These strategies 

work cooperatively to mitigate premature convergence, improve the transition from 

exploration to exploitation, and overcome limitations of the original GWO method. 

5.1.2 The proposed CNN-LSTM architecture 

In this research, we propose a skeleton architecture of CNN-LSTM, upon which the tailored 

configuration of the hyperparameters is specified according to the recommendation of the 

proposed GWO variant with respect to the investigated time series task. The topology of the 

proposed CNN-LSTM architecture is outlined in Figure 5-6. 

 

Figure 5-6 The topology of the proposed CNN-LSTM architecture 

It consists of three core types of layers, i.e. the convolutional layer, the LSTM recurrent 

layer, and the dense layer. The input data sequence is firstly used as input to the two 

consecutive convolutional layers for feature extraction. Through the convolutional 
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operations of filters with different properties, the nonlinear activation of neurons, as well as 

the abstract representation of max pooling, the low-level features and distinctions among 

variables under the context of temporal effects are therefore acquired. The obtained feature 

map is then passed on to the LSTM layer where the complex dependencies are thoroughly 

learned by the examination of the three effective gates in LSTM, i.e. the forget, input, and 

output gates. Specifically, the irrelevant or redundant information from previous cell states is 

removed by the forget gate. The effective new information from the input sequence is stored 

by the input gate. Moreover, the signals from the cell state are filtered and then passed on to 

the next state by the output gate. Furthermore, the processed temporal information is then 

used as input to dense layers to undergo nonlinear transformations. Finally, the obtained 

information is projected to the output space and the prediction results are produced. Overall, 

the proposed CNN-LSTM skeleton architecture is adopted as the foundation for evaluating 

the time series problems in test scenarios. 

5.1.3 The proposed GWO-based evolving CNN-LSTM network 

The identification of the optimal configurations of hyperparameters and architectures is 

crucial to the performance and efficiency of deep neural networks in practice. Such 

configuring and searching processes are particularly cumbersome for CNN-LSTM networks 

owing to the increased amount of hyperparameters induced by the hybridisation of CNN and 

LSTM, as well as the profound interactive effects among them, in comparison with 

monotonous deep learning models. In this study, we employ the above proposed enhanced 

GWO model for the automatic optimal configuration identification for the CNN-LSTM 

architecture, to undertake time series prediction tasks. 

To be specific, the proposed GWO variant is employed to automatically search for the 

optimal hyperparameters and topologies of the CNN-LSTM model, by optimizing the 

following learning and network parameters, i.e. the learning rate, the dropout rate, the 

number and size of filters in two convolutional layers, the size of the pooling layer, as well 

as the numbers of hidden nodes in LSTM recurrent layer and the final dense layer, for each 

time series problem respectively. The search range for each optimized parameter is 

presented in Table 5-1. The explored hyperparameters include key factors critical to the 

representational capacity of the CNN-LSTM network, e.g. the number of hidden nodes in 

the LSTM layer, as well as those responsible for the learning efficiency and training 

property, e.g. the learning and dropout rates. As such, confounding effects and impacts of 

various hyperparameters can be thoroughly explored through the evolving process of the 

proposed GWO variant. The CNN-LSTM model with the identified optimized configuration 

is then applied to tackle time series prediction and classification. 
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Table 5-1 The search range of the hyperparameters 

Optimized component Hyperparameter Range 

Conv 

No. of filter in 1st layer [20, 210] 

filter size in 1st layer [1, 5] 

No. of filter in 2nd layer [20, 210] 

filter size in 2nd layer [1, 5] 

Pooling pooling size [2, 5] 

LSTM No. of hidden nodes [10, 500] 

Dense No. of nodes [10, 200] 

Learning configuration 
learning rate [10−5, 10−1] 

dropout rate [0, 0.6] 

The optimal hyperparameter search of the deep network is performed as follows. Firstly, the 

population of the proposed GWO algorithm is randomly initialised, with each individual 

representing a possible configuration for the optimized CNN-LSTM model. The 

recommended CNN-LSTM model with the specific structure and parameter settings 

represented by each wolf is then established and trained with the training set. The fitness 

scores, i.e. the error rate for classification problems or the root mean square error (RMSE) 

for regression problems, are calculated based on the validation set. The solutions with top 

three fitness scores are identified as the dominant wolves, hence employed to guide the 

whole wolf pack to search for the global optimality by following the proposed strategies 

prescribed in the modified GWO model. The optimal configuration obtained by the wolf 

population is then adopted to yield the final devised CNN-LSTM model. It is then evaluated 

using the unseen test data set. In this study, several time series problems are employed to 

examine the effectiveness and robustness of the proposed GWO-based CNN-LSTM network. 

5.2 Evaluation and discussion 

In this section, the effectiveness of the proposed evolving CNN-LSTM model is evaluated 

on two time series prediction problems, i.e. building energy consumption forecast and 

PM2.5 concentration prediction, as well as one time series classification problem, i.e. human 

activity recognition. The performance of the proposed GWO variant in identifying the 

optimal CNN-LSTM configurations is compared against those of four classical search 

methods, i.e. GWO [62], PSO [307], GSA [67], and FPA [66], as well as three advanced 

GWO and PSO variants, prLeGWO [119], FuzzyGWO [308], and CSO [277]. The 

parameter settings for above baseline models are provided in Table 5-2. The identical 

settings are employed for each experiment to ensure a fair comparison, i.e. the maximum 

number of function evaluations = population size (30) × the maximum number of iterations 
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(100). A CNN-LSTM model with default parameter settings, i.e. filter number in the 1st 

Conv layer = 32, filter size in the 1st Conv layer = 2, filter number in the 2nd Conv layer = 32, 

filter size in the 2nd Conv layer = 2, pooling size = 2, number of node in LSTM layer = 300, 

number of node in dense layer = 100, learning rate = 0.001, and dropout rate = 0.2, is also 

employed as one of the baselines for performance comparison. Moreover, we conduct ten 

independent runs for each experiment to mitigate the impact of random factors on the 

evaluation. The experimental details of the employed time series prediction problems are 

presented below. 

Table 5-2 Parameter settings of search methods 

Methods 
Parameter settings 

GWO [62] step size 𝐴 = (2 × 𝑟𝑎𝑛𝑑 − 1) × 𝑎, where 𝑎 linearly decreases from 2 to 0, 

𝑟𝑎𝑛𝑑 ∈ (0, 1). search parameter 𝐶 = 2 × 𝑟𝑎𝑛𝑑.  

PSO [307] cognitive component 𝑐1  = 1.4962, social component 𝑐2  = 1.4962,            

inertia weight 𝑤 = 0.7298. 

GSA [67] initial gravitational constant 𝐺0 = 100, search parameter α = 20. 

FPA [66] 

switch probability = 0.8, step size 𝐿 for global pollination drawn from a 

Levy flight distribution, step size ϵ  for local pollination drawn from a 

uniform distribution within [0, 1]. 

CSO [277] 𝑟1 , 𝑟2 , and 𝑟3  are search parameters randomly drawn from a uniform 

distribution within [0, 1]. 

PrLeGWO 

[119] 

initial weights of three dominant wolves 𝑤α = 1/3, 𝑤β = 1/3, and 𝑤𝛿 = 1/3, 

weights of three dominant wolves at the end of the iteration  𝑤α = 0.8,        

𝑤β = 0.1, and 𝑤𝛿 = 0.1.  

FuzzyGWO 

[308] 

A Mamdani fuzzy system to generate weights for three dominant wolves.  

Prop. GWO 

A nonlinear exploration factor: 𝑎′ = 2 × (cos (
(𝑡𝑎𝑛ℎ𝜃)2+(𝜃 sin 𝜋𝜃)5

(𝑡𝑎𝑛ℎ1)2 ×
𝜋

2
))

2

, 

where 𝜃  is the quotient of the current iteration number divided by the 

maximum iteration number. 

A step size for leader exploitation: 

𝜆 = 𝑓 × 𝑒3𝑥2/2 × cos(𝜋𝑟) × sin(𝜋𝑟), where 𝑓 linearly decreases from 1 to 

0, while 𝑟 is a random number in [-1, 1]. 

Leader dominance coefficient generation using the sinusoidal map. 

5.2.1 Energy consumption forecast 

5.2.1.1 Data set 

The time series prediction is first introduced using the energy consumption scenario. 

Specifically, the individual household electricity consumption data set from UCI machine 

learning repository [255] is employed to evaluate the effectiveness of the proposed evolving 

CNN-LSTM model on tackling the energy forecast task. The data set contains 2,075,259 
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measurements with nine attributes collected in an interval of one minute, from a house 

located in Sceaux between December 2006 and November 2010. 

5.2.1.2 Experimental settings 

According to the difference of the time interval, energy forecasting models are generally 

classified into three categories, i.e. short-term, medium-term, and long-term energy forecast 

[309]. In this research, a multi-input and multi-output short-term energy forecasting model is 

developed. Specifically, the amount of electricity consumption for the next week is predicted 

using the historical data from the previous two weeks, in order to capture weekly periodicity 

and irregularity of the energy consumption. The proposed weekly energy forecasting model 

can be used to inform future energy expenditures of the household, and to facilitate the 

demand side management. The original observations with an interval of one minute are 

transformed into daily energy consumption data for the weekly prediction of energy 

consumption. The data from the first two years are employed for training, the data from the 

subsequent one year for validation, and the data from the final year for testing.  

For the prediction of energy consumption, eight of the total hyperparameters listed in Table 

5-1 except for the pooling size are optimized. The pooling size is set to 2, owing to the 

comparatively small input vector of the sequential data of this energy consumption scenario, 

i.e. 14×9, where 14 and 9 represent time steps and the feature size, respectively. The optimal 

CNN-LSTM configuration is identified based on the training and validation sets. The batch 

size is set as 128 whereas a total of 20 epochs are used in the training stage to balance 

between performance and computational cost. In addition, the Adam optimizer is applied in 

the training process while the RMSE is adopted as the fitness score to evaluate the 

performance of CNN-LSTM. The devised CNN-LSTM model is retrained on the combined 

set of training and validation samples for 100 epochs. Finally, the fully trained CNN-LSTM 

model is employed to forecast energy consumption on the unseen test set. 

5.2.1.3 Results and discussion 

Two performance indicators are employed to evaluate the effectiveness of the proposed 

evolving CNN-LSTM method in forecasting energy consumption, i.e. RMSE and the mean 

absolute error (MAE). The results of RMSE and MAE over ten independent runs are 

presented in Tables 5-3 – 5-4, respectively. 

Table 5-3 The RMSE results over 10 independent runs 

Run CNN-LSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

1 401.7 403.3 392.4 418.0 368.0 396.9 388.2 384.4 371.2 

2 409.6 413.4 395.6 425.0 403.9 376.0 385.1 433.4 383.0 
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3 451.1 415.3 410.6 401.7 541.6 483.2 418.2 413.1 382.5 

4 421.0 441.3 387.7 383.3 400.9 406.4 381.8 369.6 365.0 

5 422.1 412.0 399.4 408.2 437.4 506.7 404.1 398.9 376.9 

6 439.2 423.3 381.5 424.6 421.9 381.2 393.1 375.9 386.5 

7 424.1 396.7 397.0 426.2 391.4 410.6 387.2 378.1 376.7 

8 419.6 383.5 384.8 390.0 382.4 394.7 383.4 400.1 380.3 

9 418.8 383.6 400.2 438.8 391.9 406.1 377.4 407.8 382.6 

10 415.6 483.4 395.7 429.6 381.8 387.6 379.6 401.0 367.1 

Avg. 422.3 415.6 394.5 414.5 412.1 414.9 389.8 396.2 377.2 

 

Table 5-4 The MAE results over 10 independent runs 

Run CNN-LSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

1 310.5 303.0 299.6 314.5 280.1 313.3 294.2 291.8 287.2 

2 316.6 321.4 305.9 320.9 313.0 287.3 294.7 340.7 292.5 

3 345.2 318.8 322.5 307.3 419.4 367.8 328.2 320.0 292.7 

4 319.2 346.5 286.6 294.3 306.3 309.2 291.3 286.5 277.7 

5 326.7 321.7 305.9 301.9 335.8 365.0 307.4 306.6 291.5 

6 342.9 321.0 286.5 310.7 326.2 294.8 302.4 289.9 299.4 

7 324.4 307.1 300.0 324.4 297.9 314.1 286.6 291.1 296.4 

8 322.4 284.0 298.4 301.1 298.1 303.5 289.1 314.0 290.1 

9 324.6 297.6 313.8 328.9 302.0 310.4 294.6 316.6 294.7 

10 312.8 379.4 302.6 326.6 292.4 298.9 291.8 316.5 283.1 

Avg. 324.5 320.1 302.2 313.1 317.1 316.4 298.0 307.4 290.5 

 

The optimized CNN-LSTM networks identified by the proposed GWO variant achieve the 

lowest RMSE and MAE results and demonstrate significant advantages in comparison with 

those yielded by the four classical search methods and the advanced prLeGWO, FuzzyGWO, 

and CSO models, as well as the CNN-LSTM network with the default setting. Specifically, 

as shown in Table 5-3, the RMSE results produced by the proposed GWO-based evolving 

CNN-LSTM model are more reliable, lying within the range of [360, 390], whereas the 

majority RMSE results produced by baselines methods are larger than 390, demonstrating 

greater variances. As shown in Table 5-4, the significant superiorities of the proposed GWO 

model can also be observed from the MAE results. This indicates that the optimized CNN-

LSTM configurations identified by the proposed GWO variant are capable of identifying 

spatial variations among time series variables and extracting irregular patterns in temporal 

information embedded in the energy usage data, effectively.  
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Table 5-5 The mean configurations of the identified CNN-LSTM networks over 10 runs 

Conf. GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

No. 1st 82.8 118.8 63.2 110.6 186.6 12.4 105 217.2 

No. 2st 4.6 17 8.4 159 22.6 11.8 5.8 5.4 

S. 1st 3.6 3.7 2.9 3.1 2.2 2.0 1.9 1.6 

S. 2st 1.8 1.8 2.9 2.1 2.7 1.3 1.3 1.2 

LSTM 327.3 320.6 261 246 321.8 122.9 129.5 284.1 

Dense 70.5 110.3 96.6 74.9 68.7 55.5 16.8 35.4 

DR 0.246 0.270 0.336 0.312 0.341 0.193 0.041 0.170 

LR 0.024 0.042 0.051 0.034 0.051 0.023 0.003 0.021 

This advantage of the proposed GWO method is further analysed by examining the 

distinctive characteristics of its identified CNN-LSTM configurations, as opposed to those 

yielded by the baseline models. The mean hyperparameters of the optimized configurations 

of CNN-LSTM yielded by the GWO variant over a set of 10 runs are presented in Table 5-5. 

In general, the CNN-LSTM structures identified by the proposed GWO model demonstrate 

two main distinctive characteristics, i.e. a higher number of filters in the first convolutional 

layer and a moderate setting in terms of number of nodes in the recurrent and dense layers, 

in comparison with those identified by the baseline models. Specifically, the optimized 

CNN-LSTM structures are capable of extracting energy usage features more effectively 

owing to the higher number of filters in the first convolutional layer, i.e. 217.2. These filters 

in the convolutional layer are able to reduce data noise and remove irrelevant variations 

among time series variables while preserving the essential temporal variance. Besides the 

above, the long-term dependencies can be acquired efficiently without overfitting owing to 

the optimized and more balanced settings of the hidden nodes in the LSTM and dense layers, 

i.e. 284.1 and 35.4, respectively. As such, the devised CNN-LSTM networks are capable of 

achieving more efficient trade-offs between the model representational capacity and the 

avoidance of overfitting.  

In contrast, those network configurations yielded by baseline methods as well as the default 

CNN-LSTM model generally achieve less advanced learning capacities in incorporating 

spatial and temporal information with respect to the energy usage patterns, owing to the lack 

of convolutional operations as well as the sub-optimal recurrent network representations. 

This indicates the deficiency of baseline search methods in exploring sophisticated 

interactions among hyperparameters in CNN-LSTM. In other words, baseline models are 

more prone to local optima traps, therefore yielding less advanced CNN-LSTM 

configurations in addressing complicated factors, e.g. fluctuation and volatility, in energy 
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forecasting tasks. In short, in comparison with the baseline methods, the proposed diverse 

search strategies, e.g. the nonlinear exploration rate adjustment, the chaotic leadership 

rivalries, as well as Lévy random jumps, account for the superior performance of the 

proposed evolving CNN-LSTM networks.  

5.2.2 PM2.5 concentration prediction 

5.2.2.1 Data set 

To further indicate model efficiency, we also employ the UCI Beijing air quality data set 

[310] for PM2.5 concentration prediction using the devised evolving CNN-LSTM networks. 

This data set includes hourly measurements of four types of air pollutants, i.e. SO2, NO2, 

CO, and O3, as well as five meteorological parameters, i.e. temperature, pressure, dew point 

temperature, amount of precipitation, and wind speed, over a four-year period of time from 

March 1st, 2013 to February 28th, 2017. The reliable prediction of PM2.5 concentrations 

requires profound interpretations of the changing patterns of air pollutants under various 

temporal contexts, which pose great challenges to the yielded devised networks. 

5.2.2.2 Experimental settings 

Similar to the framework in the energy forecasting task, a multi-input and multi-output time 

series model is established to predict the PM2.5 concentrations in the air in Beijing for a 

week in advance, based on historical data from the previous two weeks. The hourly 

recordings are transformed into daily measurements to better understand weekly periodicity 

of input variables as well as to make weekly predictions of PM2.5 concentration. The vector 

of the input sequence is 14×9, where 14 and 9 represent time steps and the feature size, 

respectively. The experimental settings employed in the PM2.5 concentration prediction are 

the same as those employed in the previous energy consumption forecasting, owing to the 

identical characteristics in both problems. Besides that, the data from the first and second 

years are used for training, whereas the data from the third and last years are used for 

validation and testing, respectively. 

5.2.2.3 Results and discussion 

As shown in Tables 5-6 – 5-7, the optimized CNN-LSTM networks identified by the 

proposed GWO algorithm yield more robust and reliable predictions for weekly PM2.5 

concentration in comparison with those of the seven baseline methods and the default CNN-

LSTM network. In specific, our optimized CNN-LSTM networks achieve the smallest 

average results of RMSE and MAE, i.e. 62.2 and 40.8, over ten independent runs, whereas 

the baseline methods in general produce less favourable results with high variances and 

inconsistencies across ten different runs. In particular, the RMSE measures are reduced by 

6.2%, 13.1%, 9.1%, and 15.1%, by the devised CNN-LSTM networks, in comparison with 
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those networks yielded by GWO, prLeGWO, FuzzyGWO, as well as the default CNN-

LSTM model, respectively. The significant performance improvements of the devised CNN-

LSTM networks can be further observed from the MAE results. The superiority in the 

evaluation performance indicates the effectiveness of the proposed evolving time series 

model in extracting effective features and recognizing complex temporal variations 

embedded in air pollution data as well as interpreting reflective influences of dynamic 

meteorological conditions. 

Table 5-6 The RMSE results over 10 independent runs 

Run CNN-LSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

1 67.3 64.7 64.3 70.0 64.2 92.1 82.4 68.3 62.6 

2 70.8 65.2 65.6 62.6 67.7 64.7 61.0 70.1 63.5 

3 68.6 62.0 63.9 65.8 78.9 66.1 65.1 60.5 62.8 

4 74.6 65.9 64.9 64.8 58.1 63.9 64.7 63.7 65.6 

5 75.4 70.6 64.9 73.5 65.9 67.8 66.1 67.3 59.9 

6 74.2 65.8 63.8 69.1 73.2 64.7 117.3 72.4 62.3 

7 69.3 67.7 61.0 63.6 76.7 60.0 62.3 72.7 61.6 

8 73.7 63.2 64.7 68.7 70.7 68.3 61.6 67.6 59.9 

9 87.5 73.0 61.7 63.4 69.2 68.1 71.7 69.4 62.5 

10 71.6 65.4 68.1 64.0 77.2 69.0 63.4 72.4 61.3 

Avg. 73.3 66.3 64.3 66.6 70.2 68.5 71.6 68.4 62.2 

 

Table 5-7 The MAE results over 10 independent runs 

Run CNN-LSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

1 44.8 42.6 41.4 46.2 40.2 54.7 55.2 45.1 39.6 

2 47.6 41.6 43.9 42.2 44.6 45.7 41.9 49.1 42.5 

3 48.6 41.4 41.6 43.9 52.3 43.5 42.9 42.9 41.1 

4 49.8 43.1 42.0 43.0 40.8 40.6 42.4 40.8 43.6 

5 51.1 44.7 42.6 48.5 43.5 44.7 42.4 44.2 40.3 

6 49.9 43.0 41.8 43.6 48.2 43.0 70.3 52.5 40.4 

7 45.1 41.6 39.4 42.4 53.0 39.7 42.8 46.5 39.8 

8 48.5 42.0 44.2 44.2 46.8 44.9 41.4 46.3 39.4 

9 54.3 46.7 40.4 41.7 46.0 45.6 47.3 46.3 40.9 

10 48.9 42.8 42.6 42.1 53.7 45.7 42.5 52.6 40.3 

Avg. 48.9 42.9 42.0 43.8 46.9 44.8 46.9 46.6 40.8 
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Table 5-8 The mean configurations of the identified CNN-LSTM networks over 10 runs 

Conf. GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

No. 1st 35.2 165.6 198.4 39.6 72.8 3.8 4.6 132.8 

No. 2st 2 2 26.8 118.4 14.8 2.6 2.6 2.4 

S. 1st 1 1.7 2.9 1.8 2.2 2.5 1.4 1.2 

S. 2st 1.3 1.8 3.1 2.6 1.9 2.4 1.4 1.3 

LSTM 85.2 237.2 271.2 200.5 223.7 124.9 81.2 126.2 

Dense 60 53.9 91.3 95.3 76.8 85.3 15.9 51.4 

DR 0.305 0.352 0.321 0.219 0.370 0.018 0.004 0.313 

LR 0.034 0.048 0.049 0.028 0.058 0.007 0.001 0.046 

 

Moreover, the mean hyperparameters of the identified optimal structures for PM2.5 

concentration prediction over ten independent runs are presented in Table 5-8. The main 

characteristics of the effective CNN-LSTM configurations in the PM2.5 prediction are 

similar to those demonstrated in energy forecasting. The optimized CNN-LSTM structures 

produced by the proposed GWO variant possess a relatively larger number of filters in the 

first convolutional layer, i.e. 132.8, while maintaining smaller amounts of nodes in both the 

LSTM and dense layers, i.e. 126.2 and 51.4 respectively. Such compositions enable the 

efficient extraction of most important features among meteorological variables as well as air 

pollutants in the convolutional layers, while endowing the optimized CNN-LSTM networks 

with sufficient representational capacities to effectively capture various dependencies in the 

LSTM and dense layers while avoiding overfitting.  

To be specific, the employed air pollution data set not only contains important factors in 

relation to generation and dispersion of PM2.5, e.g. concentration of SO2 and NO2, and 

wind speed, but also disturbing factors with various confounding effects, e.g. concentration 

of CO and O3. Therefore, the prediction of PM2.5 is challenging owing to various 

complexions. As such, the proper feature extraction capability is required to identify 

effective attributes essential to the complex formation mechanism of PM2.5, as well as 

sophisticated aerodynamic effects on its dilution. The RMSE and MAE results indicate that 

our optimized CNN-LSTM networks are able to resolve the above challenging factors more 

effectively and demonstrate greater resilience in handling temporal variances and 

interactions among variables. In other words, the identified filter structures in convolutional 

layers are capable of generating informative feature maps, which can both uncover the 

indirect impacts of various pollutants permeated in the air, as well as the direct impacts of 

weather conditions, on the concentration of PM2.5. Meanwhile, the identified optimized 
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configurations of the LSTM and dense layers are able to better comprehend and capture the 

long-term dependencies among the input data sequences. As such, the devised CNN-LSTM 

structures identified by the proposed GWO variant are proven to be superior in undertaking 

complex PM2.5 concentration prediction tasks. 

5.2.3 Human activity recognition 

5.2.3.1 Data set 

We have also employed a time series classification task using the UCI human activity 

recognition (HAR) data set [311] for model evaluation. The data set was collected from 30 

volunteers performing six types of daily living activities, i.e. standing, sitting, laying down, 

walking, walking downstairs and upstairs, while carrying the waist-mounted smartphones 

embedded with inertial sensors. Three types of signals, including total acceleration, body 

acceleration, as well as body gyroscope, were recorded in a sampling rate of 50Hz. These 

sensor signals were pre-processed using noise filters and sampled in the sliding window of 

2.56 sec, i.e. 128 readings, with a 50% overlap. The dimension of the input sequence is 

128×9, in which 128 and 9 are the number of readings and the number of features 

respectively. The total sample sizes in the training and test data sets are 7,352 and 2,947 

respectively. 

5.2.3.2 Experimental settings 

In the HAR task, the nine hyperparameters in relation to network capacities and learning 

properties listed in Table 5-1 are optimized. The training process is divided into two main 

stages. Firstly, the optimal configuration of CNN-LSTM is identified by the proposed GWO 

variant using a smaller proportion of the training data, to reduce computational cost. 

Specifically, the first 3000 sequences in the training data set are used for training and the 

subsequent 1500 sequences for validation, for the search of the optimal network 

configuration. In the training process, the Adam optimizer is adopted, while the categorical 

cross-entropy is applied as the loss function. Also, the batch size and epoch number are set 

as 256 and 20, respectively. Besides the above, the error rate is employed as the fitness score 

to be minimized during the evolving process. Subsequently, the recommended CNN-LSTM 

model with the identified optimal structure is retrained for 100 epochs using the whole 

training data set of 7,352 samples. The obtained CNN-LSTM model is then used to classify 

human activities using the unseen test data set with 2,947 samples.  

5.2.3.3 Results and discussion 

A total of four performance indicators are employed to evaluate the effectiveness of the 

optimized CNN-LSTM networks in distinguishing and recognizing the recorded human 
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activities, i.e. classification accuracy, F-score, precision, and recall. The results over ten 

independent runs are presented in Tables 5-9 - 5-12, respectively.  

Table 5-9 The results of classification accuracy over 10 independent runs 

Run CNN-LSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

1 0.879 0.886 0.907 0.911 0.881 0.893 0.863 0.883 0.928 

2 0.882 0.889 0.900 0.904 0.815 0.907 0.886 0.928 0.929 

3 0.859  0.909 0.898 0.888 0.879 0.883 0.900 0.922 

4 0.879 0.862 0.897 0.910 0.882 0.894 0.864 0.880 0.916 

5 0.877 0.876 0.916 0.904 0.909 0.892 0.856 0.902 0.921 

6 0.872 0.889 0.909 0.904 0.895 0.889 0.870 0.917 0.931 

7 0.880 0.898 0.918 0.883 0.899 0.877 0.879 0.882 0.918 

8 0.888 0.891 0.891 0.901 0.906 0.899 0.845 0.859 0.929 

9 0.885 0.900 0.900 0.896 0.890 0.923 0.796 0.864 0.914 

10 0.863 0.902 0.883 0.903 0.890 0.909 0.877 0.880 0.922 

Avg. 0.877 0.885 0.903 0.901 0.886 0.896 0.862 0.889 0.923 

 

Table 5-10 The results of F-score over 10 independent runs 

Run CNN-LSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

1 0.880 0.886 0.907 0.912 0.881 0.892 0.863 0.883 0.928 

2 0.884 0.891 0.900 0.905 0.813 0.908 0.886 0.930 0.930 

3 0.857 0.854 0.910 0.898 0.888 0.878 0.883 0.901 0.925 

4 0.879 0.861 0.896 0.909 0.882 0.894 0.860 0.880 0.916 

5 0.876 0.876 0.916 0.903 0.908 0.892 0.856 0.903 0.920 

6 0.871 0.888 0.909 0.905 0.895 0.891 0.870 0.917 0.924 

7 0.880 0.898 0.917 0.883 0.898 0.876 0.880 0.880 0.918 

8 0.887 0.890 0.890 0.900 0.906 0.899 0.843 0.858 0.931 

9 0.884 0.900 0.899 0.896 0.890 0.922 0.792 0.861 0.914 

10 0.861 0.902 0.884 0.902 0.889 0.909 0.874 0.879 0.925 

Avg. 0.876 0.885 0.903 0.901 0.885 0.896 0.861 0.889 0.923 

 

Table 5-11 The results of precision over 10 independent runs 

Run CNN-LSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

1 0.883 0.887 0.909 0.915 0.887 0.892 0.872 0.891 0.930 
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2 0.885 0.893 0.901 0.908 0.818 0.907 0.889 0.932 0.931 

3 0.859 0.857 0.912 0.899 0.894 0.878 0.886 0.904 0.927 

4 0.878 0.861 0.899 0.908 0.890 0.896 0.862 0.883 0.917 

5 0.876 0.878 0.917 0.909 0.908 0.894 0.861 0.908 0.921 

6 0.871 0.893 0.911 0.909 0.898 0.891 0.871 0.917 0.925 

7 0.880 0.900 0.917 0.883 0.899 0.877 0.884 0.881 0.920 

8 0.887 0.895 0.889 0.901 0.907 0.900 0.854 0.859 0.933 

9 0.884 0.901 0.898 0.896 0.890 0.922 0.796 0.868 0.915 

10 0.863 0.905 0.884 0.903 0.892 0.910 0.874 0.884 0.927 

Avg. 0.877 0.887 0.904 0.903 0.888 0.897 0.865 0.893 0.925 

 

Table 5-12 The results of Recall over 10 independent runs 

Run CNN-LSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

1 0.881 0.887 0.909 0.913 0.881 0.894 0.861 0.883 0.928 

2 0.885 0.891 0.900 0.905 0.816 0.910 0.888 0.930 0.931 

3 0.857 0.853 0.910 0.900 0.888 0.878 0.882 0.902 0.924 

4 0.880 0.863 0.899 0.911 0.882 0.895 0.860 0.882 0.918 

5 0.878 0.879 0.916 0.905 0.908 0.894 0.854 0.904 0.922 

6 0.872 0.886 0.910 0.905 0.896 0.892 0.873 0.919 0.924 

7 0.881 0.901 0.917 0.885 0.899 0.876 0.881 0.879 0.918 

8 0.889 0.891 0.892 0.903 0.907 0.899 0.841 0.861 0.931 

9 0.885 0.902 0.901 0.898 0.893 0.923 0.789 0.861 0.916 

10 0.864 0.902 0.885 0.903 0.891 0.910 0.875 0.877 0.924 

Avg. 0.877 0.885 0.904 0.903 0.886 0.897 0.860 0.890 0.924 

 

With respect to classification accuracy, the CNN-LSTM configurations yielded by the 

proposed GWO variant achieve the highest mean accuracy rate of 92.3%, outperforming 

those of all baseline models. In particular, the proposed GWO variant demonstrates 

significant advantages than the original GWO and advanced GWO variants, i.e. prLeGWO 

and FuzzyGWO, as well as the default CNN-LSTM network, with evident performance gaps 

of 3.8%, 6.1%, 3.4%, and 4.6%, respectively. In addition, similar superiorities of the 

proposed GWO model can also be observed consistently across the remaining indicators, i.e. 

F-score, precision, and recall scores, as shown in Tables 5-10 – 5-12. 
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Table 5-13 The mean accuracy rate of each class over 10 independent runs 

Class CNN-LSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

Walk 0.905 0.915 0.935 0.924 0.908 0.935 0.886 0.941 0.973 

W-Up 0.890 0.917 0.905 0.908 0.878 0.907 0.843 0.906 0.942 

W-Dn 0.918 0.923 0.956 0.980 0.944 0.951 0.863 0.912 0.984 

Sit 0.787 0.768 0.808 0.778 0.773 0.792 0.768 0.785 0.791 

Stand 0.787 0.829 0.835 0.863 0.837 0.825 0.838 0.847 0.891 

Lay 0.976 0.961 0.984 0.966 0.976 0.974 0.966 0.966 0.964 

The decomposed accuracy results with respect to each of the six human activities are 

provided in Table 5-13. The optimized CNN-LSTM networks yielded by the proposed 

GWO variant obtain the highest accuracy results on four activity classes, i.e. walking, 

walking upstairs, walking downstairs, and standing, significantly outperforming those 

yielded by the baseline methods and default network with evident performance gaps. This 

indicates that the CNN-LSTM configurations yielded by the proposed GWO variant 

successfully discover distinctive variations and discriminative patterns with respect to 

different human activities, therefore achieving more robust and advanced performances. In 

other words, the decomposed results further reinforce the effectiveness and superiority of the 

proposed GWO variant in identifying the most effective deep networks for undertaking 

HAR tasks, in comparison with the baselines. 

Table 5-14 The mean configurations of the identified CNN-LSTM networks over 10 runs 

Conf. GWO PSO GSA FPA CSO prLeGWO FuzzyGWO Prop.GWO 

No. 1st 38.8 94.4 51.2 64.2 125.4 68.5 59.2 230.8 

No. 2st 59.0 80.2 60.0 18.8 57.2 130.3 92.6 193.6 

S. 1st 4.0 3.7 3.7 3.7 4.4 3.6 3.6 4.4 

S. 2st 4.5 3.3 3.7 3.6 3.5 3.3 3.6 3.6 

Pool. 3.4 3.4 3.6 3.3 3.8 3.3 3.6 2.7 

LSTM 68.5 102.1 102.1 126.3 97.7 34.1 100.3 60.2 

Dense 92.9 104.3 110.7 105.8 131.2 20.4 108.9 41.2 

DR 0.376 0.427 0.293 0.214 0.195 0.143 0.246 0.416 

LR 0.037 0.059 0.046 0.046 0.048 0.020 0.028 0.029 

Moreover, the mean hyperparameters of the optimized CNN-LSTM networks over ten 

independent runs are presented in Table 5-14. In particular, the devised CNN-LSTM 

networks for HAR possess the highest numbers of filters in both convolutional layers, i.e. 

230.8 and 193.6, respectively, while maintaining lighter settings of number of nodes in the 
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recurrent and dense layers, i.e. 60.2 and 41.2, respectively, in comparison with those of the 

baseline models and the default network settings. Such configurations enable CNN-LSTM 

networks to thoroughly examine fundamental characteristics with respect to each category of 

human activity and differentiate subtle differences between them, so as to extract the most 

discriminative features related to human activities in convolutional layers, while achieving 

efficient trade-offs between learning long-term dependencies embedded among consecutive 

body movements and avoiding overfitting on data noise in the recurrent and dense layers. As 

such, the CNN-LSTM networks identified by the proposed GWO variant are capable of 

distinguishing different human activities effectively. 

5.2.4 Remarks 

Overall, the proposed GWO variant is capable of identifying the most effective CNN-LSTM 

configurations with appropriate representational capacities and superior capabilities of 

feature extraction, for resolving all three employed time series tasks. In contrast, the baseline 

search methods yield less effective sub-optimal CNN-LSTM networks with oversized or 

undersized hyperparameters, which result in severe performance degradation. More 

specifically, the oversized settings in the recurrent and dense layers and the lack of 

regularization are likely to result in overfitting owing to the excessive representational 

capacities and the memorizing of sample noise, as indicated by the results of GWO and CSO 

on energy consumption forecasting, FPA and CSO on PM2.5 concentration prediction, as 

well as FPA and FuzzyGWO on HAR. Moreover, the undersized network configurations 

produce oversimplified CNN-LSTM structures with restricted interpretation capabilities, 

therefore unable to fully capture sophisticated dependencies embedded in variables under 

complex temporal contexts, neither to conduct effective feature extractions and 

transformations, as exemplified by the results of FuzzyGWO on PM2.5 prediction, and 

prLeGWO on HAR. Furthermore, our optimized networks also outperform the CNN-LSTM 

model with the default hyperparameter settings significantly in the employed three test 

scenarios, owing to the limitations of the pre-assigned inefficient model and training 

configurations in such default baseline networks, i.e. the lack of learnable filters for feature 

extraction and the memorizing of sample noise resulted from the redundant recurrent 

memory cells. To sum up, the proposed GWO variant demonstrates significant advantages 

over baseline models in automatic identification of the optimal CNN-LSTM configurations 

for undertaking all test time series tasks, owing to the enhanced search diversity and search 

efficiency. 
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5.2.5 Wilcoxon statistical test 

The Wilcoxon statistical rank sum test is also conducted to further indicate the statistical 

distinctiveness of the enhanced GWO model against the baseline methods in searching for 

the optimal CNN-LSTM configurations. The accuracy results are employed for the statistical 

analysis on HAR, whereas the RMSE results are applied for the test on both energy 

consumption forecast and PM2.5 concentration prediction. As shown in Table 5-15, the 

rank sum test results are lower than 0.05, which indicate that the proposed GWO variant 

statistically significantly outperforms all the baseline search methods, including four 

classical methods, i.e. GWO, PSO, GSA, and FPA, as well as three advanced variant models, 

i.e. CSO, prLeGWO, and FuzzyGWO, in searching for the optimal CNN-LSTM 

configurations to solve time series prediction problems. Our devised optimized networks 

also show statistically significant superiority over those with default settings in our 

experimental studies. This superiority of the proposed GWO variant can be ascribed to the 

improved trade-offs between search diversification and intensification facilitated by the 

cooperation among proposed comprehensive and complementary search strategies. We 

provide detailed analysis as follows. 

Table 5-15 Wilcoxon rank sum test results over 10 independent run 

Run CNNLSTM GWO PSO GSA FPA CSO prLeGWO FuzzyGWO 

HAR 1.80E-04 1.81E-04 4.35E-04 1.81E-04 1.81E-04 9.99E-04 1.81E-04 2.20E-03 

Energy 1.83E-04 3.61E-03 2.57E-02 2.20E-03 3.61E-03 3.61E-03 4.52E-02 3.61E-03 

PM2.5 1.83E-04 3.30E-04 7.69E-04 2.46E-04 1.13E-02 3.61E-03 1.13E-02 3.30E-04 

The paramount challenge in retrieving effective CNN-LSTM configurations lies in the 

sophisticated interactions between different components within the network, as well as 

heavy training computational costs. In this regard, the proposed GWO variant incorporates 

several distinctive and complementary strategies, capable of boosting search diversity, as 

well as the convergence speed, to resolve the above challenges occurred during the 

exploration of the optimal CNN-LSTM configurations. Specifically, an advanced trade-off 

between search diversification and intensification is achieved by the proposed nonlinear 

adjustment of the territory boundary. Under this scheme, the search range during the 

exploration is upheld at the initial level without acute decrease, enabling the wolf population 

conduct more extensive explorations around the peripheral areas of the search territory, 

instead of being drawn to the vicinity of the leading wolves at the beginning of the search 

process. Meanwhile, this transition scheme also enables the wolf population to focus on the 

closer bounds around leading wolves and conduct thorough detection around the promising 

regions during exploitation. In addition, the proposed sinusoidal chaotic leadership rivalry 
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enables the GWO variant to leverage the merits from both multiple-leader guided search as 

well as single-leader guided search, through reinforcing the leadership of the best wolf 

solution while periodically downplaying the influence of this global best solution in position 

updating. As such, a periodic balance between search diversity and concentration is achieved. 

Thirdly, the fine-tuning capability around the global best position is further improved by 

conducting refined local detections with various steps and directions at the final stage of the 

search process, using a dedicated damped function with a dynamic adjustment of the 

amplitude. Lastly, the qualities of three leading wolves are further enhanced using Lévy 

flight probability distributions to reduce the likelihood of the stagnation at local optima. 

Overall, the effectiveness of the proposed GWO variant can be ascribed to the enhanced 

search diversity and search efficiency. The diversity is improved from three perspectives, i.e. 

the upholding of the search territory boundary through the dedicated nonlinear control of the 

exploration factor, the diversification of leading signals by the chaotic allocation of 

leadership weights, as well as leader random walks based on Lévy flight, whereas the 

efficiency is achieved from two perspectives, i.e. the ascertained dominance of the best wolf 

leader during the search process, as well as the dedicated local exploitation around the 

global best solution at the final stage of the search course. As such, the enhanced GWO 

model is more likely to escape from local stagnation and attain the global optimality. 

Therefore, the complicated interactions among CNN-LSTM hyperparameters can be 

thoroughly explored by the proposed GWO variant, and effective CNN-LSTM 

configurations could be identified swiftly. The efficiency of the proposed GWO-based 

CNN-LSTM network is evidenced by the superior empirical results on the three employed 

time series problems as well as the results of the statistical test. In contrast, the baseline 

GWO variants, e.g. prLeGWO and FuzzyGWO, achieve less efficient trade-offs between 

reassuring the dominance of the best leader and retaining diversity in the reconstruction of 

leadership hierarchy. Besides that, there is a lack of refinement in terms of the transition 

between exploration and exploitation among the above baseline GWO variants and other 

search methods. Overall, the enhanced GWO algorithm demonstrates great advantages in 

devising optimal CNN-LSTM networks and outperforms the eight baseline methods 

significantly in undertaking time series prediction tasks. 

5.3 Summary 

In this chapter, an evolving CNN-LSTM network has been proposed to solve time series 

prediction problems. A GWO variant has been proposed for the automatic optimal 

hyperparameter and topology identification of the network architectures. The proposed 

GWO variant employs a nonlinear exploration rate for search boundary adjustment, a 
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sinusoidal chaotic map for the leadership allocation of the dominant wolf leaders, an 

enhanced spiral local exploitation scheme, as well as Lévy flight-based leader enhancement. 

As such, the search process becomes more diversified owing to the expansion of the search 

territory, random exploitation of wolf leaders, and the chaotic aggregation and periodical 

diversification of guiding signals. In addition, the search efficiency and convergence rate are 

improved owing to the dominance of the global best wolf leader over the combined 

distractions from the remaining two leaders during the search process, as well as the 

intensified local exploitation around the global best solution at the final search stage.  

The proposed GWO-based evolving CNN-LSTM time series forecasting model has been 

evaluated using two time series prediction problems, i.e. energy consumption forecast and 

PM2.5 concentration prediction, as well as a time series classification task, i.e. human 

activity recognition. The devised evolving deep networks outperform the default network 

and those yielded by a total of seven baseline search models including four classical search 

methods and three advanced GWO and PSO variants on all the test data sets, statistically 

significantly. Moreover, the empirical results indicate that our optimized CNN-LSTM 

networks are characterized by a higher number of filters in convolutional layers and 

moderate settings in terms of the number of nodes in the LSTM layer and the fully 

connected layer. Such devised networks possess superior capabilities in capturing spatial and 

temporal information to inform time series prediction and classification, over those 

identified by all the baseline methods. In other words, such optimal network configurations 

are able to thoroughly examine the interactions among time series variables, as well as 

illustrate efficient network representational capacities without subjecting to either overfitting 

or underfitting. 
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Chapter 6  

Conclusions 

In this research, three evolving ML and one evolving DL methods have been proposed to 

overcome three severe bottlenecks in ML and data mining, i.e. initialization sensitivity, 

feature selection, as well as hyperparameter optimization. Firstly, two FA-based 

evolutionary KM clustering methods have been devised to automatically generate the 

optimal configuration of cluster centroids and overcome local stagnation, for the 

conventional KM clustering. Secondly, a PSO-based evolutionary feature selection method 

has been developed to automatically determine the optimal feature subset and mitigate the 

curse of dimensionality, through the elimination of redundant and contradictory variables 

embedded in classification problems. Lastly, a GWO-based evolving CNN-LSTM method 

has been proposed to automatically identify the optimal learning and topological 

configurations for CNN-LSTM networks to undertake real-life time series forecasting 

challenges. 

6.1 Summary of the contribution 

The contributions in this research are summarized as follows: 

1) The first contribution is the design of two FA based evolutionary KM clustering 

methods. 

 

Firstly, intrinsic limitations embedded in the search mechanism of the original FA 

model are identified. Although one firefly is able to approach another with a more 

favourable position in the original FA, the movement can only happen on the 

diagonal formed by the two fireflies under comparison, owing to the inheritance of 

biological laws in a rigid manner. As a result, the space and diversity for 

exploitation are severely constrained during the approaching movement and the 

search process is more likely to stagnate at local optima traps. In addition, search 

efficiency in the original FA algorithm is also undermined owing to the lack of 

guarantee of distinctiveness in terms of fitness scores between fireflies under 

comparison. As a result, the position adjustment is likely to become insignificant 

and even futile, hence resulting in the waste of resource. 

 

Two enhanced FA variants, i.e. IIEFA and CIEFA, are proposed to overcome the 

above identified search limitations in the original FA model. With respect to IIEFA, 

the attractiveness coefficient in the original FA method is replaced with a 
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randomized control matrix. As such, IIEFA is able to be released from the search 

constraints imposed by the strict adherence to the biological law, as the exploitation 

capability in the neighbourhood is elevated from a one-dimensional to multi-

dimensional search mechanism with enhanced diversity in search scopes, scales, and 

directions. In addition to the parameter matrix, the second proposed FA variant, 

namely CIEFA, further employs a dispersing mechanism. It enhances global 

exploration by dispatching fireflies with high similarities to unexploited positions 

out of the close neighbourhood. The search efficiency is also enhanced owing to the 

guarantee of heterogeneity between fireflies in competition. 

 

Both the proposed FA models, i.e. IIEFA and CIEFA, are employed to devise the 

evolutionary KM clustering methods. The enhanced FA variants are applied to 

automatically identify the optimal configuration of cluster centroids for KM 

clustering. The proposed evolutionary clustering methods have been evaluated on 

ALL-IDB2 database, a skin lesion data set, and a total of 15 UCI data sets. The 

empirical results indicate that the proposed FA-based KM clustering models 

demonstrate statistically significant superiority in both the distance and performance 

measures in comparison with the conventional KM clustering, and ten baseline 

search methods. Moreover, CIEFA outperforms IIEFA in tackling challenging 

clustering tasks with noise, complicated data distributions, and non-compact and 

less separable clusters, owing to its enhanced exploration capability and expanded 

search territory. 

 

2) The second contribution is the development of a PSO-based evolutionary feature 

selection method. 

 

Firstly, an enhanced PSO variant is proposed to overcome two major shortcomings 

of the original PSO method, i.e. premature convergence and weak local exploitation 

capability around near optimal solutions. It incorporates several distinctive strategies, 

including the leader enhancement using skewed Gaussian distributions, the 

recombination of genes from personal best solutions and the mirroring mutation on 

the global best solution for worse solution replacement, the diversification of 

guiding signals for region-based search, as well as the intensified local spiral 

exploitation. Therefore, the proposed PSO model is capable of achieving advanced 

trade-offs between utilization of acquired elicit solutions and introduction of 

dynamic distractions into the search trajectory, hence eliminating adverse effects 

resulted from the dictation of the global best signals in the original PSO. As such, 
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the proposed PSO variant is more likely to escape local optima traps and attain 

global optimality. 

 

Subsequently, an evolutionary feature selection method is designed based on the 

proposed PSO model. The enhanced PSO variant, in conjunction with KNN 

classifier, is employed to identify the optimal feature subset and reduce feature 

dimensionality for undertaking complex classification challenges. The proposed 

feature selection method has been evaluated using the ALL-IDB2 database and 9 

other UCI data sets with diverse dimensionalities from 30 to 10000. It obtains the 

highest classification performances on the employed ten data sets and achieves 

superior trade-offs between feature elimination and classification accuracy, in 

comparison with ten baseline search models. Moreover, the advantages of the 

proposed evolutionary feature selection method become more evident on high-

dimensional classification tasks owing to the enhanced exploration and exploitation 

capabilities. 

 

3) The third contribution is the devising of a GWO-based evolving CNN-LSTM 

method for time series prediction. 

 

Firstly, an enhanced GWO variant is proposed to overcome stagnation at local 

optima and slow convergence rate in the original GWO model. It incorporates four 

distinctive strategies, including a nonlinear dynamic adjustment of search coefficient, 

a chaotic weight allocation scheme for dominant wolves, an enhanced spiral local 

exploitation scheme, as well as Lévy flight-based leader enhancement. The proposed 

GWO variant is capable of overcoming two major limitations of the original GWO 

algorithm, i.e. the insufficiency of exploration owing to the sharp contraction of 

search territory as well as the inefficiency of the fine-tuning exploitation around the 

global best solution, particularly in the final stage of the evolution where 

convergence of the population is required, owing to the distraction of the other two 

wolf leaders. 

 

Subsequently, an evolving CNN-LSTM method is devised based on the proposed 

GWO variant for tackling time series prediction problems. The enhanced GWO 

variant is employed to automatically generate the optimal learning and topological 

configurations for the base architecture of CNN-LSTM network. The proposed 

evolving CNN-LSTM time series forecasting method has been evaluated using three 

time series scenarios, i.e. energy consumption forecast, PM2.5 pollution prediction, 
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and human activity recognition (HAR). It statistically significantly outperforms the 

CNN-LSTM network with default settings as well as seven classical and advanced 

search methods, and demonstrates great advantages in identifying the most effective 

leaning and topological configurations for the base CNN-LSTM architecture. The 

identified configurations by the proposed GWO variant are characterized by 

superior capabilities of feature extraction owing to the higher number of filters in 

convolutional layers, as well as by more appropriate representational capacities 

without suffering from overfitting owing to the moderate numbers of nodes in both 

the LSTM and fully connected layers. 

6.2 Future work 

Despite the great superiorities in tackling major bottlenecks in ML and data mining, i.e. 

feature selection, initialization sensitivity, as well as hyperparameter optimization, the 

proposed evolving ML and DL methods can be further enhanced from two perspectives: i.e. 

reducing the dependence on prior knowledge and human intervention as well as advancing 

the levels of automation when undertaking real-life problems of interest. 

Specifically, the proposed evolving ML and DL models still require certain prior knowledge 

and human intervention to initiate the evolution, such as the number of the nearest 

neighbours in KNN for feature selection, the number of total clusters embedded in data sets 

for KM clustering, as well as the construction of a base CNN-LSTM architecture as the level 

playing field for hyperparameter optimization. However, sometimes it can be very difficult 

to gain the above profound understandings from the raw data sets as well as ML algorithms. 

Therefore, more advanced evolving ML and DL systems need to be developed to achieve 

higher level of independence through improving the flexibility of encoding scheme in EAs 

as well as enabling the co-evolution of different types of parameters associated with both 

data sets and ML models. 

Moreover, the advanced evolutionary automated machine learning (AutoML) platform could 

be developed based on the proposed advanced EC techniques, to provide an easy-to-use ML 

pipeline system capable of automating and optimizing the whole modelling process, 

including data preparation, feature engineering, model selection, hyperparameter 

optimization, and model evaluation. As such, the highly effective ML and DL models could 

be manufactured and customized automatically for the investigated data mining problems, 

without any requirement of ML expertise for practitioners. The potential avenues for future 

works are summarized as below. 
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1) Co-evolution of the number of clusters and the configuration of cluster centroids for 

KM clustering. The proposed evolutionary KM clustering methods require the prior 

knowledge about the number of clusters of the data sets for the identification of the 

optimal cluster centroids. However, such expertise is often absent owing to the lack 

of understandings about the related problem domain. Therefore, it can be extremely 

beneficial to further extend the proposed evolutionary KM clustering method for 

cogeneration of the number of clusters as well as the optimal configuration of 

cluster centroids [312]. The innovative variable encoding schemes as well as 

effective evolution operators need to be developed to resolve the possible 

incongruity, resulted from disparate representations of the underlying clustering 

scenarios among different search individuals. 

2) Discovery of innovative deep neural network topologies. The proposed evolving 

CNN-LSTM method requires a base architecture of CNN-LSTM as the foundation, 

upon which the optimal topological and learning configurations can be evolved. Its 

construction entails profound expertise about DNNs as well as significant trial-and-

error efforts [40, 41]. However, such involvement of human experience and efforts 

in the development of network structures may inadvertently introduce biases into the 

evolving process, which could possibly hinder the discovery of innovative network 

topologies that transcend empirical knowledge. In this regard, I aim to develop 

neural architecture search methods which are capable of exploring extensive 

possibilities of topology with less constraints of conventional experiences. The 

innovative operators of crossover and mutation will be experimented to achieve 

advanced trade-offs between evolution efficacy and computational efficiency. 

3) Development of an evolutionary AutoML platform employing advanced EC 

techniques. An end-to-end AutoML platform could be developed to automate the 

modelling process of applying ML algorithms to tackle real-life problems [313-315]. 

Moreover, the proposed enhanced PSO, FA, as well as GWO methods can be 

implemented into the platform to optimize the essential components during the 

modelling process, such as feature engineering, model selection, and configuration 

identification. As a result, the developed evolutionary AutoML platform is not only 

capable of yielding the highly performant ML models with tailored and optimized 

configurations, but also eliminating any requirement for profound expertise from 

ML practitioners. 

4) Optimization of adaptation capability of EAs. The delicate balance between 

exploration and exploitation plays a crucial role in the capability of attaining global 

optimality for EAs. To be specific, the appropriate proportion of exploration in the 

search process facilitates the adaptation of the population in the long run by 
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sacrificing the temporary short-term benefits. Hence it enables the search to escape 

from local optima traps effectively. On the other hand, excessive degree of 

explorations could result in the slow convergence of the population, which in turn 

undermines search efficiency. Therefore, there exists an optimal threshold for the 

involvement of exploration in the search process to maximize the adaptation 

capability of EAs [316]. However, the identification of the threshold with respect to 

the optimal proportion of exploration in EAs remains an open problem, owing to its 

complex nature, i.e. an optimization process over another optimization process. In 

this regard, I aim to conduct theoretical and empirical analysis on this question to 

gain better understandings about the search dynamics of EAs and hopefully provide 

constructive guidance regarding the settings of optimal exploration rates. 
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