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Abstract 

The work presented in this thesis is concerned with an exploration of the computational aspects 

of the primitive intelligence associated with single-celled organisms. The main aim is to 

explore this “Cellular Intelligence” and its role within Artificial Intelligence. 

The findings of an extensive literature search into the biological characteristics, properties and 

mechanisms associated with Cellular Intelligence, its underlying machinery - “Cell Signalling 

Networks” and the existing computational methods used to capture it are reported. The results 

of this search are then used to fashion the development of a versatile new connectionist 

representation, termed the Artificial Reaction Network (ARN). The ARN belongs to the branch 

of Artificial Life known as Artificial Chemistry and has properties in common with both 

Artificial Intelligence and Systems Biology techniques, including: Artificial Neural Networks, 

Artificial Biochemical Networks, Gene Regulatory Networks, Random Boolean Networks, 

Petri Nets, and S-Systems. 

The thesis outlines the following original work: The ARN is used to model the chemotaxis 

pathway of Escherichia coli and is shown to capture emergent characteristics associated with 

this organism and Cellular Intelligence more generally. The computational properties of the 

ARN and its applications in robotic control are explored by combining functional motifs found 

in biochemical network to create temporal changing waveforms which control the gaits of 

limbed robots. This system is then extended into a complete control system by combining 

pattern recognition with limb control in a single ARN. The results show that the ARN can offer 

increased flexibility over existing methods.  

Multiple distributed cell-like ARN based agents termed “Cytobots” are created. These are first 

used to simulate aggregating cells based on the slime mould Dictyostelium discoideum. The 

Cytobots are shown to capture emergent behaviour arising from multiple stigmergic 

interactions. Applications of Cytobots within swarm robotics are investigated by applying them 

to benchmark search problems and to the task of cleaning up a simulated oil spill. The results 

are compared to those of established optimization algorithms using similar cell inspired 

strategies, and to other robotic agent strategies.  

Consideration is given to the advantages and disadvantages of the technique and suggestions 

are made for future work in the area. 
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The report concludes that the Artificial Reaction Network is a versatile and powerful technique 

which has application in both simulation of chemical systems, and in robotic control, where it 

can offer a higher degree of flexibility and computational efficiency than benchmark 

alternatives. Furthermore, it provides a tool which may possibly throw further light on the 

origins and limitations of the primitive intelligence associated with cells. 
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1. Introduction 

This chapter outlines the background of the project and introduces its aims and objectives. It 

also briefly outlines the original contributions to the art made in the research - which will be 

described in detail in the following chapters.  

1.1 Research Background 

The natural world is rich in examples of elegant solutions to difficult problems. An important 

instance of this is found in the multitude of single-celled organisms which display an 

astonishing array of complex behaviours. Some can avoid light using photo-sensitive spots; 

some actively hunt prey; while others can even build protective shelters (Ford 2009). Such 

behaviours improved these organisms’ chances of survival and arose through the process of 

natural selection. The behaviour of such simple organisms may be labelled as “Cellular 

Intelligence” (CI) (Quevli 1916; Ford 2009). 

In recent years, a growing body of research has explored these behaviours and illuminated the 

remarkable capabilities of single cells to store and process information (Bray 1995; Bhalla 

2003; Ford 2009; Saigusa 2008). Such research is inspired by an interest in the origins of CI 

and the mechanisms of its biological action. The exploration of these has direct benefit to 

humans, for example in medicine and ecology, and is also of deeper philosophical interest. 

The physical mechanisms involved are quite different from those of a digital computer. Within 

a cell, the current state is represented as a set of spatially distributed concentrations of chemical 

species. This data is processed by networks of chemical reactions, termed “Cell Signalling 

Networks” (CSNs). In this way, cells are able to respond to current environmental conditions, 

communicate with other cells, and perform internal self-maintenance operations. As a result of 

work into understanding these systems, several researchers have highlighted the processing 

capabilities of such networks (Arkin and Ross 1994; Bray 1995; Wang et al. 2011) and their 

similarities to Artificial Neural Networks (ANNs) (Bray 1995; Bhalla 2003). For example, it 

has been demonstrated that they can perform Boolean and Fuzzy Logic functions and are 

equivalent to a Turing Machine (Bray 1995; Wang et al. 2011). Furthermore, many CSNs 

contain topological features such as feedback loops, hierarchical and modular structures and 
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multi-level interconnectivity, and can thus form highly complex systems (Bray 1995; 

Kholodenko 2006).  

Biological systems such as these have inspired many powerful Artificial Intelligence (AI) 

techniques- for example: Genetic Algorithms (GAs) (Goldberg and Holland 1988), Particle 

Swarm Optimization (PSO) (Woolard and Fieldsend 2013), and Ant Colony Optimization 

(ACO) (Dorigo et al. 2006). Some of these approaches are based on properties of biochemical 

networks - for example: Artificial Biochemical Networks (ABNs) (Macleod and Capanni 

2010) and Artificial Immune Systems (AIS) (Aickelin et al. 2014).  

One such bio-inspired approach involves abstracting the computational properties of chemical 

processing to create a model called an Artificial Chemistry. Artificial Chemistry is a subfield of 

Artificial Life (A-Life) (Steels 1993) - and in its broadest sense, it describes man-made systems, 

which behave similarly to real chemical systems (Dittrich et al. 2001).  

The overall aim of this project was to investigate the modelling of Cellular Intelligence (CI) in 

general and more specifically its role in AI. The first stage of this was to identify the properties 

and mechanisms of such intelligence, and the existing computational methods used to represent 

it. The results of this study led to the creation of a new Artificial Chemistry (AC) 

representation, termed the Artificial Reaction Network (ARN). Rather than focus on micro-

molecular detail, the ARN aims to capture emergent behaviours arising from a network of 

chemical reactions. The ARN was first validated against standard biological data, and then 

successfully applied to simulate CI associated with the well-characterized CSN of Escherichia 

coli chemotaxis. The computational features of the ARN, including its temporal and chaotic 

dynamics were explored and its operation was contrasted with relevant techniques in both 

Systems biology and in AI. 

Having proved capable of representing the important mechanisms of CI, the ARN provided a 

platform to explore the role of CI in AI.  

CSNs can combine sensory input, motor output, self-maintenance and adaptation in one highly 

sophisticated control system. Thus, one obvious potential AI application of the ARN was in 

robotic control. Such applications were initially examined by using a single ARN network to 

produce complex waveforms to control a variety of gaits in a limbed robot. This network was 

then extended and used to create a complete control system by combining a sensory input and 

motor output. The results show that the ARN offers advantages in flexibility over current 

connectionist AI methods. Further applications in AI were then explored by developing 

simulated cell-like agents termed “Cytobots”. Similarly to the control system of a cell, a 
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Cytobot has its own internal ARN which coordinates sensory and motor tasks. This allows it to 

communicate stigmergically with other Cytobots, receive environmental information which it 

uses to update its current state and trajectory and, in this way, generate high-level behaviour. 

By creating multiple distributed agents within artificial environments, it was possible to explore 

emergent properties similar to those of interacting cells. The ability of the Cytobots’ to capture 

such characteristics was explored by creating a simulation of aggregating cells of the slime 

mould D. discoideum. The results demonstrated the agents’ ability to capture emergent 

behaviour arising from such interactions. These results also highlight the potential to use 

Cytobots in the simulation of interacting cells. 

The ability of the Cytobots to perform useful behaviours in situations similar to those in real 

world environments was demonstrated by a number of other simulations. Interacting groups of 

Cytobots were applied to the task of finding the global minima in several benchmark search 

problems. In each case, they found the global minima with similar capacity to that of 

established cell inspired optimisation algorithms. In a final simulation, the Cytobots were 

applied to the task of cleaning up a simulated oil spill. The results show that they have potential 

application in swarm robotics, where they can provide useful autonomous behaviour within real 

world environments. 

1.2 Aims, Objectives & Research Questions 

In this section the research questions, aim and objectives of the thesis are listed. The research 

questions were used to construct the overall aim of the research. This aim was then broken 

down into the six stated objectives. In the final chapter of the thesis, the accomplishment of 

each of these objectives is discussed.  

1.2.1 Research Questions  

The work reported in the thesis will address the research questions described below.  

1. Can we abstract the computational aspects of Cell Signalling Networks which are 

responsible for generating Cell Intelligence into a simplified mathematical 

representation? 

2. How accurately can such a model represent biological Cell Signalling Networks and 

how does such a model compare against standard Systems Biology approaches to 

modelling biological systems? 
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3. Is such a model capable of generating the emergent behaviour associated with Cellular 

Intelligence? 

4. Can such a model be used to create useful bio-inspired AI? 

5. Does such a method offer additional functionality or improvements to existing 

methods?  

1.3 Overall Aim and Objectives 

The research questions can be summarised by the following overall research aim. 

 

 

 

1.3.1 Objectives 

This aim can be broken down into the objectives described below. 

1. Produce a computational representation of biological Cell Signalling Networks that 

captures the underlying properties and mechanisms of Cell Intelligence. 

2. Evaluate the biological accuracy of the new representation. 

3. Explore the computational capabilities, pattern recognition and temporal dynamics of 

the new representation. 

4. Evaluate the ability of the new representation to capture characteristics of Cell 

Intelligence arising from single cells. 

5. Evaluate the ability of the new representation to capture Cell Intelligence arising from 

multiple interacting cells. 

6. Identify the applications of the new representation within AI and compare them with 

existing methods 

To develop a representation of the computational features from which Cell Intelligence 

arises and to investigate its application within Artificial Intelligence. 
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1.4 Original Contributions to the Art 

Although researchers have created AI techniques based on aspects of CSNs before, there are 

several unique aspects to the approach presented here. The most important of these are listed 

below. These will be explored in detail in the following chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 Chapter Overview 

The thesis can be divided conceptually into three components: 

1. Chapters 2-3 are introductory and contain the project background. 

2. Chapters 4-8 present research, methods and experimental results. 

3. Chapter 9 discusses the results and conclusions. 

An overview of each chapter is given below: 

1. The creation of a new connectionist AI technique “Artificial Reaction Networks” 

inspired by biological Cell Signalling Networks. Outlined in chapter 4. 

2. The production of complex waveforms for control of limbed robotic gaits by 

combining functional motifs found in CSNs within a rate law based connectionist 

system. Outlined in chapter 6. 

3. The construction of the E. coli chemotaxis pathway using a connectionist based 

Artificial Chemistry. Outlined in chapter 5. 

4. The implementation of chaotic dynamics by combining functional motifs found in 

CSNs within a rate law based connectionist system. Outlined in chapter 7. 

5. The production of a complete limbed robotic control system by combining functional 

motifs found in CSNs within a rate law based connectionist system. Outlined in 

chapter 6. 

6. The construction of multiple distributed cell-like agents by combining functional 

motifs found in CSNs within a rate law based connectionist system. Outlined in 

chapters 7 and 8. 
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Chapter 2: Cellular Intelligence 

This is a background chapter which discusses the various aspects of Cell Intelligence. An in-

depth overview of the properties and mechanisms of Cell Intelligence is presented. Its 

computational aspects are then explored and examples within the literature are highlighted. 

Finally, current methods of simulating Cell Intelligence are presented. 

Chapter 3: Artificial Intelligence Inspired by Cell Signalling 

In this background chapter, an overview of the existing AI techniques inspired by the biological 

mechanisms behind Cell Intelligence is provided. The chapter explores various types of 

methods from different sub-branches of AI including - Artificial Immune Systems, Artificial 

Gene Regulatory Networks, and Artificial Neural Networks. 

Chapter 4: The Artificial Reaction Network 

This chapter contains the first original work within the project. It presents a new model - the 

Artificial Reaction Network (ARN), designed specifically to represent the previously identified 

computational mechanisms of Cell Intelligence. This new representation is based on the 

previously reviewed techniques; unlike these models it abstracts only those computational 

features which are important in generating properties of Cell Intelligence. A complete overview 

of the new model is given, from its development and mathematical properties, to its strengths 

and weaknesses. 

Chapter 5: ARN Based Simulation of E. coli Chemotaxis 

This chapter contains experimental methods and results. Using biochemical detail extracted 

from the literature, the ARN is used to simulate the chemotaxis pathway of Escherichia coli. 

This simulation is used as a means to both verify the behaviour of the new representation 

against the properties of biological Cell Intelligence, and to compare it with the results of other 

simulation methods.  

Chapter 6: Spatial & Temporal Properties of the ARN 

In this chapter, further experimental methods and results are presented. These focus on 

examining the capacity of the ARN to perform complex spatio-temporal processing and pattern 

recognition. The applications of such processing are illustrated within limbed robotic control 

and show that the new representation has advantages over existing methods.  
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Chapter 7: Cytobots: ARN-Controlled Agents 

This chapter introduces the concept of multiple distributed processing ARN-based agents. The 

agents are created by combining functional motifs found in biochemical networks and represent 

further novel work within the project. The ARN-agents representation and development are 

discussed in detail. 

Chapter 8: Applications of ARN-agents 

In this chapter the applications of the ARN-agents within biological simulation and in robotic 

control are assessed. A simulation of phases within the life-cycle of the slime mould D. 

discoideum examines the application of the agents as a tool to simulate multi-cellular systems. 

Another experiment, using a simulated oil-spill, is used to consider their application within 

swarm robotics. 

Chapter 9: Summary and Conclusions 

This chapter contains the overall results, summary and conclusions of the thesis. Consideration 

is given to the achievement of each objective, strengths and weaknesses of the project and 

possible future work. 

1.6 Papers in Appendix 1 

Research papers produced during the course of the research are included in Appendix 1. 

Viewed in descending chronological order, the papers provide the reader with a useful 

summation of the research as it developed. Results reported in earlier papers serve as the 

foundations for the research reported at later dates.  

Appendix 1 contains the following papers: 

1. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (in press) ‘Applications and 

Design of Cooperative Multi-agent ARN based Systems’, A Fusion of Foundations 

Methodologies and Applications, Soft Computing, Springer. 

2. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (in press) ‘Exploring aspects of 

Cell Intelligence with Artificial Reaction Networks’, A Fusion of Foundations 

Methodologies and Applications, Soft Computing, Springer. 
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3. Gerrard, C, McCall, J., Coghill, G., Macleod, C. (2013) ‘Artificial Reaction Network 

Agents’, The 12th European Conference on the Synthesis and Simulation of Living 

Systems (ECAL), Advances in Artificial Life, MIT press, Taormina, pp. 957-964. 

4. Gerrard, C., McCall, J., Coghill, G., Macleod, C. (2013) ‘Combining Biochemical 

Network Motifs within an ARN-Agent Control System’, Proceedings of the 13th 

Annual Workshop on Computational Intelligence (UKCI), IEEE, Surrey, pp. 8-15. 

5. Gerrard, C., McCall, J., Coghill, G., and Macleod, C. (2013) ‘Artificial Chemistry 

Approach to Exploring Search Spaces using Artificial Reaction Network Agents’, 

Congress on Evolutionary Computation (CEC), IEEE, Cancún, pp.1201-12. 

6. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2012) ‘Adaptive Dynamic 

Control of Quadrupedal Robotic gaits with Artificial Reaction Networks’, Proceedings 

of the 19th International Conference on Neural Information Processing (ICONIP), 

Lecture Notes in Computer Science, vol. 7663, part 1, Springer, Doha, pp 280-287. 

7. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2012) ‘Temporal patterns in 

Artificial Reaction Networks’, Proceedings of The 22nd International Conference on 

Artificial Neural Networks (ICANN), Lecture Notes in Computer Science, vol. 7552, 

part 1, Springer, Lausanne, pp 1-8. 

8. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2011) ‘Artificial Reaction 

Networks’, Proceedings of the 11th UK Workshop on Computational Intelligence 

(UKCI), Manchester UK, pp 20-26. 
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2. Cellular Intelligence 

2.1 What is Cellular Intelligence? 

For many years, researchers have been interested in the complex behaviours displayed by 

individual cells. For example, simple unicellular eukaryotic microorganisms called protists 

show an astonishingly varied repertoire of seemingly intelligent behaviours. Some have sensory 

hairs, by means of which they can feel their way about and sense their food. While others even 

have locomotory appendages and stinging arrows to actively hunt and subdue their prey (Ford 

2009). Take, for instance, the animal-like protist amoeba, Difflugia. Naturally found in ponds 

and marshlands, this heterotroph uses its pseudopodia to move around its environment and 

catch its prey. It is also one of several amoebozoa to build a microscopic protective shell called 

a “test” from siliceous sand grains in its environment, see Fig. 2. 1 (Ford 2004); this task alone 

is of considerable complexity. It must take sensory input from its environment, correctly 

identify and select sand grains while coordinating movement; then intricately cement the grains 

together with incredible precision. With a demonstration of such complex behaviour it is easy 

to forget that Difflugia are just single-celled organisms.  

 

Fig. 2.1 A Difflugia test about 0.3 mm long. Pseudopodia can be seen extruding from the test. 
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In recent studies, the protist slime mould Physarum polycephalum gained public attention when 

Nakagaki et al. (2000) discovered that it was able to find the shortest path between two food 

sources within a maze. The maze was built from plastic films set on agar gel, with four possible 

routes of different length between the two food sources. The plasmodial slime mould was 

divided into pieces and placed at different positions within the maze. Initially, the pieces of 

plasmodium spread throughout the maze forming a single organism. As it spread, it withdrew 

from dead ends, until eventually it formed a thick plasmodial tube along the shortest pathway 

between the two food sources. This behaviour increased foraging capability, conserved energy 

and thereby increased its chances of survival. A further study by Saigusa et al. (2008) showed 

that, when subjected to a distinct pattern of periodic environmental changes, this simple 

organism was able to learn and change its behaviour in expectation of the next stimulus. The P. 

polycephalum was placed within a narrow lane where, initially, it was free to migrate under 

ambient conditions for a few hours. The conditions of the experiment were then modified by 

subjecting it to periodic 10 minute intervals of less optimal, drier and cooler conditions called a 

“dry simulation”. This continued for a period of time, during which it was observed the 

organism would decrease its speed of locomotion during each dry simulation interval. Dry 

simulation was then discontinued, and continuous ambient conditions were reinstated. 

However, rather than behaving as was previously observed, the slime mould slowed down its 

speed at time points which coincided with those of the dry simulation. The researchers argued 

that this demonstration of recalling and anticipating events were indicative of a “primitive 

intelligence”. 

Unicellular organisms are by no means exceptional in demonstrating such behaviour. Research 

has shown that, without the direction of a nervous system, the cells of animals and plants 

display their own remarkable behaviour. Within living systems, these basic building blocks 

function autonomously, reacting to each other and their environment and cooperating to 

achieve tasks of considerable complexity (Ford 2009). For example, macrophages (a type of 

leukocyte) are specialised immune system cells, that function to protect the body by responding 

to and eliminating pathogens in a process called phagocytosis (see Fig. 2.2). Phagocytosis is 

mediated by an intricate mechanism of pattern recognition, which allows a macrophage to 

identify and distinguish foreign agents from host cells. Pathogens display conserved motifs on 

their surface called pathogen associated molecular patterns (PAMPs). These are identified by 

highly specific pattern-recognition receptors (PRRs) on macrophages. On recognising a 

pathogen, the macrophage PRR binds to the complimentary PAMP, which triggers the 

production of cytokines. The cytokines function to attract further leukocytes to the infected 

area, leading to the engulfment and destruction of the pathogen (Aderem and Underhill 1999). 
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Thus, during phagocytosis, a macrophage displays an elaborate array of behaviours, including 

pattern recognition, location of infected areas, coordination of movement and group attack. 

 

Fig. 2.2 Phagocytosis by a specialised immune response cell called a macrophage. 

These illustrations provide a mere glimpse of the myriad of diverse and complex behaviours 

displayed by living cells. A cell has no brain or neural network with which to process 

information. Nevertheless these examples reveal a kind of “natural intelligence” and thus 

indicate that a form of information processing is somehow taking place. It is worth taking a 

moment to consider the meaning of the term “natural intelligence” and how this relates to the 

more anthropocentric view of intelligence. There is no agreed definition of intelligence and its 

defining characteristics are the subject of much debate and uncertainty (Brooks 1999; Clark 

1997; Dennett 1996). Many view it as the ability to perform human cognitive tasks such as 

mathematical or logical calculations (McCarthy 1960), or, as Descartes argued, the ability to 

use language (Descartes 1975). Others think this view anthropocentric, and consider a more 

“natural” definition based on behavioural attributes which enhance an organism’s chance of 

survival. Such behavioural attributes include: pattern recognition, classification, response, 

communication; learning and self-organisation. These properties, particularly in combination, 

portray purposeful “intelligent” high-level behaviour and are thus all the properties of natural 

intelligence (Ford 2009; Crespi 2001; Ben-Jacob 1998; Dobbyn et al. 2007; Kauffman 1993). 

All forms of life, from higher-level organisms to single-celled amoebas, display these 

characteristics. Therefore, the very unit of life “the cell” must have its own form of natural 
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intelligence. Over the past century, this type of intelligence has been referred to as “Cell 

Intelligence” or “Cellular Intelligence” (Quevli 1916; Ford 2009). 

2.2 The Machinery of Cellular Intelligence 

The following section explores the properties and mechanisms behind Cell Intelligence, and 

discusses its origin. 

In order for a cell to produce the previously discussed high-level behaviours, it must store and 

process information. The mechanisms involved are quite different from those of a digital 

computer. Within a cell’s cytoplasm, the current state is represented as a set of spatially 

distributed concentrations of chemical species (Bray 1995). This molecular “data” is processed 

through biochemical reactions which transform the composition of reactants and, in doing so, 

transform the current state of the system. The products of one reaction correspond to the 

reactants of another, thus forming input and output connections (Bray 1995). In this way, 

chemical data is processed by networks of reactions termed Cell Signalling Networks (CSNs). 

The process is best illustrated by a stylised example. Consider a highly generalised cell, as 

shown in Fig. 2.3. In this cell’s external environment are molecules of food- “protein A”. The 

cell-surface contains molecules of “protein B”; these are specialised transmembrane proteins 

called receptors, and are shaped in such a way that allows them to bind (react) with A. Bound to 

the intracellular component of B, is another molecule “protein C”. When molecules A and B 

link, as shown at step 1, this internal protein, C detaches from the receptor. The free floating C 

molecules diffuse within the cytoplasm as a result of normal thermodynamic forces. Eventually, 

protein C meets another internal protein, “protein D”, as shown in step 2. This has a 

complementary shape to C allowing these two molecules to bind and form a new complex - 

“protein E”. In this example, E is shaped so as to interact with a motor protein, “protein F”, as 

shown at step 3. Commonly, when stimulated in this way, motor proteins contract and allow 

propulsion of the cell towards a beneficial substance - for instance, toward a higher 

concentration of protein A. This phenomenon is called chemotaxis and is described in more 

detail later in the project. CSNs exist within all living organisms and in this way function to 

regulate all internal cellular activity such as changes in gene expression and metabolism. 

Furthermore, CSNs relay signals externally between local cells, distal cells, the environment, 

other organisms and even to themselves. They are a complex system of interconnected intra and 

extracellular distributed reactions, simultaneously processing streams of chemical signals, and 

have topological features such as feedback loops and interconnectivity (Bray 1990; 1995; 

Kholodenko 2006). These networks have evolved to allow an organism to adapt to current 
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conditions by manipulating the spatio-temporal activation levels of its intracellular proteins and 

thereby achieve a pattern that provides an appropriate cellular response.  

 

Fig. 2.3 A highly generalised example of a Cell Signalling Network 

Particular pathways within CSNs, whose components regulate a particular function, are termed 

Signal Transduction Cascades (STC). For example, MAPK pathways utilise a three-tiered 

cascade of protein kinases known as a Mitogen Activated Protein Kinase module or MAPK, 

which communicate receptor signals to the DNA of a cell’s nucleus (Seger and Krebs 1995). 

Although STCs are represented as separate pathways, they often participate in “crosstalk” 

where components of one pathway influence and form components of another (Jones 2012).  

2.2.1 An Example of Cellular Intelligence 

As previously mentioned, chemotaxis describes the movement of cells in response to sensed 

environmental chemical concentrations called chemoeffectors. Unicellular organisms swim 

toward chemoattractants such as amino acids and sugars, and away from chemorepellants such 

as fatty acids and alcohols (Vladimirov and Sourjik 2009). This is vital to their survival, since 

travelling toward chemoattractants allows them to locate food, and moving away from 

chemorepellants prevents their breakdown by harmful substances. 

http://en.wikipedia.org/wiki/DNA
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 It can be shown that CSNs have the principle role in generating high-level behaviour by using 

the chemotaxis pathway of the bacteria E. coli as an example. Here, the high-level behaviour is 

overall movement toward more favourable conditions. The entire signalling pathway for E. coli 

chemotaxis has been identified and, as such, it represents an ideal pathway to explore the 

emergent properties of Cell Intelligence. E. coli is a rod-shaped bacterium commonly found in 

the lower intestine of many animals. The motile strains, as examined here, have an external tail-

like structure called a flagellum that, by way of a motor complex, rotates and results in 

movement. Locomotion manifests itself in the form of two simple behaviours: “runs” 

characterised by smooth linear swims and “tumbles” where the bacteria stops and re-orientates 

in a random direction (Vladimirov and Sourjik 2009). While moving along swimming 

trajectories, chemoreceptors continuously signal the levels of environmental chemoeffectors 

(attractants or repellants). This signal is processed by six cytoplasmic proteins leading to the 

regulation of a motor complex responsible for the operation of the flagellar motor (Vladimirov 

and Sourjik 2009). The motor complex is attached to a bundle of helical flagellar filaments. 

When the motor rotates counter-clockwise (CCW), the flagellar filaments form a trailing 

bundle which, by pushing the cell forward, results in a “run”. When the motor rotates in a 

clockwise direction (CW), the filaments change shape, causing the bundle to separate resulting 

in a “tumble” (Vladimirov and Sourjik 2009), as shown in Fig. 2.4.  

 

Fig. 2.4 E. coli movement by rotation of helical flagellar. Flagellar rotation counter-clockwise (CCW) 

results in a run; and clockwise (CW) results in a tumble. 

The ratio of runs to tumbles is regulated by the intracellular concentrations of the proteins 

within the pathway (Stock and Surrete 1996) and results in a pattern of motion called a random 

biased walk. By comparing concentrations of chemoeffectors (attractants and repellants) in a 
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temporal fashion, the organism is able to reduce the frequency of tumbles up concentration 

gradients of attractants, and down gradients of repellants, thus providing the bias. The resultant 

high-level behaviour is overall travel toward more favourable conditions (Vladimirov and 

Sourjik 2009) as depicted in Fig. 2.5.  

Further examples of high-level behaviour mediated by CSNs can be found in the literature 

(Hellingwerf 2005; Nakagaki et al. 2000; Ben-Jacob et al. 2004). By communicating and 

processing information, signalling networks are responsible for all cell activities and lie at the 

heart of Cellular Intelligence. The information processing units of CSNs are interacting 

chemicals. When connected within a network, elaborate processing capabilities emerge from 

the collection of low-level interactions. The next section will explore this concept by examining 

the computational aspects of CSNs. 

 

 

Fig 2.5 Pathway on an E. coli cell through a gradient of chemorepellant. The pattern of motion is called a 

biased random walk. 
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2.3 Computational Aspects of Cell Signalling Networks 

As previously mentioned, within a cell, data is represented by a set of spatially distributed 

concentrations of chemical species. This molecular data is dynamically manipulated in response 

to external or internal changes with a lag time behind the determining signal. Reactions link 

chemicals together through productive unions (union of reactants triggers production or 

activation of other components) and inhibitory unions (union of two reactants inhibits 

production or activation). Each reaction transforms input signals into output signals, 

manipulating the data at each reaction step. Although signals are commonly chemical 

concentrations, they are not limited to this format. The input signal can take the form of 

temperature, light, mechanical force, or voltage. Likewise, the output signal can take the form 

of generated movement, light production or the formation of macromolecular structure (Bray 

1995).  

The computational properties of such signal processing within biochemical networks are well 

documented. It has been shown both theoretically and in wet lab experiments that such 

networks can perform Boolean and Fuzzy Logic functions and are equivalent to a Turing 

machine (Arkin and Ross 1994; Bray 1995; Dittrich et al. 2001). Evidence concerning the 

computational properties of reactions can be found in a number of independent studies. For 

example, Stadtman and Chock, (1997) demonstrated that the interconversion between 

phosphorylated and non-phosphorylated protein forms can act as a flexible computational unit. 

They showed that by modifying kinetic parameters, these units are capable of a wide range of 

input/output responses. Similar results were documented by Arkin and Ross (1994), who 

examined the computational properties of enzymatic reaction mechanisms and showed that the 

steady-states of such reactions are comparable to Boolean or Fuzzy Logic gates. It was found 

that sharp, digital-like, responses are achieved in cases where enzymes are saturated with their 

substrates; however, within a simple enzymatic reaction model, the steady-state functioned 

similarly to a Fuzzy Logic gate. Hjelmfelt and Ross (1994) demonstrated that a system of 

ordinary differential equations describing iodate-arsenous reactions could be used to store and 

recognise patterns of high and low concentrations. In connected work, Hjelmfelt et al. (1991) 

used enzymatic reaction kinetics to create a chemical implementation of a neural network. It 

was demonstrated that this chemical neuron was able to perform a range of Boolean functions 

and could be used to construct a universal Turing Machine (Hjelmfelt et al. 1991). In more 

recent studies, a number of researchers have developed these ideas; for example, Wang et al. 

(2011), constructed Boolean gates from actual biological proteins present in E. coli, and then, 

by connecting these gates together, was able to perform more complex logical operations. 
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Furthermore, in the field of Molecular Computing, several researchers have built on this work 

and created synthetic biological devices which use chains of reactions to process data, an 

excellent review of which is provided by de Silva and Uchiyama (2007). 

TABLE 2.1 Part A. Structural Motifs in Biochemical Networks 

Structural Motifs Table 1 Part A 
Motif No., Name and 

Description 
Structure 

(in ARN format) 
Biological Example 

1.   Excitatory (E)  
 
The presence of X 
activates Y 

 Elementary motif common throughout most 
pathways. For example- Ras is a membrane 
associated protein that is normally activated in 
response to the binding of extracellular signals such 
as growth factors (Tyson and Novak 2010). 

2.   Inhibitory (Y)      
                               
The presence of X 
inhibits Y. Acts as a 
NOT gate. 

 Elementary motif common throughout most 
pathways. For example- E-cadherin (a calcium-
dependent cell–cell adhesion molecule) suppresses 
cellular transformation by inhibiting β-catenin 
(Tyson and Novak 2010). 

3. Positive Feedback 
Loop (PFL)        
 
The presence of X 
activates Y and in turn 
the presence of Y 
activates X 

 One example is the pathway of caspase activation 
which is essential for apoptosis induction. A PFL 
exists between caspase-3 and caspase-9 (Tyson and 
Novak 2010). 

4. Negative Feedback 
Loop (NFL)    
   
The presence of X 
activates Y and in turn 
the presence of Y 
inhibits X 

 For instance, the proteins Mdm2 and p53 (p53 is a 
tumor suppressor protein) are involved in a NFL 
which functions to keep the level of p53 low in the 
absence of p53-stabilising signals (Tyson and 
Novak 2010). 

5.  Double Negative 
Feedback (DNF) 
 
The presence of X 
inhibits Y and the 
presence of Y inhibits X 

 For instance, BAX is a protein which promotes 
apoptosis by competing with BCL. A DNF is 
formed between the proteins BAX and BCL (Tyson 
and Novak 2010). 

6.     Branch (B)  
                                      
 The presence of X 
activates Y and Z  
 

 For example, the transcription factors such as E2F 
or P53 frequently modulate the expression of more 
than one gene. Enzymes often modify more than 
one substrate e.g. CycB-dependant kinase (Tyson 
and Novak 2010). 

 
Key:                             Either inhibitory or excitatory.                             X/Y/Z:  Chemical species  
 

* Motifs may combine arbitrary numbers of components. 

 

Y X 
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TABLE 2.1 Part B Structural Motifs in Biochemical Networks 

Structural Motifs Table 1 Part B 
Motif No., Name and 

Description 
Structure 

(in ARN format) 
Biological Example 

7.  Logic Gate (LG1)   
AND gate: two 
excitatory connections 
from X and Y. When 
both X and Y are 
present, they activate Z   
NOR gate: two 
inhibitory connections 
from X and Y. Both X 
and Y must be absent 
for Z to be activated                                     
SWITCH: Excitatory 
connection from X and 
inhibitory connection 
from Y. The presence 
of X but not Y 
activates Z 

 
 
 
 
 

AND: The protein gCam 2 kinase becomes active 
when both calcium ions (Ca2+) and Calmodulin 
(CaM) are present (Bray 1995). 
 
NOR: The activity of transcription factor E2F is a 
NOR function of RB and CycB where E2F is 
active when both RB and CycB are inactive 
(Tyson and Novak 2010). 
 
SWITCH: The enzyme aspartate 
transcarbamylase has multiple catalytic sites. It is 
activated by the binding of its substrates 
(aspartate and carbamoyl phosphate) and 
inactivated by cytidine triphosphate causing its 
substrates to dissociate (Bray 1995). 

8. Logic Gate (LG2) 
                              
OR Gate: two 
excitatory connections 
from X and Y when 
either X or Y are 
present they activate Z 

 Ras is a membrane associated protein that is 
activated by a number of different signals. E.g. in 
response to the binding of extracellular signals 
such as a number of growth factors (Tyson and 
Novak 2010). 

9. Oscillator (OSC)   
                              
The presence of X 
activates Y. In turn the 
presence of Y activates 
Z but inhibits X. The 
presence of Z inhibits 
Y and activates X. 
 

 
 
 
 

The cyanobacteria clock protein KaiC has a well-
defined closed cycle of phosphorylation and 
dephosphorylation states (composed of KaiA, 
KaiB and KaiC). In the motif shown here, all 
three components oscillate and each inhibits the 
reaction clockwise. Oscillators may have less 
inhibitory connections, the number of which is 
dependent on the mobility of the reaction species. 
However, the presence of all inhibitors increases 
stability in the presence of fluctuating 
environmental parameters e.g. temperature. 
*Note that this oscillator can also be thought of as 
a PFL (motif 3) combined with a system of DNFs 
(motif 5). 

 
Key:                             Either inhibitory or excitatory.                               X/Y/Z:   Chemical species  
 

* Motifs may combine arbitrary numbers of components. 
 

 

A number of researchers have identified structural motifs within CSNs which perform distinct 

computational functions (Tyson and Novak 2010; Bray 1995). A summary of these structures 

and of the most common motifs is provided in Table 1 parts A and B; a more detailed 

discussion is provided by Tyson and Novak (2010). The motifs are shown for simplicity as two 

or three component forms but there are larger versions with the same function; for example, an 
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additional component may be added to motif 9 to create a four component oscillator. Such 

oscillators produce a periodic change in chemical concentrations and many illustrations of these 

motifs can be found within the literature (Tyson and Novak 2010; Bray 1995; Kholodenko 

2006). One important example is the universal signalling motif of a phosphorylation cycle. 

Here a signalling protein is interconverted by opposing enzymes (a kinase and a phosphatase) 

between its phosphorylated (Yp) and non-phosphorylated forms (Ys). In a multisite 

phosphorylation cycle, positive or negative feedback from either form can cause oscillations 

between stable states or render the cycle into a bistable switch, where the low and high Yp 

concentrations correspond to “on “and “off” states (kholodenko 2006). A cascade of such 

bistable cycles can produce multiple stable states, allowing the control of many cellular 

functions. For example, the cell’s transition into mitosis is governed by the sequential 

activation or inactivation of such kinases (CDK1/Cdc2) (Kholodenko 2006).  

Another motif (motif 7, Table 1), is a logic gate. For example, consider a protein with two sites 

that may undergo phosphorylation. If the protein is active when both sites are phosphorylated, it 

is similar to a Boolean AND gate. Alternatively, if this protein is active when either site is 

phosphorylated, it is analogous to a Boolean OR gate (motif 8, Table 1). The activity of the 

response is determined by kinetic factors such as binding affinities – or, using reaction kinetic 

terminology: the reaction rate, reaction order and concentration of the reacting molecules. 

Where conditions are highly reactive, a processing unit acts like a molecular switch giving a 

sharp binary on/off response - or, in cases of lower reactivity, a unit may provide a more 

gradual response more comparable to Fuzzy Logic.  

Another important feature of CSNs is their ability to amplify a faint signal and generate a 

considerably greater response. Amplification occurs when there is an increase in the absolute 

number of output molecules compared to the number of input molecules. For example, branch 

motifs (motif 6, Table 1) allow amplification, because a single ligand activates a protein, which 

proceeds to trigger numerous targets. Each of these proteins then initiates a cascade of 

signalling events, where, at each step, there is a potential for similar amplification, thus 

generating a response signal on a scale much larger than the original signal (Bray 1995).  

It is not difficult to imagine how a system with such elaborate processing abilities could be 

configured to perform highly complex computational tasks. In fact, many researchers have 

argued that CSNs have many features in common with the AI technique “Artificial Neural 

Networks” or ANNs (Bray 1995; Bhalla 2003; Hellingwerf 2005). This technique was itself, 

inspired by a form of cell signalling, when, in 1943, McCulloch and Pitts demonstrated how a 

highly stylised representation of a biological neuron could perform a variety of logical 
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processing. The original idea has since been developed considerably, notably by Rosenblatt 

(1957), who developed the first learning algorithm, and by Werbos (1974) who was one of the 

first to propose the well-known Backpropagation training technique. It has since been shown 

that a layered network of artificial neurons is capable of performing any logical operation and 

demonstrates the ability to recognise patterns (Rumelhart and McClelland 1986).  

ANNs have proved extremely useful in many applications involving pattern recognition and in 

fields such as robotic control (Rumelhart and McClelland 1986). The similarities drawn 

between ANNs and CSNs are based on computational attributes and ignore the obvious 

differences between their implementation. Bray provides an excellent comparison (Bray 1995), 

the main points of which are summarised here: 

1. Both CSNs and ANNs are networks composed of highly-connected parallel distributed 

units. Each unit amplifies or attenuates and then simultaneously integrates and 

processes signals. In a CSN, it is a reaction which integrates and transforms a number 

of signals into an output, while in an ANN this is performed by the activation function 

of a neuron.  

2. Both networks can have “hidden layers” of processing units. In a CSN, intermediary 

reactions function like those of the hidden units found in a neural network, where the 

overall output is the collective result of internal processing.  

3. Both ANNs and CSNs are able to recognise patterns. In a CSN, patterns are composed 

of a number of input signals such as the presence of concentrations of particular 

chemical species within the environment.  

4. Both ANNs and CSNs are robust. CSNs are able to recognise patterns, while ignoring 

irrelevant chemicals (noise), even when the signalling pathway has been degraded. This 

robustness is also found in ANNs, where the correct response to input patterns is still 

generated in the presence of noise and loss of units. 

A significant difference between CSNs and simple traditional ANNs relates to the dimension of 

time. Time was not represented in the original ANN model, and its output was thus static. In a 

CSN, time is implicit, and a continuous response is generated. The time taken to respond to an 

input signal depends on numerous factors. For example, molecular diffusion rates through the 

cytoplasm are subject to molecular size and forces between neighbouring molecules.  
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The computational features discussed in this section act in concert to provide the level of 

processing required to generate emergent high-level behaviour in cells. Thus a CI inspired AI 

technique should incorporate such properties. 

2.4 Representations of Cell Signalling Networks 

Models of CSNs provide a means to examine complex relationships between receptor stimuli 

and cellular responses. They also offer insights into the mechanisms responsible for 

characteristics such as signal amplification, robustness, oscillations, and emergent behaviour. 

Furthermore, increased understanding of cell signal processing enables researchers to explore 

and predict the effects of disease and the outcome of pharmaceutical intervention. Traditional 

biology has focused on the examination of biological systems by reducing them to their 

individual parts, and studying them in isolation. This reductionist approach has proven 

unsuitable for representing the complex dynamics of CSNs, where cellular response is tightly 

regulated by the elaborate intracellular spatial and temporal dynamics of interconnected 

signalling molecules. In contrast, Systems Biology offers a holistic approach in which the entire 

system is examined in terms of interactions between its component parts. This approach 

emerged as a distinct discipline in the late 1960’s, when Mihajlo Mesarovic (1968) described it 

as the use of systems theory to explain biological phenomena. However, interest was limited 

until the birth of functional genomics in the 1990s. This resulted in a considerable growth in 

availability of quality biological data and together with the exponential increase in 

computational power, allowed more realistic computational models to be constructed. 

Consequently, there are now numerous methods of representing networks of chemical 

reactions, ranging from the meticulously detailed quantum mechanical models to the highly 

abstracted discrete Boolean ones. Savageau (1988) provides a descriptive diagram of this 

spectrum, and this is summarised in Fig. 2.6.  

Quantum mechanical wave models DiscreteStochastic 

Potential energy models Continuous/Deterministic 

Probability distribution models Discrete/Stochastic 

Ordinary differential equation models Continuous/Deterministic 
Abstract machines Discrete/Stochastic 

Boolean functions Discrete/Deterministic 

Fig. 2.6 Spectrum of detail in representations of biochemical systems. 

After figure in: Savageau M. (1988) Introduction to S-Systems and the underlying power-law formalism. 
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The choice of representation used depends upon the information one intends to extract from the 

model. For example, if the interest lies in reaction occurrence alone, simple Boolean functions 

would suffice. The study of Cellular Intelligence requires a representation which focuses on 

emergent global behaviour resulting from complex spatio-temporal interactions and network 

topologies. A common problem with modelling such a system, is achieving a balance between 

scope and detail. Too narrow a scope would result in insufficient predicative power; 

conversely, increasing the scope results in addition of parameters, which quickly escalate 

beyond manageable levels (Aldridge et al. 2006). 

Starting from the top of this hierarchy, the next sections provide an overview of the most 

relevant techniques, that is, those which are able to capture any of the previously discussed 

properties and mechanisms of CSNs. As it is not practical to represent networks of reactions at 

the quantum level, techniques residing at the top of this hierarchy such as the quantum 

mechanical wave function will not be considered. However, particular attention is given to 

those techniques which incorporate both the temporal dimension and the parallel distributed 

processing nature of CSNs. 

2.4.1 Potential Energy Models 

Potential energy functions represent the thermodynamic properties of systems by considering 

the potential energy of their component reactions. By creating “potential energy landscapes” of 

CSNs it is possible to study global properties such as robustness. If the steady-state distribution 

of reactant species is known, a link can be drawn between the probability of a configuration 

state (concentration) and its associated potential energy. In a CSN, the probability of a 

molecular species being in a particular state will be higher if its associated energy within the 

landscape is lower (Wang et al. 2006). A similar energy technique exists that uses Gibbs free 

energy (Hong et al. 2005). Such models can provide insight into global behaviour, stability and 

robustness, but are limited by their inability to represent complex network topologies and 

temporal dynamics in a computationally efficient way. Furthermore, the use of the “energy 

landscape” does not facilitate their simple use in systems with conventional inputs and outputs. 

2.4.2 Probability Distribution Models 

Probability distribution models represent the stochastic properties of signal transduction. These 

use statistical models of molecular behaviours to calculate the probability distribution for each 

alternative behaviour occurring. There are numerous techniques available to do this, such as: 

Bayesian Networks (BNs); Markov Chains (MCs) and Stochastic Simulation Algorithms 

(SSAs).  
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BNs have recently drawn interest for their ability to infer CSNs from experimental data (Woolf 

et al. 2005). Here reactive species are represented as variables, each having an associated 

probability table. This table contains possible concentration levels (states) according to the 

presence of other reactant species. Such networks are disadvantageous in that they are acyclic 

and static and thus modelling feedback regulatory mechanisms and temporal dynamics is not 

viable.  

SSAs are popular stochastic simulation methods based on the Chemical Master Equation (Stoll 

et al. 2012). One example is the Gillespie Algorithm which is used to predict which reaction is 

likely to occur and at what time (Gillespie 1977). The Chemical Master Equation is a linear 

differential equation which describes the probability that the chemical system will be in a 

particular state at a set time. The Gillespie Algorithm samples the probability space using a 

Monte Carlo step and in this way generates an exact distribution for the Chemical Master 

Equation. This method accounts for the randomness inherent in molecular reactions, and is 

useful in examining the effects of microscopic variations (Stoll et al. 2012). Its main 

disadvantage is computational cost, which can be high, particularly when elapsed time between 

reactions is small. Furthermore, it assumes a well-stirred reactor and thus compartmentalisation 

is not modelled. Finally, only few reactants can be simulated because every reaction is 

explicitly accounted for. 

In MCs, the current state of the chain is determined by the amount of molecules present. 

Reactions are represented as transitions between these states (Calder et al. 2006). Using MCs, 

one can gain information with regard to the steady-state probability distribution of a CSN; 

however, this is only possible in the absence of feedback mechanisms (Decraene et al. 2007).  

2.4.3 Ordinary Differential Equation Models 

A very common method used to model biological systems is ordinary differential equations 

(ODEs). These models are popular since they use continuous data and are able to accurately 

represent underlying system dynamics (Eungdamrong and Iyengar 2004). They also link the 

forward and reverse rates of a reaction with other measurable reaction parameters. The most 

popular of the ODE models are discussed below. 

A well established and popular model is the Rate Law equation. This describes the progress of 

a reactant or product concentration through time. Before introducing the model, the kinetics of 

a typical reaction are briefly examined.  

http://en.wikipedia.org/wiki/Master_equation
http://en.wikipedia.org/wiki/Master_equation
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In general, the initial rate of a reaction is relatively large, and gradually decreases to zero. 

Typically, a reaction plot of product concentration versus time would produce a convex-up 

increasing graph, as shown in Fig. 2.7. The derivative of the curve at time t corresponds to the 

instantaneous rate of the reaction, while the average rate is given by the final product 

concentration divided by the total time.  

 

Fig 2.7 Typical reaction kinetic plot showing product concentration vs. time. 

Reactions are often defined as being reversible or irreversible; a reversible reaction being one 

which results in a stable chemical equilibrium mixture of reactants and products. The net rate of 

species generation is equal to the sum of the forward and reverse rate Eq. (2.1) (Morris 1974). 

At equilibrium this is approximately zero. 
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terms contributing to system influx the second ( ji
r DCk ][][ ) to decay of products. In each term, 

a set of concentrations ([A], [B], [C], [D]) are raised to a power which defines the order (g, h, i, 

j), with respect to the reactant or catalyst, and multiplied by a rate constant (kf or kr) (Morris 

1974). In a non-reversible reaction between reactants A and B, the reverse term is removed 

from the expression. The rate constant defines the proportion of molecules that react in the 

particular process per unit time. In an elementary reaction (one with no intermediate steps) the 

order determines how many molecules are involved in the reaction for each unit of chemical 

concentration. Zero order, with respect to a reacting species, indicates that this concentration 

will not affect the rate of reaction. The overall order of the reaction is determined by totalling 

the orders of each chemical species (Morris 1974).  

The Rate Law equation, like other ODE models, is able to provide an accurate representation of 

temporal dynamics. However, in its basic form it does not provide a means to clearly visualise a 

complex network of chemical reactions. Furthermore, like most ODE models, it does not 

account for the intracellular spatial distribution of chemical species into localised compartments 

- an attribute termed “compartmentalisation”. Instead it assumes the cell is a well-stirred reactor 

(Decraene 2007; Eungdamrong and Iyengar 2004). This localisation restricts which molecules 

may react, thus affects the overall dynamics of the system. Representing the spatial distribution 

of chemicals allows fine-grained control over the system dynamics and thus is highly beneficial 

when modelling biochemical circuitry. For example, it allows the representation of flow 

structures such as membrane channels, transport processes and network motifs, and provides a 

means to explore disease pathways (Kreyssig and Dittrich 2011). To address this issue, 

compartmental ODE models have been developed which achieve coarse representations of 

these compartments (Eungdamrong and Iyengar 2004). In these methods, the same molecular 

species may occupy many different compartments; however each compartment is treated as 

though it were a separate species. Molecular exchange between compartments is modelled as a 

flux; this is then used to update compartments associated with the exchange. For coarse 

approximations, this type of model is appropriate. However, such models are inappropriate for 

fine spatial detail, as the number of compartments and therefore variables quickly increase 

beyond manageable levels (Eungdamrong and Iyengar 2004). Another adaptation is to use 

Partial Differential Equations (PDEs), where concentration of molecular species is a function of 

time and space. These however have the disadvantage of being more complex, computationally 

intensive and non-intuitive (Eungdamrong and Iyengar 2004).  

S-Systems are based on the Rate Law and are another popular ODE representation. They have 

been used to model biological systems since the late 1960s (Savageau and Voit 1987). 
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Similarly, to the simple Rate Law, each ODE is composed of species concentration variables, 

raised to a power and multiplied by rate constants, as shown in Eq. (2.3). Again, each ODE is 

equal to the difference between two distinct functions; the first term includes all terms 

contributing to system influx, the second to decay. The first half corresponds to the basic 

forward reaction. Where the rate of change of product j ([Pj]), is given by the forward reaction 

rate (the speed of the reaction) labeled kf, multiplied by the product of the concentrations of the 

N reactants [Rn], each raised to the power of its reaction order αn. The second term represents 

the decomposition of product back into its original reactants. This depends on the reverse 

reaction coefficient kr multiplied by the product of the concentrations of the M products [Pi], 

each raised to the power of its reaction order βi. 
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To illustrate this further, consider the common reaction between two reactants labelled A and B 

with reaction orders (the number of molecules of each reactant used to make a molecule of 

product) of q and w respectively. These produce a single product P. The order of the reverse 

reaction is one. Eq. (2.3) is then reduced as described by Eq. (2.4).  

 ][][][][ PkBAk
dt
Pd

r
wq

f −=   (2.4) 

In S-Systems, a group of rate equations are normally set up - one for each reaction. The left 

hand of each equation is then set to zero and they are then solved simultaneously to yield the 

steady-state response. If the dynamic responses are required, then numerical solution methods 

like Runge-Kutta are normally applied.  

There is little difference between an S-System representation of a reaction and its 

representation as a Rate Law. Essentially the distinction between the two is that the S-System 

simply provides a more generalised way of representing a set of reactants and products. Thus 

the Rate Law and S-System representation share the same advantages and disadvantages. 

Another popular ODE equation, introduced in 1913, is the Michaelis-Menten equation (Morris 

1974). This is used to model the kinetics of enzymatic reaction kinetics. Its mechanism can be 

represented as shown in Fig. 2.8. 
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Fig. 2.8 Michaelis-Menten mechanism of enzymatic reactions 

The first reaction represents the enzyme E reacting reversibly (forward rate is kf  and reverse 

rate is kr) with the substrate S, to produce the enzyme substrate complex ES. The second 

reaction, (often an allosteric change), produces the reaction product P (rate is ks), and the 

enzyme returns to its disassociated state. The two differential equations shown in Eq. (2.5) and 

(2.6) give the kinetics of the above reaction.  
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The only essential difference between the Michaelis-Menten equations and the Rate Law is that 

an additional intermediate reaction which forms the enzyme substrate complex is specifically 

accounted for. Thus it provides a more accurate account of the specific dynamics of such 

enzymatic reactions. However, it means that it is restricted specifically to modelling of 

enzymatic reactions only. Aside from these points, the Michaelis-Menten model shares the 

same advantages and disadvantages as other ODE models.  

Many Michaelis-Menten based models are systems of the above equations; however, others 

have used these equations in different ways. For example, the AB-neuron (Eikelder et al. 2009) 

is an abstract mathematical representation of phosphorylation cycles within CSNs. It has a 

connectionist representation where reactions form weighted links between substrates. The 

Michaelis-Menten equation provides the output of each reaction and represents the steady-state 

concentration of the product. The AB-neuron was developed as part of the ESIGNET (2011) 

project and has been used to successfully predict reaction rates of phosphorylation cycles. In its 

current state, it may be used to model enzymatic reactions, but does not account for transient 

dynamics between steady-state equilibrium. 
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2.4.4 Abstract Machine Models 

A number of Abstract Machine models have been used to simulate chemical systems. These 

can be broadly classed into Algebraic Process Calculi (PC) and State Transition Systems. 

Abstract Machines offer discrete models and are widely used to study parallel distributed 

concurrent processing.  

One important example of a State Transition System is the graphical and mathematical 

modelling tool called a Petri Net (PN). This is used extensively in several types of information 

processing, including modelling CSNs (Balden et al. 2010). In a similar way to UML (Unified 

Modelling Language), the graphical notation of PNs is useful as a visualisation and 

communication tool; however, it also provides a precise mathematical definition and theory for 

process execution and analysis (Murata 1989). The graphical representation, shown in Fig. 2.9, 

takes the form of a bipartite graph composed of two types of nodes called places (circles) and 

transitions (boxes/bars). Arcs, shown as directed, weighted (positive integer) lines, represent 

transitions (reactions) from either a place to transition or transition to place. “Input places” 

(representing reactants) describe the places from which an arc runs to a transition, whereas 

“output places” (representing products) describe the places to which an arc runs from a 

transition.  

 

Fig.2.9 A Petri Net for the formation of water is described in (a). The Petri Net in (b) describes the state 

prior to formation, and (c) after products have been formed. 

Each place contains 0 or a positive number of tokens (black dots). A “marking” describes the 

current value of tokens assigned to each place and represents the current state of the PN. If a 

token is present within the place then a condition has been met. Each transition represents an 

event, where the input place tokens represent pre-conditions and similarly the output place 
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tokens represent post-conditions to that event. A transition may “fire” (a reaction occurs) 

whenever the correct number of tokens (pre-conditions) are present in each input place. The 

action of firing is atomic and the tokens used within the transition are placed in the output 

places. For example, as shown in Fig. 2.9b, the required tokens are present in each input place 

and thus preconditions for the formation of water have been met. Fig. 2.9c shows the state of 

the PN after the transition has fired and the post-conditions have been met (Murata 1989). 

Many extensions to the original PN have been proposed within the literature. One such example 

is the addition of test and inhibitor arcs (Agerwala 1974). A test arc verifies the presence of a 

token in an input place without consuming it. If a token is present in a place connected to an 

inhibitor arc, the transition will be prevented from firing. In biological systems, test and 

inhibitor arcs are particularly useful. For instance, a test arc may model the role that enzymes 

play in reactions (enzymes are needed for a reaction to take place, but are not consumed). 

Another example are Functional PNs (FPNs), which represent arc weights symbolically as 

functions of the number of tokens in places (Hofestadt and Thelen 1998). In the case of 

biological systems, these are used to model the way in which variations in species 

concentration may influence the reaction. Other PN extensions provide means to represent 

temporal system dynamics. For example, Time Petri nets (TPNs) (Merlin and Farber 1976) 

include a time interval associated with each transition, where each transition must fire within 

that time period. 

PNs are designed for modelling parallel distributed processing systems, making them a 

powerful tool in the representation of CSNs. By separating chemical species spatially, places 

provide a means to model compartmentalisation and facilitate the fine-tuning of species 

parameters. In their basic form their limitations are similar to other discrete models, particularly 

their inability to represent time. Furthermore, they cannot represent reversible reactions, 

different chemicals (all tokens are the same) or external connections to the pathway. 

Extensions, such as those discussed above have been used to address these problems, although 

none offer ideal solutions. 

Algebraic Process Calculi methods (also referred to as Term-Rewriting Systems) represent 

reactants as multisets of algebraic terms. Examples used to model biological systems are 

Chemical Abstract Machines (CHAM) (Berry and Boudol 1992) and AlChemy (Fontana 

1992), which is based on λ-calculus. CHAM is an extension of the T-language introduced by 

Banâtre et al. (1988). In CHAM the reactants are represented by algebraic terms, the population 

of which is organised as a finite multiset. Reactions are defined by transformation rules which 

rewrite multisets, matching the reactant side of the rule with the product multiset. Typically 
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these types of model represent the reaction vessel as a well-stirred reactor, and thus do not 

account for spatial compartments. Algebraic Process Calculi methods are used extensively in 

the field of Artificial Chemistry, and are described in more detail in the next chapter.  

2.4.5 Boolean Function Models 

Boolean Networks, introduced by Stuart Kauffman, are an example of dynamic networks, 

where both time and state are discrete (Kauffman 1969). They were first used to describe Gene 

Regulatory Networks, where the state of a gene is described by a Boolean variable expressing 

an active (on:1) or inactive (off:0) state. This simple representation has since been used to 

describe the occurrence of a reaction (Davidich 2008). They consist of a set of n-logical nodes, 

each corresponding to a protein. Each node state is determined by its set of connected nodes, 

the states of which serve as input variables. These inputs are subject to a Boolean function 

representing the interaction between elements. This is used to calculate the nodes’ current state 

and each node state is updated synchronously. 

Many extensions to the original Boolean Networks have since been developed. For example, 

Random Boolean Networks (RBNs) have random initialisation of connections and logical 

functions (Gershenson 2004). The original Boolean Networks (which are termed Classical 

RBNs (CRBNs)) use a synchronous updating scheme. This has been criticised, as neither gene 

nor reactions change their states at the same instant (Harvey and Bossomaier 1997). As a result, 

variations in updating schemes have been developed. Harvey and Bossomaier (1997) 

introduced asynchronous RBNs (ARBNs) where a random node is selected and updated at each 

time-step. Unlike CRBNs, ARBNs are non-deterministic. In order to maintain asynchronicity of 

ARBNs and the deterministic properties of CRBNs, Gerhenson (2002) later developed 

Deterministic Asynchronous RBNs (DARBNs).  

In their general form, Boolean Networks are computationally cheap due to their innate 

simplicity, and are focused on emergent network properties. However they discard most unit 

behaviour, preferring a binary switch response rather than continuous signals, and therefore 

cannot capture subtle system dynamics. 
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3. Artificial Intelligence Inspired by 

Cell Signalling 

The previous chapter explored the emergent behaviours associated with CSNs and provided a 

critical analysis of the mathematical and computational methods used to model such behaviour. 

This chapter provides a review of the literature on AI techniques inspired by these biochemical 

reactions. 

 As already described, networks of biochemical reactions exhibit characteristics of self-

organisation, robustness, fault tolerance, adaptability, and functional emergence. Such attributes 

are frequently desirable in computer systems. This has led researchers to abstract properties and 

mechanisms from these biochemical networks to create AI systems to solve current real-world 

problems. Many of the techniques described in the previous chapter have application as 

biological simulators, but also in AI. Thus, there is a broad overlap in their field of application. 

Generally, in AI, these techniques are used to create highly abstract models, while, when 

applied to Systems Biology, the models tend to be analogues of the biological system. Usually, 

the aims of AI and Systems Biology researchers are distinct and thus techniques are exploited 

in different ways for distinct purposes. However, sometimes the motivation overlaps. For 

example, AI researchers are also interested in the origins of intelligence and even in the 

mechanisms involved in the evolution of the first life forms, for example, studying the 

autopoiesis of cells (McMullin 2004). Gaining an understanding of such processes means they 

can be exploited to create powerful AI solutions.  

The first section of this chapter provides a brief introduction to bio-inspired AI. This is 

followed by an overview of Artificial Chemistry, that is, man-made systems which exploit the 

properties and mechanisms of natural chemical systems. The most relevant of these AI models 

are then discussed in the remaining sections, that is, those which take into account the linkage 

of chemicals through interactions, and consider temporal dynamics. Only models which can be 

programmed on conventional computers are considered. Thus, Artificial Chemical systems 

implemented from organic components such as Reaction-Diffusion systems (Adamatzky et al. 



32 

2005), molecular devices (Zauner and Conrad 2001), or those implemented as electrical 

circuitry, for example, Reaction Diffusion Cellular Neural Networks (RDCNN) (Arena et al. 

1999) are not discussed. The reviewed techniques are organised into six sections. These are 

techniques based on the: endocrine system, nervous system, immune system, metabolic system, 

gene regulatory system and chemical reaction systems in general. 

3.1  Introduction to Bio-inspired AI 

AI can be divided into two main branches: Bio-inspired Computing (also known as Natural 

Computing) and Symbolic AI. The focus of Bio-inspired Computing is to develop 

computational solutions to complex real-world problems based on ideas gained from the study 

of living systems. In particular, natural principles such as interaction, adaptation, selection, and 

emergence are used. In contrast, Symbolic AI, aims to develop computational solutions which 

emulate human intelligence, using symbolic expressions and rules of manipulation. Alan 

Turing and John Von Neumann are among the first to suggest that principles from the natural 

world could be used to solve computational problems (Turing 1952; Neumann 1958). Bio-

inspired AI has proven extremely powerful and has expanded enormously since its birth. Many 

subdivisions now exist, for example: Artificial Life, Evolutionary Computing, Neural 

Computing, Cellular Automata, and Swarm Intelligence. Three of the most established of these 

techniques are Evolutionary Computing, Neural Computing and Cellular Automata. 

Evolutionary Computing encompasses techniques which are based on Darwinian evolutionary 

principles. Neural Computing techniques are inspired by the nervous system, particularly the 

parallel distributed nature of processing found in neural networks. Cellular Automata 

techniques, like many biological systems, consist of simple components which, through 

multiple low-level interactions give rise to emergent behaviours.  

By using Genetic Algorithms (Rajasekaran and Vijayslakshmi 2011) as an example it can be 

illustrated how features seen in nature can be abstracted into an AI representation. Genetic 

Algorithms (GAs) belong to the Evolutionary Computing branch of bio-inspired AI. They are a 

type of search heuristic which use evolutionary principles such as mutation, crossover, fitness 

and selection to find and to optimise solutions to complex problems. The basic steps are as 

follows. The first stage is to randomly initialise a population of solutions, the size of which 

depends on the nature of the problem. Each solution is composed of a number of values such as 

binary strings. These values represent the chromosome or genotype within the genotype 

phenotype relationship. A process of fitness evaluation, selection and breeding is then repeated 

until a solution which meets the fitness criteria is gained. The probability of a particular 

http://en.wikipedia.org/wiki/Evolution
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solution being selected for breeding is based on its fitness. The breeding population are then 

used to create the next generation. Here certain members are selected to swap chromosomal 

information between each other in a process called crossover and further variation is introduced 

by applying random mutation. The idea is that as the GA progresses, the members of each 

generation evolve towards higher fitness until eventually finding a solution which meets the 

fitness criteria (Rajasekaran and Vijayslakshmi 2011). The process for a highly generalised GA 

can be summarised in the pseudocode below: 

Initialise the population 

WHILE fitness condition not met 

Evaluate fitness 

Prune population 

Selection 

Crossover  

Mutation 

END WHILE 

 

3.2 Artificial Chemistry  

Artificial Chemistry (AC) is a sub-branch of Artificial Life (A-Life). A-Life is the study of the 

organisational features and processing mechanisms found within living systems through 

simulations, robotics and synthetic biology. Its working hypothesis is that by following the 

organisational principles of a living system, it is possible to artificially generate desirable 

behaviours characteristic of that system. In A-Life emergence through interacting components 

is a central concept. In a similar way, AC exploits the organisational features, computational 

properties and underlying mechanisms of chemical systems to create useful artificial 

representations. It can be broadly described as a "man-made system which resembles a 

chemical system" (Dittrich et al. 2001). There are two main branches of AC: Molecular 

Computing devices, where computation is achieved using real chemicals (Dittrich et al. 2001; 

de Silva and Uchiyama 2007), or alternatively, by utilising the principles of the Chemical 

Metaphor to construct novel software or hardware architectures in silico (Dittrich et al. 2001). 

The latter approach is termed Artificial Chemistry Computing (ACC) and is the focus of this 

literature review. In the Chemical Metaphor, data is stored in the form of molecular species and 

information processing occurs through interactions (reactions) between these molecules. The 

result of this computation appears as emergent global behaviour (Dittrich et al. 2001).  

http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Simulation
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ACC is used in two main applications: simulating complex systems (biological, social or 

ecological) and in developing novel solutions to engineering or computational problems.  

Most AC systems can be defined formally by three components. The first component, C, is the 

set of reacting chemicals where C= c1, ... cn and n may be infinite. Chemicals may be written as 

symbols, strings, numbers, or expressions. The second component, R, is the rules governing the 

reactions between the chemicals and these may be written in chemical notation form, for 

example: 

2H2 + O2 → 2H2O 

The general structure of a rule is shown below: 

s1 + ... sn → p1 + ...pn 

Here, the components on the left-hand side (reactant species s1...sn) react and are replaced by 

components on the right-hand side (product species p1 ...pn) (Dittrich 2001). The final 

component, “A”, is an algorithm describing the reaction vessel and how these rules are applied 

(Dittrich 2001). For example, the algorithm determines when and how often to apply the rules. 

It also defines the global parameters such as temperature, and pressure of the vessel.  

ACC approaches can be broadly categorised into microscopic or macroscopic methods 

(Dittrich et al. 1997). Microscopic methods treat each molecule explicitly, while in 

macroscopic methods all the molecules of one type are represented by a value signifying, for 

example, concentration. The dynamics depend largely on whether the ACC representation of 

molecules is macroscopic or microscopic. Microscopic ACCs tend to model dynamics as 

stochastic molecular collisions, while macroscopic ACCs frequently model the dynamics as 

continuous differential or discrete difference equations. Alternatives exist such as combinations 

of the two, or metadynamic methods where the rules of the reaction vessel change over time 

(Dittrich et al. 2001). 

3.3  AI Inspired by Reactions of the Endocrine System 

In mammals, the endocrine system produces and stores chemical signals called hormones. 

These chemicals function to regulate bodily processes and maintain a steady internal state 

(homeostasis), despite continuous fluctuations in external environmental conditions. Hormones 

regulate almost all bodily processes including growth, mood, sleep, reproduction and 
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metabolism. They are secreted into the bloodstream and act at a cellular level by binding to 

specific receptors on target cells. These target cells commence a chain of signalling events and 

in this way alter their activity (Alberts et al. 1989).  

Artificial Endocrine Systems (AES) are a category of recent AI techniques which take their 

inspiration from the mammalian endocrine system. A typical example is the DHS (Digital 

Hormone System) created by Shen et al. (2004). The DHS has been used as a control system 

for a robotic swarm to facilitate a number of tasks, such as, search and seize, self-repair, and 

forming sensor networks. In the DHS each robot is viewed as a biological cell that 

communicates with other cells (robots) via artificial hormones and executes local actions via 

artificial receptors. A robot generates hormones and these are received by connected robots, 

which can then modify and propagate the hormone message. The concentration of each 

hormone is a function of position and time and is described by ODEs. A robot selects an action 

based on a probability function which considers the current state of its sensors, local topology 

and its received hormones. Through the low-level interactions and activities, global high-level 

behaviour is generated and the swarm demonstrates properties of self-organisation (Shen et al. 

2004).  

Other AES models use artificial hormones as a means of reinforcement learning, where 

weighted connections of neural nodes are modified allowing their activity to be regulated. For 

example, the Artificial Homeostatic System (Moioli et al. 2008) was used to create an 

autonomous robotic control system. It was composed of two neural modules, each of which 

were extended versions of the GasNet neural model (Husbands 1998) (discussed later), and an 

AES as shown in Fig 3.1. Each GasNet module receives information from the environment and 

generates a particular action. These actions were regulated by switching among the modules 

using the AES. In this model, the AES is a system of coupled non-linear difference equations 

composed of three modules: the Hormone Level Repository (HL), the Hormone Production 

Controller (HPC) and the Endocrine Gland (EG). The HL records the level of hormone in the 

system, the HPC regulates the production of hormone appropriate to current internal state and 

external stimulation, and the EG is responsible for secreting hormones when required. The level 

of hormone alters the internal system state and regulates the outputs of the GasNet modules. 

The outputs of the GasNet modules were directly connected to the motors of the robot, and 

were responsible for adjusting its velocity. Using this system, the robot successfully 

demonstrates both obstacle avoidance and light chasing behaviour.  
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Fig. 3.1 The Artificial Homeostatic System 

Adapted from Moioli et al. 2008. 

Another AES robotic control paradigm was presented by Hamann et al. (2010) and is termed 

the Artificial Homeostatic Hormone System (AHHS). In this model, the inner body of a robot is 

segregated into virtual compartments, where each is associated with an actual physical part of 

the robots body (like an annelid worm). For instance, a sensor is mapped to a particular 

compartment. When triggered, the sensor secretes artificial hormone within the virtual 

compartment of the robot. Hormones diffuse between compartments through the body and 

result in the modulation in activity of the robotic actuators. Hormones were represented by 

numeric values and governed by rules where each hormone has a decay and diffusion rate, both 

of which were set by evolutionary computation. The dynamics of the hormone in each 

compartment is modelled by a system of ODEs. In Schmickl et al. (2011), a AHHS was used to 

generate motion in a simulated multi-modular reconfigurable robotic system. In this example, 

the modules were connected by hinges to form the robots body. The hinges were controlled by 

actuators which had to be coordinated to generate efficient motion. The AHHS was also used to 

control a wheeled robot. In this case, the wheel actuators were activated in correspondence to 

the level of hormone in their associated compartment, as shown in Fig. 3.2. For example, high 

levels of hormone secreted by the left proximity sensor, results in acceleration of the left wheel 

(for example, to implement obstacle avoidance). If hormone levels were the same in each 

compartment the robot drove forward in a straight line. 
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Fig. 3.2 The Artificial Homeostatic Hormone System (AHHS) for a wheeled robot. 

Adapted from Schmickl et al. 2011. 

Other models such as the Artificial Hormone System (AHoS) use artificial hormones to 

regulate task allocation, coordination, and management of heterogeneous units (Brinkschulte et 

al. 2007). This AHoS consists of three hormones: one to determine the quality of a unit to 

execute a particular task, one to suppress the execution of a task by a particular unit, and one to 

activate the execution of a task by a particular unit.  

3.4 AI Inspired by Reactions of the Immune System 

The immune system is responsible for defending an organism from disease by detecting and 

responding to foreign invaders. It is composed of molecules, cells, and organs spread 

throughout the body. This elaborate system must be able to distinguish between self (its tissues) 

from non-self (pathogens), and respond to a wide range of pathogens such as viruses, bacteria, 

and parasites. Typically vertebrates have two types of immunity. The first is that which is 

inherited at birth and is termed “innate immunity”, and the other, which is acquired over the 

lifetime of the organism, and is termed “acquired immunity”. On contact with a pathogen the 

innate immune system attempts to remove it. In most cases it is successful, however when it is 

not, the acquired immune system is brought into action (Alberts et al. 1989b).  

The immune system is able to remember the antigens that it has previously been exposed to. 

This facilitates a faster secondary response which results in quicker removal of the infection. 
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Clonal Selection (Burnet 1959) describes the mechanisms by which the immune system 

remembers antigenic material. An alternative theory, proposed by Jerne (1974), is that of the 

Immune Network Theory which suggests an idiotypic network. Although this theory is not 

widely accepted it is often used by AI researchers as bio-inspiration for new computational 

paradigms. The idiotypic network involves simulation and suppression of cells via a network of 

communicating idiotopes. An idiotope is a marker on the antibody receptor molecule which can 

be recognised by receptors on other immune cells. If an idiotope is recognised by another 

immune cell, it connects. As more idiotopes are recognised by immune cells the network of 

connected cells increases. Recognition of the antigen by cell receptors results in network 

activation and cell proliferation, while recognition of a receptor by another cell’s receptor 

results in network suppression. This implies that specialised immune cells communicate via a 

dynamic network, which continually adapts to maintain a steady-state reflective of antigen 

levels (de Castro and Timmis 2002). 

Artificial Immune Systems are a class of AI techniques inspired by properties and mechanisms 

within the immune system. In general these techniques are either population based, for 

example, Clonal Selection Algorithms (Aickelin et al. 2014), which bare a strong resemblance 

to Genetic Algorithms without crossover. Or they are based on Jerne’s idiotypic Immune 

Network Theory. The most relevant of these techniques are the latter and these are described 

below. 

The autonomous and decentralised properties of Jerne’s Immune Network Theory make it 

suitable for applications such as mobile-robot control, and identifying options for the 

configuration of communication software (de Castro and Timmis 2002). Many models based on 

this theory use the dynamics described by Farmer et al. (1986). While some do not use the 

Farmer dynamics (Sathyanath et al. 2002; Opp and Sahin 2004), those that do have far more 

relevance to this review as they approximate the biology very closely. Farmers’ model is a 

differential equation which describes the change in concentration of antibodies with respect to 

the stimulatory and suppressive effects of the network and the natural death rate. The Farmer 

equation given in Eq. (3.1) (Whitbrook et al. 2007) describes the rate of change in concentration 

C of antibody xi in a system of N antibodies [x1, x2 ... xN] and L antigens [y1, y2 ... yL]. 

  
[ ] DCBAbxC i −+−=)(

.

  (3.1) 

The first function “A” is a sum representing the stimulation of antibody xi in response to all 

antigens. The second function “B” is a sum expressing the suppression of antibody xi in 
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response to all other antibodies. The third function “C” is a sum representing the stimulation of 

xi in response to the other antibodies. While the final function D represents the propensity for 

antibodies to die in the absence of interactions. The rate constant b models both the number of 

collisions at each time-step and the rate of antibody production on collision. The equation 

allows the determination of the concentration levels of hormones dynamically, and in this way 

the fitness of the robot to the current environment is calculated (Whitbrook et al. 2007).  

Farmer based dynamics have been used in a number of behaviour arbitration systems for 

mobile robots described in (Watanabe et al. 1998; Vargas et al. 2003; Luh and Liu 2004). In 

each of these models, antigens represent environmental conditions, antibodies represent 

competence modules (i.e. simple actions or behaviours) (see Fig 3.3) and the dynamics were 

governed using the Farmer equation or variations of it.  

 

 

 

 

 

 

Fig. 3.3 Farmer based idiotypic network control system for mobile robot. Environmental conditions 

detected by sensors represent antigens and competence modules (actions) represent antibodies. 

For example, Watanabe, et al. (1998) develops a garbage collecting robotic control system. In 

this model, antigens represent environmental signals detected by sensors, and antibodies 

represent prepared competency modules (behaviours). The basic idea is that the immune system 

selects a competence module (antibody) suitable for the detected current situation (antigens). 

Modules were stimulated and suppressed by interactions with antigens (sensor inputs) and with 

other modules. The concentration of each antibody at each time-step was calculated using 

Farmers equation. The actual module implemented at each time was chosen using roulette-

wheel selection, based on the antibodies with the highest concentration after idiotypic 

interactions (Watanabe et al. 1998). Other similar idiotypic approaches were used by a number 
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of researchers. For instance Krautmacher and Dilger (2004) used a Farmer based idiotypic 

model to control a simulated robot navigating through a maze. While in Luh and Liu (2004), 

such a system was used to control a robot where antibodies represented steering directions and 

antigens a set of data, including sensory input. The idiotypic network approach has the 

advantage that it is self-regulating and continually adapts itself to maintain a steady-state suited 

to the environmental conditions. It has been shown to have benefits over reinforcement learning 

approaches in behaviour arbitration systems; for example, reduction in premature convergence, 

and a decrease in repeated behavioural patterns; however, this has not been thoroughly 

investigated (Whitbrook et al. 2007). In all the examples outlined above the idiotypic 

controllers were not compared with benchmark systems and thus it is not clear how idiotypic 

systems contribute to performance. Furthermore, in the majority of cases simulations were 

used, and thus it is difficult to ascertain how such a system would cope in a real-world 

environment (Whitbrook et al. 2007). 

3.5  AI Inspired by Reactions of the Metabolic System 

The metabolic system is responsible for the set of chemical transformations within the cells of 

an organism which enable it to continue to function, grow, and reproduce. There are two 

processes involved: catabolism and anabolism. Catabolism is the process by which complex 

organic constituents are broken down to release the energy which is used within the body. 

Anabolism is the construction of cell components such as proteins. In metabolic pathways, 

chemicals are transformed into others through a series of enzymatic reaction steps. Enzymes are 

essential to the metabolic system: they act as catalysts by allowing reactions to proceed quickly 

and efficiently, and can regulate the steps required in response to signals from the environment 

or other cells (Alberts et al. 1989c). Some computational models used in AI are inspired by the 

metabolic system and in this section the most relevant of these models are reviewed.  

Zeigler and Banzaf (2000) present an Artificial Metabolic control system for a simulated 

mobile robot. This is a typical AC model, consisting of a set of molecular species, a reactor and 

reaction rules - as previously described in section 2.4.4. Each molecular species is represented 

by an algebraic symbol and each has a concentration value at each time-step. These species 

may have catalytic or inhibitory effects on other reactions, for example, by changing their 

reaction rate. The authors applied this model to implement a control system for a simulated 

Khepera robot. The robot was equipped with proximity sensors. On stimulus a sensor produced 

a signal and this was used to represent influx of substance. This input was connected through a 

network to motors, which, on reaching a particular threshold, updated the direction or speed of 
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wheel rotation as shown in Fig. 3.4. The objective of the robot was to navigate through a maze 

while avoiding obstacles. Genetic Programming was used to evolve the Artificial metabolic 

system. A population of solutions were setup consisting of a set of reaction rules arranged as a 

weighted directed bipartite graph. The outcome of each solution consisted of a time dependant 

vector of concentrations. These output concentrations were input to a fitness evaluation 

function.  

 

 

 

 

 

 

 

 

Fig. 3.4 Artificial Metabolic control system for mobile robotic control. 

Another artificial metabolism model referred to as an Artificial Enzyme Substrate Chemistry 

(Ziegler et al. 1998) was used to control a physical robot with eight proximity sensors and eight 

light sensors in obstacle avoidance and light seeking tasks. The system was implemented in a 

similar manner to the previously described model. In this case, the reaction rules were 

implemented using ODEs. The network was manually configured rather than evolved. The 

artificial metabolism was shown to control the robot in the desired way, and be robust against 

disturbances. 

The Artificial Biochemical Network (ABN), presented by Macleod and Capanni (2010), is a 

highly abstracted discrete model of a biochemical signalling network. Its inspiration was taken 

from metabolic and signalling networks in living systems in general. This model has been 

applied to robotic control to recognise external environmental stimuli and respond by 
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generating the appropriate robotic gait as shown in Fig. 3.5. It is a connectionist paradigm 

which consists of a number of nodes. Each node has a weighted sum activation function and 

Leaky Integrator. In this model, pulsed binary input signals were fed into the system. Each node 

consolidates these signals as inputs to the activation function and a pulsed binary output is 

produced. Information is encoded by the pulse on or off periods. By means of a GA the desired 

pattern of output pulses may be set for each specific pulsed input signal. This produces a 

sequence of actions in response to a single input pattern, allowing each robot actuator to be 

switched on or off in correspondence to a particular output signal.  

Fig. 3.5 ABN control system applied to pattern recognition and generation of temporal gait patterns. 

Adapted from Macleod and Capanni (2010) 

This system has advantages over benchmark alternatives in the control of limbed robots. For 

instance, traditional Artificial Neural Network models, as discussed later, are only able to 

recognise static patterns and produce a single response. While other neural models, such as 

spiking neural models, can recognise and produce time varying signals, but are generally more 

complex than the ABN.  

3.6 AI Inspired by Reactions of the Nervous System 

The nervous system consists of the components of an organism which allow rapid processing 

and response to external stimuli to coordinate voluntary and involuntary actions. Nervous 

systems are present in most multicellular animals and, depending on the species, exist in 

various levels of size and complexity. Advanced nervous systems are composed of two main 

components: the Central Nervous System (CNS), consisting of the brain and the spinal cord and 

the Peripheral Nervous System (PNS) which connects the CNS to other parts of the body. At 

the cellular level, the nervous system consists of two categories of cells: neurons and glial 

(neuroglia) cells. Glial cells function to maintain and facilitate the function of neurons. For 

example they supply nutrients to neurons, insulate them and remove their waste. Neurons are 

responsible for sensing, processing and propagating signals in response to stimulation from 

other cells or the outside world. Communication between cells occurs electrically via gap 

junctions or more commonly chemically via synaptic neurotransmitters. A neuron has a highly 
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specialised structure composed of the cell body, dentrites, and axon, as shown in Fig. 3.6. The 

signal, called an action potential, travels along the axon of one neuron to the dendrites of 

another. This, in turn, may cause the second neuron to activate or be inhibiting. Neurons are 

arranged into an elaborate network, which ultimately allows an organism to dynamically 

process information and respond to its surrounding environment (Alberts et al.1989d). 

 

Fig. 3.6 A section of a biological neural network. 

Artificial Neural Networks (ANNs) are computational methods inspired by biological neurons 

and their networked organisation. In general they consist of multiple artificial neurons linked 

together through weighted connections and, for this reason, are often referred to as 

“connectionist” representations. They have many applications such as classifying patterns, 

processing data, time series prediction, and robotics.  

The first generation of ANNs were introduced in the 1940s by McCulloch and Pitts (1943). 

Their MCP neural model consists of a node which has a number of weighted incoming 

connections. The node summed the weighted inputs together and then passed the result through 

a threshold activation function. If the sum was equal to or above the fixed threshold value, the 

neuron produced a binary output of one. In the 1950s, Rosenblatt (1958) developed these ideas 

and introduced a more advanced threshold ANN called the “Perceptron”, as shown in Fig. 3.7. 

The Perceptron was more flexible and had a learning rule to adjust the weights. Later, a more 

advanced learning rule was applied called Backpropagation (Werbos 1990).  
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Fig. 3.7 Structural overview of the Perceptron 

 

 

 

 

 

 

 

 

Fig. 3.8 Multi-layer Perceptron where σ represents a sigmoidal activation function 

This was later extended into the Multi-Layer Perceptron (MLP) (Block et al. 1962) as shown in 

Fig 3.8, where multiple layers of nodes are arranged in a directed graph with each layer fully 

connected to the next one. This second generation of ANNs did not use a threshold activation 

function; instead, their activation function was continuous. This allowed them to produce 

analogue outputs. Commonly used examples of activation functions used in these models are 

the sigmoid and hyperbolic tangent. Such ANNs are more powerful then the first generation, as 

they, due to the invention of the Backpropagation training technique, allowed multiple layers to 

be connected. The ability to be arranged into layers greatly increased their computational power 
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(Ghosh-Dastidar and Adeli 2009). Many second generation ANN models have since been 

created; examples include the Self-organising Map (SOM) (Kohonen 1982), Spiking Neural 

Networks (Ghosh-Dastidar and Adeli 2009), and Recurrent Neural Networks (Hopfield 1984).  

Real biological neurons produce a pulsing (often called “spiky”) output with many action 

potentials. Neurological research has shown that biological neurons encode information in the 

spatio-temporal properties of these signals, specifically their frequency. A third generation of 

neural networks are called Spiking Neural models (Ghosh-Dastidar and Adeli 2009). These 

types incorporate the temporal dimension found in their biological counterpart. System 

information is pulse encoded by the timing between spikes (frequency). Pulse coding is a 

computationally powerful method in cases where temporal information needs to be processed. 

One of the most commonly used methods is the Integrate-and-Fire model. The output of a 

spiking neuron is typically modelled using a differential equation, which only fires when the 

current activation level reaches a threshold value. Normally the neuron is a Leaky Integrator, 

where the activation gradually decays over time. Learning algorithms traditionally used in first 

and second generation neurons such as Backpropagation are generally unsuitable due to the 

complex spatio-temporal dynamics of spiking neurons. Other learning methods such as 

unsupervised reinforcement learning algorithms are often applied. 

An important ANN method is GasNets and was introduced by Husbands (Husbands 1998). 

This was inspired by synaptic modulation of nerve cells by nitric oxide (NO). A GasNet 

consists of a number of nodes connected by excitatory or inhibitory weighted links. The 

important difference between this and other traditional ANNs is that some units can emit 

artificial gases. These gases are able to modulate the behaviour of other units by adjusting 

parameters within their activation function. This is an abstraction of the reinforcement learning 

that is found in biological neural networks, where the network trains using either “good” or 

“bad” feedback signals. The nodes are modelled on a 2D plane and a gas diffusion model is 

used to calculate the concentration of gas generated from each emitting node. This allows the 

network to regulate its processing properties while it is in operation (Husbands 1998).  

Central Pattern Generators (CPGs) are neural oscillators situated in the ganglia or spinal cord of 

animals which function to generate rhythmic patterns. They are essential in coordination of, for 

example, locomotory gaits and respiration. Their rhythmic output coordinates the physical parts 

of the organism involved in the activity. Sensory feedback from the environment allows CPGs 

to continuously adapt to the situation and provide, for example, stable motion in unpredictable 

terrain (Nakada et al. 2004). Many researchers have designed and implemented artificial 

CPG's, particularly for application in generating robotic gaits. A stylised CPG output for a bi-
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pedal walk gait is shown in Fig 3.9. Most CPGs have been constructed with coupled non-linear 

oscillators which are composed of non-linear differential equations - such as the Wilson-Cowan 

neural oscillator (Wilson and Cowan 1972). Kimura et al. (2001) developed a CPG based 

control system using a system of coupled non-linear oscillators for a quadrupedal robot capable 

of adapting to irregular terrain. In other work, Billard and Ijspeert (2000) generated 

quadrupedal gait patterns for an AIBO robot using a CPG-based controller. 

Fig. 3.9 Central Pattern Generator output for two-legged robot to control a walk gait. The generated 

signals are out of phase with each other. 

3.7 AI Inspired by Reactions of the Gene Regulatory System 

Genes are segments of DNA whose sequence of nucleic acids encode functional products - 

either proteins or RNA. A number of mechanisms interpret this code and synthesise these 

products. All cellular processes, for example, metabolism, growth and reproduction depend on 

genes to allow their essential molecular components to be generated. The machinery that 

regulates the expression levels of a gene is called a Gene Regulatory Network (GRN). Genes 

are able to interact indirectly with others through their products or other molecular substances 

in the cell, and in this way form a network of connections. In this network, the proteins, RNA 

and genes can be represented as nodes and their edges the reactions between them. Genes are 

switched on or off by elements in the GRN. The state of the set of genes at a particular time 

signifies the result of processing within the network at that instance. In this way, genes are 

stimulated or inhibited and thus their expression levels are controlled. GRNs respond to 

environmental signals allowing the cell to adapt its behaviour at a given time and optimise its 

chance of survival. This process is shown in Fig. 3.10. 
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Fig. 3.10 Overview of a biological Gene Regulatory Network (GRN). 

A number of AI techniques are inspired by GRNs and may be referred to as Artificial Gene 

Regulatory Networks (AGRNs). Examples of the most relevant of these techniques are given 

below.  

In (Banzaf 2004), it was shown that an AGRN can be evolved to generate a simple series of 

functions such as sinusoids, exponentials and sigmoids. This model was then used to explore 

the idea that successful evolutionary design is best achieved through a networked system 

(Banzaf 2004). In this system, the AGRN, which is termed an Artificial Regulatory Network, 

consists of a genome, represented by a bit string, as shown in Fig 3.11. The genome is 

generated by randomly determining the value at each position. Certain bit patterns within the 

genome represent a gene which encode a particular protein. Proteins are expressed using a 

computational abstraction of genotype to phenotype mapping. After a protein is generated, it is 

able to wander around in a fixed space where it may interact with regulatory sites of the 

genome. If the constitute bit pattern matches at the position in which a protein and genome 

interact, than the protein will attach to the genome. Attachment of such proteins (termed 

transcription factors) at regulatory sites on the gene, have inhibitory or stimulatory effects on 

the expression of the particular protein which they encode - thus allowing their expression to be 

regulated. The time this attachment lasts depends on the quality of the match between these 

patterns.  
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Fig. 3.11 The Artificial Regulatory Network 

Adapted from Banzaf, (2004) 

Another example of a GRN inspired method is the ‘Distributed Gene Regulatory Network 

Algorithm’ for multi-robot construction tasks by Guo et al. (2009). Using this model, simulated 

multiple robots were able to self-organise from random initial positions to form different pre-

defined 2D geometric shapes. For example, multiple robots together may form the shape of a 

square. Later, moving obstacles were added to the environment, and it was shown that the 

robots were able to maintain their function as before, while avoiding the obstacles. In this 

system, each robot represented a cell and each had a genome which contained two genes- where 

one controlled the robots x-coordinate and the other its y-coordinate. Each gene produced a 

protein, which had three functions. Its first was to regulate expression of the gene that produced 

it, the second was to communicate its proximity to neighbouring robots allowing it to avoid 

collisions, and the third was to adjust the robot’s position. The dynamics of the AGRN system 

was modelled using ODEs, which described the protein expression level for both genes and the 

concentration level for each protein.  

3.8 AI Inspired by Generic Chemical Reactions 

Obviously, systems of chemical reactions are ubiquitous in the natural world. Some AI methods 

are inspired by chemical processes in general rather than particular types of signalling pathways 

which occur in living systems. In this section the most relevant of these are reviewed.  

One such method is the Chemical Casting Model (CCM) (Kanada and Hirokawa 1994). This is 

inspired by the inherent computational processing which occurs in systems of chemical 
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reactions. The CCM is a stochastic method and is used to solve state-space search problems. A 

unit of data is represented by an atom. Each atom has an internal state and may be connected to 

others by links to form a set of atoms called a molecule. In this way, data structures such as a 

tree, list or graph can be represented. Reaction rules change the state of the system and are 

written as production rules. The syntax of the reaction rules is (as in real chemistry):  

LHS → RHS 

Where the left-hand side (LHS) and right-hand side (RHS) defines a pattern of atoms. The 

reaction rule may be applied when a molecule matches the LHS pattern and when a local 

evaluation function condition is true. When a rule is applied, the matched atoms disappear and 

are replaced by the RHS pattern. In this way the system moves from the initial state which 

represents the problem, to the final state which represents the solution. A similar method was 

used to solve the travelling salesman problem by Banzaf (1990). In this system, an initial soup 

of data strings resembling macromolecules was setup. Each string of data carries all the 

information required to create a solution to the optimisation problem. This soup of 

macromolecules is evolved by using specialised machines which represent enzymes which 

transform randomly selected molecules into new ones. In this way the system moves from one 

state to another until a solution is generated. 

The AI techniques outlined in this chapter highlight the way in which elements of CSNs and 

chemical reactions in general have provided inspiration to an array of useful AI techniques. It 

was shown that many of the identified methods used in AI overlap with those used in biological 

simulation. The reviewed techniques were selected because they capture the properties and 

mechanisms (as identified and discussed in chapter 2) which contribute to high-level behaviour 

within cells. However, none of the methods discussed here or in chapter 2 provide a means to 

capture these properties and mechanisms in one representation. In the following chapter, 

particular aspects of these techniques are combined in order to construct a representation 

capable of modelling the identified properties and mechanisms of Cell Intelligence in a single 

representation. This representation will later be used to explore the role of Cell Intelligence 

within AI. 
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4. The Artificial Reaction Network 

This chapter presents a new Artificial Chemistry (AC) representation termed the Artificial 

Reaction Network (ARN). Its formulation, networked representation, computational properties 

advantages and disadvantages, and finally its verification are discussed. The purpose of this 

model is to provide a tool, well-suited to represent the “biological circuitry” responsible for 

generating high-level behaviour found in cells. Although representations exist for modelling 

chemical interactions, as discussed in chapter 2, none are ideal for this purpose. Thus, within 

the spectrum of techniques presented in Fig. 2.6, there is a niche for a new technique, which 

provides the appropriate balance between detail and scope. To achieve this, the ARN combines 

elements from existing AI and Systems Biology techniques, and like many AC models, as will 

be later discussed, it has application in both biological simulation and in solving engineering 

and computational problems. 

4.1 Basic Formulation 

As discussed in chapter 2, CSNs have a number of properties including compartmentalisation, 

temporal dynamics, and their ability to form complex networks which in turn, may function as 

control structures. To represent such properties elegantly and appropriately it is not practical to 

model each molecule individually. As previously discussed in chapter 2, for coarse 

approximations, the amount of species present may be represented by its concentration, and its 

temporal dynamics modelled using ODEs. The accuracy of such models may be further 

enhanced by setting up spatial compartments to provide a coarse approximation of the spatial 

distribution of chemical species. This level of abstraction incorporates the degree required to 

create elaborate biological circuitry while still maintaining computational efficiency and thus 

examine the emergent characteristics of Cellular Intelligence.  

As described in chapter 2, rate equation models can be used to represent many different 

physical systems and so are very general and flexible in their applications. In the domain of 

chemistry, they can directly represent (or be slightly modified to represent) all the common 

reaction types. As described in chapter 2, they form the basis of S-Systems (Voit 2000) and so 
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are very well characterised in biochemical simulations. The basic rate equation is given in Eq. 

(4.1). 
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The equation contains two terms. The first term corresponds to the basic forward reaction. 

Where the rate of change of product (P), is given by the forward reaction rate (the speed of the 

reaction) labelled kf, multiplied by the product of the concentrations of the N reactants [Rn], 

each raised to the power of its reaction order αn. The second term represents the decomposition 

of product back into its original reactants. This depends on the reverse reaction coefficient kr 

multiplied by the product of the concentrations of the M products [Pi], each raised to the power 

of its reaction order βi. 

To illustrate this further, consider the simple reaction between two reactants labelled A and B 

with reaction orders (the proportion of molecules of each reactant used to make a molecule of 

product) of q and s respectively. The order of the reverse reaction is one. These produce a 

single product P. Equation (4.1) then reduces to Eq. (4.2). 
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When used in S-Systems, a group of rate equations are normally set up - one for each reaction. 

The left-hand of each equation is then set to zero and they are solved simultaneously to yield 

the steady-state response. If the dynamic responses are required, then numerical solution 

methods like Runge-Kutta are normally applied (Voit 2000).  

4.2 A Networked Representation 

Clearly a large set of simultaneous ODEs written in their basic mathematical form limits the 

conceptualisation, visualisation and communication of complex topologies. Furthermore, in this 

form, each ODE term is tightly coupled, and is difficult to isolate and manage. Therefore, in 

order to create a networked representation with distinct biological processing units, capable of 

constructing complex biological circuits, the method needs to be modified. This may be done 

by isolating each reaction in the network to form a discrete node, which may then be modified 

independently of the other reactions. Such a node can be viewed as analogous to a neuron in an 
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ANN and has been named an Artificial Reaction Node. By analogy, networks of such nodes 

may be termed Artificial Reaction Networks (ARNs). Similarly to an ANN, each ARN node is 

a processing unit, transforming a number of inputs into an output. In an interconnected network 

of such units, global behaviour is determined by the connections, and unit parameters. 

Furthermore, by isolating each reaction like this, the individual pathways or units which make 

up the system can be changed, reconnected or evolved by (for instance) a Genetic Algorithm. 

This also allows an individual part of the network to be independently modified, and its effects 

studied.  

Isolating the reactions in a network in this way facilitates two other important practical 

advantages. Firstly, visual “drag and drop” interfaces can be developed. These allow 

researchers to quickly change network or reaction parameters in order to study their effect. 

This, in turn, allows simple visualisation of the system in a graphical form which makes its 

conceptualisation easier. Secondly, it makes the application of object-orientated programming 

techniques very simple, as each node can be coded as an instance of an object. 

In developing the system described, it was decided to use Euler’s method in order to solve the 

rate equations. This offers some advantages, firstly it is simple and computationally cheap, but 

more importantly, it allows the whole network to run quickly in simulated real time- so that its 

temporal dynamics can be seen to unfold during a run. This gives the option of changing 

parameters in real time, so that a user can observe any resulting dynamic behaviour. Also, 

unlike linear multi-step methods, it does not require previous derivatives to calculate the value 

at each consecutive time-step, thus it contributes to stability and isolation at each node. 

Furthermore, as will be discussed later, the temporal output of the network could potentially be 

used as a control system for an “artificial cell” robot - a Cytobot. 

Using the simple two input system shown in Eq. (4.2), multiplying through by dt and changing 

to a discrete finite time-step ∆t, the Euler approximation for each time-step is given by: 

  tPkBAkP r
sq

f ∆−=∆ ])[][][(][  (4.3) 

The reaction needs to be isolated from the others, so that it can form a discrete “unit”. This can 

be done most easily by borrowing the concept of “pools” from Petri Nets (Murata 1989) (see 

section 2.4.4). Petri Nets pass tokens between such pools as part of their operation. In the 

system discussed here, the pools may hold the number of available molecules, the concentration 

of the reacting chemicals (for example in moles per litre) or the mass of reactants. As the 
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reaction proceeds, the reacting species pass from the input pools (depleting them) to the output 

pools (enriching them). So, in the previous example, to generate one molecule of product 

requires q molecules of reactant A and s molecules of reactant B. In this case, the pool 

containing A would get depleted by an amount ∆A given by: 

  qPA ][][ ∆=∆  (4.4) 

Where ∆P is the amount of product generated (which would be added to pool P). This equation 

works if the units used are number of molecules or moles per litre (which are not conserved 

quantities). However, if mass or a similarly conserved quantity is used then Eq. (4.4) becomes: 
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Using more general symbols, the whole system is shown diagrammatically in Fig. 4.1 (for a 

conserved quantity). It comprises a set of connected reaction nodes (circles), pools (squares), 

and inputs (triangles). Each pool represents the current available protein species concentration 

(avail) and each circle corresponds to a reaction unit, representing an interaction (reaction) 

between a number of chemicals.  

While many ACs assume a well-stirred reactor, the use of pools within the ARN provides a 

discrete spatial structure. Inside a biological cell, concentrations of chemical species are 

spatially distributed into localised compartments. This compartmentalisation, as discussed 

previously, restricts which molecules may react together, and thus affects the overall dynamics 

of the system. Representing the spatial distribution of chemicals allows fine-grained control 

over the system dynamics and thus is highly beneficial when modelling biochemical circuitry. 

For example, it allows the representation of flow structures such as membrane channels, 

transport processes; and functional network motifs (as described in Table 2.1), and provides a 

means to explore disease pathways (Tyson and Novak 2010). Thus, in the ARN, each pool is 

represented as a well-stirred reactor and approximates a spatial compartment.  

Optionally, a loss component can also be added to the pools, allowing a pool to function as a 

Leaky Integrator (Pavan et al. 2013). This could represent the destruction of reactants or 

products by specific or general proteases or other degradation routes as shown in Fig. 4.1.  
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Inputs (shown as triangles in Fig. 4.1) are a special type of pool; the only difference is that they 

are of fixed value and thus can be used to represent the continuous supply of environmental 

inputs or enzymes (in other words, a limitless resource). 
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Fig. 4.1 The Artificial Reaction Network (ARN). 

Connections symbolise the flow of species into and out of reaction units and their weight (w) 

corresponds to reaction order. The connections can be either excitatory, or inhibitory. A 

reaction with both excitatory and inhibitory connections will proceed if all connected inhibitory 

pools are empty and its excitatory connected pools have the required concentrations. Thus the 

input pools, serve as pre-conditions to the reaction, which must be met before the reaction can 

proceed. The inhibitory connections serve as discrete on/off switches to either the forward or 

reverse reaction.  

The overall structure may be compared to a Perceptron, where the pools correspond to inputs, 

the reaction units to the weighted sum function, and these are joined together by weighted 

connections (Block et al 1962) 
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4.3 Computational Properties 

It is fairly easy to see that the computational properties of the ARN are similar to those of the 

ANN. For example, consider the simple network shown in Fig 4.2.  

 

 

 

 

Fig. 4.2 A simple ARN network with 2 reactions. 

If we assume that the orders wA and wB are unity and the reverse reaction rates are zero, then the 

rate of change of the product pool P is described by Eq. (4.6). 
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Which is the same expression as for the activity of a perceptron if A and B are the inputs and 

the k terms are the weights. So a network of such nodes has at least the same computational 

capabilities as MLPs (Rumelhart and McClelland 1986). In fact, the addition of non-unity 

orders means that effectively the node can produce non-linear separators in a similar way to 
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polynomial neurons (Woo and Khor 2004) and are rather similar to so-called “sigma-pi” units 

(Gurney 1992) - although with the added dimension of their temporal dynamic behaviour. For 

example, consider the ARN shown in Fig 4.3. Then by increasing wB to 2 and setting wC to 3, 

the first three terms of a power series are generated - as shown in Eq. (4.7). By adding other 

reactions, N further terms may be generated as shown in Eq. (4.8). 

 

 

 

 

Fig. 4.3 A simple ARN network with three reactions and one input. 

In the previous examples, the computational properties were examined in cases of a single input 

to each reaction unit. The remaining possibility is to completely deconstrain the system and 

allow multiple reactants to enter a single reaction unit. For example, the ARN given in Fig. 4.4 

shows one reaction with three inputs. The corresponding function for this reaction is given in 

Eq. (4.9). This simply extends the power series to multiple dimensions (in a similar way to the 

linear separator line of a two input MLP becoming a hyperplane for multiple inputs). The result 

of several such units feeding into a single pool would be described by Eq. (4.10). 

 

 

 

 

Fig. 4.4 A simple ARN network with 1 reaction and 3 inputs. 

Two other models, which bears some resemblance to the ARN, exist in the literature. The first 

of these is the Artificial Biochemical Network (Macleod and Capanni 2010) introduced 

previously in section 3.5. This is a highly abstracted model of a CSN intended for robotic 
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control. The network consists of pulse width, position or frequency modulated units, which are 

useful for motor control but are not directly feasible biochemically like the ARN. The second 

model is the Artificial Biochemical Neuron (Eikelder et al. 2009) - as previously introduced in 

section 2.4.3. This model is based on the steady-state response described in the Michaelis-

Menton equation. It has been used to represent phosphorylation cycles within CSNs. However, 

the basic idea has not been further developed in the literature.  

4.4 Disadvantages 

There are some potential disadvantages associated with the ARN. Firstly, in order to generate 

temporal dynamics, the ARN must use a method of numerical approximation, and thus it adopts 

the disadvantages of the chosen method. Numerical approximation methods and their 

associated limitations are well documented (Uri et al. 1995). For the reasons described in 

section 4.2, it was decided to use Eulers method throughout the experiments outlined within the 

thesis, although it would be possible to use other methods. As the disadvantages of Eulers 

method are relevant to the results achieved throughout the thesis its disadvantages are included 

in this section. 

Eulers method has an associated cumulative error. This is because it is an iterative linear 

approximation to a complex function. It may be thought of as the first-order term of a Taylor 

expansion of the function. So, for example, if we say that the rate equation is a function of at set 

of reactants and products R, we could write an abbreviated version of Eq. (4.1) as Eq. (4.11). 

The Taylor series for the Euler approximation to the third order is then given by Eq. (4.12).  
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Because the series is truncated to the linear term, the error of the approximation is the sum of 

the missing terms. In reality, the error contribution from successive terms is approximately ∆t2 

because error from the higher order terms diminishes rapidly and is usually negligible, 

providing that the step-size is small (Greenburg 1998). The error may be of consequence if the 

user is trying to simulate a complex biochemical system very accurately. However, as 

previously discussed, this is not the main purpose of the ARN. 
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Other difficulties can arise using hybrid models, and detailed discussions are provided in the 

literature (Kowalewski 2002). One such issue occurs where a pool, for example S, inhibits a 

reaction unit by an inhibitory connection. This reaction will always be inhibited while there 

remains any amount of chemical in S. Meanwhile S is involved in another reaction, where the 

resultant flux is depleting S at each time-step. As the concentration of S decreases, so too does 

the flux. This leads to an infinite sequence of decreasing concentrations of S, which 

asymptotically approaches zero. Therefore, S will always contain a smaller but positive value, 

and as a result the inhibited reaction can never occur. In reality the above scenario would never 

occur since individual molecules would react in an individual manner. Where this is a problem, 

it is solved by simply setting a threshold - if a pool concentration is less than the threshold, its 

concentration is set to zero.  

4.5 Verification of the Model  

In order to verify the new ARN representation as a means to represent the properties and 

mechanisms of CSNs, the biological plausibility of low-level reaction kinetics needed firstly to 

be confirmed. This was achieved by applying varied sets of real biochemical data to a single 

ARN unit. The resultant time series output was compared with those recorded in literature from 

actual wet lab experiments, by manual calculation and by running the experiment on Berkeley 

Madonna (Macey et al. 2000) which is a reputable software designed to simulate biological 

reactions. Fig. 4.5 provides typical results from one such experiment. In this example, reaction 

kinetic data (rate constants, reaction order) were used to create a model of the reversible 

isomerisation reaction between cis and trans 1-ethyl-2-methyl cyclopropane on Berkeley 

Madonna and on a single ARN unit. Figure. 4.5 shows the time series results of the product 

concentration produced by a single ARN unit. After 2100 seconds, both methods produce the 

same final product concentration of 9.03x10-3 mol/L. The reason for their exact correspondence 

is due to application of Euler’s approximation in both models, and, using exactly the same 

parameters including: step size, and starting conditions in both cases. When these results are 

compared with those in the literature, a slight error is seen to accumulate with each time-step, 

reaching a final difference of 0.11% after 2100 seconds. Such discrepancies were anticipated 

for two reasons. Firstly, due to the error associated with Euler’s approximation, which, as 

previously discussed can be reduced by decreasing the time-step. Secondly, because of the error 

associated with gathering data from wet lab experiments - the method used to obtain the results 

in the literature. As the ARN is required to provide only a coarse approximation of low-level 

detail to represent temporal dynamics and network topologies, this error is not considered 

significant. Using many sets of such data, with a variety of different types of reactions, 
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including different forward and reverse coefficients, and reaction orders, the ARN consistently 

produced similarly accurate results. 

 

Fig.4.5 The product concentration produced by a single ARN unit. 

In the following chapters, networks of such units are constructed and examined as a means to 

model high-level properties such as pattern recognition and complex temporal dynamics. 
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5.  An ARN Based Simulation of E. coli 

Chemotaxis 

One way to investigate the potential of the ARN to simulate a network of chemical reactions 

and capture its associated high-level behaviour is by creating a simulation of a well-

characterised CSN. Escherichia coli chemotaxis is a good example of such a pathway and is the 

subject of this chapter. This simulation also uses concentrations of chemicals from actual 

biological systems and is therefore a good way to verify the correspondence of the ARN with 

its natural counterpart and also against more complex Systems Biology simulations. 

5.1 Overview of E. coli Chemotaxis 

As previously discussed (see section 2.2), chemotaxis describes cellular movement in response 

to sensed environmental chemical concentrations called chemoeffectors. The chemotaxis 

behaviour and CSN of E. coli is well characterised (Vladimirov and Sourjik 2009; Wadhams 

and Armitage 2004) and summarised in this section.  

5.1.1 E. coli Random Biased Walk 

As discussed in section 2.2.1, E. coli chemotaxis is described as a “biased random walk”. This 

behaviour is the net result of intracellular dynamics between interacting proteins within its 

CSN. The CSN directs the bacterial flagellum (see Fig 2.4) to alternate between either a smooth 

linear swim called a “run”, or a “tumble” where the bacterium stops and re-orientates itself in a 

random direction (see Fig 2.5). While moving along swimming trajectories, chemoreceptors 

continuously sense varying concentrations of environmental chemoeffectors (attractants and 

repellents). These signals are processed by the CSN and lead to the regulation of a motor 

complex responsible for the operation of the flagellar motor (Vladimirov and Sourjik 2009). As 

described previously, the motor complex is attached to a bundle of helical flagellar filaments. 

When the motor rotates counter-clockwise (CCW), the flagellar filaments form a trailing 

bundle which, by pushing the cell forward, results in a “run”. When the motor rotates in a 
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clockwise direction (CW), the filaments shape change, causing the bundle to separate resulting 

in a “tumble”. In the absence of chemoeffectors, E. coli alternates between runs and tumbles 

with runs lasting approximately 1 second and tumbles 0.1 seconds (Vladimirov and Sourjik 

2009). In the presence of chemoeffectors tumbling frequency is increased down concentration 

gradients of attractants and up gradients of repellents, resulting in the biased random walk 

mentioned above (Vladimirov and Sourjik 2009). Thus, longer swim durations in response to 

higher attractant concentrations result in the emergence of a high-level behaviour characterised 

by net locomotion toward more favourable conditions. The actual quantity regulated, is the 

ratio of swims to tumbles, and is directly determined by the intracellular concentrations of the 

proteins within the pathway (Vladimirov and Sourjik 2009). 

5.1.2 The E. coli chemotaxis CSN  

This entire signal transduction pathway has been identified and is comprised of a set of protein-

protein interactions. The key cytoplasmic signalling events that lead to the regulation of the 

motor complex are described below and summarised in Fig 5.1. 

Cell surface receptors are responsible for detecting temporal patterns in environmental stimuli 

and initiating signal transduction. E. coli contains four types of transmembrane chemoreceptor 

proteins: Tsr, Trg, Tar and Tap - known as methyl-accepting chemotaxis proteins or MCP’s. 

These MCP’s are scattered over the surface of the cell membrane and each type is responsible 

for sensing particular chemoeffectors within the environment (Vladimirov and Sourjik 2009). 

After the signal has been internalised, it is processed by six cytoplasmic proteins (CheA, 

CheW, CheR, CheB, CheY, and CheZ) which transmit signals by reversible phosphorylation 

(see Fig. 5.1). CheW is an adaptor protein which forms a stable ternary signalling complex with 

the receptor protein and CheA. This complex, termed the “MCP complex” (see Fig 5.1), is 

responsible for initiating the chain of cytoplasmic reactions which communicate changes in 

levels of chemoeffectors detected by receptor molecules. In the absence of attractants, CheA (a 

histidine kinase) uses ATP to autophosphorylate. Phosphorylated CheA molecules (CheAP) 

transfer phophoryl groups to aspartate residues on CheY and CheB. The cytoplasmic motor 

proteins: FliM, FliN, and FliG form a motor complex responsible for regulating the flagellar 

motor (“M” in Fig 5.1). Phosphorylated CheY (CheYP) diffuse freely through the cytoplasm 

and interact with this complex by triggering clockwise (CW) motor rotation and tumbling 

response. As the CheYP concentration increases so too does tumbling frequency. The protein 

CheZ is responsible for active dephosphorylation of CheYP. If receptors detect an increase in 

the attractant levels the autophosphorylation of CheA is inhibited. This results in a decrease in 

the levels of CheYP and hence decreases tumbling frequency resulting in longer run periods.  
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Fig 5.1 The E. coli chemotaxis CSN 

 To prevent the cell from being locked in either the swim or tumbling state, there is also a 

complex adaptation response (Vladimirov and Sourjik 2009). This response increases or 

decreases the sensitivity of the receptors by regulating the methylisation of the MCP complex. 

Methylisation provides a way to record recently detected concentration changes in 

chemoeffectors, thus giving the cell a primitive memory. The MCP’s are in equilibrium 

between two states: swim and tumble, where chemoattractants bind to the run form of receptor 

as shown in Fig 5.2. By changing the receptor methylation level, the pathway is able to shift 

signalling complexes toward the opposing state to restore a balance between CCW and CW 

signal outputs. The cytoplasmic proteins CheB and CheR are responsible for regulating 

methylisation of the receptor proteins and hence the adaptation response. Phosphorylated CheB 

(CheBP) acts as a methylesterase and removes methyl groups from the receptor proteins; while 

CheR is a methyltransferase which adds methyl groups to the receptor proteins (Vladimirov and 

Sourjik 2009). As previously mentioned, on detection of increased levels of attractant, the 

autophosphorylation of CheA is inhibited. This not only decreases the levels of CheYP - and 

hence tumbling frequency, but also decreases levels of CheBP. A decrease in CheBP results in 
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receptors becoming more methylated due to the continuous activity of CheR. As MCP 

methylisation increases, the receptors shift toward the tumble form. In this form, the receptors 

phosphorylate CheA molecules, which then transfer phophoryl groups to CheY and CheB; 

hence driving the cell pathway back to its pre-stimulus levels. The initial change of the motor 

response is rapid in comparison to the slow adaptation response. This delay in the adaptation 

period allows the bacteria to perform extended runs before being set back to its original 

equilibrium. In this way the signalling network provides high levels of flexibility and plasticity 

which allow adaptation to varying environmental conditions (Vladimirov and Sourjik 2009).  

 

Fig 5.2 The swim and tumble states of the MCP complex. 

5.2 Simulation of the E. coli Chemotaxis CSN  

5.2.1 Structure of the Simulated Pathway 

The pathway described above, was used as a basis to create a simplified ARN simulation of the 

chemotaxis CSN of E. coli.  
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This simulation specifically models the reactions essential in regulating the tumbling frequency 

and the adaptation response. Thus, only the reactions which regulate the concentration of 

CheYP in response to changes in environmental chemorepellents are included. This is because 

tumbling frequency is directly proportional to the concentration levels of CheYP (Vladimirov 

and Sourjik 2009). 

The structure of this simulation is based on the literature (Vladimirov and Sourjik 2009; Bray et 

al. 1993; Wadhams and Armitage 2004) and is shown in Fig. 5.3, represented in the ARN 

format described in chapter 4. It is composed of a network of 10 reaction units numbered 0-9, 

11 pools of intracellular signalling proteins, a single input representing the chemorepellent (L) 

and arrowed lines to show the connections and also the direction of signal flow through the 

network. The 10 reactions modelled are given in Table 5.1 listed 0-9. As previously mentioned, 

the simulation does not model reactions which are not essential in regulating the concentration 

level of CheYP. The reactions which are not modelled are: 

1. The formation of the receptor complex (MCP) which was assumed to have already taken place. 

2. YP binding to the motor protein is not accounted for, as ultimately, it is the concentration level 

of CheYP that regulates the tumbling frequency, thus determining run length. 

TABLE 5.1 Reactions included in E. coli chemotaxis CSN Simulation 

Reaction Molecules Involved Description 
0 CheR + MCP MCPM 

+CheR                         
Methylisation of MCP complex by CheR (MCP complex includes 
CheA, CheW and receptor molecules) to produce methylated 
MCPM. (MCPM is the tumble form of the receptor.) 

1 MCPM + Ligand  
MCPLM 

Binding of ligand (repellent) to MCPM complex (tumble form of 
MCP complex) to create MCPLM 

2 MCPLM MCPLMP Autophosphorylation of CheA where CheA is part of methylated 
MCP complex bound to ligand i.e. MCPLM (tumble form of MCP 
complex) 

3 MCP MCPP   Autophosphorylation of CheA. (Here CheA is part of the run form 
of the MCP receptor complex - this is much slower in comparison 
to reaction 2)  

4 CheY + CheAP  
CheYP + CheA       

Phosphorylated CheA molecules (part of phosphorylated MCP 
complex) transfer phophoryl groups to CheY to create CheYP  

5 CheYP + CheZ CheY 
+ CheZ 

Dephosphorylation of CheYP by CheZ  

6 MCP (various forms) 
MCP 

This reaction cycles the MCP concentration back to restart the 
reaction cycle at reaction 0 

7 CheB + CheAP 
CheBP + CheA   

Phosphorylation of CheB by phosphorlylated CheA (CheAP) where 
CheyAP is part of MCP complex) to create CheBP 

8 CheBP CheB Dephosphorlyation of CheBP to create CheB 
9 MCPM+ CheBp MCP 

+ CheBP 
Phosphorylated CheB (CheBP) acts as a methylesterase and 
removes methyl groups from the receptor proteins converting to the 
run form of the receptor 
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Fig 5.3 The structure of the ARN model of the chemotaxis CSN of E. coli. 

5.2.2 Simulation Parameters 

Network parameters, for example rate constants and protein concentrations, were set up using 

real biological data made available online as a central resource by the University of Cambridge 

(Morton-Firth and Bourret 2011). This data contains wet lab results which have been gathered 

from published work by a number of authors. It should be noted that due to limitations 

associated with gathering this type of data, the information serves only as an approximation to 

actual cellular parameters. The actual network parameters based on this data and used in the 
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ARN simulation are provided in Appendix 2. Averages were used where multiple values for the 

same parameter were available.  

5.3 Experiments and Results  

In the following experiments the simulation described in section 5.2 is used as a means to 

investigate the application of the ARN to modelling biological pathways and capturing the 

resulting emergent behaviours.  

Three sets of experiments were performed using this model. The first examines changes in the 

concentration of CheYP when exposing the simulation to varying levels of chemorepellents. The 

second investigates the ability of the model to simulate the adaptation response. The results 

obtained in the first experiment are then used to map the response of tumbling frequency to the 

repellent concentration. In the final experiment this correlation is used to model the trajectory 

of the random biased walk of an E.coli cell within an artificial environment containing a 

distribution of simulated chemorepellents. The results from these simulations are compared 

with those in the literature for both wet lab and related computational simulations. 

5.3.1 Experiment 1: CheYP Levels in Varying Chemorepellent Environments 

As previously described, an increase in the level of environmental chemorepellents results in a 

rise in the concentration of CheYP (and similarly CheYP levels fall when the cell enters more 

favourable conditions). In the following experiment the model is exposed to varying 

concentrations of chemorepellent and the steady-state concentration of CheYP is recorded. The 

results are used to establish if the network levels of CheYP rise and fall in response to the 

respective increase and decrease in chemorepellent levels as expected, and furthermore if these 

levels are similar to those reported in wet lab experimentation and in other computer 

simulations.  

The ligand, shown in Fig. 5.3, as an input (triangle) labelled L, represents environmental 

chemorepellent concentration. A real E. coli cell travelling through its natural environment 

would be exposed to a continuous concentration level of chemorepellent at each passing 

location. Thus, in this simulation, the input L is set at a level representing a particular 

concentration of chemorepellent at a specific location within a physical environment. In the 

following experiment, different constant levels of chemorepellent were applied and the level of 

CheYP recorded against time. Real biochemical data was not available regarding the pathway 

reaction parameters in response to chemorepellent binding. However, moving toward lower 
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levels of chemoattractant provokes the same response as moving up gradients of 

chemorepellent; thus it was possible to use the available chemoattractant parameters to 

demonstrate the response to chemorepellents- where higher attractant concentrations were equal 

to lower repellent concentrations. In these experiments the range of chemoattractant levels 

applied is based on the sensitivity range of the receptor as given in the data (Morton-Firth and 

Bourret 2011). The levels applied were zero to 0.01 mol/L, where 1x10-10 mol/L represents a 

typical low concentration and 0.01 represents a high concentration. These levels are also used 

to represent chemorepellent, for example: 

• 0 mol/L chemoattractant = 0.01 mol/L chemorepellent 

• 0.01mol/L chemoattractant = 0 mol/L chemorepellent 

 

 

Fig. 5.4 Shows the concentration levels of CheYP in mol/L against time in seconds in response to 

applying the following levels of chemorepellent to the network: 0, 1x10-8, 1x10-7, and 0.01(in mols/L). 

TABLE 5.2 Concentration of CheYP at steady-state 

Concentration 
Chemorepellent 

Time (secs) to 
reach steady-state 

Concentration Yp 
(steady-state) 

MCPM 
(steady-state) 

0 1.6 0 9.65x10-6 

1E-8 8 7.7E-6 - 
1E-7 6 1.65E-5 - 
0.01 0.4 1.8E-5 0 
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The initial simulated concentration of CheYP was set to 10µm. This is based on the 

concentration of CheYP in the actual biological pathway at resting-state (i.e. without exposure 

to chemoeffectors). Every cycle of the simulation represents 0.1 ms and the flux for each 

reaction is calculated using Eq. (4.3) and used to update each connected pool. Due to its 

temporal properties, the network was run for a simulated time of 10 seconds to ensure that each 

pool had adjusted to the new level of chemorepellent and reached steady-state. The steady-state 

concentration levels of CheYP in mol/L generated by the ARN simulation at four different 

continuous concentration levels of environmental chemorepellent are shown in Fig. 5.4 and 

summarised for clarity in Table 5.2.  

 

Fig. 5.5 The concentration levels of CheYP against repellent concentration in mol/L. 

As can be seen, the level of CheYP begins to change within 0.4 seconds- this is comparable 

with that observed in the actual pathway, where the response of bacteria to a step change in 

attractant or repellent concentration occurs in ~0.2 seconds (Bray et al. 2007). A plot showing 

the ARN simulated concentration of repellent against CheYP concentration is shown in Fig. 5.5. 

In the actual biological pathway, increases in exposure to environmental chemorepellent 

concentration results in the increase of CheYP and therefore increases tumbling frequency. It 

can be seen clearly from Fig. 5.5 that, like the actual organism, an increase in the level of 

simulated environmental chemorepellent (or decrease in chemoattractant) results in an increase 

of CheYP concentration. The results are in clear agreement with published data. For example, 

Goldman et al. (2009) measure and plot the concentration of active CheA (CheAP) at 

increments of increasing concentration of aspartate (a chemoattractant). The plot of percentage 

aspartate concentration against percentage active CheA produces a concave down decreasing 
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curve and at 10% of active CheA the gradient flattens. As discussed here, an increase in the 

level of CheAP corresponds directly to an increase in the level of CheYP. The results from this 

experiment (see Fig. 5.5) show that as the level of chemorepellent concentration increases the 

level of CheYP also increases producing a concave down increasing curve and at approximately 

90% of the CheYP concentration the gradient flattens. Thus, bearing in mind that decreasing 

levels of chemoattractant are used to represent increasing chemorepellent, it can be clearly seen 

that the results of this experiment show the same trend. 

5.3.2 Experiment 2: The Adaptation Response  

To ascertain the ability of the ARN model to capture the previously discussed chemotaxis 

pathway adaptation response, the steady-state concentration of the methylised MCP (MCPM) 

receptor complex and that of CheYP obtained by the ARN simulation was examined at the same 

levels of continuous environmental chemorepellent as applied in experiment 1 (section 5.3.1). 

As discussed previously, an increase in the level of detected chemorepellent results in an 

increase in the level of CheYP and this, in turn, leads to a decrease in the level of MCPM driving 

the receptor back to its pre-stimulus equilibrium. In this experiment, the initial concentration of 

CheYP is set to 1x10-5 mol/L as before. Both MCPM and MCP are initialised to a concentration 

of 5x10-6 mol/L, based on the reported concentration in the actual biological pathway at resting 

state. The output of both MCPM and CheYP concentrations against time for both high and low 

levels of chemorepellent are displayed in Fig.5.6. It can be seen, that applying an increase in 

the level of chemorepellent to the network, results in an increase of CheYp and a decrease in the 

level of MCPM, thus driving the network back to its pre-stimulus equilibrium level.  

In work reported by Goldman et. al (2009) the MCP receptors were exposed to sequential 

increments of the attractant aspartate. On exposure of 5x10-7mol/L aspartate the receptor 

methylation increased to a steady-state of approximately 35%, while exposure to 1x10-6 mol/L 

resulted in a steady-state of approximately 60% receptor methylation. Similarly, in the ARN 

simulation, the steady-state methylation increases on exposure to more favourable conditions 

while it decreases on exposure to less favourable conditions. Thus, the ARN simulation is able 

to simulate the behaviour of key proteins involved in the adaptation response, and compares 

well to other simulations. 
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Fig 5.6 The steady-state concentration levels of CheYp and methylised MCP in mols/L recorded by the 

ARN when subjected to high and low chemorepellent concentration (0.01 mol/L and 0 mol/L 

respectively). 

5.3.3 Experiment 3: Minimum Seeking Behaviour of ARN Simulated E. coli 

Finally, to demonstrate the emergent behaviour of the simulated CSN, it was decided to show 

the chemorepellent avoiding behaviour in the context of an abstract optimisation problem. Here 

a simple environment of varying levels of chemorepellent was created and the chemotaxis 

trajectory of an artificial E. coli cell in response to these was recorded. The environment 

consisted of an inverted stepped pyramid search-space. Each step of this pyramid contained a 

different level of chemorepellent as used in Experiment 1 (section 5.3.1). The centre of the 

pyramid represents the global minima of zero repellent concentration (solid black square), as 

shown in Fig. 5.7. Each progression outwards chemorepellent concentration increases 

logarithmically (that is 0 in the center and then 1x10-10, 1x10-9, 1x10-8 and so on), and the 

outermost perimeter signifies a maximum concentration of 1x10-2 mol/L. This range in 

chemorepellent was chosen as it includes the complete range of CheYP produced by the 

simulation (see Fig. 5.5).  

In order to simulate the trajectory of a biased random walk using the model, the duration and 

direction of each run in response to each new chemorepellent level was calculated. The length 

of each run in response to the current concentration of environmental repellent was determined 

by mapping the resultant steady-state concentration of CheYP produced by the model to the 

tumbling frequencies at each level of CheYP published in the literature (Bray et al. 2007).  
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Fig. 5.7 Minimum seeking behaviour of a simulated E. coli cell over 500 seconds. 

 

Fig. 5.8 Concentration of CheYP against run time in seconds. Adapted from Bray et al. (1993) 

Figure 5.8 shows the concentration of CheYP against length of run and was plotted using the 

results reported in the literature (Bray et al. 2007). In an actual E. coli cell, a tumble causes the 

cell to redirect in a random direction, and therefore a simple randomised angle between 0-360 

degrees provided the new direction for each successive run. Figure 5.7 displays the search 
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space and a typical run, where the path of the simulated E. coli is displayed as a white line. The 

results show that, over 500 seconds, the simulated E. coli cell remains in a high repellent 

concentration area (above 1x10-7 mol/L) for 74 seconds and a low concentration area (below 

1x10-7 mol/L) for 426 seconds. Results were verified statistically over one-hundred runs; where 

the average number of seconds spent in low and high concentration was 376 and 124 

respectively and the standard deviation for low was 33.9. Thus, it was found that the simulated 

cells were approximately three times more likely to be within a low concentration area than a 

high concentration area. These results correspond well with the reported behaviour of E. coli 

chemotaxis described in the literature and using other simulation methods (Bray et al.2007). 

They illustrate that the ARN can be used to accurately simulate real biology, and may have 

potential as a modelling tool in Systems Biology. Importantly, they also illustrate that the ARN 

is capable of capturing the global high-level behaviour associated with Cell Intelligence, which, 

in this case, is the biased movement of the simulated E. coli cells towards more favourable 

conditions.  

 



73 

6. Spatial & Temporal Properties of the 

ARN 

As previously discussed in chapter 1, a key feature of CSNs is their ability to recognise specific 

patterns of chemicals within the environment and alter their spatio-temporal chemical 

distribution to provide an appropriate response. In this chapter, the ARN is used to explore the 

computational mechanisms of CSNs involved in pattern recognition and spatio-temporal pattern 

generation. The purpose of these experiments is to evaluate the ARN’s ability to abstract these 

key processing features of CSNs. In doing so, applications of the ARN are explored; firstly as a 

means of simulating CSNs, and secondly in AI applications such as robotic control - where 

pattern recognition and response are key features. Furthermore, by using the ARN to 

investigate these properties, it may be possible to gain insight into the processing mechanisms 

that exist in biological CSNs.  

6.1 Pattern Recognition 

A previously discussed key mechanism of Cell Intelligence is the ability of a cell to recognise 

and respond to specific patterns of chemical signals within its environment (refer to section 

2.1).  

In the experiments outlined below, the pattern recognition capability of the ARN was tested in 

both the context of a general pattern recognition device and also in an abstract biological 

setting. In each case, four separate patterns composed of four input and four associated output 

mass-values were applied to the ARN. Each pattern comprised values of either 0.1, representing 

low concentration, or 1 corresponding to high concentration. The ARN was set up as shown in 

Fig. 6.1 and consisted of seven pools, four inputs and seven reaction units organised into two 

layers. The network structure was based on that of standard (fully connected, feedforward) 

Multilayer Perceptrons (MLPs) (Rumelhart and McClelland 1986). This is because MLPs are a 

benchmark connectionist method used for pattern recognition. 
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Fig. 6.1 The structure of the ARN used for pattern recognition experiments. The network consists of four 

inputs (triangles), seven reaction units (circles) and seven pools (squares). Each index of the input pattern 

array is fed into the corresponding input number. Output patterns are output at pools (squares) 3-6. 

In biological CSNs, network parameters are determined by genetic factors, which are subject to 

evolution. To achieve a related effect within this artificial setting, an Evolutionary Algorithm 

(EA) (see section 3.1) was adopted to train the network to produce the correct output. This also 

allowed the combination of EAs and ARNs to be explored. 

The initial value of all internal pools was 0.01, and each input value was fed into its 

corresponding input unit. For example, the first, second and third input value of pattern 1 is 0.1 

and the fourth is 1 (see Table 6.1). The output values were generated by the final layer of pools 

(3-6). The target output values for each pattern are given under the heading “Output” in Table 

6.1, and the actual values (to three decimal places) after training are given under “Actual 

Output”. A population of one-hundred solutions was randomly initialised. Each solution 

comprised a complete set of network parameters (an array of twenty-five real numbers) 

including the forward and reverse rates for each unit and the weights for each connection 

between pools (or inputs) and units, where all the connections from a particular pool have the 

same weight (see Table 6.2 for the range of these parameters).  
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TABLE 6.1 Patterns and results for both general and abstract biological setting experiments. 

General Pattern Setting  Abstract Biological Setting  
Pattern Input Output Actual 

Output 
Pattern Input Output Actual 

Output 
1 0.1 

0.1 
0.1 
1 

0.1 
0.1 
0.1 
0.1 

0.1 
0.1 
0.1 
0.1 

1 1 (WR) 
1 (SR) 
0.1 (SA) 
0.1 (WA) 

1 (IS) 
0.1(F) 
1 (O) 
0.1(DS) 

1 
0.1 
1 
0.1 

2 1 
0.1 
1 
0.1 

1 
1 
1 
0.1 

1 
1 
1 
0.1 

2 0.1 (WR) 
0.1 (SR) 
0.1 (SA) 
1 (WA) 

0.1 (IS) 
1 (F) 
0.1 (O) 
0.1(DS) 

0.1 
1 
0.1 
0.1 

3 1 
1 
1 
1 

1 
0.1 
1 
0.1 

1 
0.1 
1 
0.1 

3 0.1 (WR) 
1 (SR) 
1 (SA) 
0.1 (WA) 

1 (IS) 
0.1 (F) 
1 (O) 
0.1(DS) 

1 
0.1 
1 
0.1 

4 1 
0.1 
1 
1 

1 
1 
1 
0.1 

1 
1 
1 
0.1 

4 1 (WR) 
0.1 (SR) 
0.1 (SA) 
1 (WA) 

0.1 (IS) 
0.1 (F) 
1 (O) 
0.1(DS) 

0.1 
0.1 
1 
0.1 

Key  
Inputs: 

WR: weak repel SR: strong repel 
 

SA : strong attract 
 

WA: weak attract 

Key  
Outputs: 

IS : increase speed F: reorientation (up 
chemical gradient) 

O: reorientation 
(down gradient) 

DS : decrease speed 

 

TABLE 6.2 Each solution within the population consisted of a forward and reverse rate for each unit and 

the weights of all the connections. The solutions were initialised with a random value between the ranges 

given in this table. 

Range Connection Weights (W) Forward Rate (kf) Range Reverse Rate (kr) Range 
-3<=W<=3 0<=kf<=6 0<=kr<=6 

Due to its temporal properties, in order to obtain steady-state output values, the network was 

run for one-hundred cycles (a cycle ends when the complete set of pools in the network are 

updated once using Eq. (4.3) (where ∆t = 1). The solution fitness (fit) was then calculated, 

where fitness was the inverse of the sum of the magnitudes of the individual errors. The 

individual errors were given by each individual output (O) in a pattern minus the wanted error 

value (target, T). The final desired error was 0.01. This is given in Eq. (6.1) where p is the total 

number of patterns, o is the number of outputs in each pattern, Tn,m and On.m are the target and 

output of the mth output of the nth pattern. 
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 The least fit half of the population was discarded and the remaining solutions were subject to 

mutation and crossover in order to create the new population. It was found that adjusting the 

crossover and mutation rate had a significant impact on the number of generations required to 

train the network. During training, the network frequently became fixed at error levels around 

0.2, indicating that it was trapped in local minima. For this reason the mutation and crossover 

rates were adjusted resulting in a final setting where 40% of the solutions were subjected to 

single point crossover and 10% were subjected to uniformly distributed mutation. If the EA did 

not find a solution within one-thousand generations, it was considered not to have converged to 

a solution - the failure rate was approximately one in five runs. Only the runs in which the EA 

successfully converged on a solution were used in calculating the average and standard 

deviation. Out of one-hundred runs the average number of generations required to reach the 

target error was 387 with a standard deviation of 267.23, and the maximum number of cycles 

needed was 897. The large variation in the required number of cycles indicates that the EA is 

highly sensitive to its initial state. Approximately half the total number of EA cycles was spent 

decreasing the final 5% error. The parameters of a typical solution are given in Table 6.3. The 

results from the experiment are shown in Table 6.1. As can be seen, the ARN was able to 

recognise all four patterns correctly. These results show that EAs can be applied successfully to 

ARNs in a similar way to ANNs. 

TABLE 6.3 Resulting network parameters for one solution after training using the EA. 

General Pattern Setting Parameters 
Pool Initial 

Concentration 
Weight of 
Connection  

Reaction 
unit 

Forward 
Rate 

Reverse 
Rate 

0 1st Pattern value 
(e.g. if pattern is 
no.1 input is 0.1) 

2.999 0 0.723 2.816 

1 2nd pattern value -2.915 1 5.411 0.837 
2 3rd pattern value 0.424 2 0.969 0.643 
3 4th pattern value -0.278 3 0.120 4.310 
4 0.01 -1.714 4 1.003 1.455 
5 0.01 0.750 5 0.093 0.006 
6 0.01 -0.435 6 1.081 0.580 
7 0.01 1.319 Note that in this case to simplify the 

program the hidden layer pool 
concentrations were updated using 
the unweighted flux of the product. 

8 0.01 -0.104 
9 0.01 0.501 
10 0.01 1.492 
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Multilayer Perceptron ANNs (MLPs) (Rumelhart and McClelland 1986) have similar 

properties. For instance, each neuron can be approximated as either active or inactive and is 

comparable to the ARN whose concentration is either high or low. However, MLPs lack an 

explicit time dimension, whereas the ARN processes inputs over a time period. In this case, the 

ARN was subject to a continuous flux of inputs over one-hundred cycles, causing the pool 

concentrations to enter a transient phase and then stabilise at steady-state. The implications are 

that, unlike the MLP, where processing is discrete-time, stored patterns are recalled only if 

inputs are applied for a length of time greater than that required to reach steady-state. This 

experiment demonstrates that the ARN is an appropriate pattern recognition technique when the 

requirement is to establish if a set of conditions have held true over a time period.  

In a further experiment, the full purpose of which will become obvious later, using the 

previously described network structure and set-up, the ARN was trained to recognise an 

additional four patterns, where the inputs were chosen to correspond to chemical signatures (for 

example, attractants or repellents) that trigger specific movement responses. These patterns are 

given in Table 6.1. Here, the ARN network represents a highly abstracted CSN that controls the 

chemotactic motion of a generalised single-celled organism. This artificial amoeba is assumed 

to have default slow swim behaviour and in the presence of chemoeffectors the behaviour is 

updated accordingly. Each input signifies an environmental chemical, where input 0 is a weak 

repellent (WR), 1 a strong repellent (SR), 2 a strong attractant (SA) and 3 a weak attractant 

(WA). Specific combinations of environmental chemicals generate specific output responses – 

where repellents have precedence over attractants. The presence of chemical concentration to a 

value approximating to 1, in an output pool, corresponds to a particular behavioural response, 

where output pool 0 increases speed (IS), 1 re-orientates to face up the chemical gradient (F), 2 

re-orientates down the chemical gradient (O) and 3 decreases the speed (DS). Therefore, as an 

example, on detecting both a strong repellent and strong attractant, the cell re-orientates to face 

down the chemical gradient and increases speed. As can be seen in Table 6.1, the network 

generated the correct response for all the abstract biological patterns.  

One property of a CSN is robustness - correct response is generated even in the presence of 

noise or loss of connections. In order to test this property within the ARN, random noise was 

introduced to the trained general pattern recognition network. Each pattern was subjected to 

10% increments of uniformly distributed random noise to a total level of 60% of the input 

range. At each noise level outputs were obtained for all four patterns. Figure 6.2 displays noise 

against total error on output for all four patterns and shows that the performance of the network 

gently degrades with increase in noise. The total error is the difference in error (as given in Eq. 

(6.1)) between the noiseless inputs and those with noise added. 
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Error levels within 5% of these results are reported for both the ABN and MLP models 

(Macleod and Capanni 2010) at levels of up to 50% noise in pattern recognition tasks of the 

same complexity.  

 

Fig. 6.2 Total error (y-axis) for all four patterns after introduction of random noise (x-axis) to patterns at 

10% level increments 

Similarly to an ANN, the ARN pattern recognition system is a robust connectionist network 

and thus provides an intuitive bridge between biology and AI. This experiment illustrates that 

such pattern recognition mechanisms are plausible in the CSNs of single-celled organisms, and 

that these mechanisms may be represented using the ARN. Furthermore, the experiment 

indicates that EAs have application as a means to set the unit and pool parameters. Further 

investigation into the role of EA within the ARN would be beneficial, specifically in finding 

more effective algorithms and in methods to evolve the network structure.  

6.2 Spatio-Temporal Dynamics of the ARN 

6.2.1 ARN-based Quadrupedal Robotic Control System 

As discussed in chapter 2, CSNs are capable of complex computational processing. It was 

shown that a number of structural chemical motifs facilitate the processing of chemical signals 

to produce spatio-temporal dynamics suited to current conditions (see Table 2.1). In the 

experiments outlined below, these functional motifs are used to generate spatio-temporal 

patterns within the ARN. The purpose of this is to validate its ability to represent such patterns, 
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to explore their potential applications, and to gain deeper understanding of the regulatory 

mechanisms involved within CSNs.  

One method of exploring the ARNs’ ability to reproduce spatio-temporal dynamics, while 

investigating its potential AI applications, is to create an ARN based controller which can 

reproduce the patterns associated with the gaits of quadrupedal robots. Using these gaits as a 

means to explore the ARNs ability to generate spatio-temporal patterns has several advantages. 

Firstly, the gaits of quadrupeds are well characterised and the results of many other 

connectionist based quadruped gait control systems are available for comparison. Furthermore, 

successfully coordinating the motion of the four limbs requires complex spatio-temporal 

processing similar to that required to generate motion in biological cells. For example, the 

movement pattern of the unicellular slime mould P. polycephalum is termed shuttle streaming. 

This motion is characterised by a rhythmic forward and backward flow of the protoplasm. It is 

generated by oscillating chemical concentrations of Ca2+ throughout the cell, which cause 

internal pressure gradients and result in rhythmic contractions (Radszuweit et al. 2013). 

Another reason for investigating limbed robotic control using the ARN is that, although it has 

been demonstrated that reaction based ACs can be used to produce motion in animats 

(Joachimczak et al. 2013) or gaits of multi-modular robotics (Hamann et al. 2010), the control 

of limbed robots using discretised connectionist AC system, as far as the author is aware, has 

not yet been explored. 

Terrestrial locomotion of limbed animals is achieved by multiple phase-locked patterns of limb 

movements known as gaits. For example, depending on speed of locomotion and terrain, 

quadrupeds commonly walk, trot and gallop (Dagg 1973). The gait phase is a value that ranges 

from 0 to 1 as the gait cycle proceeds. Therefore, the motion of each limb can be described 

relative to this. The ideal quadrupedal gaits are described by Dagg (1973) and others 

(Hildebrand 1997) and are used as a standard for comparison here and similarly in other studies 

(Collins and Richmond 1994). In the walk gait, each leg moves a quarter cycle out of phase and 

therefore four separate phases are required. In the trot gait each pair of diagonal limbs move 

half a cycle out of phase thus only two phases are present (see Fig. 6.3). Therefore, generating 

different gaits corresponds to generating different complexities of spatio-temporal signals, 

making this type of experiment ideal for investigating hierarchies of complex waveform 

generation. 

In these experiments, an ARN controller was implemented to generate gaits of a Lynxsmotion 

dual-servo quadruped 2 (Q2) robot- as shown in Fig. 6.4. Each robotic leg is controlled by two 

servo motors, one for each degree of freedom (DOF). One motor raises the leg and the other 
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turns it. The structure of the robotic legs is shown in Fig. 6.5, further details of which are given 

by Toth and Parker (2003). 

 

 

 

 

 

 

 

 

Fig. 6.3 Stepping patterns of quadrupeds showing a) walk gait b) trot gait. The black boxes show the 

relative length of time of step on the ground, and the white boxes show the relative length of time the leg 

spends raised. FL: front-left leg, FR: front-right leg, RL: rear-left leg, RR: rear-right leg. 

 

Fig. 6.4 The Lynxsmotion dual server quadruped 2 (Q2) robot 
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Fig. 6.5 The structure of a Lynxsmotion quadrupedal robot leg. Each leg has two DOFs and each DOF is 

controlled by a separate motor. 

 

Fig. 6.6 The ARN based controller. Each module (shown separated by a dashed line) is mapped to a 

single leg and is responsible for controlling the two motors which generate its motion. Pool A of each 

module controls the up/down motor, pool B the back/forward motor and pool C the stop period for each 

of these motors. 

Signals are sent by the ARN to each motor and control the angle of the rotor for each DOF, 

using a simple position to pulse width modulator interface circuit to control the servo. The 

structure of the ARN based controller is shown in Fig. 6.6 and was designed by combining the 

previously discussed functional motifs found in CSNs (see Table 2.1) including inhibitory and 

excitatory reactions, cyclic loops, and feedback structures. The controller comprises a network 

of four repeating structural units or modules, where a module is separated by a dashed line. 

Each module controls the two motors of a separate leg, and comprises three reaction units and 

three pools: A, B and C. Pool A controls the up/down (U/D) motor, Pool B the back/forward 
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(B/F) motor and Pool C controls the off period for both motors. Pool activity is regulated by a 

series of excitatory and inhibitory connections between reaction units (see motif 1 and 2, Table 

2.1). This type of connection represents the inhibitory and excitatory properties of specialised 

regulatory proteins common to CSNs such as enzymes. The overall network structure is based 

on the oscillator motif (see motif 9, Table 2.1) organised as a closed loop, allowing protein 

species to be recycled from the last to the first module and thus to generate a temporal 

oscillatory pattern. The structure of the ARN controller is capable of producing all the common 

gaits. The type of gait is easily modified by a simple adjustment of the initial pool values. For 

example, by initialising a C pool, a walk gait will be generated, where the C pool chosen will 

determine the starting leg and the value determines the angle to which the leg is raised. 

Similarly, a trot gait is achieved by initialising two C pools within alternate modules. In this 

particular design, the value to which the C pool(s) are initialised determines the DOF angle and 

were set specifically for the physicality of the particular robot, although it can be freely varied.  

The network architecture remains fixed throughout these experiments and the network 

parameters are manually set. This method was employed for a number of reasons. The first 

reason was so that the outputs could be directly compared with other published work on similar 

Central Pattern Generators (CPGs) (Billard and Ijspeert 2000; Collins and Richmond 1994; Liu 

et al. 2009). The second reason was because of the associated problems with alternative 

methods. For example, in cases like these, where the search landscape is unknown, one 

effective way to set the network parameters would be to use an EA or a similar search 

technique, as was employed in the pattern recognition experiments. However, if such a method 

were used in this experiment there would be no guarantee that the functional motifs being 

investigated would be generated. Gradient decent algorithms also have associated problems 

when applied to this sort of network due to the use of feedback connections, and thus, in this 

application would prove difficult. 

The ARN controller was considered to generate a specific gait if the relative phases of the 

respective oscillatory signals were within 2% of the standard gait cycle described previously. 

Higher values of 10% were used in other studies (Collins and Richmond 1994), and this was 

considered reasonable due to the variation found in real animal gaits (Afelt et al.1983). In each 

case, the controller first generates the U/D motor oscillation and on reaching the maximum 

value the B/F motor is initiated. 
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Fig. 6.7 Output generated for the walk gait. Legs are front-left (FL), front-right (FR), rear-right (RR) and 

rear-left (RL). The up/down (U/D) motor is displayed as a solid line and the back/forward (B/F) motor is 

displayed as a dashed line. 

 

Fig. 6.8 Output generated for the trot gait. Legs and motors are labelled as before - see Fig. 6.7. 

As can be seen in Fig. 6.7, the walk gait results show that the legs are a quarter cycle out of 

turn, with phases of 0.0, 0.25, 0.5, 0.75 between limbs in clockwise order from the FL (front-

left) leg. Similarly, the trot gait results in Fig. 6.8 show that the opposite legs are half a cycle 
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out of turn with phases respectively of 0.0, 0.5, 0.0, 0.5. The frequency of oscillations and 

therefore the gait speed is easily adjusted by applying uniform increase or decrease to kf  of each 

unit. Videos of the robot performing both the walk and trot gaits can be viewed online (Gerrard 

2012c). 

Both phase-locked limb patterns produced by the ARN match the standard, and compare well 

with other connectionist models. For example, Billard and Ijspeert (2000) present a CPG 

(Central Pattern Generator) based neural controller for a quadrupedal AIBO robot, similarly 

with two DOFs for each leg. The limb phases generated by this network correspond to the 

standard and to those produced by the ARN. Here, the network is composed of eight coupled 

non-linear oscillators and each oscillator consists of six leaky integrator neurons (a total of 

ninety-six neurons). Each neuron implements an activation function which is approximately as 

complex as the reaction unit function of the ARN, and therefore the complexity of the network 

is roughly equivalent to approximately ninety-six ARN reaction units. Similar correspondence 

is found in other sources. For instance, Collins explores a CPG based neural controller for a 

quadrupedal robot with one DOF per limb, and compares three types of activation function 

models, namely Stein, Van der Pol, and FitzHugh-Nagumo. The controller is composed of a 

network of four coupled non-linear oscillators (Collins and Richmond 1994), where each 

oscillator controls a separate limb. The Stein model consists of three first order differential 

equations, the Van der Paul model consists of a second order differential equation and the 

FitzHugh-Nagumo model consists of two first order differential equations. All these models 

have approximately twice the complexity of the output produced by the ARN unit. All three 

models also require a pulsing signal to drive the network. Generally speaking the structure of 

these models is less flexible then either the Billard and Ijspeert (2000) model or the ARN due to 

their rigidly fixed internal parameters. The models produced gait patterns within 10% of the 

standard, whereas the ARN matched the standard for both trot and walk. 

Overall, the ARN has a very similar capacity to generate both walk and trot gaits as the 

compared controllers. However, in general, it affords a higher degree of flexibility and is less 

computationally complex than the compared models. Although robotic gaits might seem 

unconnected with cellular intelligence, the ARNs ability to produce them illustrates how 

cellular networks can generate the complex temporal patterns necessary in emergent behaviour. 

Furthermore, the results show, for the first time, as far as the author is aware, that a discretised 

biochemical connectionist based AC can generate the spatio-temporal patterns required to 

generate quadrupedal gaits.  
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6.2.2 ARN-based Robotic Control System Featuring Crosstalk 

In a further experiment, a more complex ARN system was constructed to investigate the control 

of two simultaneous behaviours involving interacting pathways. Although CSN pathways are 

often described as separate and functionally independent, they commonly share and interact 

with components of other pathways, and this is referred to as “crosstalk”. For example, cAMP 

plays a role in the regulation of cell proliferation, but its pathway also involves components in 

the MAPK signalling pathway (Stork 2002). Such interaction enables the integration of signals 

from different pathways and facilitates the coordination of cell activity (Yuan et al. 2006). 

An ARN based control system may also incorporate the mechanisms of crosstalk. In the next 

experiment a simulated robotic system was used to illustrate this, it comprises a system with 

four limbs. As shown in Fig. 6.9, each limb has two DOFs: a simple “shoulder” joint, allowing 

the limb to rise and fall, and, situated at the end of the limb, a “hand” joint which enables a 

gripper to open and close. A typical behaviour comprises of vertical raising of the limb either 

independently or in parallel to other limb(s). Once the limb is fully raised, the hand opens and 

closes, followed by the return of the limb to its lowered position. Such a sequence might occur, 

for example, in an assembly robot, performing a repetitive task. 

 

Fig.6.9 The simulated robot physical structure used for the crosstalk ARN network experiments, 

illustrating one of the four limbs and its two DOFs. 

The ARN controller for this task comprises two distinct functional networks – pathway 1 and 2, 

as shown separated by a horizontal dashed line in Fig. 6.10. Like the previous ARN based 

control system, the design of the network is based on a combination of biochemical network 

structural motifs. Each pathway consists of four identical repeating modules labelled 1-4 (one is 

shown enclosed in a dashed line), and is situated at a layer (from 1-4), where each layer 

corresponds to the control of a separate limb.  

Similarly to the previous network, this ARN controller is capable of producing a number of 

limb movement patterns (any number of limbs can move synchronously or independently), and 

the phases are easily modified by a simple adjustment of the initial pool values. Each module of 



86 

pathway 1 controls the up/down motors of a separate limb and comprises three reaction units 

and three pools. Pool B controls the S motor, which determines the angle to raise or lower the 

limb, and Pools A and C control its off period. Each module of pathway 2 comprises two 

reaction units and two pools. Pool E controls the H motor, which determines the angle to raise 

or lower the hand, and pool D controls its off period. Like the previous network, the activity of 

the pools in each module is regulated locally by excitatory and inhibitory connections and the 

modules are connected to form an overall oscillatory motif. In addition to this, each pathway is 

subject to feedback from the neighbouring network, which allows the two pathways to 

synchronise their output with each other. The results for independent limb movement are shown 

in Fig. 6.11. It can clearly be seen that each limb is out of phase. Once the S motor has raised 

the limb to its maximum angle (square line), the H motor then begins to extend (circle line) the 

hand to its maximum angle, while the limb remains raised. Both motors then simultaneously 

return the hand and limb to their original positions.  

 

Fig. 6.10 The structure of a more complex ARN based control system involving communication or 

“crosstalk” between separate networks. 
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Fig. 6.11 Results of ARN based controller where elements of “crosstalk” were incorporated to control 

two separate behaviours.  

Although this network was designed to explore elements of crosstalk, it is not difficult to 

imagine examples where synchronising complementary behaviours are required. In this case, 

the robotic hand could be equipped with a tool such as a paintbrush, screwdriver, or cutting 

device. More interestingly, it demonstrates for the first time, as far as the author is aware, that 

crosstalk can be incorporated into a discretised biochemical connectionist system. Furthermore, 

it demonstrates that this system can generate and synchronise multiple low-level activities 

enabling them to complement each other so that high-level behaviour is produced. 

6.2.3 Complete Robotic Control System 

It was demonstrated in section 6.1 that an ARN can recognise patterns. Furthermore, in section 

6.2.1-6.2.2, it was shown that such a system can generate temporal output patterns which can be 

used in control tasks. Of course, in the natural world, these two behaviours are linked together.  
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Fig. 6.12 A complete control system for a quadrupedal robot. On recognition of a particular pattern the 

pattern recognition ARN generates the associated output pattern. The connecting network implements 

two parallel Boolean AND gates which act as switches turning the walk or trot components of the control 

ARN off/on. The control ARN generates the required waveform which controls the robotic gait. 

In the following experiment it is illustrated that both pattern recognition and control function 

can be combined within a single ARN-based system. Here, a more complex ARN was created 

to recognise specific patterns and in response, automatically generate the associated temporal 

gait. The ARN in this experiment reuses the pattern recognition and gait network previously 

described in sections 6.1 and 6.2.1 respectively. The complete system is shown in Fig. 6.12. It 

is functionally divided into three smaller components: pattern recognition, control, and a 

connecting (or interfacing) network.  
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The structure of the pattern recognition network (PR), its implementation and training methods 

are identical to those described in section 6.1. This was the reason why a cell-signalling 

analogy was introduced in the pattern recognition experiments in section 6.1. In this case, the 

network was trained to recognise three separate patterns (as shown in Table 6.4) composed of 

four input and four associated output mass-values. The output pools of the PR network are 

equal to input pools 0, 1, 2, and 3 of the connecting network (CN). The CN comprises six pools 

(four inputs and two outputs) and two reaction units. Its structure is based on the motifs found 

in biochemical networks (see motif 7, Table 2.1). Essentially this component operates like two 

parallel Boolean AND gates, where a value of 1 at pools 0 and pool 1 will output a value of 1 at 

pool 4, as will a value of 1 at pools 2 and 3 output a value of 1 at pool 5. Two negative 

feedback connections between the CN and both control system subunits (shown as dashed-line 

connections) are responsible for switching between the gaits. Therefore, if a value of 1 is output 

at the interface network pool 4, it will inhibit all the reaction 2’s of the walk subunit, thus 

stopping the walk gait pattern from being generated. Conversely, if a value of 0 is output at 

pool 4 the walk will be generated. In the same way, pool 5 of the CN controls the switching of 

the trot control subunit. Table 6.4 shows the range of required behaviours in response to 

particular outputs generated by the CN.  

TABLE 6.4 Patterns applied to the complete control system and the expected gait generated. 

Pattern PR 
Network 
Input 
Pool No. 

PR 
Network 
Input 
Value 

CN 
Network 
Input 
Pool No. 

CN Input 
Value (& 
output of 
the PR 
network)  

CN 
Output 
Pool No. 

CN 
Output 
Value 

Gait  

1 0 1 0 1 4 1 Inhibit 
Walk 1 0.1 1 1 

2 1 2 0 5 0 Trot 
3 0.1 3 0 

2 0 0.1 0 0 4 0 Walk 
1 1 1 0 
2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 
3 0 1 0 1 4 1 Inhibit 

Walk 1 0.1 1 1 
2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 
KEY: PR Pattern recognition CN Connecting network 
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TABLE 6.5 Pattern applied to the network and expected durations of gaits. 

Pattern Walk 
ARN 
Network 

Trot 
ARN 
Network 

Start 
Time 
(seconds) 

End 
Time 
(seconds) 

Duration 
(seconds) 

2 On Off 0 210 210 
1 Off On 210 440 230 
2 On Off 440 560 120 
1 Off On 560 700 140 
3 Off Off 700 800 100 

The control system comprises two separate subunits, both identical in structure and 

implementation to the ARN described in section 6.2.1. Each of these subunits is responsible for 

generating a specific temporal gait pattern: one generates walk, the other trot. The two subunits 

provide distinct gait patterns due to the differences in initialisation of the concentration values 

of C pools. 

The complete system was tested to confirm its ability to both generate the correct behaviour 

and automatically transition between the behaviours in response to input patterns 0-3. The time 

periods in which patterns were applied, and the expected output states are shown in Table 6.5.  

The results of this experiment are displayed in Fig. 6.13. The phases produced for each gait are 

exactly as described previously in section 6.2.1. The on/off periods of both trot and walk gaits 

are in agreement with the expected durations displayed in Table 6.5, but with a slight 

transitional delay. The ARN controller and gait phases produced have previously been 

compared with CPG models in section 6.2.1. The transitions between gaits generated by these 

models may now be compared with those of the ARN. The results given for the Billard and 

Ijspeert (2000) model, show transitions from walk to gallop in approximately four leg cycles, 

whereas the ARN transitions from walk to trot within two leg cycles. In both cases the 

transitions are very smooth. There are three models described by Collins (1994), and although 

gait graphs are provided for all these, gait transitions are only given for the Stein model. Here 

gaits transition quickly within approximately two leg cycles. However, in contrast to the ARN 

and the Billard and Ijspeert model, the leg movements during transition are very irregular.  
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Fig. 6.13 The output of the complete ARN control system over 800 secs. Legs and motors are labelled as 

before - see Fig 6.7. 

This complete control system demonstrates that the ARN, like a CSN, is capable of both 

recognising patterns and controlling overall behaviour in a single network. With the exception 

of spiking models, few ANNs can achieve this functionality. However, spiking models are 

often less flexible. For example, in the Integrate and Fire model, information is rate coded and 

all the spikes generated are uniform (Maass 1997). Thus, unlike the ARN, the Integrate and 

Fire model (Maass 1997) lacks the flexibility to produce pulse-width and pulse-amplitude 

coded information. The gait phases and transitions compared well with CPG neural controllers 

and showed that the ARN has application in similar robotic control tasks and can offer lower 

computational complexity. These experiments illustrate how a CSN might perform the complex 

sequencing timing and coordination processing associated with the high-level behaviours 

displayed by unicellular organisms. Furthermore, it shows that abstractions of both neural 

networks and CSNs operate in similar ways, and have comparable functionality. This also 

illustrates a close relationship between neural and cell intelligence.  

In summary, the results presented in this chapter show that the ARN (and by extension, CSNs) 

are capable of performing pattern recognition in a similar way to Artificial Neural models and 

also of producing complex temporal dynamics reminiscent of Spiking Neural models. 

Additionally, as was shown, in previous chapters, the ARN can model biological reactions and 

simulate real CSN pathways with an accuracy matching those of standard simulation methods. 

This combination of attributes makes it a unique and useful tool. The ARN systems presented 

above show clearly that biochemical networks are quite capable of producing many of the 

behaviours normally ascribed to Neural Networks. This helps to illuminate the many interesting 

results now emerging from the behavioural biology of single cells. Of course neurons 

themselves have internal biochemical networks, and one future application of the ARN may be 
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to help unravel their more complex internal dynamics. The simplicity of the ARN makes it a 

potentially useful model in more practical AI and engineering systems. As demonstrated in the 

case of robotics, its ability to function in both input (afferent or sensory) and output (efferent or 

motor) networks and in the interconnection between these, gives it applications which usually 

only much more complex models can fulfil. This is particularly useful in the field of robotics, 

where such flexibility has particular application in evolutionary control networks.  
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7. Cytobots: ARN-Controlled Agents 

In the previous chapter it was shown that an ARN can be used to model regulatory dynamics 

and interactions with the environment similar to those which occur in real cells. Another type of 

signalling dynamic that has not yet been explored within the ARN is that of cell-to-cell 

communication. In the natural world, cells, within for example, a colony, interact to influence 

each other’s CSNs, which produce collective high-level behaviour. In many cases, such cells 

are distributed and may be mobile. The state of each cell’s CSN is influenced not only by the 

state of the environment, but also by signals sent by other cells. D. discoideum is a cellular 

slime mould and provides an excellent example of such interaction between cells. It has a well-

characterised life-cycle and, as illustrated later, exists as a group of interacting amoebae during 

the first stages of its life-cycle. These attributes make it an ideal model organism in which to 

investigate the dynamics of a system of interacting cells using the ARN.  

In this chapter, the concept of mobile agents termed “Cytobots” (“cyto” from Greek for cell, 

and “bot” from robot) are introduced. Cytobots are autonomous cell-like agents which move 

around and respond to environmental information within a simulated or real environment. Each 

Cytobot is controlled by an internal ARN, in a similar way to which a CSN controls an amoeba. 

The ARN allows a Cytobot to recognise environmental patterns, communicate stigmergically 

with other cells and control its trajectory. Implementing Cytobots in this way provides a facility 

to capture the external dynamics resulting from interactions between cells and the environment, 

while maintaining the internal dynamics of the cell. Thus, Cytobots provide a means to explore 

overall global behaviour resulting from these dynamics and to investigate the properties and 

mechanisms involved. In the experiments outlined in chapter 8 the Cytobots are used as a 

means to establish the ARNs ability to simulate such dynamics and to investigate their 

application in biological simulation and in robotic control.  

7.1  Cytobot Behaviour 

In the experiments outlined in chapter 8, the Cytobots are initialised and move around 

asynchronously within a simulated 2D environment containing a distribution of artificial 
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chemicals. These chemicals represent attractants, for example, food. When a Cytobot reaches a 

new position, it detects the surrounding level of chemical and uses the detected concentrations 

to set the inputs to its internal ARN. Consequently, this changes the state of the ARN, resulting 

in updates to the agent’s trajectory. During this process, the Cytobot modifies the state of the 

environment by, for example, consuming the food. All the actions performed by a Cytobot fall 

into one of two basic behavioural modes: Foraging and Starvation. These behaviours are based 

on two stages of the life-cycle of D. discoideum: Vegetation and Aggregation.  

7.1.1 Biological Counterpart: D. discoideum 

 

Fig. 7.1 Life-cycle of the cellular slime mould D. discoideum 

D. discoideum (Dd) is a cellular slime mould which lives in soil and decaying leaves, feeding 

on bacteria. Its life-cycle contains four stages: Vegetation, Aggregation, Culmination and 

Migration as shown in Fig. 7.1 and summarised below. For a more detailed description see 

Tyler (2000). During its vegetative stage Dd consists of a collection of independent amoeba 

(myxamoebae) which navigate toward food by moving up gradients of folic acid (FA), secreted 

by their bacterial prey. The trajectory of these cells is a pattern of motion similar to the random 

biased walk of E. coli discussed in section 5.1.1. The Dd cells extend pseudopods in a random 

direction; those extended toward sources of chemoattractants such as food are maintained, 
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while those extended toward less favourable conditions and retracted. The overall result is 

movement up the gradient of attractant (Andrew and Insall 2007).  

The Dd amoebae starve when the food resource has been depleted, and begin the Aggregation 

phase. During Aggregation, starving cells secrete cAMP (cyclic adenosine monophosphate), 

which serves as a signal to attract surrounding amoebae towards each other, resulting in a 

densely populated aggregate of cells (Dallon and Othmer 1997). Aggregating cells are 

polarised, thus one side becomes the leading edge, which always faces in the direction of travel 

(McCann et al. 2010). Depending on parameters, such as environmental conditions and the cell 

population density, migrating cells can form transient emergent patterns such as streams and 

spirals (McCann et al. 2010; Dallon and Othmer 1997). Streaming describes a pattern of 

motion where cells line-up in close-order files, with the head of one following the rear of 

another (McCann et al. 2010) – and the spiral pattern describes streams of concentric cells 

spiralling toward the centre of the aggregate (see Fig. 7.2). 

  

a) b) 

Fig. 7.2 Stylised illustrations of Dd aggregation patterns. a) Shows streaming Dd cells during 

aggregation. This pattern is characterised by polarised cells forming a close-order file where the head on 

one aligns with the tail of another. b) Shows a spiral aggregation pattern, where cells form concentric 

spirals toward the aggregate centre. 

After forming a tight aggregate, the Migration phase begins. Here, the aggregated cells form a 

motile pseudoplasmodium known as a “slug”. The component cells coordinate their activities to 

allow the slug to move toward attractants such as heat and light. The slug eventually settles in a 

favourable position where it forms a fruiting body and enters the Culmination stage. During 

Culmination the fruiting body matures, and eventually releases spores which are distributed 

within the surrounding environment. These spores mature into cells and become the new 

generation of myxamoebae, and so the cycle begins anew.  
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7.1.2 Cytobot Foraging Mode  

When in Foraging mode, a Cytobot performs a pattern of biased motion based on Dd cells 

during their Vegetative phase (as described previously in section 7.1.1). The Cytobots 

approximate this behaviour by performing alternate periods of forward motion, termed “runs”, 

and random redirections called “tumbles”. The bias is provided by reducing the tumble 

frequency when moving toward more favourable conditions (for example up a food gradient) - 

thus increasing the length of the run. Like aggregating Dd cells, each Cytobot is polarised and 

will always face toward the direction of travel. At each new position, P, an agent redirects itself 

to face a new random angle between 0 and 360 degrees (a tumble). The agent then moves 

forward in a straight line for a number of time-steps, based on the level of food detected at P 

(run). The duration of a run is longer on detection of higher levels of food and lower in less 

favourable conditions. The Cytobot consumes all the food (if present) at each location it passes 

through. 

7.1.3 Cytobot Starvation Mode 

The Cytobot Starvation mode is based on the pattern of motion displayed by starving cells of 

Dd (as previously described in section 7.1.1). The Cytobots enter Starvation mode if food has 

not been consumed within a time period. During this phase, the Cytobots respond to detected 

levels of environmental cAMP. Depending on the particular experiment, this chemical may 

already be present within the environment or it may be released by starving Cytobots. In this 

mode, both run and tumble behaviours differ from that in the Foraging phase. Rather than 

turning in a random direction, a new direction is calculated by weighting the turn direction 

towards the highest concentration of artificial cAMP within the surrounding area. The run 

period, instead of being variable, is a fixed length, which is set according to the particular 

experiment.  

7.2 Cytobot ARN Design and Implementation 

In this section, the design and implementation of the Cytobot ARN control system, which is 

responsible for all aspects of a Cytobot’s Foraging and Starvation behaviour, is discussed. Each 

Cytobot operates asynchronously with respect to the other agents - enabling it to react 

independently to situated environmental patterns, communicate with others and contribute to 

high-level collective function. The simulated environment in which the Cytobots are placed 

contains a distribution of artificial chemicals. These chemicals represent the attractants of either 

food or cAMP. When a Cytobot moves to a new position, the surrounding level of chemical is 
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used to set the inputs to its ARN. Consequently this changes the internal state of the network 

and updates the agent’s trajectory. During this process, the agent modifies the state of the 

environment by consuming food or releasing cAMP. As shown later in the experiments detailed 

in chapter 8, representing the environmental chemicals in different ways enables the Cytobots 

to produce a range of interesting behaviours. 

As previously discussed, the Foraging and Starvation modes are based on those of chemotaxing 

Dd cells during their Vegetation and Aggregation phases respectively. It was decided not to 

base the Cytobot ARN on the specific biochemical detail of the Dd chemotaxis CSN. Instead, a 

highly abstract approach was adopted. This decision was made because, unlike the E. coli 

chemotaxis CSN discussed in section 5.1.2, there is no general agreement about the specific 

protein interactions within the Dd chemotaxis pathway to enable accurate representations to be 

developed (Manahan et al. 2004). When modelling such a network, researchers often adopt a 

modular approach, where related signalling events are grouped into functional units (Manahan 

et al. 2004). Simulating the pathway in this way allows it to be modelled when some of the 

biochemical detail is unknown. In a similar way, the Cytobot ARN was designed by dividing 

function into modular units. In a further step toward abstraction, none of the actual biochemical 

reactions are represented. Instead, the Cytobot ARN modules are constructed by combining the 

functional motifs of real biochemical networks discussed in section 2.3. The advantage of this 

is that these mechanisms are universally found in other pathways, and thus show that the ARN 

is capable of potentially modelling any pathway. Similarly to the ARNs employed in chapter 6, 

the functional motifs and parameters were set manually. Although an EA could have been used, 

it would not have guaranteed that the structural motifs would be generated within the system. 

The Cytobot ARN is composed of six subnetworks as shown in Fig. 7.3 (a larger version of the 

diagram is given in Appendix 3 for clarity). These are: the Master Oscillator; the Run Length 

Network; the Food Network; the Signalling Network; the Chaotic Network and the Weighted 

Direction Network. Each subnetwork contributes a functional aspect to either (or both) 

Starvation and Foraging behavioural modes. The Run Length Network controls the length of 

forward motion; the Signalling Network acts as a switch between the Foraging and Starvation 

modes; the Chaotic Network is used in Foraging mode to determine the angle to redirect. While 

in Starvation mode, the Weighted Direction Network determines this angle. Finally, the Master 

Oscillator synchronises each network to determine the overall output. Each of these 

subnetworks is discussed in detail in the following sections. A complete listing of all the 

network parameters including the input and output pools of each reaction, the connection 

weights, forward and reverse rates of each reaction, and the initial value of each pool is 



98 

provided in Appendix 4. Note, that in all the Cytobot experiments outlined in this work, the 

ARN uses conserved mass values (see Eq. (5) section 1.2 for calculations for conserved mass). 

 

Fig. 7.3 The Cytobot ARN network. Each Cytobot is controlled by an instance of this network and thus 

has an independent state at time t. The network is composed of six subnetworks.*Pools are considered 

empty when the value of its component chemical is ≤ 1x10-3 

7.2.1 The Master Oscillator 

The Master Oscillator functions to synchronise the outputs from all the other subnetworks 

together, and provides the motor response at each time-step. It is a four component oscillator 

(Table 2.1, motif 9) with a token unit of chemical cycling around it. It consists of four reaction 

units: M0, M1, M2, and M3 (all with a reaction rate of 1), four pools MA, MB, MC and MD 

and generates a pulsed-width-modulated waveform. Each pool is associated with one of three 

behaviours. At every time-step, if a particular pool contains the token unit, then its 

corresponding behaviour is performed. Pool MA activates turn, MC activates run and MB and 

MD activates stop. Thus, if pool MC contains a chemical for a period of ten time-steps, the 

agent will move forward for ten time-steps. The other subnetworks inhibit (Table 2.1, motif 2) 

or excite (Table 2.1, motif 1) the reaction units of the Master Oscillator to allow or prevent 

chemical flow.  

Note, that this oscillator motif allows the Cytobot ARN to function easily as the control system 

for the motor actuators of a wheeled robot. Here, MC would switch on all the wheel motors, 

while MA would switch on left-wheel motors only, thus turning the robot. The remaining pools 

would act as off switches.  
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7.2.2 The Food and Run Length Network 

The Food Network interfaces with the environment at pool FA using an excitatory connection 

(Table 2.1, motif 1), and inhibits the Run Length network in accordance with the level of 

detected food. The forward rate of reaction at node F0 is 1, thus the content of FA is transferred 

to pool FB in a single time-step. The presence of chemical FB inhibits (Table 2.1, motif 2) R0 

for a number of time-steps, according to the level of food (by setting forward rate of unit F1 to 

1 and weight to 0; this can be an exact correlation). The Run Length network is a three 

component oscillator (Table 2.1, motif 9). While reaction R0 is inhibited, it prevents pool RC 

from emptying. RC inhibits reaction M2 (Table 2.1, motif 2) of the Master Oscillator thus 

preventing pool MC from emptying for the same number of time-steps. As discussed 

previously, the number of time-steps which pool MC contains the token unit, represents the 

number of time-steps to move forward. 

7.2.3 The Signalling Network 

The Signalling Network functions as a switch between Starvation and Foraging mode. Low 

food levels trigger the starvation response and allows the Weighted Direction Network to 

control each new angle. Sufficient food will switch off the Weighted Direction Network and 

allows the Chaotic Network to control each new angle. It is a three component oscillator (Table 

2.1, motif 9) with a token unit of chemical flowing around it. Pool CA acts as the switch 

between Foraging and Starvation modes. Here the presence of chemical in CA inhibits the 

Weighted Direction Network (Table 2.1, motif 2), while its absence switches on the Weighted 

Direction Network; this in turn inhibits the Chaotic Network, as shown in Fig. 7.3. In this 

network, all reaction units have a forward rate of 0.5. This produces a continuously oscillating 

waveform and ensures a minimum number of time-steps for each behaviour. A NOR gate 

(Table 2.1, motif 7) activates pool CB in the absence of food chemical in both pools FB and FC 

of the food network, thus allowing pool CB to empty. An AND gate (Table 2.1, motif 7) will 

lead pool CA to eventually refill by activating pool CC, only when food is present in input FA 

and pool FC of the Food Network. 

7.2.4 The Weighted Direction Network 

The Weighted Direction Network senses cAMP within the agent’s immediate environment and 

calculates a tumble angle which is weighted toward higher levels. This network interfaces with 

the environment via a number of receptor pools (AW, ANW, AN, ANE, AEA) which sense the 

level of food around the Cytobot. These pools represent receptors and are positioned at points 
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around the front of its perimeter (as shown in Fig. 7.4), allowing the agent to travel in a similar 

way to that of an aggregating Dd cell.  

 

Fig. 7.4 Location of the Cytobot sensors around its perimeter. 

Each receptor input pool forms one input of an AND gate (Table 2.1, motif 7); the other input is 

a static pool, containing a fixed level of chemical, corresponding to its direction. The direction 

pools start from AW (west) with a corresponding static pool of value 0 (A00) and progress in 

45 degree steps through each direction to AEA  (east) with a corresponding static pool of value 

180 (A180). As the receptor positions around the agent are fixed, directions are always relative 

to the direction in which the agent is facing. All connections have a weight of 1 with the 

exception of the connection between pool AD and reaction A12 which has a weight of -1. This 

negative connection weight raises the sum of food detected in AD to -1, which multiplied by 

AB, allows an average angle to be calculated. Detected signals are classed as being in one of 

the following cardinal and ordinal directions: W, NW, N, NE, and E. Thus signals are detected 

from all directions above the horizontal plane. The calculated angle interfaces with the 

remaining subnetworks at pool AE. Pool AE is the output of an OR gate (Table 2.1, motif 8), 

and its inputs are activated by either the Weighted Direction Network or the Chaotic Network. 

AE also forms the inhibitory input of a SWITCH (Table 2.1, motif 7), where the presence of 

chemical in MA and absence in AE activates pool MB of the Master Oscillator. In the actual 

organism, receptors are set around the cell perimeter and direct movement appropriately. In this 

simulation, for simplicity, a count of the number of time-steps “n” that MA contains the token 

unit, is processed to gain the new heading “h” relative to the agents’ current heading “c” using 

Eq. (7.1) and then applying statement 1: 
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  cnh +−≡ )90(  (7.1) 

Statement 1  

IF (h > 360)THEN h = h – 360 
IF (h < 0)  THEN h = h + 360 
 
 
Thus, if the number of time-steps is 120 and the agent is facing north, then the current heading 

would equal 0 and the new heading would equal 30. 

7.2.5 The Chaotic Network 

The Chaotic Network, shown in Fig. 7.3, is responsible for generating the pseudo-random 

angles which agents use to perform each Foraging mode tumble. It is a networked 

implementation of a Logistic Map, given by Eq. (7.2), where Xn is a state variable of value 0 < 

Xn < 1 and λ is a system parameter of value 1 ≤ λ ≤ 4: 

  )1(1 nnn XXX −=+ λ  (7.2) 

 Without prior knowledge of the initial conditions, the output of the Logistic Map is not 

predictable; whereas, with prior knowledge it is deterministic. Therefore, the resulting series 

cannot be described as truly random, but as pseudo-random and its output has long been 

proposed as a pseudo-random number generator. Ulam and von Neumann (1947) were the first 

to examine this, and it has been successfully used in that capacity by several researchers 

(Patidar et al. 2009; Phatak and Rao 1995). The probability density distribution of the Logistic 

Map, as given by Eq. (7.3) (where P(X) is the probability of X occurring at any time-step), is 

non-uniform (Patidar et al., 2009): 

  )1(
1)(

XX
XP

−
=

π  (7.3) 

When λ=4, the distribution is “U” shaped, with a higher probability of values closer to the 

minima and maxima of X and a symmetric distribution around the midpoint.  

To implement the Logistic Map, a number of motifs are combined, including multiple branch 

motifs (Table 2.1, motif 6 - KB activates KD and KE), PFLs (Table 2.1, motif 3 - a multi-

component PFL exists where KA leads to activation of KE, which results in the activation of 
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KA) and NFLs (Table 2.1, motif 4 - KA activates KD which in turn inhibits KA). At the start of 

the simulation, pools KA and KB are initialised to the same random value (a unique number for 

each Cytobot), between 0 and 1 (to 5 decimal places). This value represents the initial value of 

X of Eq. (7.2). All the other pools are initialised to 0, with the exception of the static pools KI 

and RK, whose initial values are 360 and 1 respectively. Reaction K2 is responsible for 

generating each new value of X and has a forward and reverse rate of 4 (the Logistic Map 

exhibits chaotic behaviour when λ is 4). The connection between KA and K2 has a weight of 1 

and that between K2 and KB has a weight of 2. The remaining series of reactions function to 

copy the value of X three times; where two copies serve as the new initial values of KA and 

KB, and one participates in the final output of the network at KH. KI has a fixed value of 360 

which allows the network to convert the pseudo-random number at KH to an angle value 

between 0 and 360 at reaction K0. However, reaction K0 cannot proceed until all eleven pools 

that inhibit it are empty. These inhibitory connections (Table 2.1, motif 2) ensure that random 

angles are not output while the agent is in starvation mode, and that pool AE is empty before 

adding more chemical. Appendix 5 provides a more detailed account of the operation of the 

Chaotic Network. 

  
a) b) 

Fig. 7.5 Frequency distribution for each value of X when X is initalised to 0.9277725 and λ=4 resulting 

from: a) the Chaotic Network b) Recursive relation given by Eq. (7.2) obtained using Matlab.  

The ARN implementation of the Logistic Map was verified against the recursive relation shown 

in Eq. (7.2) using Matlab, where λ=4, initial X = 0.927725, and iterated for 1x105 steps. The 

complete range of state-variables between 0 and 1 were divided into one-hundred equal 

subintervals and the frequency of occurrence of each subinterval interval was plotted. Similarly, 

the Chaotic Network component of the ARN was run for 1x105 cycles, using the same 
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parameters of X (initial value) and λ. These results were processed in the same way and are 

shown in Fig. 7.5. The frequency distribution gained from the ARN is identical to that obtained 

using Matlab and by other researchers using the same parameters (Patidar et al. 2009). The 

same comparison was repeated one-hundred times at different values of X, and the ARN 

consistently produced the same values as Eq. (7.2). 

In the following chapter swarms of Cytobots are used to investigate the dynamics of multi-

agent chemical based systems and their applications in biological simulation and in robotics. 
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8. Cytobot Experiments and Results 

In this chapter the dynamics, emergent behaviours and practical applications of multi-agent 

Cytobot systems are investigated in a number of experiments. These include: the simulation of 

D. discoideum amoebae during their Foraging and Aggregation life-cycle phases, solving 

benchmark search problems, and finally a simulated oil-spill clean-up operation. 

8.1 Cytobot D. discoideum Simulation 

The experiments outlined in this section examine the application of Cytobots in the simulation 

of emergent behaviours in interacting groups of biological cells. A number of Cytobots are 

instantiated within an artificial environment and used to simulate a population of D. discoideum 

(Dd) cells, where each Cytobot represents one cell. Two phases of the life-cycle of Dd are 

modelled: Vegetation and Aggregation (and their transition). The results are compared with the 

behaviour of real Dd cells and with other simulations. 

8.1.1 Cytobot D. discoideum Simulation: Methodology 

The experiments are grouped into two sets: Aggregation (AG1-10 of Table 8.1), which models 

the Aggregation phase only, and Foraging to Aggregation (AGF3 and AGF8 of Table 8.1), 

where both the Vegetative and Aggregative phases are simulated including the transition 

between them. Each experiment is performed at varying population densities of Cytobots (p) 

and different ranges of detection of cAMP (r). The experiments AGF3 and AGF8 are 

performed with the same p and r as experiments AG3 and AG8 respectively, to compare the 

effect of the Foraging phase on the number of mounds formed and length of time to complete 

the Aggregation phase. The emergent patterns, numbers of mounds, and length of time to 

complete phases is examined and compared in both sets of experiments and with the literature. 

In each experiment the Cytobots move within a 2D simulated environment, which represents a 

physical area of 5.06 mm2- approximately half the maximum aggregation territory reported in 

the literature (Dallon and Othmer 1997). A screen output shows the position of the Cytobots in 

real-time and is a grid of 500 × 500 pixels, where each is represented by a square of side 4.5 
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μm. In nature, aggregating Dd cell densities are typically 250 to 1000 per mm2 (Dallon and 

Othmer 1997). Due to the demands on computational resources required to manage a 

population of Cytobots within the upper range, a cell density at the lower biological range of 

250 agents per mm2 (1250 Cytobots) and another at 150 per mm2 (750 Cytobots) were chosen.  

TABLE 8.1 D. discoideum Simulation Results 

Setup Results 

No. Cytobots 
per mm2 

(p) 

Range 
(r) in 
mm 

Mean No. 
of mounds; 

(σ) 

Minimum 
no. of 

mounds 

Maximum 
no. of 

mounds 

Aggregation Phase 
Mean time in 

Hours; (σ) 
AG1 150 5 1 

(0) 
1 1 8.98 

(0.09) 
AG2 150 2.5 4 

(0.31) 
3 4 9.63 

(0.17) 
AGF3 150 1 5.9 

(1.06) 
5 7 9.47 

(0.65) 
AG3 150 1 5.2 

(0.82) 
4 6 9.92 

(0.34) 
AG4 150 0.5 8.4 

(1.19) 
7 9 10.23 

(0.59) 
AG5 150 0.1 14.2 

(2.36) 
12 16 10.6 

(1.82) 
AG6 250 5 1 

(0) 
1 1 8.95 

(0.11) 
AG7 250 2.5 1 

(0) 
1 1 9.6 

(0.20) 
AGF8 250 1 6.8 

(1.81) 
6 9 9.71 

(0.87) 
AG8 250 1 4.3 

(0.37) 
4 5 10.05 

(0.58) 
AG9 250 0.5 6.7 

(1.62) 
5 8 12.65 

(1.94) 
AG10 250 0.1 - - - - 

 

In both sets of experiments, the Cytobots are initialised at random positions in Foraging mode 

within the simulated environment. In the AGF experiments, the environment is initialised with 

a radial outwardly-decreasing gradient of food (z), as described by Eq. (8.1), where x and y are 

Cartesian coordinates on the horizontal plane: 

  
22 yxz +=  (8.1) 
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The Cytobots begin the experiment in the previously described Foraging mode and remain in 

this mode until the food resource is depleted and Starvation mode is triggered. In a real 

environment, food is non-uniformly distributed, may be regenerated and can move (in the case 

of bacterial prey).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.1 The strength of signal for each cardinal or ordinal direction above the horizontal plane of a 

Cytobot is calculated using this pseudocode. The result for each direction is used to set the corresponding 

direction input pool of the ARN Weighted Direction network. 
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Thus, this setup is simplified, but is comparable to other simulations (Becker 2010). If a 

Cytobot does not detect food for a period of approximately five time-steps it will enter 

Starvation mode. The exact number depends on the level of food detected in the recent past, 

because higher levels take longer to flow through the network. Cytobots in Starvation mode 

emit a cAMP signal into their environment at equal strength in all directions around their 

FOR each Cytobot 
      Get current agents’ facing direction CF 
      Assign a value to direction CF using statement 1 
 
           FOR each (index n) detected cAMP signal 
                  Get detected signal incoming direction CA 
                  Assign a value to direction CA using statement 1 
                  IF CA = CF THEN kn = 3 
                     ELSE IF CA = CF-1 OR CA = CF+1 THEN kn=2 
                         ELSE IF CA = CF-2 OR CA = CF +2 THEN kn=1 
                     ELSE kn=0 
                   END IF 
                 Calculate distance dn 
                 Store each CA with kn and dn 
            END FOR 
 
      Calculate WA for current agent using Eq. (8.2) 
END FOR 
 
Statement 1: East = 1; North East = 2; North = 3; North West =4; West = 5  
 
 
Where: 
WA= total weight of direction A  
N= total number of agents within range of detection 
dn= distance of current agent from agent n 
CA = direction of incoming signal detected by current agent 
CF = the current agents facing direction 
kn = value of cAMP signal from agent n 
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circumference. Each Cytobot in Starvation mode detects the cAMP signal of all other starving 

agents within a radius r. The total value for each direction is calculated using the pseudocode 

given in Fig. 8.1 and these totals are used to set the Weighted Direction network input 

(receptor) pools.  

A range of r values were explored, including that of real Dd cells: 1, 0.5, and 0.1 mm (McCann 

et al. 2010). The cAMP signal degrades linearly with increasing distance from the emitting cell. 

Each cycle represents 1 minute of time. In this time an aggregating Cytobot moves 9μm - a 

distance which corresponds to that of actual aggregating Dd cells (Rifkin and Goldberg 2006). 

Therefore, after 1 hour of motion, a Cytobot travels a distance of 540μm. In this simulation, just 

as in biology, there are always remaining cells that do not aggregate, and thus the simulation 

runs until 95% of agents are at a distance of less than 0.1mm (100μm) from their nearest 

neighbour. 

8.1.2 Cytobot D. discoideum Simulation: Results and Discussion 

Each experiment was performed one-hundred times. The results for each experiment, given in 

Table 8.1, show the minimum and maximum total number of mounds formed, the mean and 

standard deviation (σ) of the number of mounds formed and similarly the mean and standard 

deviation of the number of hours taken to complete aggregation. The results were found to have 

a normal distribution. In the AG experiments an increase in p by 100 per mm2 resulted in a 

decrease in the number of mounds formed at each value of r, with the exception of experiment 

AG6. This is not surprising, as denser populations have more chance of interacting, and thus 

form fewer clusters, each having a higher number of agents. Similarly, decreasing r results in a 

general increase in the number of mounds formed at both values of p. The likely reason for this 

is that as r decreases the Cytobots’ area of influence becomes increasingly smaller, and thus the 

number of isolated stable clusters with fewer agents increases. In the AGF experiments, agents 

generally focus on consuming food in each of the remaining areas of highest concentration (see 

Fig. 8.2 K-L). Having consumed almost all the food, agents begin switching to Starvation mode 

(Fig. 8.2 M). In these experiments the number and location of resulting mounds differs from 

that of the AG experiments at the same values of r and p. For example, experiment AG8 results 

in an average of 4.3 mounds within the test space (Fig. 8.2 E) while AGF8 results in an average 

of 6.8 mounds and a general shift in mound formation further away from the centre of the 

environment (as shown in Fig. 8.2 O). The likely explanation is that, at the time of switching to 

aggregation, the majority of cells were forced outward toward the next remaining highest 

concentration of food. Emergent behaviours and clustering patterns similar to the biological 

organism were also observed. 
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In experiments AG8-10 and AGF8, the value of r and p are within the ranges for real Dd cells. 

These experiments are used to compare the behaviours and aggregation time with the values for 

real Dd in the literature. In experiments AG8-9 and AFG8, mound formation completes within 

the range reported for the actual organism of 9-13 hours (Cotter et al. 1992; Becker 2010). 

These results are comparable with other work. For instance, Becker (2010) reports an 

aggregation time of 11.6 hours for a simulated population of Dd with a cell density of 200mm2. 

In experiment AG10, the population never satisfied the criteria for completion of mound 

formation and instead the agents appeared to move in a fashion reminiscent of Brownian 

motion. The likely explanation is firstly, because the simulation does take into account 

glycoprotein’s which allow aggregating cells to attach together on contact; secondly, because r 

is small, fewer agents are detected by each Cytobot. Thus, momentarily larger clusters with 

higher attraction strength go undetected and quickly dissipate - an effect that would not occur if 

agents stayed together.  

 

Fig. 8.2 Screenshots of the Dd simulation. Dots represent the Cytobots (black - vegetative and red - 

aggregative), and greyscale colour represents the food distribution. Screenshots A-E show experiment 

AG8 at A- 1hr, B- 2hr, C-5hr, D- 8hr, E- 10hr; Image F shows real Dd cells aggregating; Screenshot G 

shows streaming behaviour (close-up lower right-hand C); Screenshot H-J shows pattern formation; 

Screenshot K-O shows experiment AGF8 where: K- 0hr vegetation, L- 4hr vegetation, M-transition to 

aggregation, N- 5hrs aggregation, O- 10hr aggregation. 

Diagram F courtesy of T, Gregor, Laboratory for the Physics of Life, Princeton University, 2013 Used 

with permission. 
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As previously discussed, the Cytobots are polarised. Implementing the agents in this way 

allowed us to observe whether or not the previously described streaming behaviour occurs. A 

close-up of the right-hand corner of screenshot C is shown in Fig. 8.2 G and shows the agents 

beginning to form a cluster. The protruding head of each agent can be seen clearly, where each 

lines-up its head to the rear of another agent and forms a stream. As can be seen in Fig. 8.2 F, 

this is very similar to the streaming behaviour in real cells of Dd. Other emergent patterns 

occurred during different experiments including spirals (Fig. 8.2 H), symmetric patterns (Fig. 

8.2 I), and waves (Fig. 8.2 J). 

These results show that the Cytobots are able to simulate behaviour of individual unicellular 

organisms, and the emergent behaviours arising from their interaction. It highlights a potential 

use as a means to simulate groups of interacting cells - for example, a bacterial colony or tissue 

component within a multicellular organism. Applications include the modelling of the effects of 

disease (e.g. faulty gene expression) and pharmaceuticals on global behaviour. The results 

demonstrate the parallels between ARN agents and their biological counterparts; like amoebae, 

their internal network of spatially distributed dynamic chemical species allows them to 

autonomously coordinate and direct their movement, recognise and respond to patterns in the 

environment, and produce high-level behaviour.  

8.2 Cytobot Optimisation Experiments  

In the following experiments, the application of Cytobots to swarm robotics is investigated by 

applying them to search tasks within a variety of simulated landscapes. The aim is to show that 

these agents can perform a range of useful search behaviours in a variety of situations, and that 

their search strategy can compare to that of established optimisation algorithms using similar cell 

inspired strategies. The Cytobot design and behavioural set remain exactly the same as in the 

previous Dd simulation, but the environment is modified to represent each search problem.  

8.2.1 Cytobot Optimisation Experiments: Methodology 

The Cytobots task is to find the global minima in a number of 2D benchmark optimisation 

problems. These problems were chosen as they reflect a variety of real-world terrains and thus 

allow the limits of the Cytobot search capacity to be explored. These are the following 

functions: Rosenbrock, Peaks, Inverted sinc, and Bowl (see Table 8.2 for formulae, domains, 

and minima).  
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TABLE 8.2 Formulae, domain and minima for the Rosenbrock, Bowl, Peaks, and Inverted sinc 
functions used in the search space experiments. 

Function Formulae Domain f(x*) = f* 
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Fig. 8.3 A screenshot of the simulation showing six Cytobots in the Inverted sinc search space. The 

greyscale colour represents the food distribution. 

Three experiments were performed for each function, where each uses either 1, 3 or 6 Cytobots 

and was performed one-hundred times. The task of the agents was to find the minima of the 

functions within as few evaluations (reading value of food at current x, y-coordinate) as 

possible. The range of output values for each of the functions represents the concentration of 

food (also the fitness of an agent at that point) within a simulated environment. Values 

approaching the minima represent higher food levels, and those approaching the maxima 

represent lower food levels. The simulated environment consists of a 2D area of 400 x 400 

pixels. A scaling factor was used to map the domain to the actual dimensions of the simulation, 
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INITIALISE Cytobots 
WHILE (best fitness > 0.04 of global minima) 
      START search phase 
 
            WHILE (more searching phase moves)  
                  FOR each agent start searching phase 
                          Turn agent    
                          Set receptor pools of Food Network 
                          Set receptor pools of Weighted Direction Network  
                          Move agent forward 
                          IF (new food level > previous food level) 
                                 Record fitness  
                                 Record current position 
                          END IF 
                    END FOR  
             ENDWHILE 
       END search phase 
 
       START reposition phase 
             CALCULATE new central point P to reposition 
             INITIALISE agents at new position 
       END reposition phase 
 END WHILE 
 

e.g. Rosenbrock domain of [-2, 2] mapped to a simulation space of [-200, 200] by a scaling 

factor of 100. For display purposes, a corresponding grayscale colour was used to show the 

distribution of food within the environment as displayed in the screenshot of the simulation in 

Fig. 8.3 (see Appendix 6 for screenshots of the other functions).  A token marks the current 

position of each agent (see Fig. 8.3) and each agent has an instance of an ARN network. At the 

start of each experimental run, the agent’s ARN network is initialised as described previously 

and it is positioned at random x and y coordinates within the search space. The agents undergo 

alternating phases of “searching” and “repositioning” for a number of cycles until one reaches a 

position of within 0.04 of the global minima of the function. This value was chosen as it is 

within 1% of the global minima for all the functions used. The high-level pseudocode 

describing the searching and repositioning phases is provided in Fig. 8.4.  

 

 

 

 

 

 

 

 

 

 

Fig. 8.4 High level pseudocode for each experiment 

Searching is characterised by the two ARN controlled behavioural modes - Foraging and 

Starvation, as described in section 7.1. During each search phase an agent performs a total of 

three moves (three evaluations of the environment). The length of a run corresponds to the 

number of pixels a Cytobot moves forward and is subject to the output from the Run Length 

network. After each tumble, and before moving forward, the food level at the current position is 

input into the ARN network as described previously. The agents travel at a speed of one pixel 

per time-step; thus the number of time-steps produced by the Run Length network corresponds 

directly to the number of pixels the agent moves forward. As a Cytobot travels, the food at each 
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passing position is consumed and its path within the simulation is represented in black (as 

shown in Fig. 8.3). During the search phase, a central control unit, external to all Cytobot 

agents, keeps track of each Cytobots best fitness and the coordinates of that value.  

Let },,{
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Where: 

a*= agent with highest fitness 

fa= fitness of agent an 

ftot= total fitness of all agents 

fra= ratio of agent an fitness to ftot 

xa*= the x-coordinate of a* 

ya*= the y-coordinate of a* 

xa= agent an x-coordinate 

ya = agent an y-coordinate 

dax=difference between xa and xa*  

day= difference between ya and ya* 

px=total of all dax 

py= total of all day 

rand(r)= random value within a defined radius r
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After completing the searching phase, agents switch to the repositioning phase. This phase is 

used to focus searching toward areas containing higher food levels and represents the 

movement of a Dd slug during the migration stage of its life-cycle (see section 7.1.1). When the 

Cytobots enter the repositioning phase, the central control unit processes each agent’s best 

fitness position to compute a new central point P, weighted in favour of higher fitness, as 

described by Eq. (8.3-8.10). Agents are then repositioned randomly within an area of radius r 

from point P to begin the next search phase. For the purposes of this simulation, travelling to 

the new position was not modelled, as this does not affect overall behaviour and would only 

occur if the Cytobots were applied to real-world environments.  

8.2.2 Cytobot Optimisation Experiments: Results and Discussion 

The experimental results are displayed in Table 8.3. For each experiment, the average best, fa, 

and best solution, fb, for one-hundred independent runs are presented. The average number of 

evaluations and the standard deviation for all agents is displayed as “Avg Eval for all agents” 

and “Std Dev” respectively (the results are normally distributed). The average number of 

relocations for each agent is presented in the final column as “Avg Reloc per agent”. In all 

experiments the Cytobots were able to find the global minima. Cytobots performed best in 

Bowl and Rosenbrock functions, where, using 6 Cytobots, the average number of total 

evaluations and relocations per agent respectively for Bowl was 56.4 and 2.1 and for 

Rosenbrock was 79.8 and 3.4. The Cytobots performed least well in the Inverted sinc search 

space, where the lowest number of total evaluations was 94.8 using 6 Cytobots. In all the 

experiments, a slight increase in the number of Cytobots generally results in a significant 

reduction in the total number of evaluations performed. This is most significant for Peaks 

where using 3 and 6 Cytobots results in approximately 30% and 60% respective reductions in 

the total number of evaluations when compared to the results for 1 Cytobot. The Mann Whitney 

U test was used to determine any significant (95% confidence) statistical difference in the total 

number of evaluations (for all agents) between experiments using 1 & 3 and 3 & 6 Cytobots. In 

all experiments there was a significant difference between 1 & 3 agents, with the exception of 

the Inverted sinc function. In Peaks there was a significant difference in all experiments, while 

in the Inverted sinc there was no significant difference found. Thus increasing the number of 

Cytobots from 1 to 3 both reduces the time to find the global minima and the number of 

evaluations, but this effect can be quickly reversed if too many Cytobots are added.  
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TABLE 8.3 Cytobot optimisation experiment results. The average best (fa) and best solution (fb) for one-

hundred independent runs are presented. Average number of evaluations (Avg Eval) and standard 

deviation (Std Dev σ) for all agents is given. The average number of relocations for each agent is given as 

“Avg Reloc per agent”. 

 

Function No. of 
Agents 

Avg Best (fa)  
and Best (fb) 
Results 

Avg Eval for 
all agents 
(Std Dev σ) 
 

Avg Reloc 
per agent 

Rosenbrock 1 fa = 0.04 
fb = 0 

98.5 
(16.3) 

32 

Rosenbrock 3 fa = 0.03 
fb = 0 

84.6 
(9.5) 

8.4 

Rosenbrock 6 fa = 0.01 
fb = 0 

79.8 
(4.8) 

3.4 

Bowl 1 fa = 0.03 
fb = 0 

81.9 
(14.8) 

26.3 

Bowl 3 fa = 0.02 
fb = 0 

64.2 
(7.6) 

6.1 

Bowl 6 fa = 0.02 
fb = 0 

56.4 
(5.8) 

2.1 

Peaks 1 fa = -6.51 
fb = -6.55 

151.7 
(59.2) 

49.6 

Peaks 3 fa = -6.51 
fb = -6.55 

108.9 
(17.4) 

11.1 

Peaks 6 fa = -6.52 
fb = -6.55 

64.8 
(5.7) 

2.6 

Inverted 
sinc  

1 fa = -1.04 
fb = -1 

163.5 
(63.4) 

53.5 

Inverted 
sinc  

3 fa = -1.03 
fb = -1 

109.5 
(30.1) 

11.2 

Inverted 
sinc  

6 fa = -1.03 
fb = -1 

94.8 
(10.1) 

4.2 

 

The paths of agents through the search space indicate reasons for variation in the results. In 

simple landscapes such as Bowl, agents descend steadily toward the minima, as shown in Fig. 

8.5. Similarly in Rosenbrock, agents quickly descend to the narrow valley and are forced to 

steadily move along it by moving up the nutrient gradient created by the consumption of food, 

until finding the global minima. In Peaks, agents move from their initial positions and search 

many parts of the domain. Figure 8.6 shows the agents’ trajectories, one can see that peaks are 

avoided and troughs are pursued. However, if fewer agents are used they may quickly become 

trapped in local minima causing a significant rise in the number of evaluations. Increasing the 

number of agents by a small amount expands the amount of search space explored per cycle, 

and increases the chance of finding better solutions and (or) leaving local minima. Another 

possibility is to increase the number of moves for each searching phase, thus allowing an agent 
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to travel a sufficient distance to escape local minima. Similar solutions could be adopted in the 

Inverted sinc search space. 

 

Fig. 8.5 Typical path of a Cytobot in the Bowl search space 

 

 

Fig. 8.6 Typical path of three Cytobots in the Peaks search space 

These results were compared with other optimisation algorithms inspired by behaviours of 

single-celled organisms. For example, Passino developed the Bacterial Foraging Optimisation 

Algorithm (BFOA), inspired by foraging behaviours, reproduction and dispersal events in the 

life-cycle of E. coli (Passino 2002). Like the foraging behaviour of the Cytobots, movement is 

modelled as a biased random walk, where, after each random redirection, the cell moves 

forward a length according to current food levels. In a nutrient hill-climbing experiment 
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(without swarming effects), 50 cells are initialised at random starting positions within a 2D 

search space. This search space is similar to Peaks but with five troughs and a domain of [30, 

30]. Similarly to the Cytobots the cells tend toward valleys and avoid peaks. After four 

generations (four reproductive steps), and moving one-hundred chemotactic steps (moves) 

between generations, the cells find the global minima. 

Similarly in other work, Chen et al. (2009) applied BFOA using 6 cells to the 2D Bowl function 

with domain [-5,5], and the global minima was found within 50 chemotactic steps. In our 

experiments, 6 Cytobots find the global minima after an average of 9.4 evaluations, which is 

the equivalent to 9.4 moves (or 9.4 chemotactic steps in the terminology of Chen et al). After 

adjusting for the difference in domain size, the numbers of moves are highly consistent for 

Cytobots and the cells in BFOA. In other related work, Monismith and Mayfield (2008) created 

the Slime Mould Optimisation Algorithm inspired by the life-cycle of Dd. The state space is 

represented as a sparse mesh which cells populate and make modifications to, for example, 

deposit attractant. Using a combination of behavioural states inspired by the life-cycle of Dd, 

artificial cells perform local searches, and move to positions in favour of their personal best and 

the best fitness of their neighbourhood. The Slime Mould Optimisation Algorithm, like the 

Cytobots, finds the global minima of the 2D Rosenbrock function.  

The results presented above show that the agents are able to find best fitness solutions in all 

problems, and match the performance of cell inspired optimisation algorithms in similar search 

spaces. Increasing the number of agents by small increments (two or three), can halve the 

number of function evaluations required to find the global minima. These experiments serve as 

a preliminary to implementing ARN systems to control real-world distributed autonomous 

robotic agents. Such agents could be applied to search problems in real-world environments. 

For example, oil-spill clean-up operations - as illustrated in the next experiment, where the 

objective is to travel to higher concentrations of oil, while consuming it at each passing 

location. The search behaviour results from the internal ARN network, but is enhanced by the 

collective activities and stigmergic interaction of the agents. The Cytobots obviously do not 

compare directly with conventional optimisation techniques like Genetic Algorithms, since they 

have a complex internal structure. However, this is not their purpose and they may be much 

more effectively utilised as independent control systems in autonomous robot-like agents.  
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8.3 Cytobots Oil-Spill Clean-up Simulation 

To illustrate a practical application, the Cytobots were used to tackle a simplified oil-spill 

clean-up simulation. In these experiments, the same ARN used previously is used to perform 

different behaviours by altering its interface with the environment.  

8.3.1 Cytobots Oil-Spill Clean-up Simulation: Methodology 

The Cytobots move within a 2D environment containing an oil-spill on water. This oil is 

analogous to a distribution of food within a nutrient landscape. The task of the Cytobots is to 

clean-up the spill as quickly as possible by consuming oil at each location. The agents move 

through the environment by switching between the two previously described behavioural 

modes - Foraging and Starvation. To enable the Cytobots to behave differently, rather than 

modify the network, the interface between the Cytobots and the environment was altered. To 

achieve this, the concentration of oil surrounding the agents was used to represent both food 

and cAMP attractants. Thus, the amount of oil at each new position was fed into both the 

receptor pools of the Weighted Direction network and those of the Food network. At the start of 

each experiment, the Cytobots were distributed randomly within the environment, and the ARN 

network was initialised as previously described. The agents start the simulation in Foraging 

mode but during the simulation alternate between Foraging and Starvation modes. Starvation 

behaviour is triggered when the last positions visited (minimum of two) contained zero food. In 

Starvation mode, instead of turning in a random direction, the new direction is weighted toward 

higher concentrations of food within its surrounding area as previously described. This 

behaviour forces exploration of unexplored search space, because previously visited positions 

have a food level of zero. Consumption of environmental food therefore acts as a stigmergic 

signal, where agents are inclined to move up the nutrient gradient created by their foraging 

activities. On consuming a sufficient amount of food, the Cytobot switches back to Foraging 

mode, repeating this behaviour until 95% of the oil is consumed. Here, we model the spillage of 

100 tonnes of Statfjord crude oil at 150C under a wind speed of 5ms-1 The oil is distributed over 

a 2D sea surface of 300m by 200m, an area of 60000m2, where two pixels corresponds to 1m, 

as shown in Fig. 8.7A. The particular oil type, simulation variables and parameter set were 

chosen in order to compare directly with work by Kakalis and Ventikos (2008) who present a 

robotic swarm concept for oil-spill confrontation. For this reason, we account for an initial 

response time of (a virtual) 14 hours. Based on the mathematical models found in Kakalis and 

Ventikos (2008), which account for the main factors of short term changes in oil 

characterisation, the volume of oil after 14 hours is reduced to 150m3. Beyond this starting 

state, the volume is only influenced by the Cytobots. The speed of each agent is 0.5ms-1 and is 
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based on other robotic agents in oil cleaning scenarios (Kakalis and Ventikos 2008); thus the 

Cytobots move one pixel (0.5m) for every time-step. The actual cleaning surface is 1m, thus the 

Cytobots clean a two pixel wide area in each time-step. 

 

 

 

 

 

 

 

 

 

 

Fig. 8.7 Oil simulation using 8 Cytobots at A- 0 hours, B- 2 hours, C- 4 hours and D- 9.6 hours 

 

 

Fig. 8.8 Typical “comet” shaped oil-spill shape as seen from above. Most oil is contained in the narrow 

head section closest to the release point. Environmental factors such as wind or current spread the oil to 

create a trail. 
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Mathematical modelling of oil-spill dynamics is non-trivial and at best can offer a crude 

approximation of its actual trajectory. Most oil-spills quickly form a comet shape (see Fig. 8.8) 

with most of the oil within the head, and a trail of sheen (Wang and Stout 2007). To represent a 

simplified version of the comet-shaped spread, the simulation area is divided into one-hundred 

3m x 200m segments. The first segment contains 0.015 tonnes of oil, and each subsequent 

segment increases by 0.03 tonnes from right to left.  

8.3.2 Cytobots Oil-Spill Clean-up Simulation: Results and Discussion 

In each experiment, a different number of Cytobots was deployed - 3, 5, 8 and 15 and the 

recovery rate achieved by each group was compared. The simulation time was measured from 

deployment of the Cytobots at 0 hours (14 hours after the oil was spilled) and stopped when the 

Cytobots had collectively removed 95% of the 150m3 of oil. Each experiment was run one-

hundred times, and the average volume of oil consumed at 6 minute intervals was calculated. 

Figure 8.9 presents the average volume of oil consumed by the group of Cytobots against time. 

The results for each experiment were found to be normally distributed.  Table 8.4 provides the 

average length of time taken to clean 95% of the oil (Avg. time) and standard deviation (σ) for 

each experiment. By adding 2 additional agents to the group of 3, the length of time is reduced 

by 3.7 hours, thus 1.85 hour average difference per extra Cytobot. This difference decreases 

1.12 hours per Cytobot for 8 agents, then to 0.76 per agent for 15. The variation can be 

accounted for by examining the agents’ paths through the oil. Rates are much faster at the 

beginning of the experiments, where Cytobots move toward the oil-rich left-side of the 

environment. This can be seen in the series of screenshots of a typical experiment shown in Fig. 

8.7, where A shows the starting position at time 0, and B shows that after 2 hours the Cytobots 

have moved toward the left-hand side, focusing mainly on highly concentrated areas (consumed 

oil is shown in white). Initially, the rate of oil removal is high because Cytobots focus on the 

highest concentration areas and as the landscape remains largely unexplored they are unlikely 

to go over their path, thus each new location results in consumption of oil. However, as time 

progresses, large patches become cleaned and a higher probability exists for the Cytobots to 

revisit previously cleaned areas. The consumption of oil in Fig. 8.7 C-D at 4 and 9.6 hours 

respectively shows more clearly that Cytobots focus cleaning efforts on the area of highest 

concentration first, and are gradually forced to move toward the next highest concentration by 

the gradient created by their foraging activities. Figure 8.7 D shows the state of the oil at the 

end of the simulation, where only small patches remain mainly in areas of low oil 

concentration.  
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Fig. 8.9 Average volume of oil cleaned against time for each group of Cytobots 

 

 

TABLE 8.4 Average length of time taken to clean 95% of the oil-spill for each group of Cytobots 

No. of 
Cytobots 

Avg. finish 
times  

Standard 
deviation (σ) 

3 15.2 3.4 
5 11.5 2.7 
8 9.6 2.8 
15 6.1  3.1 

 

These results can be compared to the simulation by Kakalis and Ventikos. Here, varying 

numbers of simulated EU-MOP robots are deployed to tackle 150m3 of Statfjord oil over 

60000m3 (as before). In this case, the robots have a slightly faster speed of 0.54m/s but have the 

same 1m skimming face. Each EU-MOP robot has a storage capacity of 2m3
 and a transit speed 

of 2.1ms-1. The times taken for 3, 5, 8, and 15 EU-MOPS are 54, 32, 20 and 10 hours 

respectively. For comparison, the results of our simulation can be adjusted to include unloading 

of the oil at a servicing vessel. Using the same storage capacity and transit speed and assuming 

the distance to the ship and back is two times 300m and that each Cytobot fills the same amount 

simultaneously, then the new times are 17.2, 12.7, 10.3 and 6.5 for 3, 5, 8 and 15 Cytobots 

respectively. The Kakalis and Ventikos simulation has several differences to the one reported 

here, particularly in the distribution of the oil. Also, some key parameters are missing from 

their paper, for example, the distance to the boat. Despite these differences, our results are very 

similar. For example, the reported simulation time for 15 EU-MOPS is 10 hours and in our 

simulation 5 and 8 Cytobots took 12.7 and 10.3 hours respectively. Given the differences in the 

simulation and differences in operation of the robots, the resulting clean-up times are 
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comparable, suggesting that the Cytobots have potential application as distributed robotic 

agents in real-world environments. This application demands an internal control system which 

can function without reference to other agents within the environment which are operating in 

parallel. By modifying the environment, (which in this case was consumption of food), the 

agents can stigmergically communicate and display emergent behaviour.  

The Cytobots offer a unique range of abilities. Like cells, their internal network of spatially 

distributed dynamic chemical species allows them to autonomously coordinate and direct their 

movement, recognise and respond to patterns in the environment, and produce high-level 

behaviour.  
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9. Summary & Conclusions 

9.1 Introduction 

The purpose of this final chapter is to provide an overall summary of the project. The first 

section revisits the original objectives in order to evaluate how well these were met within the 

course of the research. This is followed by a summary of original contributions to the art, 

suggestions for future work and final remarks. 

9.2 The Project Objectives Revisited 

9.2.1 Evaluation of Objective Attainment 

The objectives set out at the beginning of the project developed significantly in the first year. 

Objective five was added later after the literature review highlighted the importance of 

interaction between multiple cells in the generation of Cell Intelligence. At the start of the 

project the objectives were merely ideas and, although preliminary research had identified a 

niche for development of CSN inspired AI, little was known about how they would be met.  

The project objectives (as given in chapter 1) are listed below together with a discussion of 

their attainment.  

1. Produce a computational representation of biological Cell Signalling Networks that 

captures the underlying properties and mechanisms of Cell Intelligence. 

The completion of this first objective involved a number of tasks. The first of these was to 

identify the key features of Cell Intelligence and its mechanisms. This started with a 

literature review on the mechanisms and capabilities of information processing within cells, 

leading in turn to a complete overview of CSNs (chapter 2). The second task involved 

investigating the current methods used to represent the properties and mechanisms of CSNs 

and the applications of such models in both Systems Biology (chapter 2) and AI (chapter 
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3). This served two purposes: firstly, to learn from existing AI and biological simulation 

methods, and secondly to ensure the originality of the new representation. At this point, a 

new representation was developed and this resulted in the ARN, as described in chapter 4. 

The ARN combines features from existing methods which facilitate modelling of the 

identified properties and mechanisms of Cell Intelligence. The ability of the ARN to 

capture high-level behaviour of both single and multiple cells was later verified throughout 

the project (chapters 5, 6, 7, 8). This work clearly demonstrates the attainment of this 

objective. 

2. Evaluate the biological accuracy of the new representation 

To evaluate the biological accuracy of the ARN representation, a number of experiments 

were performed. The ability of the ARN to represent the dynamics of individual 

biochemical reactions was tested and the results were shown to compare to those of 

standard modelling tools (chapter 4). Later, by simulating the E. coli chemotaxis CSN 

(chapter 5), it was demonstrated that the ARN could be used to model an entire signalling 

pathway. The accuracy of the ARN, in simulating both the dynamics of individual 

biochemical reactions and whole CSNs, compared to that of other standard Systems 

Biology tools. These results thus demonstrate the attainment of this objective.  

3. Explore the computational capabilities, pattern recognition and temporal dynamics of the 

new representation. 

The computational capabilities of the ARN were firstly evaluated by constructing small 

networks which could perform operations such as: Boolean and Fuzzy Logic, switching and 

oscillation. For each of these networks, examples from the literature were used as a basis of 

their structural design and also to demonstrate their occurrence within biological CSNs 

(chapter 2). In chapter 4 the ARN was demonstrated to have at least the same processing 

capability as an MLP. Its pattern recognition functionality was explored in chapter 6, where 

a fully-connected, layered ARN was successfully trained using an EA to recognise simple 

patterns. Using the gaits of qudrupedal robots as a test bed, the ARN was then shown to be 

capable of generating a range of complex temporal signals (chapter 6). These experiments 

also showed that ARN could automatically transition between these signals in response to 

environmental stimuli. Thus, the demonstration of the ARNs capacity for pattern 

recognition and the generation of complex temporal waveforms illustrate that this objective 

was clearly met. 
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4. Evaluate the ability of the new representation to capture characteristics of Cell Intelligence 

arising from single cells. 

Having evaluated the ARN’s ability to accurately model and capture the computational 

properties and mechanisms of CSNs, its ability to represent the characteristics of Cell 

Intelligence demonstrated by a unicellular organism was examined (chapter 5). Here, an 

ARN-based simulation of the E. coli chemotaxis CSN demonstrated the temporal transition 

of concentrations of key chemotaxis proteins in response to different levels of 

environmental chemorepellant. Ultimately, the resulting pattern of chemical concentrations 

indicated chemotaxis down the chemorepellant gradient, and thus demonstrated the high-

level behaviour of movement toward more favourable conditions. This work illustrates the 

achievement of this objective. 

5. Evaluate the ability of the new representation to capture Cell Intelligence arising from 

multiple interacting cells. 

It was shown that the ARN could capture complex emergent behaviour arising from groups 

of multiple interacting cells using ARN-agents termed Cytobots (chapter 7). Cytobots were 

shown to capture emergent behaviour of the slime mould D. discoideum (chapter 8). In this 

simulation, each Cytobot represented a D. discoideum cell, and it was demonstrated that 

these responded autonomously to the surrounding environment and to other Cytobots using 

stigmergic communication. Thus the work in chapters 7 and 8 demonstrate the achievement 

of this objective. 

6. Identify the applications of the new representation within AI and compare with existing 

methods 

Many applications of the ARN were demonstrated throughout the project, and thus this 

objective was met. These were:  

1) Simulation of an individual CSN (chapter 5) 

2) Simulation of multiple interacting CSNs (chapter 8) 

3) Simulation of emergent behaviour in both individual and multiple interacting cells 

(chapter 5 and 8) 

4) Limbed robotic control and pattern recognition (chapter 6) 

5) Robotic control in general (for example, in the oil-spill experiment described in 

chapter 8) 
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Existing methods were contrasted with the ARN throughout the project, particularly within the 

results section for each experiment. 

9.3 Original Contributions to the Art 

The original contributions, as given in chapter 1 are listed below. Each is followed by the 

location of the original work within this thesis and a justification of its originality. 

1. The creation of a new connectionist AI technique - the “Artificial Reaction Network” 

inspired by biological Cell Signalling Networks (chapter 4). 

As discussed in chapter 3 and 4, there are techniques similar to the ARN. However, the 

ARN has a number of unique characteristics that distinguish its operation. These are: 

• A distinct graphical notation associated with its mathematical definition 

• The use of inhibitory connections, which combine discrete switches with 

continuous reaction dynamics 

• The specific use of Euler’s approximation to generate time-domain response 

• The use of “pools” 

• The isolation of component parts within a connectionist representation 

Furthermore, the ARN has a number of advantages that were discussed throughout the 
project. In summary these are: 

• It is highly flexible, individual reaction parameters (units/pools/connections) can 

easily be modified independently of other reactions. 

• Distinct graphical system and associated mathematical definition facilitate simple 

building and conceptualisation of pathways. This in turn facilitates the 

development of drag-and-drop user interfaces.  

• Ability to easily represent and visualise structural motifs found in CSNs and study 

emergent properties of the network. 

• The temporal dynamics of entire networks and (or) individual reactions can be 

viewed in simulated real-time. The effects of modifications to the network can be 

viewed as they occur. 

• The ARN can both process input patterns, and generate associated output patterns. 

• Direct outputs from the ARN can be used to control robotic actuators. 
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• It enables both intracellular dynamics and extracellular dynamics to be modelled 

and resulting emergent properties studied in one system. 

2. The production of complex waveforms for control of limbed robotic gaits by 
combining functional motifs found in CSNs within a rate law based connectionist 
system (chapter 6). 

Although differential equation reaction models have been used to generate motion of soft-

bodied robots (as discussed in chapter 3), none that use functional motifs found in real 

biochemical networks or that employ rate law equations have been used to generate the 

gaits of limbed robots. 

3. The construction of the E. coli chemotaxis pathway using a connectionist based 
Artificial Chemistry (chapter 5). 

To the best of my knowledge, this is the first time that a connectionist-based Artificial 

Chemistry was used to simulate the chemotaxis pathway of E. coli and model its high-level 

behaviour. 

4. The implementation of chaotic dynamics by combining functional motifs found in 
CSNs within a rate law based connectionist system (chapter 7). 

Chaotic dynamics have been shown in real biochemical reactions, for example the 

Belousov-Zhabotinsky reaction (Winfree 1984) and computational models of such 

dynamics have been created. However, as far as the author is aware, this is the first time 

such dynamics have been generated by combining functional motifs within a connectionist-

based Artificial Chemistry.  

5. The production of a complete limbed robotic control system by combining 
functional motifs found in CSNs within a rate law based connectionist system 
(chapter 6). 

As far as the author is aware , this is the first time that a complete limbed robotic control 

system has been created by combining functional motifs found in CSNs within a rate law 

based connectionist Artificial Chemistry. It was shown that such a system can combine 

pattern recognition and response within a single network and automatically generate and 

transition between different quadrupedal gaits in response to a range of environmental 

patterns. 
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6. The construction of multiple distributed cell-like agents by combining functional 
motifs found in CSNs within a rate law based connectionist system (chapters 7 and 
8).  

There are other agent-based systems that have complex internal networks as discussed in 

chapter 3 (for example GRNs). However, these examples do not use functional motifs 

found in CSNs nor do they use the rate law equation to model internal dynamics. 

Furthermore these do not show the ability to perform multiple operations. For example, 

move forward, turn, adjust length of motion, recognise environmental patterns, and change 

phase (as was demonstrated by the Cytobots in the oil-spill clean-up simulation in chapter 

8); or parallel the collective high-level behaviour found in groups of interacting unicellular 

organisms. 

9.4 Suggestions for Future Work 

Overall considerations for future work can be divided broadly into two categories: 1) 

improvements to the model and 2) further applications. An overview of those considered the 

most important are presented below. 

9.4.1 Improvements to Model  

• Currently programming a large ARN network is complex. Increasing the number of 

reaction units increases the number of connections and pools, thus increasing the size of the 

program. Managing such a system is cumbersome. For practical use, it would be highly 

convenient to develop a drag-and-drop graphical user interface allowing connections, pools 

and units to be simply arranged, connected and modified as desired. This would make the 

ARN accessible to wider research communities, for example, as a modelling tool in the 

field of Systems Biology. 

 

• The accuracy of the model could also be improved by, for example, examining the use of 

second or higher-order methods of approximating the differential equations. The current 

method of approximation – Euler’s method, was deemed suitable for the purposes of this 

project. However, providing a higher degree of accuracy may be useful in particular 

modelling scenarios. 

 

• An important aspect of future work, which would make the ARN more versatile and 

accessible particularly within the AI community, is the ability to:  
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1) Evolve entire ARNs autonomously. 

 

2) To facilitate autonomous adaptation and learning within the ARN representation. 

 

• The first point refers to the ability to automatically evolve not only the network parameters, 

as was demonstrated in the pattern recognition experiments (chapter 5), but also to evolve 

the topology of the network. The second point refers to the ability of the network to 

continuously and autonomously adapt its topology and network parameters while in 

operation – thus allowing it to maintain or improve its current functioning. 

9.4.2 Applications  

• An interesting property of Cell Intelligence is the ability to store and recall information. As 

discussed in chapter 2, such memory is of interest because it illustrates that intelligence is 

present in organisms without a nervous system. Such knowledge sheds light on the nature 

of intelligence in a more general sense and on the limitations of cellular behaviour. 

However, the mechanisms involved are poorly understood. The ARN is a technique suited 

to investigating such mechanisms and properties of CSNs which could facilitate this 

primitive memory. Such insights would be important within both biological science and AI.  

 

• As was demonstrated in the D. discoideum simulation (chapter 8) Cytobots provide a 

powerful tool in the simulation of interacting cells. They allow CSN dynamics at multiple 

levels (intracellular and extracellular) to be modelled in parallel. This could be particularly 

useful in examining the emergent properties of interacting cells. For example, the effect of 

mutant or diseased cells on a colony can be studied by introducing ARN-agents with 

altered pathways to a population of ARN-agents with wild-type pathways. Another 

potential field of application is within environmental science. For example, models of 

micro-ecologies containing heterogeneous species can be created and used to predict 

potential effects on the environment or on each other.  

9.5 Concluding Remarks 

In conclusion, the author would like to make the following personal remarks with regard to the 

undertaking of the work. The project has been a great success and all the original objectives 

have been fulfilled. The work has resulted in six conference papers (most in leading 

international conferences) and two journal publications both in Soft Computing (Springer). 

There have been many challenges over the course of the project and these have been 
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successfully overcome. The project has been highly interesting, extremely worthwhile and 

provides an extensive report on the computational aspects of CSNs. 
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The eight papers produced during the course of the project are contained within this 
appendix.  
 
  



A2 

Paper 1: ‘Applications and Design of Cooperative Multi-agent ARN 
based Systems’ 

Reference: 
Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (in press) ‘Applications and 

Design of Cooperative Multi-agent ARN based Systems’, A Fusion of Foundations 

Methodologies and Applications, Soft Computing, Springer. 

  



A3 

Applications and Design of Cooperative Multi-
agent ARN based Systems 
 
 
Claire E. Gerrard • John McCall • Christopher Macleod • George M. Coghill 

 

Claire. E. Gerrard • John McCall 

IDEAS Research Institute, Robert Gordon University, Aberdeen, AB10 7GJ, UK  

email: c.e.gerrard@rgu.ac.uk 

 
John McCall 
email: j.mccall@rgu.ac.uk 

 
Geroge M. Coghill 

School of Computing Science, University of Aberdeen, Aberdeen, AB24 3FX, UK. 

email: g.coghill@abdn.ac.uk 

 
 
Christopher Macleod  

School of Engineering, Robert Gordon University, Aberdeen, AB10 7GJ, UK. 

email: chris.macleod@rgu.ac.uk 
 

Keywords Artificial Biochemical Network (ABN), Artificial Chemistry, Artificial Neural 

Network (ANN), Swarm Robotics 

 

Abstract The Artificial Reaction Network (ARN) is an Artificial Chemistry inspired by Cell 

Signalling Networks (CSNs). Its purpose is to represent chemical circuitry and to explore the 

computational properties responsible for generating emergent high-level behaviour. In previous 

work, the ARN was applied to the simulation of the chemotaxis pathway of E. coli and to the 

control of quadrupedal robotic gaits. In this paper, the design and application of ARN-based 

cell-like agents termed Cytobots are explored. Such agents provide a facility to explore the 

dynamics and emergent properties of multicellular systems. The Cytobot ARN is constructed 

by combining functional motifs found in real biochemical networks. By instantiating this ARN, 

multiple Cytobots are created, each of which is capable of recognizing environmental patterns, 

stigmergic communication with others and controlling its own trajectory. Applications in 

biological simulation and robotics are investigated by first applying the agents to model the 

life-cycle phases of the cellular slime mould D. discoideum and then to simulate an oil-spill 

clean-up operation. The results demonstrate that an ARN based approach provides a powerful 

tool for modelling multi-agent biological systems and also has application in swarm robotics. 
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1 Introduction 
In recent years, researchers have become increasingly interested in the complex behaviours 

displayed by individual cells (Ford 2009; West et al. 2007). For example, the cellular slime 

mould D. discoideum (Dd), starts life as a collection of solitary amoebae which actively hunt 

bacterial prey. But on starvation these cells secrete a cAMP (cyclic adenosine monophosphate) 

signal resulting in a complex aggregation response and the formation of a travelling 

multicellular “slug”. Dd also has a symbiotic relationship with its bacterial prey using a 

primitive form of “farming” to ensure sufficient food availability within a new environment 

(Brock, 2011).  

In order to generate this emergent high-level behaviour, a cell must be able to store and process 

information. This is accomplished by Cell Signalling Networks (CSNs) which function as the 

cell’s internal processing machinery. They do this by manipulating chemical data within 

elaborate networked hierarchical control structures which connect chemical species together in 

productive or inhibitory unions. In this way, cells are able to respond to changes within their 

environment, communicate with other cells, and perform internal self-maintenance operations 

(Bray 1995). Several researchers have highlighted the processing capabilities of these networks 

(Bray 1995; Arkin and Ross 1994; Bhalla 2003) and their similarities to Artificial Neural 

Networks (ANNs) (Bray 1995; Bhalla 2003). As discussed later, some have identified structural 

motifs common to many CSNs which form basic computational processing units. 

The Artificial Reaction Network (ARN) is an Artificial Chemistry technique inspired by 

biological CSNs. The design, computational properties, mathematical formalism (Gerrard et al. 

2013) and validation (Gerrard et. al 2011) of the ARN have already been discussed in detail. 

The ARN was previously used to simulate the chemotaxis pathway of E. coli (Gerrard et al, 

2011), in pattern recognition and to generate complex temporal waveforms to control limbed 

robots (Gerrard et al. 2012a, b; 2013). Previous work focused on exploring the properties and 

mechanisms which lead to high-level behaviour in individual cells. The focus of this work is to 

explore those which result from groups of interacting cells using a new technique termed the 

“Cytobot”. Cytobots are cell-like agents which, under direction of their internal ARN, 

autonomously move within and respond to their environment. Like other Artificial Chemistry 

approaches (Joanchimczak et al. 2013; Shen et al. 2004; Guo et al. 2009 ), a Cytobot system is 

composed of multiple cell-like components which communicate with each other and control 

their local actions via artificial chemicals. The specific objectives of the results presented here 

are as follows: Firstly, to explore the mechanisms and computational properties that lead to 

emergent high-level behaviour within and between groups of interacting cells. Secondly, to 

investigate applications of the ARN technique in biological simulation, and finally as a 

distributed robotic control system.  
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The following novel work is presented: 1) A complete overview of the design of Cytobots 

including their biological background and computational properties; and 2) a Cytobot based 

simulation of the life phases of Dd; and 3) a simulated oil-spill clean-up operation using a 

Cytobot swarm.  

The paper is structured as follows: Section 2 briefly summarises the ARN representation. 

Section 3 discusses the biological background and behaviour of the Cytobots. Section 4 

presents a complete overview of the Cytobot ARN design and discusses the biological 

functional motifs of which the network is composed. The experiments in section 5 explore the 

applications and properties of Cytobot systems. The first experiment (section 5.1) applies the 

Cytobots to the simulation of the Foraging and Aggregation phases of Dd. The phase times and 

emergent behaviours are compared with the literature. The results show that Cytobots are able 

to accurately model the behaviour of individual unicellular organisms, and that arising from 

interactions among such groups. They also demonstrate a high-level of flexibility where, for 

example, the pathway within an individual cell may be modified and its effects on high-level 

behaviour of the entire cell group viewed over time. In a further experiment (section 5.2), 

robotic swarm applications are investigated and a Cytobot swarm is applied to a simulated oil-

spill clean-up operation. The results compare well with other related methods and show that 

Cytobots may have practical applications within the real-world as a physical robotic swarm.  

2 The Artificial Reaction Network 
A brief summary of the ARN is provided here; a full account can be found in our previous 

paper published in this journal (Gerrard et. al, 2013).  

The ARN focuses on the inherent networked properties of CSNs and is specifically designed to 

represent “biological circuitry”; it consists of linked processing units connected together via 

weighted connections and for this reason may be described as “connectionist”. It is a networked 

representation similar to other ACC models (Zeigler and Banzaf 2000; Eikelder et al. 2009). As 

shown in Fig. 1, the ARN comprises a set of networked reaction nodes (circles), pools 

(squares), and inputs (triangles) and is depicted as a directed weighted graph. Each pool stores 

the current available amount of a particular chemical species (avail); thus, the complete set of 

pool concentrations at time t, corresponds to the current state of the system. While many ACs 

assume a well-stirred reactor, the use of pools approximates a chemical compartment, allowing 

a representation of the spatial compartmentalisation which occurs within cells. This also 

provides a means to represent flow structures such as membrane channels and transport 

processes. Inputs are a special type of pool which are of fixed value and thus can be used to 

represent the continuous flow of environmental inputs or enzymes. Data is processed by 

reaction units which transform incoming pool values to connected outgoing pool values. 



A6 

Connections symbolise the flow of chemical into and out of reaction units and their weight (w) 

corresponds to reaction order. Connections provide a means to create complex control 

structures by combining inhibitory or excitatory unions. 

 
 

         

 

 

 

 

 
 
 

 

 

 
 

 

 

Fig. 1 Schematic diagram of a simplified Artificial Reaction Network (ARN). Reactant chemicals A and B react at 
unit 1. The rate of the reaction at unit 1 at time t is given by Eq. (1). The current concentration in pool C is updated 
using Eq. (2). 

Figure 1 shows the reaction between species A and B to produce species C. The result of 

applying Euler’s method to the differential rate equation is given by Eq. (1) and this is used to 

calculate each reaction unit’s temporal flux value over the time interval ∆t. 

 ( ) tCKBAKC CBA w
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w
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w
availCf ∆−=∆ ][][][][ )()(  (1) 

This result is then used to update the current concentration of each reaction’s connecting pools. 

As mentioned previously, conserved mass values are used throughout the experiments detailed 

in this work and thus each pool is updated at each time interval for example at pool C. 
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Non-conserved values may also be modelled and the mathematics for this is given in our 

previous work (Gerrard et. al 2013).  
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3 Cytobot Behaviour 
A Cytobot has 2 behavioural modes which are based on the chemotaxis behaviour of D. 

discoideum amoebae. These modes and their biological basis are described below. 

3.1 Biological Basis of Cytobot Behaviour: Chemotaxis of D. discoideum Amoebae 

The Dd life cycle has 4 stages: Vegetation, Aggregation, Culmination and Migration, a detailed 

description of the biology is given by Devreotes (1989). During its Vegetative stage the 

organism consists of a collection of amoebae which navigate toward food by moving up 

gradients of folic acid secreted by their bacterial prey. The trajectory of these cells is a pattern 

of motion similar to a random biased walk. Dd cells extend pseudopods in a random direction; 

those extended toward sources of chemoattractants, such as food, are maintained; while those 

extended toward less favourable conditions and retracted. The overall result is movement up the 

gradient of attractant (Andrew and Insall 2007).  

When the food resource has been depleted, the amoebae begin to stave and enter the 

Aggregation phase. Starving cells secrete cAMP (cyclic adenosine monophosphate), which 

serves as a signal to attract surrounding amoebae towards each other, resulting in a densely 

populated aggregate (Devreotes 1989) commonly referred to as a “mound”. Aggregating cells 

are polarized, thus one side becomes the leading edge, which always faces in the direction of 

travel (McCann et al. 2010). Depending on parameters such as environmental conditions and 

the cell population density, migrating cells can form transient emergent patterns such as streams 

and spirals (McCann et al. 2010; Dallon and Othmer 1997). Streaming describes a pattern of 

motion where cells line up in close-order files, with the head of one following the rear of 

another (McCann et al. 2010) and the spiral pattern describes streams of concentric cells 

spiralling toward the centre of the aggregate. 

3.2 Cytobot Foraging Mode 

In Foraging mode, a Cytobot performs a pattern of motion based on the previously described 

chemotaxis of Dd cells during their Vegetative phase. The Cytobots approximate this behaviour 

as a random biased walk by performing alternate periods of forward motion termed “runs” and 

random redirections called “tumbles”. The bias is provided by reducing the tumble frequency 

when moving toward more favourable conditions (for example up food gradient), thus 

increasing the length of the run. Like aggregating Dd cells, each Cytobot is polarised, and will 

always face toward the direction of travel. At each new position P, an agent redirects itself to 

face a new random angle between 0 and 360 degrees (a tumble). The agent then moves forward 

in a straight line for a number of time-steps, based on the level of detected food at P (a run). 

The Cytobot consumes all the food (if present) at each location it passes through. 
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3.3 Cytobot Starvation Mode 

The Cytobot Starvation mode is based on the pattern of motion displayed by starving cells of 

Dd. The Cytobot enters Starvation mode if it has not consumed food within a fixed time period. 

During this phase, the Cytobots respond to detected levels of environmental cAMP. Depending 

on the particular experiment, this chemical may already be present within the environment or it 

may be released by the starving Cytobots. In this mode, both run and tumble behaviours differ 

from that in the Foraging phase. Rather than turning in a random direction, a new direction is 

calculated by weighting the turn toward the highest concentration of artificial cAMP within the 

surrounding area. The run period, instead of being variable, is a fixed length, which is set 

according to the particular experiment.  

4 Cytobots: Design and Implementation 
 
In previous work it was shown that the ARN can be used to model the reactions of specific 

proteins involved in signalling pathways (Gerrard et al. 2011). To enable the Cytobot ARN to 

produce the behaviour of chemotaxing Dd amoeba, rather than simulating specific protein 

interactions, a more abstract method was employed. There are a number of reasons for this 

approach. For instance, there are significant gaps in our current knowledge of the chemical 

interactions involved within this pathway (Manahan et al. 2004), and thus it is not possible to 

create an accurate representation. When modelling such a network researchers often adopt a 

modular approach- where related signalling events are grouped into functional units (Manahan 

et al. 2004). In this way, the Cytobot ARN was designed by dividing functions into modular 

units. The functional modules are constructed by combining “structural motifs” from real 

biochemical networks. Such motifs, each of which perform distinct computational functions, 

have been identified by a number of researchers (Tyson and Novak 2010; Bray 1995; 

kholodenko 2006). There are a number of advantages in this approach. Firstly, these motifs are 

universally found in other pathways, and thus show that the ARN is capable of potentially 

modelling any pathway. Furthermore, by creating entire systems composed of these motifs 

illustrates how biologically plausible motifs can be combined and cooperate together to produce 

functionally distinct pathways and how such pathways cooperate (a feature of crosstalk) to 

produce overall cellular behaviour. These functional motifs and the manner in which they are 

combined within the Cytobot ARN control system is discussed below. 

A summary of common structural motifs, their computational function, structure (in the 

previously defined ARN format), and biological examples of each is provided in Table 1. Note 

that these motifs are shown for simplicity as 2 or 3 component forms but there are larger 

versions with the same function; for example, an additional component may be added to motif 9 
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to create a 4 component oscillator. One important biological example is the universal signalling 

motif of a phosphorylation cycle. Here a signalling protein is interconverted by opposing 

enzymes (a kinase and a phosphatase) between its phosphorylated (Yp) and non-

phosphorylated forms (Ys). In a multisite phosphorylation cycle, feedback from either form can 

cause oscillations between stable states or render the cycle into a bistable switch, where the low 

and high Yp concentrations correspond to “on “and “off” states (kholodenko 2006). A cascade 

of such bistable cycles can produce multiple stable states, allowing the complex interdependent 

control of many cellular functions. For example, the cell’s transition into mitosis is governed by 

the sequential activation or inactivation of such kinases (CDK1/Cdc2) (kholodenko 2006). 

Space prevents a detailed discussion of each motif but an in-depth account including the 

biological mechanism, structure and examples is provided by Tyson and Novak (2010). 
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4.1 Functional Motifs in Biochemical Networks 

Table 1 Functional Motifs in Biochemical Networks 

Motif No., Name and 
Description 

Structure (in ARN 
format)  

Biological Example 

1. Excitatory (E)                                    
The presence of X activates Y 

 Elementary motif common throughout most pathways. E.g. 
Ras is a membrane associated protein that is normally 
activated in response to the binding of extracellular signals 
such as growth factors (Tyson and Novak 2010). 

2. Inhibitory (Y)                                   
The presense of X inhibits Y. 
Acts as a NOT gate. 

 Elementary motif common throughout most pathways. E.g. 
E-cadherin (a calcium-dependent cell–cell adhesion 
molecule) suppresses cellular transformation by inhibiting 
β-catenin (Tyson and Novak 2010). 

3. Positive Feedback Loop 
(PFL)       The presence of X 
activates Y and in turn the 
presence of Y activates X 

 The pathway of caspase activation is essential for apoptosis 
induction. A PFL exists between caspase-3 and caspase-9 
(Tyson and Novak 2010). 

4. Negative Feedback Loop 
(NFL)     The presence of X 
activates Y and in turn the 
presence of Y inhibits X 

 The proteins Mdm2 and p53 (p53 is a tumour suppressor 
protein) are involved in a NFL which functions to keep the 
level of p53 low in the absence of p53-stabilizing signals 
(Tyson and Novak 2010). 

5. Double-negative Feedback 
(DNF)  The presence of X 
inhibits Y and the presence of 
Y inhibits X 

 BAX is protein which promotes apoptosis by competing 
with BCL. A DNF is formed between the proteins BAX and 
BCL (Tyson and Novak 2010). 

6. Branch (B)                                        
The presence of X activates Y 
and Z  
 

 The transcription factors such as E2F or P53 frequently 
modulate the expression of more than one gene. 
Enzymes often modify more than one substrate e.g. CycB-
dependant kinase (Tyson and Novak, 2010). 

7. Logic Gate (LG1)                            
AND gate: 2 excitatory 
connections from X and Y 
when both X and Y are present 
they activate Z. NOR gate: two 
inhibitory connections from X 
and Y. Both X and Y must be 
absent for Z to be activated.  
SWITCH: Excitatory 
connection from X and 
inhibitory connection from Y. 
The presence of X but not Y 
activates Z 

 AND: The protein gCam 2 kinase becomes active when 
both calcium ions (Ca2+) and Calmodulin (CaM) are present 
(Bray, 1995).NOR: The activity of transcription factor E2F 
is a NOR function of RB and CycB where E2F is active 
when both RB and CycB are inactive (Tyson and Novak, 
2010).SWITCH: The enzyme aspartate transcarbamylase 
has multiple catalytic sites. It is activated by binding of its 
substrates (aspartate and carbamoyl phosphate) and 
inactivated by cytidine triphosphate causing its substrates to 
dissociate (Bray 1995). 

8. Logic Gate (LG2)                             
OR Gate: : 2 excitatory 
connections from X and Y 
when either X or Y are present 
they activate Z 

 For instance, Ras is a membrane associated protein that is 
activated by a number of different signals. E.g. in response 
to the binding of extracellular signals such as a number of 
growth factors (Tyson and Novak 2010). 

9. Oscillator (OSC)                               
The presence of X activates Y. 
In turn the presence of Y 
activates Z but inhibits X. The 
presence of Z inhibits Y and 
activates X. 
 

 The cyanobacteria clock protein KaiC has a closed cycle of 
phosphorylation and dephosphorylation states (composed of 
KaiA, KaiB and KaiC). In the structure shown left, all 3 
chemicals oscillate and each inhibits the reaction clockwise 
left. Oscillators may have less inhibitory connections, the 
number of which is dependent on the mobility of the 
reaction species. However, the presence of all inhibitors 
increases stability in the presence of fluctuating 
environmental parameters e.g. temperature.  

Key:                            Either inhibitory or excitatory.                                 X/Y/Z:  Chemical species  
 
 
 

* Motifs may combine arbitrary numbers of components. 
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4.2 The Cytobot ARN 

Fig. 2 The Cytobot ARN network. Each Cytobot is controlled by an instance of this network and thus has an 

independent state at time t. The network is composed of 6 subnetworks. * Note that in these experiments pools are 

considered empty when the value of its component chemical is ≤ 1x10-3.  

Each Cytobot maintains its own copy of an ARN which enables it to operate asynchronously 

with respect to the other agents. In turn, this allows each Cytobot to react independently to 

situated environmental patterns, communicate with others and contribute to higher-level 

collective function. The Cytobots are placed within a simulated environment containing a 

distribution of chemicals. These chemicals represent the attractants of either food or cAMP. 

When a Cytobot moves to a new position, the surrounding level of chemical is used to set the 

inputs to its ARN. Consequently this changes the state of the network and updates its trajectory. 

During this process, the agent modifies the state of the environment by consuming food or 

releasing cAMP. 

The Cytobot ARN is composed of 6 subnetworks as shown in Fig. 2. Each subnetwork 

contributes a functional aspect to either (or both) Starvation and Foraging behavioural modes. 

Each of these subnetworks is discussed below in detail. 

4.2.1 The Master Oscillator 

The Master Oscillator (MOnet) functions to synchronize the outputs from all the other 

subnetworks together and is what the individual Cytobot references at each time-step to ascertain 

its overall behavior. It is a 4 component oscillator (Table 1, motif 9), with a token unit of 

chemical cycling around it. It consists of 4 reaction units: M0, M1, M2, and M3 (all with a 

reaction rate of 1), 4 pools MA, MB, MC and MD and generates a pulsed-width-modulated 

waveform. Each pool is associated with 1 of 3 behaviors. At every time-step, if a particular pool 

contains the token unit, then its corresponding behavior is performed. Pool MA activates turn, 
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MC activates run and MB and MD activates stop. Thus, if pool MC contains a chemical for 10 

time-steps, the agent will move forward for 10 time-steps. The other subnetworks inhibit (Table 

1, motif 2) or excite (Table 1, motif 1) the reaction units of the MOnet, to allow or prevent 

chemical flow.  

Note that this oscillator motif allows the Cytobot ARN to function easily as the control system 

for the motor actuators of a wheeled robot. Here, MC would switch on all wheel motors, while 

MA would switch on left-wheel motors only, thus turning the robot. The remaining pools would 

act as off switches.  

4.2.2 The Food and Run Length Network 

The Food Network (FNet) interfaces with the environment at pool FA, using an excitatory 

connection (Table 1, motif 1) and inhibits the Run Length network (RLnet) in accordance with 

the level of detected food. The forward rate of reaction at node F0 is 1, thus the content of FA is 

transferred to pool FB in a single time-step. The presence of chemical FB inhibits (Table 1, 

motif 2) R0 for a number of time-steps, according to the level of food (by setting forward rate 

of unit F1 to 1 and weight to 0, this can be an exact correlation). The RLnet is a 3 component 

oscillator (Table 1, motif 9). While reaction R0 is inhibited, it prevents pool RC from emptying. 

RC inhibits reaction M2 (Table 1, motif 2) of the MOnet thus preventing pool MC from 

emptying for the same number of time-steps. As discussed previously, the number of time-steps 

which pool MC contains the token unit represents the number of time-steps to move forward. 

4.2.3 The Signalling Network 

The Signalling Network (Snet) functions as a switch between Starvation and Foraging mode. A 

low food level triggers the starvation response and allows the Weighted Direction Network 

(WDnet) to control each new angle. Sufficient food will switch off the WDnet and allows the 

Chaotic Network (Cnet) to control each new angle. It is a 3 component oscillator (Table 1, 

motif 9) with a token unit of chemical flowing around it. Pool CA acts as the switch between 

Foraging and Starvation modes. Here the presence of chemical in CA inhibits the WDnet 

(Table 1, motif 2), while its absence switches on the WDnet; this in turn inhibits the Cnet, as 

shown in Fig. 2. In this oscillatory network, all reaction units have a forward rate of 0.5. This 

produces a continuously oscillating waveform and ensures a minimum number of time-steps for 

each behaviour. A NOR gate (Table 1, motif 7) activates pool CB in the absence of food 

chemical in both pools FB and FC of the Fnet, thus allowing pool CB to empty. An AND gate 

(Table 1, motif 7) will lead pool CA to eventually refill by activating pool CC, only when food 

is present in input FA and pool FC of the Fnet. 
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4.2.4 The Weighted Direction Network 

The Weighted Direction Network (WDnet) senses cAMP within the agent’s immediate 

environment and calculates a tumble angle which is weighted toward higher levels. This network 

interfaces with the environment via a number of receptor pools (AW, ANW, AN, ANE, AEA) 

which sense the level of food around the Cytobot. These pools represent receptors and are 

positioned at points around the front of its perimeter (as shown in Fig. 3), allowing the agent to 

travel in a similar way to that of a aggregating Dd cell. Each receptor input pool forms one input 

of an AND gate (Table 1, motif 7); the other input is a static pool containing a fixed level of 

chemical in correspondence to its direction. Directions start from AW (west) with a 

corresponding numeric value of 0 (A00) and progress in 45 degree steps through each direction 

to east (thus, the maximum value is 180). As the receptor positions around the agent are fixed, 

directions are always relative to that in which the agent is facing. All connections have a weight 

of 1 with the exception of the connection between pool AD and reaction A12 which has a weight 

of -1. This negative connection weight raises the sum of food detected in AD to -1, which 

multiplied by AB, allows an average angle to be calculated. Detected signals are classed as being 

in one of the following cardinal or ordinal directions: W, NW, N, NE, and E. Thus signals are 

detected from all directions above the horizontal plane. The calculated angle interfaces with the 

remaining subnetworks at pool AE. Pool AE is the output of an OR gate (Table 1, motif 8), and 

its inputs are activated by either the WDnet or the Cnet. AE also forms the inhibitory input of a 

SWITCH (Table 1, motif 7), where the presence of chemical in MA and absence in AE 

activates pool MB of the MOnet In the actual organism, receptors are set around the cell 

perimeter and direct movement appropriately. In this simulation, for simplicity, a count of the 

number of time-steps “n”, that MA contains the token unit is processed to gain the new heading 

“h” relative to the agents’ current heading “c” using Eq. (3): 

  cnh +−≡ )90(  (3) 

Statement 1  
IF (h > 360)THEN h = h – 360 
IF (h < 0)  THEN h = h + 360 
 

Thus, if the number time-steps is 120 and the agent is facing north, then the current heading 

would equal 0 and the new heading would equal 30. 
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Fig. 3. Location of the Cytobot sensors around its perimeter. 

4.2.5 The Chaotic Network 

The Chaotic Network (Cnet), shown in Fig. 2, is responsible for generating the pseudo-random 

angles which agents use to perform each Foraging mode tumble. It is a networked 

implementation of a Logistic Map, given by Eq. (4), where Xn is a state variable of value 0 < Xn 

< 1 at time-step n and λ is a system parameter of value 1 ≤ λ ≤ 4: 

 )1(1 nnn XXX −=+ λ  (4) 

 Without prior knowledge of the initial conditions, the output of the Logistic Map is not 

predictable; whereas, with prior knowledge it is deterministic. Therefore, the resulting series 

cannot be described as truly random, but as pseudo-random and its output has long been 

proposed as a pseudo-random number generator. Ulam and von Neumann (1947) were the first 

to examine this, and it has been successfully used in that capacity by several researchers (Patidar 

et al. 2009; Phatak and Rao 1995). The probability-density distribution of the Logistic Map, as 

given by Eq. (5) (where P(X) is the probability of X occurring at any time-step), is non-uniform 

(Patidar et al. 2009): 

 
)1(

1)(
XX

XP
−

=
π

 (5) 

When λ=4, the distribution is “U” shaped with a higher probability of values closer to the 

minima and maxima of X and a symmetric distribution around the midpoint.  

To implement the Logistic Map, a number of motifs are combined, including multiple branch 

motifs (Table 1, motif 6- KB activates KD and KE), PFLs (Table 1, motif 3- a multi component 

PFL exists where KA leads to activation of KE, which results in the activation of KA) and 

NFLs (Table 1, motif 4- KA activates KD which in turn inhibits KA). At the start of the 

simulation, pools KA and KB are initialized to the same random value (a unique number for 
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each Cytobot), between 0 and 1 (to 5 decimal places). This value represents the initial value of 

X of Eq. (4). All the other pools are initialized to 0, with the exception of the static pools KI 

and RK, whose initial values are 360 and 1 respectively. Reaction K2 is responsible for 

generating each new value of X and has a forward and reverse rate of 4 (the Logistic Map 

exhibits chaotic behaviour when λ is 4). The connection between KA and K2 has a weight of 1 

and that between K2 and KB has a weight of 2. The remaining series of reactions function to 

copy the value of X 3 times; where 2 copies serve as the new initial values of KA and KB, and 

one participates in the final output of the network at KH. KI has a fixed value of 360 which 

allows the network to convert the pseudo-random number at KH to an angle value between 0 

and 360 at reaction K0. However, reaction K0 cannot proceed until all 11 pools that inhibit it 

are empty.  

  
a) b) 

Fig. 4 The Frequency distribution for each value of X when X is initialised to 0.9277725 and λ=4 resulting from: a) 
the chaotic network b) Recursive relation given by Eq. (2) run using Matlab.  

These inhibitory connections (Table 1, motif 2) ensure that random angles are not output while 

the agent is in starvation mode, and that pool AE is empty before adding more chemical.  

The ARN implementation of the Logistic Map was verified against the recursive relation shown 

in Eq. (4) using Matlab, where λ=4, initial X = 0.927725, and iterated for 1x105 steps. The 

complete range of state-variables between 0 and 1 were divided into 100 equal subintervals and 

the frequency of occurrence of each subinterval interval was plotted. Similarly, the Cnet was 

run for 1x105 cycles, using the same parameters of X (initial value) and λ. These results were 

processed in the same way and are shown in Fig. 4. The frequency distribution gained from the 

ARN is identical to that obtained using Matlab and by other researchers using the same 

parameters (Patidar et al. 2009). The same comparison was repeated 100 times at different 

values of X, and the ARN consistently produced the same values as Eq. (2). 
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5 Experiments and Results 
In the following sections the methodology and results for the following experiments are 

presented: 1) A Cytobot based simulation of the Vegetative and Aggregative life-cycle phases 

of Dd including the transition; between them and 2) application of the same Cytobots in a 

simulated oil-spill clean-up operation.  

 

5.1 D. discoideum Simulation 

5.1.1 D. discoideum Simulation Methodology 

The experiments are grouped into two sets: Aggregation (AG1-10 of Table 2) which models the 

Aggregation phase only and Foraging to Aggregation (AGF3 and AGF8 of Table 2) where both 

the Vegetative and Aggregative phases are simulated, including the transition between them. 

Each experiment is performed at varying population densities of Cytobots (p) and different 

distance ranges of detection of cAMP (r). The experiments AGF3 and AGF8 are performed at 

the same p and r as experiments AG3 and AG8 respectively to compare the effect of the 

Foraging phase on the number of mounds formed and length of time to complete the 

Aggregation phase. The emergent patterns, numbers of mounds, and length of time to complete 

phases is examined and compared in both sets of experiments and with the literature. In each 

experiment the Cytobots move within a 2D simulated environment which represents an area of 

5.06 mm2- approximately half the maximum Aggregation territory reported in the literature 

(Dallon and Othmer 1997). A screen output shows the position of the Cytobots in real-time and 

is a grid of 500 × 500 pixels where each is represented by a square of side 4.5 μm. In nature, 

aggregating Dd cell densities are typically 250 to 1000 per mm2 (Dallon and Othmer 1997). 

Due to the computational resources required to manage a population of Cytobots within the 

upper range, a cell density at the lower biological range of 250 agents per mm2 (1250 Cytobots) 

and another at 150 per mm2 (750 Cytobots) were chosen.  
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Table 2 D. discoideum Simulation Results 

No. Cytobots 
per mm2 (p) 

Range (r) 
in mm 

Mean No. of 
mounds; (σ) 

Aggregation Phase 
Mean time in Hours; (σ);  

AG1 150 5 1 
(0) 

8.98 
(0.09) 

AG2 150 2.5 4 
(0.31) 

9.63 
(0.17) 

AGF3 150 1 5.9 
(1.16) 

9.47 
(0.65) 

AG3 150 1 5.2 
(0.82) 

9.92 
(0.34) 

AG4 150 0.5 8.4 
(1.19) 

10.23 
(0.59) 

AG5 150 0.1 14.2 
(2.36) 

10.6 
(1.82) 

AG6 250 5 1 
(0) 

8.95 
(0.11) 

AG7 250 2.5 1 
(0) 

9.6 
(0.20) 

AGF8 250 1 6.8 
(1.81) 

9.71 
(0.87) 

AG8 250 1 4.3 
(0.37) 

10.05 
(0.58) 

AG9 250 0.5 6.7 
(1.62) 

12.65 
(1.94) 

AG10 250 0.1 - - 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The strength of signal for each cardinal or ordinal direction above the horizontal plane of a Cytobot is 
calculated using this pseudocode. The result for each direction is used to set the corresponding direction input pool 
of the ARN WDnet. 

FOR each Cytobot 
      Get current agents’ facing direction CF 
      Assign a value to direction CF using statement 1 
 
           FOR each (index n) detected cAMP signal 
                  Get detected signal incoming direction CA 
                  Assign a value to direction CA using statement 1 
                  IF CA = CF THEN kn = 3 
                     ELSE IF CA = CF-1 OR CA = CF+1 THEN kn=2 
                         ELSE IF CA = CF-2 OR CA = CF +2 THEN kn=1 
                     ELSE kn=0 
                   END IF 
                 Calculate distance dn 
                 Store each CA with kn and dn 
            END FOR 
 
      Calculate WA for current agent using Eq. (7) 
END FOR 
 
Statement 1: East = 1; North East = 2; North = 3; North West =4; 
West = 5  
 
Where: 
WA= total weight of direction A  
N= total number of agents within range of detection 
dn= distance of current agent from agent n 
CA = direction of incoming signal detected by current agent 
CF = the current agents facing direction 
kn = value of cAMP signal from agent n 
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In both sets of experiments the Cytobots are initialized at random positions in Foraging mode 

within the simulated environment. In the AGF experiments, the environment is initialized with 

a radial outwardly-decreasing gradient of food (z), as described by Eq. (6), where x and y are 

Cartesian coordinates on the horizontal plane: 

 22 yxz +=  (6) 

 ∑
=

=
N

n n

n
A d

k
W

1
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The Cytobots begin the experiment in the previously described Foraging mode and remain in 

this mode until the food resource is depleted and Starvation mode is triggered. In a real 

environment, food is non-uniformly distributed, may be regenerated and can move (in the case 

of bacterial prey). Thus, this setup is highly simplified, but is comparable to other simulations 

(Becker 2010).  

If a Cytobot does not detect food for a period of approximately 5 time steps (the exact number 

depends on the level of food detected in the recent past, because higher levels take longer to 

flow through the network) it will enter Starvation mode. Cytobots in Starvation mode emit a 

cAMP signal at equal strength in all directions around their circumference into the 

environment. Each Cytobot in Starvation mode detects the cAMP signal of all other starving 

agents within a radius r. The total value for each direction is calculated using the pseudocode 

given in Fig. 5 and these totals are used to set the weighted direction network input (receptor) 

pools. A range of r values were explored, including that of real Dd cells: 1, 0.5, and 0.1 mm 

(McCann et al. 2010). The cAMP signal degrades linearly with increasing distance from the 

emitting cell. Each cycle represents 1 minute of time. In this time an aggregating Cytobot 

moves 9μm- a distance which corresponds to that of actual aggregating Dd cells (Rifkin and 

Goldberg 2006). Therefore, after 1 hour of motion a Cytobot travels a distance of 540μm. In 

this simulation, just as in biology, there are always remaining cells that do not aggregate, and 

thus the simulation runs until 95% of agents are at a distance of less than 0.1mm from their 

nearest neighbour. 

5.1.2 D. discoideum Simulation Results and Discussion 

The results for all 12 experiments are given in Table 2. Each experiment was performed 100 

times. In the AG experiments an increase in p by 100 per mm2 resulted in a decrease in the 

number of mounds formed at each value of r, with the exception of experiment AG6. This is 

not surprising, as denser populations have more chance of interacting, and thus form fewer 

clusters, each having a higher number of agents. Similarly, decreasing r results in a general 



A19 

increase in the number of mounds formed at both values of p. The likely reason for this is that 

as r decreases the Cytobots area of influence becomes increasingly smaller, and thus the 

number of isolated stable clusters with fewer agents increases. In the AGF experiments, agents 

generally focus on consuming food in each of the remaining areas of highest concentration (see 

Fig. 6K-L). Having consumed almost all the food, agents begin switching to starvation mode 

(Fig. 6M). In these experiments the number and location of resulting mounds differs from that 

of the AG experiments at the same values of r and d. For example experiment AG8 results in an 

average of 4.3 mounds within the test space (Fig. 6E) while AGF8 results in an average of 6.8 

mounds and a general shift in mound formation further away from the centre of the 

environment (as shown in Fig. 6O). The likely explanation is that, at the time of switching to 

aggregation, the majority of cells were forced outward toward the next remaining highest 

concentration of food. Emergent behaviours and clustering patterns similar to the biological 

organism were also observed. 

 

Fig. 6 Screenshots of the Dd simulation. Dots represent the Cytobots (black- vegetative and red- aggregative cells), 

and greyscale colour represents the food distribution. A-E: Cytobot aggregation experiment AG8 at A- 1hr, B- 2hr, 

C-5hr, D- 8hr, E- 10hr; Image F- real Dd cells aggregating; G- Lower right hand corner of image C demonstrating 

streaming behaviour; H-J Shows pattern formation; K-O Cytobot experiment AGF8 at K-0hr vegetation, L-4hr 

vegetation, M-transition to aggregation 0hr aggregation, N-5hrs aggregation, O-10hr aggregation.  

Diagram F courtesy of T, Gregor, Laboratory for the Physics of Life, Princeton University, 

2013 Used with permission. 

In experiments AG8-10 and AGF8 the value of r and p are within the ranges for real Dd cells. 

These experiments are used to compare the behaviors and aggregation time with the values for 

real Dd in the literature. In experiments AG8-9 and AFG8 mound formation completes within 
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the range reported for the actual organism of 9-13 hours (Cotter et al. 1992; Becker et al. 2010). 

These results are comparable with other work. For instance, Becker et al. (2010) report an 

aggregation time of 11.6 hours for a simulated population of Dd with a cell density of 200mm2. 

In experiment AG10, the population never satisfied the criteria for completion of mound 

formation where instead the agents appeared to move in a fashion reminiscent of Brownian 

motion. The likely explanation is firstly because the simulation does take into account 

glycoprotein’s which allow aggregating cells to attach together on contact. Furthermore, 

because r is small, fewer agents are detected by each Cytobot. Thus momentarily larger clusters 

with higher attraction strength go undetected and quickly dissipate- an effect that would not 

occur if agents stayed together. As previously discussed, the Cytobots are polarized. 

Implementing the agents in this way allows us to observe whether or not the previously 

described streaming behavior occurs. A close-up of the right-hand corner of screenshot C is 

shown in Fig. 6G showing agents beginning to form a cluster. The protruding head of each 

agent can be seen clearly, and each lines up its head to the rear of another to form a stream. As 

can be seen in Fig. 6F, this is very similar to the streaming behavior in real cells of Dd. Other 

emergent patterns occurred during different experiments including spirals (Fig. 6J), symmetric 

patterns (Fig. 6I), and waves (Fig. 6H). 

These results show that the Cytobots are able to simulate behaviour of individual unicellular 

organisms, and the emergent behaviours arising from their interaction. It highlights a potential 

use, as a means to simulate groups of interacting cells, for example a bacterial colony or tissue 

component within a multicellular organism. Applications include the modelling of the effects of 

disease (e.g. faulty gene expression) and pharmaceuticals on global behaviour. The results 

demonstrate the parallels between ARN agents and their biological counterpart; like amoebae, 

their internal network of spatially distributed dynamic chemical species allows them to 

autonomously coordinate and direct their movement, recognize and respond to patterns in the 

environment, and produce high-level behaviour.  

5.2 Oil-spill Confrontation Simulation 

5.2.1 Oil-spill Simulation Methodology 

To illustrate a practical application of the Cytobot system within robotics they were used to 

tackle a simplified oil-spill clean-up simulation. The Cytobots move within a 2D environment 

containing an oil-spill on water. This oil is analogous to a distribution of food within a nutrient 

landscape. In the following 4 experiments the length of time it takes for a swarm of 3, 5, 8 and 

15 Cytobots to clean up 95% of a simulated oil-spill is recorded. The agents move through the 

environment by switching between the two previously described behavioural modes- Foraging 

and Starvation. In these experiments, each Cytobot is controlled using the same ARN network 
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as used in the Dd simulation. To enable the Cytobots to behave differently, rather than modify 

the network, the interface between the Cytobots and the environment was altered. To achieve 

this, the concentration of oil surrounding the agents was used to represent both food and cAMP 

attractants. Thus, the amount of oil at each new position was fed into both the receptor pools of 

the WDnet and of the Fnet. At the start of each experiment, the Cytobots are distributed 

randomly within the environment, and the ARN network is initialized as previously described. 

The agents start the simulation in Foraging mode but during the simulation alternate between 

Foraging and Starvation modes. Starvation behaviour is triggered when the last positions 

(minimum of 2) contained zero food. In Starvation mode, instead of turning in a random 

direction, the new direction is weighted toward higher concentrations of food within its 

surrounding area. This behaviour forces exploration of unexplored search space because 

previously visited positions have a food level of 0. Consumption of environmental food 

therefore acts as a stigmergic signal, where agents are inclined to move up the nutrient gradient 

created by their foraging activities. On consuming a sufficient amount of food, the Cytobot 

switches back to Foraging mode, repeating this behaviour until 95% of the oil is consumed. 

Here, we model the spillage of 100 tonnes of Statfjord crude oil at 150C under a wind speed of 

5ms-1 The oil is distributed over a 2D sea surface of 300m by 200m, thus an area of area 

60000m2, where 2 pixels corresponds to 1m, as shown in Fig. 7A. This particular oil type and 

parameter set were chosen in order to compare directly with work by Kakalis and Ventikos 

(2008) who present a robotic swarm concept for oil-spill confrontation. For this reason, we 

account for an initial response time of 14 hours. Based on the mathematical models found in 

Kakalis and Ventikos which account for the main factors of short term changes in oil 

characterization, the volume of oil after 14 hours is reduced to 150m3. Beyond this starting 

state, the volume is only influenced by the Cytobots. The speed of each agent is 0.5ms-1 and is 

based on other robotic agents in oil cleaning scenarios (Kakalis and Ventikos 2008), thus the 

Cytobots move 1 pixel (0.5m) for every time step. The actual cleaning surface is 1m, thus the 

Cytobots clean a 2 pixel wide area in each time step. 

Mathematical modelling of an oil-spill is non-trivial and at best can offer a crude approximation 

of its actual trajectory. Most oil-spills quickly form a comet shape with most of the oil within 

the head, and a trail of sheen (Wang and Stout 2007). To represent a simplified version of the 

comet shaped spread, the area is divided into 100 3m x 200m segments. The first segment 

contains 0.015 tonnes of oil, and each subsequent segment increases by 0.03 tonnes from right 

to left.  

5.2.2 Oil-Spill Results and Discussion 

In each experiment, a different number of Cytobots was deployed- 3, 5, 8 and 15 and the 

recovery rate achieved by each group were compared. The simulation time was measured from 
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deployment of the Cytobots at 0 hours (14 hours after oil was spilled) and stopped when the 

Cytobots had collectively removed 95% of the 150m3 of oil. Each experiment was run 100 

times, and the average volume of oil consumed at 6 minute intervals was calculated. Figure 8 

presents the average volume of oil consumed by the group of Cytobots against time. Figure 9 

provides the average length of time taken to clean 95% of the oil (Avg. time) and standard 

deviation (σ) for each experiment. By adding 2 additional agents to the group of 3 the length of 

time is reduced by 3.7 hours, thus 1.85 hour average difference per extra Cytobot. This 

difference decreases 1.12 hours per Cytobot for 8 agents, then to 0.76 per agent for 15. The 

variation can be accounted for by examining the agents’ paths through the oil. Rates are much 

faster at the beginning of the experiments, where Cytobots move toward the oil-rich left side of 

the environment. This can be seen in the series of screenshots of a typical experiment shown in 

Fig. 7, where A shows the starting position at time 0, and B shows that after 2 hours the 

Cytobots have moved toward the left-hand side, focusing mainly on highly concentrated areas 

(consumed oil is shown in white). Initially, the rate of oil removal is high because Cytobots 

focus on the highest concentration areas and cannot go over their path, thus each new location 

results in consumption of oil. However, as time progresses, large patches become cleaned and a 

higher probability exists for the Cytobots to revisit previously cleaned areas. The consumption 

of oil in Fig. 7C-D at 4 and 9.6 hours respectively shows more clearly that Cytobots focus 

cleaning efforts on the area of highest concentration first, and are gradually forced to move 

toward the next highest concentration by the gradient created by their foraging activities. 

Figure 7D shows the state of the oil at the end of the simulation, where only small patches 

remain mainly in areas of low oil concentration. These results can be compared to the 

simulation by Kakalis and Ventikos. Here, varying numbers of simulated EU-MOP robots are 

deployed to tackle 150m3 of Strajford oil over 60000m3 (as before). In this case, the robots have 

a slightly faster speed of 0.54m/s but have the same 1m skimming face. Each EU-MOP robot 

has a storage capacity of 2m3
 and a transit speed of 2.1ms-1. The times taken for 3, 5, 8, and 15 

EU-MOPS are 54, 32, 20 and 10 hours respectively. For comparison, the results of our 

simulation can be adjusted to include unloading of the oil at a servicing vessel. Using the same 

storage capacity and transit speed and assuming the distance to the ship and back is 2 times 

300m and that each Cytobot fills the same amount simultaneously, then the new times are 17.2, 

12.7, 10.3 and 6.5 for 3, 5, 8 and 15 Cytobots respectively. The Kakalis and Ventikos 

simulation has several differences to the one reported here, particularly in the distribution of the 

oil. Also, some key parameters are missing from their paper, for example, the distance to the 

boat. Despite these differences, our results are very similar. For example, the reported 

simulation time for 15 EU-MOPS is 10 hours and in our simulation 5 and 8 Cytobots took 12.7 

and 10.3 hours respectively. Given the differences in the simulation and differences in 

operation of the robots, the resulting clean-up times are comparable, showing that the Cytobots 
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have potential application as distributed robotic agents in real-world environments. This 

application demands an internal control system which can function without reference to other 

agents within the environment which are operating in parallel. By modifying the environment, 

(which in this case was consumption of food), the agents can stigmergically communicate and 

facilitate emergent behaviour. The Cytobots offer a unique range of abilities. Like cells, their 

internal network of spatially distributed dynamic chemical species allows them to 

autonomously coordinate and direct their movement, recognize and respond to patterns in the 

environment, and produce high-level behaviour.  

Fig. 7 Oil simulation using 8 Cytobots at A- 0 hours, B- 2 hours, C- 4 hours and D- 9.6 hours 

 
Fig. 8 Average volume of oil cleaned against time for each group of Cytobots 
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No. of 
Cytobots 

Avg. finish 
times  

Standard 
deviation (σ) 

3 15.2 3.4 
5 11.5 2.7 
8 9.6 2.8 
15 6.1  3.1 

Fig. 9 Average length of time taken to clean 95% of the oil-spill for each group of Cytobots.  

6 Conclusions 
The experiments outlined in this paper show the advantages of considering cell-signalling 

networks as a connectionist paradigm. This approach allows their structure to be easily 

visualised, manipulated and organised into hierarchical modular structures. These in turn 

facilitate the exploration of the limits of their processing capabilities and, from an artificial 

intelligence perspective, allows them to be compared directly with other forms of simulated and 

biological intelligence. It may also prove useful tool in biomedical research as it allows, for 

example, the effect of mutated proteins to be examined simply in isolation or in interconnected 

groups - this is of particular importance in cancer research. 

The results presented above illustrate how common simple motifs, present in all CSNs, can be 

integrated together to form structured networks with sophisticated processing capabilities. This 

indicates that these may form universal building blocks from which higher-level functions can 

be built. The ARN based agents, constructed from these, behave in a very similar way to the 

real organisms; displaying two of their most interesting behaviours (foraging and aggregation), 

and so we may conclude that the ability to evolve this level of behaviour is probably fairly 

universal among such single-celled microbes. 

In the next stage of work, it is hoped to use an ARN to explore how learning might arise in 

protists. In particular the extent to which learning and memory is genetically programmed into 

invariant CSNs, and how much of it is extrinsic to the organism – as a stigmergic system. Or 

whether it has a variable intrinsic aspect – for example, the use of modulating elements within 

the CSNs, which might act as primitive “memories”. In the experiments outlined in this paper, 

the stigmergic aspect of such memory was illustrated. For example, like the cAMP trail-

following behaviour described above, the environment acts as a shared information depository 

in which to both facilitate collective manipulation of data and communicate the current global 

system state.  

There may also be a role for the ARN in other areas which have yet to be explored, particularly 

those which would benefit from its connectionist approach described in the paragraphs above. 

For example, it would appear ideal for modelling the complex but interconnected pathways 

present in environmental science and soil chemistries. 
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Supplementary information and code can be found at the following link: 

https://drive.google.com/folderview?id=0B-xGVfJFH9UmZlJTV1pROFFRb00&usp=sharing 
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Abstract The Artificial Reaction Network (ARN) is a Cell Signalling Network inspired 

connectionist representation (CSN) belonging to the branch of A-Life known as 

Artificial Chemistry. Its purpose is to represent chemical circuitry and to explore 

computational properties responsible for generating emergent high-level behaviour associated 

with cells. In the paper, the computational mechanisms involved in pattern recognition and 

spatio-temporal pattern generation are examined in robotic control tasks. The results show that 

the ARN has application in limbed robotic control and computational functionality in common 

with Artificial Neural Networks. Like spiking neural models, the ARN can combine pattern 

recognition and complex temporal control functionality in a single network, however it offers 

increased flexibility. Furthermore, the results illustrate parallels between emergent neural and 

cell intelligence.  
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1 Introduction 
In recent years, researchers have become increasingly interested in the complex behaviours 

displayed by individual cells. Such behaviours are exemplified by simple eukaryotic organisms 

called protists. These show an astonishingly varied repertoire of seemingly intelligent 

behaviours. For example, some have simple eye-spots to help avoid high light levels; others 

have locomotory appendages and stinging arrows to actively hunt and subdue their prey (Ford 

2009). All this is accomplished without recourse to a neural network, the foundation-stone of 

intelligence in higher animals. The behaviour of such simple organisms may be labelled as 

“Cell Intelligence”.   

In order to generate this emergent high-level behavior, a cell must be able to store and process 

information. Data is represented internally by a set of spatially distributed molecular 

concentrations. Cell Signalling Networks (CSNs) process this information within elaborate 

hierarchical network control structures which connect species together in productive or 

inhibitory unions. In this way, cells are able to respond to changes within their environment, 

communicate with other cells, and perform internal self maintenance operations (Bray 1995). 

Several researchers have highlighted the processing capabilities of these networks (Bray 1995; 

Arkin and Ross 1994; Bhalla 2003) and similarities to Artificial Neural Networks (ANNs) 

(Bray 1995; Bhalla 2003). For example, Bray (1995) claims that individual network units can 

perform Boolean and fuzzy logic and act as a Turing machine. In other work, Stadtman and 

Chock (1997) demonstrated that such a network can act as a flexible computational unit. 

Similar results were documented by Arkin and Ross (1994), and recently a number of 

researchers have developed these ideas (Hild et al. 2010; Wang 2011).  

In this paper the properties and applications of a connectionist model inspired by CSNs termed 

the Artificial Reaction Network (ARN) are discussed. This representation was introduced 

previously (Gerrard et al. 2010) where it was used to create a simulation of the chemotaxis 

pathway of Escherichia coli. In later work biochemical network motifs were investigated as a 

means to perform computational processing in a single ARN based system (Gerrard et al. 

2011a; 2011b).  

The ARN belongs to the branch of Artificial Life known as Artificial Chemistry Computing 

(ACC). This field of study utilizes principles of the Chemical Metaphor to construct novel 

software or hardware architectures in silico (Dittrich et al. 2001). In the Chemical Metaphor, 

data is stored in the form of molecular species and information processing occurs through 

interactions (reactions) between these molecules. The result of this computation appears as 

emergent global behaviour (Dittrich et al. 2001). ACC has been previously used in two main 

applications: simulating complex systems (biological, social or ecological) and in developing 

novel solutions to engineering or computational problems. Its approach can be broadly 

categorised into microscopic or macroscopic methods (Dittrich 2005). Microscopic methods 
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treat each molecule explicitly, while in macroscopic methods, all the molecules of one type are 

represented by a value signifying, for example, concentration. Microscopic ACCs tend to 

model dynamics as stochastic molecular collisions, while macroscopic models tend to use 

continuous differential or discrete difference equations. The ARN is a macroscopic ACC and 

has a networked representation similar to other ACC models (Zeigler and Banzaf 2000; 

Eikelder et al. 2009). For instance, in the Artificial Biochemical Neuron, concentrations of 

reactants form weighted links between reactions and their dynamics are modelled using 

Ordinary Differential Equations (ODEs) (Eikelder et al. 2009). Other related chemically 

inspired approaches can be found in the literature, for instance, the Gene Regulatory Network 

algorithm (Guo et al. 2009), the Digital Hormone System (Shen et al. 2004), the Artificial 

Homeostatic Hormone System (Hamann et al. 2010) and idiotypic Farmer based Artificial 

Immune Systems (Krautmacher and Dilger 2004). Like these models, the ARN represents 

molecular species as continuous concentrations where dynamics are modelled using ODEs. Its 

networked representation is specifically designed to represent “biological circuitry” and allows 

temporal and spatial dynamics to unfold real-time. As discussed later, it has properties in 

common with other models from both Artificial Intelligence and Systems Biology fields, 

including: Artificial Neural Networks, Random Boolean Networks, Petri Nets, and S-Systems.  

The specific objectives of the results presented here are as follows. Firstly, to explore the 

mechanisms and computational properties that leads to emergent high-level behaviour in cells. 

Secondly, to further investigate applications of this technique- specifically the control of 

motion in limbed robots. In this paper the following novel work is presented: 1) A complete 

overview of the ARN including its development, computational properties, advantages and 

disadvantages; and 2) the production of a complete ARN based control system for a limbed 

robot which combines pattern recognition and generation of time varying waveforms in a single 

network. 

The paper is structured as follows: section 2 discusses the ARNs development, representation, 

advantages and disadvantages. The ARN is then used to explore several computational aspects 

of Cellular Intelligence. The first of these is its pattern recognition capability (section 3.1). In 

these experiments ARN parameters are set using a Genetic Algorithm (GA) and input patterns 

representing external environmental chemicals are mapped to output patterns. In section 3.2, 

further processing capabilities of the ARN are investigated by determining its ability to regulate 

complex temporal dynamics. Its application in robotic control is then explored by using the 

resulting system to create waveforms which control the gaits of limbed robots. This network is 

then extended into a complete control system by combining it with the previous pattern 

recognition network (section 3.3) in a single ARN. The results show that the ARN can function 

in both sensory input and motor output tasks which usually only more complex models can 

fulfil. Moreover the ARN allows offers increased flexibility over existing methods in robotic 
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control tasks. The report concludes that the ARN is a versatile and powerful technique which 

has application in both simulation of chemical systems, and in robotic control, where it can 

offer a higher degree of flexibility and computational efficiency than benchmark alternatives. 

Furthermore, it provides a tool which may possibly throw further light on the origins and 

limitations of the primitive intelligence associated with cells and its parallels with neural 

intelligence.  

2 The Artificial Reaction Network 
The ARN was briefly introduced in our previous work (Gerrard et al. 2011). This section 

provides a complete overview of the ARN starting with its basic formulation, and followed by 

its networked representation and computational properties. 

2.1 Basic Formulation 

Rate equation models can be used to represent many different physical systems and so are very 

general and flexible in their applications. In the domain of chemistry, they can directly 

represent (or be slightly modified to represent) all the common reaction types. They form the 

basis of S-systems (Savageau and Voit 1987) and are well characterised in biochemical 

simulations. The basic rate equation is described by Eq. (1) and is described by two terms. The 

first half corresponds to the rate of generation of product j (Pj) and is equal to the forward 

reaction rate (kf), multiplied by the product of the concentrations of the N reactants ([Rn]), each 

raised to the power of its reaction order αn. 
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The second term represents the rate of decomposition of product back into its original reactants. 

This depends on the reverse reaction coefficient (kr) multiplied by the product of the 

concentrations of the M products [Pi], each raised to the power of its reaction order βi. For 

example, consider the simple reaction between two reactants labelled A and B with reaction 

orders of q and s respectively. These produce a single product P. In this case, Eq. (1) is reduced 

to Eq. (2). 
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When used in S-systems, a group of rate equations are normally set up - one for each reaction. 

The left hand of each equation is then set to zero and they are solved simultaneously to yield 

the steady-state response. If the dynamic responses are required, then numerical solution 

methods like Runge-Kutta are normally applied.  

2.2 A Networked Representation 

Clearly a large set of simultaneous ODEs (Ordinary Differential Equations), in their basic 

mathematical form, limit the conceptualisation, visualisation and communication of complex 

topologies. Furthermore, in this form, each ODE term is tightly coupled, and is difficult to 

isolate and manage. Therefore, in order to create a connectionist representation with distinct 

biological processing units, capable of constructing complex biological circuits, the method 

needs to be modified. This may be done by isolating each reaction in the network to form a 

discrete node which may then be modified independently of the other reactions. Such a node 

can be viewed as analogous to a neuron in an ANN and has been named an Artificial Reaction 

Node; by analogy networks of such nodes may be termed Artificial Reaction Networks 

(ARNs). Similarly to an ANN, each ARN node is a processing unit, transforming a number of 

inputs into an output. In an interconnected network of such units, global behaviour is 

determined by the connections, and unit parameters. Furthermore, by isolating each reaction 

like this, the individual pathways or units which make up the system can be changed, 

reconnected or evolved by (for instance) a genetic algorithm. This also allows an individual 

part of the network to be independently modified and its effects studied. Such a feature is useful 

in simulating disease pathways. Isolating the reactions in this way facilitates two other 

important practical advantages. Firstly, visual “drag and drop” interfaces can be developed. 

These allow researchers to quickly change network or reaction parameters in order to study 

their effect. This, in turn, allows simple visualisation of the system in a graphical form which 

makes its conceptualisation easier. Secondly, it makes the application of object-orientated 

programming techniques very simple, as each node can be coded as an instance of an object. 
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In developing the system described, Euler’s method was chosen in order to solve the rate 

equations. This offers some advantages, in that it is simple and computationally cheap, but 

more importantly, it allows the whole network to run quickly in simulated real time- so that its 

temporal dynamics can be seen to unfold during a run. This gives the option of changing 

parameters in real time so that a user can observe any dynamic resulting behaviour. 

Furthermore, the temporal output of the network could potentially be used as a control system 

for an “artificial cell” robot - a cytobot. 

Using the simple two input system shown in Eq. (2), multiplying through by dt and changing to 

a discrete finite time-step ∆t, the Euler approximation is described by Eq. (3). This reaction 

needs to be isolated from the others, so that it can form a discrete “unit”. This can be done most 

easily by borrowing the concept of “pools” from Petri-nets (Murata 1989). Petri-nets pass 

tokens between such pools as part of their operation. In the system discussed here, the pools 

may hold the number of available molecules, the concentration of the reacting chemicals (for 

example in moles per litre) or the mass of reactants. As the reaction proceeds, the reacting 

species pass from the input pools (depleting them) to the output pools (enriching them). So, in 

the previous example, to generate one molecule of product requires q molecules of reactant A 

and s molecules of reactant B. In this case, the pool containing A would get depleted by an 

amount ∆A as described by Eq. (4). Where ∆P is the amount of product generated (which 

would be added to pool P). This equation works if the units used are number of molecules or 

moles per litre (which are not conserved quantities). However if mass or a similarly conserved 

quantity is used then ∆A is given by Eq. (5). The whole system using more general symbols is 

shown diagrammatically in Fig. 1 (for a conserved quantity).  
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Fig. 1 Schematic diagram of a simplified Artificial Reaction Network (ARN). Reactant chemicals A and B react at 
unit 1. The rate of the reaction at unit 1 at time t is given by Eq. (3). The current concentration in pool C is updated 
using Eq. (5). 

 
It comprises a set of connected reaction nodes (circles), pools (squares), and inputs (triangles). 

Each pool represents the current available protein species concentration (avail) in a 

compartment and each circle corresponds to a reaction unit, representing an interaction 

(reaction) between a numbers of chemicals.  

The use of pools allows current concentration of species and their dynamics to be simply 

viewed. As a biological modelling tool, chains of pools could be used to represent gradients and 

translocation of species across membranes. Similarly, a loss component can also be added to 

the pools to represent the destruction of reactants or products by specific or general proteases or 

other degradation routes as shown in Fig. 1.  

Connections symbolize the flow of species into and out of reaction units and their weight (w) 

corresponds to reaction order. The connections can be either excitatory, or inhibitory. A 

reaction with both excitatory and inhibitory connections will proceed if all connected inhibitory 

pools are empty and its excitatory connected pools have the required concentrations. Thus the 

input pools serve as pre-conditions which must be met before the reaction can proceed. The 

inhibitory connections act as discrete on/off switches to either the forward or reverse reaction.  

KEY (and for all other ARN diagrams): w: Reactant species order 

Straight Line: Excitatory connection Triangle: Input 

T shaped line: Inhibitory connection Square: Pool 

A, B, C: Reactant species Circle: Reaction unit 
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The ARN has been extensively verified against standard methods of representing chemical 

systems (Gerrard, 2011), where it was shown to provide the same degree of accuracy as other 

ODE models.  

 

2.3 Computational Properties 

The overall structure may be compared to a perceptron, where the pools correspond to inputs, 

the reaction units to the weighted sum function, and these are joined together by weighted 

connections.  

It is fairly easy to see that the computational properties of the ARN are similar to those of the 

ANN. For example, consider the simple network shown in Fig. 2.  
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Fig. 2 A simple ARN network 

 
If we assume that the orders WA and WB are unity and the reverse reaction rates are zero, then 

the rate of change of the product pool P is given by Eq. (6). Which is the same expression as for 

the activity of a perceptron if A and B are the inputs and the k terms the weights. So a network 

of such nodes has at least the same computational capabilities as MLPs (Rumelhart and 

McClelland 1986). In fact the addition of non-unity orders means that effectively the node can 

produce non-linear separators in a similar way to polynomial neurons (Woo and Khor 2004) 

and are rather similar to so-called “sigma-pi” units (Gurney 1992) - although with the added 

dimension of dynamic behaviour which will be discussed in section 3.2.  

2.4 Disadvantages 

There are some potential disadvantages associated with the ARN. Firstly, the Euler 

approximation has an associated cumulative error. This is because it is an iterative linear 

approximation to a complex function. It may be thought of as the first-order term of a Taylor 

expansion of the function. For example, if we say that the rate equation is a function of at set of 

 A 
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WA 

WB 

 kAf 

 kBf 
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reactants and products R, we could write an abbreviated version of Eq. (1) as given by Eq. (7). 

The full Taylor series for Euler approximation to the second order would then be described by 

Eq. (8). 
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Because the series is truncated to the linear term the error of the approximation is the sum of 

the missing terms. In reality the error contribution from successive terms is usually negligible 

providing that the step-size is small. The error may be of consequence if the user is trying to 

simulate a complex biochemical system very accurately. However, as previously discussed, this 

is not the main purpose of the ARN. 

Other difficulties can arise using hybrid models and detailed discussions are provided in the 

literature (Kowalewski 2002). Two such issues can occur in this representation where both 

produce an unnatural result due to the problem of trying to represent a discrete system (of 

individual molecules) by a continuous mathematical expression. In a real biological system 

there are a finite number of molecules and the chemistry acts the same way on all of these until 

they are exhausted. This however is not always the case when applying the governing equation 

(Eq. 3). For example, consider the case where the order of the reactants is above 1. When the 

current reactant concentration is above one this is fine, however if it is less than one then the 

resultant activity decreases unnaturally. In practice this is easily sorted by restricting the range 

of the concentrations or using different units. 

A similar issue occurs where a pool, for example S, inhibits a reaction unit by an inhibitory 

connection. This reaction will always be inhibited while there remains any amount of chemical 

in S. Meanwhile S is involved in another reaction where the resultant flux is depleting S at each 

time step. As the concentration of S decreases so too does the flux. This leads to an infinite 

sequence of decreasing concentrations of S which asymptotically approaches zero. Therefore, S 

will always contain a smaller but positive value and as a result the inhibited reaction can never 

occur. In reality this would not occur since individual molecules would react in an individual 

manner. This problem is solved by simply setting a threshold- if a pool concentration is less 

than the threshold its concentration is set to 0.  
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3 Experiments and Results 
In the following sections the methodology and results for the following experiments are 

presented: 1) An ARN based pattern recognition system; 2) the use of an ARN based system to 

regulate time varying waveforms and its application in control of limbed robotic gaits; and 3) 

an ARN which combines the previous networks into a complete quadrupedal robotic control 

system capable of recognising input patterns and generating the required gait response.  

3.1 Pattern Recognition 

A key mechanism of cell intelligence is the ability of a cell to recognise and respond to specific 

patterns of chemical signals within its environment. Receptors recognise and bind to particular 

environmental chemicals. These are transduced and cell response is determined by a chain of 

signalling events.  

The ARNs pattern recognition capability was tested in both the context of a general pattern 

recognition device and in an abstract biological setting. In each case, 4 separate patterns 

composed of 4 input and 4 associated output mass values were applied to the ARN. Each 

pattern comprised values of either 0.1, representing low concentration, or 1 corresponding to 

high concentration. The ARN was set up as shown in Fig. 3 and consists of 7 pools, 4 inputs 

and 7 reaction units organised into 2 layers.  

 
Fig. 3 The structure of the ARN used for pattern recognition experiments. The network consists of 4 inputs 
(triangles), 7 reaction units (circles) and 7 pools (squares). Each index of the input pattern array is fed into the 
corresponding input number. Output patterns are output at pools (squares) 3-6. 

 

In biological CSNs, network parameters are determined by genetic factors which are subject to 

evolution. To achieve a related effect within this artificial setting a genetic algorithm (GA) was 

adopted to train the network to produce the correct output. The initial value of all pools was 

0.01. Each input value of a pattern was fed into its corresponding input unit. For example, the 

first, second and third input value of pattern 1 is 0.1 and the fourth is 1 (see Table 1) - thus 

input unit 0-3 (see Fig. 3) were initialised to 0.1 and input unit 3 to 1. The output values were 

generated by the final layer of pools (3-6). The target output values for each pattern are given 

under the heading “Output” of Table 1, and the actual values associated after training are given 
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under “Actual Output”. A population of 100 solutions were randomly initialised. Each solution 

comprised a complete set of network parameters including the forward and reverse rates for 

each unit and the weights for each connection between pools (or inputs) and units. Due to its 

temporal properties the network was run for 100 cycles (a cycle ends when the complete set of 

pools in the network are updated once using Eq. (3) where ∆t = 1) in order to obtain steady-

state output values. The solution fitness was then calculated where fitness was the inverse of the 

error on output and the target error was 0.01. The least fit half of the population was discarded 

and the remaining solutions were subject to mutation and crossover in order to create the new 

population. To minimise the number of generations, the mutation and crossover rates were 

adjusted to final settings of 0.4 single point crossover and 10% uniform mutation. The average 

number of generations required to reach the target error was 387. The parameters of one 

solution are given in Table 2. The results from this general pattern recognition experiment are 

shown in Table 1. As can be seen the ARN was able to recognize all 4 patterns correctly.  

Table 1 Patterns and results for both general and abstract biological setting experiments. 

General Pattern Setting  Abstract Biological Setting  

Pattern Input Output Actual 
Output 

Pattern Input Output Actual 
Output 

1 0.1 
0.1 
0.1 
1 

0.1 
0.1 
0.1 
0.1 

0.1 
0.1 
0.1 
0.1 

1 1 (WR) 
1 (SR) 
0.1 (SA) 
0.1 (WA) 

1 (IS) 
0.1(F) 
1 (O) 
0.1(DS) 

1 
0.1 
1 
0.1 

2 1 
0.1 
1 
0.1 

1 
1 
1 
0.1 

1 
1 
1 
0.1 

2 0.1 (WR) 
0.1 (SR) 
0.1 (SA) 
1 (WA) 

0.1 (IS) 
1 (F) 
0.1 (O) 
0.1(DS) 

0.1 
1 
0.1 
0.1 

3 1 
1 
1 
1 

1 
0.1 
1 
0.1 

1 
0.1 
1 
0.1 

3 0.1 (WR) 
1 (SR) 
1 (SA) 
0.1 (WA) 

1 (IS) 
0.1 (F) 
1 (O) 
0.1(DS) 

1 
0.1 
1 
0.1 

4 1 
0.1 
1 
1 

1 
1 
1 
0.1 

1 
1 
1 
0.1 

4 1 (WR) 
0.1 (SR) 
0.1 (SA) 
1 (WA) 

0.1 (IS) 
0.1 (F) 
1 (O) 
0.1(DS) 

0.1 
0.1 
1 
0.1 

Key  
Inputs: 

WR : weak 
repel 

SR : strong repel 
 

SA : strong attract 
 

WA: weak 
attract 

Key 
Outputs: 

IS : increase 
speed 

F : reorientation 
(up chemical 
gradient) 

O : reorientation 
(down gradient) 

DS : 
decrease 
speed 
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Table 2 Resulting network parameters for one solution after training using the genetic algorithm.  

General Pattern Setting Parameters  
Pool Initial 

Concentration 
Weight of 
Connection 

Reaction 
unit 

Forward 
Rate 

Reverse 
Rate 

0 1st Pattern value 
(e.g. if pattern is 
no.1 input is 0.1) 

2.999 0 0.723 2.816 

1 2nd pattern value -2.915 1 5.411 0.837 
2 3rd pattern value 0.424 2 0.969 0.643 
3 4th pattern value -0.278 3 0.120 4.310 
4 0.01 -1.714 4 1.003 1.455 
5 0.01 0.750 5 0.093 0.006 
6 0.01 -0.435 6 1.081 0.580 
7 0.01 1.319 Note that in this case to simplify the 

program the hidden layer pool 
concentrations were updated using 
the unweighted flux of the product. 

8 0.01 -0.104 
9 0.01 0.501 
10 0.01 1.492 

 

Multilayer Perceptron ANNs (MLPs) (Rumelhart and McClelland 1986) have similar 

properties. For instance, each neuron can be approximated as either active or inactive and is 

comparable to the ARN whose concentration is either high or low. However, MLPs lack an 

explicit time dimension whereas the ARN processes inputs over a time period. In this case the 

ARN was subject to a continuous flux of inputs over 100 cycles causing the pool concentrations 

to enter a transient phase and stabilise at steady-state. The implications are that, unlike the MLP 

where processing is discrete-time, stored patterns are recalled only if inputs are applied for a 

length of time greater than that required to reach steady-state. Thus, this experiment 

demonstrates that the ARN is an appropriate pattern recognition technique when the 

requirement is to establish if a set of conditions have held true over a time period. This 

functionality is not so easily generated in other neural models. Discrete-time neural models 

provide a direct mapping from input to output and in their basic form they are unsuited for 

temporal pattern recognition. Continuous time models can provide this functionality but are 

generally more computationally complex. One such model is the Artificial Biochemical 

Network (ABN) (Macleod and Capanni 2010). It is a connectionist representation which, like 

the ARN, can be used to recognise continuous data streams. It has a weighted sum activation 

function combined with leaky integrator and generates a pulse width modulated output. In a 

similar experiment an ABN was setup using 11 ABN units. The network was trained using a 

GA to map identical sized patterns to those used here. Like the ARN, the ABN recognised all 

patterns, but the training time was longer (average of 496 generations) (Macleod and Capanni 

2010) and the ABN network used 4 additional ABN units (1 ABN unit is approximately as 

complex as a single ARN unit).  

In a further experiment, using the previously described network structure and set-up, the ARN 

was trained to recognize an additional 4 patterns, where the inputs were chosen to correspond to 

chemical signatures (for example, attractants or repellents) that trigger specific movement 
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responses. These patterns are given in Table 1. Here, the ARN network represents a highly 

abstracted CSN that controls chemotactic motion of a generalised single celled organism. This 

artificial amoeba is assumed to have a default slow swim behaviour and in the presence of 

chemoeffectors the behaviour is updated accordingly. Each input signifies an environmental 

chemical, where input: 0 is a weak repellent (WR), 1 a strong repellent (SR), 2 a strong 

attractant (SA) and 3 a weak attractant (WA). Specific combinations of environmental 

chemicals generate specific output response, where repellents have precedence over attractants. 

The presence of chemical concentration to a value approximate to 1, in an output pool, 

corresponds to a particular behavioural response, where output pool: 0 increases speed (IS), 1 

reorientation to face up chemical gradient (F), 2 reorientation down chemical gradient (O) and 

output 3 decreases speed (DS). Therefore, as an example, on detecting both a strong repellent 

and strong attractant the cell re-orientates to face down the chemical gradient and increases 

speed. As can be seen in Table 1, the network generated the correct response for all the abstract 

biological patterns.  

One property of a CSN is robustness, where correct response maybe generated in the presence 

of noise or loss of connections. In order to test this property within the ARN, random noise was 

introduced to the trained general pattern recognition network. Each pattern was subjected to 

10% increments of uniformly distributed random noise to a total level of 60% of the input 

range. At each noise level outputs were obtained for all four patterns. It can be seen in the graph 

in Fig. 4 that the performance of the network gently degrades as noise is added. Error levels 

within 5% are reported for both the ABN and MLP models (Macleod and Capanni 2010) at 

levels of up to 50% noise in pattern recognition tasks of the same complexity.  

 

 
Fig. 4 Total error (y-axis) for all four patterns after introduction of random noise (x-axis) to patterns at 10% level 
increments 
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Similarly to an ANN, the ARN pattern recognition system, is a robust connectionist network 

and thus provides an intuitive bridge between biology and AI. Furthermore, this experiment 

illustrates that that such pattern recognition mechanisms are plausible in single celled 

organisms.  

 

3.2 Regulation of Temporal Dynamics and Control of Limbed Robots 

 
A common motif of CSNs is periodic oscillatory patterns of protein concentrations. Such 

patterns relate to particular cellular behaviours (Bray 1995; Ankers 2008; Kholodenko 2006). 

Many illustrations of these oscillatory patterns can be found within the literature (Ankers et al. 

2008; Ferrel 2004).Such temporal dynamics are explored within the ARN in order to validate 

its ability to represent such patterns, to explore potential application, and to gain deeper 

understanding of the regulatory mechanisms involved within CSNs and their role in cell 

intelligence.  

One method of exploring the ARNs ability to reproduce such temporal patterns, while 

investigating its potential AI applications, is by creating an ARN based controller to reproduce 

the patterns associated with robotic gaits. Terrestrial locomotion of limbed animals is achieved 

by multiple phase locked patterns of limb movements known as gaits. For example, depending 

on speed of locomotion and terrain, quadrupeds commonly walk, trot and gallop (Dagg 1973). 

The gait phase is a value that ranges from 0 to 1 as the gait cycle proceeds. Therefore, the 

motion of each limb can be described relative to the gait phase. The ideal quadrupedal gaits are 

described by Dagg (1973) and others (Hildebrand 1997) and are used as a standard for 

comparison here and similarly in other studies (Collins and Richmond 1994). In the walk gait 

the legs move a quarter cycle out of phase; in the trot gait each pair of diagonal limbs move half 

a cycle out of phase. 

 In these experiments, an ARN controller was implemented to generate gaits of a Lynxsmotion 

dual-servo quadruped 2 (Q2) robot. Each robotic leg is controlled by two servo motors, one for 

each degree of freedom (DOF). One motor raises the leg and the other turns it. The structure of 

the robotic legs is shown in Fig. 5, further details of which are given by Toth and Parker 

(2003).  
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Fig. 5 The structure of a Lynxsmotion quadrupedal robot leg. Each leg has two DOFs and each DOF is controlled by 
a separate motor. 

 

 
 

Fig. 6 The ARN based controller. Each module (shown separated by a dashed line) is mapped to a single leg and is 
responsible controlling the 2 motors which generate its motion. Pool A of each module controls the up/down motor, 
pool B the back/forward motor and pool C the stop period for each of these motors. 

 

Signals are sent by the ARN to each motor and control the angle of the rotor for each DOF, 

using a simple position to pulse width modulator interface circuit to control the servo. The 

structure of the ARN based controller is shown in Fig. 6 and was designed to include 

abstractions of regulatory mechanisms found in CSNs including inhibitory/excitatory reactions, 

cyclic loops, and feedback structures. The controller comprises a network of four repeating 

structural units or modules, where a module is separated by a dashed line. Each module 

controls the two motors of a separate leg and comprises 3 reaction units and 3 pools: A, B and 

C. Pool A controls the up/down (U/D) motor, Pool B the back/forward (B/F) motor and Pool C 

controls the off period for both motors. Pool activity is regulated by a series of excitatory and 

inhibitory connections between reaction units. The type of connection represents the inhibitory 

and excitatory properties of specialized regulatory proteins common to CSNs such as enzymes. 

The overall network structure is organized as a closed loop allowing protein species to be 

recycled to the first module and thus generate a temporal oscillatory pattern. The structure of 
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the ARN controller is capable of producing all the common gaits. The type of gait is easily 

modified by a simple adjustment of the initial pool values. For example, by initializing a C pool 

a walk gait will be generated, where the C pool chosen will determine the starting leg, and the 

value determines the angle to which the leg is raised. Similarly, a trot gait is achieved by 

initializing two C pools within alternate modules. In this particular design, the value to which 

the C pool(s) are initialized determines the DOF angle and were set specifically for the 

physicality of the particular robot although it can be freely varied.  

The network architecture remains fixed throughout these experiments and the network 

parameters are manually set. This method was employed so that the outputs could be directly 

compared with other published work on similar Central Pattern Generators (CPGs) (Billard and 

Ijspeert 2000; Collins and Richmond 1994; Liu et al. 2009). However, there is no reason why 

connection weights cannot be set using an Evolutionary Algorithms or a similar pseudorandom 

search technique, and the current authors have employed this in other examples (for instance in 

the pattern recognition experiments). The use of gradient decent algorithms, however, would be 

difficult in this application because of the recurrent nature of the network topology. The ARN 

controller was considered to generate a specific gait if the relative phases of the respective 

oscillatory signals were within 2% of the standard gait cycle described previously.  

 
Fig. 7 Output generated for the walk gait. Legs are front left (FL), front right (FR), rear right (RR) and rear left (RL). 
The up/down (U/D) motor is displayed as a solid line and the back/forward (B/F) motor is displayed as a dashed line. 
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Fig. 8 Output generated for the trot gait. Legs and motors are labelled as before- see Fig. 7. 

 
Higher values of 10% were used in other studies (Collins and Richmond 1994), and this was 

considered reasonable due to the variation found in real animal gaits (Afelt 1983). In each case, 

the controller first generates the U/D motor oscillation and on reaching the maximum value the 

B/F motor is initiated. 

As can be seen in Fig. 7, the walk gait results show that the legs are a quarter cycle out of turn, 

with phases of 0.0, 0.25, 0.5, 0.75 between limbs in clockwise order from FL (front left) leg. 

Similarly, the trot gait results in Fig. 8 show that the opposite legs are half a cycle out of turn 

with phases respectively of 0.0, 0.5, 0.0, 0.5. The frequency of oscillations and therefore the 

gait speed is easily adjusted by applying uniform increase or decrease to kf of each unit. 

Both phase locked limb patterns produced by the ARN match the standard, and compare well 

with other connectionist models. For example, Billard and Ijspeert present a CPG (Central 

Pattern Generator) based neural controller for a quadrupedal AIBO robot, similarly with 2 

DOFs for each leg (Billard and Ijspeert 2000). The limb phases generated by this network 

correspond to the standard and to those produced by the ARN. Here, the network is composed 

of 8 coupled non-linear oscillators and each oscillator consists of 6 leaky integrator neurons (a 

total of 96 neurons). Each neuron implements an activation function which is approximately as 

complex as the reaction unit function of the ARN, and therefore the complexity of the network 

is equivalent to approximately 96 ARN reaction units. Similar correspondence is found in other 

sources. For instance, Collins explores a CPG based neural controller for a quadrupedal robot 
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with 1 DOF per limb, and compares 3 types of activation function models: Stein, Van der Pol, 

and FitzHugh-Nagumo. The controller is composed of a network of 4 coupled non-linear 

oscillators (Collins and Richmond 1994), where each oscillator controls a separate limb. The 

Stein model consist of 3 first order differential equations, the Van der Paul model consists of a 

second order differential equation and the FitzHugh-Nagumo model consists of two first order 

differential equations. All these models have approximately twice the complexity as the output 

produced by the ARN unit. In this case all 3 models require a pulsing signal to drive the 

network. Generally speaking the structure of these models is less flexible then either the Billard 

and Ijspeert (2000) model or the ARN due to their rigidly fixed internal parameters. All these 

models produced the gait patterns within 10% of the standard, whereas the ARN matched the 

standard for both trot and walk. 

Overall the ARN has a very similar capacity to generate both walk and trot gaits as the 

compared controllers. However, in general, it affords a higher degree of flexibility and is less 

computationally complex. Although robotic gaits might seem unconnected with cellular 

intelligence, the ARNs ability to produce them illustrates how cellular networks can generate 

the complex temporal patterns necessary in emergent behaviour. 

3.3 Complete Robotic Control System 

It was demonstrated in section 3.1 that an ARN can recognize patterns. Furthermore it was 

demonstrated in section 3.2 that such a system can generate temporal output patterns which can 

be used in control tasks. Of course in the natural world these two behaviors are linked together.  

In the following experiment it is illustrated that both pattern recognition and control function 

can be combined within a single ARN based system. Here, a more complex ARN was created 

to recognize specific patterns and in response automatically generate the associated temporal 

gait. The ARN in this experiment reuses the pattern recognition and gait network previously 

described in sections 3.1 and 3.2 respectively. The complete ARN system is shown in Fig. 9, 

and is functionally divided into 3 smaller ARN components: pattern recognition, control, and a 

connecting network.  
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Fig. 9 A complete control system for a quadrupedal robot. On recognition of particular patterns the pattern 
recognition ARN generates the associated output pattern. The connecting network implements two parallel Boolean 
AND gates which act as switches turning the walk or trot components of the control ARN off/on. The control ARN 
generates the required waveform which controls the robotic gait. 

 
The structure of the pattern recognition network, its implementation, and training methods are 

identical to those described in section 3.1. In this case the network was trained to recognize 3 

separate patterns (as shown in Table 3) composed of 4 input and 4 associated output mass 

values. The output pools of the pattern recognition network are equal to the input pools 0, 1, 2, 

and 3 of the connecting network. The connecting module comprises 6 pools (4 inputs and 2 

outputs) and 2 reaction units. Essentially this component operates like two parallel Boolean 

AND gates, where a value of 1 at pools 0 and pool 1 will output a value of 1 at pool 4, as will a 

value of 1 at pools 2 and 3 output a 1 at pool 5. Two negative feedback connections between 

the interface network and both ARN control system subunits (shown as dashed line 

connections) are responsible for switching between the gaits. Therefore, if a value of 1 is output 

at the interface network pool 4, it will inhibit all the reaction 2’s of the ARN walk subunit, thus 

stopping the walk gait pattern from being generated. Conversely, if a value of 0 is output at 

pool 4 the walk will be generated. In the same way, pool 5 of the interface controls the 
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switching on/off of the trot control subunit. Table 3 shows the range of required behaviors in 

response to particular outputs generated by the connecting network.  

The control system comprises two separate ARN subunits, both identical in structure and 

implementation to the ARN described in section 3.2. Each of these subunits is responsible for 

generating a specific temporal gait pattern: one generates walk the other trot. The two ARN 

subunits provide distinct gait patterns due to the differences in initialization of the 

concentration values of C pools. 

 
Table 3 Patterns applied to the complete control system and expected gait generated. 

Pattern PR 
Network 
Input 
Pool No. 

PR 
Network 
Input 
Value 

CN 
network 
Input 
Pool No. 

CN Input 
Value (& 
output of the 
PR network)  

CN 
Output 
Pool No. 

CN 
Output 
Value 

Gait  

1 0 1 0 1 4 1 Inhibit 
Walk 1 0.1 1 1 

2 1 2 0 5 0 Trot 
3 0.1 3 0 

2 0 0.1 0 0 4 0 Walk 
1 1 1 0 
2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 
3 0 1 0 1 4 1 Inhibit 

Walk 1 0.1 1 1 
2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 
KEY: PR Pattern recognition CN Connecting network 

 

Table 4 Pattern applied to the network and expected durations of gaits. 

Pattern Walk 
ARN 
Network 

Trot 
ARN 
Network 

Start 
Time 

End 
Time 

Duration 

2 On Off 0 210 210 
1 Off On 210 440 230 
2 On Off 440 560 120 
1 Off On 560 700 140 
3 Off Off 700 800 100 

 

The complete system was tested to confirm its ability to both generate the correct behavior and 

automatically transition between the behaviors in response to firing input patterns 0-3. The time 

periods in which patterns were applied, and the expected output states are shown in Table 4.  

The results for this experiment are displayed in Fig. 10. The phases produced for each gait are 

exactly as described previously in section 3.2. The on/off periods of both trot and walk gaits are 

in agreement with the expected durations displayed in Table 4 with a slight transitional delay. 

The ARN controller, and gait phases produced have previously been compared with CPG 

models in section 3.2. The transitions between gaits generated by these models may now be 

compared with those of the ARN. The results given for the Billard and Ijspeert model, show 

transitions from walk to gallop in approximately 4 leg cycles, whereas the ARN transitions 

from walk to trot within 2 leg cycles. In both cases the transitions are very smooth. There are 3 
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models described by Collins, and although gait graphs are provided for all these, gait transitions 

are only given for the Stein model. Here gaits transition quickly within approximately 2 leg 

cycles. However the leg movements during transition are very irregular- in contrast to the ARN 

and the Billard and Ijspeert model.  

 

Fig. 10 The output of the complete ARN control system over 800 secs. Legs and motors are labelled as before- see 
Fig 9. 

 

This complete control system demonstrates that the ARN, like a CSN, is capable of both 

recognizing patterns and controlling overall behavior in a single network. With the exception of 

spiking models, few ANNs can achieve this functionality. However, spiking models are often 

less flexible. For example, in the Integrate and Fire model information is rate coded and all the 

spikes generated are uniform (Maass 1997). Thus, unlike the ARN this model lacks the 

flexibility to produce pulse-width and pulse-amplitude coded information. The gait phases and 

transitions compared well with CPG neural controllers and showed that the ARN has 

application in similar robotic control tasks and can offer lower computationally complexity. 

These experiments illustrate how a CSN might perform the complex processing associated with 

the high-level behaviors displayed by single celled organisms. Furthermore, it shows that 

abstractions of both neural networks and CSNs operate in similar ways, and have comparable 

functionality. This illustrates a close relationship between neural and cell intelligence.   

6 Conclusions 
The ARN is a new connectionist model, based on the dynamics of CSNs. It is accurate enough 

to represent actual chemical concentrations in the cytoplasm of a cell, but simple enough to 

construct biological circuitry with applications in AI. Perhaps most importantly it is a useful 

tool for investigating the surprising emergent behaviours of single cells. It may help to 

elucidate the mechanisms involved in these, and their similarities and differences from neural 
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based intelligence (and intelligence in its widest philosophical sense). Although other 

researchers have used techniques such as S-systems and Petri Nets to do related work, the ARN 

is unique in that it was conceived as a much more connectionist, unit-based representation, 

designed specifically to investigate cell intelligence.  

The results presented above show that the ARN (and by extension, cellular networks) are 

capable of performing pattern recognition in a similar way to artificial neural models and also 

producing complex temporal dynamics reminiscent of spiking neural models. Additionally, it 

was shown that the ARN can model biological reactions and simulate real CSN pathways with 

an accuracy matching those of standard simulation methods (Gerrard et al. 2010). This 

combination of attributes makes it a unique and useful tool. The ARN systems presented above 

show clearly that biochemical networks are quite capable of producing many of the behaviours 

normally ascribed to neural networks. This helps to illuminate the many interesting results now 

emerging from the behavioural biology of single cells. Of course the neuron is itself a 

biochemical network, and one future application of the ARN may be to help unravel its more 

complex internal dynamics.  

The simplicity of the ARN makes it a potentially useful model in more practical AI and 

engineering systems. As demonstrated in the case of robotics, its ability to function in both 

input (sensory) and output (efferent or motor) networks and in the interconnection between 

these, gives it applications which usually only much more complex models can fulfil. This is 

particularly useful in the field of robotics, where such flexibility has particular application in 

evolutionary control networks.  

The authors intend to extend the work reported here by producing more complex cell based 

robots (cytobots). These will allow us to explore more aspects of cellular intelligence (for 

example the role of learning in these systems) as well as some practical applications such as 

vehicles to clear oil spills- pollution by moving along chemical gradient, rather like that in 

which chemotaxis operates. The ARN may also have useful applications in other areas of 

science – for example in modelling the complex interconnected chemical networks present in 

environmental and soil chemistry.  
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Abstract 
The Artificial Reaction Network (ARN) is an Artificial 
Chemistry representation inspired by cell signaling networks. 
The ARN has previously been applied to the simulation of 
biological signaling pathways and to the control of limbed 
robots. In this paper we create multiple cell-like autonomous 
agents using ARN networks. It is shown that these agents can 
simulate some aspects of the behavior of biological amoebae. 
To demonstrate practical applications of such agents they are 
then reconfigured as a swarm of robots in a simulated oil spill 
clean-up operation. We demonstrate that ARN agents, like 
amoebae, can autonomously recognize environmental patterns 
and produce emergent behavior. The results show that such 
agents may be useful in biological simulation and furthermore 
may have practical applications in swarm robotics.  

Introduction 
Unicellular organisms have evolved an astonishing array of 
complex behaviors. Some can avoid light with photo-sensitive 
spots; some actively hunt prey; while others can build 
protective shelters (Ford, 2009). It has been shown that single 
cells achieve such primitive intelligence by storing and 
processing information through the complex dynamics of 
interacting chemicals (Bray, 1995; Arkin and Ross, 1994). 
Within a cell, data is represented by a set of spatially 
distributed concentrations of chemical species; the 
instantaneous set of which corresponds to the cell’s current 
state. Intricate networks of chemical reactions termed cell 
signaling networks (CSNs), process this information by 
transforming input species into output species. In this way, 
cells are able to respond to changes within their environment, 
communicate with other cells, and perform internal self 
maintenance operations. Several researchers highlight the 
processing capabilities of CSNs and their similarities to 
Artificial Neural Networks (ANNs) (Bray, 1995; Bhalla, 
2003). For example, it has been demonstrated that a network 
of such reactions can perform Boolean and Fuzzy Logic 
functions and are equivalent to a Turing machine (Bray, 1995; 
Arkin and Ross, 1994). Furthermore, CSNs contain features 
such as feedback loops and interconnectivity, thus forming 

highly complex systems (Bray, 1995; Bhalla, 2003). It is 
possible to exploit computational features of such chemical 
processing to create an Artificial Chemistry (AC). In its 
broadest sense, an AC describes a man-made system which is 
similar to a real chemical system (Dittrich, et al., 2001). The 
Artificial Reaction Network is an example of an AC and is 
based on properties and mechanisms found in CSNs. In our 
previous work, it was applied to simulate the chemotaxis 
signaling pathway of Escherichia coli, and later investigated 
as a means to produce complex temporal waveforms to control 
limbed robots (Gerrard, et al., 2011; 2012a; b).  
In this paper, a single ARN network is instantiated and used as 
the internal control system for multiple instances of cell-like 
autonomous distributed agents. Our first objective is to show 
that ARN agents have application in the simulation of 
biological cells, their interactions, and resulting emergent 
behaviors. This is addressed by using the agents to simulate 
aggregating cells of the slime mould Dictyostelium 
discoideum and comparing the emergent behaviors with the 
literature. Our second objective is to show that by 
reconfiguring the inputs to each agent’s ARN, the same agents 
can produce other distinct behaviors. Our final objective is to 
show that ARNs have application as the control systems for 
distributed robotic agents within real world environments. 
Here, we apply the agents to the task of cleaning up a 
simulated oil spill within a simplified search environment.  

The paper is structured as follows: the first section provides 
an overview of the ARN representation. This is followed by an 
overview of the operation of the ARN agents. The 
experimental details and results are presented next; these are 
followed by the conclusions. 

The Artificial Reaction Network  
In this section we provide a brief summary of the ARN 
representation. A full account can be found in our previous 
work (Gerrard, et al., 2011; 2012a; b).  

The ARN comprises a set of networked reaction nodes 
(circles), pools (squares), and inputs (triangles) as shown in 
figure 1. Each pool stores the current available chemical 
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species concentration (avail); this concentration represents data 
within the system. Thus, the complete set of pool 
concentrations at time t, corresponds to the system’s current 
state. Inputs are a special type of pool, the only difference 
being that they are not updated by flux at each time step, and 
are used to represent continuous concentrations, for example, 
environmental inputs or enzymes. Each circle corresponds to a 
reaction unit, representing a reaction between a number of 
chemicals. Data is processed by reaction nodes transforming 
incoming pool values to connected outgoing pool values. 
Connections symbolize the flow of chemical into and out of 
reaction units and their weight (w) corresponds to reaction 
order. Connections provide the facility to create complex 
control structures using combinations of inhibitory and 

excitatory connections. 
 
Figure 1: The Artificial Reaction Network representation. 
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Where: 
A, B, C, D = Species Concentrations                   
W = Reaction order (weight)              
avail = Available species concentration         
Kf  = Forward rate constant                
∆C = Change in species concentration C       
Kr = Reverse rate constant    
α=sum of other incoming weights 
 

Figure 1 shows the reaction between species A and B to 
produce species C. At time interval ∆t, each reaction unit’s 
temporal flux value is calculated by applying Euler’s 
approximation to the differential rate equation given in (1). 
This value is then used to update the current concentration of 
each reaction’s connecting pools as shown in (2). Pools may 
asymptotically approach 0, and thus below a particular 
threshold a pool is considered empty and its value set to zero. 
A reaction step may proceed if it meets its preconditions. 
Preconditions are met if incoming inhibitory pools are inactive, 

and incoming excitatory pools are active. Similarly a reaction 
step will fulfill a number of post conditions: participating 
reactants are consumed and products generated- the amount of 
which will depend on the parameters of the reaction step. 

ARN Agents 
This section describes the behavioral modes of each agent and 
the structure and operation of the ARN network controlling 
them. In the experiments outlined in this paper, a number of 
autonomous ARN controlled software agents termed 
“Cytobots” (“cyto” from Greek for cell, and “bot” from robot) 
are initialized and move around asynchronously within a 2D 
simulated environment containing a distribution of artificial 
chemicals. The artificial chemicals represent attractants of 
either food or cAMP (cyclic adenosine monophosphate). When 
an agent moves to a new position, the surrounding level of 
chemical is used to set the inputs to its ARN. Consequently 
this changes the internal state of the ARN and updates the 
agent’s trajectory. During this process, the agent modifies the 
state of the environment by, for example, consuming food or 
releasing cAMP.  Similar to the way in which a CSN acts as 
the control system to a cell, the behavior of each cytobot is 
controlled by its own instance of an ARN network. The ARN 
network architecture is based on a combination of functional 
structural motifs found in actual biochemical networks (Tyson 
and Novak, 2010). Each ARN instance is updated 
asynchronously with all other instances. In this way, each 
instance directs an agents’ movement asynchronously to other 
agents, enables it to react to situated environmental patterns, 
and allows it to stigmergically communicate with other 
cytobots to contribute to higher level function.  

The cytobot ARN network was designed to produce two 
simple behavioral modes: foraging and starvation, both are 
based on the movement patterns of single celled organisms as 
described in the following sections. The cytobot ARN is 
composed of 6 subnetworks as shown in figure 2. Each 
subnetwork contributes a functional aspect to either or both 
starvation and foraging behaviors. The subnetworks are 
discussed in the following sections. 

Cytobot Foraging Behavior  
Cytobots forage by performing a biased random walk. This 
pattern of movement is exemplified by the bacteria E. coli, 
where foraging cells alternate periods of runs (forward motion) 
and tumbles (random redirections). By comparing 
concentrations of attractants and repellants in a temporal 
fashion, the organism is able to reduce the frequency of 
tumbles up concentration gradients of attractants, and down 
gradients of repellants, resulting in overall travel to more 
favorable conditions (Vladimirov and Sourjik, 2009). In the 
foraging mode a cytobot performs a similar random biased 
walk movement pattern. At each new position X, an agent 
redirects to a new random angle between 0 and 360 degrees 
(tumble). The agent then moves forward in a straight line for a 
number of time steps based on the level of detected food at 
position X (run). The cytobot consumes food (if present) at 
each passing location. 
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Figure 2: The cytobot ARN network comprising 6 subnetworks. Each cytobot is controlled by an instance of this network.  
 

Cytobot Starvation Behavior 
The starvation behavior is based on the pattern of motion 
displayed by starving cells of the cellular slime mould D. 
discoideum. During the organisms’ vegetative stage, cells 
move up gradients of folic acid secreted by its bacterial prey. 
When the food resource has been depleted, the amoebae begin 
to starve and enter the aggregation phase of their life cycle. 
During aggregation, starving cells secrete cAMP which serves 
as a signal to attract surrounding amoebae towards a central 
location (McCann, et al., 2010). During the aggregation phase, 
D. discoideum cells are polarized, thus one side becomes the 
leading edge which always faces in the direction of travel 
(McCann, et al., 2010). Depending on parameters such as 
environmental conditions, and the cell population density, 
migrating cells often form transient emergent patterns such as 
streams, waves and spirals (McCann, et al., 2010; Dallon and 
Othmer, 1997). Streaming describes a pattern of motion where 
cells line up in close order files, with the head of one following 
the rear of another (McCann, et al., 2010).  
In these experiments the agents enter starvation mode if food 
has not been consumed within a time period. Here, instead of 
turning in a random direction, the new direction is weighted 
toward the highest concentration of cAMP within its 
surrounding area. As discussed later, by representing the 
external chemicals in different ways within the simulated 
environment, different high level behaviors can be produced by 
the agents.  

The Master Oscillator 
The master oscillator network (see figure 2) functions to 
synchronize all the outputs from all the other subnetworks 
together and is what each agent references at each time step to 
ascertain its current behavior. It is a simple closed loop, with a 

token unit of chemical cycling around it. It consists of 4 
reaction units: M0, M1, M2, and M3 (all with reaction rate of 
1) and 4 pools MA, MB, MC and MD. Each pool activates 
one of three behaviors, and for every time step that a particular 
pool contains the token unit, its corresponding behavior is 
performed. Pool MA activates turn, MC activates run and 
pools MB and MD activate stop. If these pools were switches 
to motor actuators on a simple wheeled robot, pool MC would 
switch on all wheel motors, while pool MA would switch on 
wheel motors on the left side only, thus turning the robot. The 
remaining pools would act as off switches. The other 
subnetworks inhibit or excite the reaction units of the master 
oscillator to allow or prevent chemical flow. The number of 
time steps that a chemical is present in a particular pool 
indicates the length of time that a particular behavior is 
performed. Thus if pool MC contains a chemical for 10 time 
steps, then the agent will move forward for 10 time steps; 
similarly if this were pool MA, the agent would turn for 10 
time steps. 

The Food Network and the Run Length Network 
The food network senses the level of food within the 
environment and connects to the run length network to modify 
the number of steps forward according to the level of food 
sensed. The value of food at a cytobot’s current position is 
stored at input pool FA. The forward rate of reaction node F0 
is 1, thus all food is transferred to pool FB in a single time 
step. The presence of chemical in pool FB inhibits the run 
network reaction R0 for a number of time steps according to 
the level of food (by setting forward rate of unit F1 to 1 and 
weight to 0 this can be an exact correlation). This in turn stops 
pool RC in the run length network from emptying. Pool RC 
inhibits reaction M2 of the master oscillator thus preventing 
pool MC from emptying for the same number of time steps. 
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As discussed previously, the number of time steps which pool 
MC contains the token unit represents the number of time 
steps to move forward. 

The Signaling Network 
The signaling network functions as a switch between 
starvation and foraging mode. Low food levels trigger the 
starvation response and allow the weighted direction network 
to control each new angle. Sufficient food will switch off the 
weighted direction network and allow the chaotic network to 
control each new angle. It is a simple closed loop with a token 
unit of chemical flowing around it. Pool CA acts as a switch 
between foraging and starvation behavior, where the presence 
of chemical in CA inhibits the weighted direction network- 
while its absence switches on the weighted direction network; 
this in turn inhibits the chaotic network, as shown in figure 2. 
In this component, all reaction units have a forward flux of 0.5; 
which ensures a minimum number of time steps for each 
behavior.  

The Weighted Direction Network 
The weighted direction network senses cAMP within the 
agent’s immediate environment and calculates a tumble angle 
which is weighted toward higher cAMP levels. This network 
interfaces with the environment via a number of receptor pools 
(AW, ANW, AN, ANE, AEA) which sense the level of cAMP 
around the cytobot. These pools represent receptors positioned 
at fixed points around the front of its perimeter. Limiting the 
signal detection to one side facilitates representation of 
polarization in D. discoideum, where that side becomes the 
leading edge. For each receptor input pool, there is a static 
pool containing a fixed level of chemical which represents the 
angle of the receptor relative to the cytobot. Directions start 
from AW (west) with a corresponding numeric value of 0 
(A00) and progress in 45 degree steps through each direction 
to east (thus maximum value is 180). Detected signals are 
classed as being in one of the following cardinal/ordinal 
directions: W, NW, N, NE, and E. Thus signals are detected 
from all directions above its horizontal plane. All connections 
have a weight of 1 with the exception of the connection 
between pool AD and reaction A12 which has a weight of -1. 
This negative connection raises the sum of chemical detected 
in pool AD to -1, which multiplied by AB, allows the average 
angle to be calculated. The calculated angle interfaces with the 
remaining subnetworks at pool AE. In an actual organism, 
receptors are set around the cell perimeter and direct 
movement appropriately.  
 
 
 360mod))90(( cnh +−≡  (3) 

 
 
Where: 
h= new heading (relative to external frame) 
n = count of time steps pool MA contained chemical 
c = current heading (relative to the external frame) 
 
In this simulation, for simplicity, a count of the number of time 
steps that MA contains the token unit is processed to gain the 
turn angle using (3). Thus if the number time steps is 120 and 

the agent is facing north, then the current heading would equal 
0 (relative to the external frame) and the new heading would 
equal 30. 

The Chaotic Network 
The chaotic network, as shown in figure 2, is responsible for 
generating pseudo random angles which agents use to perform 
the foraging tumble behavior. It is a networked implementation 
of a Logistic Map, see (4). Ulam and von Neumann (1947) 
were the first to examine a Logistic Map as a pseudo random 
number generator and it has been successfully used in this 
capacity by several researchers (Patidar, et al., 2009). The 
probability density distribution of the Logistic Map is non-
uniform and is given in (5).  
 
 )1(1 nnn XXX −=+ λ  (4) 

Where: 
Xn= state variable of value 0 ≤ Xn ≤ 1 
λ= system parameter of value 1 ≤ λ ≤ 4 
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Where: 
P(X) = probability of X occurring 

 

At the start of the simulation, pools KA and KB of each 
cytobot’s chaotic network are initialized to the same random 
value between 0 and 1 (to 5 decimal places). This value 
represents the first value of X (where X represents the state 
variable of (4)). All the other pools are initialized to 0 with the 
exception of the static pools KI and RK whose initial values 
are 360 and 1 respectively. Reaction K2 is responsible for 
generating each new value of X and has a forward and reverse 
rate of 4 (the logistic map exhibits chaotic behavior when λ is 
4). The connection between KA and K2 has a weight of 1 and 
the connection between K2 and KB has a weight of 2. The 
remaining series of reactions function to copy the value of X 3 
times, where 2 copies serve as the new initial values of KA 
and KB and the remaining copy participates in the final output 
of the network at KH. Static pool KI has a fixed value of 360 
which in reaction K0, allows the network to convert the 
pseudo random number at KH to an angle value between 0 
and 360. However, reaction K0 cannot proceed until all 11 
pools that inhibit it are empty. These inhibitory connections 
ensure that random angles are not output while the agent is in 
starvation mode, and that pool AE is empty before adding 
more chemical.  

Slime Mould Aggregation Simulation 
In the following experiments cytobots are used to model the 
behavior of aggregating D. discoideum cells, where each 
cytobot represents a cell. In each experiment the emergent 
patterns, numbers of mounds, and length of time to mound 
formation is examined. A total of 10 experiments are 
performed at varying population densities of cytobots (p) and 
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different ranges of detection of cAMP (r), as shown in table 1. 
The environment contains no food, thus each agent 
immediately enters and stays in the previously described 
starvation mode. The agents’ behavior is initially explored at 
biologically realistic p and r values and compared with the 
behavior of the actual organism and other simulations. These 
parameters are then extended into ranges outwith the 
biological range in order to examine the emergent properties of 
the system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Pseudocode to calculate the strength of detected 
cAMP at each direction relative to the cell.  
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Cytobots move within a simulated 2D environment of area 
5.06 mm2- approximately half the maximum recorded 
aggregation territory reported in the literature (Dallon and 
Othmer, 1997). Each pixel represents 4.5 μm and the grid is 
500 × 500 pixels, giving a total area of 5.06 mm2. In nature, 
aggregating D. discoideum cell densities are typically 250 per 
mm2 to 1x104 per mm2 (Dallon and Othemer, 1997). Due to 
the computational resources required to manage a population 
of cytobots within the upper range, two cell densities of 250 

agents per mm2 (1250 agents) and 150 per mm2 (750 agents) 
were chosen. The agents are initialized at random positions 
within the simulated environment. Each starving agent emits a 
cAMP signal at equal strength around its circumference into 
the environment. This signal is detected by other agents within 
or equal to r. In these experiments a range of r values are 
explored, including that of real cells of 1, 0.5, and 0.1 mm 
(McCann, et al., 2010). The actual cAMP signal degrades 
linearly with increasing distance (d) from the emitting cell. 
Each agent detects the cAMP signal of all starving cells within 
or equal to r, and a total value for each direction (A) is 
calculated using the pseudocode given in figure 3. Each cycle 
represents 1 minute of time. In this time the agent moves 9μm- 
a distance which corresponds to that reported in the literature 
(Rifkin and Goldberg, 2006). Therefore, after 1 hour motion 
the agent travels a distance of 540μm. In reality there are 
always remaining cells that do not aggregate, and thus the 
simulation runs until 95% of agents are at a distance of less 
than 0.1mm from their nearest neighbor.  

Results 
The results for all 10 experiments are given in table 1. Each 
experiment was performed 100 times. In experiments 8, 9, and 
10 the value of r and d are within the ranges reported for real 
D. discoideum cells. These experiments are used to compare 
the behaviors and length of time taken to aggregate with the 
literature. In experiments 8, and 9 aggregation completes after 
an average formation of 4.3 mounds in 10.05 hours, and 6.7 
mounds in 12.65 hours respectively. In nature the organism 
takes between 9-13 hours to aggregate (Cotter, et al., 1992; 
Becker, et al., 2010), thus the results of these experiments 
have an aggregation time within the reported range. This is 
also comparable to other simulations. For example, Becker et 
al. (2010) reports an aggregation time of 11.6 hours for a 
simulated population of D. discoideum with a cell density of 
200mm2. In experiment 10, the population never satisfied the 
criteria for completion of aggregation, where instead the 
agents appeared to move in a fashion reminiscent of Brownian 
motion. The likely explanation for this is twofold. Firstly, the 
simulation does not consider the effect of glycoproteins where 
aggregating cells making contact with each other attach 
together. Secondly, because the attraction range is so small, 
agents are only able to detect other agents within their 
immediate neighborhood, thus momentarily larger clusters 
with higher attraction strength go undetected and quickly 
dissipate- an effect that would not occur if agents stayed 
together. The complete set of results shows that by increasing 
p by 100mm2 the number of mounds formed at each r decrease 
with the exception of experiment 6. This is not surprising, as 
denser populations should have more chance of interacting, 
and thus form fewer clusters, but with higher numbers of 
agents. Similarly, decreasing r results in a general increase to 
the number of mounds formed at both values of p. The likely 
reason for this is that as r decreases the agent becomes unable 
to influence increasing quantities of area, thus larger numbers 
of stable clusters can form but with fewer numbers of agents.  

Emergent behaviors and clustering patterns similar to the 
biological organism were also observed. As previously 
discussed, the cytobots are polarized. 

FOR each cytobot 
Get current agents’ facing direction CF 
Assign a value to direction CF using statement 1 
 

FOR each (index n) detected cAMP signal 
Get detected signal incoming direction CA 
Assign a value to direction CA using statement 1 
IF CA = CF THEN kn = 3 
ELSE IF CA = CF-1 OR CA = CF+1 THEN kn=2 
ELSE IF CA = CF-2 OR CA = CF +2 THEN kn=1 
ELSE kn=0 
END IF 
Calculate distance dn 
Store each CA with kn and dn 

END FOR 
 

Calculate WA for current agent using Equation 6 
END FOR 
 
Statement 1: East = 1; North East = 2; North = 3; North West 
=4; West = 5  
 
Where: 
WA= total weight of direction A  
N= total number of agents within range of detection 
dn= distance of current agent from agent n 
CA = direction of incoming signal detected by current agent 
CF = the current agents facing direction 
kn = value of cAMP signal from agent n 
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Figure 4: A-E Cytobot aggregation for experiment 8 at: A- 1hr, B- 2hr, C-5hrs, D- 8hrs, E- 12hrs; Image F- D. discoideum cells 
aggregating; G- Is the lower right hand corner of image C demonstrating streaming behavior; H- Spiral patterns in experiment 4 after 
8 hours; I- Symmetrical patterns for experiment 2 at 7 hours; J- Wave pattern for experiment 2 at 2 hours. 
 
Diagram F is courtesy of T, Gregor, Laboratory for the Physics of Life, Princeton University, 2013 Used with permission. 
 

Table 1: Aggregation experiment simulation results 

No Density 
(p) per 
mm2 

Range 
(r) in 
mm 

Mean No. of 
mounds; (σ= 
Sta. Dev.) 

Mean time (hours); 
(σ); *Literature Range 
9-13 hours 

1 150 5 1 
(0) 

8.98 
(0.09) 

2 150 2.5 4 
(0.31) 

9.63 
(0.17) 

3 150 1 5.2 
(0.82) 

9.92 
(0.34) 

4 150 0.5 8.4 
(1.19) 

10.23 
(0.59) 

5 150 0.1 14.2 
(2.36) 

10.6 
(1.82) 

6 250 5 1 
(0) 

8.95 
(0.11) 

7 250 2.5 1 
(0) 

9.6 
(0.20) 

8 250 1 4.3 
(0.37) 

10.05 
(0.58) 

9 250 0.5 6.7 
(1.62) 

12.65 
(1.94) 

10 250 0.1 - - 
 
Implementing the agents in this way allowed us to observe 
whether or not the previously described streaming behavior 
occurs. A close up of the right hand corner of screenshot C is 
shown in figure 4G showing agents beginning to form a 
cluster. The protruding head of each agent can be seen clearly, 
where each lines up its head to the rear of another agent and 
forms a stream. As can be seen in figure 4F this is very similar 
to the streaming behavior in real cells of D. discoideum. Other 
emergent patterns occurred during different experiments 

including spirals (figure 4H), symmetric patterns (figure 4I), 
and waves (figure 4J).  

Oil Spill Clean-up Simulation  
To illustrate a practical application, the cytobots are used to 
tackle a simplified oil-spill clean-up simulation. In these 
experiments, the same ARN used previously produces 
different behaviors by altering its interface with the 
environment. In the following 4 experiments the length of time 
it takes for 3, 5, 8 and 15 cytobots to clean up 95% of the oil is 
recorded. These results are compared with similar work. 

The cytobots move within a 2D simulated environment 
containing an oil spill. This oil is analogous to a distribution of 
food within a nutrient landscape. The task of the cytobots is to 
clean up the spill as quickly as possible by consuming oil at 
each location. The agents move through the environment by 
switching between the two previously described behavioral 
modes- foraging and starvation. In the aggregation 
experiments, no food was present, thus the foraging behavior 
remained inactive. In this case, the concentration of oil 
surrounding the agents was fed into both the receptor pools of 
the weighted direction network and the food network. Thus in 
this case oil represents both food and cAMP. At the start of 
each experiment, the cytobots are distributed randomly within 
the environment, and the ARN network is initialized as 
previously described. The agents start the simulation in 
foraging mode but during the simulation alternate between 
foraging and starvation modes. Starvation behavior is triggered 
after the most recent positions (minimum of 2) contained zero 
food. In starvation mode, instead of turning in a random 
direction, the new direction is weighted toward higher 
concentrations of food within its surrounding area. This 
behavior forces exploration of unexplored search space 
because previously visited positions have a food level of 0. 
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Consumption of environmental food therefore acts as a 
stigmergic signal, where agents are inclined to move up the 
nutrient gradient created by their foraging activities. Here, we 
model the spillage of 100 tonnes of Statfjord crude oil at 150C 
under a wind speed of 5ms-1 The oil is distributed over a 2D 
sea surface of 300m by 200m, thus an area of area 60000m2, 
where 2 pixels corresponds to 1m, as shown in figure 4A. This 
particular oil type and parameter set were chosen in order to 
compare directly with work by Kakalis and Ventikos (2008) 
who present a robotic swarm concept for oil spill 
confrontation. For this reason, we account for an initial 
response time of 14 hours. Based on the complex 
mathematical models found in Kakalis and Ventikos which 
account for the main factors of short term changes in oil 
characterization, the volume of oil after 14 hours is reduced to 
150m3. Beyond the starting state, the volume is only influenced 
by the cytobots. The speed of each agent is 0.5ms-1 and is 
based on other robotic agents in oil cleaning scenarios (Kakalis 
and Ventikos, 2008), thus the cytobots move 1 pixel (0.5m) 
for every time step. The actual cleaning surface is 1m, thus the 
cytobots clean a 2 pixel wide area in each time step. 

Mathematical modeling of an oil spill is non-trivial and at 
best can offer a crude approximation of its actual trajectory. 
Most oil spills quickly form a comet shape with most of the oil 
within the head and a trail of sheen (Wang and Stout, 2007). 
To represent a simplified version of the comet shaped spread, 
the area is divided into 100 3m x 200m segments. The first 
segment contains 0.015 tonnes of oil, and each subsequent 
segment increases by 0.03 tonnes from right to left.  

Results 
In each experiment, a different number of cytobots was 
deployed- 3, 5, 8 and 15 and the recovery rate achieved by 
each group was compared. The simulation time was measured 
from deployment of the cytobots at 0 hours (14 hours after oil 
was spilled) and stopped when the cytobots had collectively 
removed 95% of the 150m3 of oil. Each experiment was run 
100 times, and the average volume of oil consumed at 6 
minute intervals was calculated. Figure 6 presents the volume 
of oil consumed by each group of cytobots against time. The 
finishing times in hours are 15.2, 11.5, 9.6, and 6.1 for 3, 5. 8, 
and 15 cytobots respectively. By adding 2 additional agents to 
the group of 3 the length of time is reduced by 3.5 hours, thus 
1.75 hour difference per extra cytobot. This difference 
decreases 1.12 hours per cytobot for 8 agents, then to 0.76 per 
agent for 15. This variation can be accounted for by examining 
the agents’ paths through the oil. Rates are much faster at the 
beginning of the experiments, where cytobots move toward the 
oil rich left side of the environment. This can be seen in the 
series of screenshots in figure 5 where A shows the starting 
position at time 0, and B shows that after 2 hours the cytobots 
have moved toward the left-hand side, focusing mainly on 
highly concentrated areas (consumed oil is shown in white). 
Initially, the rate of oil removal is high because cytobots focus 
on the volume rich areas and cannot go over their path, thus 
each new location results in consumption of oil. However, as 
time progresses, large patches become cleaned and a higher 
probability exists for the cytobots to revisit previously cleaned 
areas. The consumption of oil in figure 5 C and D at 4 and 9.6 
hours respectively shows more clearly that cytobots focus 

cleaning efforts on the richest volume area first, and are 
gradually forced to move toward the next highest concentration 
by the gradient created by their foraging activities. 
 
Figure 5: Oil simulation using 8 cytobots at A- 0 hours, B- 2 

hours, C- 4 hours and D- 9.6 hours 

Figure 6: Volume of oil cleaned against time for each group of 
cytobots 
 

Figure 5 D shows the state of the oil at the end of the 
simulation, where only small patches remain mainly in areas of 
low oil volumes. These results can be compared to the 
simulation by Kakalis and Ventikos. Here, varying numbers of 
simulated EU-MOP robots are deployed to tackle 150m3 of 
Strajford oil over 60000m3 (as before). In this case, the robots 
have a slightly faster speed of 0.54m/s but have the same 1m 
skimming face. Each EU-MOP robot has a storage capacity of 
2m3

 and a transit speed of 2.1ms-1. The time taken for 3, 5, 8, 
and 15 EU-MOPS are 54, 32, 20 and 10 hours respectively. 
For comparison, the results of our simulation can be adjusted 
to include unloading of the oil at a servicing vessel. Using the 
same storage capacity and transit speed and assuming the 
distance to the ship and back is 2 times 300m and that each 
cytobot fills the same amount simultaneously, then the new 
times are 17.2, 12.7, 10.3 and 6.5 for 3, 5, 8 and 15 cytobots 
respectively. The Kakalis and Ventikos simulation has several 
differences to the one reported here, particularly in the 
distribution of the oil. Also, some key parameters are missing 
from their paper, for example, distance to boat. Despite these 
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differences, our results are very similar. For example the 
reported simulation time for 15 EU-MOPS is 10 hours and in 
our simulation 5 and 8 cytobots took 12.7 and 10.3 hours 
respectively. Given the differences in the simulation and 
differences in operation of the robots, the resulting clean up 
times are comparable showing that the cytobots have potential 
application as distributed robotic agents in real-world 
environments. 

Conclusions 
The aggregation experiment results presented above show that 
the agents are able to simulate behavior of individual 
unicellular organisms, and model emergent behavior arising 
from interactions among such groups. These results 
demonstrate the parallels between ARN agents and the 
biological counterpart from which they were inspired. It also 
highlights a potential use as a means to simulate groups of 
interacting cells such as a bacterial colony or tissue component 
within a multicellular organism.  

The results for the oil spill simulation demonstrate potential 
application for the ARN agents as autonomous agents within 
real world environments. This application demands an internal 
control system which can function without reference to other 
agents within the environment which are operating in parallel. 
By modifying the environment, (which in this case was 
consumption of food), the agents can stigmergically 
communicate and facilitate emergent behavior. The cytobots 
offer a unique range of abilities. Like cells, their internal 
network of spatially distributed dynamic chemical species 
allows them to autonomously coordinate and direct their 
movement, recognize and respond to patterns in the 
environment, and produce high-level behavior.  

In future work, it is intended to further explore the AI 
applications of the cytobot agents, and later, to create swarms 
of cytobot robots with applications in real world environments.  
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Abstract—The Artificial Reaction Network (ARN) is an 

Artificial Chemistry representation inspired by cell signaling 

networks. The ARN has previously been applied to the 

simulation of the chemotaxis pathway of Escherichia coli and to 

the control of limbed robots. In this paper we discuss the design 

of an ARN control system composed of a combination of network 

motifs found in actual biochemical networks. Using this control 

system we create multiple cell-like autonomous agents capable of 

coordinating all aspects of their behavior, recognizing 

environmental patterns and communicating with other agent’s 

stigmergically. The agents are applied to simulate two phases of 

the life cycle of Dictyostelium discoideum: vegetative and 

aggregation phase including the transition. The results of the 

simulation show that the ARN is well suited for construction of 

biochemical regulatory networks. Furthermore, it is a powerful 

tool for modeling multi agent systems such as a population of 

amoebae or bacterial colony. 

Keywords— Artificial Reaction Networks; Artificial Chemistry; 

Swarm Agents 

I.  INTRODUCTION 

Artificial Chemistry (A-Chem) is a subfield of A-Life and, 

in its broadest sense, it describes man-made systems which are 

similar to real chemical systems [1]. Chemical information 

processing has many desirable properties, it is: decentralized 

asynchronous, fault tolerant, evolvable, self-organizing and 

adaptive [1]. A-Chem focuses on harnessing these properties 

by either creating Molecular Computing devices where 

computation is achieved using either real chemicals or by 

utilizing the principles of the chemical metaphor to construct 

novel software or hardware architectures in silico [1]. The 

latter is termed Artificial Chemistry Computing (CCM) and is 

the focus of this paper. In the chemical metaphor, data is 

stored in the form of molecular species and information 

processing occurs through interactions (reactions) between 

these molecules. The result of this computation emerges from 

the numerous low-level interactions and appears as a global 

behavior [1]. ACC is used in two main applications: 

simulating complex systems (biological, social or ecological) 

and in developing novel solutions to engineering or 

computational problems. The Artificial Reaction Network 

(ARN) is an ACC representation inspired by the properties and 

mechanisms of information processing found in biological Cell 

Signaling Networks (CSNs). In our previous work, it was 

applied to simulate the chemotaxis signaling pathway of E. coli 

[2], and later investigated as a means to produce complex 

temporal waveforms to control limbed robots [3,4].  

Within a cell, data is represented by a set of spatially 

distributed molecular concentrations; CSNs process this 

information within elaborate hierarchical network control 

structures which connect species together in productive or 

inhibitory unions. In this way, cells are able to respond to 

changes within their environment, communicate with other 

cells, and perform internal self maintenance operations [5]. 

The ability of chemical networks to perform computational 

processing is well documented. For example it has been 

shown both theoretically and in wet lab experiments that such 

networks can perform Boolean and Fuzzy logic functions 

[1,5]. A number of researchers have identified structural 

motifs in such biochemical networks which can form basic 

computational processing units [5,6].  

The aim of this paper is to show that the ARN is a powerful 

modeling tool and can produce realistic approximations of the 

complex network circuitry that exists within and between cells. 

This ARN is firstly used to construct real biochemical network 

regulatory motifs. These motifs are then combined to create a 

control system for an autonomous ARN-agent. The control 

system implements a set of cell-like behaviors which allow the 

agent to recognize and respond to environmental patterns by 

modifying its trajectory. A swarm of ARN-agents are then 

instantiated within an artificial environment and used to 

simulate the collective behavior of a population of D. 

discoideum (Dd) cells throughout two phases of the organism’s 

life cycle: vegetative and aggregative.  

The paper is structured as follows: Section II provides a 

summary of the ARN representation; this is followed by a 

discussion about network motifs and the ARN-agent control 

system in Section III and IV. The experimental details are 

discussed in Section V followed by results in Section VI. 

Finally, Section VII presents the conclusions.  
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II. ARTIFICIAL REACTION NETWORKS 

A summary of the ARN is provided here. Verification and 
further discussion of the ARN representation can be found in 
our previous work [2-4]. The ARN comprises a set of 
networked reaction nodes (circles), pools (squares), and inputs 
(triangles) and is depicted as a directed weighted graph as 
shown in Fig. 1 Each pool stores a current available chemical 
species concentration (avail); thus, the complete set of pool 
concentrations at time t, corresponds to the current state of the 
system. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The Artificial Reaction Network representation.  
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Where: 

A, B, C, D = Species Concentrations                   

W = Reaction order (weight)              

avail = Available species concentration         

Kf  = Forward rate constant                

∆C = Change in species concentration C       

Kr = Reverse rate constant    

α=sum of other incoming weights to D 

 
In this paper and the following example we use conserved mass 
quantities, however, the ARN may also be used to model non-
conserved quantities such as the number of available 
molecules. The choice affects the way in which each pool is 
updated and is discussed later. While many ACs assume a 
well-stirred reactor, the use of pools within the ARN provides a 
discrete spatial structure. Inside a biological cell concentrations 
of chemical species are spatially distributed into localized 
compartments. This localization restricts which molecules may 
react together, thus affects the overall dynamics of the system. 
Representing the spatial distribution of chemicals allows fine 
grained control over the system dynamics and thus is highly 

beneficial when modeling biochemical circuitry. For example it 
allows the representation of flow structures such as membrane 
channels, transport processes; network motifs, and provides a 
means to explore disease pathways [7]. Thus, in the ARN, each 
pool is represented as a well-stirred reactor and approximates a 
spatial compartment. Inputs are a special type of pool; the only 
difference is that they are of fixed value and thus can be used to 
represent the continuous flow of environmental inputs or 
enzymes. Each circle corresponds to a reaction unit, 
representing a reaction between a number of chemicals. Data is 
processed by reaction nodes transforming incoming pool 
values to connected outgoing pool values. Connections 
symbolize the flow of chemical into and out of reaction units 
and their weight (W) corresponds to reaction order. 
Connections provide the facility to create complex control 
structures using combinations of inhibitory and excitatory 
connections. Fig. 1 shows the reaction between species A and B 
to produce species C. At time interval ∆t, each reaction unit’s 
temporal flux value is calculated by applying Euler’s 
approximation to the differential rate equation as shown in (1). 
This value is then used to update the current concentration of 
each reaction’s connecting pools as shown in (2). A reaction 
step may proceed if it meets its preconditions. Preconditions 
are met if incoming inhibitory pools are inactive, and incoming 
excitatory pools are active. In a similar way the completion of a 
reaction step will fulfill a number of post conditions, which 
depend on the parameters and connections of the reaction step. 
Pools may asymptotically approach 0, and thus below a 
particular threshold a pool is considered empty and its value set 
to zero.  

As previously mentioned the ARN is not restricted to 
representing conserved quantities such as mass, one may 
choose to model the exchange of molecules between pools. 
Thus using the example in Fig. 1, to generate one molecule of 
product C requires WA molecules of reactant A and WB 
molecules of reactant B. In this case pool C is updated by 
applying (3). 

III. BACKGROUND THEORY 

The ARN presented in Section IV is composed of 
regulatory motifs found in real biochemical networks. These 
motifs are combined in such as way to provide the control 
system for an ARN-agent. In this Section a summary of two 
behavioral modes implemented within the ARN-agent control 
system are described. This is followed by the structure and 
function of common network motifs, including biological 
examples. 

A. Foraging and Starvation Modes of ARN-agents 

Dd is a cellular slime mould which exists as a collection of 
amoeba and transitions to a multicellular slug during the 
aggregation phase of its life cycle. During its vegetative stage, 
amoebae move up gradients of folic acid (FA) secreted by its 
bacterial prey. The behavior of these unpolarised cells is 
characterized as a random biased walk where cells extend 
random pseudopods in a biased manner toward the source of 
FA resulting in overall movement up the gradient of FA [8]. 
Dd amoebae begin to starve when the food resource has been 
depleted, and begin the aggregation phase. During 
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aggregation, starving cells secrete cAMP (cyclic adenosine 
monophosphate) which serves as a signal to attract 
surrounding amoebae towards a central location [9]. 
Aggregating Dd cells are polarized, thus one side becomes the 
leading edge which always faces in the direction of travel [9, 
10]. Depending on parameters such as environmental 
conditions, and Dd population density, migrating cells often 
form transient emergent patterns such as streams, waves and 
spirals [9, 10]. Streaming describes a pattern of motion where 
cells line up in close order files, with the head of one 
following the rear of another [10].  

The agent performs two behavior modes- foraging and 
starvation based respectively on vegetative and aggregative 
behaviors of Dd amoebae. During the foraging phase, agent’s 
alternate periods of forward motion termed “runs” and random 
redirections called “tumbles”. The bias is provided by 
reducing the period of tumbles when moving up the food 
gradient. At each passing location food is consumed. The 
agents enter starvation mode if food has not been consumed 
within a time period. Each starving agent emits a continuous 
signal of cAMP into its surrounding environment. Instead of 
turning in a random direction, agents turn in the direction 
weighted toward the highest concentration of cAMP within its 
surrounding area.  

B. Functional Motifs In Biochemical Networks 

Cell membranes are studded with receptors which are 
sensitive to external parameters such as chemicals, pH, 
temperature and light. These receptors are responsible for 
detecting and transducing environmental signals. These 
signals trigger information processing events within the CSN 
which update cell activity such as changes in gene expression. 

Components of CSNs are linked through productive unions 
(union of reactants triggers production/activation of other 
components) and inhibitory unions (union of two reactants 
inhibits production/activation). In the same way the network is 
separated through productive and inhibitory isolations (union 
does not occur or does not produce any effect). Such links 
arrange chemicals into elaborate circuitry which functions as 
the information processing machine of the cell.  

A fundamental challenge in Molecular Biology is to 
understand such signal processing and thus enable the 
prediction of the effects of disease and intervention of 
pharmaceuticals. To this end a number of researchers have 
identified functional structural motifs within these networks 
[5, 6]. A summary of the structure (in ARN format), function 
and biological examples of a number of the most common 
motifs is provided in Table 1. A more detailed discussion is 
provided by Tyson [6]. Note that these motifs are shown for 
simplicity as 2 or 3 component but there are larger versions 
with the same function. For example, an additional component 
may be added to motif 9 to create a 4 component oscillator. 

IV. ARN-AGENT CONTROL SYSTEM 

In this Section we discuss an ARN control system 
composed of the structural motifs in Table 1. This system is 
designed to control an autonomous ARN-agent termed a 
“Cytobot” (“cyto” from Greek for cell, and “bot” from robot). 

The cytobot has two behavior modes: foraging and starvation, 
based on the previously described behavior of Dd amoeba 
during its respective vegetative and aggregative phases. In the 
experiments described in Section V a number of these 
cytobots are instantiated and interact to produce global 
emergent behavior. The relationship between the ARN control 
system and the cytobot is similar to that of a CSN to an 
amoeba. Thus the control system allows a cytobot to recognize 
environmental patterns, updating its trajectory within an 
artificial 2D environment and to communicate stigmergically 
with other cytobots. The environment contains a distribution 
of artificial chemicals. These chemicals represent attractants 
of either food or cAMP. When a cytobot moves to a new 
position, the surrounding level of chemical is used to set the 
inputs to its ARN. Consequently this changes the internal state 
of the ARN and updates the agent’s trajectory. During this 
process, the agent modifies the state of the environment by 
consuming food or releasing cAMP.  

The cytobot ARN is composed of 6 subnetworks as shown 
in Fig. 2. Each subnetwork contributes a functional aspect to 
either or both starvation and foraging behaviors. The design of 
the subnetworks is discussed in the following Sections. 

A. The Master Oscillator 

The Master Oscillator functions to synchronize the outputs 
from all the other subnetworks together and is what each 
cytobot references at each time step to ascertain its current 
behavior. It is a 4 component oscillator (Table 1 motif 9) with a 
token unit of chemical cycling around it. It consists of 4 
reaction units: M0, M1, M2, and M3 (all with reaction rate of 
1) and 4 pools MA, MB, MC and MD and generates a pulsed 
width modulated waveform. Each pool is associated with 1 of 3 
behaviors. Every time step that a particular pool contains the 
token unit, its corresponding behavior is performed. Pool MA 
activates turn, MC activates run and MB and MD activate stop. 
Thus, if pool MC contains a chemical for 10 time steps, the 
agent will move forward for 10 time steps. Note that this motif 
could control motor actuators on a simple wheeled robot: MC 
would switch on all wheel motors, while MA would switch on 
left wheel motors only, thus turning the robot. The remaining 
pools would act as off switches. The other subnetworks inhibit 
(motif 2) or excite (motif 1) the reaction units of the master 
oscillator to allow or prevent chemical flow.  

B. The Food and Run Length Network 

The food network interfaces with the environment at pool 
FA using an excitatory connection (motif 1) and inhibits the 
runlength network in accordance with the level of detected 
food. The forward rate of reaction node F0 is 1, thus the 
content of FA is transferred to pool FB in a single time step. 
The presence of chemical FB inhibits (motif 2) R0 for a 
number of time steps according to the level of food (by setting 
forward rate of unit F1 to 1 and weight to 0 this can be an 
exact correlation). The run length network is a 3 component 
oscillator (motif 9). While reaction R0 is inhibited it prevents 
pool RC from emptying. RC inhibits reaction M2 (motif 2) of 
the master oscillator thus preventing pool MC from emptying 
for the same number of time steps. As discussed previously, 
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the number of time steps which pool MC contains the token 
unit represents the number of time steps to move forward. 

C. The Signalling Network 

The signaling network functions as a switch between 
starvation and foraging mode. Low food levels trigger the 

starvation response and allow the weighted direction network 
to control each new angle. Sufficient food will switch off the 
weighted direction network and allow the chaotic network to 
control each new angle. It is a 3 component oscillator (motif 
9) with a token unit of chemical flowing around it. Pool CA 
acts as a switch between foraging and starvation behavior.

TABLE I EXAMPLES OF FUNCTIONAL MOTIFS FOUND IN BIOCHEMICAL NETWORKS

Motif No., Name and Description Structure (in ARN 

format)  

Biological Example 

1. Excitatory (E) 

The presence of X activates Y 
 Elementary motif common throughout pathways. E.g. Ras is a membrane associated 

protein that is normally activated in response to the binding of extracellular signals 

such as growth factors [6]. 

2. Inhibitory (Y) 

The presense of X inhibits Y. Acts as a 
NOT gate. 

 Elementary motif common throughout pathways. E.g. E-cadherin (a calcium-

dependent cell–cell adhesion molecule) suppresses cellular transformation by 
inhibiting β-catenin [6]. 

3. Positive Feedback Loop (PFL) 

The presence of X activates Y and in turn 
the presence of Y activates X 

 The pathway of caspase activation is essential for apoptosis induction. A PFL exists 

between caspase-3 and caspase-9 [6]. 

4. Negative Feedback Loop (NFL) 

The presence of X activates Y and in turn 

the presence of Y inhibits X 

 The proteins Mdm2 and p53 (p53 is a tumor suppressor protein) are involved in a 
NFL which functions to keep the level of p53 low in the absence of p53-stabilizing 

signals [6]. 

5. Double-negative Feedback (DNF) 

The presence of X inhibits Y and the 
presence of Y inhibits X 

 BAX is protein which promotes apoptosis by competing with BCL. A DNF is 

formed between the proteins BAX and BCL [6]. 

6. Branch (B) 

The presence of X activates Y and Z  

 

 Transcription factors such as E2F or P53 frequently modulate the expression of 
more than one gene. Enzymes often modify more than one substrate e.g. CycB-

dependant kinase [6]. 

7. Logic Gate (LG1) 

AND gate: 2 excitatory connections from 
X and Y when both X and Y are present 

they activate Z 

NOR gate: two inhibitory connections 
from X and Y. Both X and Y must be 

absent for Z to be activated 

SWITCH: Excitatory connection from X 
and inhibitory connection from Y. The 

presence of X but not Y activates Z 

 AND: The protein gCam 2 kinase becomes active when both calcium ions (Ca2+
 ) 

and Calmodulin (CaM) are present [5]. 
NOR: The activity of transcription factor E2F is a NOR function of RB and CycB 

where E2F is active when both RB and CycB are inactive [6]. 

SWITCH: The enzyme aspartate transcarbamylase is composed of multiple catalytic 
sites. It is activated by binding of its substrates (aspartate and carbamoyl phosphate) 

and inactivated by cytidine triphosphate causing its substrates to dissociate [5]. 

8. Logic Gate (LG2) 

OR Gate: : 2 excitatory connections 
from X and Y when either X or Y are 

present they activate  

 Ras is a membrane associated protein that is activated by a number of different 

signals. E.g. in response to the binding of extracellular signals such as a number of 
growth factors [6]. 

9. Oscillator (OSC)  
The presence of X activates Y. In turn the 
presence of Y activates Z but inhibits X. 

The presence of Z inhibits Y and 

activates X. 
 

 

 There are many examples e.g. in the cyanobacteria clock protein KaiC has a well 

defined closed cycle of phosphorylation and dephosphorylation states (composed of 
KaiA, KaiB and KaiC). In the motif shown here, all 3 components oscillate and 

each inhibits the reaction clockwise left. Oscillators may have less inhibitory 

connections, the number of which is dependent on the mobility of the reaction 
species. However, the presence of all inhibitors increases stability in the presence of 

fluctuating environmental parameters e.g. temperature. Note that this oscillator can 

also be thought of as a PFL (motif 3) combined with a system of DNFs (motif 5). 

Key:                            Either inhibitory or excitatory.  X/Y/Z: Chemical species * Note that these motifs may combine arbitrary numbers of components. 
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Fig. 2. The cytobot ARN network. Each cytobot is controlled by an instance of this network. The network is composed of 6 subnetworks 

 

Here the presence of chemical in CA inhibits the weighted 
direction network (motif 2) while its absence switches on the 
weighted direction network; this in turn inhibits the chaotic 
network, as shown in Fig. 2. In this oscillatory network, all 
reaction units have a forward flux of 0.5; which produces a 
continuous oscillating waveform and ensures a minimum 
number of time steps for each behavior. A NOR gate (motif 7) 
activates pool CB in the absence of food chemical in both 
pools FB and FC of the food network, thus allowing pool CB 
to empty. While an AND gate (motif 7) will lead to pool CA to 
eventually refill by activating pool CC only when food is 
present in input FA and pool FC of the food network. 

D. The Weighted Direction Network 

The weighted direction network senses food within the 
agents’ immediate environment and calculates a tumble angle 
which is weighted toward higher food levels. This network 
interfaces with the environment via a number of receptor pools 
(AW, ANW, AN, ANE, AEA) which sense the level of food 
around the cytobot. These pools represent receptors and are 
positioned at points around the front of its perimeter (as shown 
in Fig. 3), allowing the agent to travel in a similar way to that 
of a polarized Dd cell. For example, during the aggregation 
phase of their life cycle, Dd cells are polarized, and one side 
becomes the leading edge which always faces in the direction 
of travel [10]. Each receptor input pool forms one input of an 
AND gate (motif 7), the other input is a static pool containing a 
fixed level of chemical in correspondence to its direction. 
Directions start from AW (west) with a corresponding numeric 
value of 0 (A00) and progress in 45 degree steps through each 
direction to east. As the receptor positions around the agent are 
fixed, directions are always relative to that in which the agent 
is facing. All connections have a weight of 1 with the exception 

of the connection between pool AD and reaction A12 which 
has a weight of -1. This negative connection raises the sum of 
food detected in AD to -1, which multiplied by AB, allows an 
average angle to be calculated. 

 

Fig. 3.  Location of the ARN-agent (cytobot) sensors around its perimeter. 

The calculated angle interfaces with the remaining 
subnetworks at pool AE. Pool AE is the output of an OR gate 
(motif 8) where inputs from either the weighted direction 
network or the chaotic angle network activate AE. AE also 
forms the inhibitory input of a SWITCH (motif 7) where the 
presence of chemical in MA and absence in AE activates pool 
MB of the master oscillator. In an actual organism receptors 
are set around the cell perimeter and direct movement 
appropriately. In this simulation, for simplicity, a count of the 
number of time steps “n” that MA contains the token unit is 
processed to gain the new heading “h” relative to the agents’ 
current heading “c” using (4). Thus if the number time steps is 
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120 and the agent is facing north, then the current heading 
would equal 0 and the new heading would equal 30. 

 360mod))90(( cnh   (4) 

  

E. The Chaotic Network 

The chaotic network, as shown in Fig. 2, is responsible for 
generating pseudo random angles which agents use to perform 
the foraging mode tumble behavior. It is a networked 
implementation of a Logistic Map, see (5). Without prior 
knowledge of the initial conditions the output of the logistic 
map is unpredictable, while it is deterministic with prior 
knowledge. Therefore, the series cannot be described as truly 
random but as pseudo random. Its output has long been 
proposed as a pseudo-random number generator [11] and it has 
been successfully used in this capacity by several researchers 
[12]. The probability density distribution of the Logistic Map is 
non-uniform and is described in [12]. When λ=4 the 
distribution is “U” shaped, with higher probability of values 
closer to the minima and maxima of X and a symmetric 
distribution at the midpoint. The general shape of the 
distribution is invariant for the complete range of state 
variables from 0 to 1.  

 )1(1 nnn XXX    (5) 

 

Where: 

Xn= state variable of value 0 ≤ Xn ≤ 1 

λ= system parameter of value 1 ≤ λ ≤ 4 

 
To implement the logistic map a number of motifs are 

combined including multiple branch motifs (motif 6- KB 
activates KD and KE), PFLs (motif 3- a multi component PFL 
exists where KA leads to activation of KE, which results in the 
activation of KA) and NFLs (motif 4- KA activates KD which 
in turn inhibits KA). At the start of the simulation, pools KA 
and KB are initialized to the same random value (a unique 
number for each cytobot) between 0 and 1 (to 5 decimal 
places). This represents the first value of X of (5). All the 
other pools are initialized to 0 with the exception of the static 
pools KI and RK whose initial values are 360 and 1 
respectively. Reaction K2 is responsible for generating each 
new value of X and has a forward and reverse rate of 4 (the 
logistic map exhibits chaotic behavior when λ is 4). The 
connection between KA and K2 has a weight of 1 and that 
between K2 and KB has a weight of 2. The remaining series of 
reactions function to copy the value of X 3 times, where 2 
copies serve as the new initial values of KA and KB and one 
participates in the final output of the network at KH. KI has a 
fixed value of 360 which allows the network to convert the 
pseudo random number at KH to an angle value between 0 and 
360 at reaction K0. However, reaction K0 cannot proceed until 
all 11 pools that inhibit it are empty. These inhibitory 
connections (motif 2) ensure that random angles are not output 
while the agent is in starvation mode, and that pool AE is 
empty before adding more chemical. The ARN 
implementation of the Logistic Map was tested against the 
recursive relation (5), the details of which are given in our 

previous work [13]. The frequency distribution gained from 
the ARN is identical to that of (5). 

V. METHODOLOGY 

In the following experiments, multiple cytobots are 
instantiated and used to model aggregating and vegetative Dd 
cells, where each cytobot represents a cell. Two sets of 
experiments are performed: aggregation (AG) and foraging to 
aggregation (AGF). In the AG experiments (AG1-10 of Table 
2) only the aggregative phase is modeled, where each 
experiment is performed at varying population densities of 
cytobots (p) and different ranges of detection of cAMP (r). In 
experiments AGF3 and AGF8 the vegetative and aggregative 
phases are simulated (and the transition between these phases) 
using the same population density and range as experiments 
AG3 and AG8 respectively. The emergent patterns, numbers 
of mounds, and length of time to complete phases is examined 
and compared in both sets of experiments.  

In the AGF experiments, the environment is initialized 
with a radially outward decreasing gradient of food as 
described by (6), where x and y are on the horizontal plane. 
Here the cytobots remain in foraging mode until the food 
resource is depleted and starvation mode is triggered. In a real 
environment food is non-uniformly distributed, may be 
regenerated and can move (in the case of bacterial prey). Thus, 
this setup is highly simplified, but is comparable to other 
simulations [14].  

 

 22 yxz   (6) 

 

The results of the AGF experiments are compared with 
those of the AG experiments, where, the environment never 
contains food, thus agents immediately enter and stay in the 
starvation mode. The agents’ behavior is initially explored at 
biologically realistic p and r values and compared with the 
behavior of the actual organism and other simulations. These 
parameters are then extended outwith the biological range in 
order to examine the emergent properties of the system. The 
Cytobots move within a simulated 2D environment of area 
5.06 mm

2
- approximately half the maximum recorded 

aggregation territory [9]. Each pixel represents 4.5 μm and the 
grid is 500 × 500 pixels, giving a total area of 5.06 mm

2
. In 

nature, aggregating Dd cell densities are typically 250 per 
mm

2
 to 1x10

4 
per mm

2 
[9]. Due to the computational resources 

required to manage a population of cytobots within the upper 
range, two cell densities of 250 agents per mm

2
 (1250 agents) 

and 150 per mm
2
 (750 agents) were chosen. In all 

experiments, the agents are initialized at random positions 
within the simulated environment. Foraging cytobots consume 
food at each passing location, while those in starving mode 
emit a cAMP signal at equal strength around their 
circumference into the environment. This cAMP signal is 
detected by other agents within or equal to r. If an agent in 
foraging mode detects cAMP it will switch to starvation mode 
behavior.  

In these experiments a range of r values are explored (see 
Table 2), including that of real cells of 1, 0.5, and 0.1 mm [8]. 
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The actual cAMP signal degrades linearly with increasing 
distance (d) from the emitting cell. Each agent detects the 
cAMP signal of all starving cells within or equal to r, and a 
total value for each direction is calculated. Each cycle 
represents 1 minute of time. In this time the agent moves 9μm- 
a distance which corresponds to that reported in the literature 
[15]. Therefore, after 1 hour motion the agent travels a 
distance of 540μm. In reality there are always remaining cells 
that do not aggregate, and thus the simulation runs until 95% 
of agents are at a distance of less than 0.1mm from their 
nearest neighbor.  

VI. RESULTS 

The results for all 12 experiments are given in Table 2. 
Each experiment was performed 100 times. In experiments 
AG8-10 and AGF8 the value of r and d are within the ranges 
for real Dd cells. These experiments are used to compare the 
behaviors and aggregation time with the values for real Dd in 
the literature. In experiments AG8-9 and AFG8 mound 
formation completes within the range reported for the actual 
organism of 9-13 hours [14, 16]. These results are comparable 
with other work. For instance, in [14] the aggregation time 
reported was 11.6 hours for a cell density of 200mm

2
. In 

experiment AG10, the population never satisfied the criteria 
for completion of mound formation. The likely explanation is 
firstly because the simulation does take into account 
glycoprotein’s which allow aggregating cells to attach together 
on contact. Furthermore, because r is small, fewer agents are 
detected by each cytobot. Thus higher numbers of 
momentarily larger clusters with higher attraction strength go 
undetected and quickly dissipate. In the AG experiments 
increasing p by 100mm

2 
the number of mounds formed at each 

r decrease with the exception of experiment AG6. This is not 
surprising, as denser populations should have more chance of 
interacting, and thus form fewer clusters, but with higher 
numbers of agents. Similarly, decreasing r results in a general 
increase to the number of mounds formed at both values of p. 
In the AGF experiments, agents generally focus on consuming 
food in each remaining highest concentration area (see Fig. 
4K-L). Having consumed almost all the food, agents begin 
switching to starvation mode (Fig. 4M). In these experiments 
the number and location of resulting mounds differs from that 
of the AG experiments at the same values of r and d. For 
example experiment AG8 results in 4.3 mounds while AGF8 
results in 6.8 mounds with a general shift in mound formation 
further away from the centre of the environment (as shown in 
Fig. 4).  

Fig. 4. Screenshots of the Dd simulation. Dots represent the cytobots (black- vegetative and red- aggregative cells), and greyscale color represents the food 

distribution. A-E: Cytobot aggregation experiment AG8 at A- 1hr, B- 2hr, C-5hr, D- 8hr, E- 10hr; Image F- real Dd cells aggregating; G- Lower right hand corner 
of image C demonstrating streaming behavior; H-J Shows pattern formation; K-O Cytobot experiment AGF8 at K-0hr vegetation, L-4hr vegetation, M-transition 

to aggregation 0hr aggregation, N-5hrs aggregation, O-10hr aggregation.  

Diagram F courtesy of T, Gregor, Laboratory for the Physics of Life, Princeton University, 2013 Used with permission.
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The likely explanation for this is that, at the time of switching 
to aggregation, the majority of cells had been forced outward, 
toward the next remaining highest concentration of food. 
Emergent behaviors and clustering patterns similar to the 
biological organism were also observed. As previously 
discussed, the cytobots are polarized. Implementing the agents 
in this way allowed us to observe whether or not the 
previously described streaming behavior occurs. A close-up of 
the right-hand corner of screenshot C is shown in Fig. 4G 
showing agents beginning to form a cluster. The protruding 
head of each agent can be seen clearly, where each lines up its 
head to the rear of another agent and forms a stream. As can 
be seen in Fig. 4F, this is very similar to the streaming 
behavior in real cells of Dd. Other emergent patterns occurred 
during different experiments including spirals (Fig. 4H), 
symmetric patterns (Fig. 4I), and waves (Fig. 4J). 

TABLE II    CYTOBOT SIMULATION RESULTS 

No. Density 
(p) per 

mm2 

Range 
(r) in 

mm 

Mean No. 
of mounds; 

(σ) 

Aggregation Phase 
Mean time in Hours; 

(σ); *Literature 9-13 

hours 

AG1 150 5 1 
(0) 

8.98 
(0.09) 

AG2 150 2.5 4 

(0.31) 

9.63 

(0.17) 

AGF3 150 1 5.9 

(1.16) 

9.47 

(0.65) 

AG3 150 1 5.2 

(0.82) 

9.92 

(0.34) 

AG4 150 0.5 8.4 
(1.19) 

10.23 
(0.59) 

AG5 150 0.1 14.2 

(2.36) 

10.6 

(1.82) 

AG6 250 5 1 
(0) 

8.95 
(0.11) 

AG7 250 2.5 1 

(0) 

9.6 

(0.20) 

AGF8 250 1 6.8 

(1.81) 

9.71 

(0.87) 

AG8 250 1 4.3 

(0.37) 

10.05 

(0.58) 

AG9 250 0.5 6.7 

(1.62) 

12.65 

(1.94) 

AG10 250 0.1 - - 

VII. CONCLUSIONS 

The results of the Dd experiments presented above show 
that ARN-agents are able to simulate individual behaviors, 
stigmergic interactions and emergent behaviors of unicellular 
organisms by combining structural motifs found in real 
biochemical networks. This highlights a potential use as a 
means to simulate groups of interacting cells - such as a 
bacterial colony or tissue component within a multicellular 
organism, including the effects of disease (e.g. faulty gene 
expression) and pharmaceuticals on global behavior. The 
results demonstrate the parallels between ARN agents and the 
biological counterpart from which they were inspired. Like 
amoebae, their internal network of spatially distributed 
dynamic chemical species allows them to autonomously 

coordinate and direct their movement, recognize and respond 
to patterns in the environment, and produce high-level 
behavior. This application demands an internal control system 
which can function without reference to other agents within 
the environment which are operating in parallel.  

In future work, it is intended to further investigate ARN-
agents in biological simulations. Importantly a study into ways 
in which the pathways of ARN-agents can be evolved and 
how such agents can learn and adapt to the environment 
autonomously. 
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Abstract— The Artificial Reaction Network (ARN) is a cell 

signaling network inspired representation belonging to the 

branch of A-Life known as Artificial Chemistry. It has properties 

in common with both AI and Systems Biology techniques 

including Artificial Neural Networks, Petri Nets, Random 

Boolean Networks and S-Systems. The ARN has been previously 

applied to control of limbed robots and simulation of biological 

signaling pathways. In this paper, multiple instances of 

independent distributed ARN controlled agents function to find 

the global minima within a set of simulated environments 

characterized by benchmark problems. The search behavior 

results from the internal ARN network, but is enhanced by 

collective activities and stigmergic interaction of the agents. The 

results show that the agents are able to find best fitness solutions 

in all problems, and compare well with results of cell inspired 

optimization algorithms. Such a system may have practical 

application in distributed or swarm robotics. 

Keywords— Artificial Reaction Networks; Artificial Chemistry; 

Swarm Robotics 

I.  INTRODUCTION 

Single celled organisms display an astonishing array of 
complex behaviors. Some can avoid light with photo-sensitive 
spots; some actively hunt prey; while others can build 
protective shelters [1]. Such behaviors improved these 
organisms’ chances of survival through the process of natural 
selection. In recent years a growing body of research has 
illuminated the remarkable capabilities of single cells to store 
and process information [2, 3]. The mechanisms involved are 
quite different from those of a digital computer. Within a cell, 
the current state is represented as a set of spatially distributed 
concentrations of chemical species. This data is processed by 
vast networks of chemical reactions termed cell signaling 
networks (CSNs). In this way, cells are able to respond to 
current environmental conditions, communicate with other 
cells, and perform internal self maintenance operations. 

Several researchers have highlighted the processing 
capabilities of these networks [2, 4, 5] and similarities to 
Artificial Neural Networks (ANNs) [2, 5]. For example, it has 
been demonstrated that such networks can perform Boolean 
and fuzzy logic functions and are equivalent to a Turing 

machine [2, 4]. Furthermore, CSNs contain topological features 
such as feedback loops and interconnectivity, thus forming 
highly complex systems [2, 5, 6]. 

It is possible to abstract the computational properties of 
such chemical processing to create a type of model called an 
Artificial Chemistry. Artificial Chemistry is a subfield of A-
Life, and in its broadest sense, it describes man-made systems 
which are similar to real chemical systems [7]. In previous 
work, a new Artificial Chemistry representation of CSNs- the 
Artificial Reaction Network (ARN) was introduced and 
investigated as a means to control limbed robots [8, 9, 10].  

Our first aim is to show that an ARN network can be 
instantiated and used as the internal control system for multiple 
instances of cell-like autonomous distributed agents. Like 
biological cells these agents react to their environment, and 
stigmergically communicate to facilitate collective emergent 
behavior. Our second aim is not to present a new optimization 
algorithm; rather it is to show that these agents can perform a 
range of useful search behaviors in a variety of situations, and 
that their search strategy can compare to that of established 
optimization algorithms using similar cell inspired strategies. 
The agents are placed within a simulated environment with the 
task of finding the global minima of a set of well-known 
benchmark problems. The search spaces chosen are not high 
dimensional, but chosen to reflect problems which situated 
robotic agents could perform in real world environments.  

The paper is structured as follows: section 2 provides an 
overview of the ARN representation; this is followed by an 
overview of the ARN agents in section 3. The experimental 
details are discussed in section 4 followed by results in section 
5. Finally section 6 presents the conclusions.  

II. ARTIFICIAL REACTION NETWORKS 

A full account and verification of the ARN representation 
can be found in our work [8, 9, 10]; thus to preserve space only 
a brief summary is provided here.  

The ARN comprises a set of networked reaction nodes 
(circles), pools (squares), and inputs (triangles) as shown in 
Fig. 1. Each pool stores the current available chemical species 
concentration (avail); this concentration represents data within 
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the system. Thus, the complete set of pool concentrations at 
time t, corresponds to the current state of the system. Inputs are 
a special type of pool, the only difference being that they are 
not updated by flux at each time step, and are used to represent 
continuous concentrations, for example, environmental inputs 
or enzymes. Each circle corresponds to a reaction unit, 
representing a reaction between a number of chemicals. Data is 
processed by reaction nodes transforming incoming pool 
values to connected outgoing pool values. Connections 
symbolize the flow of chemical into and out of reaction units 
and their weight (w) corresponds to reaction order. 
Connections provide the facility to create complex control 
structures using combinations of inhibitory and excitatory 
connections. Fig. 1 shows the reaction between species A and 
B to produce species C. At time interval ∆t, each reaction unit’s 
temporal flux value is calculated by applying Euler’s 
approximation to the differential rate equation as shown in (1).  

 

 

Fig. 1. The Artificial Reaction Network representation.  
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Where: 

A, B, C, D = Species Concentrations                   

W = Reaction order (weight)              

avail = Available species concentration         

Kf  = Forward rate constant                

∆C = Change in species concentration C       

Kr = Reverse rate constant    

α=sum of other incoming weights 

 

This value is then used to update the current concentration 

of each reaction’s connecting pools as shown in (2). Pools may 

asymptotically approach 0, and thus below a particular 

threshold a pool is considered empty and its value set to zero. 

A reaction step may proceed if it meets its preconditions. 

Preconditions are met if incoming inhibitory pools are inactive, 

and incoming excitatory pools are active. In a similar way the 

completion of a reaction step will fulfill a number of post 

conditions, which depend on the parameters and connections of 

the reaction step. 

III. ARN CONTROLLED AGENTS 

In the following experiments a number of autonomous 
ARN controlled software agents termed “cytobots” (“cyto” 
from Greek for cell, and “bot” from robot) are created and 
initialized within an artificial environment containing a nutrient 
landscape. The cytobots task is to find the maximum food level 
by moving around within this simulated environment in as few 
evaluations (reading the value of food at the current position) 
as possible. Similar to the way in which a CSN acts as the 
control system to a cell, the behavior of each cytobot is 
controlled by its own instance of an ARN network. In this way, 
the ARN directs the agent’s movement, enables the agent to 
react to situated environmental patterns, and allows it to 
stigmergically communicate with other cytobots to contribute 
to higher level function. The cytobot ARN network was 
designed to produce two simple behavioral modes: foraging 
and starvation, both are based on the movement patterns of 
unicellular organisms. Cytobots forage by performing a biased 
random walk behavior while consuming food at each passing 
location. This pattern of movement is exemplified by the 
bacteria Escherichia coli (E. coli), where foraging cells 
alternate periods of runs (forward motion) and random 
redirections known as tumbles. By comparing concentrations 
of attractants and repellants in a temporal fashion, the organism 
is able to reduce the frequency of tumbles up concentration 
gradients of attractants, and down gradients of repellants, thus 
providing the bias. This behavior implements a type of 
optimization where biased periods of movement in the 
direction of attractants lead to overall travel toward more 
favorable conditions [11]. 

The starvation behavior is based on the pattern of motion 
displayed by starving cells of the cellular slime mould 
Dictyostelium discoideum (D. discoideum). During the 
vegetative stage of D. discoideum, cells move up gradients of 
folic acid secreted by its bacterial prey. When the food resource 
has been depleted, the amoebae begin to starve and enter the 
aggregation phase of their life cycle. During aggregation, 
starving cells secrete cAMP (cyclic adenosine monophosphate) 
which serves as a signal to attract surrounding amoebae 
towards a central location [12]. In this simulation, when the 
cytobots enter starvation mode, the level of food surrounding 
the agent represents corresponding levels of attractant cAMP. 
When a cytobot travels over areas of low or zero food it enters 
the starvation mode. Instead of turning in a random direction, 
the new direction is weighted toward higher concentrations of 
food within its surrounding area. This behavior forces 
exploration of unexplored search space because previously 
visited positions have a food level of 0.   
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Fig. 2. The cytobot ARN network. Each cytobot is controlled by an instance of this network. The network is composed of 6 subnetworks 

 

Consumption of environmental food therefore serves as a 
stigmergic signal, where agents are inclined to move up the 
nutrient gradient created by their foraging activities. The 
cytobot ARN was designed to perform the starvation and 
foraging behaviors described above and is composed of 6 
subnetworks as shown in Fig. 2. Each subnetwork contributes a 
functional aspect to either or both starvation and foraging 
behaviors. The subnetworks are discussed below. 

A. The Master Oscillator 

The master oscillator functions to synchronize all the 
outputs from all the other subnetworks together and is what 
each agent references at each time step to ascertain its current 
behavior. It is a simple closed loop, with a token unit of 
chemical cycling around it. It consists of 4 reaction units: M0, 
M1, M2, and M3 (all with reaction rate of 1) and 4 pools MA, 
MB, MC and MD. Each pool activates one of three behaviors, 
and for every time step that a particular pool contains the token 
unit, its corresponding behavior is performed. Pool MA 
activates turn, MC activates run and pools MB and MD 
activate stop. If these pools were switches to motor actuators 
on a simple wheeled robot, pool MC would switch on all wheel 
motors, while pool MA would switch on wheel motors on the 
left side only, thus turning the robot. The remaining pools 
would act as off switches. The other subnetworks inhibit or 
excite the reaction units of the master oscillator to allow or 
prevent chemical flow. The number of time steps that a 
chemical is present in a particular pool indicates the length of 
time that a particular behavior is performed. Thus if pool MC 
contains a chemical for 10 time steps, then the agent will move 
forward for 10 time steps; similarly if this were pool MA, the 
agent would turn for 10 time steps. 

B. The Food Network and The Run Length Network 

The food network senses the level of food within the 
environment and connects to the run length network to modify 
the number of steps forward according to the level sensed. The 
value of food at the cytobots’ current position is stored at input 
pool FA. The forward rate of reaction node F0 is 1, thus the 
content of FA is transferred to pool FB in a single time step. 
The presence of chemical in pool FB inhibits the run network 
reaction R0 for a number of time steps according to the level of 
food (by setting forward rate of unit F1 to 1 and weight to 0 
this can be an exact correlation). This in turn stops pool RC in 
the run length network from emptying. Pool RC inhibits 
reaction M2 of the master oscillator thus preventing pool MC 
from emptying for the same number of time steps. As 
discussed previously, the number of time steps which pool MC 
contains the token unit represents the number of time steps to 
move forward. 

C. The Signaling Network 

The signaling network functions as a switch between 
starvation and foraging mode. Low food levels trigger the 
starvation response and allow the weighted direction network 
to control each new angle. Sufficient food will switch off the 
weighted direction network and allow the chaotic network to 
control each new angle. It is a simple closed loop with a token 
unit of chemical flowing around it. Pool CA acts as a switch 
between foraging and starvation behavior, where the presence 
of chemical in CA inhibits the weighted direction network- 
while its absence switches on the weighted direction network; 
this in turn inhibits the chaotic network, as shown in Fig. 2. In 
this component, all reaction units have a forward flux of 0.5; 
which ensures a minimum number of time steps for each 
behavior.  
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D. The Weighted Direction Network 

The weighted direction network senses food within the 
agents’ immediate environment and calculates a tumble angle 
which is weighted toward higher food levels. This network 
interfaces with the environment via a number of receptor pools 
(AW, ANW, AN, ANE, AEA) which sense the level of food 
around the cytobot. These pools represent receptors positioned 
at points around the front of its perimeter, allowing the agent to 
travel in a similar way to that of a polarized biological cell. For 
example, during the aggregation phase of their life cycle, D. 
discoideum cells are polarized, and one side becomes the 
leading edge which always faces in the direction of travel [12]. 
For each receptor input pool, there is a static pool containing a 
fixed level of chemical in correspondence to its direction. 
Directions start from AW (west) with a corresponding numeric 
value of 0 (A00) and progress in 45 degree steps through each 
direction to east. As the receptor positions around the agent are 
fixed, directions are always relative to that in which the agent 
is facing. All connections have a weight of 1 with the exception 
of the connection between pool AD and reaction A12 which 
has a weight of -1. This negative connection raises the sum of 
food detected in pool AD to -1, which multiplied by AB, 
allows an average angle to be calculated.  

The calculated angle interfaces with the remaining 
subnetworks at pool AE. In an actual organism receptors are 
set around the cell perimeter and direct movement 
appropriately. In this simulation, for simplicity, a count of the 
number of time steps that MA contains the token unit is 
processed to gain the turn angle relative to the agents’ current 
heading using (3). Thus if the number time steps is 120 and 
the agent is facing north, then the current heading would equal 
0 and the new heading would equal 30. 

 

 360mod))90(( cnh   (3) 

  

Where: 

h= new heading 

n = count of time steps pool MA contained chemical 

c = current heading 
 

E. The Chaotic Network 

The chaotic network, as shown in Fig. 2, is responsible for 
generating pseudo random angles which agents use to perform 
the foraging tumble behavior. It is a networked 
implementation of a Logistic Map, see (4). Without prior 
knowledge of the initial conditions the output of the logistic 
map is unpredictable, whereas with prior knowledge it is 
deterministic- therefore the series cannot be described as truly 
random but as pseudo random. Its output has long been 
proposed as a pseudo-random number generator. Ulam and von 
Neumann [13] were the first to examine this and it has been 
successfully used in this capacity by several researchers [14]. 
The probability density distribution of the Logistic Map is non-
uniform and is described by (5) [14]. When λ=4 the 
distribution is “U” shaped with higher probability of values 
closer to the minima and maxima of X and symmetric 

distribution at the midpoint. The general shape of the 
distribution is invariant for the complete range of state 
variables from 0 to 1.  

 

 )1(1 nnn XXX    (4) 

 

Where: 

Xn= state variable of value 0 ≤ Xn ≤ 1 

λ= system parameter of value 1 ≤ λ ≤ 4 
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Where: 

P(X) = probability of X occurring 
 

The chaotic network component, as shown in Fig. 2, operates 

in the following manner. At the start of the simulation, the 

pools KA and KB of each cytobots’ chaotic network are 

initialized to the same random value between 0 and 1 (to 5 

decimal places). This represents the first value of X where X 

is the state variable of (4). All the other pools are initialized to 

0 with the exception of the static pools KI and RK whose 

initial values are 360 and 1 respectively. Reaction K2 is 

responsible for generating each new value of X and has a 

forward and reverse rate of 4 (the logistic map exhibits chaotic 

behavior when λ is 4). The connection between KA and K2 

has a weight of 1 and the connection between K2 and KB has 

a weight of 2. The remaining series of reactions function to 

copy the value of X 3 times, where 2 copies serve as the new 

initial values of KA and KB and the remaining copy 

participates in the final output of the network at KH. Static 

pool KI has a fixed value of 360 which in reaction K0, allows 

the network to convert the pseudo random number at KH to an 

angle value between 0 and 360. However, reaction K0 cannot 

proceed until all 11 pools that inhibit it are empty. These 

inhibitory connections ensure that random angles are not 

output while the agent is in starvation mode, and that pool AE 

is empty before adding more chemical.  

The ARN implementation of the Logistic Map was tested 

against the recursive relation shown in (4). The results 

generated for (4), were obtained using Matlab, where λ=4, 

initial X = 0.927725, and iterated 100000 steps. The complete 

range of state variables between 0 and 1 were divided into 100 

equal subintervals and the frequency of occurrence of each 

subinterval interval was plotted. Similarly, the chaotic network 

component of the ARN was run for 100000 cycles, using the 

same parameters of X and λ. These results were processed in 

the same way and are shown in Fig. 3. The frequency 

distribution gained from the ARN is identical to that obtained 

using matlab and by other researchers using the same 

parameters [14]. The same comparison was repeated 100 times 

at different values of X, and the ARN consistently produced 

the same values as (4). 
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Fig. 3. Frequency distribution for each value of X resulting from the chaotic 

network when the first value of X is 0.927725 and λ=4 

IV. METHODOLOGY 

In the following experiments, cytobot agents are applied to the 
task of finding the minima in a number of benchmark 2D 
optimization problems. These are the following functions: 
Rosenbrock, Peaks, Inverted sinc, and Bowl (see Table 1 for 
formulae, domains, and minima). Three experiments were 
performed for each function, where each uses either 1, 3 or 6 
cytobots and is performed 100 times. The task of the agents is 
to find the minima of the functions within as few evaluations 
(reading value of food at current x, y coordinate) as possible. 
The range of output values for each of the functions represents 
the concentration of food (also the fitness of an agent at that 
point) within a simulated environment. Values approaching the 
minima represent higher food levels, and values approaching 
the maxima represent lower food levels. The simulated 
environment consists of a 2D area of 400 x 400 pixels. A 
scaling factor is used to map the domain to the actual 
dimensions of the simulation, e.g. Rosenbrock domain of [-2, 
2] mapped to a simulation space of [-200, 200] by a scaling 
factor of 100. For display purposes, a corresponding grayscale 
color is used to show the distribution of food within the 
environment as displayed in the screenshot of the simulation in 
Fig. 4. Each agent consists of a token to mark its current 
position and an instance of an ARN network, as discussed in 
section 3. At the start of each experimental run, each agent’s 
ARN network is initialized as described in section 3, and each 
is positioned at random x,y coordinates within the search 
space. The agents undergo alternating phases of “searching” 
and “repositioning,” for a number of cycles until one reaches a 
position of within 0.04 of the global minima of the function. 
This value was chosen as it is within 1% of the global minima 
for all the functions used. The high level pseudocode 
describing the searching and repositioning phases is provided 
in Fig. 5. Searching is characterized by the 2 ARN controlled 
behaviors- foraging and starvation, as described in section 3. In 
each search phase each agent performs a total of 3 moves (3 
evaluations of the environment). The length of a run 

corresponds to the number of pixels a cytobot moves forward 
and is subject to the output from the run length network. After 
each tumble, and before moving forward, the food level at the 
current position is input into the ARN network as described 
previously. The agents travel at a speed of 1 pixel per time 
step, thus the number of time steps produced by the run length 
network corresponds directly to the number of pixels the agent 
moves forward. As a cytobot travels, the food at each passing 
position is consumed and its path within the simulation is 
represented in black (as shown in Fig. 4). During the search 
phase, a central control unit, external to all cytobot agents, 
keeps track of each cytobots best fitness and the coordinates of 
that value.  
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Where: 

a*= agent with highest fitness 

fa= fitness of agent an 

ftot= total fitness of all agents 

fra= ratio of agent an fitness to ftot 

xa*= the x coordinate of a* 

ya*= the y coordinate of a* 

xa= agent an x coordinate 

ya = agent an y coordinate 

dax=difference between xa and xa*  

day= difference between ya and ya* 

px=total of all dax 

py= total of all day 

rand(r)= a random value within a defined radius r 
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INITIALISE cytobots 
WHILE (best fitness outwith 0.04 of global minima)  

 

    START search phase 
        WHILE (more searching phase moves)  

           FOR each agent start searching phase 

              Turn agent    
              Set receptor pools of food network 

              Set receptor pools of weighted direction network  

              Move agent forward 
              IF (new food level > previous food level) 

                    Record fitness  

                    Record current position 
              END IF 

             END FOR  

          ENDWHILE 
       END search phase 

 

      START reposition phase 
      CALCULATE new central point P to reposition 

      INITIALISE agents at new position 

    END reposition phase 
  END WHILE 

 

 

Fig. 4. A screen shot of the simulation showing 6 cytobots in the inverted 

sinc search space. The greyscale color represents the food distribution. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. High level pseudocode for each experiment 

After completing the searching phase, agents switch to the 
repositioning phase. This phase is used to focus searching 
toward areas containing higher food levels and is inspired by 
stages of the life cycle of D. discoideum. Having depleted the 
level of nutrients within the immediate environment, D. 
discoideum cells begin to starve, and aggregate to form a slug. 
The slug travels in the direction of more favorable conditions 
by moving toward attractants such as light, warmth, and 
humidity. On finding a suitable location, it eventually forms a 
fruiting body which disperses spores within its immediate 
surroundings. The spores mature into cells, and begin foraging 
within the new environment [12]. When the cytobots enter the 
repositioning phase, the central control unit processes each 
agent’s best fitness position to compute a new central point P, 
weighted in favor of higher fitness, as described by equations 
(6-13). Agents are then repositioned randomly within an area 

of radius r from point P to begin the next search phase. For the 
purposes of this simulation travelling to the new position was 
not modeled, as this does not affect overall behavior and would 
only occur if the cytobots were applied to real world 
environments.  

V. RESULTS 

The experimental results are displayed in Table 1. For each 
experiment, the average best, fa, and best solution, fb, for 100 
independent runs are presented. The average number of 
evaluations and the standard deviation for all agents is 
displayed as “Avg Eval for all agents” and “Std Dev” 
respectively. The average number of relocations for each agent 
is presented in the final column as “Avg Reloc per agent”. 

In all experiments the cytobots were able to find the global 
minima. Cytobots performed best in Bowl and Rosenbrock 
functions, where, using 6 cytobots, the average number of total 
evaluations and relocations per agent respectively for Bowl 
was 56.4 and 2.1 and for Rosenbrock was 79.8 and 3.4. The 
cytobots performed least well in the Inverted Sinc search space, 
where the lowest number of total evaluations was 94.8 using 6 
cytobots. In all the experiments, a slight increase in the number 
of cytobots generally results in a significant reduction in the 
total number of evaluations performed. This is most significant 
for Peaks where using 3 and 6 cytobots results in 
approximately 30% and 60% respective reductions in the total 
number of evaluations when compared to the results for 1 
cytobot. The Mann Whitney U test was used to determine any 
significant (95% confidence) statistical difference in the total 
number of evaluations between experiments using 1 and 3 and 
3 and 6 cytobots. In all experiments there was a significant 
difference between 1 and 3 agents, with the exception of the 
Inverted Sinc function. In Peaks there was a significant 
difference in all experiments, while in the Inverted Sinc there 
was no significant difference found. Thus increasing the 
number of cytobots from 1 to 3 both reduces the time to find 
the global minima and the number of evaluations, but this 
effect can be quickly reversed if too many cytobots are added.  

The paths of agents through the search space indicate 
reasons for variation in results. In simple landscapes such as 
Bowl, agents descend steadily toward the minima, as shown in 
Fig. 6. Similarly in Rosenbrock, agents quickly descend to the 
narrow valley and are forced to steadily move along it by 
moving up the nutrient gradient created by the consumption of 
food, until finding the global minima. In Peaks, agents move 
from their initial positions and search many parts of the 
domain. Fig. 7 shows the agents’ trajectories, one can see that 
peaks are avoided and troughs are pursued. However, if fewer 
agents are used they may quickly become trapped in local 
minima causing a significant rise in the number of evaluations. 
Increasing the number of agents by a small amount expands 
the amount of search space explored per cycle, and increases 
the chance of finding better solutions and/or leaving local 
minima. Another possibility is to increase the number of 
moves for each searching phase, thus allowing an agent to 
travel a sufficient distance to escape local minima. Similar 
solutions could be adopted in the Inverted Sinc function. 
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Fig. 6. Typical path of 1 cytobot in Bowl search space  

 

Fig. 7. Typical path of 3 cytobots in Peaks search space 
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These results are compared with other optimization 
algorithms inspired by behaviors of single celled organisms. 
For example, Passino developed the Bacterial Foraging 
Optimization Algorithm (BFOA), inspired by foraging 
behaviors, reproduction and dispersal events in the life cycle 
of E. coli [15]. Like the foraging behavior of the cytobots, 
movement is modeled as a biased random walk, where, after 
each random redirection, the cell moves forward a length 
according to current food levels. In a nutrient hill-climbing 
experiment (without swarming effects), 50 cells are initialized 
at random starting positions within a 2D search space. This 
search space is similar to Peaks but with 5 troughs and a 
domain of [30, 30]. Similarly to cytobots the cells tend toward 
valleys and avoid peaks. After 4 generations (4 reproductive 
steps), and moving 100 chemotactic steps (moves) between 
generations, the cells find the global minima. 

Similarly in other work, Chen et al applied BFOA using 6 
cells to the 2D Bowl function with domain [-5,5], and the 
global minima was found within 50 chemotactic steps [16]. In 
our experiments, 6 cytobots find the global minima after an 
average of 9.4 evaluations, which is the equivalent to 9.4 
moves (or 9.4 chemotactic steps in the terminology of Chen et 
al). After adjusting for the difference in domain size, the 
numbers of moves are highly consistent for cytobots and the 
cells in BFOA. In other related work, Monismith et al created 
the slime mould optimization algorithm inspired by the life 
cycle of D. discoideum [17]. The state space is represented as 
a sparse mesh which cells populate and make modifications to, 
for example, deposit attractant. Using a combination of 
behavioral states inspired by the life cycle of D. discoideum, 
artificial cells perform local searches, and move to positions in 
favor of their personal best and the best fitness of their 
neighborhood. The slime mould optimization algorithm, like 
the cytobots, finds the global minima of the 2D Rosenbrock 
function.  

VI. CONCLUSIONS 

The results presented above show that the agents are able to 
find best fitness solutions in all problems, and match the 
performance of cell inspired optimization algorithms in similar 
search spaces. Increasing the number of agents by small 
increments (2 or 3), can half the number of function 
evaluations required to find the global minima. These 
experiments serve as a preliminary to implementing ARN 
systems to control real world distributed autonomous robotic 
agents. Such agents could be applied to similar search 
problems in real world environments, for example oil spill 
cleanup operations, where the objective is to travel to higher 
concentrations of oil, while consuming it at each passing 
location. The cytobots obviously do not compare directly with 
conventional optimization techniques like Genetic Algorithms, 
since they have a complex internal structure. However this is 
not their purpose and they may be much more effectively 
utilized as the control systems in autonomous agents. This 
application demands an internal control system which can 
function without reference to other agents within the 
environment which are operating in parallel. By modifying the 
environment, (in this case by consumption of food), the agents 
can stigmergically communicate and enhance and/or facilitate 

emergent behavior. The cytobots offer a unique range of 
abilities. Like cells, their internal network of spatially 
distributed dynamic chemical species allows them to 
autonomously coordinate and direct their movement, 
recognize and respond to patterns in the environment, and 
produce high-level behavior.  

In future work, it is intended to further explore the AI 
applications of the cytobot agents, and later, to create swarms 
of cytobot robots with applications in real world 
environments.  
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Abstract. The Artificial Reaction Network (ARN) is a bio-inspired connection-

ist paradigm based on the emerging field of Cellular Intelligence. It has proper-

ties in common with both AI and Systems Biology techniques including Artifi-

cial Neural Networks, Petri Nets, and S-Systems. In this paper, properties of 

temporal dynamics and pattern recognition are combined within a single ARN 

control system for a quadrupedal robot. The results show that the ARN has sim-

ilar applicability to Artificial Neural Network models in robotic control tasks. 

In comparison to neural Central Pattern Generator models, the ARN can control 

gaits and offer reduced complexity. Furthermore, the results show that like 

spiky neural models, the ARN can combine pattern recognition and control 

functionality in a single network.  

Keywords: Artificial Neural Networks, Artificial Reaction Networks, Cellular 

Intelligence, Biochemical Networks 

1 Introduction 

Researchers have become increasingly interested in the array of complex behaviors 

displayed by the simple, commonly unicellular organisms called protists. Some can 

avoid light with photo-sensitive spots; some actively hunt prey; while others can build 

protective shelters [1]. Such complex behaviors have led researchers to investigate 

how such traits of primitive intelligence might arise. Well known examples of such 

work are that by Nakagaki and Yamada, who demonstrated that the slime-mould 

Physarum polycephalum was able to solve a simple maze [2]. Similar research by 

Saigusa et al showed that this same organism was able to learn and change its behav-

ior in anticipation of the next environmental stimuli [3]. These high level behaviors 

are mediated by Cell Signaling Networks (CSNs) [4]. Such networks are composed of 

interacting proteins within the cell’s cytoplasm. Several researchers have highlighted 

the processing capabilities of these networks and similarities between Artificial Neu-

ral Networks (ANNs) [4-8]. For example, it has been demonstrated that such net-

works can perform Boolean and fuzzy logic and are equivalent to a Turing machine. 

Furthermore CSNs contain topological features such as feedback loops and intercon-

nectivity, thus forming highly complex systems [9].  
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The overall aim of our research is twofold. Firstly, to continue exploration of our 

previously developed connectionist representation of CSNs- the Artificial Reaction 

Network (ARN) [10], in terms of its possible application in AI. Secondly, to investi-

gate and elucidate mechanisms that contribute to high level behavior or “cell intelli-

gence”, which may help in the understanding of intelligence in its widest sense.  

This paper investigates the ability, of the ARN like a CSN, to combine pattern 

recognition and control within a single networked system. A complete control system 

for a quadrupedal robot is explored, where the ARN responds dynamically to input 

patterns by generating the associated temporal pattern or “gait”. The results are com-

pared with those of similar Artificial Neural Network (ANN) models.  

The paper is structured as follows: the first section provides an overview of the 

ARN representation; this is followed by experimental details and results, and finally 

conclusions. 

1.1 The Artificial Reaction Network Representation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1. The Artificial Reaction Network (ARN)  

A brief summary of the ARN model is given below. A full account is provided in our 

previous paper [10]. The ARN, as shown in Figure 1, is a connectionist representation 

of a CSN, and is structured in a similar way to an ANN. It comprises a set of connect-

ed reaction nodes (circles), pools (squares), and inputs (triangles). The inputs are ex-

ternal and constant, each pool represents the current available protein species concen-

tration (avail) and each circle corresponds to a reaction unit, representing an interac-

tion (reaction) between a number of proteins. Figure 1 shows the reaction between 

species A and B to produce species C. Connections symbolize the flow of species into 

and out of reaction units and their weight (w) corresponds to reaction order. Flux 

(∆A/∆B/∆C) at ∆t is given by Equation (1). This is derived from the standard Rate 

Law equation [11], and is equal to the aggregate of connected incoming pools and 

connected outgoing pools raised to n powers of weighted connections and multiplied 

by rate constants. At time interval ∆t, each reaction unit’s temporal flux value is cal-

culated using Euler’s approximation as shown in Equation 1. This value is then used 
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to update the current concentration of each reaction’s connecting pools. Thus, the 

complete set of pool concentrations at time t, corresponds to the current state of the 

system.  

 

     tCKBAKC CBA W

availCr
W
avail

W
availCf  )()(  

(1) 

 

Where: 

A, B, C = Species Concentrations                 W = reaction order (weight)              

avail = available species concentration        Kf  = Forward rate constant                

∆C = Change in species concentration C     Kr  = Reverse rate constant        

2 A Complete ARN System for Robotic Control 

By means of their CSNs, cells are able to dynamically recognize and respond to envi-

ronmental patterns [4]. The response is to update the spacio-temporal activations of 

intracellular species, which in turn encode the high level behavior of the cell [4, 8]. In 

the following experiments the computational properties and AI applications of such 

behaviors are explored using a quadrupedal robot. 

A single ARN system was created, as shown in Figure 2 and is functionally divid-

ed into 3 components: pattern recognition, control, and a connecting network. This 

section first discusses the setup, function, and results of each component separately 

before providing the results for the overall system. 

2.1 Control Component 

The control component is responsible for generating particular temporal patterns, 

which correspond to robotic gaits. Terrestrial locomotion of limbed animals is 

achieved by multiple phase locked patterns of limb movements known as gaits. For 

example, quadrupeds commonly walk, trot and gallop [12]. The gait phase is a value 

that ranges from 0 to 1 as the cycle proceeds, and thus each limb can be described 

relative to the cycle. The ideal quadrupedal gaits are described by Dagg [12] and oth-

ers [13], and are used as a standard for comparison here and similarly in other studies 

[14]. The walk gait is characterized where each leg is a quarter cycle out of phase 

with each other. In the trot gait each pair of diagonal limbs move half a cycle out of 

phase with one another. Here, the ARN control component was implemented, to gen-

erate the trot and walk gaits of a Lynxsmotion dual-servo quadruped 2 (Q2) robot. 

Each robotic leg is controlled by two servo motors, one for each degree of freedom 

(DOF), where one raises the leg, the other moves it. Further details of the robot legs 

are given by Toth and Parker [15]. Signals are sent by the ARN to each motor and 

control the angle of the rotor for each DOF, using a simple position to pulse width 

modulator interface circuit to control the servo. The ARN control component is 

shown in Figure 2 and consists of two copies of the same network- one for walk, the 

other for trot (each labeled). It comprises four identical modules (one module is 
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shown enclosed in a dotted line), where each controls the two motors (one for each 

DOF) of a separate leg.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The complete ARN control system comprising 3 smaller network components: Pattern 

recognition, Connection and Control. 

A module comprises 3 reaction units, and 3 pools: A, B and C. Pool A controls the 

up/down (U/D) motor, Pool B the back/forward (B/F) motor and Pool C controls the 

off period for both motors. Pool activity is regulated by a series of excitatory and 

inhibitory connections between reaction units and represents properties of specialized 

regulatory proteins common to CSNs such as enzymes. The entire structure is orga-

nized as a closed loop, thus chemical species are recycled to the first module, and 

generate a temporal oscillatory pattern. The network structure and parameters were 

hardcoded so that the outputs could be directly compared with other published work 

on similar Central Pattern Generators (CPGs). However, there is no reason why con-

nection weights cannot be set using an Evolutionary Algorithms as will be shown 

later. The gait produced by this network is modified by adjustment of the initial pool 

values. For example, initializing one C pool generates a walk gait, where the C pool 

chosen will determine the starting leg, and the value determines the angle to which the 

leg is raised (the DOF angle). Similarly, a trot gait is achieved by initializing 2 C 

pools within alternate modules. The output for the walk subunit is displayed in Figure 

3, and shows legs are a quarter cycle out of turn, with phases of 0.0, 0.25, 0.5, 0.75 

between limbs in clockwise order from front left (FL) leg. Similarly, the trot gait re-
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sults were half a cycle out of turn with phases respectively of 0.0, 0.5, 0.0, 0.5. Both 

phase locked limb patterns match the standard, and compare well with other connec-

tionist models. For example, Billard and Ijspeert present a CPG (central pattern gen-

erator) based neural controller for a quadrupedal AIBO robot with 2 DOFs for each 

leg [16]. The network is composed of 8 coupled non-linear oscillators and each oscil-

lator consists of 6 leaky integrator neurons (total of 96 neurons). Each neuron imple-

ments an activation approximately as complex as the ARN reaction unit function. 

Thus the complexity of this network is equivalent to approximately 96 ARN reaction 

units. Similar correspondence is found in other sources. For instance, Collins explores 

a CPG based neural controller for a quadrupedal robot with 1 DOF per limb, and 

compares 3 types of activation function models. The controller is composed of a net-

work of 4 coupled non-linear oscillators [14], where each oscillator controls a sepa-

rate limb. These models produce gaits within 10% of the standard, whereas the ARN 

matches the standard for both gaits. Each model has approximately twice the com-

plexity as the ARN reaction unit, and all require a pulsing signal to drive the network.  

 

Fig. 3. Output generated by ARN controller for walk gait. Solid lines are legs up/down motor, 

dashed lines are back/forward motor. Legs move independently in order: FL, FR, RR, RL. 

2.2 Pattern Recognition Component 

The pattern recognition component serves as the interface between the environ-

ment and the ARN system. Here external concentrations are processed, where particu-

lar patterns switch off or on robotic gaits through the connecting network. The net-

work was trained to recognize 3 patterns, each comprising 4 inputs (triangles 0-3) and 

these were associated with 4 output values. Each pattern comprised values of either 

0.1, representing low concentration or 1 corresponding to high concentration. This 

component (shown in Figure 2) consists of 4 inputs, 7 pools, and 7 reaction units or-

ganized into 2 layers. The associated output generated corresponds to the steady state 

values of the final layer of pools (squares 3-6). The input and associated output pat-

terns are given in Table 1. A genetic algorithm (GA) was used to train the network to 

associate the required outputs before being connected to the other components. In this 

GA a population of 100 solutions was randomly initialized, where each comprised a 

complete set of network parameters including the forward and reverse rates for each 

unit and the weights for each connection. Due to its temporal properties, the network 

was run for 100 cycles (a cycle ends when the complete set of pools are updated once) 

in order to obtain steady state output values. The solution fitness was then calculated, 

where fitness was the error on output. The least fit half of the population was discard-
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ed, and the remainder was subject to rates of 0.4 single point crossover and 10% uni-

form mutation and trained to the target error value of 0.01. On completion of training, 

the network was able to associate all 3 patterns within the target error. Although there 

is not room for a full comparison, multilayer perceptron ANNs (MLPs) [17] produce 

comparable results. However, MLPs lack an explicit time dimension, whereas the 

ARN processes continuous inputs over a time period.  

Table 1. Patterns applied to the pattern recognition network and their outputs (output is the 

input to connection component). Connection component output and expected gait generated. 

Pattern Pattern 

Recognition 

Network 

Input Pool 

No. 

Pattern 

Recognition 

Network 

Input Value 

Connection 

Network Input 

Pool No. 

Connection 

Network Input 

Value  (also output 

of the pattern 

ecognition 

network)  

Connection 

Network 

Output Pool 

No. 

Connection  

Network 

Output 

Value 

Gait  

1 0 1 0 1 4 1 Inhibit 

Walk 1 0.1 1 1 

2 1 2 0 5 0 Trot 

3 0.1 3 0 

2 0 0.1 0 0 4 0 Walk 

1 1 1 0 

2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 

3 0 1 0 1 4 1 Inhibit 

Walk 1 0.1 1 1 

2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 

2.3 Connection Component and Results for the Complete System 

The connecting module functions to process the output from the pattern recognition 

network, and produce a signal which switches off/on the required gait. This module 

comprises 6 pools and 2 reaction units, as shown in Figure 2. Each input (pools 0-3), 

is linked directly to a corresponding output pool of the pattern recognition network 

(pools 3-6). Essentially the network operates as two parallel Boolean AND gaits, 

where a value of 1 at pools 0 and pool 1 outputs a value of 1 at pool 4, as will a value 

of 1 at pools 2 and 3 output a 1 at pool 5.  

Table 2. Pattern applied to the network and expected durations of gaits. 

Pattern Walk ARN 

Network 

Trot ARN 

Network 

Start Time End Time Duration 

2 On Off 0 210 210 

1 Off On 210 440 230 

2 On Off 440 560 120 

1 Off On 560 700 140 

3 Off Off  700 800 100 

 

Two negative feedback connections between the connecting network and both ARN 

control system sub units (shown as dashed line connections) are responsible for 

switching between the gaits. Therefore if a value of 1 is output at pool 4, it will inhibit 

all the reaction 2’s of the ARN trot subunit, thus stopping the trot gait from being 

generated. Conversely if a value of 0 is output at pool 4 the trot will be generated. In 

the same way pool 5 controls the switching on/off of the walk control subunit. Table 1 
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shows the input, and associated output of this component and the range of behaviors 

that should be generated in response to particular outputs. The complete system was 

tested to confirm its ability to both generate the correct behavior and automatically 

transition between the behaviors in response to firing input patterns 0-3. The time 

periods in which patterns were applied, and the expected output states are shown in 

Table 2. As shown in Figure 4 the on/off periods of both trot and walk gaits are in 

agreement with the expected durations displayed in Table 2 with a slight transitional 

delay, in order: walk, trot, walk, trot, off. The gait transitions are now compared with 

the same models used to compare the ARN controller, and gait phases in section 2.1. 

The results given for the Billard and Ijspeert model [16], show smooth transitions 

from walk to gallop in approximately 4 leg cycles. The ARN similarly transitions 

from walk to trot smoothly within 1 leg cycle. In the Collins paper [14], gaits transi-

tion quickly within approximately 2 leg cycles, whereas the transitions are very irreg-

ular in contrast to the ARN and the Billard and Ijspeert model.  

 

 

Fig. 4. The output of the complete ARN control system over 800 seconds. 

3 Conclusions 

The ARN is a bio-inspired connectionist representation based on properties and 

mechanisms found in CSNs that together result in emergent behavior or “cell intelli-

gence”. A complete ARN based control system was constructed to dynamically re-

spond to external patterns, where each pattern triggers a specific gait of a quadrupedal 

robot. This system was designed to exploit topological features found in CSNs includ-

ing negative feedback, and cycles. It was demonstrated that the ARN, like a CSN, is 

capable of both recognizing patterns and controlling overall behavior in a single net-

work. With the exception of spiky models few ANNs can easily achieve this func-

tionality, and thus the ARN provides an alternative in similar applications. The gait 

phases and transitions compared well with CPG neural controllers and showed that 

the ARN has application in similar robotic control tasks where it can offer lower 
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computationally complexity. These experiments illustrate how a CSN might perform 

the complex processing associated with the high level behaviors displayed by single 

celled organisms. Furthermore it shows that abstractions of both neural networks and 

CSNs operate in similar ways, and have comparable functionality. Thus this work 

illustrates a close relationship between emergent neural intelligence and emergent cell 

intelligence.  

In future work, it is intended to further explore the AI applications of the ARN, in-

cluding more complex networks that can recognize patterns and control simultaneous 

behaviors. 
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Abstract. The Artificial Reaction Network (ARN) is a bio-inspired connection-

ist paradigm based on the emerging field of Cellular Intelligence. It has proper-

ties in common with both AI and Systems Biology techniques including Artifi-

cial Neural Networks, Petri Nets, and S-Systems. This paper discusses the tem-

poral aspects of the ARN model using robotic gaits as an example and com-

pares it with properties of Artificial Neural Networks. The comparison shows 

that the ARN based network has similar functionality.  

Keywords: Artificial Neural Networks, Artificial Reaction Networks, Cellular 

Intelligence, Biochemical Networks 

1 Introduction 

When Artificial Intelligence (AI) researchers want to develop connectionist models of 

intelligence, it is only natural that they should look to the brain for inspiration. The 

result, of course, is the Artificial Neural Network (ANN). However, as discussed in 

this paper, there is an alternative, biologically inspired, connectionist paradigm based 

on the emerging field of Cellular Intelligence – the Artificial Reaction Network 

(ARN) [1].  

In recent years, researchers have become increasingly interested in the behaviors 

displayed by single celled organisms, in particular protists. These eukaryotes, display 

an astonishing array of complex behaviors. Some can avoid light with photo-sensitive 

spots; some actively hunt prey; while others can build protective shelters [2].  

These complex behaviors have led researchers to investigate how such traits of 

primitive intelligence might arise. Well known examples of such work are that by 

Nakagaki and Yamada, who demonstrated that the slime-mould Physarum 

polycephalum was able to solve a simple maze [3]. Similar research by Saigusa et al 

showed that this same organism was able to learn and change its behavior in anticipa-

tion of the next environmental stimuli [4].  

These high level behaviors are mediated by Cell Signaling Networks (CSNs) 

which, as this paper will discuss, are analogs to ANNs. Such networks are composed 

of interacting proteins within the cell’s cytoplasm that function to regulate virtually 

all cellular activity. 

The ARN is a new representation based on CSNs. This paper explores the ARNs 

ability to generate temporal oscillations in protein species – a common theme in 
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CSNs. It discusses its similarities and differences to ANNs by comparing them in 

similar applications - specifically in the generation of robotic gaits. The aim of this 

research is firstly, to explore the mechanisms of cell intelligence in order to broaden 

understanding of intelligence in its widest sense as well as have possible applications 

in biological modeling. Secondly, to investigate the resulting representation in terms 

of its possible application for use as an AI technique. 

1.1 Mechanisms of Cellular Intelligence  

CSNs consist of different protein species, the interactions of which are shown by 

connecting lines in a similar way to a neural network. Via a system of complex mech-

anisms, CSNs adjust their set of protein activation levels to fine tune cellular activity 

appropriate to current conditions. An instantaneous set of these protein concentrations 

serves like a memory, containing an imprint of the current environmental state [5]. 

Individual spatio-temporal activation patterns of protein concentrations emerge from a 

multitude of low level interactions and result in a range of cellular responses and be-

haviors [6-8]. The network therefore represents cascades of numerous protein coupled 

interactions with topological features such as feedback loops and interconnectivity, 

forming highly complex systems [5, 8].  

Bray claims that the processing performed by individual CSN units is similar to 

Boolean and fuzzy logic and further speculates that these networked logical units can 

perform computational processing equivalent to a Turing machine [5]. Similar reports 

were documented by a number of other researchers [9-11]. 

Many researchers highlight the similarities between CSNs and ANNs [5-7, 12]. 

Bray, observes both networks are made up of highly connected parallel distributed 

units, where each unit simultaneously integrates and processes signals. Both are able 

to recognize patterns, and provide the correct response in the presence of noise and 

loss of units, and are therefore robust [5, 12]. One difference is that while simple tra-

ditional ANNs like the perceptron lack an explicit time dimension, CSN functionality 

incorporates this in a similar way to spiking neuron models. Bhalla notes that the high 

level cellular behavior is encoded by temporal spatial patterns of intracellular species 

generated in this way [12]. One such common motif is oscillating patterns, resulting 

from feedback structures and cyclic loops [8].  

2 The Artificial Reaction Network 

2.1 Techniques Used to Develop Model  

The ARN representation was designed to incorporate the previously discussed mech-

anisms of cell intelligence. Our previous paper provides a complete description, and 

verification of the ARNs accuracy and biological plausibility [1] 

There are many methods used to model biochemical reactions, some are very sim-

ple Boolean-based techniques, others complex quantum mechanical abstractions [13], 

here the two most relevant adopted techniques are described. The first is S-Systems; 

these have proven themselves accurate and provide a similar degree of system ab-

straction to an ANN. They comprise sets of ordinary differential equations (ODEs) 
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that exploit a power law representation to approximate chemical flux [13]. Similarly 

to traditional rate law [13], each ODE is equal to the difference between two concep-

tually distinct functions; the first function includes all terms contributing to system 

influx, the second to decay. S-systems provide simple but accurate representations of 

temporal dynamics, including both steady and transient state. However, in their gen-

eral form, terms are highly coupled, and therefore are difficult to manipulate without 

interference.  

Like an ANN, Petri Nets (PNs) offer a modular approach. PNs are a graphical and 

mathematical modeling tool used to study processes characterized as parallel, distrib-

uted, concurrent, and asynchronous [14]. They are used extensively in several types of 

information processing, including modeling CSNs. Each PN is a networked structure 

of separate self-maintaining units called “places”, where movement between connec-

tions is defined by separate transitions, thus PNs exploit benefits of modularization.  

2.2 The Artificial Reaction Network Model 

The authors combined the continuous mathematical nature of S-systems, the modular 

properties of PNs, and weighted connections of ANNs. The ARN, as shown in Figure 

1, is a modular and expandable S-System. It comprises a set of connected reaction 

nodes (circles), pools (squares), and inputs (triangles). Each pool represents the cur-

rent available protein species concentration (avail) and each circle corresponds to a 

reaction unit, representing an interaction (reaction) between a numbers of proteins. 

For example, Figure 1 shows the reaction between species A and B to produce species 

C. Connections symbolize the flow of species into and out of reaction units and their 

weight (W) corresponds to reaction order. This structure can be compared to a percep-

tron, where the pools correspond to inputs, the reaction units to the weighted sum 

function, and these are joined together by weighted connections. Both are instances of 

highly connected parallel distributed networks, where units simultaneously integrate 

and process signals.  

 

     tCKBAKC CBA W

availCr

W

avail

W

availCf  )()(  
(1) 

 

Where: 

A, B, C = Species Concentrations 

avail = available species concentration 

W = reaction order  

∆C = Change in species concentration C 

Kf  = Forward rate constant 

Kr  = Reverse rate constant 

∆t = time step 

 

Each reaction unit calculates flux (∆A/∆B/∆C) at ∆t as given by Equation (1), and 

is equal to an aggregate of connected contributing (incoming) pools and connected 

decay (outgoing) pools raised to n powers of weighted connections and multiplied by 

pseudo rate constants. This can be compared to the Sigma-pi ANN model, where the 
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output depends on a function of the product of the inputs. Unlike the feedforward 

perceptron, species can flow in either direction, depending on the sign of the flux 

calculated by Equation 1. Dissimilarly to a perceptron, the ARN incorporates a tem-

poral dimension, where at time interval ∆t, each reaction unit’s temporal flux value is 

calculated, which then is used to update the current concentration values of each reac-

tion’s connecting pools. Thus the complete set of pool concentrations at time t corre-

sponds to the current state of the system. Euler’s approximation was adopted in favor 

of other evaluation methods because it supports modularization. Its disadvantage is 

that net error accumulates with every cycle; however by decreasing step size error is 

reduced. The intention however, is to characterize high-level system properties and 

thus requires only sufficient low level detail to represent its contributing mechanisms 

such as temporal dynamics and complex network topologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The Artificial Reaction Network (ARN) 

3 Experiments 

As previously discussed, complex mechanisms found in CSNs lead to stable temporal 

patterns of species concentrations, where each relates to a high-level behavior. One 

way to investigate the ability of the ARN to produce such temporal oscillatory pat-

terns is by applying it to generate those associated with robotic gaits. Furthermore, 

this allows comparison with similar results obtained using ANN models.  

Terrestrial locomotion of limbed animals is achieved by multiple phase locked pat-

terns of limb movements known as gaits. For example, depending on speed of loco-

motion and terrain, quadrupeds commonly walk, trot and gallop [15]. The gait phase 

is a value that ranges from 0 to 1 as the gait cycle proceeds. Therefore, the motion of 

each limb can be described relative to the gait phase. The ideal quadrupedal gaits are 

described by Dagg [15] and others [16], and are used as a standard for comparison 

here and similarly in other studies [17]. The walk gait is characterized where, each leg 

is a quarter cycle out of phase; in the trot gait each pair of diagonal limbs move half a 

cycle out of phase with one another. An ARN based robotic controller was imple-

mented, to produce trot and walk gaits of a simulated Lynxsmotion dual-servo quad-

ruped 2 (Q2) robot. The structure of the ARN controller was designed to include ab-
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stractions of regulatory mechanisms found in CSNs including inhibitory/excitatory 

reactions, cyclic loops, and feedback structures.  

3.1 The Robot and the ARN Controller 

Each robotic leg is controlled by two servo motors, one for each degree of freedom 

(DOF), where one raises the leg, the other turns it. Signals are sent by the ARN to 

each motor and control the angle of the rotor for each DOF, using a simple position to 

pulse width modulator interface circuit to control the servo. The physical structure 

and control are described in detail in other papers [18]. 

 

 

 

 

 

 

 

 

 

Fig. 2. The ARN based controller displayed contains 4 identically structured modules, a mod-

ule is shown surrounded by a dashed line. 

Figure 2 illustrates the structure of the ARN controller, it comprises four identical 

modules (a module is highlighted by a dashed line) each controlling the motors for a 

separate leg. Each module contains 3 reaction units, and 3 pools: A, B and C. Pool A 

controls the up/down (U/D) motor, Pool B the back/forward (B/F) motor and Pool C 

controls the off period for both motors. The activity of pools is regulated by a series 

of excitatory and inhibitory connections between reaction units. These connections 

represent properties of specialized regulatory proteins common to CSNs such as en-

zymes. The connection weights were hardcoded using the same method as used in the 

Billard and Ijspeert model [19]. The entire structure is organized as a closed loop, 

allowing chemical species to be recycled to the first module, and thus generate a sta-

ble repeating temporal pattern. The type of robot gait is easily modified by a simple 

adjustment of the initial pool values. For example, by initializing a C pool, a walk gait 

will be generated, where the C pool chosen will determine the starting leg. Similarly, 

a trot gait is achieved by initializing 2 C pools within alternate modules. In this par-

ticular design, the value to which the C pool(s) are initialized determines the DOF 

angle and were set specifically for the physicality of the particular robot, although it 

can be freely varied.  

4 Results 

The ARN controller was considered to generate a specific gait if the relative phases of 

the respective oscillatory signals were within 2% of the standard gait cycle described 

previously. Higher values of 10% were used in other studies [17], and this was con-
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sidered reasonable due to the variation found in real animal gaits [20]. In each case, 

the controller first generates the U/D motor oscillation and on reaching the maximum 

value the B/F motor is initiated. As can be seen the walk gait results (Figure 3) show 

legs are a quarter cycle out of turn, with phases of 0.0, 0.25, 0.5, 0.75 between limbs 

in clockwise order from FL leg. Similarly the trot gait shows opposite legs are half a 

cycle out of turn with phases respectively of 0.0, 0.5, 0.0, 0.5. Both phase locked limb 

patterns match the standard, and compare well with other connectionist models. For 

example, Billard and Ijspeert present a CPG (central pattern generator) based neural 

controller for a quadrupedal AIBO robot, similarly with 2 DOFs for each leg [19]. 

Here, the network is composed of 8 coupled non-linear oscillators and each oscillator 

consists of 6 leaky integrator neurons (total of 96 neurons). Each neuron implements 

an activation approximately as complex as the ARN reaction unit function. Thus the 

complexity of this network is equivalent to approximately 96 ARN reaction units.  

The oscillatory signals produced by this network for both walk and trot gaits show 

that the limb phases correspond to the standard and to those produced by the ARN. 

Similar correspondence is found in numerous other sources. For instance, Collins 

explores a CPG based neural controller for a quadrupedal robot with 1 DOF per limb, 

and compares 3 types of activation function models. The controller is composed of a 

network of 4 coupled non-linear oscillators [17], where each oscillator controls a sep-

arate limb. The reported limb phases correspond to the standard, although those re-

ported for the trot were within 10% of the ideal, whereas the ARN matches the stand-

ard for both gaits. Each model has approximately twice the complexity of the ARN 

reaction unit and, unlike the ARN, all require a pulsing signal to drive the network. 

Overall the ARN affords a higher degree of accuracy where fine tuning of parameters 

can provide finite levels of control. For instance, the frequency of oscillations and 

therefore the gait speed can be easily modified by uniform increase or decrease of Kf 

of each unit. Similarly, independent variation of speed for each type of DOF (B/F or 

U/D) or for a specific leg DOF motor. These results show the ARN has a very similar 

capacity in robotic control tasks as other connectionist robotic controllers, where it 

can offer reduced computational complexity. Furthermore the ARNs ability to pro-

duce gaits illustrates how cellular networks can generate the complex temporal pat-

terns necessary in emergent behavior.  

 

 

Fig. 3. Output generated by ARN controller for walk gait. Solid lines are legs up/down motor, 

dashed lines are back/forward motor. Legs move independently in order: FL (front left), FR 

(front right), RR (rear right), RL (rear left).  
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Fig. 4. ARN controller output for trot gait. Diagonal legs are in phase and operate in order FL 

and RR then FR and RL. 

5 Conclusions 

The ARN is a bio-inspired connectionist representation based on mechanisms found 

in CSNs that contribute to the emergence of cell intelligence. One feature of CSNs is 

the ability to generate high level behavior by regulating temporal activation patterns 

of its component proteins. The ARN was tested as a means to artificially produce 

similar pattern regulation, and its potential applicability was explored. Here an ARN 

based control system was designed to exploit topological features such as negative 

feedback, and cycles found in real CSNs. The controller was applied to produce the 

temporal oscillatory patterns associated with quadrupedal trot and walk gaits. The 

results confirmed the ability of the ARN to regulate temporal oscillating patterns with 

applicability in robotic control. These results are in good correspondence with ANN 

models, where both generate very similar spatial temporal patterns. A significant 

number of parallels between ARNs and ANNs were highlighted, suggesting the na-

ture of cell intelligence may not be that different from neural intelligence. These simi-
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larities highlight the potential of single celled organisms to produce complex behavior 

similar to that produced by a neural network. This will be explored further, in particu-

lar by generating more complex temporal patterns, regulating composite behavior and 

chaotic components. 
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Abstract—In this paper we present a novel method of 

simulating cellular intelligence, the Artificial Reaction Network 

(ARN). The ARN can be described as a modular S-System, with 

some properties in common with other Systems Biology and AI 

techniques, including Random Boolean Networks, Petri Nets, 

Artificial Biochemical Networks and Artificial Neural 

Networks. We validate the ARN against standard biological 

data, and successfully apply it to simulate cellular intelligence 

associated with the well-characterized cell signaling network of 

Escherichia coli chemotaxis. Finally, we explore the 

adaptability of the ARN, as a means to develop novel AI 

techniques, by successfully applying the simulated E. coli 

chemotaxis to a general optimization problem. 

I. INTRODUCTION 

Natural evolution has transformed the world into a 

resource rich in examples of elegant solutions to complex 

problems. However, these solutions are often hidden in 

layers of biochemical detail, and are consequently little 

understood. Cell Signaling Networks (CSNs) are an example 

of one such natural “solution”. They refer to the network of 

biochemical reactions which allow communication, response 

and feedback within and between cells. Many scientists have 

reasoned that the characteristics of cellular intelligence such 

as recognition, classification, response, communication, 

learning and self-organization [1] are the result of these 

complex networks [2], [3].  

Significant advances in biotechnology have resulted in a 

surge of biochemical data, allowing hidden aspects of cell 

signaling to be uncovered. As understanding of cell 

signaling becomes further developed, its significant role in 

cellular intelligence is emerging. Many parallels have been 

drawn between CSNs, computational processing and 

artificial intelligence techniques. For instance, their ability to 

perform processing analogous to Boolean logic, 

negative/positive feedback loops, integration, amplification, 

and temporal regulation [4]. However, the fact remains that 

no man-made system can yet compare to the degree of 

sophistication inherent in these networks.  
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Artificial intelligence has progressed enormously since 

the birth of bio-inspired approaches (for example: genetic 

algorithms (GAs), Particle Swarm Optimization (PSO), and  

Ant Colony Optimization (ACO) [5]), some such approaches 

are inspired by biochemical networks: Artificial biochemical 

networks [6] and Artificial Immune Systems (AIS) [5].  

In this paper we focus on exploring the mechanisms of 

cellular intelligence to facilitate the development of novel 

CSN inspired AI techniques. For this purpose a new simple 

representation was developed: the “Artificial Reaction 

Network” ARN. Rather than focus on micro-molecular 

detail, the ARN aims to elucidate emergent behavior within 

a network of chemical reactions. Its biological basis is 

validated using real biochemical data, including simulation 

of the well characterized signaling network of E.coli 

chemotaxis. Furthermore, this network is examined as a 

source of inspiration for development of novel AI 

techniques. 

II. BACKGROUND 

Nakagaki and Yamada demonstrated that the slime mould 

Physarum polycephalum was able to solve a simple maze 

[7]. A maze was built from plastic films set on agar gel with 

four possible routes of different length between two food 

sources. The organism eventually formed a thick plasmodial 

tube via the shortest pathway between the two food sources. 

This behavior increased its foraging capability, conserved its 

energy and thus increased its chances of survival. A further 

study by Saigusa et al showed that, when subjected to a 

distinct pattern of periodic environmental changes, this 

organism was able to learn and change its behavior in 

anticipation of the next stimulus [8]. The researchers argue 

that the behaviors illustrated in these experiments: problem 

solving, recalling, and anticipating events are the result of a 

“primitive intelligence” that emerges from the simple low-

level cellular dynamics found in CSNs.  

An account of how this primitive cellular intelligence 

arises is provided by Bray; he describes how interconnected 

protein units of CSNs result in a range of sophisticated 

processing capabilities analogous to computational 

components within a circuit [4]. CSNs continuously process 

changing environmental stimuli via this network to generate 

behavior suited to current conditions. Bray refers to an 

instantaneous set of protein concentrations as a random 

access memory containing an imprint of the current 

environmental state. The activity is determined by kinetic 

factors such as binding affinities or in reaction kinetic 

terminology: the reaction rate, reaction order and 

concentration of the reacting molecules. Where conditions 

are highly reactive, a processing unit acts like a molecular 

Artificial Reaction Networks 
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switch giving a binary response. Such processing can be 

compared to that of Boolean logic. Or, in cases of lower 

reactivity, a unit may provide a more gradual response 

comparable to fuzzy logic. These processing units are linked 

together in cascades of protein coupled interactions with 

various network topological features such as feedback loops 

and interconnectivity and are thus capable of forming 

immensely complex networks. Bray claims that such a 

network of logical units can perform any kind of 

computational processing, equivalent to a finite state-

machine with the same capability as a Turing machine. 

Evidence concerning the logical operation of protein units 

can be found in a number of independent studies. Stadtman 

et al demonstrated that the interconversion between 

phosphorylated and non-phosphorylated proteins can act as a 

flexible computational unit [9]. Similar results were 

documented by Arkin and Ross who examined the 

computational properties of enzymatic reactions [10].  

Bray highlights the similarities between CSNs and ANNs. 

Both are examples of networked processors, simultaneously 

integrating and processing signals. Where weights in a 

neural network are set by a learning algorithm, the strength 

of connections within a CSN is set by natural evolution.  

CSNs are the principle machinery of cellular intelligence. 

They may inspire new AI techniques, not only because they 

allow adaptive “intelligent” behavior, but also because of 

their intrinsic computational and processing abilities. 

III. THE E. COLI CHEMOTAXIS PATHWAY 

The chemotaxis CSN of Escherichia coli is well 

characterized [11], and as such presents an ideal pathway to 

explore emergent properties of cell intelligence. E. coli have 

four types of transmembrane chemoreceptor proteins called 

methyl accepting proteins or MCPs responsible for sensing 

environmental chemoeffectors and a common set of 

cytoplasmic signaling proteins e.g. CheA, which transmit 

signals by reversible phosphorylation. Where no 

chemoeffectors are present, E.coli alternates between runs 

and tumbles, with runs lasting approximately 1 second and 

tumbles for 0.1 second [11]. In the presence of 

chemoeffectors, tumbling frequency is reduced up 

concentration gradients of attractants and down gradients of 

chemorepellents, resulting in a biased random walk. Thus, 

longer duration of swims in response to higher attractant 

gradients result in the emergence of a high level behavior 

characterized by net locomotion toward more favorable 

conditions.  

To prevent the cell from being locked in either the swim 

or tumbling state, the cell also has a complex adaptation 

response. This response increases or decreases the sensitivity 

of the cell, depending on current ligand occupancy, by 

regulating the methylization of the MCP complex, so giving 

the cell a primitive memory. 

In the two-state model [12] the MCP receptor complex is 

in equilibrium between two states: swim and tumble, where 

chemorepellents bind to the tumble form of receptor. As 

methylization of the MCP complex increases the receptors 

shift toward the tumble form of the receptor. In this form, 

the receptors phosphorylate CheA molecules which then 

transfer phosphoryl groups to aspartate residues on CheY 

and CheB. Phosphorylated CheY (CheYp) interacts with the 

flagellar motor proteins triggering clockwise motor rotation 

(CW) resulting in a tumbling response. As CheYp 

concentration increases so does the tumbling frequency. 

CheZ is responsible for dephosphorylation of CheYp. CheB 

and CheR are responsible for updating the methylation 

record and hence the adaptation response. The adaptation 

response drives the CSN toward its pre-stimulus equilibrium 

by demethylization of the MCP complex. A comprehensive 

description of this network is provided by Vladimirov and 

Sourjik [11]. 

IV. RELATED TECHNIQUES 

The exploration of cellular intelligence requires a 

representation which focuses on high-level behaviors that 

emerge from CSN system dynamics, yet still capture the 

processing behaviors of individual reaction units. There are 

numerous methods of representing chemical reactions, 

ranging from the meticulously detailed quantum mechanical 

to the highly abstracted discrete Boolean models. Gilbert et 

al provides an excellent overview of current popular 

methods [13]. In this paper we shall consider only the most 

relevant, that is, those which capture their networked 

topology. 

Random Boolean Networks, introduced by Kauffman, 

consist of a set of logical nodes, where each node 

corresponds to a real world object such as a gene or protein 

[14]. The nodes are connected to form a circuit, where the 

current state of each node is calculated by performing a 

Boolean function on its inputs. These, although focused on 

network dynamics, discard most unit behavior, preferring a 

binary switch response rather than continuous signals, and 

therefore cannot capture subtle system dynamics. 

The Artificial Biochemical Network (AB-net) is a highly 

abstracted model of a CSN, intended for robotic control. It 

consists of a set of nodes representing protein activity, linked 

by weighted connections. The output of each node is a 

binary square-wave signal based on the input protein 

activities [6].  

A more recent approach is the artificial biochemical 

neuron (AB-neuron); currently applied to phosphorylation 

cycles [15]. Similarly to the AB-net, it consists of a number 

of nodes with weighted connections. In this model the 

Michalis-Menton equation provides the unit output, 

representing the steady-state concentration of the product. 

Both the AB-neuron and the AB-net are simplified 

representations and neither capture realistic biological 

behavior. 

Petri Nets are used extensively in several types of 

information processing, including modeling CSNs [16].  

They work by passing tokens representing molecules 

between network units. In their simplest form they have 

similar functionality and limitations to RBNs. However, a 
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Fig. 1. The Artificial Reaction Network (ARN).  

 

number of researchers have used them as a basis to produce 

more complex models. 

Space precludes a complete discussion of all related 

models; however, it should be noted that there are several 

other network representations, less relevant to the problem at 

hand. For example, artificial immune network algorithms, 

and protein-protein interaction networks.  

V. THE ARTIFICIAL REACTION NETWORK 

As explained in the previous sections, our focus is to 

capture the emergent cellular behavior that results from 

intracellular CSN processes. To achieve this, a model 

capable of representing sizeable networks and complex 

topologies, yet still maintaining biological plausibility was 

required. For this purpose, current methodologies were 

unsuitable, being either too simple or too complex, thus the 

authors created the ARN based on the following methods.  

Developed by Savageau, S-systems are a popular 

representation used to model biological systems since the 

late 1960s [17]. They are composed of sets of ordinary 

differential equations (ODEs) that exploit a canonical power 

law representation to approximate chemical flux. Each ODE 

is composed of species concentration variables, raised to a 

power and multiplied by pseudo rate constants, as shown in 

Equation (1). Similarly to a traditional rate law, each ODE is 

equal to the difference between two conceptually distinct 

functions, the first term contributing to system influx, the 

second to decay.  

To meet the previously discussed requirements, the 

authors combined the S-system approach with features found 

in RBNs and Petri Nets. By exploiting the simplified 

modular properties of RBNs with molecular transitions 

characteristic of Petri Nets, the ARN, as shown in Figure 1, 

represents a new, innovative, modular and expandable S-

System. The ARN comprises a set of connected reaction 

nodes (circles), pools (squares), and inputs (triangles). Each 

pool represents a current species concentration (avail) 

measured in mols/L. Each circle represents a reaction, and 

calculates current flux at each time step (∆t), using Euler’s 

approximation to the rate equation shown in Equation (1).   

 

               (1) 

Where: 

[S]
n 
= S is a species concentration, n its reaction order.  

      = Current reaction rate 

kF    = Forward rate constant 

kR    = Reverse rate constant 

 

Connections symbolize the flow of species into and out of 

reaction units and their weight (w) corresponds to reaction 

order. Flux (∆A/∆B/∆C) as in Equation (1) and similar to S-

systems, is equal to an aggregate of connected contributing 

(incoming) pools and connected decay (outgoing) pools 

raised to n powers of weighted connections and multiplied 

by pseudo rate constants. The pools are further subject to an 

optional degradation term (L), representing the natural 

cytoplasmic decay of species over time.  This method 

provides each reaction with a temporal flux value, which is 

then used to update the current concentration values of each 

reaction’s corresponding incoming and outgoing pools. Thus 

the complete set of pool concentrations at t, corresponds to 

the current state of the system.  

The pool concept originates in Petri Nets and allows the 

system to account for accumulated molecular concentrations 

within the cytoplasm. By chaining several pools together 

chemical gradients and translocation through membranes can 

be represented; this facility is not available in standard S-

systems. 

Where S-systems are highly coupled sets of ODEs, the 

ARN is a modular approach offering finer degree of control, 

flexibility and adaptation. This not only supports simulation 

development by promoting object-orientation but is 

perceptually intuitive, mirroring the topology and 

modularization of its real-world counterpart. Thus the ARN 

representation is ideally suited to characterize emergent 
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behavior resulting from both subtle and high-level complex 

temporal system dynamics. 

 

VI.  RESULTS 

Before the ARN could be applied to simulate cellular 

intelligence, its accuracy needed to be verified against 

known biological data and standard models. This was 

achieved by application of varied sets of real biochemical 

data to a single ARN unit. The resultant output was 

compared with those recorded in literature, manual 

calculation and by running the experiment on the Berkeley 

Madonna [18] programme. The outputs of these experiments 

confirmed its accuracy, with a minor error as expected from 

Euler’s approximation. Figures 2 and 3 provide typical 

results from one such experiment. Here reaction kinetic data 

(rate constants, reaction order) were used to create a model 

of the reversible isomerisation reaction between cis and trans 

1-ethyl-2-methyl cyclopropane on Berkeley Madonna and on 

a single ARN unit. Figure 2 shows the product output from 

Berkeley Madonna, and Figure 3 is that of the single ARN 

unit. After 2000 seconds, it can be seen that the product 

concentration produced by Berkeley Madonna and the single 

ARN are both 9.1x10
-3

 mol dm
-3

. This result is the same as 

that recorded by the standard literature, thus confirming the 

biological plausibility of a single ARN unit.  

 

 
Fig. 2.  The product concentration produced by Berkeley Madonna. 

 

 
Fig. 3. The product concentration produced by the single ARN unit. 

Having verified the biological plausibility of a single 

ARN unit, the ARN was tested as a means of capturing 

properties of cellular intelligence. A two state model, (refer 

to section3), was used as a basis to create a simulation of the 

chemotaxis CSN of E. coli. The structure of this simulation 

is shown in Figure 4 and is represented in the ARN format 

described in Figure 1 of the previous section. It is composed 

of a network of 10 reaction units numbered 0-9, 11 pools of 

intracellular signaling proteins, a single input representing 

the chemorepellent, and arrowed lines to show not only the 

connections but direction of signal flow through the 

network. The behavior of the simulated chemotaxis pathway 

in varying levels of environmental chemorepellent was setup 

using real biological data gathered from sources at the 

University of Cambridge [19], [20]. The output from this 

network is shown in Figures 5 and 6. Figure 5 shows the 

steady state concentration levels of CheYp in mols/L 

generated by the ARN simulation at four different 

continuous concentration levels of environmental 

chemorepellent.  It can be seen from the graph that as the 

level of environmental chemorepellent increases so does the 

concentration of CheYp and therefore the tumbling 

frequency of the cell increases. The results are in clear 

agreement with published data from respected systems 

biology simulations [12].  

To prevent the cell from being locked in either the swim 

or tumbling state the cell also has a complex adaptation 

response (refer to section 3). To ascertain the ability of the 

ARN to capture this behavior, the steady state concentration 

in mols/L of methylized MCP receptor complex obtained by 

the ARN simulation were examined at varying levels of 

continuous environmental chemorepellent. 

 The output is displayed in Figure 6, where it can be seen 

that when chemorepellent concentration increases CheYp 

increases, and methylized MCP decreases thus driving the 

network back to the pre-stimulus equilibrium. Although a 

minor change to rate constant values were required, it can be 

seen that the adaptation response was attained and is in good 

agreement with previous work [21]  

Finally to demonstrate the emergent behavior of the 

simulated CSN, it was decided to show the chemorepellent 

avoiding behavior in the context of an optimization problem. 

Here we observed the behavior of the simulated E. coli 

chemotaxis pathway to ascertain its ability to find a 

minimum chemorepellent level in an inverted bowl search 

space where x and y are on the horizontal plane: 

 

 

                                            (2) 

 

 

 

Figure 7 displays the search space and an example run. 

The centre of the search space (solid black square) 

corresponds to an area of 0 chemorepellent concentration. 

With each progression outwards repellant concentration 

increases, and the outermost perimeter signifies a maximum 

concentration of 1x10
-7

 mols/L. The path of the simulated E. 

coli is displayed as a white line. Over 100 seconds the cell 
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remains in high concentration areas (above 1x10
-9

 mols/L) 

for 11 seconds and low (below 1x10
-9 

mols/L) for 89 

seconds. These results were verified statistically over 100 

run, and are in good correspondance with the reported 

behaviour of E. coli chemotaxis described in literature and 

using other simulation methods [21]. 

 

 

 
  

 
 

 
Fig. 4. A two-state model of the chemotaxis CSN of E. coli is shown diagrammatically using the format specified in Figure 1. 

 

 

 
Fig. 5. The steady state concentration levels of CheYp in mols/L recorded 

by the ARN when subjected to varied levels of chemorepellent. 
 

  
Fig. 6. The steady state concentration levels of CheYp and methylized 

MCP in mols/L recorded by the ARN when subjected to varied levels of 
chemorepellent.
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Fig. 7. Minimum seeking behavior in an inverted bowl search space. 
 

VII.  CONCLUSIONS 

In this paper, the ARN representation was presented as a 

novel method of simulating cellular intelligence. Initially, its 

ability to successfully represent single node reaction 

dynamics was shown. Its efficacy and applicability was 

demonstrated by creating a working model of the CSN of 

E.coli chemotaxis. This confirmed its ability to effectively 

simulate both the tumbling frequency regulation and 

adaptation response behavior of the bacteria. Furthermore, 

the emergent random biased walk behavior generated by the 

ARN was demonstrated in a general optimization problem.  

The ARN approach has several advantages over other 

similar techniques. Its network-like structure exploits the 

benefits of modularization found in RBNs. It uses the 

molecular accounting approach of Petri Nets; however, it 

also incorporates the complex temporal dynamics of 

individual reactions found in S-Systems. The addition of 

pools and loss mechanisms allows more flexibility to 

represent intracellular compartmentalization than other 

techniques. The authors therefore feel that its representation 

is ideally suited to the characterization of emergent 

behaviors resulting from both subtle and high-level temporal 

system dynamics. Furthermore, it offers a perceptually 

intuitive method, as it mirrors the topology and 

modularization of its real-world counterpart. Aside from 

biological systems, this approach may also have some 

advantages in the simulation of other chemical systems; in 

particular, in the complex networks of reactions present in 

soil and environmental chemistry.  

The modularized form of the ARN makes it particularly 

suitable for the application of evolutionary algorithms. The 

success of simulating real biological systems is generally 

predicated on obtaining good experimental data, which is 

often missing or is unreliable. Thus, the ARNs evolvability 

may prove useful since it promotes the identification of 

network parameters.   

The parallels between E. coli chemotaxis and robotic 

control should be obvious. The next stage of our work 

involves adapting the ARN into a cellular intelligence 

inspired AI technique. It is intended to explore its potential 

as a source for development of robotic control systems and 

optimization techniques.  
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Appendix 2 

This appendix contains the data used to set the ARN network parameters to create a model of 

the chemotaxis CSN of the bacteria E. coli in chapter 5 section 5.2-5.3. The data represents a 

collection of wet lab results published by leading researchers in the field. These results were 

gathered by researchers at the University of Cambridge to create a central resource for those 

studying or modelling this pathway.  
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Network Parameters for the ARN Simulation of the E. coli Chemotaxis Pathway 
Unit 
 

Input 
pools 

Chemical 
Species in 

Initial 
conc. in 
µmol/L 

Output 
pools 

Chemical 
species out 

Initial 
Conc. 
out 
µmol/L 

Overall 
Order 

Forward 
Rate 
(mol s-1) 

Reverse 
rate 
(mol s-1) 

Reaction 0:     R + TTWWAA  TTM WWAA + R                                
0 0 R 1 2 MCPM 5 1 2.36 x 10-4

 ------ 
 1 MCP 5       

          
Reaction 1:  TTmWWAA + a  TTLMWWAA 

1 2 MCPM 5 4 MCPLM 0 1 1 x 109 1 x 103 
 3 ligand 0       

          
Reaction 2: TTLMWWAA TTLMWWAAp 

2 4 MCPLM 0 5 Ap 1 1 1.9 x100 ------ 
          

Reaction 3: TTWWAA TTWWAAp   
3 1 MCP 5 5 Ap 1  4.7 x 10-2 ------ 
          
Reaction 4: Y + Ap Yp + A         (Ap part of MCP complex) 
4 5 Ap 2 7 Yp 10 2 3 x 107 ------ 
 6 Y 10 8 MCP 5    

          
Reaction 5: Yp + Z Y + Z 
5 8 Yp 10 6 Y 10 1 5 x 105 ------ 
 9 Z 20       

          
Reaction 6:    MCP (various forms) MCP 
6 7 MCP 5 1 MCP 5 1   
          

Reaction 7: B + AAp Bp + AA  (Ap is part of MCP complex) 
7 5 Ap 1 10 Bp 1 2 6 x 106 ------ 
 9 B 1 1 A 2    

          
Reaction 8:   CheBp CheB 
8 10 Bp 1 9 B 1 1 3.5 x 10-1 ------ 

          
Reaction 9:  TTmWWAA + CheBp TTWWAA + CheBp 
9 2 TTmWWAA 2 1 TTWWAA 2 1 1x105 ------ 
 10 Bp 1       
          

KEY 
TTWWAA MCP complex MCP (shorthand 

version of 
TTWWAA) 

MCP complex MCPLM Methylated 
MCP complex 
bound to ligand 

A cheA 

TTmWWAA Methylated MCP 
complex 

MCPm Methylated MCP 
complex 

MCPL MCP complex 
bound to ligand 

Ap Phosphorylated 
cheA 

Y CheY CheB CheB R CheR   
Yp Phosphorylated 

CheY 
CheBp Phosphorylated 

CheB 
    

 
*Approximately equal amounts of MCPM and MCP when no chemoreceptor is bound (initial state). 
 
Data gathered from: 

 
Morton-Firth, C. J, & Bourret, R. B. Experimental data in bacterial chemotaxis [Online]  
Available: www.pdn.cam.ac.uk/groups/comp-cell/Exp_data/exptdata.doc, [Last Accessed 10 May 2011]. 

 

http://www.pdn.cam.ac.uk/groups/comp-cell/Exp_data/exptdata.doc
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Appendix 3 

This appendix provides, for clarity, a larger version of the diagram given in chapter 7 which 

shows the Cytobot ARN structure. Each Cytobot is controlled by an instance of this network. It 

is composed of 6 subnetworks these are:   

1. Master Oscillator 

2. Run Length Network 

3. Food Network 

4. Signalling Network 

5. Chaotic Network 

6. Weighted Direction Network.  

Each subnetwork contributes a functional aspect to either or both the Cytobot’s Starvation and 

Foraging behavioural modes. The structure of each is based on functional motifs found in 

biochemical networks. 

Note that Pools are considered empty when value of its component chemical is ≤ 1x10-3 
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Appendix 4 

The complete listing of the Cytobot ARN parameters is provided in the table below.  

This includes: 

• Input and output pools of each reaction 
• Weights of each connection 
• Forward and reverse rates of each reaction 
• Initial value of each pool.  

The only parameters subject to change during the period of operation are the value of each 
pool. The initial values at time equals 0 are provided. 

* Note that -5 means inhibitory connection and thus when active will switch off that reaction 
completely. 
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Run Length Network 
Reaction Input pool Weight  Output 

Pool 
Weight Forward 

Rate 
Reverse 
Rate 

Pool Initial 
Value 

R0 RB -5 RA 1 0.9 0 RA 1 

 RC 1     RB 0 

 FB -5     RC 0 

R1 RA 1 RB 1 1 0   

 RC -5       

 MA -5       

 MC -5       

 MD -5       

R2 RA -5 RC 1 1 0   

 RB 1       

Food Network 

Reaction Input pool Weight Output 
Pool 

Weight Forward 
Rate 

Reverse 
Rate 

Pool Initial 
Value 

F0 FA 1 FB 1 1 0 FA 0 

 FB -5     FB 0 

 MA -5     FC 1 

 MC -5       

 MD -5       

 AW -5       

 ANW -5       

 AN -5       

 ANE -5       

 AEA -5       

 AB -5       

 AD -5       

 AE -5       

F1 FB 0 FC 0 1 0   

F2 FC 1 FD 1 0.5 0   
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Signalling Network 
Reaction Input pool Weight Output 

Pool 
Weight Forward 

Rate 
Reverse 
Rate 

Pool Initial 
Value 

C0 CA 0 CB 1 0.5 0 CA 1 

 CC -5     CB 0 

 FA -5     CC 0 

 FB -5       

 FC -5       

C1 CA -5 CC 1 1 0   

 CB 1       

 FA 0       

 FC 0       

C2 CB -5 CA 1 1 0   

 CC 1       

Master Oscillator 
Reaction Input pool Weight Output 

Pool 
Weight Forward 

Rate 
Reverse 
Rate 

Pool Initial 
Value 

M0 MA 1 MB 1 1 0 MA 0 

 MD -5     MB 0 

 AE -5     MC 0 

M1 MA -5 MC 1 1 0 MD 1 

 MB 1       

 RA -5       

         

M2 MB 5 MD 1 1 0   

 MC 1       

 RC -5       

M3 MC -5 MA 1 1 0   

 MD 1       

 AE 0       
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Weighted Direction Network 
Reaction Input pool Weight Output 

Pool 
Weight Forward 

Rate 
Reverse 
Rate 

Pool Initial 
Value 

A0 A00 1 AB 1 1 0 A00 0 

 AW 1     AW 0 

 AB -5     A45 45 

 AD -5     ANW 0 

 AE -5     A90 90 

 MA -5     AN 0 

 MB -5     A135 135 

 MC -5     ANE 0 

A1 AW 1 AD 1 1 0 A180 180 

 AB -5     AEA 0 

 AD -5     AA 0 

 AE -5     AB 0 

 MA -5     AC 0 

 MB -5     AD 0 

 MC -5     AE 0 

A2 A45 1 AB 1 1 0 AF 0 

 ANW 1       

 AB -5       

 AD -5       

 AE -5       

 MA -5       

 MB -5       

 MC -5       

A3 ANW 1 AD 1 1 0   

 AB -5       

 AD -5       

 AE -5       

 MA -5       

 MB -5       

 MC -5       

A4 A90 1 AB 1 1 0   

 AN 1       

 AB -5       

 AD -5       

 AE -5       

 MA -5       

 MB -5       

 MC -5       
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A5 AN 1 AD 1 1 0   

 AB -5       

 AD -5       

 AE -5       

 MA -5       

 MB -5       

 MC -5       

A6 A135 1 AB 1 1 0   

 ANE 1       

 AB -5       

 AD -5       

 AE -5       

 MA -5       

 MB -5       

 MC -5       

A7 ANE 1 AD 1 1 0   

 AB -5       

 AD -5       

 AE -5       

 MA -5       

 MB -5       

 MC -5       

A8 A180 1 AB 1 1 0   

 AEA 1       

 AB -5       

 AD -5       

 AE -5       

 MA -5       

 MB -5       

 MC -5       

A9 AE 1 AD 1 1 0   

 AB -5       

 AD -5       

 AE -5       

 MA -5       

 MB -5       

 MC -5       

A10 AB 1 AA 1 1 0   

A11 AD 1 AC 1 1 0   

A12 AB 1 AE 1 1 0   

 AD -1       

A13 AE 0 AF 1 1 0   

Random Angle Network 
Reaction Input pool Weight Output 

Pool 
Weight Forward 

Rate 
Reverse 
Rate 

Pool Initial Value 
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K0  KI 1 AE 1 1 0 KA 0.67839 

 KH 1     KB 0.67839 

 AW -5     KC 0 

 ANW -5     KD 0 

 AN -5     KE 0 

 ANE -5     KF 0 

 AEA -5     KH 0 

 AB -5     KI 360 

 AD -5     RK 1 

 AE -5       

 MA -5       

 MB -5       

 MC -5       

K1 KG 0 KH 1 1 0   

 KE 1       

K2  KA 1 KB 2 4 4   

 KD -5 KD -5     

 KH -5 KH -5     

K3 KB 1 KE 1 1 0   

 KD 0       

K4 KA 1 KC 1 1 0   

 KD 0       

K5 KB 1 KD 1 1 0   

 KD -5       

 KH -5       

K6 KD 1 KF 1 1 0   

K7 KE 1 KB 1 1 0   

 KG 0       

K8 KE 1 KA 1 1 0   

 KG 0       
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Appendix 5  

In this appendix a working example of the Chaotic Network component of the Cytobot ARN 

control system presented in chapter 7 is provided.  

 

1. At ∆t0 KA and KB are initialised to 0.38475.  

 

2. At ∆t1, the flux generated at K2 will be 0.94687 (Applying Eq. (3) of chapter 4 to 

calculate the flux: (0.38475)1-4(0.38475)2 = 0.94687). At the same time the values in 

pools KA and KB are being processed by reactions K4 and K5 respectively. In both 

these reactions the weights and forwards rates are 1, thus the entire content of pool KA 

and KB are transferred to pools KC and KD respectively in a single time step. KB has 

an additional connecting reaction, K3, but it cannot proceed until the connecting pool, 

KD, is active (not empty). Pools are updated at the end of each discrete time step, thus 

at ∆t1 pool KB will now have a value of 0.94687 (due to the positive flux generated at 

reaction unit K2) while pools KD and KC will each have a value of 0.38475.  

 
 

3. At ∆t2, reaction K5 cannot proceed because pool KD is actively inhibiting, while 

reaction K3 may now proceed because pool KD and KB must both contain chemical in 

order for it to proceed. Reaction K3 has a forward rate and weight of 1, thus 

transferring its entire content of 0.94687 to pool KE in one time step. At the same time 

the entire content of pool KD is transferred to KF which acts as a waste pool 

(representing for example the environment) where chemical is eliminated from the 

system.  

 

4. At ∆t3 the content of pool KE is being simultaneously processed by reactions K1, K7 

and K8. In all these reactions pools KE and the static pool RK react, where the forward 

rate is 1 the weight between the static pool and the reaction is 0. These reactions 

function to make copies of the current value, allowing one copy to be used as the 
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network output and the other two as the new initial values of pools KA and KB to 

restart the network cycle. In our example the flux generated for each reaction is 

0.94687, and each copy of flows into pools KA, KB and KH.  

 
 

5. At ∆t4 pool KH actively inhibits reaction K2 thus the next network cycle cannot 

commence until pool KH has emptied. Pool KH represents the output of the chaotic 

network and it interfaces with the rest of the network through reaction K0. Reaction K0 

processes KH and static pool KI, in a single time step, where both forward rate and 

weight is 1. Static pool KI has a fixed value of 360 which allows the network to convert 

the pseudo random number to an angle value between 0 and 360. Thus in this example 

the value of 0.94687 becomes 340.8732. However, reaction K0 cannot proceed until all 

11 pools that inhibit it are empty. These inhibitory connections ensure that random 

angles are not output while the agent is in starvation mode, and that pool AE is empty 

before adding more chemical. 
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Appendix 6 

The following screenshots show the search spaces used in the Cytobot optimisation 

experiments outlined in section 8.2. This includes the following functions: 1. Inverted sinc; 2. 

Peaks; and 3. Rosenbrock. 

 

1. Inverted sinc function with 6 Cytobots 
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2. Peaks with 3 Cytobots 
 
 

 

 

3. Rosenbrock function with 1 Cytobot 
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