

OpenAIR@RGU

The Open Access Institutional Repository

at Robert Gordon University

http://openair.rgu.ac.uk

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

GERRARD, C. E., 2014. Computational aspects of cellular
intelligence and their role in artificial intelligence. Available from
OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk

Copyright

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk

i

Computational Aspects of Cellular Intelligence and

Their Role in Artificial Intelligence

A thesis submitted to

The Robert Gordon University

in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Claire E. Gerrard

IDEAS Research Institute

School of Computing

Robert Gordon University

Aberdeen, Scotland, July 2014

ii

Declaration

I hereby declare that this thesis is a record of work undertaken by myself. That it has not been

the subject of any previous application for a degree and that all sources of information have

been duly acknowledged.

Claire Gerrard, 2014

iii

Dedication

I dedicate this thesis to Christopher who showed me why “a person starts to truly live when

they can live outside themselves”.

C. Gerrard 12:02:14

iv

Acknowledgements

Firstly, I am indebted to my supervisory team: John McCall, George Coghill and Christopher

Macleod for their help, support and encouragement throughout the project. Without their

supervisory skills the project would have been much more difficult and not nearly as

worthwhile.

A special note of thanks is due to Geoff MacAngus-Gerrard and to Christopher Macleod who

assisted in proof reading the thesis and made many valuable suggestions to the content. Their

efforts helped beyond measure to improve the quality and readability of this work.

 I would also like to thank Professor Thomas Gregor at the Laboratory for the Physics for Life

at Princeton University for allowing me to include screenshots of aggregating amoebae in the

text.

I would like to extend my appreciation to all the members of the Robert Gordon University,

School of Computing who assisted me in any way during the project. In particular, I would like

to mention my appreciation to the PhD students within the Computational Intelligence Group

who offered excellent advice, support and encouragement throughout the project. Finally, I

would also like to thank my friends, family and my daughter Meredith for their infinite patience

while travelling with me on the PhD roller-coaster ride.

C. Gerrard 12:02:14

v

Abbreviations

To avoid repetition of certain common terms, the following abbreviations are used in the text.

These abbreviations will also be introduced before use in the text.

ABN - Artificial Biochemical Network.

AC- Artificial Chemistry

ACC - Artificial Chemical Computing

AES - Artificial Endocrine Systems

AGRN - Artificial Gene Regulatory

Network

AHHS - Artificial Homeostatic Hormone

System

AHoS - Artificial Hormone System

AI - Artificial Intelligence

AIS - Artificial Immune System

A-Life - Artificial Life

ANN - Artificial Neural Network

ARBN - Asynchronous RBN

ARN - Artificial Reaction Network

BN - Bayesian Network

BP - Backpropagation.

CCM - Chemical Casting Model

CHAM - Chemical Abstract Machines

CI - Cellular Intelligence

CNS - Central Nervous System

CPG - Central Pattern Generator

CRBN - Classical RBN

CSN - Cell Signalling Network.

DARBN - Deterministic asynchronous RBN

Dd; D. discoideum; Dicteosteylium

discoideum

DHS - Digital Hormone System

DNA- Deoxyribonucleic acid

DOF - Degree of freedom

E. coli - Escherichia coli

EA - Evolutionary Algorithm

FF- Feedforward; FB -Feedback.

FPN - Functional PN

GA - Genetic Algorithm

GRN - Gene Regulatory Network

MAPK - Mitogen Activated Protein Kinase

MC - Markov chain

MLP - Multi Layer Perceptron

ODE - Ordinary Differential Equation

vi

P. polycephalum - Physarum polycephalum

PC - Process Calculi

PDE - Partial Differential Equation

PN - Petri Net

PNS - Peripheral Nervous System

PSO - Particle Swarm Optimisation

RBN - Random Boolean Network

RNA - Ribonucleic acid.

SSA - Stochastic Simulation Algorithm

STC - Signal Transduction Cascades

TPN - Time Petri Net

UML - Unified Modelling Language

vii

Abstract

The work presented in this thesis is concerned with an exploration of the computational aspects

of the primitive intelligence associated with single-celled organisms. The main aim is to

explore this “Cellular Intelligence” and its role within Artificial Intelligence.

The findings of an extensive literature search into the biological characteristics, properties and

mechanisms associated with Cellular Intelligence, its underlying machinery - “Cell Signalling

Networks” and the existing computational methods used to capture it are reported. The results

of this search are then used to fashion the development of a versatile new connectionist

representation, termed the Artificial Reaction Network (ARN). The ARN belongs to the branch

of Artificial Life known as Artificial Chemistry and has properties in common with both

Artificial Intelligence and Systems Biology techniques, including: Artificial Neural Networks,

Artificial Biochemical Networks, Gene Regulatory Networks, Random Boolean Networks,

Petri Nets, and S-Systems.

The thesis outlines the following original work: The ARN is used to model the chemotaxis

pathway of Escherichia coli and is shown to capture emergent characteristics associated with

this organism and Cellular Intelligence more generally. The computational properties of the

ARN and its applications in robotic control are explored by combining functional motifs found

in biochemical network to create temporal changing waveforms which control the gaits of

limbed robots. This system is then extended into a complete control system by combining

pattern recognition with limb control in a single ARN. The results show that the ARN can offer

increased flexibility over existing methods.

Multiple distributed cell-like ARN based agents termed “Cytobots” are created. These are first

used to simulate aggregating cells based on the slime mould Dictyostelium discoideum. The

Cytobots are shown to capture emergent behaviour arising from multiple stigmergic

interactions. Applications of Cytobots within swarm robotics are investigated by applying them

to benchmark search problems and to the task of cleaning up a simulated oil spill. The results

are compared to those of established optimization algorithms using similar cell inspired

strategies, and to other robotic agent strategies.

Consideration is given to the advantages and disadvantages of the technique and suggestions

are made for future work in the area.

viii

The report concludes that the Artificial Reaction Network is a versatile and powerful technique

which has application in both simulation of chemical systems, and in robotic control, where it

can offer a higher degree of flexibility and computational efficiency than benchmark

alternatives. Furthermore, it provides a tool which may possibly throw further light on the

origins and limitations of the primitive intelligence associated with cells.

ix

Contents

Title i

Declaration ii

Dedication iii

Acknowledgements iv

Abbreviations v

Abstract vii

Contents ix

Chapter 1. Introduction 1

1.1 Research Background 1

1.2 Aims, Objectives & Research Questions 3

1.3 Overall Aim and Objectives 4

1.4 Original Contributions to the Art 5
1.5 Chapter Overview 5

1.6 Papers in Appendix 1 7

Chapter 2. Cellular Intelligence 9

2.1 What is Cellular Intelligence? 9

2.2 The Machinery of Cellular Intelligence 12

2.3 Computational Aspects of Cell Signalling Networks 16

2.4 Representations of Cell Signalling Networks 21

Chapter 3. Artificial Intelligence Inspired by Cell Signalling 31

3.1 Introduction to Bio-inspired AI 32

3.2 Artificial Chemistry 33

x

3.3 AI Inspired by Reactions of the Endocrine System 34

3.4 AI Inspired by Reactions of the Immune System 37

3.5 AI Inspired by Reactions of the Metabolic System 40

3.6 AI Inspired by Reactions of the Nervous System 42

3.7 AI Inspired by Reactions of the Gene Regulatory System 46

3.8 AI Inspired by Generic Chemical Reactions 48

Chapter 4. The Artificial Reaction Network ` 50

4.1 Basic Formulation 50

4.2 A Networked Representation 51

4.3 Computational Properties 55

4.4 Disadvantages 57

4.5 Verification of the Model 58

Chapter 5. An ARN Based Simulation of E. coli Chemotaxis 60

5.1 Overview of E. coli Chemotaxis 60

5.2 Simulation of the E. coli Chemotaxis CSN 63

5.3 Experiments and Results 66

Chapter 6. Spatial & Temporal Properties of the ARN 73

6.1 Pattern Recognition 73

6.2 Spatio-Temporal Dynamics of the ARN 78

Chapter 7. Cytobots: ARN-Controlled Agents 93

7.1 Cytobot Behaviour 93

7.2 Cytobot ARN Design and Implementation 96

Chapter 8. Cytobot Experiments and Results 104

8.1 Cytobot D. discoideum Simulation 104

8.2 Cytobot Optimisation Experiments 109

8.3 Cytobots Oil-Spill Clean-up Simulation 117

xi

Chapter 9. Summary & Conclusions 122

9.1 Introduction 122

9.2 The Project Objectives Revisited 122

9.3 Original Contributions to the Art 125

9.4 Suggestions for Future Work 127

9.5 Concluding Remarks 128

References 130

APPENDIX

1. Publications associated with the project A1

2. Parameters of the E. coli Chemotaxis CSN ARN Simulation A104

3. Structure of the Cytobot ARN A106

4. Cytobot ARN Parameters A108

5. Working Example of the Chaotic Network A114

6. Search Spaces used in the Cytobot Optimisation Experiments A116

1

1. Introduction

This chapter outlines the background of the project and introduces its aims and objectives. It

also briefly outlines the original contributions to the art made in the research - which will be

described in detail in the following chapters.

1.1 Research Background

The natural world is rich in examples of elegant solutions to difficult problems. An important

instance of this is found in the multitude of single-celled organisms which display an

astonishing array of complex behaviours. Some can avoid light using photo-sensitive spots;

some actively hunt prey; while others can even build protective shelters (Ford 2009). Such

behaviours improved these organisms’ chances of survival and arose through the process of

natural selection. The behaviour of such simple organisms may be labelled as “Cellular

Intelligence” (CI) (Quevli 1916; Ford 2009).

In recent years, a growing body of research has explored these behaviours and illuminated the

remarkable capabilities of single cells to store and process information (Bray 1995; Bhalla

2003; Ford 2009; Saigusa 2008). Such research is inspired by an interest in the origins of CI

and the mechanisms of its biological action. The exploration of these has direct benefit to

humans, for example in medicine and ecology, and is also of deeper philosophical interest.

The physical mechanisms involved are quite different from those of a digital computer. Within

a cell, the current state is represented as a set of spatially distributed concentrations of chemical

species. This data is processed by networks of chemical reactions, termed “Cell Signalling

Networks” (CSNs). In this way, cells are able to respond to current environmental conditions,

communicate with other cells, and perform internal self-maintenance operations. As a result of

work into understanding these systems, several researchers have highlighted the processing

capabilities of such networks (Arkin and Ross 1994; Bray 1995; Wang et al. 2011) and their

similarities to Artificial Neural Networks (ANNs) (Bray 1995; Bhalla 2003). For example, it

has been demonstrated that they can perform Boolean and Fuzzy Logic functions and are

equivalent to a Turing Machine (Bray 1995; Wang et al. 2011). Furthermore, many CSNs

contain topological features such as feedback loops, hierarchical and modular structures and

2

multi-level interconnectivity, and can thus form highly complex systems (Bray 1995;

Kholodenko 2006).

Biological systems such as these have inspired many powerful Artificial Intelligence (AI)

techniques- for example: Genetic Algorithms (GAs) (Goldberg and Holland 1988), Particle

Swarm Optimization (PSO) (Woolard and Fieldsend 2013), and Ant Colony Optimization

(ACO) (Dorigo et al. 2006). Some of these approaches are based on properties of biochemical

networks - for example: Artificial Biochemical Networks (ABNs) (Macleod and Capanni

2010) and Artificial Immune Systems (AIS) (Aickelin et al. 2014).

One such bio-inspired approach involves abstracting the computational properties of chemical

processing to create a model called an Artificial Chemistry. Artificial Chemistry is a subfield of

Artificial Life (A-Life) (Steels 1993) - and in its broadest sense, it describes man-made systems,

which behave similarly to real chemical systems (Dittrich et al. 2001).

The overall aim of this project was to investigate the modelling of Cellular Intelligence (CI) in

general and more specifically its role in AI. The first stage of this was to identify the properties

and mechanisms of such intelligence, and the existing computational methods used to represent

it. The results of this study led to the creation of a new Artificial Chemistry (AC)

representation, termed the Artificial Reaction Network (ARN). Rather than focus on micro-

molecular detail, the ARN aims to capture emergent behaviours arising from a network of

chemical reactions. The ARN was first validated against standard biological data, and then

successfully applied to simulate CI associated with the well-characterized CSN of Escherichia

coli chemotaxis. The computational features of the ARN, including its temporal and chaotic

dynamics were explored and its operation was contrasted with relevant techniques in both

Systems biology and in AI.

Having proved capable of representing the important mechanisms of CI, the ARN provided a

platform to explore the role of CI in AI.

CSNs can combine sensory input, motor output, self-maintenance and adaptation in one highly

sophisticated control system. Thus, one obvious potential AI application of the ARN was in

robotic control. Such applications were initially examined by using a single ARN network to

produce complex waveforms to control a variety of gaits in a limbed robot. This network was

then extended and used to create a complete control system by combining a sensory input and

motor output. The results show that the ARN offers advantages in flexibility over current

connectionist AI methods. Further applications in AI were then explored by developing

simulated cell-like agents termed “Cytobots”. Similarly to the control system of a cell, a

3

Cytobot has its own internal ARN which coordinates sensory and motor tasks. This allows it to

communicate stigmergically with other Cytobots, receive environmental information which it

uses to update its current state and trajectory and, in this way, generate high-level behaviour.

By creating multiple distributed agents within artificial environments, it was possible to explore

emergent properties similar to those of interacting cells. The ability of the Cytobots’ to capture

such characteristics was explored by creating a simulation of aggregating cells of the slime

mould D. discoideum. The results demonstrated the agents’ ability to capture emergent

behaviour arising from such interactions. These results also highlight the potential to use

Cytobots in the simulation of interacting cells.

The ability of the Cytobots to perform useful behaviours in situations similar to those in real

world environments was demonstrated by a number of other simulations. Interacting groups of

Cytobots were applied to the task of finding the global minima in several benchmark search

problems. In each case, they found the global minima with similar capacity to that of

established cell inspired optimisation algorithms. In a final simulation, the Cytobots were

applied to the task of cleaning up a simulated oil spill. The results show that they have potential

application in swarm robotics, where they can provide useful autonomous behaviour within real

world environments.

1.2 Aims, Objectives & Research Questions

In this section the research questions, aim and objectives of the thesis are listed. The research

questions were used to construct the overall aim of the research. This aim was then broken

down into the six stated objectives. In the final chapter of the thesis, the accomplishment of

each of these objectives is discussed.

1.2.1 Research Questions

The work reported in the thesis will address the research questions described below.

1. Can we abstract the computational aspects of Cell Signalling Networks which are

responsible for generating Cell Intelligence into a simplified mathematical

representation?

2. How accurately can such a model represent biological Cell Signalling Networks and

how does such a model compare against standard Systems Biology approaches to

modelling biological systems?

4

3. Is such a model capable of generating the emergent behaviour associated with Cellular

Intelligence?

4. Can such a model be used to create useful bio-inspired AI?

5. Does such a method offer additional functionality or improvements to existing

methods?

1.3 Overall Aim and Objectives

The research questions can be summarised by the following overall research aim.

1.3.1 Objectives

This aim can be broken down into the objectives described below.

1. Produce a computational representation of biological Cell Signalling Networks that

captures the underlying properties and mechanisms of Cell Intelligence.

2. Evaluate the biological accuracy of the new representation.

3. Explore the computational capabilities, pattern recognition and temporal dynamics of

the new representation.

4. Evaluate the ability of the new representation to capture characteristics of Cell

Intelligence arising from single cells.

5. Evaluate the ability of the new representation to capture Cell Intelligence arising from

multiple interacting cells.

6. Identify the applications of the new representation within AI and compare them with

existing methods

To develop a representation of the computational features from which Cell Intelligence

arises and to investigate its application within Artificial Intelligence.

5

1.4 Original Contributions to the Art

Although researchers have created AI techniques based on aspects of CSNs before, there are

several unique aspects to the approach presented here. The most important of these are listed

below. These will be explored in detail in the following chapters.

1.5 Chapter Overview

The thesis can be divided conceptually into three components:

1. Chapters 2-3 are introductory and contain the project background.

2. Chapters 4-8 present research, methods and experimental results.

3. Chapter 9 discusses the results and conclusions.

An overview of each chapter is given below:

1. The creation of a new connectionist AI technique “Artificial Reaction Networks”

inspired by biological Cell Signalling Networks. Outlined in chapter 4.

2. The production of complex waveforms for control of limbed robotic gaits by

combining functional motifs found in CSNs within a rate law based connectionist

system. Outlined in chapter 6.

3. The construction of the E. coli chemotaxis pathway using a connectionist based

Artificial Chemistry. Outlined in chapter 5.

4. The implementation of chaotic dynamics by combining functional motifs found in

CSNs within a rate law based connectionist system. Outlined in chapter 7.

5. The production of a complete limbed robotic control system by combining functional

motifs found in CSNs within a rate law based connectionist system. Outlined in

chapter 6.

6. The construction of multiple distributed cell-like agents by combining functional

motifs found in CSNs within a rate law based connectionist system. Outlined in

chapters 7 and 8.

6

Chapter 2: Cellular Intelligence

This is a background chapter which discusses the various aspects of Cell Intelligence. An in-

depth overview of the properties and mechanisms of Cell Intelligence is presented. Its

computational aspects are then explored and examples within the literature are highlighted.

Finally, current methods of simulating Cell Intelligence are presented.

Chapter 3: Artificial Intelligence Inspired by Cell Signalling

In this background chapter, an overview of the existing AI techniques inspired by the biological

mechanisms behind Cell Intelligence is provided. The chapter explores various types of

methods from different sub-branches of AI including - Artificial Immune Systems, Artificial

Gene Regulatory Networks, and Artificial Neural Networks.

Chapter 4: The Artificial Reaction Network

This chapter contains the first original work within the project. It presents a new model - the

Artificial Reaction Network (ARN), designed specifically to represent the previously identified

computational mechanisms of Cell Intelligence. This new representation is based on the

previously reviewed techniques; unlike these models it abstracts only those computational

features which are important in generating properties of Cell Intelligence. A complete overview

of the new model is given, from its development and mathematical properties, to its strengths

and weaknesses.

Chapter 5: ARN Based Simulation of E. coli Chemotaxis

This chapter contains experimental methods and results. Using biochemical detail extracted

from the literature, the ARN is used to simulate the chemotaxis pathway of Escherichia coli.

This simulation is used as a means to both verify the behaviour of the new representation

against the properties of biological Cell Intelligence, and to compare it with the results of other

simulation methods.

Chapter 6: Spatial & Temporal Properties of the ARN

In this chapter, further experimental methods and results are presented. These focus on

examining the capacity of the ARN to perform complex spatio-temporal processing and pattern

recognition. The applications of such processing are illustrated within limbed robotic control

and show that the new representation has advantages over existing methods.

7

Chapter 7: Cytobots: ARN-Controlled Agents

This chapter introduces the concept of multiple distributed processing ARN-based agents. The

agents are created by combining functional motifs found in biochemical networks and represent

further novel work within the project. The ARN-agents representation and development are

discussed in detail.

Chapter 8: Applications of ARN-agents

In this chapter the applications of the ARN-agents within biological simulation and in robotic

control are assessed. A simulation of phases within the life-cycle of the slime mould D.

discoideum examines the application of the agents as a tool to simulate multi-cellular systems.

Another experiment, using a simulated oil-spill, is used to consider their application within

swarm robotics.

Chapter 9: Summary and Conclusions

This chapter contains the overall results, summary and conclusions of the thesis. Consideration

is given to the achievement of each objective, strengths and weaknesses of the project and

possible future work.

1.6 Papers in Appendix 1

Research papers produced during the course of the research are included in Appendix 1.

Viewed in descending chronological order, the papers provide the reader with a useful

summation of the research as it developed. Results reported in earlier papers serve as the

foundations for the research reported at later dates.

Appendix 1 contains the following papers:

1. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (in press) ‘Applications and

Design of Cooperative Multi-agent ARN based Systems’, A Fusion of Foundations

Methodologies and Applications, Soft Computing, Springer.

2. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (in press) ‘Exploring aspects of

Cell Intelligence with Artificial Reaction Networks’, A Fusion of Foundations

Methodologies and Applications, Soft Computing, Springer.

8

3. Gerrard, C, McCall, J., Coghill, G., Macleod, C. (2013) ‘Artificial Reaction Network

Agents’, The 12th European Conference on the Synthesis and Simulation of Living

Systems (ECAL), Advances in Artificial Life, MIT press, Taormina, pp. 957-964.

4. Gerrard, C., McCall, J., Coghill, G., Macleod, C. (2013) ‘Combining Biochemical

Network Motifs within an ARN-Agent Control System’, Proceedings of the 13th

Annual Workshop on Computational Intelligence (UKCI), IEEE, Surrey, pp. 8-15.

5. Gerrard, C., McCall, J., Coghill, G., and Macleod, C. (2013) ‘Artificial Chemistry

Approach to Exploring Search Spaces using Artificial Reaction Network Agents’,

Congress on Evolutionary Computation (CEC), IEEE, Cancún, pp.1201-12.

6. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2012) ‘Adaptive Dynamic

Control of Quadrupedal Robotic gaits with Artificial Reaction Networks’, Proceedings

of the 19th International Conference on Neural Information Processing (ICONIP),

Lecture Notes in Computer Science, vol. 7663, part 1, Springer, Doha, pp 280-287.

7. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2012) ‘Temporal patterns in

Artificial Reaction Networks’, Proceedings of The 22nd International Conference on

Artificial Neural Networks (ICANN), Lecture Notes in Computer Science, vol. 7552,

part 1, Springer, Lausanne, pp 1-8.

8. Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2011) ‘Artificial Reaction

Networks’, Proceedings of the 11th UK Workshop on Computational Intelligence

(UKCI), Manchester UK, pp 20-26.

9

2. Cellular Intelligence

2.1 What is Cellular Intelligence?

For many years, researchers have been interested in the complex behaviours displayed by

individual cells. For example, simple unicellular eukaryotic microorganisms called protists

show an astonishingly varied repertoire of seemingly intelligent behaviours. Some have sensory

hairs, by means of which they can feel their way about and sense their food. While others even

have locomotory appendages and stinging arrows to actively hunt and subdue their prey (Ford

2009). Take, for instance, the animal-like protist amoeba, Difflugia. Naturally found in ponds

and marshlands, this heterotroph uses its pseudopodia to move around its environment and

catch its prey. It is also one of several amoebozoa to build a microscopic protective shell called

a “test” from siliceous sand grains in its environment, see Fig. 2. 1 (Ford 2004); this task alone

is of considerable complexity. It must take sensory input from its environment, correctly

identify and select sand grains while coordinating movement; then intricately cement the grains

together with incredible precision. With a demonstration of such complex behaviour it is easy

to forget that Difflugia are just single-celled organisms.

Fig. 2.1 A Difflugia test about 0.3 mm long. Pseudopodia can be seen extruding from the test.

10

In recent studies, the protist slime mould Physarum polycephalum gained public attention when

Nakagaki et al. (2000) discovered that it was able to find the shortest path between two food

sources within a maze. The maze was built from plastic films set on agar gel, with four possible

routes of different length between the two food sources. The plasmodial slime mould was

divided into pieces and placed at different positions within the maze. Initially, the pieces of

plasmodium spread throughout the maze forming a single organism. As it spread, it withdrew

from dead ends, until eventually it formed a thick plasmodial tube along the shortest pathway

between the two food sources. This behaviour increased foraging capability, conserved energy

and thereby increased its chances of survival. A further study by Saigusa et al. (2008) showed

that, when subjected to a distinct pattern of periodic environmental changes, this simple

organism was able to learn and change its behaviour in expectation of the next stimulus. The P.

polycephalum was placed within a narrow lane where, initially, it was free to migrate under

ambient conditions for a few hours. The conditions of the experiment were then modified by

subjecting it to periodic 10 minute intervals of less optimal, drier and cooler conditions called a

“dry simulation”. This continued for a period of time, during which it was observed the

organism would decrease its speed of locomotion during each dry simulation interval. Dry

simulation was then discontinued, and continuous ambient conditions were reinstated.

However, rather than behaving as was previously observed, the slime mould slowed down its

speed at time points which coincided with those of the dry simulation. The researchers argued

that this demonstration of recalling and anticipating events were indicative of a “primitive

intelligence”.

Unicellular organisms are by no means exceptional in demonstrating such behaviour. Research

has shown that, without the direction of a nervous system, the cells of animals and plants

display their own remarkable behaviour. Within living systems, these basic building blocks

function autonomously, reacting to each other and their environment and cooperating to

achieve tasks of considerable complexity (Ford 2009). For example, macrophages (a type of

leukocyte) are specialised immune system cells, that function to protect the body by responding

to and eliminating pathogens in a process called phagocytosis (see Fig. 2.2). Phagocytosis is

mediated by an intricate mechanism of pattern recognition, which allows a macrophage to

identify and distinguish foreign agents from host cells. Pathogens display conserved motifs on

their surface called pathogen associated molecular patterns (PAMPs). These are identified by

highly specific pattern-recognition receptors (PRRs) on macrophages. On recognising a

pathogen, the macrophage PRR binds to the complimentary PAMP, which triggers the

production of cytokines. The cytokines function to attract further leukocytes to the infected

area, leading to the engulfment and destruction of the pathogen (Aderem and Underhill 1999).

11

Thus, during phagocytosis, a macrophage displays an elaborate array of behaviours, including

pattern recognition, location of infected areas, coordination of movement and group attack.

Fig. 2.2 Phagocytosis by a specialised immune response cell called a macrophage.

These illustrations provide a mere glimpse of the myriad of diverse and complex behaviours

displayed by living cells. A cell has no brain or neural network with which to process

information. Nevertheless these examples reveal a kind of “natural intelligence” and thus

indicate that a form of information processing is somehow taking place. It is worth taking a

moment to consider the meaning of the term “natural intelligence” and how this relates to the

more anthropocentric view of intelligence. There is no agreed definition of intelligence and its

defining characteristics are the subject of much debate and uncertainty (Brooks 1999; Clark

1997; Dennett 1996). Many view it as the ability to perform human cognitive tasks such as

mathematical or logical calculations (McCarthy 1960), or, as Descartes argued, the ability to

use language (Descartes 1975). Others think this view anthropocentric, and consider a more

“natural” definition based on behavioural attributes which enhance an organism’s chance of

survival. Such behavioural attributes include: pattern recognition, classification, response,

communication; learning and self-organisation. These properties, particularly in combination,

portray purposeful “intelligent” high-level behaviour and are thus all the properties of natural

intelligence (Ford 2009; Crespi 2001; Ben-Jacob 1998; Dobbyn et al. 2007; Kauffman 1993).

All forms of life, from higher-level organisms to single-celled amoebas, display these

characteristics. Therefore, the very unit of life “the cell” must have its own form of natural

12

intelligence. Over the past century, this type of intelligence has been referred to as “Cell

Intelligence” or “Cellular Intelligence” (Quevli 1916; Ford 2009).

2.2 The Machinery of Cellular Intelligence

The following section explores the properties and mechanisms behind Cell Intelligence, and

discusses its origin.

In order for a cell to produce the previously discussed high-level behaviours, it must store and

process information. The mechanisms involved are quite different from those of a digital

computer. Within a cell’s cytoplasm, the current state is represented as a set of spatially

distributed concentrations of chemical species (Bray 1995). This molecular “data” is processed

through biochemical reactions which transform the composition of reactants and, in doing so,

transform the current state of the system. The products of one reaction correspond to the

reactants of another, thus forming input and output connections (Bray 1995). In this way,

chemical data is processed by networks of reactions termed Cell Signalling Networks (CSNs).

The process is best illustrated by a stylised example. Consider a highly generalised cell, as

shown in Fig. 2.3. In this cell’s external environment are molecules of food- “protein A”. The

cell-surface contains molecules of “protein B”; these are specialised transmembrane proteins

called receptors, and are shaped in such a way that allows them to bind (react) with A. Bound to

the intracellular component of B, is another molecule “protein C”. When molecules A and B

link, as shown at step 1, this internal protein, C detaches from the receptor. The free floating C

molecules diffuse within the cytoplasm as a result of normal thermodynamic forces. Eventually,

protein C meets another internal protein, “protein D”, as shown in step 2. This has a

complementary shape to C allowing these two molecules to bind and form a new complex -

“protein E”. In this example, E is shaped so as to interact with a motor protein, “protein F”, as

shown at step 3. Commonly, when stimulated in this way, motor proteins contract and allow

propulsion of the cell towards a beneficial substance - for instance, toward a higher

concentration of protein A. This phenomenon is called chemotaxis and is described in more

detail later in the project. CSNs exist within all living organisms and in this way function to

regulate all internal cellular activity such as changes in gene expression and metabolism.

Furthermore, CSNs relay signals externally between local cells, distal cells, the environment,

other organisms and even to themselves. They are a complex system of interconnected intra and

extracellular distributed reactions, simultaneously processing streams of chemical signals, and

have topological features such as feedback loops and interconnectivity (Bray 1990; 1995;

Kholodenko 2006). These networks have evolved to allow an organism to adapt to current

13

conditions by manipulating the spatio-temporal activation levels of its intracellular proteins and

thereby achieve a pattern that provides an appropriate cellular response.

Fig. 2.3 A highly generalised example of a Cell Signalling Network

Particular pathways within CSNs, whose components regulate a particular function, are termed

Signal Transduction Cascades (STC). For example, MAPK pathways utilise a three-tiered

cascade of protein kinases known as a Mitogen Activated Protein Kinase module or MAPK,

which communicate receptor signals to the DNA of a cell’s nucleus (Seger and Krebs 1995).

Although STCs are represented as separate pathways, they often participate in “crosstalk”

where components of one pathway influence and form components of another (Jones 2012).

2.2.1 An Example of Cellular Intelligence

As previously mentioned, chemotaxis describes the movement of cells in response to sensed

environmental chemical concentrations called chemoeffectors. Unicellular organisms swim

toward chemoattractants such as amino acids and sugars, and away from chemorepellants such

as fatty acids and alcohols (Vladimirov and Sourjik 2009). This is vital to their survival, since

travelling toward chemoattractants allows them to locate food, and moving away from

chemorepellants prevents their breakdown by harmful substances.

http://en.wikipedia.org/wiki/DNA

14

 It can be shown that CSNs have the principle role in generating high-level behaviour by using

the chemotaxis pathway of the bacteria E. coli as an example. Here, the high-level behaviour is

overall movement toward more favourable conditions. The entire signalling pathway for E. coli

chemotaxis has been identified and, as such, it represents an ideal pathway to explore the

emergent properties of Cell Intelligence. E. coli is a rod-shaped bacterium commonly found in

the lower intestine of many animals. The motile strains, as examined here, have an external tail-

like structure called a flagellum that, by way of a motor complex, rotates and results in

movement. Locomotion manifests itself in the form of two simple behaviours: “runs”

characterised by smooth linear swims and “tumbles” where the bacteria stops and re-orientates

in a random direction (Vladimirov and Sourjik 2009). While moving along swimming

trajectories, chemoreceptors continuously signal the levels of environmental chemoeffectors

(attractants or repellants). This signal is processed by six cytoplasmic proteins leading to the

regulation of a motor complex responsible for the operation of the flagellar motor (Vladimirov

and Sourjik 2009). The motor complex is attached to a bundle of helical flagellar filaments.

When the motor rotates counter-clockwise (CCW), the flagellar filaments form a trailing

bundle which, by pushing the cell forward, results in a “run”. When the motor rotates in a

clockwise direction (CW), the filaments change shape, causing the bundle to separate resulting

in a “tumble” (Vladimirov and Sourjik 2009), as shown in Fig. 2.4.

Fig. 2.4 E. coli movement by rotation of helical flagellar. Flagellar rotation counter-clockwise (CCW)

results in a run; and clockwise (CW) results in a tumble.

The ratio of runs to tumbles is regulated by the intracellular concentrations of the proteins

within the pathway (Stock and Surrete 1996) and results in a pattern of motion called a random

biased walk. By comparing concentrations of chemoeffectors (attractants and repellants) in a

15

temporal fashion, the organism is able to reduce the frequency of tumbles up concentration

gradients of attractants, and down gradients of repellants, thus providing the bias. The resultant

high-level behaviour is overall travel toward more favourable conditions (Vladimirov and

Sourjik 2009) as depicted in Fig. 2.5.

Further examples of high-level behaviour mediated by CSNs can be found in the literature

(Hellingwerf 2005; Nakagaki et al. 2000; Ben-Jacob et al. 2004). By communicating and

processing information, signalling networks are responsible for all cell activities and lie at the

heart of Cellular Intelligence. The information processing units of CSNs are interacting

chemicals. When connected within a network, elaborate processing capabilities emerge from

the collection of low-level interactions. The next section will explore this concept by examining

the computational aspects of CSNs.

Fig 2.5 Pathway on an E. coli cell through a gradient of chemorepellant. The pattern of motion is called a

biased random walk.

16

2.3 Computational Aspects of Cell Signalling Networks

As previously mentioned, within a cell, data is represented by a set of spatially distributed

concentrations of chemical species. This molecular data is dynamically manipulated in response

to external or internal changes with a lag time behind the determining signal. Reactions link

chemicals together through productive unions (union of reactants triggers production or

activation of other components) and inhibitory unions (union of two reactants inhibits

production or activation). Each reaction transforms input signals into output signals,

manipulating the data at each reaction step. Although signals are commonly chemical

concentrations, they are not limited to this format. The input signal can take the form of

temperature, light, mechanical force, or voltage. Likewise, the output signal can take the form

of generated movement, light production or the formation of macromolecular structure (Bray

1995).

The computational properties of such signal processing within biochemical networks are well

documented. It has been shown both theoretically and in wet lab experiments that such

networks can perform Boolean and Fuzzy Logic functions and are equivalent to a Turing

machine (Arkin and Ross 1994; Bray 1995; Dittrich et al. 2001). Evidence concerning the

computational properties of reactions can be found in a number of independent studies. For

example, Stadtman and Chock, (1997) demonstrated that the interconversion between

phosphorylated and non-phosphorylated protein forms can act as a flexible computational unit.

They showed that by modifying kinetic parameters, these units are capable of a wide range of

input/output responses. Similar results were documented by Arkin and Ross (1994), who

examined the computational properties of enzymatic reaction mechanisms and showed that the

steady-states of such reactions are comparable to Boolean or Fuzzy Logic gates. It was found

that sharp, digital-like, responses are achieved in cases where enzymes are saturated with their

substrates; however, within a simple enzymatic reaction model, the steady-state functioned

similarly to a Fuzzy Logic gate. Hjelmfelt and Ross (1994) demonstrated that a system of

ordinary differential equations describing iodate-arsenous reactions could be used to store and

recognise patterns of high and low concentrations. In connected work, Hjelmfelt et al. (1991)

used enzymatic reaction kinetics to create a chemical implementation of a neural network. It

was demonstrated that this chemical neuron was able to perform a range of Boolean functions

and could be used to construct a universal Turing Machine (Hjelmfelt et al. 1991). In more

recent studies, a number of researchers have developed these ideas; for example, Wang et al.

(2011), constructed Boolean gates from actual biological proteins present in E. coli, and then,

by connecting these gates together, was able to perform more complex logical operations.

17

Furthermore, in the field of Molecular Computing, several researchers have built on this work

and created synthetic biological devices which use chains of reactions to process data, an

excellent review of which is provided by de Silva and Uchiyama (2007).

TABLE 2.1 Part A. Structural Motifs in Biochemical Networks

Structural Motifs Table 1 Part A
Motif No., Name and

Description
Structure

(in ARN format)
Biological Example

1. Excitatory (E)

The presence of X
activates Y

 Elementary motif common throughout most
pathways. For example- Ras is a membrane
associated protein that is normally activated in
response to the binding of extracellular signals such
as growth factors (Tyson and Novak 2010).

2. Inhibitory (Y)

The presence of X
inhibits Y. Acts as a
NOT gate.

 Elementary motif common throughout most
pathways. For example- E-cadherin (a calcium-
dependent cell–cell adhesion molecule) suppresses
cellular transformation by inhibiting β-catenin
(Tyson and Novak 2010).

3. Positive Feedback
Loop (PFL)

The presence of X
activates Y and in turn
the presence of Y
activates X

 One example is the pathway of caspase activation
which is essential for apoptosis induction. A PFL
exists between caspase-3 and caspase-9 (Tyson and
Novak 2010).

4. Negative Feedback
Loop (NFL)

The presence of X
activates Y and in turn
the presence of Y
inhibits X

 For instance, the proteins Mdm2 and p53 (p53 is a
tumor suppressor protein) are involved in a NFL
which functions to keep the level of p53 low in the
absence of p53-stabilising signals (Tyson and
Novak 2010).

5. Double Negative
Feedback (DNF)

The presence of X
inhibits Y and the
presence of Y inhibits X

 For instance, BAX is a protein which promotes
apoptosis by competing with BCL. A DNF is
formed between the proteins BAX and BCL (Tyson
and Novak 2010).

6. Branch (B)

 The presence of X
activates Y and Z

 For example, the transcription factors such as E2F
or P53 frequently modulate the expression of more
than one gene. Enzymes often modify more than
one substrate e.g. CycB-dependant kinase (Tyson
and Novak 2010).

Key: Either inhibitory or excitatory. X/Y/Z: Chemical species

* Motifs may combine arbitrary numbers of components.

Y X

X Y

 X Y

Y X

Y X

X

Y

Z

Excitatory
 Inhibitory connection Chemical substrate

Reaction

18

TABLE 2.1 Part B Structural Motifs in Biochemical Networks

Structural Motifs Table 1 Part B
Motif No., Name and

Description
Structure

(in ARN format)
Biological Example

7. Logic Gate (LG1)
AND gate: two
excitatory connections
from X and Y. When
both X and Y are
present, they activate Z
NOR gate: two
inhibitory connections
from X and Y. Both X
and Y must be absent
for Z to be activated
SWITCH: Excitatory
connection from X and
inhibitory connection
from Y. The presence
of X but not Y
activates Z

AND: The protein gCam 2 kinase becomes active
when both calcium ions (Ca2+) and Calmodulin
(CaM) are present (Bray 1995).

NOR: The activity of transcription factor E2F is a
NOR function of RB and CycB where E2F is
active when both RB and CycB are inactive
(Tyson and Novak 2010).

SWITCH: The enzyme aspartate
transcarbamylase has multiple catalytic sites. It is
activated by the binding of its substrates
(aspartate and carbamoyl phosphate) and
inactivated by cytidine triphosphate causing its
substrates to dissociate (Bray 1995).

8. Logic Gate (LG2)

OR Gate: two
excitatory connections
from X and Y when
either X or Y are
present they activate Z

 Ras is a membrane associated protein that is
activated by a number of different signals. E.g. in
response to the binding of extracellular signals
such as a number of growth factors (Tyson and
Novak 2010).

9. Oscillator (OSC)

The presence of X
activates Y. In turn the
presence of Y activates
Z but inhibits X. The
presence of Z inhibits
Y and activates X.

The cyanobacteria clock protein KaiC has a well-
defined closed cycle of phosphorylation and
dephosphorylation states (composed of KaiA,
KaiB and KaiC). In the motif shown here, all
three components oscillate and each inhibits the
reaction clockwise. Oscillators may have less
inhibitory connections, the number of which is
dependent on the mobility of the reaction species.
However, the presence of all inhibitors increases
stability in the presence of fluctuating
environmental parameters e.g. temperature.
*Note that this oscillator can also be thought of as
a PFL (motif 3) combined with a system of DNFs
(motif 5).

Key: Either inhibitory or excitatory. X/Y/Z: Chemical species

* Motifs may combine arbitrary numbers of components.

A number of researchers have identified structural motifs within CSNs which perform distinct

computational functions (Tyson and Novak 2010; Bray 1995). A summary of these structures

and of the most common motifs is provided in Table 1 parts A and B; a more detailed

discussion is provided by Tyson and Novak (2010). The motifs are shown for simplicity as two

or three component forms but there are larger versions with the same function; for example, an

X

Y

Z

X

Z

Y

X

Z

Y

Excitatory
 Inhibitory connection Chemical substrate

Reaction

19

additional component may be added to motif 9 to create a four component oscillator. Such

oscillators produce a periodic change in chemical concentrations and many illustrations of these

motifs can be found within the literature (Tyson and Novak 2010; Bray 1995; Kholodenko

2006). One important example is the universal signalling motif of a phosphorylation cycle.

Here a signalling protein is interconverted by opposing enzymes (a kinase and a phosphatase)

between its phosphorylated (Yp) and non-phosphorylated forms (Ys). In a multisite

phosphorylation cycle, positive or negative feedback from either form can cause oscillations

between stable states or render the cycle into a bistable switch, where the low and high Yp

concentrations correspond to “on “and “off” states (kholodenko 2006). A cascade of such

bistable cycles can produce multiple stable states, allowing the control of many cellular

functions. For example, the cell’s transition into mitosis is governed by the sequential

activation or inactivation of such kinases (CDK1/Cdc2) (Kholodenko 2006).

Another motif (motif 7, Table 1), is a logic gate. For example, consider a protein with two sites

that may undergo phosphorylation. If the protein is active when both sites are phosphorylated, it

is similar to a Boolean AND gate. Alternatively, if this protein is active when either site is

phosphorylated, it is analogous to a Boolean OR gate (motif 8, Table 1). The activity of the

response is determined by kinetic factors such as binding affinities – or, using reaction kinetic

terminology: the reaction rate, reaction order and concentration of the reacting molecules.

Where conditions are highly reactive, a processing unit acts like a molecular switch giving a

sharp binary on/off response - or, in cases of lower reactivity, a unit may provide a more

gradual response more comparable to Fuzzy Logic.

Another important feature of CSNs is their ability to amplify a faint signal and generate a

considerably greater response. Amplification occurs when there is an increase in the absolute

number of output molecules compared to the number of input molecules. For example, branch

motifs (motif 6, Table 1) allow amplification, because a single ligand activates a protein, which

proceeds to trigger numerous targets. Each of these proteins then initiates a cascade of

signalling events, where, at each step, there is a potential for similar amplification, thus

generating a response signal on a scale much larger than the original signal (Bray 1995).

It is not difficult to imagine how a system with such elaborate processing abilities could be

configured to perform highly complex computational tasks. In fact, many researchers have

argued that CSNs have many features in common with the AI technique “Artificial Neural

Networks” or ANNs (Bray 1995; Bhalla 2003; Hellingwerf 2005). This technique was itself,

inspired by a form of cell signalling, when, in 1943, McCulloch and Pitts demonstrated how a

highly stylised representation of a biological neuron could perform a variety of logical

20

processing. The original idea has since been developed considerably, notably by Rosenblatt

(1957), who developed the first learning algorithm, and by Werbos (1974) who was one of the

first to propose the well-known Backpropagation training technique. It has since been shown

that a layered network of artificial neurons is capable of performing any logical operation and

demonstrates the ability to recognise patterns (Rumelhart and McClelland 1986).

ANNs have proved extremely useful in many applications involving pattern recognition and in

fields such as robotic control (Rumelhart and McClelland 1986). The similarities drawn

between ANNs and CSNs are based on computational attributes and ignore the obvious

differences between their implementation. Bray provides an excellent comparison (Bray 1995),

the main points of which are summarised here:

1. Both CSNs and ANNs are networks composed of highly-connected parallel distributed

units. Each unit amplifies or attenuates and then simultaneously integrates and

processes signals. In a CSN, it is a reaction which integrates and transforms a number

of signals into an output, while in an ANN this is performed by the activation function

of a neuron.

2. Both networks can have “hidden layers” of processing units. In a CSN, intermediary

reactions function like those of the hidden units found in a neural network, where the

overall output is the collective result of internal processing.

3. Both ANNs and CSNs are able to recognise patterns. In a CSN, patterns are composed

of a number of input signals such as the presence of concentrations of particular

chemical species within the environment.

4. Both ANNs and CSNs are robust. CSNs are able to recognise patterns, while ignoring

irrelevant chemicals (noise), even when the signalling pathway has been degraded. This

robustness is also found in ANNs, where the correct response to input patterns is still

generated in the presence of noise and loss of units.

A significant difference between CSNs and simple traditional ANNs relates to the dimension of

time. Time was not represented in the original ANN model, and its output was thus static. In a

CSN, time is implicit, and a continuous response is generated. The time taken to respond to an

input signal depends on numerous factors. For example, molecular diffusion rates through the

cytoplasm are subject to molecular size and forces between neighbouring molecules.

21

The computational features discussed in this section act in concert to provide the level of

processing required to generate emergent high-level behaviour in cells. Thus a CI inspired AI

technique should incorporate such properties.

2.4 Representations of Cell Signalling Networks

Models of CSNs provide a means to examine complex relationships between receptor stimuli

and cellular responses. They also offer insights into the mechanisms responsible for

characteristics such as signal amplification, robustness, oscillations, and emergent behaviour.

Furthermore, increased understanding of cell signal processing enables researchers to explore

and predict the effects of disease and the outcome of pharmaceutical intervention. Traditional

biology has focused on the examination of biological systems by reducing them to their

individual parts, and studying them in isolation. This reductionist approach has proven

unsuitable for representing the complex dynamics of CSNs, where cellular response is tightly

regulated by the elaborate intracellular spatial and temporal dynamics of interconnected

signalling molecules. In contrast, Systems Biology offers a holistic approach in which the entire

system is examined in terms of interactions between its component parts. This approach

emerged as a distinct discipline in the late 1960’s, when Mihajlo Mesarovic (1968) described it

as the use of systems theory to explain biological phenomena. However, interest was limited

until the birth of functional genomics in the 1990s. This resulted in a considerable growth in

availability of quality biological data and together with the exponential increase in

computational power, allowed more realistic computational models to be constructed.

Consequently, there are now numerous methods of representing networks of chemical

reactions, ranging from the meticulously detailed quantum mechanical models to the highly

abstracted discrete Boolean ones. Savageau (1988) provides a descriptive diagram of this

spectrum, and this is summarised in Fig. 2.6.

Quantum mechanical wave models DiscreteStochastic

Potential energy models Continuous/Deterministic

Probability distribution models Discrete/Stochastic

Ordinary differential equation models Continuous/Deterministic
Abstract machines Discrete/Stochastic

Boolean functions Discrete/Deterministic

Fig. 2.6 Spectrum of detail in representations of biochemical systems.

After figure in: Savageau M. (1988) Introduction to S-Systems and the underlying power-law formalism.

IN

C
R

EA
SI

N
G

 C
O

M
PL

EX
IT

Y

22

The choice of representation used depends upon the information one intends to extract from the

model. For example, if the interest lies in reaction occurrence alone, simple Boolean functions

would suffice. The study of Cellular Intelligence requires a representation which focuses on

emergent global behaviour resulting from complex spatio-temporal interactions and network

topologies. A common problem with modelling such a system, is achieving a balance between

scope and detail. Too narrow a scope would result in insufficient predicative power;

conversely, increasing the scope results in addition of parameters, which quickly escalate

beyond manageable levels (Aldridge et al. 2006).

Starting from the top of this hierarchy, the next sections provide an overview of the most

relevant techniques, that is, those which are able to capture any of the previously discussed

properties and mechanisms of CSNs. As it is not practical to represent networks of reactions at

the quantum level, techniques residing at the top of this hierarchy such as the quantum

mechanical wave function will not be considered. However, particular attention is given to

those techniques which incorporate both the temporal dimension and the parallel distributed

processing nature of CSNs.

2.4.1 Potential Energy Models

Potential energy functions represent the thermodynamic properties of systems by considering

the potential energy of their component reactions. By creating “potential energy landscapes” of

CSNs it is possible to study global properties such as robustness. If the steady-state distribution

of reactant species is known, a link can be drawn between the probability of a configuration

state (concentration) and its associated potential energy. In a CSN, the probability of a

molecular species being in a particular state will be higher if its associated energy within the

landscape is lower (Wang et al. 2006). A similar energy technique exists that uses Gibbs free

energy (Hong et al. 2005). Such models can provide insight into global behaviour, stability and

robustness, but are limited by their inability to represent complex network topologies and

temporal dynamics in a computationally efficient way. Furthermore, the use of the “energy

landscape” does not facilitate their simple use in systems with conventional inputs and outputs.

2.4.2 Probability Distribution Models

Probability distribution models represent the stochastic properties of signal transduction. These

use statistical models of molecular behaviours to calculate the probability distribution for each

alternative behaviour occurring. There are numerous techniques available to do this, such as:

Bayesian Networks (BNs); Markov Chains (MCs) and Stochastic Simulation Algorithms

(SSAs).

23

BNs have recently drawn interest for their ability to infer CSNs from experimental data (Woolf

et al. 2005). Here reactive species are represented as variables, each having an associated

probability table. This table contains possible concentration levels (states) according to the

presence of other reactant species. Such networks are disadvantageous in that they are acyclic

and static and thus modelling feedback regulatory mechanisms and temporal dynamics is not

viable.

SSAs are popular stochastic simulation methods based on the Chemical Master Equation (Stoll

et al. 2012). One example is the Gillespie Algorithm which is used to predict which reaction is

likely to occur and at what time (Gillespie 1977). The Chemical Master Equation is a linear

differential equation which describes the probability that the chemical system will be in a

particular state at a set time. The Gillespie Algorithm samples the probability space using a

Monte Carlo step and in this way generates an exact distribution for the Chemical Master

Equation. This method accounts for the randomness inherent in molecular reactions, and is

useful in examining the effects of microscopic variations (Stoll et al. 2012). Its main

disadvantage is computational cost, which can be high, particularly when elapsed time between

reactions is small. Furthermore, it assumes a well-stirred reactor and thus compartmentalisation

is not modelled. Finally, only few reactants can be simulated because every reaction is

explicitly accounted for.

In MCs, the current state of the chain is determined by the amount of molecules present.

Reactions are represented as transitions between these states (Calder et al. 2006). Using MCs,

one can gain information with regard to the steady-state probability distribution of a CSN;

however, this is only possible in the absence of feedback mechanisms (Decraene et al. 2007).

2.4.3 Ordinary Differential Equation Models

A very common method used to model biological systems is ordinary differential equations

(ODEs). These models are popular since they use continuous data and are able to accurately

represent underlying system dynamics (Eungdamrong and Iyengar 2004). They also link the

forward and reverse rates of a reaction with other measurable reaction parameters. The most

popular of the ODE models are discussed below.

A well established and popular model is the Rate Law equation. This describes the progress of

a reactant or product concentration through time. Before introducing the model, the kinetics of

a typical reaction are briefly examined.

http://en.wikipedia.org/wiki/Master_equation
http://en.wikipedia.org/wiki/Master_equation

24

In general, the initial rate of a reaction is relatively large, and gradually decreases to zero.

Typically, a reaction plot of product concentration versus time would produce a convex-up

increasing graph, as shown in Fig. 2.7. The derivative of the curve at time t corresponds to the

instantaneous rate of the reaction, while the average rate is given by the final product

concentration divided by the total time.

Fig 2.7 Typical reaction kinetic plot showing product concentration vs. time.

Reactions are often defined as being reversible or irreversible; a reversible reaction being one

which results in a stable chemical equilibrium mixture of reactants and products. The net rate of

species generation is equal to the sum of the forward and reverse rate Eq. (2.1) (Morris 1974).

At equilibrium this is approximately zero.

 reverseforwardnet rateraterate −=
 (2.1)

 [] ji
r

hg
f DCkBAkV][][][][

.
−= (2.2)

The Rate Law expression, given in Eq. (2.2), describes the net rate of a reaction ([
.

V]) with

respect to time and is equal to the difference between the two distinct functions: the forward

reaction rate and the reverse reaction rate; where the first term (hg
f BAk][][), includes all

C
on

ce
nt

ra
tio

n
of

 p
ro

du
ct

 [P
]

Time (t)

25

terms contributing to system influx the second (ji
r DCk][][) to decay of products. In each term,

a set of concentrations ([A], [B], [C], [D]) are raised to a power which defines the order (g, h, i,

j), with respect to the reactant or catalyst, and multiplied by a rate constant (kf or kr) (Morris

1974). In a non-reversible reaction between reactants A and B, the reverse term is removed

from the expression. The rate constant defines the proportion of molecules that react in the

particular process per unit time. In an elementary reaction (one with no intermediate steps) the

order determines how many molecules are involved in the reaction for each unit of chemical

concentration. Zero order, with respect to a reacting species, indicates that this concentration

will not affect the rate of reaction. The overall order of the reaction is determined by totalling

the orders of each chemical species (Morris 1974).

The Rate Law equation, like other ODE models, is able to provide an accurate representation of

temporal dynamics. However, in its basic form it does not provide a means to clearly visualise a

complex network of chemical reactions. Furthermore, like most ODE models, it does not

account for the intracellular spatial distribution of chemical species into localised compartments

- an attribute termed “compartmentalisation”. Instead it assumes the cell is a well-stirred reactor

(Decraene 2007; Eungdamrong and Iyengar 2004). This localisation restricts which molecules

may react, thus affects the overall dynamics of the system. Representing the spatial distribution

of chemicals allows fine-grained control over the system dynamics and thus is highly beneficial

when modelling biochemical circuitry. For example, it allows the representation of flow

structures such as membrane channels, transport processes and network motifs, and provides a

means to explore disease pathways (Kreyssig and Dittrich 2011). To address this issue,

compartmental ODE models have been developed which achieve coarse representations of

these compartments (Eungdamrong and Iyengar 2004). In these methods, the same molecular

species may occupy many different compartments; however each compartment is treated as

though it were a separate species. Molecular exchange between compartments is modelled as a

flux; this is then used to update compartments associated with the exchange. For coarse

approximations, this type of model is appropriate. However, such models are inappropriate for

fine spatial detail, as the number of compartments and therefore variables quickly increase

beyond manageable levels (Eungdamrong and Iyengar 2004). Another adaptation is to use

Partial Differential Equations (PDEs), where concentration of molecular species is a function of

time and space. These however have the disadvantage of being more complex, computationally

intensive and non-intuitive (Eungdamrong and Iyengar 2004).

S-Systems are based on the Rate Law and are another popular ODE representation. They have

been used to model biological systems since the late 1960s (Savageau and Voit 1987).

26

Similarly, to the simple Rate Law, each ODE is composed of species concentration variables,

raised to a power and multiplied by rate constants, as shown in Eq. (2.3). Again, each ODE is

equal to the difference between two distinct functions; the first term includes all terms

contributing to system influx, the second to decay. The first half corresponds to the basic

forward reaction. Where the rate of change of product j ([Pj]), is given by the forward reaction

rate (the speed of the reaction) labeled kf, multiplied by the product of the concentrations of the

N reactants [Rn], each raised to the power of its reaction order αn. The second term represents

the decomposition of product back into its original reactants. This depends on the reverse

reaction coefficient kr multiplied by the product of the concentrations of the M products [Pi],

each raised to the power of its reaction order βi.

 ∏∏
==

−=
M

i
ir

N

n
nf

j in PkRk
dt
Pd

11

][][
][βα (2.3)

To illustrate this further, consider the common reaction between two reactants labelled A and B

with reaction orders (the number of molecules of each reactant used to make a molecule of

product) of q and w respectively. These produce a single product P. The order of the reverse

reaction is one. Eq. (2.3) is then reduced as described by Eq. (2.4).

][][][][PkBAk
dt
Pd

r
wq

f −= (2.4)

In S-Systems, a group of rate equations are normally set up - one for each reaction. The left

hand of each equation is then set to zero and they are then solved simultaneously to yield the

steady-state response. If the dynamic responses are required, then numerical solution methods

like Runge-Kutta are normally applied.

There is little difference between an S-System representation of a reaction and its

representation as a Rate Law. Essentially the distinction between the two is that the S-System

simply provides a more generalised way of representing a set of reactants and products. Thus

the Rate Law and S-System representation share the same advantages and disadvantages.

Another popular ODE equation, introduced in 1913, is the Michaelis-Menten equation (Morris

1974). This is used to model the kinetics of enzymatic reaction kinetics. Its mechanism can be

represented as shown in Fig. 2.8.

27

[] [] [] [] []PEESSE
sf

r

kk

k
+→↔+

Fig. 2.8 Michaelis-Menten mechanism of enzymatic reactions

The first reaction represents the enzyme E reacting reversibly (forward rate is kf and reverse

rate is kr) with the substrate S, to produce the enzyme substrate complex ES. The second

reaction, (often an allosteric change), produces the reaction product P (rate is ks), and the

enzyme returns to its disassociated state. The two differential equations shown in Eq. (2.5) and

(2.6) give the kinetics of the above reaction.

0])[(]][[][
=+−= ESkkSEk

dt
ESd

srf
 (2.5)

][][ESk
dt
Pd

s=
 (2.6)

The only essential difference between the Michaelis-Menten equations and the Rate Law is that

an additional intermediate reaction which forms the enzyme substrate complex is specifically

accounted for. Thus it provides a more accurate account of the specific dynamics of such

enzymatic reactions. However, it means that it is restricted specifically to modelling of

enzymatic reactions only. Aside from these points, the Michaelis-Menten model shares the

same advantages and disadvantages as other ODE models.

Many Michaelis-Menten based models are systems of the above equations; however, others

have used these equations in different ways. For example, the AB-neuron (Eikelder et al. 2009)

is an abstract mathematical representation of phosphorylation cycles within CSNs. It has a

connectionist representation where reactions form weighted links between substrates. The

Michaelis-Menten equation provides the output of each reaction and represents the steady-state

concentration of the product. The AB-neuron was developed as part of the ESIGNET (2011)

project and has been used to successfully predict reaction rates of phosphorylation cycles. In its

current state, it may be used to model enzymatic reactions, but does not account for transient

dynamics between steady-state equilibrium.

28

2.4.4 Abstract Machine Models

A number of Abstract Machine models have been used to simulate chemical systems. These

can be broadly classed into Algebraic Process Calculi (PC) and State Transition Systems.

Abstract Machines offer discrete models and are widely used to study parallel distributed

concurrent processing.

One important example of a State Transition System is the graphical and mathematical

modelling tool called a Petri Net (PN). This is used extensively in several types of information

processing, including modelling CSNs (Balden et al. 2010). In a similar way to UML (Unified

Modelling Language), the graphical notation of PNs is useful as a visualisation and

communication tool; however, it also provides a precise mathematical definition and theory for

process execution and analysis (Murata 1989). The graphical representation, shown in Fig. 2.9,

takes the form of a bipartite graph composed of two types of nodes called places (circles) and

transitions (boxes/bars). Arcs, shown as directed, weighted (positive integer) lines, represent

transitions (reactions) from either a place to transition or transition to place. “Input places”

(representing reactants) describe the places from which an arc runs to a transition, whereas

“output places” (representing products) describe the places to which an arc runs from a

transition.

Fig.2.9 A Petri Net for the formation of water is described in (a). The Petri Net in (b) describes the state

prior to formation, and (c) after products have been formed.

Each place contains 0 or a positive number of tokens (black dots). A “marking” describes the

current value of tokens assigned to each place and represents the current state of the PN. If a

token is present within the place then a condition has been met. Each transition represents an

event, where the input place tokens represent pre-conditions and similarly the output place

29

tokens represent post-conditions to that event. A transition may “fire” (a reaction occurs)

whenever the correct number of tokens (pre-conditions) are present in each input place. The

action of firing is atomic and the tokens used within the transition are placed in the output

places. For example, as shown in Fig. 2.9b, the required tokens are present in each input place

and thus preconditions for the formation of water have been met. Fig. 2.9c shows the state of

the PN after the transition has fired and the post-conditions have been met (Murata 1989).

Many extensions to the original PN have been proposed within the literature. One such example

is the addition of test and inhibitor arcs (Agerwala 1974). A test arc verifies the presence of a

token in an input place without consuming it. If a token is present in a place connected to an

inhibitor arc, the transition will be prevented from firing. In biological systems, test and

inhibitor arcs are particularly useful. For instance, a test arc may model the role that enzymes

play in reactions (enzymes are needed for a reaction to take place, but are not consumed).

Another example are Functional PNs (FPNs), which represent arc weights symbolically as

functions of the number of tokens in places (Hofestadt and Thelen 1998). In the case of

biological systems, these are used to model the way in which variations in species

concentration may influence the reaction. Other PN extensions provide means to represent

temporal system dynamics. For example, Time Petri nets (TPNs) (Merlin and Farber 1976)

include a time interval associated with each transition, where each transition must fire within

that time period.

PNs are designed for modelling parallel distributed processing systems, making them a

powerful tool in the representation of CSNs. By separating chemical species spatially, places

provide a means to model compartmentalisation and facilitate the fine-tuning of species

parameters. In their basic form their limitations are similar to other discrete models, particularly

their inability to represent time. Furthermore, they cannot represent reversible reactions,

different chemicals (all tokens are the same) or external connections to the pathway.

Extensions, such as those discussed above have been used to address these problems, although

none offer ideal solutions.

Algebraic Process Calculi methods (also referred to as Term-Rewriting Systems) represent

reactants as multisets of algebraic terms. Examples used to model biological systems are

Chemical Abstract Machines (CHAM) (Berry and Boudol 1992) and AlChemy (Fontana

1992), which is based on λ-calculus. CHAM is an extension of the T-language introduced by

Banâtre et al. (1988). In CHAM the reactants are represented by algebraic terms, the population

of which is organised as a finite multiset. Reactions are defined by transformation rules which

rewrite multisets, matching the reactant side of the rule with the product multiset. Typically

30

these types of model represent the reaction vessel as a well-stirred reactor, and thus do not

account for spatial compartments. Algebraic Process Calculi methods are used extensively in

the field of Artificial Chemistry, and are described in more detail in the next chapter.

2.4.5 Boolean Function Models

Boolean Networks, introduced by Stuart Kauffman, are an example of dynamic networks,

where both time and state are discrete (Kauffman 1969). They were first used to describe Gene

Regulatory Networks, where the state of a gene is described by a Boolean variable expressing

an active (on:1) or inactive (off:0) state. This simple representation has since been used to

describe the occurrence of a reaction (Davidich 2008). They consist of a set of n-logical nodes,

each corresponding to a protein. Each node state is determined by its set of connected nodes,

the states of which serve as input variables. These inputs are subject to a Boolean function

representing the interaction between elements. This is used to calculate the nodes’ current state

and each node state is updated synchronously.

Many extensions to the original Boolean Networks have since been developed. For example,

Random Boolean Networks (RBNs) have random initialisation of connections and logical

functions (Gershenson 2004). The original Boolean Networks (which are termed Classical

RBNs (CRBNs)) use a synchronous updating scheme. This has been criticised, as neither gene

nor reactions change their states at the same instant (Harvey and Bossomaier 1997). As a result,

variations in updating schemes have been developed. Harvey and Bossomaier (1997)

introduced asynchronous RBNs (ARBNs) where a random node is selected and updated at each

time-step. Unlike CRBNs, ARBNs are non-deterministic. In order to maintain asynchronicity of

ARBNs and the deterministic properties of CRBNs, Gerhenson (2002) later developed

Deterministic Asynchronous RBNs (DARBNs).

In their general form, Boolean Networks are computationally cheap due to their innate

simplicity, and are focused on emergent network properties. However they discard most unit

behaviour, preferring a binary switch response rather than continuous signals, and therefore

cannot capture subtle system dynamics.

31

3. Artificial Intelligence Inspired by

Cell Signalling

The previous chapter explored the emergent behaviours associated with CSNs and provided a

critical analysis of the mathematical and computational methods used to model such behaviour.

This chapter provides a review of the literature on AI techniques inspired by these biochemical

reactions.

 As already described, networks of biochemical reactions exhibit characteristics of self-

organisation, robustness, fault tolerance, adaptability, and functional emergence. Such attributes

are frequently desirable in computer systems. This has led researchers to abstract properties and

mechanisms from these biochemical networks to create AI systems to solve current real-world

problems. Many of the techniques described in the previous chapter have application as

biological simulators, but also in AI. Thus, there is a broad overlap in their field of application.

Generally, in AI, these techniques are used to create highly abstract models, while, when

applied to Systems Biology, the models tend to be analogues of the biological system. Usually,

the aims of AI and Systems Biology researchers are distinct and thus techniques are exploited

in different ways for distinct purposes. However, sometimes the motivation overlaps. For

example, AI researchers are also interested in the origins of intelligence and even in the

mechanisms involved in the evolution of the first life forms, for example, studying the

autopoiesis of cells (McMullin 2004). Gaining an understanding of such processes means they

can be exploited to create powerful AI solutions.

The first section of this chapter provides a brief introduction to bio-inspired AI. This is

followed by an overview of Artificial Chemistry, that is, man-made systems which exploit the

properties and mechanisms of natural chemical systems. The most relevant of these AI models

are then discussed in the remaining sections, that is, those which take into account the linkage

of chemicals through interactions, and consider temporal dynamics. Only models which can be

programmed on conventional computers are considered. Thus, Artificial Chemical systems

implemented from organic components such as Reaction-Diffusion systems (Adamatzky et al.

32

2005), molecular devices (Zauner and Conrad 2001), or those implemented as electrical

circuitry, for example, Reaction Diffusion Cellular Neural Networks (RDCNN) (Arena et al.

1999) are not discussed. The reviewed techniques are organised into six sections. These are

techniques based on the: endocrine system, nervous system, immune system, metabolic system,

gene regulatory system and chemical reaction systems in general.

3.1 Introduction to Bio-inspired AI

AI can be divided into two main branches: Bio-inspired Computing (also known as Natural

Computing) and Symbolic AI. The focus of Bio-inspired Computing is to develop

computational solutions to complex real-world problems based on ideas gained from the study

of living systems. In particular, natural principles such as interaction, adaptation, selection, and

emergence are used. In contrast, Symbolic AI, aims to develop computational solutions which

emulate human intelligence, using symbolic expressions and rules of manipulation. Alan

Turing and John Von Neumann are among the first to suggest that principles from the natural

world could be used to solve computational problems (Turing 1952; Neumann 1958). Bio-

inspired AI has proven extremely powerful and has expanded enormously since its birth. Many

subdivisions now exist, for example: Artificial Life, Evolutionary Computing, Neural

Computing, Cellular Automata, and Swarm Intelligence. Three of the most established of these

techniques are Evolutionary Computing, Neural Computing and Cellular Automata.

Evolutionary Computing encompasses techniques which are based on Darwinian evolutionary

principles. Neural Computing techniques are inspired by the nervous system, particularly the

parallel distributed nature of processing found in neural networks. Cellular Automata

techniques, like many biological systems, consist of simple components which, through

multiple low-level interactions give rise to emergent behaviours.

By using Genetic Algorithms (Rajasekaran and Vijayslakshmi 2011) as an example it can be

illustrated how features seen in nature can be abstracted into an AI representation. Genetic

Algorithms (GAs) belong to the Evolutionary Computing branch of bio-inspired AI. They are a

type of search heuristic which use evolutionary principles such as mutation, crossover, fitness

and selection to find and to optimise solutions to complex problems. The basic steps are as

follows. The first stage is to randomly initialise a population of solutions, the size of which

depends on the nature of the problem. Each solution is composed of a number of values such as

binary strings. These values represent the chromosome or genotype within the genotype

phenotype relationship. A process of fitness evaluation, selection and breeding is then repeated

until a solution which meets the fitness criteria is gained. The probability of a particular

http://en.wikipedia.org/wiki/Evolution

33

solution being selected for breeding is based on its fitness. The breeding population are then

used to create the next generation. Here certain members are selected to swap chromosomal

information between each other in a process called crossover and further variation is introduced

by applying random mutation. The idea is that as the GA progresses, the members of each

generation evolve towards higher fitness until eventually finding a solution which meets the

fitness criteria (Rajasekaran and Vijayslakshmi 2011). The process for a highly generalised GA

can be summarised in the pseudocode below:

Initialise the population

WHILE fitness condition not met

Evaluate fitness

Prune population

Selection

Crossover

Mutation

END WHILE

3.2 Artificial Chemistry

Artificial Chemistry (AC) is a sub-branch of Artificial Life (A-Life). A-Life is the study of the

organisational features and processing mechanisms found within living systems through

simulations, robotics and synthetic biology. Its working hypothesis is that by following the

organisational principles of a living system, it is possible to artificially generate desirable

behaviours characteristic of that system. In A-Life emergence through interacting components

is a central concept. In a similar way, AC exploits the organisational features, computational

properties and underlying mechanisms of chemical systems to create useful artificial

representations. It can be broadly described as a "man-made system which resembles a

chemical system" (Dittrich et al. 2001). There are two main branches of AC: Molecular

Computing devices, where computation is achieved using real chemicals (Dittrich et al. 2001;

de Silva and Uchiyama 2007), or alternatively, by utilising the principles of the Chemical

Metaphor to construct novel software or hardware architectures in silico (Dittrich et al. 2001).

The latter approach is termed Artificial Chemistry Computing (ACC) and is the focus of this

literature review. In the Chemical Metaphor, data is stored in the form of molecular species and

information processing occurs through interactions (reactions) between these molecules. The

result of this computation appears as emergent global behaviour (Dittrich et al. 2001).

http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Simulation

34

ACC is used in two main applications: simulating complex systems (biological, social or

ecological) and in developing novel solutions to engineering or computational problems.

Most AC systems can be defined formally by three components. The first component, C, is the

set of reacting chemicals where C= c1, ... cn and n may be infinite. Chemicals may be written as

symbols, strings, numbers, or expressions. The second component, R, is the rules governing the

reactions between the chemicals and these may be written in chemical notation form, for

example:

2H2 + O2 → 2H2O

The general structure of a rule is shown below:

s1 + ... sn → p1 + ...pn

Here, the components on the left-hand side (reactant species s1...sn) react and are replaced by

components on the right-hand side (product species p1 ...pn) (Dittrich 2001). The final

component, “A”, is an algorithm describing the reaction vessel and how these rules are applied

(Dittrich 2001). For example, the algorithm determines when and how often to apply the rules.

It also defines the global parameters such as temperature, and pressure of the vessel.

ACC approaches can be broadly categorised into microscopic or macroscopic methods

(Dittrich et al. 1997). Microscopic methods treat each molecule explicitly, while in

macroscopic methods all the molecules of one type are represented by a value signifying, for

example, concentration. The dynamics depend largely on whether the ACC representation of

molecules is macroscopic or microscopic. Microscopic ACCs tend to model dynamics as

stochastic molecular collisions, while macroscopic ACCs frequently model the dynamics as

continuous differential or discrete difference equations. Alternatives exist such as combinations

of the two, or metadynamic methods where the rules of the reaction vessel change over time

(Dittrich et al. 2001).

3.3 AI Inspired by Reactions of the Endocrine System

In mammals, the endocrine system produces and stores chemical signals called hormones.

These chemicals function to regulate bodily processes and maintain a steady internal state

(homeostasis), despite continuous fluctuations in external environmental conditions. Hormones

regulate almost all bodily processes including growth, mood, sleep, reproduction and

35

metabolism. They are secreted into the bloodstream and act at a cellular level by binding to

specific receptors on target cells. These target cells commence a chain of signalling events and

in this way alter their activity (Alberts et al. 1989).

Artificial Endocrine Systems (AES) are a category of recent AI techniques which take their

inspiration from the mammalian endocrine system. A typical example is the DHS (Digital

Hormone System) created by Shen et al. (2004). The DHS has been used as a control system

for a robotic swarm to facilitate a number of tasks, such as, search and seize, self-repair, and

forming sensor networks. In the DHS each robot is viewed as a biological cell that

communicates with other cells (robots) via artificial hormones and executes local actions via

artificial receptors. A robot generates hormones and these are received by connected robots,

which can then modify and propagate the hormone message. The concentration of each

hormone is a function of position and time and is described by ODEs. A robot selects an action

based on a probability function which considers the current state of its sensors, local topology

and its received hormones. Through the low-level interactions and activities, global high-level

behaviour is generated and the swarm demonstrates properties of self-organisation (Shen et al.

2004).

Other AES models use artificial hormones as a means of reinforcement learning, where

weighted connections of neural nodes are modified allowing their activity to be regulated. For

example, the Artificial Homeostatic System (Moioli et al. 2008) was used to create an

autonomous robotic control system. It was composed of two neural modules, each of which

were extended versions of the GasNet neural model (Husbands 1998) (discussed later), and an

AES as shown in Fig 3.1. Each GasNet module receives information from the environment and

generates a particular action. These actions were regulated by switching among the modules

using the AES. In this model, the AES is a system of coupled non-linear difference equations

composed of three modules: the Hormone Level Repository (HL), the Hormone Production

Controller (HPC) and the Endocrine Gland (EG). The HL records the level of hormone in the

system, the HPC regulates the production of hormone appropriate to current internal state and

external stimulation, and the EG is responsible for secreting hormones when required. The level

of hormone alters the internal system state and regulates the outputs of the GasNet modules.

The outputs of the GasNet modules were directly connected to the motors of the robot, and

were responsible for adjusting its velocity. Using this system, the robot successfully

demonstrates both obstacle avoidance and light chasing behaviour.

36

Fig. 3.1 The Artificial Homeostatic System

Adapted from Moioli et al. 2008.

Another AES robotic control paradigm was presented by Hamann et al. (2010) and is termed

the Artificial Homeostatic Hormone System (AHHS). In this model, the inner body of a robot is

segregated into virtual compartments, where each is associated with an actual physical part of

the robots body (like an annelid worm). For instance, a sensor is mapped to a particular

compartment. When triggered, the sensor secretes artificial hormone within the virtual

compartment of the robot. Hormones diffuse between compartments through the body and

result in the modulation in activity of the robotic actuators. Hormones were represented by

numeric values and governed by rules where each hormone has a decay and diffusion rate, both

of which were set by evolutionary computation. The dynamics of the hormone in each

compartment is modelled by a system of ODEs. In Schmickl et al. (2011), a AHHS was used to

generate motion in a simulated multi-modular reconfigurable robotic system. In this example,

the modules were connected by hinges to form the robots body. The hinges were controlled by

actuators which had to be coordinated to generate efficient motion. The AHHS was also used to

control a wheeled robot. In this case, the wheel actuators were activated in correspondence to

the level of hormone in their associated compartment, as shown in Fig. 3.2. For example, high

levels of hormone secreted by the left proximity sensor, results in acceleration of the left wheel

(for example, to implement obstacle avoidance). If hormone levels were the same in each

compartment the robot drove forward in a straight line.

Release
Hormones

Output adjusts
motor velocity

NSGasNet

EX
TE

R
N

A
L

ST
IM

U
LI

Current
Hormone
Level

AES

HL

HPC

EG

N1

N2

 MOTORS

37

Fig. 3.2 The Artificial Homeostatic Hormone System (AHHS) for a wheeled robot.

Adapted from Schmickl et al. 2011.

Other models such as the Artificial Hormone System (AHoS) use artificial hormones to

regulate task allocation, coordination, and management of heterogeneous units (Brinkschulte et

al. 2007). This AHoS consists of three hormones: one to determine the quality of a unit to

execute a particular task, one to suppress the execution of a task by a particular unit, and one to

activate the execution of a task by a particular unit.

3.4 AI Inspired by Reactions of the Immune System

The immune system is responsible for defending an organism from disease by detecting and

responding to foreign invaders. It is composed of molecules, cells, and organs spread

throughout the body. This elaborate system must be able to distinguish between self (its tissues)

from non-self (pathogens), and respond to a wide range of pathogens such as viruses, bacteria,

and parasites. Typically vertebrates have two types of immunity. The first is that which is

inherited at birth and is termed “innate immunity”, and the other, which is acquired over the

lifetime of the organism, and is termed “acquired immunity”. On contact with a pathogen the

innate immune system attempts to remove it. In most cases it is successful, however when it is

not, the acquired immune system is brought into action (Alberts et al. 1989b).

The immune system is able to remember the antigens that it has previously been exposed to.

This facilitates a faster secondary response which results in quicker removal of the infection.

RIGHT
WHEEL

RIGHT
SENSOR

LEFT
WHEEL

LEFT
SENSOR

LEFT
MOTOR

Hormone
Diffusion

RIGHT
MOTOR

Hormones
secreted
activate motors

38

Clonal Selection (Burnet 1959) describes the mechanisms by which the immune system

remembers antigenic material. An alternative theory, proposed by Jerne (1974), is that of the

Immune Network Theory which suggests an idiotypic network. Although this theory is not

widely accepted it is often used by AI researchers as bio-inspiration for new computational

paradigms. The idiotypic network involves simulation and suppression of cells via a network of

communicating idiotopes. An idiotope is a marker on the antibody receptor molecule which can

be recognised by receptors on other immune cells. If an idiotope is recognised by another

immune cell, it connects. As more idiotopes are recognised by immune cells the network of

connected cells increases. Recognition of the antigen by cell receptors results in network

activation and cell proliferation, while recognition of a receptor by another cell’s receptor

results in network suppression. This implies that specialised immune cells communicate via a

dynamic network, which continually adapts to maintain a steady-state reflective of antigen

levels (de Castro and Timmis 2002).

Artificial Immune Systems are a class of AI techniques inspired by properties and mechanisms

within the immune system. In general these techniques are either population based, for

example, Clonal Selection Algorithms (Aickelin et al. 2014), which bare a strong resemblance

to Genetic Algorithms without crossover. Or they are based on Jerne’s idiotypic Immune

Network Theory. The most relevant of these techniques are the latter and these are described

below.

The autonomous and decentralised properties of Jerne’s Immune Network Theory make it

suitable for applications such as mobile-robot control, and identifying options for the

configuration of communication software (de Castro and Timmis 2002). Many models based on

this theory use the dynamics described by Farmer et al. (1986). While some do not use the

Farmer dynamics (Sathyanath et al. 2002; Opp and Sahin 2004), those that do have far more

relevance to this review as they approximate the biology very closely. Farmers’ model is a

differential equation which describes the change in concentration of antibodies with respect to

the stimulatory and suppressive effects of the network and the natural death rate. The Farmer

equation given in Eq. (3.1) (Whitbrook et al. 2007) describes the rate of change in concentration

C of antibody xi in a system of N antibodies [x1, x2 ... xN] and L antigens [y1, y2 ... yL].

[] DCBAbxC i −+−=)(

.

 (3.1)

The first function “A” is a sum representing the stimulation of antibody xi in response to all

antigens. The second function “B” is a sum expressing the suppression of antibody xi in

39

response to all other antibodies. The third function “C” is a sum representing the stimulation of

xi in response to the other antibodies. While the final function D represents the propensity for

antibodies to die in the absence of interactions. The rate constant b models both the number of

collisions at each time-step and the rate of antibody production on collision. The equation

allows the determination of the concentration levels of hormones dynamically, and in this way

the fitness of the robot to the current environment is calculated (Whitbrook et al. 2007).

Farmer based dynamics have been used in a number of behaviour arbitration systems for

mobile robots described in (Watanabe et al. 1998; Vargas et al. 2003; Luh and Liu 2004). In

each of these models, antigens represent environmental conditions, antibodies represent

competence modules (i.e. simple actions or behaviours) (see Fig 3.3) and the dynamics were

governed using the Farmer equation or variations of it.

Fig. 3.3 Farmer based idiotypic network control system for mobile robot. Environmental conditions

detected by sensors represent antigens and competence modules (actions) represent antibodies.

For example, Watanabe, et al. (1998) develops a garbage collecting robotic control system. In

this model, antigens represent environmental signals detected by sensors, and antibodies

represent prepared competency modules (behaviours). The basic idea is that the immune system

selects a competence module (antibody) suitable for the detected current situation (antigens).

Modules were stimulated and suppressed by interactions with antigens (sensor inputs) and with

other modules. The concentration of each antibody at each time-step was calculated using

Farmers equation. The actual module implemented at each time was chosen using roulette-

wheel selection, based on the antibodies with the highest concentration after idiotypic

interactions (Watanabe et al. 1998). Other similar idiotypic approaches were used by a number

OBSTACLE

ENVIRONMENT IDIOTYPIC BEHAVIOUR
CONTROL SYSTEM

COMPETENCE
MODULES DESTINATION

ROBOT

Stimulation

Antigen

 Antibodies

OBSTACLE

40

of researchers. For instance Krautmacher and Dilger (2004) used a Farmer based idiotypic

model to control a simulated robot navigating through a maze. While in Luh and Liu (2004),

such a system was used to control a robot where antibodies represented steering directions and

antigens a set of data, including sensory input. The idiotypic network approach has the

advantage that it is self-regulating and continually adapts itself to maintain a steady-state suited

to the environmental conditions. It has been shown to have benefits over reinforcement learning

approaches in behaviour arbitration systems; for example, reduction in premature convergence,

and a decrease in repeated behavioural patterns; however, this has not been thoroughly

investigated (Whitbrook et al. 2007). In all the examples outlined above the idiotypic

controllers were not compared with benchmark systems and thus it is not clear how idiotypic

systems contribute to performance. Furthermore, in the majority of cases simulations were

used, and thus it is difficult to ascertain how such a system would cope in a real-world

environment (Whitbrook et al. 2007).

3.5 AI Inspired by Reactions of the Metabolic System

The metabolic system is responsible for the set of chemical transformations within the cells of

an organism which enable it to continue to function, grow, and reproduce. There are two

processes involved: catabolism and anabolism. Catabolism is the process by which complex

organic constituents are broken down to release the energy which is used within the body.

Anabolism is the construction of cell components such as proteins. In metabolic pathways,

chemicals are transformed into others through a series of enzymatic reaction steps. Enzymes are

essential to the metabolic system: they act as catalysts by allowing reactions to proceed quickly

and efficiently, and can regulate the steps required in response to signals from the environment

or other cells (Alberts et al. 1989c). Some computational models used in AI are inspired by the

metabolic system and in this section the most relevant of these models are reviewed.

Zeigler and Banzaf (2000) present an Artificial Metabolic control system for a simulated

mobile robot. This is a typical AC model, consisting of a set of molecular species, a reactor and

reaction rules - as previously described in section 2.4.4. Each molecular species is represented

by an algebraic symbol and each has a concentration value at each time-step. These species

may have catalytic or inhibitory effects on other reactions, for example, by changing their

reaction rate. The authors applied this model to implement a control system for a simulated

Khepera robot. The robot was equipped with proximity sensors. On stimulus a sensor produced

a signal and this was used to represent influx of substance. This input was connected through a

network to motors, which, on reaching a particular threshold, updated the direction or speed of

41

wheel rotation as shown in Fig. 3.4. The objective of the robot was to navigate through a maze

while avoiding obstacles. Genetic Programming was used to evolve the Artificial metabolic

system. A population of solutions were setup consisting of a set of reaction rules arranged as a

weighted directed bipartite graph. The outcome of each solution consisted of a time dependant

vector of concentrations. These output concentrations were input to a fitness evaluation

function.

Fig. 3.4 Artificial Metabolic control system for mobile robotic control.

Another artificial metabolism model referred to as an Artificial Enzyme Substrate Chemistry

(Ziegler et al. 1998) was used to control a physical robot with eight proximity sensors and eight

light sensors in obstacle avoidance and light seeking tasks. The system was implemented in a

similar manner to the previously described model. In this case, the reaction rules were

implemented using ODEs. The network was manually configured rather than evolved. The

artificial metabolism was shown to control the robot in the desired way, and be robust against

disturbances.

The Artificial Biochemical Network (ABN), presented by Macleod and Capanni (2010), is a

highly abstracted discrete model of a biochemical signalling network. Its inspiration was taken

from metabolic and signalling networks in living systems in general. This model has been

applied to robotic control to recognise external environmental stimuli and respond by

RIGHT
WHEEL

PROXIMITY
SENSOR

LEFT
WHEEL

LIGHT
SENSOR

LEFT
MOTOR

RIGHT
MOTOR

Trigger of sensors
causes influx of
artificial
substance.

Reactions
between
substances

Network of reactions produce changes to
motor substances and update wheel
motion

ROBOT

42

generating the appropriate robotic gait as shown in Fig. 3.5. It is a connectionist paradigm

which consists of a number of nodes. Each node has a weighted sum activation function and

Leaky Integrator. In this model, pulsed binary input signals were fed into the system. Each node

consolidates these signals as inputs to the activation function and a pulsed binary output is

produced. Information is encoded by the pulse on or off periods. By means of a GA the desired

pattern of output pulses may be set for each specific pulsed input signal. This produces a

sequence of actions in response to a single input pattern, allowing each robot actuator to be

switched on or off in correspondence to a particular output signal.

Fig. 3.5 ABN control system applied to pattern recognition and generation of temporal gait patterns.

Adapted from Macleod and Capanni (2010)

This system has advantages over benchmark alternatives in the control of limbed robots. For

instance, traditional Artificial Neural Network models, as discussed later, are only able to

recognise static patterns and produce a single response. While other neural models, such as

spiking neural models, can recognise and produce time varying signals, but are generally more

complex than the ABN.

3.6 AI Inspired by Reactions of the Nervous System

The nervous system consists of the components of an organism which allow rapid processing

and response to external stimuli to coordinate voluntary and involuntary actions. Nervous

systems are present in most multicellular animals and, depending on the species, exist in

various levels of size and complexity. Advanced nervous systems are composed of two main

components: the Central Nervous System (CNS), consisting of the brain and the spinal cord and

the Peripheral Nervous System (PNS) which connects the CNS to other parts of the body. At

the cellular level, the nervous system consists of two categories of cells: neurons and glial

(neuroglia) cells. Glial cells function to maintain and facilitate the function of neurons. For

example they supply nutrients to neurons, insulate them and remove their waste. Neurons are

responsible for sensing, processing and propagating signals in response to stimulation from

other cells or the outside world. Communication between cells occurs electrically via gap

junctions or more commonly chemically via synaptic neurotransmitters. A neuron has a highly

Limb
Control Robot

Input
Pattern Pattern

Recognition
network

Gait
generation
network

43

specialised structure composed of the cell body, dentrites, and axon, as shown in Fig. 3.6. The

signal, called an action potential, travels along the axon of one neuron to the dendrites of

another. This, in turn, may cause the second neuron to activate or be inhibiting. Neurons are

arranged into an elaborate network, which ultimately allows an organism to dynamically

process information and respond to its surrounding environment (Alberts et al.1989d).

Fig. 3.6 A section of a biological neural network.

Artificial Neural Networks (ANNs) are computational methods inspired by biological neurons

and their networked organisation. In general they consist of multiple artificial neurons linked

together through weighted connections and, for this reason, are often referred to as

“connectionist” representations. They have many applications such as classifying patterns,

processing data, time series prediction, and robotics.

The first generation of ANNs were introduced in the 1940s by McCulloch and Pitts (1943).

Their MCP neural model consists of a node which has a number of weighted incoming

connections. The node summed the weighted inputs together and then passed the result through

a threshold activation function. If the sum was equal to or above the fixed threshold value, the

neuron produced a binary output of one. In the 1950s, Rosenblatt (1958) developed these ideas

and introduced a more advanced threshold ANN called the “Perceptron”, as shown in Fig. 3.7.

The Perceptron was more flexible and had a learning rule to adjust the weights. Later, a more

advanced learning rule was applied called Backpropagation (Werbos 1990).

axon
terminals

cell body

synapse

nucleus

axon

SIGNAL

SECTION OF BIOLOGICAL NEURAL NET

dendrites

next
neuron

next
neurons
axon

NEURON CELL

44

Fig. 3.7 Structural overview of the Perceptron

Fig. 3.8 Multi-layer Perceptron where σ represents a sigmoidal activation function

This was later extended into the Multi-Layer Perceptron (MLP) (Block et al. 1962) as shown in

Fig 3.8, where multiple layers of nodes are arranged in a directed graph with each layer fully

connected to the next one. This second generation of ANNs did not use a threshold activation

function; instead, their activation function was continuous. This allowed them to produce

analogue outputs. Commonly used examples of activation functions used in these models are

the sigmoid and hyperbolic tangent. Such ANNs are more powerful then the first generation, as

they, due to the invention of the Backpropagation training technique, allowed multiple layers to

be connected. The ability to be arranged into layers greatly increased their computational power

σ

σ

σ

σ

σ

Output 1

Output 2

Output N

Input 1

Input 2

Input N

…

Output Layer Hidden Layer Input Layer

∑
Weight 1

Weight 2

Weight N

Input

Input

Input N

Output

…

45

(Ghosh-Dastidar and Adeli 2009). Many second generation ANN models have since been

created; examples include the Self-organising Map (SOM) (Kohonen 1982), Spiking Neural

Networks (Ghosh-Dastidar and Adeli 2009), and Recurrent Neural Networks (Hopfield 1984).

Real biological neurons produce a pulsing (often called “spiky”) output with many action

potentials. Neurological research has shown that biological neurons encode information in the

spatio-temporal properties of these signals, specifically their frequency. A third generation of

neural networks are called Spiking Neural models (Ghosh-Dastidar and Adeli 2009). These

types incorporate the temporal dimension found in their biological counterpart. System

information is pulse encoded by the timing between spikes (frequency). Pulse coding is a

computationally powerful method in cases where temporal information needs to be processed.

One of the most commonly used methods is the Integrate-and-Fire model. The output of a

spiking neuron is typically modelled using a differential equation, which only fires when the

current activation level reaches a threshold value. Normally the neuron is a Leaky Integrator,

where the activation gradually decays over time. Learning algorithms traditionally used in first

and second generation neurons such as Backpropagation are generally unsuitable due to the

complex spatio-temporal dynamics of spiking neurons. Other learning methods such as

unsupervised reinforcement learning algorithms are often applied.

An important ANN method is GasNets and was introduced by Husbands (Husbands 1998).

This was inspired by synaptic modulation of nerve cells by nitric oxide (NO). A GasNet

consists of a number of nodes connected by excitatory or inhibitory weighted links. The

important difference between this and other traditional ANNs is that some units can emit

artificial gases. These gases are able to modulate the behaviour of other units by adjusting

parameters within their activation function. This is an abstraction of the reinforcement learning

that is found in biological neural networks, where the network trains using either “good” or

“bad” feedback signals. The nodes are modelled on a 2D plane and a gas diffusion model is

used to calculate the concentration of gas generated from each emitting node. This allows the

network to regulate its processing properties while it is in operation (Husbands 1998).

Central Pattern Generators (CPGs) are neural oscillators situated in the ganglia or spinal cord of

animals which function to generate rhythmic patterns. They are essential in coordination of, for

example, locomotory gaits and respiration. Their rhythmic output coordinates the physical parts

of the organism involved in the activity. Sensory feedback from the environment allows CPGs

to continuously adapt to the situation and provide, for example, stable motion in unpredictable

terrain (Nakada et al. 2004). Many researchers have designed and implemented artificial

CPG's, particularly for application in generating robotic gaits. A stylised CPG output for a bi-

46

pedal walk gait is shown in Fig 3.9. Most CPGs have been constructed with coupled non-linear

oscillators which are composed of non-linear differential equations - such as the Wilson-Cowan

neural oscillator (Wilson and Cowan 1972). Kimura et al. (2001) developed a CPG based

control system using a system of coupled non-linear oscillators for a quadrupedal robot capable

of adapting to irregular terrain. In other work, Billard and Ijspeert (2000) generated

quadrupedal gait patterns for an AIBO robot using a CPG-based controller.

Fig. 3.9 Central Pattern Generator output for two-legged robot to control a walk gait. The generated

signals are out of phase with each other.

3.7 AI Inspired by Reactions of the Gene Regulatory System

Genes are segments of DNA whose sequence of nucleic acids encode functional products -

either proteins or RNA. A number of mechanisms interpret this code and synthesise these

products. All cellular processes, for example, metabolism, growth and reproduction depend on

genes to allow their essential molecular components to be generated. The machinery that

regulates the expression levels of a gene is called a Gene Regulatory Network (GRN). Genes

are able to interact indirectly with others through their products or other molecular substances

in the cell, and in this way form a network of connections. In this network, the proteins, RNA

and genes can be represented as nodes and their edges the reactions between them. Genes are

switched on or off by elements in the GRN. The state of the set of genes at a particular time

signifies the result of processing within the network at that instance. In this way, genes are

stimulated or inhibited and thus their expression levels are controlled. GRNs respond to

environmental signals allowing the cell to adapt its behaviour at a given time and optimise its

chance of survival. This process is shown in Fig. 3.10.

47

Fig. 3.10 Overview of a biological Gene Regulatory Network (GRN).

A number of AI techniques are inspired by GRNs and may be referred to as Artificial Gene

Regulatory Networks (AGRNs). Examples of the most relevant of these techniques are given

below.

In (Banzaf 2004), it was shown that an AGRN can be evolved to generate a simple series of

functions such as sinusoids, exponentials and sigmoids. This model was then used to explore

the idea that successful evolutionary design is best achieved through a networked system

(Banzaf 2004). In this system, the AGRN, which is termed an Artificial Regulatory Network,

consists of a genome, represented by a bit string, as shown in Fig 3.11. The genome is

generated by randomly determining the value at each position. Certain bit patterns within the

genome represent a gene which encode a particular protein. Proteins are expressed using a

computational abstraction of genotype to phenotype mapping. After a protein is generated, it is

able to wander around in a fixed space where it may interact with regulatory sites of the

genome. If the constitute bit pattern matches at the position in which a protein and genome

interact, than the protein will attach to the genome. Attachment of such proteins (termed

transcription factors) at regulatory sites on the gene, have inhibitory or stimulatory effects on

the expression of the particular protein which they encode - thus allowing their expression to be

regulated. The time this attachment lasts depends on the quality of the match between these

patterns.

48

Fig. 3.11 The Artificial Regulatory Network

Adapted from Banzaf, (2004)

Another example of a GRN inspired method is the ‘Distributed Gene Regulatory Network

Algorithm’ for multi-robot construction tasks by Guo et al. (2009). Using this model, simulated

multiple robots were able to self-organise from random initial positions to form different pre-

defined 2D geometric shapes. For example, multiple robots together may form the shape of a

square. Later, moving obstacles were added to the environment, and it was shown that the

robots were able to maintain their function as before, while avoiding the obstacles. In this

system, each robot represented a cell and each had a genome which contained two genes- where

one controlled the robots x-coordinate and the other its y-coordinate. Each gene produced a

protein, which had three functions. Its first was to regulate expression of the gene that produced

it, the second was to communicate its proximity to neighbouring robots allowing it to avoid

collisions, and the third was to adjust the robot’s position. The dynamics of the AGRN system

was modelled using ODEs, which described the protein expression level for both genes and the

concentration level for each protein.

3.8 AI Inspired by Generic Chemical Reactions

Obviously, systems of chemical reactions are ubiquitous in the natural world. Some AI methods

are inspired by chemical processes in general rather than particular types of signalling pathways

which occur in living systems. In this section the most relevant of these are reviewed.

One such method is the Chemical Casting Model (CCM) (Kanada and Hirokawa 1994). This is

inspired by the inherent computational processing which occurs in systems of chemical

GENE 1 GENE 2 GENE 3 GENE 4

Start of
gene

Protein D
Protein A

Protein C

Protein B

49

reactions. The CCM is a stochastic method and is used to solve state-space search problems. A

unit of data is represented by an atom. Each atom has an internal state and may be connected to

others by links to form a set of atoms called a molecule. In this way, data structures such as a

tree, list or graph can be represented. Reaction rules change the state of the system and are

written as production rules. The syntax of the reaction rules is (as in real chemistry):

LHS → RHS

Where the left-hand side (LHS) and right-hand side (RHS) defines a pattern of atoms. The

reaction rule may be applied when a molecule matches the LHS pattern and when a local

evaluation function condition is true. When a rule is applied, the matched atoms disappear and

are replaced by the RHS pattern. In this way the system moves from the initial state which

represents the problem, to the final state which represents the solution. A similar method was

used to solve the travelling salesman problem by Banzaf (1990). In this system, an initial soup

of data strings resembling macromolecules was setup. Each string of data carries all the

information required to create a solution to the optimisation problem. This soup of

macromolecules is evolved by using specialised machines which represent enzymes which

transform randomly selected molecules into new ones. In this way the system moves from one

state to another until a solution is generated.

The AI techniques outlined in this chapter highlight the way in which elements of CSNs and

chemical reactions in general have provided inspiration to an array of useful AI techniques. It

was shown that many of the identified methods used in AI overlap with those used in biological

simulation. The reviewed techniques were selected because they capture the properties and

mechanisms (as identified and discussed in chapter 2) which contribute to high-level behaviour

within cells. However, none of the methods discussed here or in chapter 2 provide a means to

capture these properties and mechanisms in one representation. In the following chapter,

particular aspects of these techniques are combined in order to construct a representation

capable of modelling the identified properties and mechanisms of Cell Intelligence in a single

representation. This representation will later be used to explore the role of Cell Intelligence

within AI.

50

4. The Artificial Reaction Network

This chapter presents a new Artificial Chemistry (AC) representation termed the Artificial

Reaction Network (ARN). Its formulation, networked representation, computational properties

advantages and disadvantages, and finally its verification are discussed. The purpose of this

model is to provide a tool, well-suited to represent the “biological circuitry” responsible for

generating high-level behaviour found in cells. Although representations exist for modelling

chemical interactions, as discussed in chapter 2, none are ideal for this purpose. Thus, within

the spectrum of techniques presented in Fig. 2.6, there is a niche for a new technique, which

provides the appropriate balance between detail and scope. To achieve this, the ARN combines

elements from existing AI and Systems Biology techniques, and like many AC models, as will

be later discussed, it has application in both biological simulation and in solving engineering

and computational problems.

4.1 Basic Formulation

As discussed in chapter 2, CSNs have a number of properties including compartmentalisation,

temporal dynamics, and their ability to form complex networks which in turn, may function as

control structures. To represent such properties elegantly and appropriately it is not practical to

model each molecule individually. As previously discussed in chapter 2, for coarse

approximations, the amount of species present may be represented by its concentration, and its

temporal dynamics modelled using ODEs. The accuracy of such models may be further

enhanced by setting up spatial compartments to provide a coarse approximation of the spatial

distribution of chemical species. This level of abstraction incorporates the degree required to

create elaborate biological circuitry while still maintaining computational efficiency and thus

examine the emergent characteristics of Cellular Intelligence.

As described in chapter 2, rate equation models can be used to represent many different

physical systems and so are very general and flexible in their applications. In the domain of

chemistry, they can directly represent (or be slightly modified to represent) all the common

reaction types. As described in chapter 2, they form the basis of S-Systems (Voit 2000) and so

51

are very well characterised in biochemical simulations. The basic rate equation is given in Eq.

(4.1).

∏∏
==

−=
M

i
ir

N

n
nf

in PkRk
dt
Pd

11

][][][βα

 (4.1)

The equation contains two terms. The first term corresponds to the basic forward reaction.

Where the rate of change of product (P), is given by the forward reaction rate (the speed of the

reaction) labelled kf, multiplied by the product of the concentrations of the N reactants [Rn],

each raised to the power of its reaction order αn. The second term represents the decomposition

of product back into its original reactants. This depends on the reverse reaction coefficient kr

multiplied by the product of the concentrations of the M products [Pi], each raised to the power

of its reaction order βi.

To illustrate this further, consider the simple reaction between two reactants labelled A and B

with reaction orders (the proportion of molecules of each reactant used to make a molecule of

product) of q and s respectively. The order of the reverse reaction is one. These produce a

single product P. Equation (4.1) then reduces to Eq. (4.2).

][][][][PkBAk
dt
Pd

r
sq

f −= (4.2)

When used in S-Systems, a group of rate equations are normally set up - one for each reaction.

The left-hand of each equation is then set to zero and they are solved simultaneously to yield

the steady-state response. If the dynamic responses are required, then numerical solution

methods like Runge-Kutta are normally applied (Voit 2000).

4.2 A Networked Representation

Clearly a large set of simultaneous ODEs written in their basic mathematical form limits the

conceptualisation, visualisation and communication of complex topologies. Furthermore, in this

form, each ODE term is tightly coupled, and is difficult to isolate and manage. Therefore, in

order to create a networked representation with distinct biological processing units, capable of

constructing complex biological circuits, the method needs to be modified. This may be done

by isolating each reaction in the network to form a discrete node, which may then be modified

independently of the other reactions. Such a node can be viewed as analogous to a neuron in an

52

ANN and has been named an Artificial Reaction Node. By analogy, networks of such nodes

may be termed Artificial Reaction Networks (ARNs). Similarly to an ANN, each ARN node is

a processing unit, transforming a number of inputs into an output. In an interconnected network

of such units, global behaviour is determined by the connections, and unit parameters.

Furthermore, by isolating each reaction like this, the individual pathways or units which make

up the system can be changed, reconnected or evolved by (for instance) a Genetic Algorithm.

This also allows an individual part of the network to be independently modified, and its effects

studied.

Isolating the reactions in a network in this way facilitates two other important practical

advantages. Firstly, visual “drag and drop” interfaces can be developed. These allow

researchers to quickly change network or reaction parameters in order to study their effect.

This, in turn, allows simple visualisation of the system in a graphical form which makes its

conceptualisation easier. Secondly, it makes the application of object-orientated programming

techniques very simple, as each node can be coded as an instance of an object.

In developing the system described, it was decided to use Euler’s method in order to solve the

rate equations. This offers some advantages, firstly it is simple and computationally cheap, but

more importantly, it allows the whole network to run quickly in simulated real time- so that its

temporal dynamics can be seen to unfold during a run. This gives the option of changing

parameters in real time, so that a user can observe any resulting dynamic behaviour. Also,

unlike linear multi-step methods, it does not require previous derivatives to calculate the value

at each consecutive time-step, thus it contributes to stability and isolation at each node.

Furthermore, as will be discussed later, the temporal output of the network could potentially be

used as a control system for an “artificial cell” robot - a Cytobot.

Using the simple two input system shown in Eq. (4.2), multiplying through by dt and changing

to a discrete finite time-step ∆t, the Euler approximation for each time-step is given by:

 tPkBAkP r
sq

f ∆−=∆])[][][(][(4.3)

The reaction needs to be isolated from the others, so that it can form a discrete “unit”. This can

be done most easily by borrowing the concept of “pools” from Petri Nets (Murata 1989) (see

section 2.4.4). Petri Nets pass tokens between such pools as part of their operation. In the

system discussed here, the pools may hold the number of available molecules, the concentration

of the reacting chemicals (for example in moles per litre) or the mass of reactants. As the

53

reaction proceeds, the reacting species pass from the input pools (depleting them) to the output

pools (enriching them). So, in the previous example, to generate one molecule of product

requires q molecules of reactant A and s molecules of reactant B. In this case, the pool

containing A would get depleted by an amount ∆A given by:

 qPA][][∆=∆ (4.4)

Where ∆P is the amount of product generated (which would be added to pool P). This equation

works if the units used are number of molecules or moles per litre (which are not conserved

quantities). However, if mass or a similarly conserved quantity is used then Eq. (4.4) becomes:

 sq
qPA
+

∆=∆][][
 (4.5)

Using more general symbols, the whole system is shown diagrammatically in Fig. 4.1 (for a

conserved quantity). It comprises a set of connected reaction nodes (circles), pools (squares),

and inputs (triangles). Each pool represents the current available protein species concentration

(avail) and each circle corresponds to a reaction unit, representing an interaction (reaction)

between a number of chemicals.

While many ACs assume a well-stirred reactor, the use of pools within the ARN provides a

discrete spatial structure. Inside a biological cell, concentrations of chemical species are

spatially distributed into localised compartments. This compartmentalisation, as discussed

previously, restricts which molecules may react together, and thus affects the overall dynamics

of the system. Representing the spatial distribution of chemicals allows fine-grained control

over the system dynamics and thus is highly beneficial when modelling biochemical circuitry.

For example, it allows the representation of flow structures such as membrane channels,

transport processes; and functional network motifs (as described in Table 2.1), and provides a

means to explore disease pathways (Tyson and Novak 2010). Thus, in the ARN, each pool is

represented as a well-stirred reactor and approximates a spatial compartment.

Optionally, a loss component can also be added to the pools, allowing a pool to function as a

Leaky Integrator (Pavan et al. 2013). This could represent the destruction of reactants or

products by specific or general proteases or other degradation routes as shown in Fig. 4.1.

54

Inputs (shown as triangles in Fig. 4.1) are a special type of pool; the only difference is that they

are of fixed value and thus can be used to represent the continuous supply of environmental

inputs or enzymes (in other words, a limitless resource).

C
C

C
gengenavailavail L

w
w

DCCC −
+

∆−∆+=
α

][][][][

Fig. 4.1 The Artificial Reaction Network (ARN).

Connections symbolise the flow of species into and out of reaction units and their weight (w)

corresponds to reaction order. The connections can be either excitatory, or inhibitory. A

reaction with both excitatory and inhibitory connections will proceed if all connected inhibitory

pools are empty and its excitatory connected pools have the required concentrations. Thus the

input pools, serve as pre-conditions to the reaction, which must be met before the reaction can

proceed. The inhibitory connections serve as discrete on/off switches to either the forward or

reverse reaction.

The overall structure may be compared to a Perceptron, where the pools correspond to inputs,

the reaction units to the weighted sum function, and these are joined together by weighted

connections (Block et al 1962)

LC

() tCKBAKC CBA w

availCr
w
avail

w
availCfgen ∆−=∆][][][][)()(

1

Aavail

Bavail

wB

∆Cgen

∆Dgen

To
Reaction D

Cavail
wA

wC
C

2

A

B

KEY (For ARN Diagrams)

 : Reaction Unit

 : Excitatory

 : Pool

 : Input

 : Inhibitory

avail : Available

w : Order L : Cytoplasmic loss gen : Generated
A, B, C, D: Species
concentration

α : sum of other weights connected to inputs of
unit D

55

4.3 Computational Properties

It is fairly easy to see that the computational properties of the ARN are similar to those of the

ANN. For example, consider the simple network shown in Fig 4.2.

Fig. 4.2 A simple ARN network with 2 reactions.

If we assume that the orders wA and wB are unity and the reverse reaction rates are zero, then the

rate of change of the product pool P is described by Eq. (4.6).

][][][BkAkP BfAf +=
 (4.6)

32][][][][XkXkXkP CfBfAf ++=

 (4.7)

∑
=

=
N

n

n
Rnf RkP

0

][][
 (4.8)

CBA www

Af CBAkP][][][][=
 (4.9)

∏∑
==

=
m

m

n
m

N

n
Rnf RkP

00

][][
 (4.10)

Which is the same expression as for the activity of a perceptron if A and B are the inputs and

the k terms are the weights. So a network of such nodes has at least the same computational

capabilities as MLPs (Rumelhart and McClelland 1986). In fact, the addition of non-unity

orders means that effectively the node can produce non-linear separators in a similar way to

 A

 B

 P

wA

wB

 kAf

 kBf

56

polynomial neurons (Woo and Khor 2004) and are rather similar to so-called “sigma-pi” units

(Gurney 1992) - although with the added dimension of their temporal dynamic behaviour. For

example, consider the ARN shown in Fig 4.3. Then by increasing wB to 2 and setting wC to 3,

the first three terms of a power series are generated - as shown in Eq. (4.7). By adding other

reactions, N further terms may be generated as shown in Eq. (4.8).

Fig. 4.3 A simple ARN network with three reactions and one input.

In the previous examples, the computational properties were examined in cases of a single input

to each reaction unit. The remaining possibility is to completely deconstrain the system and

allow multiple reactants to enter a single reaction unit. For example, the ARN given in Fig. 4.4

shows one reaction with three inputs. The corresponding function for this reaction is given in

Eq. (4.9). This simply extends the power series to multiple dimensions (in a similar way to the

linear separator line of a two input MLP becoming a hyperplane for multiple inputs). The result

of several such units feeding into a single pool would be described by Eq. (4.10).

Fig. 4.4 A simple ARN network with 1 reaction and 3 inputs.

Two other models, which bears some resemblance to the ARN, exist in the literature. The first

of these is the Artificial Biochemical Network (Macleod and Capanni 2010) introduced

previously in section 3.5. This is a highly abstracted model of a CSN intended for robotic

 kf

 A

 B P

 C

wA

wB

wC

 kCf

 kBf

 kAf

 X

 P

wA

wB

wC

57

control. The network consists of pulse width, position or frequency modulated units, which are

useful for motor control but are not directly feasible biochemically like the ARN. The second

model is the Artificial Biochemical Neuron (Eikelder et al. 2009) - as previously introduced in

section 2.4.3. This model is based on the steady-state response described in the Michaelis-

Menton equation. It has been used to represent phosphorylation cycles within CSNs. However,

the basic idea has not been further developed in the literature.

4.4 Disadvantages

There are some potential disadvantages associated with the ARN. Firstly, in order to generate

temporal dynamics, the ARN must use a method of numerical approximation, and thus it adopts

the disadvantages of the chosen method. Numerical approximation methods and their

associated limitations are well documented (Uri et al. 1995). For the reasons described in

section 4.2, it was decided to use Eulers method throughout the experiments outlined within the

thesis, although it would be possible to use other methods. As the disadvantages of Eulers

method are relevant to the results achieved throughout the thesis its disadvantages are included

in this section.

Eulers method has an associated cumulative error. This is because it is an iterative linear

approximation to a complex function. It may be thought of as the first-order term of a Taylor

expansion of the function. So, for example, if we say that the rate equation is a function of at set

of reactants and products R, we could write an abbreviated version of Eq. (4.1) as Eq. (4.11).

The Taylor series for the Euler approximation to the third order is then given by Eq. (4.12).

)(][Rf
dt
Pd

= (4.11)

 ...)(
!3

)(
!2

)(3

33

2

22

0 +
∆

+
∆

+∆+
dt
fdt

dt
fdttfR RRR and so on (4.12)

Because the series is truncated to the linear term, the error of the approximation is the sum of

the missing terms. In reality, the error contribution from successive terms is approximately ∆t2

because error from the higher order terms diminishes rapidly and is usually negligible,

providing that the step-size is small (Greenburg 1998). The error may be of consequence if the

user is trying to simulate a complex biochemical system very accurately. However, as

previously discussed, this is not the main purpose of the ARN.

58

Other difficulties can arise using hybrid models, and detailed discussions are provided in the

literature (Kowalewski 2002). One such issue occurs where a pool, for example S, inhibits a

reaction unit by an inhibitory connection. This reaction will always be inhibited while there

remains any amount of chemical in S. Meanwhile S is involved in another reaction, where the

resultant flux is depleting S at each time-step. As the concentration of S decreases, so too does

the flux. This leads to an infinite sequence of decreasing concentrations of S, which

asymptotically approaches zero. Therefore, S will always contain a smaller but positive value,

and as a result the inhibited reaction can never occur. In reality the above scenario would never

occur since individual molecules would react in an individual manner. Where this is a problem,

it is solved by simply setting a threshold - if a pool concentration is less than the threshold, its

concentration is set to zero.

4.5 Verification of the Model

In order to verify the new ARN representation as a means to represent the properties and

mechanisms of CSNs, the biological plausibility of low-level reaction kinetics needed firstly to

be confirmed. This was achieved by applying varied sets of real biochemical data to a single

ARN unit. The resultant time series output was compared with those recorded in literature from

actual wet lab experiments, by manual calculation and by running the experiment on Berkeley

Madonna (Macey et al. 2000) which is a reputable software designed to simulate biological

reactions. Fig. 4.5 provides typical results from one such experiment. In this example, reaction

kinetic data (rate constants, reaction order) were used to create a model of the reversible

isomerisation reaction between cis and trans 1-ethyl-2-methyl cyclopropane on Berkeley

Madonna and on a single ARN unit. Figure. 4.5 shows the time series results of the product

concentration produced by a single ARN unit. After 2100 seconds, both methods produce the

same final product concentration of 9.03x10-3 mol/L. The reason for their exact correspondence

is due to application of Euler’s approximation in both models, and, using exactly the same

parameters including: step size, and starting conditions in both cases. When these results are

compared with those in the literature, a slight error is seen to accumulate with each time-step,

reaching a final difference of 0.11% after 2100 seconds. Such discrepancies were anticipated

for two reasons. Firstly, due to the error associated with Euler’s approximation, which, as

previously discussed can be reduced by decreasing the time-step. Secondly, because of the error

associated with gathering data from wet lab experiments - the method used to obtain the results

in the literature. As the ARN is required to provide only a coarse approximation of low-level

detail to represent temporal dynamics and network topologies, this error is not considered

significant. Using many sets of such data, with a variety of different types of reactions,

59

including different forward and reverse coefficients, and reaction orders, the ARN consistently

produced similarly accurate results.

Fig.4.5 The product concentration produced by a single ARN unit.

In the following chapters, networks of such units are constructed and examined as a means to

model high-level properties such as pattern recognition and complex temporal dynamics.

60

5. An ARN Based Simulation of E. coli

Chemotaxis

One way to investigate the potential of the ARN to simulate a network of chemical reactions

and capture its associated high-level behaviour is by creating a simulation of a well-

characterised CSN. Escherichia coli chemotaxis is a good example of such a pathway and is the

subject of this chapter. This simulation also uses concentrations of chemicals from actual

biological systems and is therefore a good way to verify the correspondence of the ARN with

its natural counterpart and also against more complex Systems Biology simulations.

5.1 Overview of E. coli Chemotaxis

As previously discussed (see section 2.2), chemotaxis describes cellular movement in response

to sensed environmental chemical concentrations called chemoeffectors. The chemotaxis

behaviour and CSN of E. coli is well characterised (Vladimirov and Sourjik 2009; Wadhams

and Armitage 2004) and summarised in this section.

5.1.1 E. coli Random Biased Walk

As discussed in section 2.2.1, E. coli chemotaxis is described as a “biased random walk”. This

behaviour is the net result of intracellular dynamics between interacting proteins within its

CSN. The CSN directs the bacterial flagellum (see Fig 2.4) to alternate between either a smooth

linear swim called a “run”, or a “tumble” where the bacterium stops and re-orientates itself in a

random direction (see Fig 2.5). While moving along swimming trajectories, chemoreceptors

continuously sense varying concentrations of environmental chemoeffectors (attractants and

repellents). These signals are processed by the CSN and lead to the regulation of a motor

complex responsible for the operation of the flagellar motor (Vladimirov and Sourjik 2009). As

described previously, the motor complex is attached to a bundle of helical flagellar filaments.

When the motor rotates counter-clockwise (CCW), the flagellar filaments form a trailing

bundle which, by pushing the cell forward, results in a “run”. When the motor rotates in a

61

clockwise direction (CW), the filaments shape change, causing the bundle to separate resulting

in a “tumble”. In the absence of chemoeffectors, E. coli alternates between runs and tumbles

with runs lasting approximately 1 second and tumbles 0.1 seconds (Vladimirov and Sourjik

2009). In the presence of chemoeffectors tumbling frequency is increased down concentration

gradients of attractants and up gradients of repellents, resulting in the biased random walk

mentioned above (Vladimirov and Sourjik 2009). Thus, longer swim durations in response to

higher attractant concentrations result in the emergence of a high-level behaviour characterised

by net locomotion toward more favourable conditions. The actual quantity regulated, is the

ratio of swims to tumbles, and is directly determined by the intracellular concentrations of the

proteins within the pathway (Vladimirov and Sourjik 2009).

5.1.2 The E. coli chemotaxis CSN

This entire signal transduction pathway has been identified and is comprised of a set of protein-

protein interactions. The key cytoplasmic signalling events that lead to the regulation of the

motor complex are described below and summarised in Fig 5.1.

Cell surface receptors are responsible for detecting temporal patterns in environmental stimuli

and initiating signal transduction. E. coli contains four types of transmembrane chemoreceptor

proteins: Tsr, Trg, Tar and Tap - known as methyl-accepting chemotaxis proteins or MCP’s.

These MCP’s are scattered over the surface of the cell membrane and each type is responsible

for sensing particular chemoeffectors within the environment (Vladimirov and Sourjik 2009).

After the signal has been internalised, it is processed by six cytoplasmic proteins (CheA,

CheW, CheR, CheB, CheY, and CheZ) which transmit signals by reversible phosphorylation

(see Fig. 5.1). CheW is an adaptor protein which forms a stable ternary signalling complex with

the receptor protein and CheA. This complex, termed the “MCP complex” (see Fig 5.1), is

responsible for initiating the chain of cytoplasmic reactions which communicate changes in

levels of chemoeffectors detected by receptor molecules. In the absence of attractants, CheA (a

histidine kinase) uses ATP to autophosphorylate. Phosphorylated CheA molecules (CheAP)

transfer phophoryl groups to aspartate residues on CheY and CheB. The cytoplasmic motor

proteins: FliM, FliN, and FliG form a motor complex responsible for regulating the flagellar

motor (“M” in Fig 5.1). Phosphorylated CheY (CheYP) diffuse freely through the cytoplasm

and interact with this complex by triggering clockwise (CW) motor rotation and tumbling

response. As the CheYP concentration increases so too does tumbling frequency. The protein

CheZ is responsible for active dephosphorylation of CheYP. If receptors detect an increase in

the attractant levels the autophosphorylation of CheA is inhibited. This results in a decrease in

the levels of CheYP and hence decreases tumbling frequency resulting in longer run periods.

62

Fig 5.1 The E. coli chemotaxis CSN

 To prevent the cell from being locked in either the swim or tumbling state, there is also a

complex adaptation response (Vladimirov and Sourjik 2009). This response increases or

decreases the sensitivity of the receptors by regulating the methylisation of the MCP complex.

Methylisation provides a way to record recently detected concentration changes in

chemoeffectors, thus giving the cell a primitive memory. The MCP’s are in equilibrium

between two states: swim and tumble, where chemoattractants bind to the run form of receptor

as shown in Fig 5.2. By changing the receptor methylation level, the pathway is able to shift

signalling complexes toward the opposing state to restore a balance between CCW and CW

signal outputs. The cytoplasmic proteins CheB and CheR are responsible for regulating

methylisation of the receptor proteins and hence the adaptation response. Phosphorylated CheB

(CheBP) acts as a methylesterase and removes methyl groups from the receptor proteins; while

CheR is a methyltransferase which adds methyl groups to the receptor proteins (Vladimirov and

Sourjik 2009). As previously mentioned, on detection of increased levels of attractant, the

autophosphorylation of CheA is inhibited. This not only decreases the levels of CheYP - and

hence tumbling frequency, but also decreases levels of CheBP. A decrease in CheBP results in

63

receptors becoming more methylated due to the continuous activity of CheR. As MCP

methylisation increases, the receptors shift toward the tumble form. In this form, the receptors

phosphorylate CheA molecules, which then transfer phophoryl groups to CheY and CheB;

hence driving the cell pathway back to its pre-stimulus levels. The initial change of the motor

response is rapid in comparison to the slow adaptation response. This delay in the adaptation

period allows the bacteria to perform extended runs before being set back to its original

equilibrium. In this way the signalling network provides high levels of flexibility and plasticity

which allow adaptation to varying environmental conditions (Vladimirov and Sourjik 2009).

Fig 5.2 The swim and tumble states of the MCP complex.

5.2 Simulation of the E. coli Chemotaxis CSN

5.2.1 Structure of the Simulated Pathway

The pathway described above, was used as a basis to create a simplified ARN simulation of the

chemotaxis CSN of E. coli.

64

This simulation specifically models the reactions essential in regulating the tumbling frequency

and the adaptation response. Thus, only the reactions which regulate the concentration of

CheYP in response to changes in environmental chemorepellents are included. This is because

tumbling frequency is directly proportional to the concentration levels of CheYP (Vladimirov

and Sourjik 2009).

The structure of this simulation is based on the literature (Vladimirov and Sourjik 2009; Bray et

al. 1993; Wadhams and Armitage 2004) and is shown in Fig. 5.3, represented in the ARN

format described in chapter 4. It is composed of a network of 10 reaction units numbered 0-9,

11 pools of intracellular signalling proteins, a single input representing the chemorepellent (L)

and arrowed lines to show the connections and also the direction of signal flow through the

network. The 10 reactions modelled are given in Table 5.1 listed 0-9. As previously mentioned,

the simulation does not model reactions which are not essential in regulating the concentration

level of CheYP. The reactions which are not modelled are:

1. The formation of the receptor complex (MCP) which was assumed to have already taken place.

2. YP binding to the motor protein is not accounted for, as ultimately, it is the concentration level

of CheYP that regulates the tumbling frequency, thus determining run length.

TABLE 5.1 Reactions included in E. coli chemotaxis CSN Simulation

Reaction Molecules Involved Description
0 CheR + MCP MCPM

+CheR
Methylisation of MCP complex by CheR (MCP complex includes
CheA, CheW and receptor molecules) to produce methylated
MCPM. (MCPM is the tumble form of the receptor.)

1 MCPM + Ligand
MCPLM

Binding of ligand (repellent) to MCPM complex (tumble form of
MCP complex) to create MCPLM

2 MCPLM MCPLMP Autophosphorylation of CheA where CheA is part of methylated
MCP complex bound to ligand i.e. MCPLM (tumble form of MCP
complex)

3 MCP MCPP Autophosphorylation of CheA. (Here CheA is part of the run form
of the MCP receptor complex - this is much slower in comparison
to reaction 2)

4 CheY + CheAP
CheYP + CheA

Phosphorylated CheA molecules (part of phosphorylated MCP
complex) transfer phophoryl groups to CheY to create CheYP

5 CheYP + CheZ CheY
+ CheZ

Dephosphorylation of CheYP by CheZ

6 MCP (various forms)
MCP

This reaction cycles the MCP concentration back to restart the
reaction cycle at reaction 0

7 CheB + CheAP
CheBP + CheA

Phosphorylation of CheB by phosphorlylated CheA (CheAP) where
CheyAP is part of MCP complex) to create CheBP

8 CheBP CheB Dephosphorlyation of CheBP to create CheB
9 MCPM+ CheBp MCP

+ CheBP
Phosphorylated CheB (CheBP) acts as a methylesterase and
removes methyl groups from the receptor proteins converting to the
run form of the receptor

65

Key
MCP non-methylated methyl

accepting chemotaxis
proteins (consists CheA,
CheW and receptor)

B CheB MCPP phosphorylated
CheA bound to
MCP

→ Direction
of signal
flow

MCPM methylated methyl
accepting chemotaxis
protein

Bp phosphorylated
CheB

Z CheZ (square)
chemical
pools

MCPLM Methylated methyl
accepting chemotaxis
protein bound to ligand

R CheR L Ligand (repellent) (circles)
reaction

YP phosphorylated CheY Y CheY

Fig 5.3 The structure of the ARN model of the chemotaxis CSN of E. coli.

5.2.2 Simulation Parameters

Network parameters, for example rate constants and protein concentrations, were set up using

real biological data made available online as a central resource by the University of Cambridge

(Morton-Firth and Bourret 2011). This data contains wet lab results which have been gathered

from published work by a number of authors. It should be noted that due to limitations

associated with gathering this type of data, the information serves only as an approximation to

actual cellular parameters. The actual network parameters based on this data and used in the

3
8

Yp

Y 4

5 Z

MCP

6 2

MCPp

MCPLM

MCPM

B

R

Bp

MCP

9 1

7

0
L

 Tumble

66

ARN simulation are provided in Appendix 2. Averages were used where multiple values for the

same parameter were available.

5.3 Experiments and Results

In the following experiments the simulation described in section 5.2 is used as a means to

investigate the application of the ARN to modelling biological pathways and capturing the

resulting emergent behaviours.

Three sets of experiments were performed using this model. The first examines changes in the

concentration of CheYP when exposing the simulation to varying levels of chemorepellents. The

second investigates the ability of the model to simulate the adaptation response. The results

obtained in the first experiment are then used to map the response of tumbling frequency to the

repellent concentration. In the final experiment this correlation is used to model the trajectory

of the random biased walk of an E.coli cell within an artificial environment containing a

distribution of simulated chemorepellents. The results from these simulations are compared

with those in the literature for both wet lab and related computational simulations.

5.3.1 Experiment 1: CheYP Levels in Varying Chemorepellent Environments

As previously described, an increase in the level of environmental chemorepellents results in a

rise in the concentration of CheYP (and similarly CheYP levels fall when the cell enters more

favourable conditions). In the following experiment the model is exposed to varying

concentrations of chemorepellent and the steady-state concentration of CheYP is recorded. The

results are used to establish if the network levels of CheYP rise and fall in response to the

respective increase and decrease in chemorepellent levels as expected, and furthermore if these

levels are similar to those reported in wet lab experimentation and in other computer

simulations.

The ligand, shown in Fig. 5.3, as an input (triangle) labelled L, represents environmental

chemorepellent concentration. A real E. coli cell travelling through its natural environment

would be exposed to a continuous concentration level of chemorepellent at each passing

location. Thus, in this simulation, the input L is set at a level representing a particular

concentration of chemorepellent at a specific location within a physical environment. In the

following experiment, different constant levels of chemorepellent were applied and the level of

CheYP recorded against time. Real biochemical data was not available regarding the pathway

reaction parameters in response to chemorepellent binding. However, moving toward lower

67

levels of chemoattractant provokes the same response as moving up gradients of

chemorepellent; thus it was possible to use the available chemoattractant parameters to

demonstrate the response to chemorepellents- where higher attractant concentrations were equal

to lower repellent concentrations. In these experiments the range of chemoattractant levels

applied is based on the sensitivity range of the receptor as given in the data (Morton-Firth and

Bourret 2011). The levels applied were zero to 0.01 mol/L, where 1x10-10 mol/L represents a

typical low concentration and 0.01 represents a high concentration. These levels are also used

to represent chemorepellent, for example:

• 0 mol/L chemoattractant = 0.01 mol/L chemorepellent

• 0.01mol/L chemoattractant = 0 mol/L chemorepellent

Fig. 5.4 Shows the concentration levels of CheYP in mol/L against time in seconds in response to

applying the following levels of chemorepellent to the network: 0, 1x10-8, 1x10-7, and 0.01(in mols/L).

TABLE 5.2 Concentration of CheYP at steady-state

Concentration
Chemorepellent

Time (secs) to
reach steady-state

Concentration Yp
(steady-state)

MCPM
(steady-state)

0 1.6 0 9.65x10-6

1E-8 8 7.7E-6 -
1E-7 6 1.65E-5 -
0.01 0.4 1.8E-5 0

68

The initial simulated concentration of CheYP was set to 10µm. This is based on the

concentration of CheYP in the actual biological pathway at resting-state (i.e. without exposure

to chemoeffectors). Every cycle of the simulation represents 0.1 ms and the flux for each

reaction is calculated using Eq. (4.3) and used to update each connected pool. Due to its

temporal properties, the network was run for a simulated time of 10 seconds to ensure that each

pool had adjusted to the new level of chemorepellent and reached steady-state. The steady-state

concentration levels of CheYP in mol/L generated by the ARN simulation at four different

continuous concentration levels of environmental chemorepellent are shown in Fig. 5.4 and

summarised for clarity in Table 5.2.

Fig. 5.5 The concentration levels of CheYP against repellent concentration in mol/L.

As can be seen, the level of CheYP begins to change within 0.4 seconds- this is comparable

with that observed in the actual pathway, where the response of bacteria to a step change in

attractant or repellent concentration occurs in ~0.2 seconds (Bray et al. 2007). A plot showing

the ARN simulated concentration of repellent against CheYP concentration is shown in Fig. 5.5.

In the actual biological pathway, increases in exposure to environmental chemorepellent

concentration results in the increase of CheYP and therefore increases tumbling frequency. It

can be seen clearly from Fig. 5.5 that, like the actual organism, an increase in the level of

simulated environmental chemorepellent (or decrease in chemoattractant) results in an increase

of CheYP concentration. The results are in clear agreement with published data. For example,

Goldman et al. (2009) measure and plot the concentration of active CheA (CheAP) at

increments of increasing concentration of aspartate (a chemoattractant). The plot of percentage

aspartate concentration against percentage active CheA produces a concave down decreasing

69

curve and at 10% of active CheA the gradient flattens. As discussed here, an increase in the

level of CheAP corresponds directly to an increase in the level of CheYP. The results from this

experiment (see Fig. 5.5) show that as the level of chemorepellent concentration increases the

level of CheYP also increases producing a concave down increasing curve and at approximately

90% of the CheYP concentration the gradient flattens. Thus, bearing in mind that decreasing

levels of chemoattractant are used to represent increasing chemorepellent, it can be clearly seen

that the results of this experiment show the same trend.

5.3.2 Experiment 2: The Adaptation Response

To ascertain the ability of the ARN model to capture the previously discussed chemotaxis

pathway adaptation response, the steady-state concentration of the methylised MCP (MCPM)

receptor complex and that of CheYP obtained by the ARN simulation was examined at the same

levels of continuous environmental chemorepellent as applied in experiment 1 (section 5.3.1).

As discussed previously, an increase in the level of detected chemorepellent results in an

increase in the level of CheYP and this, in turn, leads to a decrease in the level of MCPM driving

the receptor back to its pre-stimulus equilibrium. In this experiment, the initial concentration of

CheYP is set to 1x10-5 mol/L as before. Both MCPM and MCP are initialised to a concentration

of 5x10-6 mol/L, based on the reported concentration in the actual biological pathway at resting

state. The output of both MCPM and CheYP concentrations against time for both high and low

levels of chemorepellent are displayed in Fig.5.6. It can be seen, that applying an increase in

the level of chemorepellent to the network, results in an increase of CheYp and a decrease in the

level of MCPM, thus driving the network back to its pre-stimulus equilibrium level.

In work reported by Goldman et. al (2009) the MCP receptors were exposed to sequential

increments of the attractant aspartate. On exposure of 5x10-7mol/L aspartate the receptor

methylation increased to a steady-state of approximately 35%, while exposure to 1x10-6 mol/L

resulted in a steady-state of approximately 60% receptor methylation. Similarly, in the ARN

simulation, the steady-state methylation increases on exposure to more favourable conditions

while it decreases on exposure to less favourable conditions. Thus, the ARN simulation is able

to simulate the behaviour of key proteins involved in the adaptation response, and compares

well to other simulations.

70

Fig 5.6 The steady-state concentration levels of CheYp and methylised MCP in mols/L recorded by the

ARN when subjected to high and low chemorepellent concentration (0.01 mol/L and 0 mol/L

respectively).

5.3.3 Experiment 3: Minimum Seeking Behaviour of ARN Simulated E. coli

Finally, to demonstrate the emergent behaviour of the simulated CSN, it was decided to show

the chemorepellent avoiding behaviour in the context of an abstract optimisation problem. Here

a simple environment of varying levels of chemorepellent was created and the chemotaxis

trajectory of an artificial E. coli cell in response to these was recorded. The environment

consisted of an inverted stepped pyramid search-space. Each step of this pyramid contained a

different level of chemorepellent as used in Experiment 1 (section 5.3.1). The centre of the

pyramid represents the global minima of zero repellent concentration (solid black square), as

shown in Fig. 5.7. Each progression outwards chemorepellent concentration increases

logarithmically (that is 0 in the center and then 1x10-10, 1x10-9, 1x10-8 and so on), and the

outermost perimeter signifies a maximum concentration of 1x10-2 mol/L. This range in

chemorepellent was chosen as it includes the complete range of CheYP produced by the

simulation (see Fig. 5.5).

In order to simulate the trajectory of a biased random walk using the model, the duration and

direction of each run in response to each new chemorepellent level was calculated. The length

of each run in response to the current concentration of environmental repellent was determined

by mapping the resultant steady-state concentration of CheYP produced by the model to the

tumbling frequencies at each level of CheYP published in the literature (Bray et al. 2007).

71

Fig. 5.7 Minimum seeking behaviour of a simulated E. coli cell over 500 seconds.

Fig. 5.8 Concentration of CheYP against run time in seconds. Adapted from Bray et al. (1993)

Figure 5.8 shows the concentration of CheYP against length of run and was plotted using the

results reported in the literature (Bray et al. 2007). In an actual E. coli cell, a tumble causes the

cell to redirect in a random direction, and therefore a simple randomised angle between 0-360

degrees provided the new direction for each successive run. Figure 5.7 displays the search

72

space and a typical run, where the path of the simulated E. coli is displayed as a white line. The

results show that, over 500 seconds, the simulated E. coli cell remains in a high repellent

concentration area (above 1x10-7 mol/L) for 74 seconds and a low concentration area (below

1x10-7 mol/L) for 426 seconds. Results were verified statistically over one-hundred runs; where

the average number of seconds spent in low and high concentration was 376 and 124

respectively and the standard deviation for low was 33.9. Thus, it was found that the simulated

cells were approximately three times more likely to be within a low concentration area than a

high concentration area. These results correspond well with the reported behaviour of E. coli

chemotaxis described in the literature and using other simulation methods (Bray et al.2007).

They illustrate that the ARN can be used to accurately simulate real biology, and may have

potential as a modelling tool in Systems Biology. Importantly, they also illustrate that the ARN

is capable of capturing the global high-level behaviour associated with Cell Intelligence, which,

in this case, is the biased movement of the simulated E. coli cells towards more favourable

conditions.

73

6. Spatial & Temporal Properties of the

ARN

As previously discussed in chapter 1, a key feature of CSNs is their ability to recognise specific

patterns of chemicals within the environment and alter their spatio-temporal chemical

distribution to provide an appropriate response. In this chapter, the ARN is used to explore the

computational mechanisms of CSNs involved in pattern recognition and spatio-temporal pattern

generation. The purpose of these experiments is to evaluate the ARN’s ability to abstract these

key processing features of CSNs. In doing so, applications of the ARN are explored; firstly as a

means of simulating CSNs, and secondly in AI applications such as robotic control - where

pattern recognition and response are key features. Furthermore, by using the ARN to

investigate these properties, it may be possible to gain insight into the processing mechanisms

that exist in biological CSNs.

6.1 Pattern Recognition

A previously discussed key mechanism of Cell Intelligence is the ability of a cell to recognise

and respond to specific patterns of chemical signals within its environment (refer to section

2.1).

In the experiments outlined below, the pattern recognition capability of the ARN was tested in

both the context of a general pattern recognition device and also in an abstract biological

setting. In each case, four separate patterns composed of four input and four associated output

mass-values were applied to the ARN. Each pattern comprised values of either 0.1, representing

low concentration, or 1 corresponding to high concentration. The ARN was set up as shown in

Fig. 6.1 and consisted of seven pools, four inputs and seven reaction units organised into two

layers. The network structure was based on that of standard (fully connected, feedforward)

Multilayer Perceptrons (MLPs) (Rumelhart and McClelland 1986). This is because MLPs are a

benchmark connectionist method used for pattern recognition.

74

Fig. 6.1 The structure of the ARN used for pattern recognition experiments. The network consists of four

inputs (triangles), seven reaction units (circles) and seven pools (squares). Each index of the input pattern

array is fed into the corresponding input number. Output patterns are output at pools (squares) 3-6.

In biological CSNs, network parameters are determined by genetic factors, which are subject to

evolution. To achieve a related effect within this artificial setting, an Evolutionary Algorithm

(EA) (see section 3.1) was adopted to train the network to produce the correct output. This also

allowed the combination of EAs and ARNs to be explored.

The initial value of all internal pools was 0.01, and each input value was fed into its

corresponding input unit. For example, the first, second and third input value of pattern 1 is 0.1

and the fourth is 1 (see Table 6.1). The output values were generated by the final layer of pools

(3-6). The target output values for each pattern are given under the heading “Output” in Table

6.1, and the actual values (to three decimal places) after training are given under “Actual

Output”. A population of one-hundred solutions was randomly initialised. Each solution

comprised a complete set of network parameters (an array of twenty-five real numbers)

including the forward and reverse rates for each unit and the weights for each connection

between pools (or inputs) and units, where all the connections from a particular pool have the

same weight (see Table 6.2 for the range of these parameters).

75

TABLE 6.1 Patterns and results for both general and abstract biological setting experiments.

General Pattern Setting Abstract Biological Setting
Pattern Input Output Actual

Output
Pattern Input Output Actual

Output
1 0.1

0.1
0.1
1

0.1
0.1
0.1
0.1

0.1
0.1
0.1
0.1

1 1 (WR)
1 (SR)
0.1 (SA)
0.1 (WA)

1 (IS)
0.1(F)
1 (O)
0.1(DS)

1
0.1
1
0.1

2 1
0.1
1
0.1

1
1
1
0.1

1
1
1
0.1

2 0.1 (WR)
0.1 (SR)
0.1 (SA)
1 (WA)

0.1 (IS)
1 (F)
0.1 (O)
0.1(DS)

0.1
1
0.1
0.1

3 1
1
1
1

1
0.1
1
0.1

1
0.1
1
0.1

3 0.1 (WR)
1 (SR)
1 (SA)
0.1 (WA)

1 (IS)
0.1 (F)
1 (O)
0.1(DS)

1
0.1
1
0.1

4 1
0.1
1
1

1
1
1
0.1

1
1
1
0.1

4 1 (WR)
0.1 (SR)
0.1 (SA)
1 (WA)

0.1 (IS)
0.1 (F)
1 (O)
0.1(DS)

0.1
0.1
1
0.1

Key
Inputs:

WR: weak repel SR: strong repel

SA : strong attract

WA: weak attract

Key
Outputs:

IS : increase speed F: reorientation (up
chemical gradient)

O: reorientation
(down gradient)

DS : decrease speed

TABLE 6.2 Each solution within the population consisted of a forward and reverse rate for each unit and

the weights of all the connections. The solutions were initialised with a random value between the ranges

given in this table.

Range Connection Weights (W) Forward Rate (kf) Range Reverse Rate (kr) Range
-3<=W<=3 0<=kf<=6 0<=kr<=6

Due to its temporal properties, in order to obtain steady-state output values, the network was

run for one-hundred cycles (a cycle ends when the complete set of pools in the network are

updated once using Eq. (4.3) (where ∆t = 1). The solution fitness (fit) was then calculated,

where fitness was the inverse of the sum of the magnitudes of the individual errors. The

individual errors were given by each individual output (O) in a pattern minus the wanted error

value (target, T). The final desired error was 0.01. This is given in Eq. (6.1) where p is the total

number of patterns, o is the number of outputs in each pattern, Tn,m and On.m are the target and

output of the mth output of the nth pattern.

76

∑∑
= =

−
= p

n

o

m
mnmn OT

fit

1 1
,,

1
 (6.1)

 The least fit half of the population was discarded and the remaining solutions were subject to

mutation and crossover in order to create the new population. It was found that adjusting the

crossover and mutation rate had a significant impact on the number of generations required to

train the network. During training, the network frequently became fixed at error levels around

0.2, indicating that it was trapped in local minima. For this reason the mutation and crossover

rates were adjusted resulting in a final setting where 40% of the solutions were subjected to

single point crossover and 10% were subjected to uniformly distributed mutation. If the EA did

not find a solution within one-thousand generations, it was considered not to have converged to

a solution - the failure rate was approximately one in five runs. Only the runs in which the EA

successfully converged on a solution were used in calculating the average and standard

deviation. Out of one-hundred runs the average number of generations required to reach the

target error was 387 with a standard deviation of 267.23, and the maximum number of cycles

needed was 897. The large variation in the required number of cycles indicates that the EA is

highly sensitive to its initial state. Approximately half the total number of EA cycles was spent

decreasing the final 5% error. The parameters of a typical solution are given in Table 6.3. The

results from the experiment are shown in Table 6.1. As can be seen, the ARN was able to

recognise all four patterns correctly. These results show that EAs can be applied successfully to

ARNs in a similar way to ANNs.

TABLE 6.3 Resulting network parameters for one solution after training using the EA.

General Pattern Setting Parameters
Pool Initial

Concentration
Weight of
Connection

Reaction
unit

Forward
Rate

Reverse
Rate

0 1st Pattern value
(e.g. if pattern is
no.1 input is 0.1)

2.999 0 0.723 2.816

1 2nd pattern value -2.915 1 5.411 0.837
2 3rd pattern value 0.424 2 0.969 0.643
3 4th pattern value -0.278 3 0.120 4.310
4 0.01 -1.714 4 1.003 1.455
5 0.01 0.750 5 0.093 0.006
6 0.01 -0.435 6 1.081 0.580
7 0.01 1.319 Note that in this case to simplify the

program the hidden layer pool
concentrations were updated using
the unweighted flux of the product.

8 0.01 -0.104
9 0.01 0.501
10 0.01 1.492

77

Multilayer Perceptron ANNs (MLPs) (Rumelhart and McClelland 1986) have similar

properties. For instance, each neuron can be approximated as either active or inactive and is

comparable to the ARN whose concentration is either high or low. However, MLPs lack an

explicit time dimension, whereas the ARN processes inputs over a time period. In this case, the

ARN was subject to a continuous flux of inputs over one-hundred cycles, causing the pool

concentrations to enter a transient phase and then stabilise at steady-state. The implications are

that, unlike the MLP, where processing is discrete-time, stored patterns are recalled only if

inputs are applied for a length of time greater than that required to reach steady-state. This

experiment demonstrates that the ARN is an appropriate pattern recognition technique when the

requirement is to establish if a set of conditions have held true over a time period.

In a further experiment, the full purpose of which will become obvious later, using the

previously described network structure and set-up, the ARN was trained to recognise an

additional four patterns, where the inputs were chosen to correspond to chemical signatures (for

example, attractants or repellents) that trigger specific movement responses. These patterns are

given in Table 6.1. Here, the ARN network represents a highly abstracted CSN that controls the

chemotactic motion of a generalised single-celled organism. This artificial amoeba is assumed

to have default slow swim behaviour and in the presence of chemoeffectors the behaviour is

updated accordingly. Each input signifies an environmental chemical, where input 0 is a weak

repellent (WR), 1 a strong repellent (SR), 2 a strong attractant (SA) and 3 a weak attractant

(WA). Specific combinations of environmental chemicals generate specific output responses –

where repellents have precedence over attractants. The presence of chemical concentration to a

value approximating to 1, in an output pool, corresponds to a particular behavioural response,

where output pool 0 increases speed (IS), 1 re-orientates to face up the chemical gradient (F), 2

re-orientates down the chemical gradient (O) and 3 decreases the speed (DS). Therefore, as an

example, on detecting both a strong repellent and strong attractant, the cell re-orientates to face

down the chemical gradient and increases speed. As can be seen in Table 6.1, the network

generated the correct response for all the abstract biological patterns.

One property of a CSN is robustness - correct response is generated even in the presence of

noise or loss of connections. In order to test this property within the ARN, random noise was

introduced to the trained general pattern recognition network. Each pattern was subjected to

10% increments of uniformly distributed random noise to a total level of 60% of the input

range. At each noise level outputs were obtained for all four patterns. Figure 6.2 displays noise

against total error on output for all four patterns and shows that the performance of the network

gently degrades with increase in noise. The total error is the difference in error (as given in Eq.

(6.1)) between the noiseless inputs and those with noise added.

78

Error levels within 5% of these results are reported for both the ABN and MLP models

(Macleod and Capanni 2010) at levels of up to 50% noise in pattern recognition tasks of the

same complexity.

Fig. 6.2 Total error (y-axis) for all four patterns after introduction of random noise (x-axis) to patterns at

10% level increments

Similarly to an ANN, the ARN pattern recognition system is a robust connectionist network

and thus provides an intuitive bridge between biology and AI. This experiment illustrates that

such pattern recognition mechanisms are plausible in the CSNs of single-celled organisms, and

that these mechanisms may be represented using the ARN. Furthermore, the experiment

indicates that EAs have application as a means to set the unit and pool parameters. Further

investigation into the role of EA within the ARN would be beneficial, specifically in finding

more effective algorithms and in methods to evolve the network structure.

6.2 Spatio-Temporal Dynamics of the ARN

6.2.1 ARN-based Quadrupedal Robotic Control System

As discussed in chapter 2, CSNs are capable of complex computational processing. It was

shown that a number of structural chemical motifs facilitate the processing of chemical signals

to produce spatio-temporal dynamics suited to current conditions (see Table 2.1). In the

experiments outlined below, these functional motifs are used to generate spatio-temporal

patterns within the ARN. The purpose of this is to validate its ability to represent such patterns,

79

to explore their potential applications, and to gain deeper understanding of the regulatory

mechanisms involved within CSNs.

One method of exploring the ARNs’ ability to reproduce spatio-temporal dynamics, while

investigating its potential AI applications, is to create an ARN based controller which can

reproduce the patterns associated with the gaits of quadrupedal robots. Using these gaits as a

means to explore the ARNs ability to generate spatio-temporal patterns has several advantages.

Firstly, the gaits of quadrupeds are well characterised and the results of many other

connectionist based quadruped gait control systems are available for comparison. Furthermore,

successfully coordinating the motion of the four limbs requires complex spatio-temporal

processing similar to that required to generate motion in biological cells. For example, the

movement pattern of the unicellular slime mould P. polycephalum is termed shuttle streaming.

This motion is characterised by a rhythmic forward and backward flow of the protoplasm. It is

generated by oscillating chemical concentrations of Ca2+ throughout the cell, which cause

internal pressure gradients and result in rhythmic contractions (Radszuweit et al. 2013).

Another reason for investigating limbed robotic control using the ARN is that, although it has

been demonstrated that reaction based ACs can be used to produce motion in animats

(Joachimczak et al. 2013) or gaits of multi-modular robotics (Hamann et al. 2010), the control

of limbed robots using discretised connectionist AC system, as far as the author is aware, has

not yet been explored.

Terrestrial locomotion of limbed animals is achieved by multiple phase-locked patterns of limb

movements known as gaits. For example, depending on speed of locomotion and terrain,

quadrupeds commonly walk, trot and gallop (Dagg 1973). The gait phase is a value that ranges

from 0 to 1 as the gait cycle proceeds. Therefore, the motion of each limb can be described

relative to this. The ideal quadrupedal gaits are described by Dagg (1973) and others

(Hildebrand 1997) and are used as a standard for comparison here and similarly in other studies

(Collins and Richmond 1994). In the walk gait, each leg moves a quarter cycle out of phase and

therefore four separate phases are required. In the trot gait each pair of diagonal limbs move

half a cycle out of phase thus only two phases are present (see Fig. 6.3). Therefore, generating

different gaits corresponds to generating different complexities of spatio-temporal signals,

making this type of experiment ideal for investigating hierarchies of complex waveform

generation.

In these experiments, an ARN controller was implemented to generate gaits of a Lynxsmotion

dual-servo quadruped 2 (Q2) robot- as shown in Fig. 6.4. Each robotic leg is controlled by two

servo motors, one for each degree of freedom (DOF). One motor raises the leg and the other

80

turns it. The structure of the robotic legs is shown in Fig. 6.5, further details of which are given

by Toth and Parker (2003).

Fig. 6.3 Stepping patterns of quadrupeds showing a) walk gait b) trot gait. The black boxes show the

relative length of time of step on the ground, and the white boxes show the relative length of time the leg

spends raised. FL: front-left leg, FR: front-right leg, RL: rear-left leg, RR: rear-right leg.

Fig. 6.4 The Lynxsmotion dual server quadruped 2 (Q2) robot

FL

FR

RL

RR

FL

FR

RL

RR

a)

b)

81

Fig. 6.5 The structure of a Lynxsmotion quadrupedal robot leg. Each leg has two DOFs and each DOF is

controlled by a separate motor.

Fig. 6.6 The ARN based controller. Each module (shown separated by a dashed line) is mapped to a

single leg and is responsible for controlling the two motors which generate its motion. Pool A of each

module controls the up/down motor, pool B the back/forward motor and pool C the stop period for each

of these motors.

Signals are sent by the ARN to each motor and control the angle of the rotor for each DOF,

using a simple position to pulse width modulator interface circuit to control the servo. The

structure of the ARN based controller is shown in Fig. 6.6 and was designed by combining the

previously discussed functional motifs found in CSNs (see Table 2.1) including inhibitory and

excitatory reactions, cyclic loops, and feedback structures. The controller comprises a network

of four repeating structural units or modules, where a module is separated by a dashed line.

Each module controls the two motors of a separate leg, and comprises three reaction units and

three pools: A, B and C. Pool A controls the up/down (U/D) motor, Pool B the back/forward

A0

C2 B0 C0

0

1

 2

B2 B3

A3

C3

 03

 13

 23

A1 A2

 02

 12

 22

B1 C1

01

 11

21

82

(B/F) motor and Pool C controls the off period for both motors. Pool activity is regulated by a

series of excitatory and inhibitory connections between reaction units (see motif 1 and 2, Table

2.1). This type of connection represents the inhibitory and excitatory properties of specialised

regulatory proteins common to CSNs such as enzymes. The overall network structure is based

on the oscillator motif (see motif 9, Table 2.1) organised as a closed loop, allowing protein

species to be recycled from the last to the first module and thus to generate a temporal

oscillatory pattern. The structure of the ARN controller is capable of producing all the common

gaits. The type of gait is easily modified by a simple adjustment of the initial pool values. For

example, by initialising a C pool, a walk gait will be generated, where the C pool chosen will

determine the starting leg and the value determines the angle to which the leg is raised.

Similarly, a trot gait is achieved by initialising two C pools within alternate modules. In this

particular design, the value to which the C pool(s) are initialised determines the DOF angle and

were set specifically for the physicality of the particular robot, although it can be freely varied.

The network architecture remains fixed throughout these experiments and the network

parameters are manually set. This method was employed for a number of reasons. The first

reason was so that the outputs could be directly compared with other published work on similar

Central Pattern Generators (CPGs) (Billard and Ijspeert 2000; Collins and Richmond 1994; Liu

et al. 2009). The second reason was because of the associated problems with alternative

methods. For example, in cases like these, where the search landscape is unknown, one

effective way to set the network parameters would be to use an EA or a similar search

technique, as was employed in the pattern recognition experiments. However, if such a method

were used in this experiment there would be no guarantee that the functional motifs being

investigated would be generated. Gradient decent algorithms also have associated problems

when applied to this sort of network due to the use of feedback connections, and thus, in this

application would prove difficult.

The ARN controller was considered to generate a specific gait if the relative phases of the

respective oscillatory signals were within 2% of the standard gait cycle described previously.

Higher values of 10% were used in other studies (Collins and Richmond 1994), and this was

considered reasonable due to the variation found in real animal gaits (Afelt et al.1983). In each

case, the controller first generates the U/D motor oscillation and on reaching the maximum

value the B/F motor is initiated.

83

Fig. 6.7 Output generated for the walk gait. Legs are front-left (FL), front-right (FR), rear-right (RR) and

rear-left (RL). The up/down (U/D) motor is displayed as a solid line and the back/forward (B/F) motor is

displayed as a dashed line.

Fig. 6.8 Output generated for the trot gait. Legs and motors are labelled as before - see Fig. 6.7.

As can be seen in Fig. 6.7, the walk gait results show that the legs are a quarter cycle out of

turn, with phases of 0.0, 0.25, 0.5, 0.75 between limbs in clockwise order from the FL (front-

left) leg. Similarly, the trot gait results in Fig. 6.8 show that the opposite legs are half a cycle

84

out of turn with phases respectively of 0.0, 0.5, 0.0, 0.5. The frequency of oscillations and

therefore the gait speed is easily adjusted by applying uniform increase or decrease to kf of each

unit. Videos of the robot performing both the walk and trot gaits can be viewed online (Gerrard

2012c).

Both phase-locked limb patterns produced by the ARN match the standard, and compare well

with other connectionist models. For example, Billard and Ijspeert (2000) present a CPG

(Central Pattern Generator) based neural controller for a quadrupedal AIBO robot, similarly

with two DOFs for each leg. The limb phases generated by this network correspond to the

standard and to those produced by the ARN. Here, the network is composed of eight coupled

non-linear oscillators and each oscillator consists of six leaky integrator neurons (a total of

ninety-six neurons). Each neuron implements an activation function which is approximately as

complex as the reaction unit function of the ARN, and therefore the complexity of the network

is roughly equivalent to approximately ninety-six ARN reaction units. Similar correspondence

is found in other sources. For instance, Collins explores a CPG based neural controller for a

quadrupedal robot with one DOF per limb, and compares three types of activation function

models, namely Stein, Van der Pol, and FitzHugh-Nagumo. The controller is composed of a

network of four coupled non-linear oscillators (Collins and Richmond 1994), where each

oscillator controls a separate limb. The Stein model consists of three first order differential

equations, the Van der Paul model consists of a second order differential equation and the

FitzHugh-Nagumo model consists of two first order differential equations. All these models

have approximately twice the complexity of the output produced by the ARN unit. All three

models also require a pulsing signal to drive the network. Generally speaking the structure of

these models is less flexible then either the Billard and Ijspeert (2000) model or the ARN due to

their rigidly fixed internal parameters. The models produced gait patterns within 10% of the

standard, whereas the ARN matched the standard for both trot and walk.

Overall, the ARN has a very similar capacity to generate both walk and trot gaits as the

compared controllers. However, in general, it affords a higher degree of flexibility and is less

computationally complex than the compared models. Although robotic gaits might seem

unconnected with cellular intelligence, the ARNs ability to produce them illustrates how

cellular networks can generate the complex temporal patterns necessary in emergent behaviour.

Furthermore, the results show, for the first time, as far as the author is aware, that a discretised

biochemical connectionist based AC can generate the spatio-temporal patterns required to

generate quadrupedal gaits.

85

6.2.2 ARN-based Robotic Control System Featuring Crosstalk

In a further experiment, a more complex ARN system was constructed to investigate the control

of two simultaneous behaviours involving interacting pathways. Although CSN pathways are

often described as separate and functionally independent, they commonly share and interact

with components of other pathways, and this is referred to as “crosstalk”. For example, cAMP

plays a role in the regulation of cell proliferation, but its pathway also involves components in

the MAPK signalling pathway (Stork 2002). Such interaction enables the integration of signals

from different pathways and facilitates the coordination of cell activity (Yuan et al. 2006).

An ARN based control system may also incorporate the mechanisms of crosstalk. In the next

experiment a simulated robotic system was used to illustrate this, it comprises a system with

four limbs. As shown in Fig. 6.9, each limb has two DOFs: a simple “shoulder” joint, allowing

the limb to rise and fall, and, situated at the end of the limb, a “hand” joint which enables a

gripper to open and close. A typical behaviour comprises of vertical raising of the limb either

independently or in parallel to other limb(s). Once the limb is fully raised, the hand opens and

closes, followed by the return of the limb to its lowered position. Such a sequence might occur,

for example, in an assembly robot, performing a repetitive task.

Fig.6.9 The simulated robot physical structure used for the crosstalk ARN network experiments,

illustrating one of the four limbs and its two DOFs.

The ARN controller for this task comprises two distinct functional networks – pathway 1 and 2,

as shown separated by a horizontal dashed line in Fig. 6.10. Like the previous ARN based

control system, the design of the network is based on a combination of biochemical network

structural motifs. Each pathway consists of four identical repeating modules labelled 1-4 (one is

shown enclosed in a dashed line), and is situated at a layer (from 1-4), where each layer

corresponds to the control of a separate limb.

Similarly to the previous network, this ARN controller is capable of producing a number of

limb movement patterns (any number of limbs can move synchronously or independently), and

the phases are easily modified by a simple adjustment of the initial pool values. Each module of

86

pathway 1 controls the up/down motors of a separate limb and comprises three reaction units

and three pools. Pool B controls the S motor, which determines the angle to raise or lower the

limb, and Pools A and C control its off period. Each module of pathway 2 comprises two

reaction units and two pools. Pool E controls the H motor, which determines the angle to raise

or lower the hand, and pool D controls its off period. Like the previous network, the activity of

the pools in each module is regulated locally by excitatory and inhibitory connections and the

modules are connected to form an overall oscillatory motif. In addition to this, each pathway is

subject to feedback from the neighbouring network, which allows the two pathways to

synchronise their output with each other. The results for independent limb movement are shown

in Fig. 6.11. It can clearly be seen that each limb is out of phase. Once the S motor has raised

the limb to its maximum angle (square line), the H motor then begins to extend (circle line) the

hand to its maximum angle, while the limb remains raised. Both motors then simultaneously

return the hand and limb to their original positions.

Fig. 6.10 The structure of a more complex ARN based control system involving communication or

“crosstalk” between separate networks.

87

Fig. 6.11 Results of ARN based controller where elements of “crosstalk” were incorporated to control

two separate behaviours.

Although this network was designed to explore elements of crosstalk, it is not difficult to

imagine examples where synchronising complementary behaviours are required. In this case,

the robotic hand could be equipped with a tool such as a paintbrush, screwdriver, or cutting

device. More interestingly, it demonstrates for the first time, as far as the author is aware, that

crosstalk can be incorporated into a discretised biochemical connectionist system. Furthermore,

it demonstrates that this system can generate and synchronise multiple low-level activities

enabling them to complement each other so that high-level behaviour is produced.

6.2.3 Complete Robotic Control System

It was demonstrated in section 6.1 that an ARN can recognise patterns. Furthermore, in section

6.2.1-6.2.2, it was shown that such a system can generate temporal output patterns which can be

used in control tasks. Of course, in the natural world, these two behaviours are linked together.

88

Fig. 6.12 A complete control system for a quadrupedal robot. On recognition of a particular pattern the

pattern recognition ARN generates the associated output pattern. The connecting network implements

two parallel Boolean AND gates which act as switches turning the walk or trot components of the control

ARN off/on. The control ARN generates the required waveform which controls the robotic gait.

In the following experiment it is illustrated that both pattern recognition and control function

can be combined within a single ARN-based system. Here, a more complex ARN was created

to recognise specific patterns and in response, automatically generate the associated temporal

gait. The ARN in this experiment reuses the pattern recognition and gait network previously

described in sections 6.1 and 6.2.1 respectively. The complete system is shown in Fig. 6.12. It

is functionally divided into three smaller components: pattern recognition, control, and a

connecting (or interfacing) network.

89

The structure of the pattern recognition network (PR), its implementation and training methods

are identical to those described in section 6.1. This was the reason why a cell-signalling

analogy was introduced in the pattern recognition experiments in section 6.1. In this case, the

network was trained to recognise three separate patterns (as shown in Table 6.4) composed of

four input and four associated output mass-values. The output pools of the PR network are

equal to input pools 0, 1, 2, and 3 of the connecting network (CN). The CN comprises six pools

(four inputs and two outputs) and two reaction units. Its structure is based on the motifs found

in biochemical networks (see motif 7, Table 2.1). Essentially this component operates like two

parallel Boolean AND gates, where a value of 1 at pools 0 and pool 1 will output a value of 1 at

pool 4, as will a value of 1 at pools 2 and 3 output a value of 1 at pool 5. Two negative

feedback connections between the CN and both control system subunits (shown as dashed-line

connections) are responsible for switching between the gaits. Therefore, if a value of 1 is output

at the interface network pool 4, it will inhibit all the reaction 2’s of the walk subunit, thus

stopping the walk gait pattern from being generated. Conversely, if a value of 0 is output at

pool 4 the walk will be generated. In the same way, pool 5 of the CN controls the switching of

the trot control subunit. Table 6.4 shows the range of required behaviours in response to

particular outputs generated by the CN.

TABLE 6.4 Patterns applied to the complete control system and the expected gait generated.

Pattern PR
Network
Input
Pool No.

PR
Network
Input
Value

CN
Network
Input
Pool No.

CN Input
Value (&
output of
the PR
network)

CN
Output
Pool No.

CN
Output
Value

Gait

1 0 1 0 1 4 1 Inhibit
Walk 1 0.1 1 1

2 1 2 0 5 0 Trot
3 0.1 3 0

2 0 0.1 0 0 4 0 Walk
1 1 1 0
2 0.1 2 1 5 1 Inhibit

Trot 3 1 3 1
3 0 1 0 1 4 1 Inhibit

Walk 1 0.1 1 1
2 0.1 2 1 5 1 Inhibit

Trot 3 1 3 1
KEY: PR Pattern recognition CN Connecting network

90

TABLE 6.5 Pattern applied to the network and expected durations of gaits.

Pattern Walk
ARN
Network

Trot
ARN
Network

Start
Time
(seconds)

End
Time
(seconds)

Duration
(seconds)

2 On Off 0 210 210
1 Off On 210 440 230
2 On Off 440 560 120
1 Off On 560 700 140
3 Off Off 700 800 100

The control system comprises two separate subunits, both identical in structure and

implementation to the ARN described in section 6.2.1. Each of these subunits is responsible for

generating a specific temporal gait pattern: one generates walk, the other trot. The two subunits

provide distinct gait patterns due to the differences in initialisation of the concentration values

of C pools.

The complete system was tested to confirm its ability to both generate the correct behaviour

and automatically transition between the behaviours in response to input patterns 0-3. The time

periods in which patterns were applied, and the expected output states are shown in Table 6.5.

The results of this experiment are displayed in Fig. 6.13. The phases produced for each gait are

exactly as described previously in section 6.2.1. The on/off periods of both trot and walk gaits

are in agreement with the expected durations displayed in Table 6.5, but with a slight

transitional delay. The ARN controller and gait phases produced have previously been

compared with CPG models in section 6.2.1. The transitions between gaits generated by these

models may now be compared with those of the ARN. The results given for the Billard and

Ijspeert (2000) model, show transitions from walk to gallop in approximately four leg cycles,

whereas the ARN transitions from walk to trot within two leg cycles. In both cases the

transitions are very smooth. There are three models described by Collins (1994), and although

gait graphs are provided for all these, gait transitions are only given for the Stein model. Here

gaits transition quickly within approximately two leg cycles. However, in contrast to the ARN

and the Billard and Ijspeert model, the leg movements during transition are very irregular.

91

Fig. 6.13 The output of the complete ARN control system over 800 secs. Legs and motors are labelled as

before - see Fig 6.7.

This complete control system demonstrates that the ARN, like a CSN, is capable of both

recognising patterns and controlling overall behaviour in a single network. With the exception

of spiking models, few ANNs can achieve this functionality. However, spiking models are

often less flexible. For example, in the Integrate and Fire model, information is rate coded and

all the spikes generated are uniform (Maass 1997). Thus, unlike the ARN, the Integrate and

Fire model (Maass 1997) lacks the flexibility to produce pulse-width and pulse-amplitude

coded information. The gait phases and transitions compared well with CPG neural controllers

and showed that the ARN has application in similar robotic control tasks and can offer lower

computational complexity. These experiments illustrate how a CSN might perform the complex

sequencing timing and coordination processing associated with the high-level behaviours

displayed by unicellular organisms. Furthermore, it shows that abstractions of both neural

networks and CSNs operate in similar ways, and have comparable functionality. This also

illustrates a close relationship between neural and cell intelligence.

In summary, the results presented in this chapter show that the ARN (and by extension, CSNs)

are capable of performing pattern recognition in a similar way to Artificial Neural models and

also of producing complex temporal dynamics reminiscent of Spiking Neural models.

Additionally, as was shown, in previous chapters, the ARN can model biological reactions and

simulate real CSN pathways with an accuracy matching those of standard simulation methods.

This combination of attributes makes it a unique and useful tool. The ARN systems presented

above show clearly that biochemical networks are quite capable of producing many of the

behaviours normally ascribed to Neural Networks. This helps to illuminate the many interesting

results now emerging from the behavioural biology of single cells. Of course neurons

themselves have internal biochemical networks, and one future application of the ARN may be

92

to help unravel their more complex internal dynamics. The simplicity of the ARN makes it a

potentially useful model in more practical AI and engineering systems. As demonstrated in the

case of robotics, its ability to function in both input (afferent or sensory) and output (efferent or

motor) networks and in the interconnection between these, gives it applications which usually

only much more complex models can fulfil. This is particularly useful in the field of robotics,

where such flexibility has particular application in evolutionary control networks.

93

7. Cytobots: ARN-Controlled Agents

In the previous chapter it was shown that an ARN can be used to model regulatory dynamics

and interactions with the environment similar to those which occur in real cells. Another type of

signalling dynamic that has not yet been explored within the ARN is that of cell-to-cell

communication. In the natural world, cells, within for example, a colony, interact to influence

each other’s CSNs, which produce collective high-level behaviour. In many cases, such cells

are distributed and may be mobile. The state of each cell’s CSN is influenced not only by the

state of the environment, but also by signals sent by other cells. D. discoideum is a cellular

slime mould and provides an excellent example of such interaction between cells. It has a well-

characterised life-cycle and, as illustrated later, exists as a group of interacting amoebae during

the first stages of its life-cycle. These attributes make it an ideal model organism in which to

investigate the dynamics of a system of interacting cells using the ARN.

In this chapter, the concept of mobile agents termed “Cytobots” (“cyto” from Greek for cell,

and “bot” from robot) are introduced. Cytobots are autonomous cell-like agents which move

around and respond to environmental information within a simulated or real environment. Each

Cytobot is controlled by an internal ARN, in a similar way to which a CSN controls an amoeba.

The ARN allows a Cytobot to recognise environmental patterns, communicate stigmergically

with other cells and control its trajectory. Implementing Cytobots in this way provides a facility

to capture the external dynamics resulting from interactions between cells and the environment,

while maintaining the internal dynamics of the cell. Thus, Cytobots provide a means to explore

overall global behaviour resulting from these dynamics and to investigate the properties and

mechanisms involved. In the experiments outlined in chapter 8 the Cytobots are used as a

means to establish the ARNs ability to simulate such dynamics and to investigate their

application in biological simulation and in robotic control.

7.1 Cytobot Behaviour

In the experiments outlined in chapter 8, the Cytobots are initialised and move around

asynchronously within a simulated 2D environment containing a distribution of artificial

94

chemicals. These chemicals represent attractants, for example, food. When a Cytobot reaches a

new position, it detects the surrounding level of chemical and uses the detected concentrations

to set the inputs to its internal ARN. Consequently, this changes the state of the ARN, resulting

in updates to the agent’s trajectory. During this process, the Cytobot modifies the state of the

environment by, for example, consuming the food. All the actions performed by a Cytobot fall

into one of two basic behavioural modes: Foraging and Starvation. These behaviours are based

on two stages of the life-cycle of D. discoideum: Vegetation and Aggregation.

7.1.1 Biological Counterpart: D. discoideum

Fig. 7.1 Life-cycle of the cellular slime mould D. discoideum

D. discoideum (Dd) is a cellular slime mould which lives in soil and decaying leaves, feeding

on bacteria. Its life-cycle contains four stages: Vegetation, Aggregation, Culmination and

Migration as shown in Fig. 7.1 and summarised below. For a more detailed description see

Tyler (2000). During its vegetative stage Dd consists of a collection of independent amoeba

(myxamoebae) which navigate toward food by moving up gradients of folic acid (FA), secreted

by their bacterial prey. The trajectory of these cells is a pattern of motion similar to the random

biased walk of E. coli discussed in section 5.1.1. The Dd cells extend pseudopods in a random

direction; those extended toward sources of chemoattractants such as food are maintained,

95

while those extended toward less favourable conditions and retracted. The overall result is

movement up the gradient of attractant (Andrew and Insall 2007).

The Dd amoebae starve when the food resource has been depleted, and begin the Aggregation

phase. During Aggregation, starving cells secrete cAMP (cyclic adenosine monophosphate),

which serves as a signal to attract surrounding amoebae towards each other, resulting in a

densely populated aggregate of cells (Dallon and Othmer 1997). Aggregating cells are

polarised, thus one side becomes the leading edge, which always faces in the direction of travel

(McCann et al. 2010). Depending on parameters, such as environmental conditions and the cell

population density, migrating cells can form transient emergent patterns such as streams and

spirals (McCann et al. 2010; Dallon and Othmer 1997). Streaming describes a pattern of

motion where cells line-up in close-order files, with the head of one following the rear of

another (McCann et al. 2010) – and the spiral pattern describes streams of concentric cells

spiralling toward the centre of the aggregate (see Fig. 7.2).

a) b)

Fig. 7.2 Stylised illustrations of Dd aggregation patterns. a) Shows streaming Dd cells during

aggregation. This pattern is characterised by polarised cells forming a close-order file where the head on

one aligns with the tail of another. b) Shows a spiral aggregation pattern, where cells form concentric

spirals toward the aggregate centre.

After forming a tight aggregate, the Migration phase begins. Here, the aggregated cells form a

motile pseudoplasmodium known as a “slug”. The component cells coordinate their activities to

allow the slug to move toward attractants such as heat and light. The slug eventually settles in a

favourable position where it forms a fruiting body and enters the Culmination stage. During

Culmination the fruiting body matures, and eventually releases spores which are distributed

within the surrounding environment. These spores mature into cells and become the new

generation of myxamoebae, and so the cycle begins anew.

96

7.1.2 Cytobot Foraging Mode

When in Foraging mode, a Cytobot performs a pattern of biased motion based on Dd cells

during their Vegetative phase (as described previously in section 7.1.1). The Cytobots

approximate this behaviour by performing alternate periods of forward motion, termed “runs”,

and random redirections called “tumbles”. The bias is provided by reducing the tumble

frequency when moving toward more favourable conditions (for example up a food gradient) -

thus increasing the length of the run. Like aggregating Dd cells, each Cytobot is polarised and

will always face toward the direction of travel. At each new position, P, an agent redirects itself

to face a new random angle between 0 and 360 degrees (a tumble). The agent then moves

forward in a straight line for a number of time-steps, based on the level of food detected at P

(run). The duration of a run is longer on detection of higher levels of food and lower in less

favourable conditions. The Cytobot consumes all the food (if present) at each location it passes

through.

7.1.3 Cytobot Starvation Mode

The Cytobot Starvation mode is based on the pattern of motion displayed by starving cells of

Dd (as previously described in section 7.1.1). The Cytobots enter Starvation mode if food has

not been consumed within a time period. During this phase, the Cytobots respond to detected

levels of environmental cAMP. Depending on the particular experiment, this chemical may

already be present within the environment or it may be released by starving Cytobots. In this

mode, both run and tumble behaviours differ from that in the Foraging phase. Rather than

turning in a random direction, a new direction is calculated by weighting the turn direction

towards the highest concentration of artificial cAMP within the surrounding area. The run

period, instead of being variable, is a fixed length, which is set according to the particular

experiment.

7.2 Cytobot ARN Design and Implementation

In this section, the design and implementation of the Cytobot ARN control system, which is

responsible for all aspects of a Cytobot’s Foraging and Starvation behaviour, is discussed. Each

Cytobot operates asynchronously with respect to the other agents - enabling it to react

independently to situated environmental patterns, communicate with others and contribute to

high-level collective function. The simulated environment in which the Cytobots are placed

contains a distribution of artificial chemicals. These chemicals represent the attractants of either

food or cAMP. When a Cytobot moves to a new position, the surrounding level of chemical is

97

used to set the inputs to its ARN. Consequently this changes the internal state of the network

and updates the agent’s trajectory. During this process, the agent modifies the state of the

environment by consuming food or releasing cAMP. As shown later in the experiments detailed

in chapter 8, representing the environmental chemicals in different ways enables the Cytobots

to produce a range of interesting behaviours.

As previously discussed, the Foraging and Starvation modes are based on those of chemotaxing

Dd cells during their Vegetation and Aggregation phases respectively. It was decided not to

base the Cytobot ARN on the specific biochemical detail of the Dd chemotaxis CSN. Instead, a

highly abstract approach was adopted. This decision was made because, unlike the E. coli

chemotaxis CSN discussed in section 5.1.2, there is no general agreement about the specific

protein interactions within the Dd chemotaxis pathway to enable accurate representations to be

developed (Manahan et al. 2004). When modelling such a network, researchers often adopt a

modular approach, where related signalling events are grouped into functional units (Manahan

et al. 2004). Simulating the pathway in this way allows it to be modelled when some of the

biochemical detail is unknown. In a similar way, the Cytobot ARN was designed by dividing

function into modular units. In a further step toward abstraction, none of the actual biochemical

reactions are represented. Instead, the Cytobot ARN modules are constructed by combining the

functional motifs of real biochemical networks discussed in section 2.3. The advantage of this

is that these mechanisms are universally found in other pathways, and thus show that the ARN

is capable of potentially modelling any pathway. Similarly to the ARNs employed in chapter 6,

the functional motifs and parameters were set manually. Although an EA could have been used,

it would not have guaranteed that the structural motifs would be generated within the system.

The Cytobot ARN is composed of six subnetworks as shown in Fig. 7.3 (a larger version of the

diagram is given in Appendix 3 for clarity). These are: the Master Oscillator; the Run Length

Network; the Food Network; the Signalling Network; the Chaotic Network and the Weighted

Direction Network. Each subnetwork contributes a functional aspect to either (or both)

Starvation and Foraging behavioural modes. The Run Length Network controls the length of

forward motion; the Signalling Network acts as a switch between the Foraging and Starvation

modes; the Chaotic Network is used in Foraging mode to determine the angle to redirect. While

in Starvation mode, the Weighted Direction Network determines this angle. Finally, the Master

Oscillator synchronises each network to determine the overall output. Each of these

subnetworks is discussed in detail in the following sections. A complete listing of all the

network parameters including the input and output pools of each reaction, the connection

weights, forward and reverse rates of each reaction, and the initial value of each pool is

98

provided in Appendix 4. Note, that in all the Cytobot experiments outlined in this work, the

ARN uses conserved mass values (see Eq. (5) section 1.2 for calculations for conserved mass).

Fig. 7.3 The Cytobot ARN network. Each Cytobot is controlled by an instance of this network and thus

has an independent state at time t. The network is composed of six subnetworks.*Pools are considered

empty when the value of its component chemical is ≤ 1x10-3

7.2.1 The Master Oscillator

The Master Oscillator functions to synchronise the outputs from all the other subnetworks

together, and provides the motor response at each time-step. It is a four component oscillator

(Table 2.1, motif 9) with a token unit of chemical cycling around it. It consists of four reaction

units: M0, M1, M2, and M3 (all with a reaction rate of 1), four pools MA, MB, MC and MD

and generates a pulsed-width-modulated waveform. Each pool is associated with one of three

behaviours. At every time-step, if a particular pool contains the token unit, then its

corresponding behaviour is performed. Pool MA activates turn, MC activates run and MB and

MD activates stop. Thus, if pool MC contains a chemical for a period of ten time-steps, the

agent will move forward for ten time-steps. The other subnetworks inhibit (Table 2.1, motif 2)

or excite (Table 2.1, motif 1) the reaction units of the Master Oscillator to allow or prevent

chemical flow.

Note, that this oscillator motif allows the Cytobot ARN to function easily as the control system

for the motor actuators of a wheeled robot. Here, MC would switch on all the wheel motors,

while MA would switch on left-wheel motors only, thus turning the robot. The remaining pools

would act as off switches.

99

7.2.2 The Food and Run Length Network

The Food Network interfaces with the environment at pool FA using an excitatory connection

(Table 2.1, motif 1), and inhibits the Run Length network in accordance with the level of

detected food. The forward rate of reaction at node F0 is 1, thus the content of FA is transferred

to pool FB in a single time-step. The presence of chemical FB inhibits (Table 2.1, motif 2) R0

for a number of time-steps, according to the level of food (by setting forward rate of unit F1 to

1 and weight to 0; this can be an exact correlation). The Run Length network is a three

component oscillator (Table 2.1, motif 9). While reaction R0 is inhibited, it prevents pool RC

from emptying. RC inhibits reaction M2 (Table 2.1, motif 2) of the Master Oscillator thus

preventing pool MC from emptying for the same number of time-steps. As discussed

previously, the number of time-steps which pool MC contains the token unit, represents the

number of time-steps to move forward.

7.2.3 The Signalling Network

The Signalling Network functions as a switch between Starvation and Foraging mode. Low

food levels trigger the starvation response and allows the Weighted Direction Network to

control each new angle. Sufficient food will switch off the Weighted Direction Network and

allows the Chaotic Network to control each new angle. It is a three component oscillator (Table

2.1, motif 9) with a token unit of chemical flowing around it. Pool CA acts as the switch

between Foraging and Starvation modes. Here the presence of chemical in CA inhibits the

Weighted Direction Network (Table 2.1, motif 2), while its absence switches on the Weighted

Direction Network; this in turn inhibits the Chaotic Network, as shown in Fig. 7.3. In this

network, all reaction units have a forward rate of 0.5. This produces a continuously oscillating

waveform and ensures a minimum number of time-steps for each behaviour. A NOR gate

(Table 2.1, motif 7) activates pool CB in the absence of food chemical in both pools FB and FC

of the food network, thus allowing pool CB to empty. An AND gate (Table 2.1, motif 7) will

lead pool CA to eventually refill by activating pool CC, only when food is present in input FA

and pool FC of the Food Network.

7.2.4 The Weighted Direction Network

The Weighted Direction Network senses cAMP within the agent’s immediate environment and

calculates a tumble angle which is weighted toward higher levels. This network interfaces with

the environment via a number of receptor pools (AW, ANW, AN, ANE, AEA) which sense the

level of food around the Cytobot. These pools represent receptors and are positioned at points

100

around the front of its perimeter (as shown in Fig. 7.4), allowing the agent to travel in a similar

way to that of an aggregating Dd cell.

Fig. 7.4 Location of the Cytobot sensors around its perimeter.

Each receptor input pool forms one input of an AND gate (Table 2.1, motif 7); the other input is

a static pool, containing a fixed level of chemical, corresponding to its direction. The direction

pools start from AW (west) with a corresponding static pool of value 0 (A00) and progress in

45 degree steps through each direction to AEA (east) with a corresponding static pool of value

180 (A180). As the receptor positions around the agent are fixed, directions are always relative

to the direction in which the agent is facing. All connections have a weight of 1 with the

exception of the connection between pool AD and reaction A12 which has a weight of -1. This

negative connection weight raises the sum of food detected in AD to -1, which multiplied by

AB, allows an average angle to be calculated. Detected signals are classed as being in one of

the following cardinal and ordinal directions: W, NW, N, NE, and E. Thus signals are detected

from all directions above the horizontal plane. The calculated angle interfaces with the

remaining subnetworks at pool AE. Pool AE is the output of an OR gate (Table 2.1, motif 8),

and its inputs are activated by either the Weighted Direction Network or the Chaotic Network.

AE also forms the inhibitory input of a SWITCH (Table 2.1, motif 7), where the presence of

chemical in MA and absence in AE activates pool MB of the Master Oscillator. In the actual

organism, receptors are set around the cell perimeter and direct movement appropriately. In this

simulation, for simplicity, a count of the number of time-steps “n” that MA contains the token

unit, is processed to gain the new heading “h” relative to the agents’ current heading “c” using

Eq. (7.1) and then applying statement 1:

101

 cnh +−≡)90((7.1)

Statement 1

IF (h > 360)THEN h = h – 360
IF (h < 0) THEN h = h + 360

Thus, if the number of time-steps is 120 and the agent is facing north, then the current heading

would equal 0 and the new heading would equal 30.

7.2.5 The Chaotic Network

The Chaotic Network, shown in Fig. 7.3, is responsible for generating the pseudo-random

angles which agents use to perform each Foraging mode tumble. It is a networked

implementation of a Logistic Map, given by Eq. (7.2), where Xn is a state variable of value 0 <

Xn < 1 and λ is a system parameter of value 1 ≤ λ ≤ 4:

)1(1 nnn XXX −=+ λ (7.2)

 Without prior knowledge of the initial conditions, the output of the Logistic Map is not

predictable; whereas, with prior knowledge it is deterministic. Therefore, the resulting series

cannot be described as truly random, but as pseudo-random and its output has long been

proposed as a pseudo-random number generator. Ulam and von Neumann (1947) were the first

to examine this, and it has been successfully used in that capacity by several researchers

(Patidar et al. 2009; Phatak and Rao 1995). The probability density distribution of the Logistic

Map, as given by Eq. (7.3) (where P(X) is the probability of X occurring at any time-step), is

non-uniform (Patidar et al., 2009):

)1(
1)(

XX
XP

−
=

π (7.3)

When λ=4, the distribution is “U” shaped, with a higher probability of values closer to the

minima and maxima of X and a symmetric distribution around the midpoint.

To implement the Logistic Map, a number of motifs are combined, including multiple branch

motifs (Table 2.1, motif 6 - KB activates KD and KE), PFLs (Table 2.1, motif 3 - a multi-

component PFL exists where KA leads to activation of KE, which results in the activation of

102

KA) and NFLs (Table 2.1, motif 4 - KA activates KD which in turn inhibits KA). At the start of

the simulation, pools KA and KB are initialised to the same random value (a unique number for

each Cytobot), between 0 and 1 (to 5 decimal places). This value represents the initial value of

X of Eq. (7.2). All the other pools are initialised to 0, with the exception of the static pools KI

and RK, whose initial values are 360 and 1 respectively. Reaction K2 is responsible for

generating each new value of X and has a forward and reverse rate of 4 (the Logistic Map

exhibits chaotic behaviour when λ is 4). The connection between KA and K2 has a weight of 1

and that between K2 and KB has a weight of 2. The remaining series of reactions function to

copy the value of X three times; where two copies serve as the new initial values of KA and

KB, and one participates in the final output of the network at KH. KI has a fixed value of 360

which allows the network to convert the pseudo-random number at KH to an angle value

between 0 and 360 at reaction K0. However, reaction K0 cannot proceed until all eleven pools

that inhibit it are empty. These inhibitory connections (Table 2.1, motif 2) ensure that random

angles are not output while the agent is in starvation mode, and that pool AE is empty before

adding more chemical. Appendix 5 provides a more detailed account of the operation of the

Chaotic Network.

a) b)

Fig. 7.5 Frequency distribution for each value of X when X is initalised to 0.9277725 and λ=4 resulting

from: a) the Chaotic Network b) Recursive relation given by Eq. (7.2) obtained using Matlab.

The ARN implementation of the Logistic Map was verified against the recursive relation shown

in Eq. (7.2) using Matlab, where λ=4, initial X = 0.927725, and iterated for 1x105 steps. The

complete range of state-variables between 0 and 1 were divided into one-hundred equal

subintervals and the frequency of occurrence of each subinterval interval was plotted. Similarly,

the Chaotic Network component of the ARN was run for 1x105 cycles, using the same

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

X-Value

Fr
eq

ue
nc

y
C

ou
nt

s

λ =4
Χ =0.927725

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

X-Value

Fr
eq

ue
nc

y
C

ou
nt

s

λ =4
Χ =0.927725

103

parameters of X (initial value) and λ. These results were processed in the same way and are

shown in Fig. 7.5. The frequency distribution gained from the ARN is identical to that obtained

using Matlab and by other researchers using the same parameters (Patidar et al. 2009). The

same comparison was repeated one-hundred times at different values of X, and the ARN

consistently produced the same values as Eq. (7.2).

In the following chapter swarms of Cytobots are used to investigate the dynamics of multi-

agent chemical based systems and their applications in biological simulation and in robotics.

104

8. Cytobot Experiments and Results

In this chapter the dynamics, emergent behaviours and practical applications of multi-agent

Cytobot systems are investigated in a number of experiments. These include: the simulation of

D. discoideum amoebae during their Foraging and Aggregation life-cycle phases, solving

benchmark search problems, and finally a simulated oil-spill clean-up operation.

8.1 Cytobot D. discoideum Simulation

The experiments outlined in this section examine the application of Cytobots in the simulation

of emergent behaviours in interacting groups of biological cells. A number of Cytobots are

instantiated within an artificial environment and used to simulate a population of D. discoideum

(Dd) cells, where each Cytobot represents one cell. Two phases of the life-cycle of Dd are

modelled: Vegetation and Aggregation (and their transition). The results are compared with the

behaviour of real Dd cells and with other simulations.

8.1.1 Cytobot D. discoideum Simulation: Methodology

The experiments are grouped into two sets: Aggregation (AG1-10 of Table 8.1), which models

the Aggregation phase only, and Foraging to Aggregation (AGF3 and AGF8 of Table 8.1),

where both the Vegetative and Aggregative phases are simulated including the transition

between them. Each experiment is performed at varying population densities of Cytobots (p)

and different ranges of detection of cAMP (r). The experiments AGF3 and AGF8 are

performed with the same p and r as experiments AG3 and AG8 respectively, to compare the

effect of the Foraging phase on the number of mounds formed and length of time to complete

the Aggregation phase. The emergent patterns, numbers of mounds, and length of time to

complete phases is examined and compared in both sets of experiments and with the literature.

In each experiment the Cytobots move within a 2D simulated environment, which represents a

physical area of 5.06 mm2- approximately half the maximum aggregation territory reported in

the literature (Dallon and Othmer 1997). A screen output shows the position of the Cytobots in

real-time and is a grid of 500 × 500 pixels, where each is represented by a square of side 4.5

105

μm. In nature, aggregating Dd cell densities are typically 250 to 1000 per mm2 (Dallon and

Othmer 1997). Due to the demands on computational resources required to manage a

population of Cytobots within the upper range, a cell density at the lower biological range of

250 agents per mm2 (1250 Cytobots) and another at 150 per mm2 (750 Cytobots) were chosen.

TABLE 8.1 D. discoideum Simulation Results

Setup Results

No. Cytobots
per mm2

(p)

Range
(r) in
mm

Mean No.
of mounds;

(σ)

Minimum
no. of

mounds

Maximum
no. of

mounds

Aggregation Phase
Mean time in

Hours; (σ)
AG1 150 5 1

(0)
1 1 8.98

(0.09)
AG2 150 2.5 4

(0.31)
3 4 9.63

(0.17)
AGF3 150 1 5.9

(1.06)
5 7 9.47

(0.65)
AG3 150 1 5.2

(0.82)
4 6 9.92

(0.34)
AG4 150 0.5 8.4

(1.19)
7 9 10.23

(0.59)
AG5 150 0.1 14.2

(2.36)
12 16 10.6

(1.82)
AG6 250 5 1

(0)
1 1 8.95

(0.11)
AG7 250 2.5 1

(0)
1 1 9.6

(0.20)
AGF8 250 1 6.8

(1.81)
6 9 9.71

(0.87)
AG8 250 1 4.3

(0.37)
4 5 10.05

(0.58)
AG9 250 0.5 6.7

(1.62)
5 8 12.65

(1.94)
AG10 250 0.1 - - - -

In both sets of experiments, the Cytobots are initialised at random positions in Foraging mode

within the simulated environment. In the AGF experiments, the environment is initialised with

a radial outwardly-decreasing gradient of food (z), as described by Eq. (8.1), where x and y are

Cartesian coordinates on the horizontal plane:

22 yxz += (8.1)

106

The Cytobots begin the experiment in the previously described Foraging mode and remain in

this mode until the food resource is depleted and Starvation mode is triggered. In a real

environment, food is non-uniformly distributed, may be regenerated and can move (in the case

of bacterial prey).

Fig. 8.1 The strength of signal for each cardinal or ordinal direction above the horizontal plane of a

Cytobot is calculated using this pseudocode. The result for each direction is used to set the corresponding

direction input pool of the ARN Weighted Direction network.

∑
=

=
N

n n

n
A d

k
W

1 (8.2)

Thus, this setup is simplified, but is comparable to other simulations (Becker 2010). If a

Cytobot does not detect food for a period of approximately five time-steps it will enter

Starvation mode. The exact number depends on the level of food detected in the recent past,

because higher levels take longer to flow through the network. Cytobots in Starvation mode

emit a cAMP signal into their environment at equal strength in all directions around their

FOR each Cytobot
 Get current agents’ facing direction CF
 Assign a value to direction CF using statement 1

 FOR each (index n) detected cAMP signal
 Get detected signal incoming direction CA
 Assign a value to direction CA using statement 1
 IF CA = CF THEN kn = 3
 ELSE IF CA = CF-1 OR CA = CF+1 THEN kn=2
 ELSE IF CA = CF-2 OR CA = CF +2 THEN kn=1
 ELSE kn=0
 END IF
 Calculate distance dn
 Store each CA with kn and dn
 END FOR

 Calculate WA for current agent using Eq. (8.2)
END FOR

Statement 1: East = 1; North East = 2; North = 3; North West =4; West = 5

Where:
WA= total weight of direction A
N= total number of agents within range of detection
dn= distance of current agent from agent n
CA = direction of incoming signal detected by current agent
CF = the current agents facing direction
kn = value of cAMP signal from agent n

107

circumference. Each Cytobot in Starvation mode detects the cAMP signal of all other starving

agents within a radius r. The total value for each direction is calculated using the pseudocode

given in Fig. 8.1 and these totals are used to set the Weighted Direction network input

(receptor) pools.

A range of r values were explored, including that of real Dd cells: 1, 0.5, and 0.1 mm (McCann

et al. 2010). The cAMP signal degrades linearly with increasing distance from the emitting cell.

Each cycle represents 1 minute of time. In this time an aggregating Cytobot moves 9μm - a

distance which corresponds to that of actual aggregating Dd cells (Rifkin and Goldberg 2006).

Therefore, after 1 hour of motion, a Cytobot travels a distance of 540μm. In this simulation, just

as in biology, there are always remaining cells that do not aggregate, and thus the simulation

runs until 95% of agents are at a distance of less than 0.1mm (100μm) from their nearest

neighbour.

8.1.2 Cytobot D. discoideum Simulation: Results and Discussion

Each experiment was performed one-hundred times. The results for each experiment, given in

Table 8.1, show the minimum and maximum total number of mounds formed, the mean and

standard deviation (σ) of the number of mounds formed and similarly the mean and standard

deviation of the number of hours taken to complete aggregation. The results were found to have

a normal distribution. In the AG experiments an increase in p by 100 per mm2 resulted in a

decrease in the number of mounds formed at each value of r, with the exception of experiment

AG6. This is not surprising, as denser populations have more chance of interacting, and thus

form fewer clusters, each having a higher number of agents. Similarly, decreasing r results in a

general increase in the number of mounds formed at both values of p. The likely reason for this

is that as r decreases the Cytobots’ area of influence becomes increasingly smaller, and thus the

number of isolated stable clusters with fewer agents increases. In the AGF experiments, agents

generally focus on consuming food in each of the remaining areas of highest concentration (see

Fig. 8.2 K-L). Having consumed almost all the food, agents begin switching to Starvation mode

(Fig. 8.2 M). In these experiments the number and location of resulting mounds differs from

that of the AG experiments at the same values of r and p. For example, experiment AG8 results

in an average of 4.3 mounds within the test space (Fig. 8.2 E) while AGF8 results in an average

of 6.8 mounds and a general shift in mound formation further away from the centre of the

environment (as shown in Fig. 8.2 O). The likely explanation is that, at the time of switching to

aggregation, the majority of cells were forced outward toward the next remaining highest

concentration of food. Emergent behaviours and clustering patterns similar to the biological

organism were also observed.

108

In experiments AG8-10 and AGF8, the value of r and p are within the ranges for real Dd cells.

These experiments are used to compare the behaviours and aggregation time with the values for

real Dd in the literature. In experiments AG8-9 and AFG8, mound formation completes within

the range reported for the actual organism of 9-13 hours (Cotter et al. 1992; Becker 2010).

These results are comparable with other work. For instance, Becker (2010) reports an

aggregation time of 11.6 hours for a simulated population of Dd with a cell density of 200mm2.

In experiment AG10, the population never satisfied the criteria for completion of mound

formation and instead the agents appeared to move in a fashion reminiscent of Brownian

motion. The likely explanation is firstly, because the simulation does take into account

glycoprotein’s which allow aggregating cells to attach together on contact; secondly, because r

is small, fewer agents are detected by each Cytobot. Thus, momentarily larger clusters with

higher attraction strength go undetected and quickly dissipate - an effect that would not occur if

agents stayed together.

Fig. 8.2 Screenshots of the Dd simulation. Dots represent the Cytobots (black - vegetative and red -

aggregative), and greyscale colour represents the food distribution. Screenshots A-E show experiment

AG8 at A- 1hr, B- 2hr, C-5hr, D- 8hr, E- 10hr; Image F shows real Dd cells aggregating; Screenshot G

shows streaming behaviour (close-up lower right-hand C); Screenshot H-J shows pattern formation;

Screenshot K-O shows experiment AGF8 where: K- 0hr vegetation, L- 4hr vegetation, M-transition to

aggregation, N- 5hrs aggregation, O- 10hr aggregation.

Diagram F courtesy of T, Gregor, Laboratory for the Physics of Life, Princeton University, 2013 Used

with permission.

109

As previously discussed, the Cytobots are polarised. Implementing the agents in this way

allowed us to observe whether or not the previously described streaming behaviour occurs. A

close-up of the right-hand corner of screenshot C is shown in Fig. 8.2 G and shows the agents

beginning to form a cluster. The protruding head of each agent can be seen clearly, where each

lines-up its head to the rear of another agent and forms a stream. As can be seen in Fig. 8.2 F,

this is very similar to the streaming behaviour in real cells of Dd. Other emergent patterns

occurred during different experiments including spirals (Fig. 8.2 H), symmetric patterns (Fig.

8.2 I), and waves (Fig. 8.2 J).

These results show that the Cytobots are able to simulate behaviour of individual unicellular

organisms, and the emergent behaviours arising from their interaction. It highlights a potential

use as a means to simulate groups of interacting cells - for example, a bacterial colony or tissue

component within a multicellular organism. Applications include the modelling of the effects of

disease (e.g. faulty gene expression) and pharmaceuticals on global behaviour. The results

demonstrate the parallels between ARN agents and their biological counterparts; like amoebae,

their internal network of spatially distributed dynamic chemical species allows them to

autonomously coordinate and direct their movement, recognise and respond to patterns in the

environment, and produce high-level behaviour.

8.2 Cytobot Optimisation Experiments

In the following experiments, the application of Cytobots to swarm robotics is investigated by

applying them to search tasks within a variety of simulated landscapes. The aim is to show that

these agents can perform a range of useful search behaviours in a variety of situations, and that

their search strategy can compare to that of established optimisation algorithms using similar cell

inspired strategies. The Cytobot design and behavioural set remain exactly the same as in the

previous Dd simulation, but the environment is modified to represent each search problem.

8.2.1 Cytobot Optimisation Experiments: Methodology

The Cytobots task is to find the global minima in a number of 2D benchmark optimisation

problems. These problems were chosen as they reflect a variety of real-world terrains and thus

allow the limits of the Cytobot search capacity to be explored. These are the following

functions: Rosenbrock, Peaks, Inverted sinc, and Bowl (see Table 8.2 for formulae, domains,

and minima).

110

TABLE 8.2 Formulae, domain and minima for the Rosenbrock, Bowl, Peaks, and Inverted sinc
functions used in the search space experiments.

Function Formulae Domain f(x*) = f*
Rosenbrock 2

1
22

12)1()(100)(xxxxf −+−⋅=]2,2[, 21 −∈xx 0)1,1(=f
Rosenbrock As above As above As above
Rosenbrock As above As above As above

Bowl 2
2

2
1)(xxxf +=]1,1[, 21 −∈xx 0)0,0(=f

Peaks

))1(exp(3/1

)exp()5/(10

))1()(exp()1(*3)(

2
2

2
1

2
2

2
1

5
2

3
11

2
2

2
1

2
1

xx

xxxxx

xxxxf

−+−⋅−

−−⋅−−⋅−

+−−⋅−=

]3,3[, 21 −∈xx
 -6.55

)63.1,23.0(
=

−f

Inverted sinc ()

+

+
⋅−=

2
2

2
1

2
2

2
1sin

1)(
xx

xx
xf

]10,10[, 21 −∈xx -1)0,0(=f

Fig. 8.3 A screenshot of the simulation showing six Cytobots in the Inverted sinc search space. The

greyscale colour represents the food distribution.

Three experiments were performed for each function, where each uses either 1, 3 or 6 Cytobots

and was performed one-hundred times. The task of the agents was to find the minima of the

functions within as few evaluations (reading value of food at current x, y-coordinate) as

possible. The range of output values for each of the functions represents the concentration of

food (also the fitness of an agent at that point) within a simulated environment. Values

approaching the minima represent higher food levels, and those approaching the maxima

represent lower food levels. The simulated environment consists of a 2D area of 400 x 400

pixels. A scaling factor was used to map the domain to the actual dimensions of the simulation,

111

INITIALISE Cytobots
WHILE (best fitness > 0.04 of global minima)
 START search phase

 WHILE (more searching phase moves)
 FOR each agent start searching phase
 Turn agent
 Set receptor pools of Food Network
 Set receptor pools of Weighted Direction Network
 Move agent forward
 IF (new food level > previous food level)
 Record fitness
 Record current position
 END IF
 END FOR
 ENDWHILE
 END search phase

 START reposition phase
 CALCULATE new central point P to reposition
 INITIALISE agents at new position
 END reposition phase
 END WHILE

e.g. Rosenbrock domain of [-2, 2] mapped to a simulation space of [-200, 200] by a scaling

factor of 100. For display purposes, a corresponding grayscale colour was used to show the

distribution of food within the environment as displayed in the screenshot of the simulation in

Fig. 8.3 (see Appendix 6 for screenshots of the other functions). A token marks the current

position of each agent (see Fig. 8.3) and each agent has an instance of an ARN network. At the

start of each experimental run, the agent’s ARN network is initialised as described previously

and it is positioned at random x and y coordinates within the search space. The agents undergo

alternating phases of “searching” and “repositioning” for a number of cycles until one reaches a

position of within 0.04 of the global minima of the function. This value was chosen as it is

within 1% of the global minima for all the functions used. The high-level pseudocode

describing the searching and repositioning phases is provided in Fig. 8.4.

Fig. 8.4 High level pseudocode for each experiment

Searching is characterised by the two ARN controlled behavioural modes - Foraging and

Starvation, as described in section 7.1. During each search phase an agent performs a total of

three moves (three evaluations of the environment). The length of a run corresponds to the

number of pixels a Cytobot moves forward and is subject to the output from the Run Length

network. After each tumble, and before moving forward, the food level at the current position is

input into the ARN network as described previously. The agents travel at a speed of one pixel

per time-step; thus the number of time-steps produced by the Run Length network corresponds

directly to the number of pixels the agent moves forward. As a Cytobot travels, the food at each

112

passing position is consumed and its path within the simulation is represented in black (as

shown in Fig. 8.3). During the search phase, a central control unit, external to all Cytobot

agents, keeps track of each Cytobots best fitness and the coordinates of that value.

Let },,{
N

aaA o = equal the set of all agents

 ∑
=

=
N

a
atot ff

0
 (8.3)

*}{\ Then aAa∈∀

tot

a
ra f

f
f = (8.4)

 *aaax xxd −= (8.5)

 *aaay yyd −= (8.6)

×+= ∑

=
raax

N

a
ax fdxp

0
* (8.7)

×+= ∑

=
raay

N

a
ay fdyp

0
*

 (8.8)

 xa prrandx +=)((8.9)

 ya prrandx +=)(
 (8.10)

Where:

a*= agent with highest fitness

fa= fitness of agent an

ftot= total fitness of all agents

fra= ratio of agent an fitness to ftot

xa*= the x-coordinate of a*

ya*= the y-coordinate of a*

xa= agent an x-coordinate

ya = agent an y-coordinate

dax=difference between xa and xa*

day= difference between ya and ya*

px=total of all dax

py= total of all day

rand(r)= random value within a defined radius r

113

After completing the searching phase, agents switch to the repositioning phase. This phase is

used to focus searching toward areas containing higher food levels and represents the

movement of a Dd slug during the migration stage of its life-cycle (see section 7.1.1). When the

Cytobots enter the repositioning phase, the central control unit processes each agent’s best

fitness position to compute a new central point P, weighted in favour of higher fitness, as

described by Eq. (8.3-8.10). Agents are then repositioned randomly within an area of radius r

from point P to begin the next search phase. For the purposes of this simulation, travelling to

the new position was not modelled, as this does not affect overall behaviour and would only

occur if the Cytobots were applied to real-world environments.

8.2.2 Cytobot Optimisation Experiments: Results and Discussion

The experimental results are displayed in Table 8.3. For each experiment, the average best, fa,

and best solution, fb, for one-hundred independent runs are presented. The average number of

evaluations and the standard deviation for all agents is displayed as “Avg Eval for all agents”

and “Std Dev” respectively (the results are normally distributed). The average number of

relocations for each agent is presented in the final column as “Avg Reloc per agent”. In all

experiments the Cytobots were able to find the global minima. Cytobots performed best in

Bowl and Rosenbrock functions, where, using 6 Cytobots, the average number of total

evaluations and relocations per agent respectively for Bowl was 56.4 and 2.1 and for

Rosenbrock was 79.8 and 3.4. The Cytobots performed least well in the Inverted sinc search

space, where the lowest number of total evaluations was 94.8 using 6 Cytobots. In all the

experiments, a slight increase in the number of Cytobots generally results in a significant

reduction in the total number of evaluations performed. This is most significant for Peaks

where using 3 and 6 Cytobots results in approximately 30% and 60% respective reductions in

the total number of evaluations when compared to the results for 1 Cytobot. The Mann Whitney

U test was used to determine any significant (95% confidence) statistical difference in the total

number of evaluations (for all agents) between experiments using 1 & 3 and 3 & 6 Cytobots. In

all experiments there was a significant difference between 1 & 3 agents, with the exception of

the Inverted sinc function. In Peaks there was a significant difference in all experiments, while

in the Inverted sinc there was no significant difference found. Thus increasing the number of

Cytobots from 1 to 3 both reduces the time to find the global minima and the number of

evaluations, but this effect can be quickly reversed if too many Cytobots are added.

114

TABLE 8.3 Cytobot optimisation experiment results. The average best (fa) and best solution (fb) for one-

hundred independent runs are presented. Average number of evaluations (Avg Eval) and standard

deviation (Std Dev σ) for all agents is given. The average number of relocations for each agent is given as

“Avg Reloc per agent”.

Function No. of
Agents

Avg Best (fa)
and Best (fb)
Results

Avg Eval for
all agents
(Std Dev σ)

Avg Reloc
per agent

Rosenbrock 1 fa = 0.04
fb = 0

98.5
(16.3)

32

Rosenbrock 3 fa = 0.03
fb = 0

84.6
(9.5)

8.4

Rosenbrock 6 fa = 0.01
fb = 0

79.8
(4.8)

3.4

Bowl 1 fa = 0.03
fb = 0

81.9
(14.8)

26.3

Bowl 3 fa = 0.02
fb = 0

64.2
(7.6)

6.1

Bowl 6 fa = 0.02
fb = 0

56.4
(5.8)

2.1

Peaks 1 fa = -6.51
fb = -6.55

151.7
(59.2)

49.6

Peaks 3 fa = -6.51
fb = -6.55

108.9
(17.4)

11.1

Peaks 6 fa = -6.52
fb = -6.55

64.8
(5.7)

2.6

Inverted
sinc

1 fa = -1.04
fb = -1

163.5
(63.4)

53.5

Inverted
sinc

3 fa = -1.03
fb = -1

109.5
(30.1)

11.2

Inverted
sinc

6 fa = -1.03
fb = -1

94.8
(10.1)

4.2

The paths of agents through the search space indicate reasons for variation in the results. In

simple landscapes such as Bowl, agents descend steadily toward the minima, as shown in Fig.

8.5. Similarly in Rosenbrock, agents quickly descend to the narrow valley and are forced to

steadily move along it by moving up the nutrient gradient created by the consumption of food,

until finding the global minima. In Peaks, agents move from their initial positions and search

many parts of the domain. Figure 8.6 shows the agents’ trajectories, one can see that peaks are

avoided and troughs are pursued. However, if fewer agents are used they may quickly become

trapped in local minima causing a significant rise in the number of evaluations. Increasing the

number of agents by a small amount expands the amount of search space explored per cycle,

and increases the chance of finding better solutions and (or) leaving local minima. Another

possibility is to increase the number of moves for each searching phase, thus allowing an agent

115

to travel a sufficient distance to escape local minima. Similar solutions could be adopted in the

Inverted sinc search space.

Fig. 8.5 Typical path of a Cytobot in the Bowl search space

Fig. 8.6 Typical path of three Cytobots in the Peaks search space

These results were compared with other optimisation algorithms inspired by behaviours of

single-celled organisms. For example, Passino developed the Bacterial Foraging Optimisation

Algorithm (BFOA), inspired by foraging behaviours, reproduction and dispersal events in the

life-cycle of E. coli (Passino 2002). Like the foraging behaviour of the Cytobots, movement is

modelled as a biased random walk, where, after each random redirection, the cell moves

forward a length according to current food levels. In a nutrient hill-climbing experiment

116

(without swarming effects), 50 cells are initialised at random starting positions within a 2D

search space. This search space is similar to Peaks but with five troughs and a domain of [30,

30]. Similarly to the Cytobots the cells tend toward valleys and avoid peaks. After four

generations (four reproductive steps), and moving one-hundred chemotactic steps (moves)

between generations, the cells find the global minima.

Similarly in other work, Chen et al. (2009) applied BFOA using 6 cells to the 2D Bowl function

with domain [-5,5], and the global minima was found within 50 chemotactic steps. In our

experiments, 6 Cytobots find the global minima after an average of 9.4 evaluations, which is

the equivalent to 9.4 moves (or 9.4 chemotactic steps in the terminology of Chen et al). After

adjusting for the difference in domain size, the numbers of moves are highly consistent for

Cytobots and the cells in BFOA. In other related work, Monismith and Mayfield (2008) created

the Slime Mould Optimisation Algorithm inspired by the life-cycle of Dd. The state space is

represented as a sparse mesh which cells populate and make modifications to, for example,

deposit attractant. Using a combination of behavioural states inspired by the life-cycle of Dd,

artificial cells perform local searches, and move to positions in favour of their personal best and

the best fitness of their neighbourhood. The Slime Mould Optimisation Algorithm, like the

Cytobots, finds the global minima of the 2D Rosenbrock function.

The results presented above show that the agents are able to find best fitness solutions in all

problems, and match the performance of cell inspired optimisation algorithms in similar search

spaces. Increasing the number of agents by small increments (two or three), can halve the

number of function evaluations required to find the global minima. These experiments serve as

a preliminary to implementing ARN systems to control real-world distributed autonomous

robotic agents. Such agents could be applied to search problems in real-world environments.

For example, oil-spill clean-up operations - as illustrated in the next experiment, where the

objective is to travel to higher concentrations of oil, while consuming it at each passing

location. The search behaviour results from the internal ARN network, but is enhanced by the

collective activities and stigmergic interaction of the agents. The Cytobots obviously do not

compare directly with conventional optimisation techniques like Genetic Algorithms, since they

have a complex internal structure. However, this is not their purpose and they may be much

more effectively utilised as independent control systems in autonomous robot-like agents.

117

8.3 Cytobots Oil-Spill Clean-up Simulation

To illustrate a practical application, the Cytobots were used to tackle a simplified oil-spill

clean-up simulation. In these experiments, the same ARN used previously is used to perform

different behaviours by altering its interface with the environment.

8.3.1 Cytobots Oil-Spill Clean-up Simulation: Methodology

The Cytobots move within a 2D environment containing an oil-spill on water. This oil is

analogous to a distribution of food within a nutrient landscape. The task of the Cytobots is to

clean-up the spill as quickly as possible by consuming oil at each location. The agents move

through the environment by switching between the two previously described behavioural

modes - Foraging and Starvation. To enable the Cytobots to behave differently, rather than

modify the network, the interface between the Cytobots and the environment was altered. To

achieve this, the concentration of oil surrounding the agents was used to represent both food

and cAMP attractants. Thus, the amount of oil at each new position was fed into both the

receptor pools of the Weighted Direction network and those of the Food network. At the start of

each experiment, the Cytobots were distributed randomly within the environment, and the ARN

network was initialised as previously described. The agents start the simulation in Foraging

mode but during the simulation alternate between Foraging and Starvation modes. Starvation

behaviour is triggered when the last positions visited (minimum of two) contained zero food. In

Starvation mode, instead of turning in a random direction, the new direction is weighted toward

higher concentrations of food within its surrounding area as previously described. This

behaviour forces exploration of unexplored search space, because previously visited positions

have a food level of zero. Consumption of environmental food therefore acts as a stigmergic

signal, where agents are inclined to move up the nutrient gradient created by their foraging

activities. On consuming a sufficient amount of food, the Cytobot switches back to Foraging

mode, repeating this behaviour until 95% of the oil is consumed. Here, we model the spillage of

100 tonnes of Statfjord crude oil at 150C under a wind speed of 5ms-1 The oil is distributed over

a 2D sea surface of 300m by 200m, an area of 60000m2, where two pixels corresponds to 1m,

as shown in Fig. 8.7A. The particular oil type, simulation variables and parameter set were

chosen in order to compare directly with work by Kakalis and Ventikos (2008) who present a

robotic swarm concept for oil-spill confrontation. For this reason, we account for an initial

response time of (a virtual) 14 hours. Based on the mathematical models found in Kakalis and

Ventikos (2008), which account for the main factors of short term changes in oil

characterisation, the volume of oil after 14 hours is reduced to 150m3. Beyond this starting

state, the volume is only influenced by the Cytobots. The speed of each agent is 0.5ms-1 and is

118

based on other robotic agents in oil cleaning scenarios (Kakalis and Ventikos 2008); thus the

Cytobots move one pixel (0.5m) for every time-step. The actual cleaning surface is 1m, thus the

Cytobots clean a two pixel wide area in each time-step.

Fig. 8.7 Oil simulation using 8 Cytobots at A- 0 hours, B- 2 hours, C- 4 hours and D- 9.6 hours

Fig. 8.8 Typical “comet” shaped oil-spill shape as seen from above. Most oil is contained in the narrow

head section closest to the release point. Environmental factors such as wind or current spread the oil to

create a trail.

119

Mathematical modelling of oil-spill dynamics is non-trivial and at best can offer a crude

approximation of its actual trajectory. Most oil-spills quickly form a comet shape (see Fig. 8.8)

with most of the oil within the head, and a trail of sheen (Wang and Stout 2007). To represent a

simplified version of the comet-shaped spread, the simulation area is divided into one-hundred

3m x 200m segments. The first segment contains 0.015 tonnes of oil, and each subsequent

segment increases by 0.03 tonnes from right to left.

8.3.2 Cytobots Oil-Spill Clean-up Simulation: Results and Discussion

In each experiment, a different number of Cytobots was deployed - 3, 5, 8 and 15 and the

recovery rate achieved by each group was compared. The simulation time was measured from

deployment of the Cytobots at 0 hours (14 hours after the oil was spilled) and stopped when the

Cytobots had collectively removed 95% of the 150m3 of oil. Each experiment was run one-

hundred times, and the average volume of oil consumed at 6 minute intervals was calculated.

Figure 8.9 presents the average volume of oil consumed by the group of Cytobots against time.

The results for each experiment were found to be normally distributed. Table 8.4 provides the

average length of time taken to clean 95% of the oil (Avg. time) and standard deviation (σ) for

each experiment. By adding 2 additional agents to the group of 3, the length of time is reduced

by 3.7 hours, thus 1.85 hour average difference per extra Cytobot. This difference decreases

1.12 hours per Cytobot for 8 agents, then to 0.76 per agent for 15. The variation can be

accounted for by examining the agents’ paths through the oil. Rates are much faster at the

beginning of the experiments, where Cytobots move toward the oil-rich left-side of the

environment. This can be seen in the series of screenshots of a typical experiment shown in Fig.

8.7, where A shows the starting position at time 0, and B shows that after 2 hours the Cytobots

have moved toward the left-hand side, focusing mainly on highly concentrated areas (consumed

oil is shown in white). Initially, the rate of oil removal is high because Cytobots focus on the

highest concentration areas and as the landscape remains largely unexplored they are unlikely

to go over their path, thus each new location results in consumption of oil. However, as time

progresses, large patches become cleaned and a higher probability exists for the Cytobots to

revisit previously cleaned areas. The consumption of oil in Fig. 8.7 C-D at 4 and 9.6 hours

respectively shows more clearly that Cytobots focus cleaning efforts on the area of highest

concentration first, and are gradually forced to move toward the next highest concentration by

the gradient created by their foraging activities. Figure 8.7 D shows the state of the oil at the

end of the simulation, where only small patches remain mainly in areas of low oil

concentration.

120

Fig. 8.9 Average volume of oil cleaned against time for each group of Cytobots

TABLE 8.4 Average length of time taken to clean 95% of the oil-spill for each group of Cytobots

No. of
Cytobots

Avg. finish
times

Standard
deviation (σ)

3 15.2 3.4
5 11.5 2.7
8 9.6 2.8
15 6.1 3.1

These results can be compared to the simulation by Kakalis and Ventikos. Here, varying

numbers of simulated EU-MOP robots are deployed to tackle 150m3 of Statfjord oil over

60000m3 (as before). In this case, the robots have a slightly faster speed of 0.54m/s but have the

same 1m skimming face. Each EU-MOP robot has a storage capacity of 2m3
 and a transit speed

of 2.1ms-1. The times taken for 3, 5, 8, and 15 EU-MOPS are 54, 32, 20 and 10 hours

respectively. For comparison, the results of our simulation can be adjusted to include unloading

of the oil at a servicing vessel. Using the same storage capacity and transit speed and assuming

the distance to the ship and back is two times 300m and that each Cytobot fills the same amount

simultaneously, then the new times are 17.2, 12.7, 10.3 and 6.5 for 3, 5, 8 and 15 Cytobots

respectively. The Kakalis and Ventikos simulation has several differences to the one reported

here, particularly in the distribution of the oil. Also, some key parameters are missing from

their paper, for example, the distance to the boat. Despite these differences, our results are very

similar. For example, the reported simulation time for 15 EU-MOPS is 10 hours and in our

simulation 5 and 8 Cytobots took 12.7 and 10.3 hours respectively. Given the differences in the

simulation and differences in operation of the robots, the resulting clean-up times are

121

comparable, suggesting that the Cytobots have potential application as distributed robotic

agents in real-world environments. This application demands an internal control system which

can function without reference to other agents within the environment which are operating in

parallel. By modifying the environment, (which in this case was consumption of food), the

agents can stigmergically communicate and display emergent behaviour.

The Cytobots offer a unique range of abilities. Like cells, their internal network of spatially

distributed dynamic chemical species allows them to autonomously coordinate and direct their

movement, recognise and respond to patterns in the environment, and produce high-level

behaviour.

122

9. Summary & Conclusions

9.1 Introduction

The purpose of this final chapter is to provide an overall summary of the project. The first

section revisits the original objectives in order to evaluate how well these were met within the

course of the research. This is followed by a summary of original contributions to the art,

suggestions for future work and final remarks.

9.2 The Project Objectives Revisited

9.2.1 Evaluation of Objective Attainment

The objectives set out at the beginning of the project developed significantly in the first year.

Objective five was added later after the literature review highlighted the importance of

interaction between multiple cells in the generation of Cell Intelligence. At the start of the

project the objectives were merely ideas and, although preliminary research had identified a

niche for development of CSN inspired AI, little was known about how they would be met.

The project objectives (as given in chapter 1) are listed below together with a discussion of

their attainment.

1. Produce a computational representation of biological Cell Signalling Networks that

captures the underlying properties and mechanisms of Cell Intelligence.

The completion of this first objective involved a number of tasks. The first of these was to

identify the key features of Cell Intelligence and its mechanisms. This started with a

literature review on the mechanisms and capabilities of information processing within cells,

leading in turn to a complete overview of CSNs (chapter 2). The second task involved

investigating the current methods used to represent the properties and mechanisms of CSNs

and the applications of such models in both Systems Biology (chapter 2) and AI (chapter

123

3). This served two purposes: firstly, to learn from existing AI and biological simulation

methods, and secondly to ensure the originality of the new representation. At this point, a

new representation was developed and this resulted in the ARN, as described in chapter 4.

The ARN combines features from existing methods which facilitate modelling of the

identified properties and mechanisms of Cell Intelligence. The ability of the ARN to

capture high-level behaviour of both single and multiple cells was later verified throughout

the project (chapters 5, 6, 7, 8). This work clearly demonstrates the attainment of this

objective.

2. Evaluate the biological accuracy of the new representation

To evaluate the biological accuracy of the ARN representation, a number of experiments

were performed. The ability of the ARN to represent the dynamics of individual

biochemical reactions was tested and the results were shown to compare to those of

standard modelling tools (chapter 4). Later, by simulating the E. coli chemotaxis CSN

(chapter 5), it was demonstrated that the ARN could be used to model an entire signalling

pathway. The accuracy of the ARN, in simulating both the dynamics of individual

biochemical reactions and whole CSNs, compared to that of other standard Systems

Biology tools. These results thus demonstrate the attainment of this objective.

3. Explore the computational capabilities, pattern recognition and temporal dynamics of the

new representation.

The computational capabilities of the ARN were firstly evaluated by constructing small

networks which could perform operations such as: Boolean and Fuzzy Logic, switching and

oscillation. For each of these networks, examples from the literature were used as a basis of

their structural design and also to demonstrate their occurrence within biological CSNs

(chapter 2). In chapter 4 the ARN was demonstrated to have at least the same processing

capability as an MLP. Its pattern recognition functionality was explored in chapter 6, where

a fully-connected, layered ARN was successfully trained using an EA to recognise simple

patterns. Using the gaits of qudrupedal robots as a test bed, the ARN was then shown to be

capable of generating a range of complex temporal signals (chapter 6). These experiments

also showed that ARN could automatically transition between these signals in response to

environmental stimuli. Thus, the demonstration of the ARNs capacity for pattern

recognition and the generation of complex temporal waveforms illustrate that this objective

was clearly met.

124

4. Evaluate the ability of the new representation to capture characteristics of Cell Intelligence

arising from single cells.

Having evaluated the ARN’s ability to accurately model and capture the computational

properties and mechanisms of CSNs, its ability to represent the characteristics of Cell

Intelligence demonstrated by a unicellular organism was examined (chapter 5). Here, an

ARN-based simulation of the E. coli chemotaxis CSN demonstrated the temporal transition

of concentrations of key chemotaxis proteins in response to different levels of

environmental chemorepellant. Ultimately, the resulting pattern of chemical concentrations

indicated chemotaxis down the chemorepellant gradient, and thus demonstrated the high-

level behaviour of movement toward more favourable conditions. This work illustrates the

achievement of this objective.

5. Evaluate the ability of the new representation to capture Cell Intelligence arising from

multiple interacting cells.

It was shown that the ARN could capture complex emergent behaviour arising from groups

of multiple interacting cells using ARN-agents termed Cytobots (chapter 7). Cytobots were

shown to capture emergent behaviour of the slime mould D. discoideum (chapter 8). In this

simulation, each Cytobot represented a D. discoideum cell, and it was demonstrated that

these responded autonomously to the surrounding environment and to other Cytobots using

stigmergic communication. Thus the work in chapters 7 and 8 demonstrate the achievement

of this objective.

6. Identify the applications of the new representation within AI and compare with existing

methods

Many applications of the ARN were demonstrated throughout the project, and thus this

objective was met. These were:

1) Simulation of an individual CSN (chapter 5)

2) Simulation of multiple interacting CSNs (chapter 8)

3) Simulation of emergent behaviour in both individual and multiple interacting cells

(chapter 5 and 8)

4) Limbed robotic control and pattern recognition (chapter 6)

5) Robotic control in general (for example, in the oil-spill experiment described in

chapter 8)

125

Existing methods were contrasted with the ARN throughout the project, particularly within the

results section for each experiment.

9.3 Original Contributions to the Art

The original contributions, as given in chapter 1 are listed below. Each is followed by the

location of the original work within this thesis and a justification of its originality.

1. The creation of a new connectionist AI technique - the “Artificial Reaction Network”

inspired by biological Cell Signalling Networks (chapter 4).

As discussed in chapter 3 and 4, there are techniques similar to the ARN. However, the

ARN has a number of unique characteristics that distinguish its operation. These are:

• A distinct graphical notation associated with its mathematical definition

• The use of inhibitory connections, which combine discrete switches with

continuous reaction dynamics

• The specific use of Euler’s approximation to generate time-domain response

• The use of “pools”

• The isolation of component parts within a connectionist representation

Furthermore, the ARN has a number of advantages that were discussed throughout the
project. In summary these are:

• It is highly flexible, individual reaction parameters (units/pools/connections) can

easily be modified independently of other reactions.

• Distinct graphical system and associated mathematical definition facilitate simple

building and conceptualisation of pathways. This in turn facilitates the

development of drag-and-drop user interfaces.

• Ability to easily represent and visualise structural motifs found in CSNs and study

emergent properties of the network.

• The temporal dynamics of entire networks and (or) individual reactions can be

viewed in simulated real-time. The effects of modifications to the network can be

viewed as they occur.

• The ARN can both process input patterns, and generate associated output patterns.

• Direct outputs from the ARN can be used to control robotic actuators.

126

• It enables both intracellular dynamics and extracellular dynamics to be modelled

and resulting emergent properties studied in one system.

2. The production of complex waveforms for control of limbed robotic gaits by
combining functional motifs found in CSNs within a rate law based connectionist
system (chapter 6).

Although differential equation reaction models have been used to generate motion of soft-

bodied robots (as discussed in chapter 3), none that use functional motifs found in real

biochemical networks or that employ rate law equations have been used to generate the

gaits of limbed robots.

3. The construction of the E. coli chemotaxis pathway using a connectionist based
Artificial Chemistry (chapter 5).

To the best of my knowledge, this is the first time that a connectionist-based Artificial

Chemistry was used to simulate the chemotaxis pathway of E. coli and model its high-level

behaviour.

4. The implementation of chaotic dynamics by combining functional motifs found in
CSNs within a rate law based connectionist system (chapter 7).

Chaotic dynamics have been shown in real biochemical reactions, for example the

Belousov-Zhabotinsky reaction (Winfree 1984) and computational models of such

dynamics have been created. However, as far as the author is aware, this is the first time

such dynamics have been generated by combining functional motifs within a connectionist-

based Artificial Chemistry.

5. The production of a complete limbed robotic control system by combining
functional motifs found in CSNs within a rate law based connectionist system
(chapter 6).

As far as the author is aware , this is the first time that a complete limbed robotic control

system has been created by combining functional motifs found in CSNs within a rate law

based connectionist Artificial Chemistry. It was shown that such a system can combine

pattern recognition and response within a single network and automatically generate and

transition between different quadrupedal gaits in response to a range of environmental

patterns.

127

6. The construction of multiple distributed cell-like agents by combining functional
motifs found in CSNs within a rate law based connectionist system (chapters 7 and
8).

There are other agent-based systems that have complex internal networks as discussed in

chapter 3 (for example GRNs). However, these examples do not use functional motifs

found in CSNs nor do they use the rate law equation to model internal dynamics.

Furthermore these do not show the ability to perform multiple operations. For example,

move forward, turn, adjust length of motion, recognise environmental patterns, and change

phase (as was demonstrated by the Cytobots in the oil-spill clean-up simulation in chapter

8); or parallel the collective high-level behaviour found in groups of interacting unicellular

organisms.

9.4 Suggestions for Future Work

Overall considerations for future work can be divided broadly into two categories: 1)

improvements to the model and 2) further applications. An overview of those considered the

most important are presented below.

9.4.1 Improvements to Model

• Currently programming a large ARN network is complex. Increasing the number of

reaction units increases the number of connections and pools, thus increasing the size of the

program. Managing such a system is cumbersome. For practical use, it would be highly

convenient to develop a drag-and-drop graphical user interface allowing connections, pools

and units to be simply arranged, connected and modified as desired. This would make the

ARN accessible to wider research communities, for example, as a modelling tool in the

field of Systems Biology.

• The accuracy of the model could also be improved by, for example, examining the use of

second or higher-order methods of approximating the differential equations. The current

method of approximation – Euler’s method, was deemed suitable for the purposes of this

project. However, providing a higher degree of accuracy may be useful in particular

modelling scenarios.

• An important aspect of future work, which would make the ARN more versatile and

accessible particularly within the AI community, is the ability to:

128

1) Evolve entire ARNs autonomously.

2) To facilitate autonomous adaptation and learning within the ARN representation.

• The first point refers to the ability to automatically evolve not only the network parameters,

as was demonstrated in the pattern recognition experiments (chapter 5), but also to evolve

the topology of the network. The second point refers to the ability of the network to

continuously and autonomously adapt its topology and network parameters while in

operation – thus allowing it to maintain or improve its current functioning.

9.4.2 Applications

• An interesting property of Cell Intelligence is the ability to store and recall information. As

discussed in chapter 2, such memory is of interest because it illustrates that intelligence is

present in organisms without a nervous system. Such knowledge sheds light on the nature

of intelligence in a more general sense and on the limitations of cellular behaviour.

However, the mechanisms involved are poorly understood. The ARN is a technique suited

to investigating such mechanisms and properties of CSNs which could facilitate this

primitive memory. Such insights would be important within both biological science and AI.

• As was demonstrated in the D. discoideum simulation (chapter 8) Cytobots provide a

powerful tool in the simulation of interacting cells. They allow CSN dynamics at multiple

levels (intracellular and extracellular) to be modelled in parallel. This could be particularly

useful in examining the emergent properties of interacting cells. For example, the effect of

mutant or diseased cells on a colony can be studied by introducing ARN-agents with

altered pathways to a population of ARN-agents with wild-type pathways. Another

potential field of application is within environmental science. For example, models of

micro-ecologies containing heterogeneous species can be created and used to predict

potential effects on the environment or on each other.

9.5 Concluding Remarks

In conclusion, the author would like to make the following personal remarks with regard to the

undertaking of the work. The project has been a great success and all the original objectives

have been fulfilled. The work has resulted in six conference papers (most in leading

international conferences) and two journal publications both in Soft Computing (Springer).

There have been many challenges over the course of the project and these have been

129

successfully overcome. The project has been highly interesting, extremely worthwhile and

provides an extensive report on the computational aspects of CSNs.

130

References

Adamatzky, A., de Lacy Costello, B. and Asai, T. (2005) Reaction-diffusion computers,

London: Elsevier Science.

Aderem, A. and Underhill, D. (1999) ‘Mechanisms of phagocytosis in macrophages’, Annual

Review Immunology, vol.17, pp. 593–623.

Afelt, Z., Blaszczyk, J. and Dobrzecka, C. (1983) ‘Speed control in animal locomotion:

transitions between symmetrical and nonsymmetrical gaits in the dog’, Acta

Neurobiologiae Experimentalis, vol.43, pp. 235-250.

Agerwala, T. (1974) A complete model for representing the coordination of asynchronous

processes. In: Hopkins Computer Research, Report 32, John Hopkins University.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. (1994) Cell Signalling. In:

Molecular biology of the cell, 3rd ed., New York: Garland Science, pp. 721-734.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson J. (1989) Cell Signaling. In:

Molecular biology of the cell, 2nd ed., New York: Garland Science, pp. 682-690.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. (1989b) The Immune

System. In: Molecular biology of the cell, 2nd ed., New York: Garland Science, pp.

1002-1011.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. (1989c) Small Molecules,

Energy and Biosynthesis. In: Molecular biology of the cell, 2nd ed., New York: Garland

Science, pp. 41-58.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. (1989d) The Nervous

System. In: Molecular biology of the cell, 2nd ed., New York: Garland Science, pp.

1059-1065.

131

Aldridge, B., Burke, J., Lauffenburger, D. and Sorger, P. (2006) ‘Physicochemical modeling of

cell signaling pathways’, Nature Cell Biology, vol. 8, pp. 1195–1203.

Andrew, N. and Insall, R. (2007) ‘Chemotaxis in shallow gradients is mediated independently

of PtdIns 3-kinase by biased choices between random protrusions’, Nature Cell Biology,

vol. 9, no. 2, pp. 193-200.

Ankers, J., Spiller, D., White, M. and Harper, C. (2008) ‘Spatio-temporal protein dynamics in

single living cells’, Current Opinion Biotechnology, vol. 19, pp. 1-6.

Arena, P., Fortuna, L. and Branciforte, M. (1999) ‘Reaction-diffusion CNN algorithms to

generate and control artificial locomotion’, Circuits and Systems I: Fundamental Theory

and Applications, IEEE Transactions, vol. 46, no. 2, pp. 253-260.

Arkin, A. and Ross, J. (1994) ‘Computational functions in biochemical reaction networks’,

Biophysical Journal, vol. 67, pp. 560-578.

Baldan, P., Cocco, N., Marin, A. and Simeoni, M. (2010) ‘Petri Nets for Modeling Metabolic

Pathways: A Survey’, Natural computing, vol. 9, no. 4, pp. 955-989.

Banâtre, J., Coutant, A. and Le Métayer, D. (1988) ‘A parallel machine for multiset

transformation and its programming style’, Future Generation Computer Systems, vol. 4,

pp. 133–144.

Banzhaf, W. (1990). ‘The “molecular” traveling salesman’, Biological Cybernetics, vol. 64, no.

1, pp. 7-14.

Banzhaf, W. (2004) ‘On evolutionary design, embodiment, and artificial regulatory networks’,

International Seminar Embodied Artificial Intelligence, Lecture Notes Computer

Science, vol. 3139, Dagstuhl Castle, pp. 284-292.

Banzhaf, W., Dittrich, P., and Rauhe, H. (1996) ‘Emergent computation by catalytic reactions’,

Nanotechnology, vol. 7, no. 4, pp. 307.

Becker, M. (2010) ‘Simulation model for the whole life cycle of slime mould Dictyostelium

Discoideum’, Proceedings of the 24th European Conference on Modeling and Simulation

(ECMS), Kuala Lumpur, pp. 247-253.

132

Winfree, A. (1984) ‘The Prehistory of the Belousov-Zhabotinsky Oscillator’, Journal of

Chemical Education, vol. 61, pp. 661-663.

Ben-Jacob, E. (1998) ‘Bacterial wisdom, Gödel’s theorem and creative genomic webs’,

Physica, vol. 248, pp. 57-76.

Ben-Jacob, E., Becker, I., Shapira, Y. and Levine, H. (2004) ‘Bacterial linguistic

communication and social intelligence’, Trends in Microbiology, vol. 12, no. 8, pp. 366-

371.

Berry, G. and Boudol, G. (1992) ‘The chemical abstract machine’, Theoretical computer

science, vol. 96, no. 1, pp. 217-248.

Bhalla, U. (2003) ‘Understanding complex signalling networks through models and

metaphors’, Progress in Biophysics and Molecular Biology, vol. 81, no. 1, pp. 45-46.

Billard, A. and Ijspeert, A. (2000) ‘Biologically inspired neural controllers for motor control in

quadruped robot’, Proceedings of the IEEE-INNS-ENNS International Joint Conference

on Neural Networks (IJCNN), Como, pp 637-641.

Block, H., Knight Jr, B. and Rosenblatt, F. (1962) ‘Analysis of a four-layer series-coupled

perceptron’, Reviews of Modern Physics, vol. 34, no. 1, pp. 135.

Bray, D. (1995) ‘Protein molecules as computational elements in living cells’, Nature, vol. 376,

no. 6538, pp. 307-12.

Bray, D. (2011) Biochemical data (1998-2010) for Bacterial chemotaxis in silico, [Online],

Available: http://www.pdn.cam.ac.uk/groups/comp-cell/Data.html [Last Accessed 10

May 2011].

Bray, D. (1990) ‘Intracellular Signaling as a Parallel Distributed Process’, Journal of theoretical

biology, vol. 143, pp. 215-231.

Bray, D., Bourret, R. and Simon, M. (1993) ‘Computer simulation of the phosphorylation

cascade controlling bacterial chemotaxis’, Molecular Biology of the Cell, vol. 4, no. 5,

pp. 469.

Bray, D., Levin, M. and Lipkow, K. (2007) ‘The chemotactic behavior of computer-based

surrogate bacteria’, Current Biology, vol. 17, no. 1, pp. 12-19.

http://www.pdn.cam.ac.uk/groups/comp-cell/Data.html

133

Brinkschulte, U., Pacher, M. and von Renteln, A. (2007) ‘Towards an artificial hormone system

for self-organizing real-time task allocation’, International Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems (SEUS), Lecture Notes in

Computer Science, vol. 4761, Springer, Santorini Island pp. 339-347.

Brock, D., Douglas, T., Queller, D. and Strassmann, J. (2011) ‘Primitive agriculture in a social

amoeba’, Nature, vol. 469, no. 7330, pp. 393-396.

Brooks, R. (1999) Cambrian intelligence. In: The Early History of the New AI. Cambridge

Massachusetts: MIT Press:

Burnet, F. (1959) The clonal selection theory of acquired immunity, Nashville Tennessee:

Vanderbilt University Press.

Calder, M., Vyshemirsky, V., Gilbert, D. and Orton, R. (2006) ‘Analysis of Signaling Pathways

Using Continuous Time Markov Chains’, Transactions on Computational Systems

Biology VI, Springer, vol. 4220, pp. 44-67.

Chen, H., Zhu, Y. and Hu, K. (2009) ‘Cooperative bacterial foraging optimization’, Discrete

dynamics in nature and society, vol. 2, no. 1, pp. 501-517.

 Clark, A. (1997) Being there: putting brain, body, and world together again, Cambridge,

Massachusetts: MIT Press.

Collins, J. and Richmond, S. (1994) ‘Hard-wired central pattern generators for quadrupedal

robots’, Biological Cybernetics, vol. 71, pp. 375-385

Cotter, D., Sands, T., Virdy, K., North, M., Klein, G. and Satre, M. (1992) ‘Patterning of

development in Dictyostelium discoideum: factors regulating growth, differentiation,

spore dormancy and germination’, Biochemistry and Cell Biology, vol. 70, no. 10-11, pp.

892-919.

Crespi, B. (2001) ‘The evolution of social behavior in microorganisms’, Trends in Ecology and

Evolution, vol. 16, no. 4, pp. 178-183.

Dagg, A. (1973) ‘Gaits in mammals’, Mammal Review, vol. 3, pp. 135-154

134

Dallon, J. and Othmer, H. (1997) ‘A discrete cell model with adaptive signaling for aggregation

of Dictyostelium discoideum’, Philosophical Transactions of the Royal Society B:

Biological Sciences, vol. 352, no. 1351, pp. 391–417.

Davidich, M. and Bornholdt, S. (2008) ‘Boolean network model predicts cell cycle sequence of

fission yeast’, Plos One, vol. 3, no. 2, pp. 1672.

de Castro, L. and Timmis, J. (2002) Artificial Immune Systems: A Novel Approach to Pattern

Recognition. In: Corchado, J. and Alonso, L. and Fyfe, C. (eds.), Artificial Neural

Networks in Pattern Recognition, University of Paisley, pp. 67-84.

de Silva, A. and Uchiyama, S. (2007) ‘Molecular logic and computing’, Nature

Nanotechnology, vol. 2, no. 7, pp. 399-410.

Decraene, J., Mitchell, G. and McMullin, B. (2007), Evolving artificial cell signaling networks:

perspectives and methods. In: Dressler, F. and Carerras, I. (eds.), Advances in

Biologically Inspired Information Systems, Studies in Computational Intelligence, vol.

69, Springer, pp. 164-184.

Dennett, D. (1996) Kinds of Minds. Toward an Understanding of Consciousness, New York:

Basic Books.

Descartes, R. Discourse of the Method, Translated by Veitch, J. (1975) Meditations on the First

Philosophy, Principles of Phislosophy, London: Dent.

Devreotes, P. (1989) ‘Dictyostelium discoideum: a model system for cell-cell interactions in

development’, Science, vol. 245, no. 4922, pp. 1054-1058.

Dittrich, P. (2005) Chemical computing. In: Unconventional programming paradigms, Berlin

Heidelberg: Springer, pp. 19-32.

Dittrich, P., Banzhaf, W., Rauhe, H., and Ziegler, J. (1997) ‘Macroscopic and microscopic

computation in an artificial chemistry’, Proceedings of the Second German Workshop on

Artificial Life (GWAL), pp. 19-22.

Dittrich, P., Zeigler, J. and Banzhaf, W. (2001) ‘Artificial chemistries- a review’, Artificial

Life, vol. 7, no. 3, pp. 225-275.

135

Dobbyn, C., Mustafa, A., Hirst, T., Richards, M., Smith, N. and Wong, P. (2007) Natural and

Artificial Intelligence, In: Artificial Life II (Block 1 Module M366), The Open

University, pp.159-210.

Eikelder, T., Crigins, S., Steijaert, M., Liekens, A. and Hilbers, P. (2009) ‘Computing with

feedforward networks of artificial biochemical neurons’, The 4th International Workshop

on Natural Computing, Proceedings in Information and Communications Technology

(IWNC), vol. 1, Himeji, pp. 38-47.

ESIGNET project. (2011) Evolving cell signaling networks in silico, [Online], Available:

http://www.esignet.net/index.php?menuid=2 [Last Accessed 12 February 2011]

Eungdamrong, N. and Iyengar, R. (2004) ‘Modeling cell signaling networks’, Biology of the

Cell, vol. 96, pp. 355–362.

Farmer, J., Packard, N. and Perelson, A. (1986) ‘The immune system, adaptation, and machine

learning’, Physica D: Non-linear Phenomena, vol. 2, no.1-3, pp. 187-204.

Ferrell, J. (2004) ‘Self perpetuating states in signal transduction: positive feedback, double

negative feedback and bistability’, Current Opinion in Cell Biology, vol. 14, no. 2, pp.

142-148.

Fontana, W. (1991) Algorithmic chemistry. In: Langton, C., Taylor, C., Farmer, J. and

Rasmussen, S. (eds.), Artificial Life II, Addison-Wesley, pp. 159–209.

Ford, B. (2009) ‘On intelligence in cells: The case for whole cell biology’, Interdisciplinary

Science Reviews, vol. 34, no. 4, pp. 350-365.

Ford, B. (2004) ‘Are cells Ingenious?’, The Microscope, vol. 52, pp. 135-144.

Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2011) ‘Artificial Reaction Networks’,

Proceedings of the 11th UK Workshop on Computational Intelligence (UKCI),

Manchester UK, pp 20-26.

Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2012a) ‘Temporal patterns in Artificial

Reaction Networks’, Proceedings of The 22nd International Conference on Artificial

Neural Networks (ICANN), Lecture Notes in Computer Science, vol. 7552, part 1,

Springer, Lausanne, pp 1-8.

http://www.esignet.net/index.php?menuid=2

136

Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2012b) ‘Adaptive Dynamic Control of

Quadrupedal Robotic gaits with Artificial Reaction Networks’, Proceedings of the 19th

International Conference on Neural Information Processing (ICONIP), Lecture Notes in

Computer Science, vol. 7663, part 1, Springer, Doha, pp 280-287.

Gerrard, C., (2012c) Lynxsmotion Q2 quadrupdal robot walk and trot gaits. [Online],

Available:https://drive.google.com/folderview?id=0BxGVfJFH9UmZlJTV1pROFFRb00

&usp=sharing

Gerrard, C, McCall, J., Coghill, G., Macleod, C. (2013a) ‘Artificial Reaction Network Agents’,

The 12th European Conference on the Synthesis and Simulation of Living Systems

(ECAL), Advances in Artificial Life, MIT press, Taormina, pp. 957-964.

Gerrard, C., McCall, J., Coghill, G., Macleod, C. (2013b) Combining Biochemical Network

Motifs within an ARN-Agent Control System’, Proceedings of the 13th Annual

Workshop on Computational Intelligence (UKCI), IEEE, Surrey, pp. 8-15.

Gerrard, C., McCall, J., Coghill, G., and Macleod, C. (2013c) ‘Artificial chemistry Approach to

Exploring Search Spaces using Artificial Reaction Network Agents’, Congress on

Evolutionary Computation (CEC)’, IEEE, Cancún, pp.1201-12.

Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (in press) ‘Applications and Design of

Cooperative Multi-agent ARN based Systems’, Soft Computing, Springer.

Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (in press) ‘Exploring aspects of cell

intelligence with artificial reaction networks’, A Fusion of Foundations Methodologies

and Applications, Soft Computing, Springer.

Gershenson, C. (2004) ‘Classification of random Boolean networks’, Proceedings of the 8th

International Conference on Artificial Life, Sydney, MIT Press, pp1-8.

Gershenson, C. (2004) ‘Introduction to Random Boolean Networks’, Workshop and Tutorial

Proceedings of the Ninth International Conference on the Simulation and Synthesis of

Living Systems, Boston, pp. 160–173.

Ghosh-Dastidar, S. and Adeli, H. (2009) ‘Spiking neural networks’, International Journal of

Neural Systems, vol. 19, no. 4, pp. 295-308.

https://drive.google.com/folderview?id=0BxGVfJFH9UmZlJTV1pROFFRb00&usp=sharing
https://drive.google.com/folderview?id=0BxGVfJFH9UmZlJTV1pROFFRb00&usp=sharing

137

Gillespie, D. (1977) ‘Exact stochastic simulation of coupled chemical reactions’, Journal of

physical Chemistry, vol. 81, no. 25, pp. 2340-2361.

Goldman, J., Levin, M., and Bray, D. (2009) ‘Signal amplification in a lattice of coupled

protein kinases’, Molecular BioSystems, vol. 5, no. 12, pp. 1853-1859.

Greenburg, M. (1998) Quantitative Methods: Numerical Solution of Differential Equations. In:

Advanced Engineering Mathematics, 2nd edition, India: Pearson Education, pp. 296.

Greensmith, J., Whitbrook, A. and Aickelin, U. (2010) Artificial immune systems. In:

Gendreau, M. and Potvin, J. (eds.), International Series in Operations Research and

Management Science, Handbook of Metaheuristics, 2nd edition, vol. 146, pp. 421-448.

Guo, H., Meng, Y., and Jin, Y. (2009) ‘A cellular mechanism for multi-robot construction via

evolutionary multi-objective optimization of a gene regulatory network’, BioSystems,

vol. 98, no. 3, pp. 193-203.

Gurney, K. (1992) ‘Training nets of hardware realizable sigma-pi units’, Neural Networks, vol.

5, pp. 289-303.

Hamann, H., Stradner, J., Schmickl, T. and Crailsheim, K. (2010) ‘A hormone-based controller

for evolutionary multi modular robotics: From single modules to gait learning’, Congress

on Evolutionary Computation (CEC), Barcelona, pp. 1-8.

Harvey, I. and Bossomaier, T. (1997) ‘Time out of joint: Attractors in asynchronous random

Boolean networks’, Proceedings of the Fourth European Conference on the Synthesis

and Simulation of Living Systems (ECAL), Complex Adaptive Systems, MIT Press,

Brighton UK, pp. 67-75.

Helikar, T., Konvalina, J., Heidel, J. and Rogers, J. (2008) ‘Emergent decision making in

biological signal transduction’, Proceedings of the National Acadamy of Sciences of the

United States of America, vol. 104, pp. 1913–1918.

Hellingwerf, K. (2005) ‘Bacterial observations: a rudimentary form of intelligence’, Trends in

Microbiology, vol. 13, pp. 152-158.

Hild, W., Pollinger, K., Caporale, A., Cabrele, C., Keller, M., Pluym, N., Buschauer, A.,

Rachel, R., Tessmar, J., Breunig, M., et al. (2010) ‘G protein-coupled receptors function

138

as logic gates for nanoparticle binding and cell uptake’, Proceedings of the National

Acadamy of Sciences of the United States of America, vol. 107, pp. 10667-10672.

Hildebrand, M. (1997) ‘Analysis of asymmetrical gaits’, Journal of Mammalogy, vol. 58, pp.

131-156.

Hjelmfelt, A. and Ross, J. (1994) ‘Pattern recognition, chaos, and multiplicity in neural

networks of excitable systems’, Proceedings of the National Acadamy of Sciences of the

United States of America, vol. 91, pp. 63-67.

Hjelmfelt, A., Weinberger, E. and Ross, J. (1991) ‘Chemical implementation of neural

networks and Turing machines’, Proceedings of the National Academy of Sciences, vol.

88, no. 24, pp. 10983-10987.

Hofestadt, R. and Thelen, S. (1998) ‘Quantitative modeling of biochemical networks’, In Silico

Biology, vol. 1, no. 1, pp. 39-53.

Hong, Q. and Reluga, T. (2005) ‘Nonequilibrium Thermodynamics and Nonlinear Kinetics in a

Cellular Signaling Switch’, Physical Review Letters, vol. 94, no. 2.

Hopfied, J. (1984) ‘Neural networks with graded response have collective computational

properties like those of two-stage neurons’, Proceedings of the National Academy of

Sciences of the United States of America, vol. 81, pp. 3088-3092.

Husbands, P. (1998) ‘Evolving robot behaviours with diffusing gas networks’, First European

Workshop Evolutionary Robotics, Evolutionary Robotics, Lecture Notes in Computer Science,

vol. 1468, Springer, Paris, pp. 71-86.

Husbands, P., Smith, T., Jakobi, N. and O'Shea, M. (1998) ‘Better living through chemistry:

Evolving GasNets for robot control’, Connection Science, vol. 10, no. 3-4, pp. 185-210.

Jerne, N. (1974) ‘Towards a network theory of the immune system’, Annales de l'Institut

Pasteur Immunology,vol. 25, pp. 373–389.

Joachimczak, M., Kowaliw, T., Doursat, R. and Wrobel, B. (2013) ‘Controlling development

and chemotaxis of soft-bodied multicellular animats with the same gene regulatory

network’, European Conference on the Synthesis and Simulation of Living Systems

(ECAL), Advances in Artificial Life, MIT press, vol. 12, Taormina, pp. 454-461.

139

Jones, B. (2012) ‘Cell signalling: Mediating hormonal crosstalk’, Nature Reviews Molecular

Cell Biology, vol. 13, no. 11, pp. 685-685.

Kakalis, N. and Ventikos, Y. (2008) ‘Robotic swarm concept for efficient oil spill

confrontation’, Journal of Hazardous Materials, vol. 154, no. 1-3, pp. 880-7.

Kanada, Y., and Hirokawa, M. (1994) ‘Stochastic problem solving by local computation based

on self-organization paradigm’, Proceedings of the Twenty-Seventh International

Conference on System Sciences, vol. 3, IEEE, Hawaii, pp. 82-91.

Kauffman, S. (1969) ‘Metabolic stability and epigenesis in randomly constructed genetic nets’,

Journal of Theoretical Biology, vol. 22, no. 3, pp. 437-467.

Kauffman, S. (1993) The origins of order: Self organization and selection in evolution, New

York: Oxford University press.

Kessin, R. (2003) ‘Making Streams’, Nature, vol. 422, pp. 481-482.

Kholodenko, B. (2006) ‘Cell signaling dynamics in time and space’, Nature review molecular

cell biology, vol. 27, no. 3, pp. 165-176.

Kimura, H., Fukuoka, Y. and Konaga, K. (2001) ‘Adaptive dynamic walking of a quadruped

robot by using neural system model’, Advanced Robotics, vol. 15, no. 8, pp. 859-876.

Kohonen, T. (1982) ‘Self-organized formation of topologically correct feature maps’,

Biological Cybernetics, vol. 43, no. 1, pp. 59-69.

 Kondo, T., Ishiguro, A., Watanabe, Y., Shirai, Y. and Uchikawa, Y. (1998) ‘Evolutionary

construction of an immune network-based behavior arbitration mechanism for

autonomous mobile robots’, Electrical Engineering in Japan, vol. 123, no. 3, pp. 1-10.

Kowalewski, S. (2002) ‘Introduction to the Analysis and Verification of Hybrid

Systems.Modeling’, In: Engell, S., Frehse, G. and Scheieder, E. (eds.), Analysis and

Design of Hybrid Systems, Lecture Notes in Control and Information Science, Springer,

vol. 279, pp. 153-171.

Krautmacher, M. and Dilger, W. (2004) ‘AIS based robot navigation in a rescue scenario’,

Proceedings of the 3rd International Conference in Artificial Immune Systems (ICARIS),

140

Artificial Immune Systems, Lecture Notes Computer Science, vol. 3239, Catania, pp.

106-118.

Kreyssig, P. and Dittrich, P. (2011) ‘Reaction flow artificial chemistries’, 11th European

Conference on the Synthesis and Simulation of Living Systems (ECAL), Advances in

Artifical Life, MIT press, Paris, pp. 431-437.

Lee, W. and Yang, K. (2008) ‘Applying Intelligent Computing Techniques to Modeling

Biological Networks from Expression Data’, Genomics, Proteomics & Bioinformatics,

vol. 6, no. 2, pp. 111-120.

Liu, C., Chen, Y., Zhang, J. and Chen, Q. (2009) ‘CPG driven locomotion control of quadruped

robot’, IEEE International conference on Systems Man and Cybernetics, San Antonio, pp

2368-2373.

Luh, G. and Liu, W. (2004) ‘Reactive immune network based mobile robot navigation’,

Proceedings of the 3rd International Conference on Artificial Immune Systems (ICARIS),

Lecture Notes in Computer Science, vol. 3239, Catania, pp. 119-132.

Lyon, P. (2006) ‘The biogenic approach to cognition’, Cognitive processes, vol. 7, pp. 11–29.

Maass, W. (1997) ‘Networks of spiking neurons: the third generation of neural network

models’, Neural networks, vol. 10, no. 9, pp. 1659-1671.

Macey, R., Oster, G., and Zahnley, T. (2000) Berkeley Madonna version 5 and User's Guide

2000. [Online], Available: http://www.berkeleymadonna.com [Last Accessed 1 May

2011].

MacLeod, C. and Capanni, N. (2010) ‘Artificial biochemical networks: a different

connectionist paradigm’, Artificial Intelligence Review, vol. 33, no. 1-2, pp. 124-135.

Manahan, C., Iglesias, P., Long, Y. and Devreotes, P. (2004) ‘Chemoattractant signaling in

Dictyostelium discoideum’, Annual Review of Cell and Developmental Biology, vol. 20,

pp. 223–253.

http://www.berkeleymadonna.com/

141

McCann, C., Kriebel, P., Parent, C. and Losert, W. (2010) ‘Cell speed, persistence and

information transmission during signal relay and collective migration’, Journal of Cell

Science, vol. 123, pp. 1724-1731.

McCarthy, J. (1960) ‘Recursive functions of symbolic expressions and their computation by

machine’, Communications of the ACM, vol. 3, no. 4, pp. 184-195.

McCulloch, W. and Pitts, W. (1943) ‘A logical calculus of the ideas immanent in nervous

activity’, The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115-133.

McMullin, B. (2004) ‘Thirty years of computational autopoiesis: A review’, Artificial Life, vol.

10, no. 3, pp. 277-295.

Merlin, P. and Farber, D. (1976) ‘Recoverability of communication protocols- implications of a

theoretical study’, IEEE Transactions on Communications, vol. 24, no. 9, pp. 1036–1043.

Mesarović, M. (1968) Systems theory and biology- view of a theoretician, Berlin Heidelberg:

Springer.

Moioli, R., Vargas, P., Von Zuben, F. and Husbands, P. (2008) ‘Towards the evolution of an

artificial homeostatic system’, IEEE World Congress on Evolutionary Computation

(CEC), Hong-Kong, pp. 4023-4030.

Monismith, D. and Mayfield, B. (2008) ‘Slime mold as a model for numerical optimization’,

IEEE Swarm Intelligence Symposium (SIS), St Louis USA, pp. 21-23.

Morris, J. (1974) A Biologist’s Physical Chemistry, Barrington, E. and Willis, A. (eds.), Great

Britain: Edward Arnold.

Morton-Firth, C. and Bourret, R. (2011) Experimental data in bacterial chemotaxis, [Online],

Available: www.pdn.cam.ac.uk/groups/comp-cell/Exp_data/exptdata.doc [Last Accessed

10 May 2011].

Morton-Firth, C., Shimizu, T. and Bray, D. (1999) ‘A free-energy-based stochastic simulation

of the tar receptor complex’, Journal of Molecular Biology, vol. 286, no. 4, pp. 1059-

1074.

Murata, T. (1989) ‘Petri Nets: Properties analysis and applications’ Proceedings of the IEEE,

vol. 77, no. 4, pp. 541-580.

http://www.pdn.cam.ac.uk/groups/comp-cell/Exp_data/exptdata.doc

142

Nakada, K., Asai, T. and Amemiya, Y. (2004) ‘Design of an artificial central pattern generator

with feedback controller’, Intelligent Automation and Soft Computing, vol. 10, no. 2,

pp.185-192.

Nakagaki, T., Yamada, H. and Toth, A. (2000) ‘Maze-solving by an amoeboid organism’,

Nature, vol. 407, no. 6803, pp. 470-470.

Opp, W. and Sahin, F. (2004) ‘An Artificial Immune System Approach to mobile sensor

networks and mine detection’, Proceedings of the IEEE International Conference on

Systems, Man, and Cybernetics (SMC), vol. 1, pp. 947-952.

Passino, K. (2002) ‘Biomimicry of bacterial foraging for distributed optimization and control’,

IEEE Control Systems, vol. 22, no. 3, pp.52–67.

Patidar, V., Sud, K. and Pareek, N. (2009) ‘A pseudo random generator based on chaotic

logistic map and its statistical testing’, Informatica, vol. 33, pp. 441-452.

Phatak, S., and Rao, S. (1995) ‘Logistic map: A possible random-number generator’, Physical

review E, vol. 51, no. 4, pp. 3670.

Quevli, Nels. (1916) Cell intelligence, the cause of evolution. Minneapolis: Colwell Press.

Rifkin, J. and Goldberg, R. (2006) ‘Effects of chemoattractant pteridines upon speed of D.

discoideum vegetative amoeba’, Cell Motility and the Cytoskeleton, vol. 63, no. 1, pp. 1-

5.

Rajasekaran, S. and Vijayslakshmi, P. (2011) Neural networks, Fuzzy logic and Genetic

algorithms. PHI Learning Private Limited.

Rosenblatt, F. (1958) ‘The perceptron’, Psychological Review, vol. 65, no. 6, pp. 386-408.

Rosenblatt, F. (1957) The Perceptron- a percieving and recognizing automaton. Report 85-460-

1, Cornell Aeronautical Laboratory.

Rumelhart, D., and McClelland, J. and the PDP research group. (1986) Parallel distributed

processing: Explorations in the microstructure of cognition, vol. 1, Cambridge

Massachusetts: MIT Press.

Saigusa, T., Tero, A., Nakagaki, T. and Kuramoto, Y. (2008) ‘Amoebae Anticipate Periodic

Events’, Physical Review,vol. 100, no. 1, pp. 1-4.

143

Sathyanath, S. and Sahin, A. (2002) ‘AISIMAM- An AIS based intelligent multi agent model

and its application to a mine detection problem’, Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics, vol. 3, Tunisia.

Savageau, M. and Voit, E. (1987) ‘Recasting Nonlinear Differential Equations as S-Systems: A

Canonical Nonlinear Form’, Mathematical Biosciences, vol. 87, pp. 83–115.

Savageau, M. (1988) ‘Introduction to S-systems and the underlying power-law formalism’,

Mathematical and Computer Modeling, vol. 11, pp. 546-551.

Schmickl, T., Hamann, H. and Crailsheim, K. (2011) ‘Modelling a hormone-inspired controller

for individual-and multi modular robotic systems’, Mathematical and Computer

Modelling of Dynamical Systems, vol. 17, no. 3, pp 221-242.

Seger, R. and Krebs, E. (1995) ‘The MAPK signaling cascade’, The FASEB Journal, vol. 9, no.

9, pp. 726-735.

Shen, W., Will, P., Galstyan, A. and Chuong, C. (2004) ‘Hormone-inspired self-organization

and distributed control of robotic swarms’, Autonomous Robots, vol. 17, no. 1, pp. 93-

105.

Stadtman, E. and Chock, P. (1997) ‘Superiority of interconvertible enzyme cascades in

metabolic regulation: analysis of multicyclic systems’, Proceedings of the National

Academy of Sciences of the United States of America, vol. 74, pp. 2766–2770.

Stock, J. and Surrete, M. (1996) ‘Chemotaxis’, Escherichia coli and Salmonella typhimurium:

Cellular and Molecular Biology’, Ingraham, J., (ed.). Washington DC, American society

for microbiology, pp. 1103-1129.

Stoll, G., Viara, E., Barillot, E. and Calzone, L. (2012) ‘Continuous time boolean modeling for

biological signaling: application of Gillespie algorithm’, BMC Systems Biology, vol. 6,

no. 1, pp. 116.

Stork, P. (2002) ‘Crosstalk between cAMP and MAP kinase signaling in the regulation of cell

proliferation’, Trends in cell biology, vol.12, no. 6, pp. 258-266.

ten Eikelder, T., Crigins, S., Steijaert, M., Liekens, A. and Hilbers, P. (2009). ‘Computing with

feedforward networks of artificial biochemical neurons’, Proceedings of the 2nd

International Workshop on Natural Computation, vol 1, Nagoya, pp 38-47.

144

Toth, D. and Parker, G. (2003) ‘Evolving Gaits for the Lynx motion Hexapod II Robot’,

Proceedings of the 7th World Multiconference on Systems, Cybernetics, and Informatics,

Orlando USA, pp 229-234.

Turing, A. (1952) ‘The chemical basis of morphogenesis’, Philosophical Transactions of the

Royal Society of London B, vol. 327, pp. 37–72.

Tyler, M. (2000) Developmental Biology: A guide for experimental study, 2nd ed, Sunderland

Massachusetts: Sinauer, p. 31-34.

Tyson, J and Novák, B. (2010) ‘Functional motifs in biochemical reaction networks’, Annual

Review of Physical Chemistry, vol. 61, pp. 219-240.

Ulam, S. and von Neumann, J. (1947) ‘On combinations of stochastic and deterministic

processes’, Bulletin of the American Mathematical Society, vol. 53, pp. 1120.

Uri, A., Mattheij, R., and Russell, R. (1995) Numerical solution of boundary value problems for

ordinary differential equations, vol. 13, Society for Industrial and Applied Mathematics.

Vargas, P., de Castro, L. and Michelan, R. (2003) ‘An immune learning classifier network for

autonomous navigation’, Proceedings of the 2nd International Conference on Artifiical

Immune Systems (ICARUS), Lecture Notes Computer Science, vol. 2787, Edinburgh, pp.

69-80.

Vladimirov, N. and Sourjik, V. (2009) ‘Chemotaxis: how bacteria use memory’, The Journal of

Biological Chemistry, vol. 390, no. 11, pp. 1097-1104.

Voit, E. (2000) Computational analysis of biochemical systems: a practical guide for

biochemists and molecular biologists. Cambridge New York: Cambridge University

Press, p71-75.

von Neumann, J. (1958) The computer and the brain. New Haven Connecticut: Yale University

Press.

Wadhams, G. and Armitage, J. (2004) ‘Making sense of it all: Bacterial Chemotaxis’, Nature

Reviews Molecular Cell Biology, vol. 5, pp. 1024-1037.

145

Wang, B., Kitney, R. Joly, N. and Buck, M. (2011) ‘Engineering Modular and Orthogonal

genetic logic gates for robust digital-like synthetic biology’, Nature Communications,

vol. 2, pp. 508.

Wang, J., Huang, B., Xia, X. and Sun, Z. (2006) ‘Funneled Landscape Leads to Robustness of

Cell Networks: Yeast Cell Cycle’, Biophysical journal, vol. 91, no. 5, pp. 54–56.

Wang, Z. and Stout, S. (2007). Oil spill environmental forensics: fingerprinting and source

identification. Academic Press: Burlington Massachusetts.

Watanabe, Y., Ishiguro, A., Shirai, Y. and Uchikawa, Y. (1998) ‘Emergent construction of

behavior arbitration mechanism based on the immune system’, Proceedings of the IEEE

International Conference on Evolutionary Computation (ICEC), Anchorage USA, pp.

481 486.

Werbos, P. (1990) ‘Backpropagation through time: what it does and how to do it’, Proceedings

of the IEEE, vol. 78, no. 10, pp. 1550-1560.

Werbos, P. (1974) Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences, PhD thesis, Harvard University.

West, S., Diggle, S., Buckling, A., Gardner, A. and Griffin, A. (2007) ‘The social lives of

microbes’, Annual Review of Ecology, Evolution and Systematics, vol. 38, pp. 53-77.

Whitbrook, A., Aickelin, U. and Garibaldi, J. (2007) ‘Idiotypic immune networks in mobile-

robot control’, IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 37, no.

6, pp. 1581-1598.

Wilson, H. and Cowan, J. (1972) ‘Excitatory and Inhibitory interactions in localized

populations of model neurons’, Biophysical Journal, vol. 12, pp. 1-24.

Wolkenhauer, O., Ullah, M., Kolch, W. and Cho, K. (2004) ‘Modeling and simulation of

intracellular dynamics: Choosing an appropriate framework’, IEEE Transaction on

Nanobioscience, vol. 3, no. 3, pp. 200-207.

Woo, W., and Khor, L. (2004) ‘Blind restoration of nonlinearly mixed signals using multilayer

polynomial neural network’, Vision, Image and Signal Processing, IEEE Proceedings,

vol. 151, no. 1, pp. 51–61.

146

Woolf, P., Prudhomme, W., Daheron, L., Daley, G. and Lauffenburger, D. (2005) ‘Bayesian

analysis of signaling networks governing embryonic stem cell fate decisions’,

Bioinformatics, vol. 21, pp. 741-753.

Wright, M. (2005). Introduction to Chemical Kinetics, Chichester UK: Wiley.

Yuan, Y., Zhang,W., Cheng, H. and Liu, J. (2006) ‘Crosstalk between calcium and reactive

oxygen species signaling’, Acta Pharmacologica Sinica, vol. 27, no. 7, pp. 821-826.

Zauner, K., and Conrad, M. (2001) ‘Molecular approach to informal computing’, Soft

Computing, vol. 5, no. 1, pp. 39-44.

Ziegler, J. and Banzhaf, W. (2000) ‘Evolving a “nose” for a robot’, Workshop Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO), Portland USA.

Ziegler, J., Dittrich, P. and Banzhaf, W. (1998) Towards a metabolic robot control system. In:

Holcombe, M. and Paton, R. (eds.), Information processing in cells and tissues, New

York: US Springer, pp. 305-317.

A1

Appendix 1

Papers produced during the course of the project

The eight papers produced during the course of the project are contained within this
appendix.

A2

Paper 1: ‘Applications and Design of Cooperative Multi-agent ARN
based Systems’

Reference:
Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (in press) ‘Applications and

Design of Cooperative Multi-agent ARN based Systems’, A Fusion of Foundations

Methodologies and Applications, Soft Computing, Springer.

A3

Applications and Design of Cooperative Multi-
agent ARN based Systems

Claire E. Gerrard • John McCall • Christopher Macleod • George M. Coghill

Claire. E. Gerrard • John McCall

IDEAS Research Institute, Robert Gordon University, Aberdeen, AB10 7GJ, UK

email: c.e.gerrard@rgu.ac.uk

John McCall
email: j.mccall@rgu.ac.uk

Geroge M. Coghill

School of Computing Science, University of Aberdeen, Aberdeen, AB24 3FX, UK.

email: g.coghill@abdn.ac.uk

Christopher Macleod

School of Engineering, Robert Gordon University, Aberdeen, AB10 7GJ, UK.

email: chris.macleod@rgu.ac.uk

Keywords Artificial Biochemical Network (ABN), Artificial Chemistry, Artificial Neural

Network (ANN), Swarm Robotics

Abstract The Artificial Reaction Network (ARN) is an Artificial Chemistry inspired by Cell

Signalling Networks (CSNs). Its purpose is to represent chemical circuitry and to explore the

computational properties responsible for generating emergent high-level behaviour. In previous

work, the ARN was applied to the simulation of the chemotaxis pathway of E. coli and to the

control of quadrupedal robotic gaits. In this paper, the design and application of ARN-based

cell-like agents termed Cytobots are explored. Such agents provide a facility to explore the

dynamics and emergent properties of multicellular systems. The Cytobot ARN is constructed

by combining functional motifs found in real biochemical networks. By instantiating this ARN,

multiple Cytobots are created, each of which is capable of recognizing environmental patterns,

stigmergic communication with others and controlling its own trajectory. Applications in

biological simulation and robotics are investigated by first applying the agents to model the

life-cycle phases of the cellular slime mould D. discoideum and then to simulate an oil-spill

clean-up operation. The results demonstrate that an ARN based approach provides a powerful

tool for modelling multi-agent biological systems and also has application in swarm robotics.

mailto:c.e.gerrard@rgu.ac.uk
mailto:j.mccall@rgu.ac.uk

A4

1 Introduction
In recent years, researchers have become increasingly interested in the complex behaviours

displayed by individual cells (Ford 2009; West et al. 2007). For example, the cellular slime

mould D. discoideum (Dd), starts life as a collection of solitary amoebae which actively hunt

bacterial prey. But on starvation these cells secrete a cAMP (cyclic adenosine monophosphate)

signal resulting in a complex aggregation response and the formation of a travelling

multicellular “slug”. Dd also has a symbiotic relationship with its bacterial prey using a

primitive form of “farming” to ensure sufficient food availability within a new environment

(Brock, 2011).

In order to generate this emergent high-level behaviour, a cell must be able to store and process

information. This is accomplished by Cell Signalling Networks (CSNs) which function as the

cell’s internal processing machinery. They do this by manipulating chemical data within

elaborate networked hierarchical control structures which connect chemical species together in

productive or inhibitory unions. In this way, cells are able to respond to changes within their

environment, communicate with other cells, and perform internal self-maintenance operations

(Bray 1995). Several researchers have highlighted the processing capabilities of these networks

(Bray 1995; Arkin and Ross 1994; Bhalla 2003) and their similarities to Artificial Neural

Networks (ANNs) (Bray 1995; Bhalla 2003). As discussed later, some have identified structural

motifs common to many CSNs which form basic computational processing units.

The Artificial Reaction Network (ARN) is an Artificial Chemistry technique inspired by

biological CSNs. The design, computational properties, mathematical formalism (Gerrard et al.

2013) and validation (Gerrard et. al 2011) of the ARN have already been discussed in detail.

The ARN was previously used to simulate the chemotaxis pathway of E. coli (Gerrard et al,

2011), in pattern recognition and to generate complex temporal waveforms to control limbed

robots (Gerrard et al. 2012a, b; 2013). Previous work focused on exploring the properties and

mechanisms which lead to high-level behaviour in individual cells. The focus of this work is to

explore those which result from groups of interacting cells using a new technique termed the

“Cytobot”. Cytobots are cell-like agents which, under direction of their internal ARN,

autonomously move within and respond to their environment. Like other Artificial Chemistry

approaches (Joanchimczak et al. 2013; Shen et al. 2004; Guo et al. 2009), a Cytobot system is

composed of multiple cell-like components which communicate with each other and control

their local actions via artificial chemicals. The specific objectives of the results presented here

are as follows: Firstly, to explore the mechanisms and computational properties that lead to

emergent high-level behaviour within and between groups of interacting cells. Secondly, to

investigate applications of the ARN technique in biological simulation, and finally as a

distributed robotic control system.

A5

The following novel work is presented: 1) A complete overview of the design of Cytobots

including their biological background and computational properties; and 2) a Cytobot based

simulation of the life phases of Dd; and 3) a simulated oil-spill clean-up operation using a

Cytobot swarm.

The paper is structured as follows: Section 2 briefly summarises the ARN representation.

Section 3 discusses the biological background and behaviour of the Cytobots. Section 4

presents a complete overview of the Cytobot ARN design and discusses the biological

functional motifs of which the network is composed. The experiments in section 5 explore the

applications and properties of Cytobot systems. The first experiment (section 5.1) applies the

Cytobots to the simulation of the Foraging and Aggregation phases of Dd. The phase times and

emergent behaviours are compared with the literature. The results show that Cytobots are able

to accurately model the behaviour of individual unicellular organisms, and that arising from

interactions among such groups. They also demonstrate a high-level of flexibility where, for

example, the pathway within an individual cell may be modified and its effects on high-level

behaviour of the entire cell group viewed over time. In a further experiment (section 5.2),

robotic swarm applications are investigated and a Cytobot swarm is applied to a simulated oil-

spill clean-up operation. The results compare well with other related methods and show that

Cytobots may have practical applications within the real-world as a physical robotic swarm.

2 The Artificial Reaction Network
A brief summary of the ARN is provided here; a full account can be found in our previous

paper published in this journal (Gerrard et. al, 2013).

The ARN focuses on the inherent networked properties of CSNs and is specifically designed to

represent “biological circuitry”; it consists of linked processing units connected together via

weighted connections and for this reason may be described as “connectionist”. It is a networked

representation similar to other ACC models (Zeigler and Banzaf 2000; Eikelder et al. 2009). As

shown in Fig. 1, the ARN comprises a set of networked reaction nodes (circles), pools

(squares), and inputs (triangles) and is depicted as a directed weighted graph. Each pool stores

the current available amount of a particular chemical species (avail); thus, the complete set of

pool concentrations at time t, corresponds to the current state of the system. While many ACs

assume a well-stirred reactor, the use of pools approximates a chemical compartment, allowing

a representation of the spatial compartmentalisation which occurs within cells. This also

provides a means to represent flow structures such as membrane channels and transport

processes. Inputs are a special type of pool which are of fixed value and thus can be used to

represent the continuous flow of environmental inputs or enzymes. Data is processed by

reaction units which transform incoming pool values to connected outgoing pool values.

A6

Connections symbolise the flow of chemical into and out of reaction units and their weight (w)

corresponds to reaction order. Connections provide a means to create complex control

structures by combining inhibitory or excitatory unions.

Fig. 1 Schematic diagram of a simplified Artificial Reaction Network (ARN). Reactant chemicals A and B react at
unit 1. The rate of the reaction at unit 1 at time t is given by Eq. (1). The current concentration in pool C is updated
using Eq. (2).

Figure 1 shows the reaction between species A and B to produce species C. The result of

applying Euler’s method to the differential rate equation is given by Eq. (1) and this is used to

calculate each reaction unit’s temporal flux value over the time interval ∆t.

 () tCKBAKC CBA w
availCr

w
avail

w
availCf ∆−=∆][][][][)()((1)

This result is then used to update the current concentration of each reaction’s connecting pools.

As mentioned previously, conserved mass values are used throughout the experiments detailed

in this work and thus each pool is updated at each time interval for example at pool C.

 C
C

C
gengenavailavail L

w
w

DCCC −
+

∆−∆+=
α

][][][][(2)

Non-conserved values may also be modelled and the mathematics for this is given in our

previous work (Gerrard et. al 2013).

KEY (and for all other ARN diagrams): w : Reactant species order
Straight Line: Excitatory connection : Input
T shaped line: Inhibitory connection : Pool

A, B, C: Reactant species : Reaction unit
avail: Available gen : Generated

C
C

C
gengenavailavail L

w
w

DCCC −
+

∆−∆+=
α

][][][][

Loss

() tCKBAKC CBA w

availCr
w
avail

w
availCf ∆−=∆][][][][)()(

1

Aavail

Bavail

wB

∆Cgen

∆Dgen

To
Reaction D

Cavail
wA

wC
C

2

 A

 B

α equal’s sum of other weights connected to inputs of unit D

A7

3 Cytobot Behaviour
A Cytobot has 2 behavioural modes which are based on the chemotaxis behaviour of D.

discoideum amoebae. These modes and their biological basis are described below.

3.1 Biological Basis of Cytobot Behaviour: Chemotaxis of D. discoideum Amoebae

The Dd life cycle has 4 stages: Vegetation, Aggregation, Culmination and Migration, a detailed

description of the biology is given by Devreotes (1989). During its Vegetative stage the

organism consists of a collection of amoebae which navigate toward food by moving up

gradients of folic acid secreted by their bacterial prey. The trajectory of these cells is a pattern

of motion similar to a random biased walk. Dd cells extend pseudopods in a random direction;

those extended toward sources of chemoattractants, such as food, are maintained; while those

extended toward less favourable conditions and retracted. The overall result is movement up the

gradient of attractant (Andrew and Insall 2007).

When the food resource has been depleted, the amoebae begin to stave and enter the

Aggregation phase. Starving cells secrete cAMP (cyclic adenosine monophosphate), which

serves as a signal to attract surrounding amoebae towards each other, resulting in a densely

populated aggregate (Devreotes 1989) commonly referred to as a “mound”. Aggregating cells

are polarized, thus one side becomes the leading edge, which always faces in the direction of

travel (McCann et al. 2010). Depending on parameters such as environmental conditions and

the cell population density, migrating cells can form transient emergent patterns such as streams

and spirals (McCann et al. 2010; Dallon and Othmer 1997). Streaming describes a pattern of

motion where cells line up in close-order files, with the head of one following the rear of

another (McCann et al. 2010) and the spiral pattern describes streams of concentric cells

spiralling toward the centre of the aggregate.

3.2 Cytobot Foraging Mode

In Foraging mode, a Cytobot performs a pattern of motion based on the previously described

chemotaxis of Dd cells during their Vegetative phase. The Cytobots approximate this behaviour

as a random biased walk by performing alternate periods of forward motion termed “runs” and

random redirections called “tumbles”. The bias is provided by reducing the tumble frequency

when moving toward more favourable conditions (for example up food gradient), thus

increasing the length of the run. Like aggregating Dd cells, each Cytobot is polarised, and will

always face toward the direction of travel. At each new position P, an agent redirects itself to

face a new random angle between 0 and 360 degrees (a tumble). The agent then moves forward

in a straight line for a number of time-steps, based on the level of detected food at P (a run).

The Cytobot consumes all the food (if present) at each location it passes through.

A8

3.3 Cytobot Starvation Mode

The Cytobot Starvation mode is based on the pattern of motion displayed by starving cells of

Dd. The Cytobot enters Starvation mode if it has not consumed food within a fixed time period.

During this phase, the Cytobots respond to detected levels of environmental cAMP. Depending

on the particular experiment, this chemical may already be present within the environment or it

may be released by the starving Cytobots. In this mode, both run and tumble behaviours differ

from that in the Foraging phase. Rather than turning in a random direction, a new direction is

calculated by weighting the turn toward the highest concentration of artificial cAMP within the

surrounding area. The run period, instead of being variable, is a fixed length, which is set

according to the particular experiment.

4 Cytobots: Design and Implementation

In previous work it was shown that the ARN can be used to model the reactions of specific

proteins involved in signalling pathways (Gerrard et al. 2011). To enable the Cytobot ARN to

produce the behaviour of chemotaxing Dd amoeba, rather than simulating specific protein

interactions, a more abstract method was employed. There are a number of reasons for this

approach. For instance, there are significant gaps in our current knowledge of the chemical

interactions involved within this pathway (Manahan et al. 2004), and thus it is not possible to

create an accurate representation. When modelling such a network researchers often adopt a

modular approach- where related signalling events are grouped into functional units (Manahan

et al. 2004). In this way, the Cytobot ARN was designed by dividing functions into modular

units. The functional modules are constructed by combining “structural motifs” from real

biochemical networks. Such motifs, each of which perform distinct computational functions,

have been identified by a number of researchers (Tyson and Novak 2010; Bray 1995;

kholodenko 2006). There are a number of advantages in this approach. Firstly, these motifs are

universally found in other pathways, and thus show that the ARN is capable of potentially

modelling any pathway. Furthermore, by creating entire systems composed of these motifs

illustrates how biologically plausible motifs can be combined and cooperate together to produce

functionally distinct pathways and how such pathways cooperate (a feature of crosstalk) to

produce overall cellular behaviour. These functional motifs and the manner in which they are

combined within the Cytobot ARN control system is discussed below.

A summary of common structural motifs, their computational function, structure (in the

previously defined ARN format), and biological examples of each is provided in Table 1. Note

that these motifs are shown for simplicity as 2 or 3 component forms but there are larger

versions with the same function; for example, an additional component may be added to motif 9

A9

to create a 4 component oscillator. One important biological example is the universal signalling

motif of a phosphorylation cycle. Here a signalling protein is interconverted by opposing

enzymes (a kinase and a phosphatase) between its phosphorylated (Yp) and non-

phosphorylated forms (Ys). In a multisite phosphorylation cycle, feedback from either form can

cause oscillations between stable states or render the cycle into a bistable switch, where the low

and high Yp concentrations correspond to “on “and “off” states (kholodenko 2006). A cascade

of such bistable cycles can produce multiple stable states, allowing the complex interdependent

control of many cellular functions. For example, the cell’s transition into mitosis is governed by

the sequential activation or inactivation of such kinases (CDK1/Cdc2) (kholodenko 2006).

Space prevents a detailed discussion of each motif but an in-depth account including the

biological mechanism, structure and examples is provided by Tyson and Novak (2010).

A10

4.1 Functional Motifs in Biochemical Networks

Table 1 Functional Motifs in Biochemical Networks

Motif No., Name and
Description

Structure (in ARN
format)

Biological Example

1. Excitatory (E)
The presence of X activates Y

 Elementary motif common throughout most pathways. E.g.
Ras is a membrane associated protein that is normally
activated in response to the binding of extracellular signals
such as growth factors (Tyson and Novak 2010).

2. Inhibitory (Y)
The presense of X inhibits Y.
Acts as a NOT gate.

 Elementary motif common throughout most pathways. E.g.
E-cadherin (a calcium-dependent cell–cell adhesion
molecule) suppresses cellular transformation by inhibiting
β-catenin (Tyson and Novak 2010).

3. Positive Feedback Loop
(PFL) The presence of X
activates Y and in turn the
presence of Y activates X

 The pathway of caspase activation is essential for apoptosis
induction. A PFL exists between caspase-3 and caspase-9
(Tyson and Novak 2010).

4. Negative Feedback Loop
(NFL) The presence of X
activates Y and in turn the
presence of Y inhibits X

 The proteins Mdm2 and p53 (p53 is a tumour suppressor
protein) are involved in a NFL which functions to keep the
level of p53 low in the absence of p53-stabilizing signals
(Tyson and Novak 2010).

5. Double-negative Feedback
(DNF) The presence of X
inhibits Y and the presence of
Y inhibits X

 BAX is protein which promotes apoptosis by competing
with BCL. A DNF is formed between the proteins BAX and
BCL (Tyson and Novak 2010).

6. Branch (B)
The presence of X activates Y
and Z

 The transcription factors such as E2F or P53 frequently
modulate the expression of more than one gene.
Enzymes often modify more than one substrate e.g. CycB-
dependant kinase (Tyson and Novak, 2010).

7. Logic Gate (LG1)
AND gate: 2 excitatory
connections from X and Y
when both X and Y are present
they activate Z. NOR gate: two
inhibitory connections from X
and Y. Both X and Y must be
absent for Z to be activated.
SWITCH: Excitatory
connection from X and
inhibitory connection from Y.
The presence of X but not Y
activates Z

 AND: The protein gCam 2 kinase becomes active when
both calcium ions (Ca2+) and Calmodulin (CaM) are present
(Bray, 1995).NOR: The activity of transcription factor E2F
is a NOR function of RB and CycB where E2F is active
when both RB and CycB are inactive (Tyson and Novak,
2010).SWITCH: The enzyme aspartate transcarbamylase
has multiple catalytic sites. It is activated by binding of its
substrates (aspartate and carbamoyl phosphate) and
inactivated by cytidine triphosphate causing its substrates to
dissociate (Bray 1995).

8. Logic Gate (LG2)
OR Gate: : 2 excitatory
connections from X and Y
when either X or Y are present
they activate Z

 For instance, Ras is a membrane associated protein that is
activated by a number of different signals. E.g. in response
to the binding of extracellular signals such as a number of
growth factors (Tyson and Novak 2010).

9. Oscillator (OSC)
The presence of X activates Y.
In turn the presence of Y
activates Z but inhibits X. The
presence of Z inhibits Y and
activates X.

 The cyanobacteria clock protein KaiC has a closed cycle of
phosphorylation and dephosphorylation states (composed of
KaiA, KaiB and KaiC). In the structure shown left, all 3
chemicals oscillate and each inhibits the reaction clockwise
left. Oscillators may have less inhibitory connections, the
number of which is dependent on the mobility of the
reaction species. However, the presence of all inhibitors
increases stability in the presence of fluctuating
environmental parameters e.g. temperature.

Key: Either inhibitory or excitatory. X/Y/Z: Chemical species

* Motifs may combine arbitrary numbers of components.

 X Y

Y X

X Y

Y X

Y X

X

Y

Z

X

Y

Z

X

Z

Y

X

Z

Y

Excitatory connection

Inhibitory connection Chemical substrate

Reaction

A11

4.2 The Cytobot ARN

Fig. 2 The Cytobot ARN network. Each Cytobot is controlled by an instance of this network and thus has an

independent state at time t. The network is composed of 6 subnetworks. * Note that in these experiments pools are

considered empty when the value of its component chemical is ≤ 1x10-3.

Each Cytobot maintains its own copy of an ARN which enables it to operate asynchronously

with respect to the other agents. In turn, this allows each Cytobot to react independently to

situated environmental patterns, communicate with others and contribute to higher-level

collective function. The Cytobots are placed within a simulated environment containing a

distribution of chemicals. These chemicals represent the attractants of either food or cAMP.

When a Cytobot moves to a new position, the surrounding level of chemical is used to set the

inputs to its ARN. Consequently this changes the state of the network and updates its trajectory.

During this process, the agent modifies the state of the environment by consuming food or

releasing cAMP.

The Cytobot ARN is composed of 6 subnetworks as shown in Fig. 2. Each subnetwork

contributes a functional aspect to either (or both) Starvation and Foraging behavioural modes.

Each of these subnetworks is discussed below in detail.

4.2.1 The Master Oscillator

The Master Oscillator (MOnet) functions to synchronize the outputs from all the other

subnetworks together and is what the individual Cytobot references at each time-step to ascertain

its overall behavior. It is a 4 component oscillator (Table 1, motif 9), with a token unit of

chemical cycling around it. It consists of 4 reaction units: M0, M1, M2, and M3 (all with a

reaction rate of 1), 4 pools MA, MB, MC and MD and generates a pulsed-width-modulated

waveform. Each pool is associated with 1 of 3 behaviors. At every time-step, if a particular pool

contains the token unit, then its corresponding behavior is performed. Pool MA activates turn,

A12

MC activates run and MB and MD activates stop. Thus, if pool MC contains a chemical for 10

time-steps, the agent will move forward for 10 time-steps. The other subnetworks inhibit (Table

1, motif 2) or excite (Table 1, motif 1) the reaction units of the MOnet, to allow or prevent

chemical flow.

Note that this oscillator motif allows the Cytobot ARN to function easily as the control system

for the motor actuators of a wheeled robot. Here, MC would switch on all wheel motors, while

MA would switch on left-wheel motors only, thus turning the robot. The remaining pools would

act as off switches.

4.2.2 The Food and Run Length Network

The Food Network (FNet) interfaces with the environment at pool FA, using an excitatory

connection (Table 1, motif 1) and inhibits the Run Length network (RLnet) in accordance with

the level of detected food. The forward rate of reaction at node F0 is 1, thus the content of FA is

transferred to pool FB in a single time-step. The presence of chemical FB inhibits (Table 1,

motif 2) R0 for a number of time-steps, according to the level of food (by setting forward rate

of unit F1 to 1 and weight to 0, this can be an exact correlation). The RLnet is a 3 component

oscillator (Table 1, motif 9). While reaction R0 is inhibited, it prevents pool RC from emptying.

RC inhibits reaction M2 (Table 1, motif 2) of the MOnet thus preventing pool MC from

emptying for the same number of time-steps. As discussed previously, the number of time-steps

which pool MC contains the token unit represents the number of time-steps to move forward.

4.2.3 The Signalling Network

The Signalling Network (Snet) functions as a switch between Starvation and Foraging mode. A

low food level triggers the starvation response and allows the Weighted Direction Network

(WDnet) to control each new angle. Sufficient food will switch off the WDnet and allows the

Chaotic Network (Cnet) to control each new angle. It is a 3 component oscillator (Table 1,

motif 9) with a token unit of chemical flowing around it. Pool CA acts as the switch between

Foraging and Starvation modes. Here the presence of chemical in CA inhibits the WDnet

(Table 1, motif 2), while its absence switches on the WDnet; this in turn inhibits the Cnet, as

shown in Fig. 2. In this oscillatory network, all reaction units have a forward rate of 0.5. This

produces a continuously oscillating waveform and ensures a minimum number of time-steps for

each behaviour. A NOR gate (Table 1, motif 7) activates pool CB in the absence of food

chemical in both pools FB and FC of the Fnet, thus allowing pool CB to empty. An AND gate

(Table 1, motif 7) will lead pool CA to eventually refill by activating pool CC, only when food

is present in input FA and pool FC of the Fnet.

A13

4.2.4 The Weighted Direction Network

The Weighted Direction Network (WDnet) senses cAMP within the agent’s immediate

environment and calculates a tumble angle which is weighted toward higher levels. This network

interfaces with the environment via a number of receptor pools (AW, ANW, AN, ANE, AEA)

which sense the level of food around the Cytobot. These pools represent receptors and are

positioned at points around the front of its perimeter (as shown in Fig. 3), allowing the agent to

travel in a similar way to that of a aggregating Dd cell. Each receptor input pool forms one input

of an AND gate (Table 1, motif 7); the other input is a static pool containing a fixed level of

chemical in correspondence to its direction. Directions start from AW (west) with a

corresponding numeric value of 0 (A00) and progress in 45 degree steps through each direction

to east (thus, the maximum value is 180). As the receptor positions around the agent are fixed,

directions are always relative to that in which the agent is facing. All connections have a weight

of 1 with the exception of the connection between pool AD and reaction A12 which has a weight

of -1. This negative connection weight raises the sum of food detected in AD to -1, which

multiplied by AB, allows an average angle to be calculated. Detected signals are classed as being

in one of the following cardinal or ordinal directions: W, NW, N, NE, and E. Thus signals are

detected from all directions above the horizontal plane. The calculated angle interfaces with the

remaining subnetworks at pool AE. Pool AE is the output of an OR gate (Table 1, motif 8), and

its inputs are activated by either the WDnet or the Cnet. AE also forms the inhibitory input of a

SWITCH (Table 1, motif 7), where the presence of chemical in MA and absence in AE

activates pool MB of the MOnet In the actual organism, receptors are set around the cell

perimeter and direct movement appropriately. In this simulation, for simplicity, a count of the

number of time-steps “n”, that MA contains the token unit is processed to gain the new heading

“h” relative to the agents’ current heading “c” using Eq. (3):

 cnh +−≡)90((3)

Statement 1
IF (h > 360)THEN h = h – 360
IF (h < 0) THEN h = h + 360

Thus, if the number time-steps is 120 and the agent is facing north, then the current heading

would equal 0 and the new heading would equal 30.

A14

Fig. 3. Location of the Cytobot sensors around its perimeter.

4.2.5 The Chaotic Network

The Chaotic Network (Cnet), shown in Fig. 2, is responsible for generating the pseudo-random

angles which agents use to perform each Foraging mode tumble. It is a networked

implementation of a Logistic Map, given by Eq. (4), where Xn is a state variable of value 0 < Xn

< 1 at time-step n and λ is a system parameter of value 1 ≤ λ ≤ 4:

)1(1 nnn XXX −=+ λ (4)

 Without prior knowledge of the initial conditions, the output of the Logistic Map is not

predictable; whereas, with prior knowledge it is deterministic. Therefore, the resulting series

cannot be described as truly random, but as pseudo-random and its output has long been

proposed as a pseudo-random number generator. Ulam and von Neumann (1947) were the first

to examine this, and it has been successfully used in that capacity by several researchers (Patidar

et al. 2009; Phatak and Rao 1995). The probability-density distribution of the Logistic Map, as

given by Eq. (5) (where P(X) is the probability of X occurring at any time-step), is non-uniform

(Patidar et al. 2009):

)1(

1)(
XX

XP
−

=
π

 (5)

When λ=4, the distribution is “U” shaped with a higher probability of values closer to the

minima and maxima of X and a symmetric distribution around the midpoint.

To implement the Logistic Map, a number of motifs are combined, including multiple branch

motifs (Table 1, motif 6- KB activates KD and KE), PFLs (Table 1, motif 3- a multi component

PFL exists where KA leads to activation of KE, which results in the activation of KA) and

NFLs (Table 1, motif 4- KA activates KD which in turn inhibits KA). At the start of the

simulation, pools KA and KB are initialized to the same random value (a unique number for

A15

each Cytobot), between 0 and 1 (to 5 decimal places). This value represents the initial value of

X of Eq. (4). All the other pools are initialized to 0, with the exception of the static pools KI

and RK, whose initial values are 360 and 1 respectively. Reaction K2 is responsible for

generating each new value of X and has a forward and reverse rate of 4 (the Logistic Map

exhibits chaotic behaviour when λ is 4). The connection between KA and K2 has a weight of 1

and that between K2 and KB has a weight of 2. The remaining series of reactions function to

copy the value of X 3 times; where 2 copies serve as the new initial values of KA and KB, and

one participates in the final output of the network at KH. KI has a fixed value of 360 which

allows the network to convert the pseudo-random number at KH to an angle value between 0

and 360 at reaction K0. However, reaction K0 cannot proceed until all 11 pools that inhibit it

are empty.

a) b)

Fig. 4 The Frequency distribution for each value of X when X is initialised to 0.9277725 and λ=4 resulting from: a)
the chaotic network b) Recursive relation given by Eq. (2) run using Matlab.

These inhibitory connections (Table 1, motif 2) ensure that random angles are not output while

the agent is in starvation mode, and that pool AE is empty before adding more chemical.

The ARN implementation of the Logistic Map was verified against the recursive relation shown

in Eq. (4) using Matlab, where λ=4, initial X = 0.927725, and iterated for 1x105 steps. The

complete range of state-variables between 0 and 1 were divided into 100 equal subintervals and

the frequency of occurrence of each subinterval interval was plotted. Similarly, the Cnet was

run for 1x105 cycles, using the same parameters of X (initial value) and λ. These results were

processed in the same way and are shown in Fig. 4. The frequency distribution gained from the

ARN is identical to that obtained using Matlab and by other researchers using the same

parameters (Patidar et al. 2009). The same comparison was repeated 100 times at different

values of X, and the ARN consistently produced the same values as Eq. (2).

A16

5 Experiments and Results
In the following sections the methodology and results for the following experiments are

presented: 1) A Cytobot based simulation of the Vegetative and Aggregative life-cycle phases

of Dd including the transition; between them and 2) application of the same Cytobots in a

simulated oil-spill clean-up operation.

5.1 D. discoideum Simulation

5.1.1 D. discoideum Simulation Methodology

The experiments are grouped into two sets: Aggregation (AG1-10 of Table 2) which models the

Aggregation phase only and Foraging to Aggregation (AGF3 and AGF8 of Table 2) where both

the Vegetative and Aggregative phases are simulated, including the transition between them.

Each experiment is performed at varying population densities of Cytobots (p) and different

distance ranges of detection of cAMP (r). The experiments AGF3 and AGF8 are performed at

the same p and r as experiments AG3 and AG8 respectively to compare the effect of the

Foraging phase on the number of mounds formed and length of time to complete the

Aggregation phase. The emergent patterns, numbers of mounds, and length of time to complete

phases is examined and compared in both sets of experiments and with the literature. In each

experiment the Cytobots move within a 2D simulated environment which represents an area of

5.06 mm2- approximately half the maximum Aggregation territory reported in the literature

(Dallon and Othmer 1997). A screen output shows the position of the Cytobots in real-time and

is a grid of 500 × 500 pixels where each is represented by a square of side 4.5 μm. In nature,

aggregating Dd cell densities are typically 250 to 1000 per mm2 (Dallon and Othmer 1997).

Due to the computational resources required to manage a population of Cytobots within the

upper range, a cell density at the lower biological range of 250 agents per mm2 (1250 Cytobots)

and another at 150 per mm2 (750 Cytobots) were chosen.

A17

Table 2 D. discoideum Simulation Results

No. Cytobots
per mm2 (p)

Range (r)
in mm

Mean No. of
mounds; (σ)

Aggregation Phase
Mean time in Hours; (σ);

AG1 150 5 1
(0)

8.98
(0.09)

AG2 150 2.5 4
(0.31)

9.63
(0.17)

AGF3 150 1 5.9
(1.16)

9.47
(0.65)

AG3 150 1 5.2
(0.82)

9.92
(0.34)

AG4 150 0.5 8.4
(1.19)

10.23
(0.59)

AG5 150 0.1 14.2
(2.36)

10.6
(1.82)

AG6 250 5 1
(0)

8.95
(0.11)

AG7 250 2.5 1
(0)

9.6
(0.20)

AGF8 250 1 6.8
(1.81)

9.71
(0.87)

AG8 250 1 4.3
(0.37)

10.05
(0.58)

AG9 250 0.5 6.7
(1.62)

12.65
(1.94)

AG10 250 0.1 - -

Fig. 5 The strength of signal for each cardinal or ordinal direction above the horizontal plane of a Cytobot is
calculated using this pseudocode. The result for each direction is used to set the corresponding direction input pool
of the ARN WDnet.

FOR each Cytobot
 Get current agents’ facing direction CF
 Assign a value to direction CF using statement 1

 FOR each (index n) detected cAMP signal
 Get detected signal incoming direction CA
 Assign a value to direction CA using statement 1
 IF CA = CF THEN kn = 3
 ELSE IF CA = CF-1 OR CA = CF+1 THEN kn=2
 ELSE IF CA = CF-2 OR CA = CF +2 THEN kn=1
 ELSE kn=0
 END IF
 Calculate distance dn
 Store each CA with kn and dn
 END FOR

 Calculate WA for current agent using Eq. (7)
END FOR

Statement 1: East = 1; North East = 2; North = 3; North West =4;
West = 5

Where:
WA= total weight of direction A
N= total number of agents within range of detection
dn= distance of current agent from agent n
CA = direction of incoming signal detected by current agent
CF = the current agents facing direction
kn = value of cAMP signal from agent n

A18

In both sets of experiments the Cytobots are initialized at random positions in Foraging mode

within the simulated environment. In the AGF experiments, the environment is initialized with

a radial outwardly-decreasing gradient of food (z), as described by Eq. (6), where x and y are

Cartesian coordinates on the horizontal plane:

 22 yxz += (6)

 ∑
=

=
N

n n

n
A d

k
W

1
 (7)

The Cytobots begin the experiment in the previously described Foraging mode and remain in

this mode until the food resource is depleted and Starvation mode is triggered. In a real

environment, food is non-uniformly distributed, may be regenerated and can move (in the case

of bacterial prey). Thus, this setup is highly simplified, but is comparable to other simulations

(Becker 2010).

If a Cytobot does not detect food for a period of approximately 5 time steps (the exact number

depends on the level of food detected in the recent past, because higher levels take longer to

flow through the network) it will enter Starvation mode. Cytobots in Starvation mode emit a

cAMP signal at equal strength in all directions around their circumference into the

environment. Each Cytobot in Starvation mode detects the cAMP signal of all other starving

agents within a radius r. The total value for each direction is calculated using the pseudocode

given in Fig. 5 and these totals are used to set the weighted direction network input (receptor)

pools. A range of r values were explored, including that of real Dd cells: 1, 0.5, and 0.1 mm

(McCann et al. 2010). The cAMP signal degrades linearly with increasing distance from the

emitting cell. Each cycle represents 1 minute of time. In this time an aggregating Cytobot

moves 9μm- a distance which corresponds to that of actual aggregating Dd cells (Rifkin and

Goldberg 2006). Therefore, after 1 hour of motion a Cytobot travels a distance of 540μm. In

this simulation, just as in biology, there are always remaining cells that do not aggregate, and

thus the simulation runs until 95% of agents are at a distance of less than 0.1mm from their

nearest neighbour.

5.1.2 D. discoideum Simulation Results and Discussion

The results for all 12 experiments are given in Table 2. Each experiment was performed 100

times. In the AG experiments an increase in p by 100 per mm2 resulted in a decrease in the

number of mounds formed at each value of r, with the exception of experiment AG6. This is

not surprising, as denser populations have more chance of interacting, and thus form fewer

clusters, each having a higher number of agents. Similarly, decreasing r results in a general

A19

increase in the number of mounds formed at both values of p. The likely reason for this is that

as r decreases the Cytobots area of influence becomes increasingly smaller, and thus the

number of isolated stable clusters with fewer agents increases. In the AGF experiments, agents

generally focus on consuming food in each of the remaining areas of highest concentration (see

Fig. 6K-L). Having consumed almost all the food, agents begin switching to starvation mode

(Fig. 6M). In these experiments the number and location of resulting mounds differs from that

of the AG experiments at the same values of r and d. For example experiment AG8 results in an

average of 4.3 mounds within the test space (Fig. 6E) while AGF8 results in an average of 6.8

mounds and a general shift in mound formation further away from the centre of the

environment (as shown in Fig. 6O). The likely explanation is that, at the time of switching to

aggregation, the majority of cells were forced outward toward the next remaining highest

concentration of food. Emergent behaviours and clustering patterns similar to the biological

organism were also observed.

Fig. 6 Screenshots of the Dd simulation. Dots represent the Cytobots (black- vegetative and red- aggregative cells),

and greyscale colour represents the food distribution. A-E: Cytobot aggregation experiment AG8 at A- 1hr, B- 2hr,

C-5hr, D- 8hr, E- 10hr; Image F- real Dd cells aggregating; G- Lower right hand corner of image C demonstrating

streaming behaviour; H-J Shows pattern formation; K-O Cytobot experiment AGF8 at K-0hr vegetation, L-4hr

vegetation, M-transition to aggregation 0hr aggregation, N-5hrs aggregation, O-10hr aggregation.

Diagram F courtesy of T, Gregor, Laboratory for the Physics of Life, Princeton University,

2013 Used with permission.

In experiments AG8-10 and AGF8 the value of r and p are within the ranges for real Dd cells.

These experiments are used to compare the behaviors and aggregation time with the values for

real Dd in the literature. In experiments AG8-9 and AFG8 mound formation completes within

A20

the range reported for the actual organism of 9-13 hours (Cotter et al. 1992; Becker et al. 2010).

These results are comparable with other work. For instance, Becker et al. (2010) report an

aggregation time of 11.6 hours for a simulated population of Dd with a cell density of 200mm2.

In experiment AG10, the population never satisfied the criteria for completion of mound

formation where instead the agents appeared to move in a fashion reminiscent of Brownian

motion. The likely explanation is firstly because the simulation does take into account

glycoprotein’s which allow aggregating cells to attach together on contact. Furthermore,

because r is small, fewer agents are detected by each Cytobot. Thus momentarily larger clusters

with higher attraction strength go undetected and quickly dissipate- an effect that would not

occur if agents stayed together. As previously discussed, the Cytobots are polarized.

Implementing the agents in this way allows us to observe whether or not the previously

described streaming behavior occurs. A close-up of the right-hand corner of screenshot C is

shown in Fig. 6G showing agents beginning to form a cluster. The protruding head of each

agent can be seen clearly, and each lines up its head to the rear of another to form a stream. As

can be seen in Fig. 6F, this is very similar to the streaming behavior in real cells of Dd. Other

emergent patterns occurred during different experiments including spirals (Fig. 6J), symmetric

patterns (Fig. 6I), and waves (Fig. 6H).

These results show that the Cytobots are able to simulate behaviour of individual unicellular

organisms, and the emergent behaviours arising from their interaction. It highlights a potential

use, as a means to simulate groups of interacting cells, for example a bacterial colony or tissue

component within a multicellular organism. Applications include the modelling of the effects of

disease (e.g. faulty gene expression) and pharmaceuticals on global behaviour. The results

demonstrate the parallels between ARN agents and their biological counterpart; like amoebae,

their internal network of spatially distributed dynamic chemical species allows them to

autonomously coordinate and direct their movement, recognize and respond to patterns in the

environment, and produce high-level behaviour.

5.2 Oil-spill Confrontation Simulation

5.2.1 Oil-spill Simulation Methodology

To illustrate a practical application of the Cytobot system within robotics they were used to

tackle a simplified oil-spill clean-up simulation. The Cytobots move within a 2D environment

containing an oil-spill on water. This oil is analogous to a distribution of food within a nutrient

landscape. In the following 4 experiments the length of time it takes for a swarm of 3, 5, 8 and

15 Cytobots to clean up 95% of a simulated oil-spill is recorded. The agents move through the

environment by switching between the two previously described behavioural modes- Foraging

and Starvation. In these experiments, each Cytobot is controlled using the same ARN network

A21

as used in the Dd simulation. To enable the Cytobots to behave differently, rather than modify

the network, the interface between the Cytobots and the environment was altered. To achieve

this, the concentration of oil surrounding the agents was used to represent both food and cAMP

attractants. Thus, the amount of oil at each new position was fed into both the receptor pools of

the WDnet and of the Fnet. At the start of each experiment, the Cytobots are distributed

randomly within the environment, and the ARN network is initialized as previously described.

The agents start the simulation in Foraging mode but during the simulation alternate between

Foraging and Starvation modes. Starvation behaviour is triggered when the last positions

(minimum of 2) contained zero food. In Starvation mode, instead of turning in a random

direction, the new direction is weighted toward higher concentrations of food within its

surrounding area. This behaviour forces exploration of unexplored search space because

previously visited positions have a food level of 0. Consumption of environmental food

therefore acts as a stigmergic signal, where agents are inclined to move up the nutrient gradient

created by their foraging activities. On consuming a sufficient amount of food, the Cytobot

switches back to Foraging mode, repeating this behaviour until 95% of the oil is consumed.

Here, we model the spillage of 100 tonnes of Statfjord crude oil at 150C under a wind speed of

5ms-1 The oil is distributed over a 2D sea surface of 300m by 200m, thus an area of area

60000m2, where 2 pixels corresponds to 1m, as shown in Fig. 7A. This particular oil type and

parameter set were chosen in order to compare directly with work by Kakalis and Ventikos

(2008) who present a robotic swarm concept for oil-spill confrontation. For this reason, we

account for an initial response time of 14 hours. Based on the mathematical models found in

Kakalis and Ventikos which account for the main factors of short term changes in oil

characterization, the volume of oil after 14 hours is reduced to 150m3. Beyond this starting

state, the volume is only influenced by the Cytobots. The speed of each agent is 0.5ms-1 and is

based on other robotic agents in oil cleaning scenarios (Kakalis and Ventikos 2008), thus the

Cytobots move 1 pixel (0.5m) for every time step. The actual cleaning surface is 1m, thus the

Cytobots clean a 2 pixel wide area in each time step.

Mathematical modelling of an oil-spill is non-trivial and at best can offer a crude approximation

of its actual trajectory. Most oil-spills quickly form a comet shape with most of the oil within

the head, and a trail of sheen (Wang and Stout 2007). To represent a simplified version of the

comet shaped spread, the area is divided into 100 3m x 200m segments. The first segment

contains 0.015 tonnes of oil, and each subsequent segment increases by 0.03 tonnes from right

to left.

5.2.2 Oil-Spill Results and Discussion

In each experiment, a different number of Cytobots was deployed- 3, 5, 8 and 15 and the

recovery rate achieved by each group were compared. The simulation time was measured from

A22

deployment of the Cytobots at 0 hours (14 hours after oil was spilled) and stopped when the

Cytobots had collectively removed 95% of the 150m3 of oil. Each experiment was run 100

times, and the average volume of oil consumed at 6 minute intervals was calculated. Figure 8

presents the average volume of oil consumed by the group of Cytobots against time. Figure 9

provides the average length of time taken to clean 95% of the oil (Avg. time) and standard

deviation (σ) for each experiment. By adding 2 additional agents to the group of 3 the length of

time is reduced by 3.7 hours, thus 1.85 hour average difference per extra Cytobot. This

difference decreases 1.12 hours per Cytobot for 8 agents, then to 0.76 per agent for 15. The

variation can be accounted for by examining the agents’ paths through the oil. Rates are much

faster at the beginning of the experiments, where Cytobots move toward the oil-rich left side of

the environment. This can be seen in the series of screenshots of a typical experiment shown in

Fig. 7, where A shows the starting position at time 0, and B shows that after 2 hours the

Cytobots have moved toward the left-hand side, focusing mainly on highly concentrated areas

(consumed oil is shown in white). Initially, the rate of oil removal is high because Cytobots

focus on the highest concentration areas and cannot go over their path, thus each new location

results in consumption of oil. However, as time progresses, large patches become cleaned and a

higher probability exists for the Cytobots to revisit previously cleaned areas. The consumption

of oil in Fig. 7C-D at 4 and 9.6 hours respectively shows more clearly that Cytobots focus

cleaning efforts on the area of highest concentration first, and are gradually forced to move

toward the next highest concentration by the gradient created by their foraging activities.

Figure 7D shows the state of the oil at the end of the simulation, where only small patches

remain mainly in areas of low oil concentration. These results can be compared to the

simulation by Kakalis and Ventikos. Here, varying numbers of simulated EU-MOP robots are

deployed to tackle 150m3 of Strajford oil over 60000m3 (as before). In this case, the robots have

a slightly faster speed of 0.54m/s but have the same 1m skimming face. Each EU-MOP robot

has a storage capacity of 2m3
 and a transit speed of 2.1ms-1. The times taken for 3, 5, 8, and 15

EU-MOPS are 54, 32, 20 and 10 hours respectively. For comparison, the results of our

simulation can be adjusted to include unloading of the oil at a servicing vessel. Using the same

storage capacity and transit speed and assuming the distance to the ship and back is 2 times

300m and that each Cytobot fills the same amount simultaneously, then the new times are 17.2,

12.7, 10.3 and 6.5 for 3, 5, 8 and 15 Cytobots respectively. The Kakalis and Ventikos

simulation has several differences to the one reported here, particularly in the distribution of the

oil. Also, some key parameters are missing from their paper, for example, the distance to the

boat. Despite these differences, our results are very similar. For example, the reported

simulation time for 15 EU-MOPS is 10 hours and in our simulation 5 and 8 Cytobots took 12.7

and 10.3 hours respectively. Given the differences in the simulation and differences in

operation of the robots, the resulting clean-up times are comparable, showing that the Cytobots

A23

have potential application as distributed robotic agents in real-world environments. This

application demands an internal control system which can function without reference to other

agents within the environment which are operating in parallel. By modifying the environment,

(which in this case was consumption of food), the agents can stigmergically communicate and

facilitate emergent behaviour. The Cytobots offer a unique range of abilities. Like cells, their

internal network of spatially distributed dynamic chemical species allows them to

autonomously coordinate and direct their movement, recognize and respond to patterns in the

environment, and produce high-level behaviour.

Fig. 7 Oil simulation using 8 Cytobots at A- 0 hours, B- 2 hours, C- 4 hours and D- 9.6 hours

Fig. 8 Average volume of oil cleaned against time for each group of Cytobots

A24

No. of
Cytobots

Avg. finish
times

Standard
deviation (σ)

3 15.2 3.4
5 11.5 2.7
8 9.6 2.8
15 6.1 3.1

Fig. 9 Average length of time taken to clean 95% of the oil-spill for each group of Cytobots.

6 Conclusions
The experiments outlined in this paper show the advantages of considering cell-signalling

networks as a connectionist paradigm. This approach allows their structure to be easily

visualised, manipulated and organised into hierarchical modular structures. These in turn

facilitate the exploration of the limits of their processing capabilities and, from an artificial

intelligence perspective, allows them to be compared directly with other forms of simulated and

biological intelligence. It may also prove useful tool in biomedical research as it allows, for

example, the effect of mutated proteins to be examined simply in isolation or in interconnected

groups - this is of particular importance in cancer research.

The results presented above illustrate how common simple motifs, present in all CSNs, can be

integrated together to form structured networks with sophisticated processing capabilities. This

indicates that these may form universal building blocks from which higher-level functions can

be built. The ARN based agents, constructed from these, behave in a very similar way to the

real organisms; displaying two of their most interesting behaviours (foraging and aggregation),

and so we may conclude that the ability to evolve this level of behaviour is probably fairly

universal among such single-celled microbes.

In the next stage of work, it is hoped to use an ARN to explore how learning might arise in

protists. In particular the extent to which learning and memory is genetically programmed into

invariant CSNs, and how much of it is extrinsic to the organism – as a stigmergic system. Or

whether it has a variable intrinsic aspect – for example, the use of modulating elements within

the CSNs, which might act as primitive “memories”. In the experiments outlined in this paper,

the stigmergic aspect of such memory was illustrated. For example, like the cAMP trail-

following behaviour described above, the environment acts as a shared information depository

in which to both facilitate collective manipulation of data and communicate the current global

system state.

There may also be a role for the ARN in other areas which have yet to be explored, particularly

those which would benefit from its connectionist approach described in the paragraphs above.

For example, it would appear ideal for modelling the complex but interconnected pathways

present in environmental science and soil chemistries.

A25

Supplementary information and code can be found at the following link:

https://drive.google.com/folderview?id=0B-xGVfJFH9UmZlJTV1pROFFRb00&usp=sharing

References
Andrew N, Insall R (2007) Chemotaxis in shallow gradients is mediated independently of PtdIns 3-

kinase by biased choices between random protrusions. Nat. cell boil. 9(2):193-200
Arkin A, Ross J (1994) Computational functions in biochemical reaction networks. Biophys. J 67:560-

578
Becker M (2010) Simulation model for the whole life cycle of slime mould Dictyostelium Discoideum.

In: Proceedings of the European conference on modeling and simulation, pp 247-253
Bhalla U (2003) Understanding complex signaling networks through models and metaphors. Prog.

Biophys. Mol. Bio. 81:41-65
Bray D (1995) Protein molecules as computational elements in living cells. Nature. 376(6538):307-12
Brock D, Douglas T, Queller D, Strassmann J (2011) Primitive agriculture in a social amoeba.

Nature 469 (7330): 393-396
Cotter D, Sands T, Virdy K, North M, Klein G, Satre M (1992) Patterning of development in

Dictyostelium discoideum: factors regulating growth, differentiation, spore dormancy and
germination. Biochem. Cell Biol. 70(10-11):892-919

Dallon J, Othmer H (1997) A discrete cell model with adaptive signaling for aggregation of
Dictyostelium discoideum. Philos. T. Roy. Soc. B 352(1351): 391–417

Devreotes P (1989) Dictyostelium discoideum: a model system for cell-cell interactions in development.
Science 245(4922): 1054-1058

Ford B (2009) On intelligence in cells: The case for whole cell biology. Interdisipl Sci Rev 34(4):350-
365

Gerrard C, McCall J, Coghill G, Macleod C (2011) Artificial Reaction Networks. In: Proceedings of the
11th UK Workshop on Computational Intelligence, Manchester: UK, pp 20-26

Gerrard C, McCall J, Coghill G, Macleod C (2012a) Temporal patterns in Artificial Reaction Networks.
In: Proceedings of The 22nd International Conference on Artificial Neural Networks Lausanne, part
1, vol. 7552, pp 1-8

Gerrard C, McCall J, Coghill G, Macleod C (2012b) Adaptive Dynamic Control of Quadrupedal Robotic
gaits with Artificial Reaction Networks. In: Proceedings of the 19th International Conference on
Neural Information Processing Doha, vol. 7663, part 1, pp 280-287

Gerrard C, McCall J, Coghill G, Macleod C (2013) Exploring aspects of cell intelligence with artificial
reaction networks. Soft Computing (in press)

Guo H, Meng Y, Jin, Y (2009). A cellular mechanism for multi-robot construction via evolutionary
multi-objective optimization of a gene regulatory network. BioSystems 98(3):193-203

Joachimczak M, Kowaliw T, Doursat R, Wrobel B (2013) Controlling development and chemotaxis of
soft-bodied multicellular animats with the same gene regulatory network In: Advances in Artificial
Life, ECAL, vol. 12, pp. 454-461

Kakalis N, Ventikos, Y (2008) Robotic swarm concept for efficient oil spill confrontation. J. Hazard.
Mater. 154(1-3):880-7.

Kholodenko B (2006) Cell Signaling dynamics in Time and Space. Nat Rev Mol Cell Biol 7(3):165-176
Manahan C, Iglesias P, Long Y, Devreotes P (2004) Chemoattractant signaling in Dictyostelium

discoideum. Annu. Rev. Cell Dev. Biol. 20, 223–253
McCann C, Kriebel P, Parent C, Losert W (2010) Cell speed, persistence and information transmission

during signal relay and collective migration. J. Cell Sci. 123:1724-1731
Patidar V, Sud K, Pareek N (2009) A pseudo random generator based on chaotic logistic map and its

statistical testing. Informatica 33:441-452
Phatak S, Rao S (1995) Logistic map: A possible random-number generator. Phys. Rev. 51(4): 3670.

Rifkin J, Goldberg R (2006) Effects of chemoattractant pteridines upon speed of D. discoideum
vegetative amoeba. Cell Motil. Cytoskeleton, 63(1): 1-5

Shen W, Will P, Galstyan A, Chuong C (2004) Hormone-inspired self-organization and distributed
control of robotic swarms. Auton. Robot 17(1): 93-105

ten Eikelder T, Crigins S, Steijaert M, Liekens A, Hilbers P (2009) Computing with feedforward
networks of artificial biochemical neurons. In: Proceedings of the 2nd International Workshop on
Natural Computation, Japan: Springer: vol 1 pp 38-47

https://drive.google.com/folderview?id=0B-xGVfJFH9UmZlJTV1pROFFRb00&usp=sharing

A26

Tyson J, Novák B (2010) Functional motifs in biochemical reaction networks. Annu. Rev. Phys. Chem
61:219-240

West S, Diggle S, Buckling A, Gardner A, Griffin A (2007) The social lives of microbes Annu. Rev.
Ecol. Evol. Syst.38: 53-77

Ziegler J, Banzhaf W (2000). Evolving a” nose” for a robot. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO)

A27

Paper 2: ‘Exploring aspects of Cell Intelligence with Artificial
Reaction Networks’

Reference:
Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (in press) ‘Exploring aspects of

cell intelligence with Artificial Reaction Networks’, A Fusion of Foundations

Methodologies and Applications, Soft Computing, Springer.

A28

Exploring Aspects of Cell Intelligence with

Artificial Reaction Networks

Claire E. Gerrard • John McCall • George M. Coghill • Christopher Macleod

Claire. E. Gerrard • John McCall

IDEAS Research Institute, Robert Gordon University, Aberdeen, AB10 7GJ, UK

email: c.e.gerrard@rgu.ac.uk

John McCall
email: j.mccall@rgu.ac.uk

Geroge M. Coghill

School of Computing Science, University of Aberdeen, Aberdeen, AB24 3FX, UK.

email: g.coghill@abdn.ac.uk

Christopher Macleod

School of Engineering, Robert Gordon University, Aberdeen, AB10 7GJ, UK.

email: chris.macleod@rgu.ac.uk

Keywords Artificial Biochemical Network (ABN), Artificial Chemistry , Artificial Neural

Network (ANN), Artificial Reaction Network (ARN), Cell Signalling Network (CSN),

Robotics

Abstract The Artificial Reaction Network (ARN) is a Cell Signalling Network inspired

connectionist representation (CSN) belonging to the branch of A-Life known as

Artificial Chemistry. Its purpose is to represent chemical circuitry and to explore

computational properties responsible for generating emergent high-level behaviour associated

with cells. In the paper, the computational mechanisms involved in pattern recognition and

spatio-temporal pattern generation are examined in robotic control tasks. The results show that

the ARN has application in limbed robotic control and computational functionality in common

with Artificial Neural Networks. Like spiking neural models, the ARN can combine pattern

recognition and complex temporal control functionality in a single network, however it offers

increased flexibility. Furthermore, the results illustrate parallels between emergent neural and

cell intelligence.

mailto:c.e.gerrard@rgu.ac.uk
mailto:j.mccall@rgu.ac.uk

A29

1 Introduction
In recent years, researchers have become increasingly interested in the complex behaviours

displayed by individual cells. Such behaviours are exemplified by simple eukaryotic organisms

called protists. These show an astonishingly varied repertoire of seemingly intelligent

behaviours. For example, some have simple eye-spots to help avoid high light levels; others

have locomotory appendages and stinging arrows to actively hunt and subdue their prey (Ford

2009). All this is accomplished without recourse to a neural network, the foundation-stone of

intelligence in higher animals. The behaviour of such simple organisms may be labelled as

“Cell Intelligence”.

In order to generate this emergent high-level behavior, a cell must be able to store and process

information. Data is represented internally by a set of spatially distributed molecular

concentrations. Cell Signalling Networks (CSNs) process this information within elaborate

hierarchical network control structures which connect species together in productive or

inhibitory unions. In this way, cells are able to respond to changes within their environment,

communicate with other cells, and perform internal self maintenance operations (Bray 1995).

Several researchers have highlighted the processing capabilities of these networks (Bray 1995;

Arkin and Ross 1994; Bhalla 2003) and similarities to Artificial Neural Networks (ANNs)

(Bray 1995; Bhalla 2003). For example, Bray (1995) claims that individual network units can

perform Boolean and fuzzy logic and act as a Turing machine. In other work, Stadtman and

Chock (1997) demonstrated that such a network can act as a flexible computational unit.

Similar results were documented by Arkin and Ross (1994), and recently a number of

researchers have developed these ideas (Hild et al. 2010; Wang 2011).

In this paper the properties and applications of a connectionist model inspired by CSNs termed

the Artificial Reaction Network (ARN) are discussed. This representation was introduced

previously (Gerrard et al. 2010) where it was used to create a simulation of the chemotaxis

pathway of Escherichia coli. In later work biochemical network motifs were investigated as a

means to perform computational processing in a single ARN based system (Gerrard et al.

2011a; 2011b).

The ARN belongs to the branch of Artificial Life known as Artificial Chemistry Computing

(ACC). This field of study utilizes principles of the Chemical Metaphor to construct novel

software or hardware architectures in silico (Dittrich et al. 2001). In the Chemical Metaphor,

data is stored in the form of molecular species and information processing occurs through

interactions (reactions) between these molecules. The result of this computation appears as

emergent global behaviour (Dittrich et al. 2001). ACC has been previously used in two main

applications: simulating complex systems (biological, social or ecological) and in developing

novel solutions to engineering or computational problems. Its approach can be broadly

categorised into microscopic or macroscopic methods (Dittrich 2005). Microscopic methods

A30

treat each molecule explicitly, while in macroscopic methods, all the molecules of one type are

represented by a value signifying, for example, concentration. Microscopic ACCs tend to

model dynamics as stochastic molecular collisions, while macroscopic models tend to use

continuous differential or discrete difference equations. The ARN is a macroscopic ACC and

has a networked representation similar to other ACC models (Zeigler and Banzaf 2000;

Eikelder et al. 2009). For instance, in the Artificial Biochemical Neuron, concentrations of

reactants form weighted links between reactions and their dynamics are modelled using

Ordinary Differential Equations (ODEs) (Eikelder et al. 2009). Other related chemically

inspired approaches can be found in the literature, for instance, the Gene Regulatory Network

algorithm (Guo et al. 2009), the Digital Hormone System (Shen et al. 2004), the Artificial

Homeostatic Hormone System (Hamann et al. 2010) and idiotypic Farmer based Artificial

Immune Systems (Krautmacher and Dilger 2004). Like these models, the ARN represents

molecular species as continuous concentrations where dynamics are modelled using ODEs. Its

networked representation is specifically designed to represent “biological circuitry” and allows

temporal and spatial dynamics to unfold real-time. As discussed later, it has properties in

common with other models from both Artificial Intelligence and Systems Biology fields,

including: Artificial Neural Networks, Random Boolean Networks, Petri Nets, and S-Systems.

The specific objectives of the results presented here are as follows. Firstly, to explore the

mechanisms and computational properties that leads to emergent high-level behaviour in cells.

Secondly, to further investigate applications of this technique- specifically the control of

motion in limbed robots. In this paper the following novel work is presented: 1) A complete

overview of the ARN including its development, computational properties, advantages and

disadvantages; and 2) the production of a complete ARN based control system for a limbed

robot which combines pattern recognition and generation of time varying waveforms in a single

network.

The paper is structured as follows: section 2 discusses the ARNs development, representation,

advantages and disadvantages. The ARN is then used to explore several computational aspects

of Cellular Intelligence. The first of these is its pattern recognition capability (section 3.1). In

these experiments ARN parameters are set using a Genetic Algorithm (GA) and input patterns

representing external environmental chemicals are mapped to output patterns. In section 3.2,

further processing capabilities of the ARN are investigated by determining its ability to regulate

complex temporal dynamics. Its application in robotic control is then explored by using the

resulting system to create waveforms which control the gaits of limbed robots. This network is

then extended into a complete control system by combining it with the previous pattern

recognition network (section 3.3) in a single ARN. The results show that the ARN can function

in both sensory input and motor output tasks which usually only more complex models can

fulfil. Moreover the ARN allows offers increased flexibility over existing methods in robotic

A31

control tasks. The report concludes that the ARN is a versatile and powerful technique which

has application in both simulation of chemical systems, and in robotic control, where it can

offer a higher degree of flexibility and computational efficiency than benchmark alternatives.

Furthermore, it provides a tool which may possibly throw further light on the origins and

limitations of the primitive intelligence associated with cells and its parallels with neural

intelligence.

2 The Artificial Reaction Network
The ARN was briefly introduced in our previous work (Gerrard et al. 2011). This section

provides a complete overview of the ARN starting with its basic formulation, and followed by

its networked representation and computational properties.

2.1 Basic Formulation

Rate equation models can be used to represent many different physical systems and so are very

general and flexible in their applications. In the domain of chemistry, they can directly

represent (or be slightly modified to represent) all the common reaction types. They form the

basis of S-systems (Savageau and Voit 1987) and are well characterised in biochemical

simulations. The basic rate equation is described by Eq. (1) and is described by two terms. The

first half corresponds to the rate of generation of product j (Pj) and is equal to the forward

reaction rate (kf), multiplied by the product of the concentrations of the N reactants ([Rn]), each

raised to the power of its reaction order αn.

∏∏
==

−=
M

i
ir

N

n
nf

j in PkRk
dt
Pd

11

][][
][βα (1)

The second term represents the rate of decomposition of product back into its original reactants.

This depends on the reverse reaction coefficient (kr) multiplied by the product of the

concentrations of the M products [Pi], each raised to the power of its reaction order βi. For

example, consider the simple reaction between two reactants labelled A and B with reaction

orders of q and s respectively. These produce a single product P. In this case, Eq. (1) is reduced

to Eq. (2).

][][][][PkBAk
dt
Pd

r
sq

f −= (2)

A32

When used in S-systems, a group of rate equations are normally set up - one for each reaction.

The left hand of each equation is then set to zero and they are solved simultaneously to yield

the steady-state response. If the dynamic responses are required, then numerical solution

methods like Runge-Kutta are normally applied.

2.2 A Networked Representation

Clearly a large set of simultaneous ODEs (Ordinary Differential Equations), in their basic

mathematical form, limit the conceptualisation, visualisation and communication of complex

topologies. Furthermore, in this form, each ODE term is tightly coupled, and is difficult to

isolate and manage. Therefore, in order to create a connectionist representation with distinct

biological processing units, capable of constructing complex biological circuits, the method

needs to be modified. This may be done by isolating each reaction in the network to form a

discrete node which may then be modified independently of the other reactions. Such a node

can be viewed as analogous to a neuron in an ANN and has been named an Artificial Reaction

Node; by analogy networks of such nodes may be termed Artificial Reaction Networks

(ARNs). Similarly to an ANN, each ARN node is a processing unit, transforming a number of

inputs into an output. In an interconnected network of such units, global behaviour is

determined by the connections, and unit parameters. Furthermore, by isolating each reaction

like this, the individual pathways or units which make up the system can be changed,

reconnected or evolved by (for instance) a genetic algorithm. This also allows an individual

part of the network to be independently modified and its effects studied. Such a feature is useful

in simulating disease pathways. Isolating the reactions in this way facilitates two other

important practical advantages. Firstly, visual “drag and drop” interfaces can be developed.

These allow researchers to quickly change network or reaction parameters in order to study

their effect. This, in turn, allows simple visualisation of the system in a graphical form which

makes its conceptualisation easier. Secondly, it makes the application of object-orientated

programming techniques very simple, as each node can be coded as an instance of an object.

tPkBAkP r
sq

f ∆−=∆])[][][(][(3)

qPA][][∆=∆ (4)

sq
qPA
+

∆=∆][][

(5)

A33

In developing the system described, Euler’s method was chosen in order to solve the rate

equations. This offers some advantages, in that it is simple and computationally cheap, but

more importantly, it allows the whole network to run quickly in simulated real time- so that its

temporal dynamics can be seen to unfold during a run. This gives the option of changing

parameters in real time so that a user can observe any dynamic resulting behaviour.

Furthermore, the temporal output of the network could potentially be used as a control system

for an “artificial cell” robot - a cytobot.

Using the simple two input system shown in Eq. (2), multiplying through by dt and changing to

a discrete finite time-step ∆t, the Euler approximation is described by Eq. (3). This reaction

needs to be isolated from the others, so that it can form a discrete “unit”. This can be done most

easily by borrowing the concept of “pools” from Petri-nets (Murata 1989). Petri-nets pass

tokens between such pools as part of their operation. In the system discussed here, the pools

may hold the number of available molecules, the concentration of the reacting chemicals (for

example in moles per litre) or the mass of reactants. As the reaction proceeds, the reacting

species pass from the input pools (depleting them) to the output pools (enriching them). So, in

the previous example, to generate one molecule of product requires q molecules of reactant A

and s molecules of reactant B. In this case, the pool containing A would get depleted by an

amount ∆A as described by Eq. (4). Where ∆P is the amount of product generated (which

would be added to pool P). This equation works if the units used are number of molecules or

moles per litre (which are not conserved quantities). However if mass or a similarly conserved

quantity is used then ∆A is given by Eq. (5). The whole system using more general symbols is

shown diagrammatically in Fig. 1 (for a conserved quantity).

A34

Fig. 1 Schematic diagram of a simplified Artificial Reaction Network (ARN). Reactant chemicals A and B react at
unit 1. The rate of the reaction at unit 1 at time t is given by Eq. (3). The current concentration in pool C is updated
using Eq. (5).

It comprises a set of connected reaction nodes (circles), pools (squares), and inputs (triangles).

Each pool represents the current available protein species concentration (avail) in a

compartment and each circle corresponds to a reaction unit, representing an interaction

(reaction) between a numbers of chemicals.

The use of pools allows current concentration of species and their dynamics to be simply

viewed. As a biological modelling tool, chains of pools could be used to represent gradients and

translocation of species across membranes. Similarly, a loss component can also be added to

the pools to represent the destruction of reactants or products by specific or general proteases or

other degradation routes as shown in Fig. 1.

Connections symbolize the flow of species into and out of reaction units and their weight (w)

corresponds to reaction order. The connections can be either excitatory, or inhibitory. A

reaction with both excitatory and inhibitory connections will proceed if all connected inhibitory

pools are empty and its excitatory connected pools have the required concentrations. Thus the

input pools serve as pre-conditions which must be met before the reaction can proceed. The

inhibitory connections act as discrete on/off switches to either the forward or reverse reaction.

KEY (and for all other ARN diagrams): w: Reactant species order

Straight Line: Excitatory connection Triangle: Input

T shaped line: Inhibitory connection Square: Pool

A, B, C: Reactant species Circle: Reaction unit

avail: Available gen: Generated

C
C

C
gengenavailavail L

w
w

DCCC −
+

∆−∆+=
α

][][][][

Loss

() tCKBAKC CBA w

availCr
w
avail

w
availCf ∆−=∆][][][][)()(

1

Aavail

Bavail

wB

∆Cgen
∆Dgen

To
Reaction D

Cavail
wA

wC
C

2

A

B

α equals sum of other weights connected to inputs of unit D

A35

The ARN has been extensively verified against standard methods of representing chemical

systems (Gerrard, 2011), where it was shown to provide the same degree of accuracy as other

ODE models.

2.3 Computational Properties

The overall structure may be compared to a perceptron, where the pools correspond to inputs,

the reaction units to the weighted sum function, and these are joined together by weighted

connections.

It is fairly easy to see that the computational properties of the ARN are similar to those of the

ANN. For example, consider the simple network shown in Fig. 2.

][][][BkAkP BfAf += (6)

Fig. 2 A simple ARN network

If we assume that the orders WA and WB are unity and the reverse reaction rates are zero, then

the rate of change of the product pool P is given by Eq. (6). Which is the same expression as for

the activity of a perceptron if A and B are the inputs and the k terms the weights. So a network

of such nodes has at least the same computational capabilities as MLPs (Rumelhart and

McClelland 1986). In fact the addition of non-unity orders means that effectively the node can

produce non-linear separators in a similar way to polynomial neurons (Woo and Khor 2004)

and are rather similar to so-called “sigma-pi” units (Gurney 1992) - although with the added

dimension of dynamic behaviour which will be discussed in section 3.2.

2.4 Disadvantages

There are some potential disadvantages associated with the ARN. Firstly, the Euler

approximation has an associated cumulative error. This is because it is an iterative linear

approximation to a complex function. It may be thought of as the first-order term of a Taylor

expansion of the function. For example, if we say that the rate equation is a function of at set of

 A

 B

P

WA

WB

 kAf

 kBf

A36

reactants and products R, we could write an abbreviated version of Eq. (1) as given by Eq. (7).

The full Taylor series for Euler approximation to the second order would then be described by

Eq. (8).

)(][Rf
dt
Pd

= (7)

...)(
!2

)(2

22

0 +
∆

+∆+
dt
fdttfR RR and so on (8)

Because the series is truncated to the linear term the error of the approximation is the sum of

the missing terms. In reality the error contribution from successive terms is usually negligible

providing that the step-size is small. The error may be of consequence if the user is trying to

simulate a complex biochemical system very accurately. However, as previously discussed, this

is not the main purpose of the ARN.

Other difficulties can arise using hybrid models and detailed discussions are provided in the

literature (Kowalewski 2002). Two such issues can occur in this representation where both

produce an unnatural result due to the problem of trying to represent a discrete system (of

individual molecules) by a continuous mathematical expression. In a real biological system

there are a finite number of molecules and the chemistry acts the same way on all of these until

they are exhausted. This however is not always the case when applying the governing equation

(Eq. 3). For example, consider the case where the order of the reactants is above 1. When the

current reactant concentration is above one this is fine, however if it is less than one then the

resultant activity decreases unnaturally. In practice this is easily sorted by restricting the range

of the concentrations or using different units.

A similar issue occurs where a pool, for example S, inhibits a reaction unit by an inhibitory

connection. This reaction will always be inhibited while there remains any amount of chemical

in S. Meanwhile S is involved in another reaction where the resultant flux is depleting S at each

time step. As the concentration of S decreases so too does the flux. This leads to an infinite

sequence of decreasing concentrations of S which asymptotically approaches zero. Therefore, S

will always contain a smaller but positive value and as a result the inhibited reaction can never

occur. In reality this would not occur since individual molecules would react in an individual

manner. This problem is solved by simply setting a threshold- if a pool concentration is less

than the threshold its concentration is set to 0.

A37

3 Experiments and Results
In the following sections the methodology and results for the following experiments are

presented: 1) An ARN based pattern recognition system; 2) the use of an ARN based system to

regulate time varying waveforms and its application in control of limbed robotic gaits; and 3)

an ARN which combines the previous networks into a complete quadrupedal robotic control

system capable of recognising input patterns and generating the required gait response.

3.1 Pattern Recognition

A key mechanism of cell intelligence is the ability of a cell to recognise and respond to specific

patterns of chemical signals within its environment. Receptors recognise and bind to particular

environmental chemicals. These are transduced and cell response is determined by a chain of

signalling events.

The ARNs pattern recognition capability was tested in both the context of a general pattern

recognition device and in an abstract biological setting. In each case, 4 separate patterns

composed of 4 input and 4 associated output mass values were applied to the ARN. Each

pattern comprised values of either 0.1, representing low concentration, or 1 corresponding to

high concentration. The ARN was set up as shown in Fig. 3 and consists of 7 pools, 4 inputs

and 7 reaction units organised into 2 layers.

Fig. 3 The structure of the ARN used for pattern recognition experiments. The network consists of 4 inputs
(triangles), 7 reaction units (circles) and 7 pools (squares). Each index of the input pattern array is fed into the
corresponding input number. Output patterns are output at pools (squares) 3-6.

In biological CSNs, network parameters are determined by genetic factors which are subject to

evolution. To achieve a related effect within this artificial setting a genetic algorithm (GA) was

adopted to train the network to produce the correct output. The initial value of all pools was

0.01. Each input value of a pattern was fed into its corresponding input unit. For example, the

first, second and third input value of pattern 1 is 0.1 and the fourth is 1 (see Table 1) - thus

input unit 0-3 (see Fig. 3) were initialised to 0.1 and input unit 3 to 1. The output values were

generated by the final layer of pools (3-6). The target output values for each pattern are given

under the heading “Output” of Table 1, and the actual values associated after training are given

A38

under “Actual Output”. A population of 100 solutions were randomly initialised. Each solution

comprised a complete set of network parameters including the forward and reverse rates for

each unit and the weights for each connection between pools (or inputs) and units. Due to its

temporal properties the network was run for 100 cycles (a cycle ends when the complete set of

pools in the network are updated once using Eq. (3) where ∆t = 1) in order to obtain steady-

state output values. The solution fitness was then calculated where fitness was the inverse of the

error on output and the target error was 0.01. The least fit half of the population was discarded

and the remaining solutions were subject to mutation and crossover in order to create the new

population. To minimise the number of generations, the mutation and crossover rates were

adjusted to final settings of 0.4 single point crossover and 10% uniform mutation. The average

number of generations required to reach the target error was 387. The parameters of one

solution are given in Table 2. The results from this general pattern recognition experiment are

shown in Table 1. As can be seen the ARN was able to recognize all 4 patterns correctly.

Table 1 Patterns and results for both general and abstract biological setting experiments.

General Pattern Setting Abstract Biological Setting

Pattern Input Output Actual
Output

Pattern Input Output Actual
Output

1 0.1
0.1
0.1
1

0.1
0.1
0.1
0.1

0.1
0.1
0.1
0.1

1 1 (WR)
1 (SR)
0.1 (SA)
0.1 (WA)

1 (IS)
0.1(F)
1 (O)
0.1(DS)

1
0.1
1
0.1

2 1
0.1
1
0.1

1
1
1
0.1

1
1
1
0.1

2 0.1 (WR)
0.1 (SR)
0.1 (SA)
1 (WA)

0.1 (IS)
1 (F)
0.1 (O)
0.1(DS)

0.1
1
0.1
0.1

3 1
1
1
1

1
0.1
1
0.1

1
0.1
1
0.1

3 0.1 (WR)
1 (SR)
1 (SA)
0.1 (WA)

1 (IS)
0.1 (F)
1 (O)
0.1(DS)

1
0.1
1
0.1

4 1
0.1
1
1

1
1
1
0.1

1
1
1
0.1

4 1 (WR)
0.1 (SR)
0.1 (SA)
1 (WA)

0.1 (IS)
0.1 (F)
1 (O)
0.1(DS)

0.1
0.1
1
0.1

Key
Inputs:

WR : weak
repel

SR : strong repel

SA : strong attract

WA: weak
attract

Key
Outputs:

IS : increase
speed

F : reorientation
(up chemical
gradient)

O : reorientation
(down gradient)

DS :
decrease
speed

A39

Table 2 Resulting network parameters for one solution after training using the genetic algorithm.

General Pattern Setting Parameters
Pool Initial

Concentration
Weight of
Connection

Reaction
unit

Forward
Rate

Reverse
Rate

0 1st Pattern value
(e.g. if pattern is
no.1 input is 0.1)

2.999 0 0.723 2.816

1 2nd pattern value -2.915 1 5.411 0.837
2 3rd pattern value 0.424 2 0.969 0.643
3 4th pattern value -0.278 3 0.120 4.310
4 0.01 -1.714 4 1.003 1.455
5 0.01 0.750 5 0.093 0.006
6 0.01 -0.435 6 1.081 0.580
7 0.01 1.319 Note that in this case to simplify the

program the hidden layer pool
concentrations were updated using
the unweighted flux of the product.

8 0.01 -0.104
9 0.01 0.501
10 0.01 1.492

Multilayer Perceptron ANNs (MLPs) (Rumelhart and McClelland 1986) have similar

properties. For instance, each neuron can be approximated as either active or inactive and is

comparable to the ARN whose concentration is either high or low. However, MLPs lack an

explicit time dimension whereas the ARN processes inputs over a time period. In this case the

ARN was subject to a continuous flux of inputs over 100 cycles causing the pool concentrations

to enter a transient phase and stabilise at steady-state. The implications are that, unlike the MLP

where processing is discrete-time, stored patterns are recalled only if inputs are applied for a

length of time greater than that required to reach steady-state. Thus, this experiment

demonstrates that the ARN is an appropriate pattern recognition technique when the

requirement is to establish if a set of conditions have held true over a time period. This

functionality is not so easily generated in other neural models. Discrete-time neural models

provide a direct mapping from input to output and in their basic form they are unsuited for

temporal pattern recognition. Continuous time models can provide this functionality but are

generally more computationally complex. One such model is the Artificial Biochemical

Network (ABN) (Macleod and Capanni 2010). It is a connectionist representation which, like

the ARN, can be used to recognise continuous data streams. It has a weighted sum activation

function combined with leaky integrator and generates a pulse width modulated output. In a

similar experiment an ABN was setup using 11 ABN units. The network was trained using a

GA to map identical sized patterns to those used here. Like the ARN, the ABN recognised all

patterns, but the training time was longer (average of 496 generations) (Macleod and Capanni

2010) and the ABN network used 4 additional ABN units (1 ABN unit is approximately as

complex as a single ARN unit).

In a further experiment, using the previously described network structure and set-up, the ARN

was trained to recognize an additional 4 patterns, where the inputs were chosen to correspond to

chemical signatures (for example, attractants or repellents) that trigger specific movement

A40

responses. These patterns are given in Table 1. Here, the ARN network represents a highly

abstracted CSN that controls chemotactic motion of a generalised single celled organism. This

artificial amoeba is assumed to have a default slow swim behaviour and in the presence of

chemoeffectors the behaviour is updated accordingly. Each input signifies an environmental

chemical, where input: 0 is a weak repellent (WR), 1 a strong repellent (SR), 2 a strong

attractant (SA) and 3 a weak attractant (WA). Specific combinations of environmental

chemicals generate specific output response, where repellents have precedence over attractants.

The presence of chemical concentration to a value approximate to 1, in an output pool,

corresponds to a particular behavioural response, where output pool: 0 increases speed (IS), 1

reorientation to face up chemical gradient (F), 2 reorientation down chemical gradient (O) and

output 3 decreases speed (DS). Therefore, as an example, on detecting both a strong repellent

and strong attractant the cell re-orientates to face down the chemical gradient and increases

speed. As can be seen in Table 1, the network generated the correct response for all the abstract

biological patterns.

One property of a CSN is robustness, where correct response maybe generated in the presence

of noise or loss of connections. In order to test this property within the ARN, random noise was

introduced to the trained general pattern recognition network. Each pattern was subjected to

10% increments of uniformly distributed random noise to a total level of 60% of the input

range. At each noise level outputs were obtained for all four patterns. It can be seen in the graph

in Fig. 4 that the performance of the network gently degrades as noise is added. Error levels

within 5% are reported for both the ABN and MLP models (Macleod and Capanni 2010) at

levels of up to 50% noise in pattern recognition tasks of the same complexity.

Fig. 4 Total error (y-axis) for all four patterns after introduction of random noise (x-axis) to patterns at 10% level
increments

A41

Similarly to an ANN, the ARN pattern recognition system, is a robust connectionist network

and thus provides an intuitive bridge between biology and AI. Furthermore, this experiment

illustrates that that such pattern recognition mechanisms are plausible in single celled

organisms.

3.2 Regulation of Temporal Dynamics and Control of Limbed Robots

A common motif of CSNs is periodic oscillatory patterns of protein concentrations. Such

patterns relate to particular cellular behaviours (Bray 1995; Ankers 2008; Kholodenko 2006).

Many illustrations of these oscillatory patterns can be found within the literature (Ankers et al.

2008; Ferrel 2004).Such temporal dynamics are explored within the ARN in order to validate

its ability to represent such patterns, to explore potential application, and to gain deeper

understanding of the regulatory mechanisms involved within CSNs and their role in cell

intelligence.

One method of exploring the ARNs ability to reproduce such temporal patterns, while

investigating its potential AI applications, is by creating an ARN based controller to reproduce

the patterns associated with robotic gaits. Terrestrial locomotion of limbed animals is achieved

by multiple phase locked patterns of limb movements known as gaits. For example, depending

on speed of locomotion and terrain, quadrupeds commonly walk, trot and gallop (Dagg 1973).

The gait phase is a value that ranges from 0 to 1 as the gait cycle proceeds. Therefore, the

motion of each limb can be described relative to the gait phase. The ideal quadrupedal gaits are

described by Dagg (1973) and others (Hildebrand 1997) and are used as a standard for

comparison here and similarly in other studies (Collins and Richmond 1994). In the walk gait

the legs move a quarter cycle out of phase; in the trot gait each pair of diagonal limbs move half

a cycle out of phase.

 In these experiments, an ARN controller was implemented to generate gaits of a Lynxsmotion

dual-servo quadruped 2 (Q2) robot. Each robotic leg is controlled by two servo motors, one for

each degree of freedom (DOF). One motor raises the leg and the other turns it. The structure of

the robotic legs is shown in Fig. 5, further details of which are given by Toth and Parker

(2003).

A42

Fig. 5 The structure of a Lynxsmotion quadrupedal robot leg. Each leg has two DOFs and each DOF is controlled by
a separate motor.

Fig. 6 The ARN based controller. Each module (shown separated by a dashed line) is mapped to a single leg and is
responsible controlling the 2 motors which generate its motion. Pool A of each module controls the up/down motor,
pool B the back/forward motor and pool C the stop period for each of these motors.

Signals are sent by the ARN to each motor and control the angle of the rotor for each DOF,

using a simple position to pulse width modulator interface circuit to control the servo. The

structure of the ARN based controller is shown in Fig. 6 and was designed to include

abstractions of regulatory mechanisms found in CSNs including inhibitory/excitatory reactions,

cyclic loops, and feedback structures. The controller comprises a network of four repeating

structural units or modules, where a module is separated by a dashed line. Each module

controls the two motors of a separate leg and comprises 3 reaction units and 3 pools: A, B and

C. Pool A controls the up/down (U/D) motor, Pool B the back/forward (B/F) motor and Pool C

controls the off period for both motors. Pool activity is regulated by a series of excitatory and

inhibitory connections between reaction units. The type of connection represents the inhibitory

and excitatory properties of specialized regulatory proteins common to CSNs such as enzymes.

The overall network structure is organized as a closed loop allowing protein species to be

recycled to the first module and thus generate a temporal oscillatory pattern. The structure of

A43

the ARN controller is capable of producing all the common gaits. The type of gait is easily

modified by a simple adjustment of the initial pool values. For example, by initializing a C pool

a walk gait will be generated, where the C pool chosen will determine the starting leg, and the

value determines the angle to which the leg is raised. Similarly, a trot gait is achieved by

initializing two C pools within alternate modules. In this particular design, the value to which

the C pool(s) are initialized determines the DOF angle and were set specifically for the

physicality of the particular robot although it can be freely varied.

The network architecture remains fixed throughout these experiments and the network

parameters are manually set. This method was employed so that the outputs could be directly

compared with other published work on similar Central Pattern Generators (CPGs) (Billard and

Ijspeert 2000; Collins and Richmond 1994; Liu et al. 2009). However, there is no reason why

connection weights cannot be set using an Evolutionary Algorithms or a similar pseudorandom

search technique, and the current authors have employed this in other examples (for instance in

the pattern recognition experiments). The use of gradient decent algorithms, however, would be

difficult in this application because of the recurrent nature of the network topology. The ARN

controller was considered to generate a specific gait if the relative phases of the respective

oscillatory signals were within 2% of the standard gait cycle described previously.

Fig. 7 Output generated for the walk gait. Legs are front left (FL), front right (FR), rear right (RR) and rear left (RL).
The up/down (U/D) motor is displayed as a solid line and the back/forward (B/F) motor is displayed as a dashed line.

A44

Fig. 8 Output generated for the trot gait. Legs and motors are labelled as before- see Fig. 7.

Higher values of 10% were used in other studies (Collins and Richmond 1994), and this was

considered reasonable due to the variation found in real animal gaits (Afelt 1983). In each case,

the controller first generates the U/D motor oscillation and on reaching the maximum value the

B/F motor is initiated.

As can be seen in Fig. 7, the walk gait results show that the legs are a quarter cycle out of turn,

with phases of 0.0, 0.25, 0.5, 0.75 between limbs in clockwise order from FL (front left) leg.

Similarly, the trot gait results in Fig. 8 show that the opposite legs are half a cycle out of turn

with phases respectively of 0.0, 0.5, 0.0, 0.5. The frequency of oscillations and therefore the

gait speed is easily adjusted by applying uniform increase or decrease to kf of each unit.

Both phase locked limb patterns produced by the ARN match the standard, and compare well

with other connectionist models. For example, Billard and Ijspeert present a CPG (Central

Pattern Generator) based neural controller for a quadrupedal AIBO robot, similarly with 2

DOFs for each leg (Billard and Ijspeert 2000). The limb phases generated by this network

correspond to the standard and to those produced by the ARN. Here, the network is composed

of 8 coupled non-linear oscillators and each oscillator consists of 6 leaky integrator neurons (a

total of 96 neurons). Each neuron implements an activation function which is approximately as

complex as the reaction unit function of the ARN, and therefore the complexity of the network

is equivalent to approximately 96 ARN reaction units. Similar correspondence is found in other

sources. For instance, Collins explores a CPG based neural controller for a quadrupedal robot

A45

with 1 DOF per limb, and compares 3 types of activation function models: Stein, Van der Pol,

and FitzHugh-Nagumo. The controller is composed of a network of 4 coupled non-linear

oscillators (Collins and Richmond 1994), where each oscillator controls a separate limb. The

Stein model consist of 3 first order differential equations, the Van der Paul model consists of a

second order differential equation and the FitzHugh-Nagumo model consists of two first order

differential equations. All these models have approximately twice the complexity as the output

produced by the ARN unit. In this case all 3 models require a pulsing signal to drive the

network. Generally speaking the structure of these models is less flexible then either the Billard

and Ijspeert (2000) model or the ARN due to their rigidly fixed internal parameters. All these

models produced the gait patterns within 10% of the standard, whereas the ARN matched the

standard for both trot and walk.

Overall the ARN has a very similar capacity to generate both walk and trot gaits as the

compared controllers. However, in general, it affords a higher degree of flexibility and is less

computationally complex. Although robotic gaits might seem unconnected with cellular

intelligence, the ARNs ability to produce them illustrates how cellular networks can generate

the complex temporal patterns necessary in emergent behaviour.

3.3 Complete Robotic Control System

It was demonstrated in section 3.1 that an ARN can recognize patterns. Furthermore it was

demonstrated in section 3.2 that such a system can generate temporal output patterns which can

be used in control tasks. Of course in the natural world these two behaviors are linked together.

In the following experiment it is illustrated that both pattern recognition and control function

can be combined within a single ARN based system. Here, a more complex ARN was created

to recognize specific patterns and in response automatically generate the associated temporal

gait. The ARN in this experiment reuses the pattern recognition and gait network previously

described in sections 3.1 and 3.2 respectively. The complete ARN system is shown in Fig. 9,

and is functionally divided into 3 smaller ARN components: pattern recognition, control, and a

connecting network.

A46

Fig. 9 A complete control system for a quadrupedal robot. On recognition of particular patterns the pattern
recognition ARN generates the associated output pattern. The connecting network implements two parallel Boolean
AND gates which act as switches turning the walk or trot components of the control ARN off/on. The control ARN
generates the required waveform which controls the robotic gait.

The structure of the pattern recognition network, its implementation, and training methods are

identical to those described in section 3.1. In this case the network was trained to recognize 3

separate patterns (as shown in Table 3) composed of 4 input and 4 associated output mass

values. The output pools of the pattern recognition network are equal to the input pools 0, 1, 2,

and 3 of the connecting network. The connecting module comprises 6 pools (4 inputs and 2

outputs) and 2 reaction units. Essentially this component operates like two parallel Boolean

AND gates, where a value of 1 at pools 0 and pool 1 will output a value of 1 at pool 4, as will a

value of 1 at pools 2 and 3 output a 1 at pool 5. Two negative feedback connections between

the interface network and both ARN control system subunits (shown as dashed line

connections) are responsible for switching between the gaits. Therefore, if a value of 1 is output

at the interface network pool 4, it will inhibit all the reaction 2’s of the ARN walk subunit, thus

stopping the walk gait pattern from being generated. Conversely, if a value of 0 is output at

pool 4 the walk will be generated. In the same way, pool 5 of the interface controls the

A47

switching on/off of the trot control subunit. Table 3 shows the range of required behaviors in

response to particular outputs generated by the connecting network.

The control system comprises two separate ARN subunits, both identical in structure and

implementation to the ARN described in section 3.2. Each of these subunits is responsible for

generating a specific temporal gait pattern: one generates walk the other trot. The two ARN

subunits provide distinct gait patterns due to the differences in initialization of the

concentration values of C pools.

Table 3 Patterns applied to the complete control system and expected gait generated.

Pattern PR
Network
Input
Pool No.

PR
Network
Input
Value

CN
network
Input
Pool No.

CN Input
Value (&
output of the
PR network)

CN
Output
Pool No.

CN
Output
Value

Gait

1 0 1 0 1 4 1 Inhibit
Walk 1 0.1 1 1

2 1 2 0 5 0 Trot
3 0.1 3 0

2 0 0.1 0 0 4 0 Walk
1 1 1 0
2 0.1 2 1 5 1 Inhibit

Trot 3 1 3 1
3 0 1 0 1 4 1 Inhibit

Walk 1 0.1 1 1
2 0.1 2 1 5 1 Inhibit

Trot 3 1 3 1
KEY: PR Pattern recognition CN Connecting network

Table 4 Pattern applied to the network and expected durations of gaits.

Pattern Walk
ARN
Network

Trot
ARN
Network

Start
Time

End
Time

Duration

2 On Off 0 210 210
1 Off On 210 440 230
2 On Off 440 560 120
1 Off On 560 700 140
3 Off Off 700 800 100

The complete system was tested to confirm its ability to both generate the correct behavior and

automatically transition between the behaviors in response to firing input patterns 0-3. The time

periods in which patterns were applied, and the expected output states are shown in Table 4.

The results for this experiment are displayed in Fig. 10. The phases produced for each gait are

exactly as described previously in section 3.2. The on/off periods of both trot and walk gaits are

in agreement with the expected durations displayed in Table 4 with a slight transitional delay.

The ARN controller, and gait phases produced have previously been compared with CPG

models in section 3.2. The transitions between gaits generated by these models may now be

compared with those of the ARN. The results given for the Billard and Ijspeert model, show

transitions from walk to gallop in approximately 4 leg cycles, whereas the ARN transitions

from walk to trot within 2 leg cycles. In both cases the transitions are very smooth. There are 3

A48

models described by Collins, and although gait graphs are provided for all these, gait transitions

are only given for the Stein model. Here gaits transition quickly within approximately 2 leg

cycles. However the leg movements during transition are very irregular- in contrast to the ARN

and the Billard and Ijspeert model.

Fig. 10 The output of the complete ARN control system over 800 secs. Legs and motors are labelled as before- see
Fig 9.

This complete control system demonstrates that the ARN, like a CSN, is capable of both

recognizing patterns and controlling overall behavior in a single network. With the exception of

spiking models, few ANNs can achieve this functionality. However, spiking models are often

less flexible. For example, in the Integrate and Fire model information is rate coded and all the

spikes generated are uniform (Maass 1997). Thus, unlike the ARN this model lacks the

flexibility to produce pulse-width and pulse-amplitude coded information. The gait phases and

transitions compared well with CPG neural controllers and showed that the ARN has

application in similar robotic control tasks and can offer lower computationally complexity.

These experiments illustrate how a CSN might perform the complex processing associated with

the high-level behaviors displayed by single celled organisms. Furthermore, it shows that

abstractions of both neural networks and CSNs operate in similar ways, and have comparable

functionality. This illustrates a close relationship between neural and cell intelligence.

6 Conclusions
The ARN is a new connectionist model, based on the dynamics of CSNs. It is accurate enough

to represent actual chemical concentrations in the cytoplasm of a cell, but simple enough to

construct biological circuitry with applications in AI. Perhaps most importantly it is a useful

tool for investigating the surprising emergent behaviours of single cells. It may help to

elucidate the mechanisms involved in these, and their similarities and differences from neural

A49

based intelligence (and intelligence in its widest philosophical sense). Although other

researchers have used techniques such as S-systems and Petri Nets to do related work, the ARN

is unique in that it was conceived as a much more connectionist, unit-based representation,

designed specifically to investigate cell intelligence.

The results presented above show that the ARN (and by extension, cellular networks) are

capable of performing pattern recognition in a similar way to artificial neural models and also

producing complex temporal dynamics reminiscent of spiking neural models. Additionally, it

was shown that the ARN can model biological reactions and simulate real CSN pathways with

an accuracy matching those of standard simulation methods (Gerrard et al. 2010). This

combination of attributes makes it a unique and useful tool. The ARN systems presented above

show clearly that biochemical networks are quite capable of producing many of the behaviours

normally ascribed to neural networks. This helps to illuminate the many interesting results now

emerging from the behavioural biology of single cells. Of course the neuron is itself a

biochemical network, and one future application of the ARN may be to help unravel its more

complex internal dynamics.

The simplicity of the ARN makes it a potentially useful model in more practical AI and

engineering systems. As demonstrated in the case of robotics, its ability to function in both

input (sensory) and output (efferent or motor) networks and in the interconnection between

these, gives it applications which usually only much more complex models can fulfil. This is

particularly useful in the field of robotics, where such flexibility has particular application in

evolutionary control networks.

The authors intend to extend the work reported here by producing more complex cell based

robots (cytobots). These will allow us to explore more aspects of cellular intelligence (for

example the role of learning in these systems) as well as some practical applications such as

vehicles to clear oil spills- pollution by moving along chemical gradient, rather like that in

which chemotaxis operates. The ARN may also have useful applications in other areas of

science – for example in modelling the complex interconnected chemical networks present in

environmental and soil chemistry.

10 References
Afelt Z, Blaszczyk J, Dobrzecka C (1983) Speed control in animal locomotion: transitions between

symmetrical and nonsymmetrical gaits in the dog. Acta Neurobiol Exp, 43:235-250

Ankers J, Spiller D, White M, Harper C (2008) Spatio-temporal protein dynamics in single living cells. Curr

Opin Biotechnol 19:1-6

Arkin A, Ross J (1994) Computational functions in biochemical reaction networks. Biophys J 67:560-578

Bhalla U (2003). Understanding complex signaling networks through models and metaphors. Prog Biophys

Mol Bio 81:41-65

A50

Billard A, Ijspeert A (2000). Biologically inspired neural controllers for motor control in quadruped robot.

In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Italy:

IEEE, pp 637-641

Bray D (1995). Protein molecules as computational elements in living cells. Nature. 376(6538):307-12

Collins J, Richmond S (1994) Hard-wired central pattern generators for quadrupedal robots. Biol Cybern

71:375-385

Dagg A (1973) Gaits in mammals. Mammal Rev 3:135-154

Dittrich P (2005) Chemical computing. Unconventional programming paradigms. Springer Berlin

Heidelberg, pp. 19-32.

Dittrich P, Ziegler J, Banzhaf W (2001) Artificial chemistries-a review. Artif. Life 7(3):225-275

ten Eikelder T, Crigins S, Steijaert M, Liekens A. Hilbers P (2009). Computing with feedforward networks

of artificial biochemical neurons. In: Proceedings of the 2nd International Workshop on Natural

Computation, Japan: Springer: vol 1 pp 38-47.

Eungdamrong N, Iyengar R. (2004) Modeling cell signaling networks. Biol Cell 96:355–362

Ferrell J (2004) Self perpetuating states in signal transduction: positive feedback, double negative feedback

and bistability. Cur Opin Cell Biol 14(2):142-148

Ford B (2009) On intelligence in cells: The case for whole cell biology. Interdisipl Sci Rev 34(4):350-365

Gerrard C, McCall J, Coghill G, Macleod C (2011) Artificial Reaction Networks. In: Proceedings of the 11th

UK Workshop on Computational Intelligence, Manchester: UK, pp 20-26

Gerrard C, McCall J, Coghill G, Macleod C (2012a) Temporal patterns in Artificial Reaction Networks. In:

Proceedings of The 22nd International Conference on Artificial Neural Networks Lausanne, part 1, vol.

7552, pp 1-8

Gerrard C, McCall J, Coghill G, Macleod C (2012b) Adaptive Dynamic Control of Quadrupedal Robotic

gaits with Artificial Reaction Networks. In: Proceedings of the 19th International Conference on Neural

Information Processing Doha, vol. 7663, part 1, pp 280-287

Guo H, Meng Y, Jin, Y (2009). A cellular mechanism for multi-robot construction via evolutionary multi-

objective optimization of a gene regulatory network. BioSystems, 98(3):193-203.

Gurney K (1992). Training nets of hardware realizable sigma-pi units. Neural Networks 5:289-303

Hamann H, Stradner J, Schmickl T, Crailsheim K. (2010). A hormone-based controller for evolutionary

multi modular robotics: From single modules to gait learning. In: Evolutionary Computation (CEC)

IEEE, pp 1-8

Helikar T, Konvalina J, Heidel J, Rogers J (2008). Emergent decision making in biological signal

transduction. P Natl Acad Sci USA 104:1913–1918

Hellingwerf K (2005). Bacterial observations: a rudimentary form of intelligence. Trends Microbiol 13:152-

158

Hild W, Pollinger K, Caporale A, Cabrele C, Keller M, Pluym N, Buschauer A, Rachel R, Tessmar J,

Breunig M, et al. (2010) G protein-coupled receptors function as logic gates for nanoparticle binding and

cell uptake. P Natl Acad Sci USA 107:10667–10672

Hildebrand M (1997). Analysis of asymmetrical gaits. J Mammel 58: 131-156

Kholodenko B (2006). Cell Signaling dynamics in Time and Space. Nat Rev Mol Cell Biol 7(3):165-176

A51

Kowalewski S (2002) Modeling, Analysis and Design of Hybrid Systems. Lect Notes Contr Inf 279:153-171

Krautmacher M, Dilger W (2004) AIS based robot navigation in a rescue scenario. In: Springer Lecture

Notes Computer Science 3239, pp 106-118

Liu C, Chen Y, Zhang J, Chen Q (2009) CPG driven locomotion control of quadruped robot. In: IEEE

International conference on Systems, Man and Cybernetics, San Antonio, pp 2368-2373

Maass W. Networks of spiking neurons: the third generation of neural network models. Neural networks 10,

no. 9 (1997): 1659-1671.

MacLeod C, Capanni N (2010). Artificial biochemical networks: a different connectionist

paradigm. Artificial intelligence review 33(1-2):123-134.

Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae Anticipate Periodic Events. Phys Rev

100(1):1-4

Savageau M, Voit E (1987) Recasting Nonlinear Differential Equations as S-Systems: A Canonical

Nonlinear Form. Math Biosci 87:83–115

Savageau M. (1988) Introduction to S-systems and the underlying power-law formalism. Math Comput

Model 11(1):546-551

Shen W, Will P, Galstyan A., Chuong C (2004). Hormone-inspired self-organization and distributed control

of robotic swarms. Autonomous Robots 17(1): 93-105.

Stadtman E, Chock P (1997) Superiority of interconvertible enzyme cascades in metabolic regulation:

analysis of multicyclic systems. P Nat Acad Sci USA, 74:2766–2770

Toth D, Parker G (2003) Evolving Gaits for the Lynx motion Hexapod II Robot. In: Proceedings of the 7th

World Multiconference on Systems, Cybernetics, and Informatics, Orlando, USA pp 229-234

Wang B, Kitney R, Joly N, Buck M (2011) Engineering Modular and Orthogonal genetic logic gates for

robust digital-like synthetic biology. Nat Commun 2:508

Woo W, Khor L (2004) Blind restoration of nonlinearly mixed signals using multilayer polynomial neural

network. IEEE Proc Vis Image Signal Proc 151(1):51–61

Ziegler J, Banzhaf W (2000). Evolving a” nose” for a robot. In: Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2000).

A52

Paper 3: ‘Artificial Reaction Network Agents’

Reference:

Gerrard, C, McCall, J., Coghill, G., Macleod, C. (2013) ‘Artificial Reaction Network

Agents’, The 12th European Conference on the Synthesis and Simulation of Living

Systems (ECAL), Advances in Artificial Life, MIT press, Taormina, pp. 957-964.

Artificial Reaction Network Agents

Claire E. Gerrard1, John McCall1, Christopher Macleod1, and George M. Coghill2

1IDEAS Research Institute,
Robert Gordon University,
Aberdeen, Scotland, UK

2 Department of Computing Science,
University of Aberdeen,
Aberdeen, UK, Scotland

c.e.gerrard@rgu.ac.uk, j.mccall@rgu.ac.uk, g.coghill@abdn.ac.uk, chris.macleod@rgu.ac.uk

Abstract
The Artificial Reaction Network (ARN) is an Artificial
Chemistry representation inspired by cell signaling networks.
The ARN has previously been applied to the simulation of
biological signaling pathways and to the control of limbed
robots. In this paper we create multiple cell-like autonomous
agents using ARN networks. It is shown that these agents can
simulate some aspects of the behavior of biological amoebae.
To demonstrate practical applications of such agents they are
then reconfigured as a swarm of robots in a simulated oil spill
clean-up operation. We demonstrate that ARN agents, like
amoebae, can autonomously recognize environmental patterns
and produce emergent behavior. The results show that such
agents may be useful in biological simulation and furthermore
may have practical applications in swarm robotics.

Introduction
Unicellular organisms have evolved an astonishing array of
complex behaviors. Some can avoid light with photo-sensitive
spots; some actively hunt prey; while others can build
protective shelters (Ford, 2009). It has been shown that single
cells achieve such primitive intelligence by storing and
processing information through the complex dynamics of
interacting chemicals (Bray, 1995; Arkin and Ross, 1994).
Within a cell, data is represented by a set of spatially
distributed concentrations of chemical species; the
instantaneous set of which corresponds to the cell’s current
state. Intricate networks of chemical reactions termed cell
signaling networks (CSNs), process this information by
transforming input species into output species. In this way,
cells are able to respond to changes within their environment,
communicate with other cells, and perform internal self
maintenance operations. Several researchers highlight the
processing capabilities of CSNs and their similarities to
Artificial Neural Networks (ANNs) (Bray, 1995; Bhalla,
2003). For example, it has been demonstrated that a network
of such reactions can perform Boolean and Fuzzy Logic
functions and are equivalent to a Turing machine (Bray, 1995;
Arkin and Ross, 1994). Furthermore, CSNs contain features
such as feedback loops and interconnectivity, thus forming

highly complex systems (Bray, 1995; Bhalla, 2003). It is
possible to exploit computational features of such chemical
processing to create an Artificial Chemistry (AC). In its
broadest sense, an AC describes a man-made system which is
similar to a real chemical system (Dittrich, et al., 2001). The
Artificial Reaction Network is an example of an AC and is
based on properties and mechanisms found in CSNs. In our
previous work, it was applied to simulate the chemotaxis
signaling pathway of Escherichia coli, and later investigated
as a means to produce complex temporal waveforms to control
limbed robots (Gerrard, et al., 2011; 2012a; b).
In this paper, a single ARN network is instantiated and used as
the internal control system for multiple instances of cell-like
autonomous distributed agents. Our first objective is to show
that ARN agents have application in the simulation of
biological cells, their interactions, and resulting emergent
behaviors. This is addressed by using the agents to simulate
aggregating cells of the slime mould Dictyostelium
discoideum and comparing the emergent behaviors with the
literature. Our second objective is to show that by
reconfiguring the inputs to each agent’s ARN, the same agents
can produce other distinct behaviors. Our final objective is to
show that ARNs have application as the control systems for
distributed robotic agents within real world environments.
Here, we apply the agents to the task of cleaning up a
simulated oil spill within a simplified search environment.

The paper is structured as follows: the first section provides
an overview of the ARN representation. This is followed by an
overview of the operation of the ARN agents. The
experimental details and results are presented next; these are
followed by the conclusions.

The Artificial Reaction Network
In this section we provide a brief summary of the ARN
representation. A full account can be found in our previous
work (Gerrard, et al., 2011; 2012a; b).

The ARN comprises a set of networked reaction nodes
(circles), pools (squares), and inputs (triangles) as shown in
figure 1. Each pool stores the current available chemical

A53

mailto:c.e.gerrard@rgu.ac.uk
mailto:j.mccall@rgu.ac.uk
mailto:g.coghill@abdn.ac.uk

species concentration (avail); this concentration represents data
within the system. Thus, the complete set of pool
concentrations at time t, corresponds to the system’s current
state. Inputs are a special type of pool, the only difference
being that they are not updated by flux at each time step, and
are used to represent continuous concentrations, for example,
environmental inputs or enzymes. Each circle corresponds to a
reaction unit, representing a reaction between a number of
chemicals. Data is processed by reaction nodes transforming
incoming pool values to connected outgoing pool values.
Connections symbolize the flow of chemical into and out of
reaction units and their weight (w) corresponds to reaction
order. Connections provide the facility to create complex
control structures using combinations of inhibitory and

excitatory connections.

Figure 1: The Artificial Reaction Network representation.

tCKBAKC CBA W
availCr

W
avail

W
availCf ∆

−

=∆)()((1)

∆

+
−∆+= D

W
WCCC
C

C
availavail α

 (2)

Where:
A, B, C, D = Species Concentrations
W = Reaction order (weight)
avail = Available species concentration
Kf = Forward rate constant
∆C = Change in species concentration C
Kr = Reverse rate constant
α=sum of other incoming weights

Figure 1 shows the reaction between species A and B to
produce species C. At time interval ∆t, each reaction unit’s
temporal flux value is calculated by applying Euler’s
approximation to the differential rate equation given in (1).
This value is then used to update the current concentration of
each reaction’s connecting pools as shown in (2). Pools may
asymptotically approach 0, and thus below a particular
threshold a pool is considered empty and its value set to zero.
A reaction step may proceed if it meets its preconditions.
Preconditions are met if incoming inhibitory pools are inactive,

and incoming excitatory pools are active. Similarly a reaction
step will fulfill a number of post conditions: participating
reactants are consumed and products generated- the amount of
which will depend on the parameters of the reaction step.

ARN Agents
This section describes the behavioral modes of each agent and
the structure and operation of the ARN network controlling
them. In the experiments outlined in this paper, a number of
autonomous ARN controlled software agents termed
“Cytobots” (“cyto” from Greek for cell, and “bot” from robot)
are initialized and move around asynchronously within a 2D
simulated environment containing a distribution of artificial
chemicals. The artificial chemicals represent attractants of
either food or cAMP (cyclic adenosine monophosphate). When
an agent moves to a new position, the surrounding level of
chemical is used to set the inputs to its ARN. Consequently
this changes the internal state of the ARN and updates the
agent’s trajectory. During this process, the agent modifies the
state of the environment by, for example, consuming food or
releasing cAMP. Similar to the way in which a CSN acts as
the control system to a cell, the behavior of each cytobot is
controlled by its own instance of an ARN network. The ARN
network architecture is based on a combination of functional
structural motifs found in actual biochemical networks (Tyson
and Novak, 2010). Each ARN instance is updated
asynchronously with all other instances. In this way, each
instance directs an agents’ movement asynchronously to other
agents, enables it to react to situated environmental patterns,
and allows it to stigmergically communicate with other
cytobots to contribute to higher level function.

The cytobot ARN network was designed to produce two
simple behavioral modes: foraging and starvation, both are
based on the movement patterns of single celled organisms as
described in the following sections. The cytobot ARN is
composed of 6 subnetworks as shown in figure 2. Each
subnetwork contributes a functional aspect to either or both
starvation and foraging behaviors. The subnetworks are
discussed in the following sections.

Cytobot Foraging Behavior
Cytobots forage by performing a biased random walk. This
pattern of movement is exemplified by the bacteria E. coli,
where foraging cells alternate periods of runs (forward motion)
and tumbles (random redirections). By comparing
concentrations of attractants and repellants in a temporal
fashion, the organism is able to reduce the frequency of
tumbles up concentration gradients of attractants, and down
gradients of repellants, resulting in overall travel to more
favorable conditions (Vladimirov and Sourjik, 2009). In the
foraging mode a cytobot performs a similar random biased
walk movement pattern. At each new position X, an agent
redirects to a new random angle between 0 and 360 degrees
(tumble). The agent then moves forward in a straight line for a
number of time steps based on the level of detected food at
position X (run). The cytobot consumes food (if present) at
each passing location.

A54

Figure 2: The cytobot ARN network comprising 6 subnetworks. Each cytobot is controlled by an instance of this network.

Cytobot Starvation Behavior
The starvation behavior is based on the pattern of motion
displayed by starving cells of the cellular slime mould D.
discoideum. During the organisms’ vegetative stage, cells
move up gradients of folic acid secreted by its bacterial prey.
When the food resource has been depleted, the amoebae begin
to starve and enter the aggregation phase of their life cycle.
During aggregation, starving cells secrete cAMP which serves
as a signal to attract surrounding amoebae towards a central
location (McCann, et al., 2010). During the aggregation phase,
D. discoideum cells are polarized, thus one side becomes the
leading edge which always faces in the direction of travel
(McCann, et al., 2010). Depending on parameters such as
environmental conditions, and the cell population density,
migrating cells often form transient emergent patterns such as
streams, waves and spirals (McCann, et al., 2010; Dallon and
Othmer, 1997). Streaming describes a pattern of motion where
cells line up in close order files, with the head of one following
the rear of another (McCann, et al., 2010).
In these experiments the agents enter starvation mode if food
has not been consumed within a time period. Here, instead of
turning in a random direction, the new direction is weighted
toward the highest concentration of cAMP within its
surrounding area. As discussed later, by representing the
external chemicals in different ways within the simulated
environment, different high level behaviors can be produced by
the agents.

The Master Oscillator
The master oscillator network (see figure 2) functions to
synchronize all the outputs from all the other subnetworks
together and is what each agent references at each time step to
ascertain its current behavior. It is a simple closed loop, with a

token unit of chemical cycling around it. It consists of 4
reaction units: M0, M1, M2, and M3 (all with reaction rate of
1) and 4 pools MA, MB, MC and MD. Each pool activates
one of three behaviors, and for every time step that a particular
pool contains the token unit, its corresponding behavior is
performed. Pool MA activates turn, MC activates run and
pools MB and MD activate stop. If these pools were switches
to motor actuators on a simple wheeled robot, pool MC would
switch on all wheel motors, while pool MA would switch on
wheel motors on the left side only, thus turning the robot. The
remaining pools would act as off switches. The other
subnetworks inhibit or excite the reaction units of the master
oscillator to allow or prevent chemical flow. The number of
time steps that a chemical is present in a particular pool
indicates the length of time that a particular behavior is
performed. Thus if pool MC contains a chemical for 10 time
steps, then the agent will move forward for 10 time steps;
similarly if this were pool MA, the agent would turn for 10
time steps.

The Food Network and the Run Length Network
The food network senses the level of food within the
environment and connects to the run length network to modify
the number of steps forward according to the level of food
sensed. The value of food at a cytobot’s current position is
stored at input pool FA. The forward rate of reaction node F0
is 1, thus all food is transferred to pool FB in a single time
step. The presence of chemical in pool FB inhibits the run
network reaction R0 for a number of time steps according to
the level of food (by setting forward rate of unit F1 to 1 and
weight to 0 this can be an exact correlation). This in turn stops
pool RC in the run length network from emptying. Pool RC
inhibits reaction M2 of the master oscillator thus preventing
pool MC from emptying for the same number of time steps.

A55

As discussed previously, the number of time steps which pool
MC contains the token unit represents the number of time
steps to move forward.

The Signaling Network
The signaling network functions as a switch between
starvation and foraging mode. Low food levels trigger the
starvation response and allow the weighted direction network
to control each new angle. Sufficient food will switch off the
weighted direction network and allow the chaotic network to
control each new angle. It is a simple closed loop with a token
unit of chemical flowing around it. Pool CA acts as a switch
between foraging and starvation behavior, where the presence
of chemical in CA inhibits the weighted direction network-
while its absence switches on the weighted direction network;
this in turn inhibits the chaotic network, as shown in figure 2.
In this component, all reaction units have a forward flux of 0.5;
which ensures a minimum number of time steps for each
behavior.

The Weighted Direction Network
The weighted direction network senses cAMP within the
agent’s immediate environment and calculates a tumble angle
which is weighted toward higher cAMP levels. This network
interfaces with the environment via a number of receptor pools
(AW, ANW, AN, ANE, AEA) which sense the level of cAMP
around the cytobot. These pools represent receptors positioned
at fixed points around the front of its perimeter. Limiting the
signal detection to one side facilitates representation of
polarization in D. discoideum, where that side becomes the
leading edge. For each receptor input pool, there is a static
pool containing a fixed level of chemical which represents the
angle of the receptor relative to the cytobot. Directions start
from AW (west) with a corresponding numeric value of 0
(A00) and progress in 45 degree steps through each direction
to east (thus maximum value is 180). Detected signals are
classed as being in one of the following cardinal/ordinal
directions: W, NW, N, NE, and E. Thus signals are detected
from all directions above its horizontal plane. All connections
have a weight of 1 with the exception of the connection
between pool AD and reaction A12 which has a weight of -1.
This negative connection raises the sum of chemical detected
in pool AD to -1, which multiplied by AB, allows the average
angle to be calculated. The calculated angle interfaces with the
remaining subnetworks at pool AE. In an actual organism,
receptors are set around the cell perimeter and direct
movement appropriately.

 360mod))90((cnh +−≡ (3)

Where:
h= new heading (relative to external frame)
n = count of time steps pool MA contained chemical
c = current heading (relative to the external frame)

In this simulation, for simplicity, a count of the number of time
steps that MA contains the token unit is processed to gain the
turn angle using (3). Thus if the number time steps is 120 and

the agent is facing north, then the current heading would equal
0 (relative to the external frame) and the new heading would
equal 30.

The Chaotic Network
The chaotic network, as shown in figure 2, is responsible for
generating pseudo random angles which agents use to perform
the foraging tumble behavior. It is a networked implementation
of a Logistic Map, see (4). Ulam and von Neumann (1947)
were the first to examine a Logistic Map as a pseudo random
number generator and it has been successfully used in this
capacity by several researchers (Patidar, et al., 2009). The
probability density distribution of the Logistic Map is non-
uniform and is given in (5).

)1(1 nnn XXX −=+ λ (4)

Where:
Xn= state variable of value 0 ≤ Xn ≤ 1
λ= system parameter of value 1 ≤ λ ≤ 4

)1(

1)(
XX

XP
−

=
π

 (5)

Where:
P(X) = probability of X occurring

At the start of the simulation, pools KA and KB of each
cytobot’s chaotic network are initialized to the same random
value between 0 and 1 (to 5 decimal places). This value
represents the first value of X (where X represents the state
variable of (4)). All the other pools are initialized to 0 with the
exception of the static pools KI and RK whose initial values
are 360 and 1 respectively. Reaction K2 is responsible for
generating each new value of X and has a forward and reverse
rate of 4 (the logistic map exhibits chaotic behavior when λ is
4). The connection between KA and K2 has a weight of 1 and
the connection between K2 and KB has a weight of 2. The
remaining series of reactions function to copy the value of X 3
times, where 2 copies serve as the new initial values of KA
and KB and the remaining copy participates in the final output
of the network at KH. Static pool KI has a fixed value of 360
which in reaction K0, allows the network to convert the
pseudo random number at KH to an angle value between 0
and 360. However, reaction K0 cannot proceed until all 11
pools that inhibit it are empty. These inhibitory connections
ensure that random angles are not output while the agent is in
starvation mode, and that pool AE is empty before adding
more chemical.

Slime Mould Aggregation Simulation
In the following experiments cytobots are used to model the
behavior of aggregating D. discoideum cells, where each
cytobot represents a cell. In each experiment the emergent
patterns, numbers of mounds, and length of time to mound
formation is examined. A total of 10 experiments are
performed at varying population densities of cytobots (p) and

A56

different ranges of detection of cAMP (r), as shown in table 1.
The environment contains no food, thus each agent
immediately enters and stays in the previously described
starvation mode. The agents’ behavior is initially explored at
biologically realistic p and r values and compared with the
behavior of the actual organism and other simulations. These
parameters are then extended into ranges outwith the
biological range in order to examine the emergent properties of
the system.

Figure 3: Pseudocode to calculate the strength of detected
cAMP at each direction relative to the cell.

 ∑
=

=
N

n n

n
A d

k
W

1 (6)

Cytobots move within a simulated 2D environment of area
5.06 mm2- approximately half the maximum recorded
aggregation territory reported in the literature (Dallon and
Othmer, 1997). Each pixel represents 4.5 μm and the grid is
500 × 500 pixels, giving a total area of 5.06 mm2. In nature,
aggregating D. discoideum cell densities are typically 250 per
mm2 to 1x104 per mm2 (Dallon and Othemer, 1997). Due to
the computational resources required to manage a population
of cytobots within the upper range, two cell densities of 250

agents per mm2 (1250 agents) and 150 per mm2 (750 agents)
were chosen. The agents are initialized at random positions
within the simulated environment. Each starving agent emits a
cAMP signal at equal strength around its circumference into
the environment. This signal is detected by other agents within
or equal to r. In these experiments a range of r values are
explored, including that of real cells of 1, 0.5, and 0.1 mm
(McCann, et al., 2010). The actual cAMP signal degrades
linearly with increasing distance (d) from the emitting cell.
Each agent detects the cAMP signal of all starving cells within
or equal to r, and a total value for each direction (A) is
calculated using the pseudocode given in figure 3. Each cycle
represents 1 minute of time. In this time the agent moves 9μm-
a distance which corresponds to that reported in the literature
(Rifkin and Goldberg, 2006). Therefore, after 1 hour motion
the agent travels a distance of 540μm. In reality there are
always remaining cells that do not aggregate, and thus the
simulation runs until 95% of agents are at a distance of less
than 0.1mm from their nearest neighbor.

Results
The results for all 10 experiments are given in table 1. Each
experiment was performed 100 times. In experiments 8, 9, and
10 the value of r and d are within the ranges reported for real
D. discoideum cells. These experiments are used to compare
the behaviors and length of time taken to aggregate with the
literature. In experiments 8, and 9 aggregation completes after
an average formation of 4.3 mounds in 10.05 hours, and 6.7
mounds in 12.65 hours respectively. In nature the organism
takes between 9-13 hours to aggregate (Cotter, et al., 1992;
Becker, et al., 2010), thus the results of these experiments
have an aggregation time within the reported range. This is
also comparable to other simulations. For example, Becker et
al. (2010) reports an aggregation time of 11.6 hours for a
simulated population of D. discoideum with a cell density of
200mm2. In experiment 10, the population never satisfied the
criteria for completion of aggregation, where instead the
agents appeared to move in a fashion reminiscent of Brownian
motion. The likely explanation for this is twofold. Firstly, the
simulation does not consider the effect of glycoproteins where
aggregating cells making contact with each other attach
together. Secondly, because the attraction range is so small,
agents are only able to detect other agents within their
immediate neighborhood, thus momentarily larger clusters
with higher attraction strength go undetected and quickly
dissipate- an effect that would not occur if agents stayed
together. The complete set of results shows that by increasing
p by 100mm2 the number of mounds formed at each r decrease
with the exception of experiment 6. This is not surprising, as
denser populations should have more chance of interacting,
and thus form fewer clusters, but with higher numbers of
agents. Similarly, decreasing r results in a general increase to
the number of mounds formed at both values of p. The likely
reason for this is that as r decreases the agent becomes unable
to influence increasing quantities of area, thus larger numbers
of stable clusters can form but with fewer numbers of agents.

Emergent behaviors and clustering patterns similar to the
biological organism were also observed. As previously
discussed, the cytobots are polarized.

FOR each cytobot
Get current agents’ facing direction CF
Assign a value to direction CF using statement 1

FOR each (index n) detected cAMP signal
Get detected signal incoming direction CA
Assign a value to direction CA using statement 1
IF CA = CF THEN kn = 3
ELSE IF CA = CF-1 OR CA = CF+1 THEN kn=2
ELSE IF CA = CF-2 OR CA = CF +2 THEN kn=1
ELSE kn=0
END IF
Calculate distance dn
Store each CA with kn and dn

END FOR

Calculate WA for current agent using Equation 6
END FOR

Statement 1: East = 1; North East = 2; North = 3; North West
=4; West = 5

Where:
WA= total weight of direction A
N= total number of agents within range of detection
dn= distance of current agent from agent n
CA = direction of incoming signal detected by current agent
CF = the current agents facing direction
kn = value of cAMP signal from agent n

A57

Figure 4: A-E Cytobot aggregation for experiment 8 at: A- 1hr, B- 2hr, C-5hrs, D- 8hrs, E- 12hrs; Image F- D. discoideum cells
aggregating; G- Is the lower right hand corner of image C demonstrating streaming behavior; H- Spiral patterns in experiment 4 after
8 hours; I- Symmetrical patterns for experiment 2 at 7 hours; J- Wave pattern for experiment 2 at 2 hours.

Diagram F is courtesy of T, Gregor, Laboratory for the Physics of Life, Princeton University, 2013 Used with permission.

Table 1: Aggregation experiment simulation results

No Density
(p) per
mm2

Range
(r) in
mm

Mean No. of
mounds; (σ=
Sta. Dev.)

Mean time (hours);
(σ); *Literature Range
9-13 hours

1 150 5 1
(0)

8.98
(0.09)

2 150 2.5 4
(0.31)

9.63
(0.17)

3 150 1 5.2
(0.82)

9.92
(0.34)

4 150 0.5 8.4
(1.19)

10.23
(0.59)

5 150 0.1 14.2
(2.36)

10.6
(1.82)

6 250 5 1
(0)

8.95
(0.11)

7 250 2.5 1
(0)

9.6
(0.20)

8 250 1 4.3
(0.37)

10.05
(0.58)

9 250 0.5 6.7
(1.62)

12.65
(1.94)

10 250 0.1 - -

Implementing the agents in this way allowed us to observe
whether or not the previously described streaming behavior
occurs. A close up of the right hand corner of screenshot C is
shown in figure 4G showing agents beginning to form a
cluster. The protruding head of each agent can be seen clearly,
where each lines up its head to the rear of another agent and
forms a stream. As can be seen in figure 4F this is very similar
to the streaming behavior in real cells of D. discoideum. Other
emergent patterns occurred during different experiments

including spirals (figure 4H), symmetric patterns (figure 4I),
and waves (figure 4J).

Oil Spill Clean-up Simulation
To illustrate a practical application, the cytobots are used to
tackle a simplified oil-spill clean-up simulation. In these
experiments, the same ARN used previously produces
different behaviors by altering its interface with the
environment. In the following 4 experiments the length of time
it takes for 3, 5, 8 and 15 cytobots to clean up 95% of the oil is
recorded. These results are compared with similar work.

The cytobots move within a 2D simulated environment
containing an oil spill. This oil is analogous to a distribution of
food within a nutrient landscape. The task of the cytobots is to
clean up the spill as quickly as possible by consuming oil at
each location. The agents move through the environment by
switching between the two previously described behavioral
modes- foraging and starvation. In the aggregation
experiments, no food was present, thus the foraging behavior
remained inactive. In this case, the concentration of oil
surrounding the agents was fed into both the receptor pools of
the weighted direction network and the food network. Thus in
this case oil represents both food and cAMP. At the start of
each experiment, the cytobots are distributed randomly within
the environment, and the ARN network is initialized as
previously described. The agents start the simulation in
foraging mode but during the simulation alternate between
foraging and starvation modes. Starvation behavior is triggered
after the most recent positions (minimum of 2) contained zero
food. In starvation mode, instead of turning in a random
direction, the new direction is weighted toward higher
concentrations of food within its surrounding area. This
behavior forces exploration of unexplored search space
because previously visited positions have a food level of 0.

A58

Consumption of environmental food therefore acts as a
stigmergic signal, where agents are inclined to move up the
nutrient gradient created by their foraging activities. Here, we
model the spillage of 100 tonnes of Statfjord crude oil at 150C
under a wind speed of 5ms-1 The oil is distributed over a 2D
sea surface of 300m by 200m, thus an area of area 60000m2,
where 2 pixels corresponds to 1m, as shown in figure 4A. This
particular oil type and parameter set were chosen in order to
compare directly with work by Kakalis and Ventikos (2008)
who present a robotic swarm concept for oil spill
confrontation. For this reason, we account for an initial
response time of 14 hours. Based on the complex
mathematical models found in Kakalis and Ventikos which
account for the main factors of short term changes in oil
characterization, the volume of oil after 14 hours is reduced to
150m3. Beyond the starting state, the volume is only influenced
by the cytobots. The speed of each agent is 0.5ms-1 and is
based on other robotic agents in oil cleaning scenarios (Kakalis
and Ventikos, 2008), thus the cytobots move 1 pixel (0.5m)
for every time step. The actual cleaning surface is 1m, thus the
cytobots clean a 2 pixel wide area in each time step.

Mathematical modeling of an oil spill is non-trivial and at
best can offer a crude approximation of its actual trajectory.
Most oil spills quickly form a comet shape with most of the oil
within the head and a trail of sheen (Wang and Stout, 2007).
To represent a simplified version of the comet shaped spread,
the area is divided into 100 3m x 200m segments. The first
segment contains 0.015 tonnes of oil, and each subsequent
segment increases by 0.03 tonnes from right to left.

Results
In each experiment, a different number of cytobots was
deployed- 3, 5, 8 and 15 and the recovery rate achieved by
each group was compared. The simulation time was measured
from deployment of the cytobots at 0 hours (14 hours after oil
was spilled) and stopped when the cytobots had collectively
removed 95% of the 150m3 of oil. Each experiment was run
100 times, and the average volume of oil consumed at 6
minute intervals was calculated. Figure 6 presents the volume
of oil consumed by each group of cytobots against time. The
finishing times in hours are 15.2, 11.5, 9.6, and 6.1 for 3, 5. 8,
and 15 cytobots respectively. By adding 2 additional agents to
the group of 3 the length of time is reduced by 3.5 hours, thus
1.75 hour difference per extra cytobot. This difference
decreases 1.12 hours per cytobot for 8 agents, then to 0.76 per
agent for 15. This variation can be accounted for by examining
the agents’ paths through the oil. Rates are much faster at the
beginning of the experiments, where cytobots move toward the
oil rich left side of the environment. This can be seen in the
series of screenshots in figure 5 where A shows the starting
position at time 0, and B shows that after 2 hours the cytobots
have moved toward the left-hand side, focusing mainly on
highly concentrated areas (consumed oil is shown in white).
Initially, the rate of oil removal is high because cytobots focus
on the volume rich areas and cannot go over their path, thus
each new location results in consumption of oil. However, as
time progresses, large patches become cleaned and a higher
probability exists for the cytobots to revisit previously cleaned
areas. The consumption of oil in figure 5 C and D at 4 and 9.6
hours respectively shows more clearly that cytobots focus

cleaning efforts on the richest volume area first, and are
gradually forced to move toward the next highest concentration
by the gradient created by their foraging activities.

Figure 5: Oil simulation using 8 cytobots at A- 0 hours, B- 2

hours, C- 4 hours and D- 9.6 hours

Figure 6: Volume of oil cleaned against time for each group of
cytobots

Figure 5 D shows the state of the oil at the end of the
simulation, where only small patches remain mainly in areas of
low oil volumes. These results can be compared to the
simulation by Kakalis and Ventikos. Here, varying numbers of
simulated EU-MOP robots are deployed to tackle 150m3 of
Strajford oil over 60000m3 (as before). In this case, the robots
have a slightly faster speed of 0.54m/s but have the same 1m
skimming face. Each EU-MOP robot has a storage capacity of
2m3

 and a transit speed of 2.1ms-1. The time taken for 3, 5, 8,
and 15 EU-MOPS are 54, 32, 20 and 10 hours respectively.
For comparison, the results of our simulation can be adjusted
to include unloading of the oil at a servicing vessel. Using the
same storage capacity and transit speed and assuming the
distance to the ship and back is 2 times 300m and that each
cytobot fills the same amount simultaneously, then the new
times are 17.2, 12.7, 10.3 and 6.5 for 3, 5, 8 and 15 cytobots
respectively. The Kakalis and Ventikos simulation has several
differences to the one reported here, particularly in the
distribution of the oil. Also, some key parameters are missing
from their paper, for example, distance to boat. Despite these

A59

differences, our results are very similar. For example the
reported simulation time for 15 EU-MOPS is 10 hours and in
our simulation 5 and 8 cytobots took 12.7 and 10.3 hours
respectively. Given the differences in the simulation and
differences in operation of the robots, the resulting clean up
times are comparable showing that the cytobots have potential
application as distributed robotic agents in real-world
environments.

Conclusions
The aggregation experiment results presented above show that
the agents are able to simulate behavior of individual
unicellular organisms, and model emergent behavior arising
from interactions among such groups. These results
demonstrate the parallels between ARN agents and the
biological counterpart from which they were inspired. It also
highlights a potential use as a means to simulate groups of
interacting cells such as a bacterial colony or tissue component
within a multicellular organism.

The results for the oil spill simulation demonstrate potential
application for the ARN agents as autonomous agents within
real world environments. This application demands an internal
control system which can function without reference to other
agents within the environment which are operating in parallel.
By modifying the environment, (which in this case was
consumption of food), the agents can stigmergically
communicate and facilitate emergent behavior. The cytobots
offer a unique range of abilities. Like cells, their internal
network of spatially distributed dynamic chemical species
allows them to autonomously coordinate and direct their
movement, recognize and respond to patterns in the
environment, and produce high-level behavior.

In future work, it is intended to further explore the AI
applications of the cytobot agents, and later, to create swarms
of cytobot robots with applications in real world environments.

References
Arkin, A. and Ross, J. (1994) Computational functions in

biochemical reaction networks, Biophysical Journal, 67:560-
578.

Becker, M. (2010). Simulation model for the whole life cycle of slime

mould Dictyostelium Discoideum. In proceedings of the
European conference on modeling and simulation, pages 247-
253.

Bhalla, U. S. (2003). Understanding complex signaling networks

through models and metaphors. Progress in Biophysics and
Molecular Biology, 81(1):45-46.

Bray, D. (1995). Protein molecules as computational elements in

living cells. Nature, 376(6538):307-12.

Cotter, D. A., Sands, T. W., Virdy, K. J., North, M. J., Klein, G.,

Satre, M. (1992). Patterning of development in Dictyostelium
discoideum: factors regulating growth, differentiation, spore

dormancy and germination. Biochemistry and Cell Biology,
70(10-11):892-919.

Dallon, J. C. and Othmer, H. G. (1997). A discrete cell model with

adaptive signaling for aggregation of Dictyostelium discoideum.
Philosophical Transactions of the Royal Society B: Biological
Sciences, 352(1351): 391–417.

Dittrich, P., Zeigler, J., Banzhaf, W. (2001). Artificial chemistries- a

review. Artificial Life, 7(3):225-275.

Ford, B. J. (2009). On intelligence in cells: The case for whole cell

biology. Interdisciplinary Science Reviews, 34(4):350-365.

Gerrard, C. E., McCall, J., Coghill, G. M. and Macleod, C. (2011).

Artificial Reaction Networks, In Proceedings of the 11th UK
Workshop on Computational Intelligence, pages 20-26.

Gerrard, C. E., McCall, J., Coghill, G. M. and Macleod, C. (2012a).

Adaptive dynamic control of quadrupedal robotic gaits with
Artificial Reaction Networks. In Proceedings of the 19th
international conference on neural information processing, pages
280-287.

Gerrard, C. E., McCall, J., Coghill, G. M. and Macleod, C. (2012b).

Temporal patterns in artificial reaction networks, In Proceedings
of the 22nd international conference on Artificial Neural
Networks, pages 1-8.

Kakalis, N. M. P., Ventikos, Y. (2008). Robotic swarm concept for

efficient oil spill confrontation. Journal of Hazardous
Materials, 154(1-3):880-7.

McCann, C. P., Kriebel, P. W., Parent, C. A., Losert, W. (2010).

Cell speed, persistence and information transmission during
signal relay and collective migration. Journal of Cell Science,
123:1724-1731.

Patidar, V., Sud, K. K., and Pareek, N. K. (2009). A pseudo random

generator based on chaotic logistic map and its statistical testing.
Informatica, 33:441-452.

Rifkin, J. L. and Goldberg, R. R. (2006). Effects of chemoattractant

pteridines upon speed of D. discoideum vegetative amoeba. Cell
Motility and the Cytoskeleton, 63(1): 1-5.

 Tyson, J. J. and Novák, B. (2010). Functional motifs in biochemical

reaction networks. Annual Review of Physical Chemistry,
61:219-240.

Ulam, S. M. and von Neumann, J. (1947). On combinations of

stochastic and deterministic processes. Bulletin of the American
Mathematical Society, 53:1120.

Vladimirov, N. and Sourjik, V. (2009). Chemotaxis: how bacteria use

memory. The Journal of Biological Chemistry, 390(11):1097-
1104.

Wang, Z. and Stout, S. A. (2007). Oil spill environmental forensics:

fingerprinting and source identification. Academic Press,
Burlington MA.

A60

A61

Paper 4: ‘Combining Biochemical Network Motifs within an ARN-
Agent Control System’

Reference:
Gerrard, C., McCall, J., Coghill, G., Macleod, C. (2013) ‘Combining Biochemical

Network Motifs within an ARN-Agent Control System’, Proceedings of the 13th

Annual Workshop on Computational Intelligence (UKCI), IEEE, Surrey, pp. 8-15.

Combining Biochemical Network Motifs within an

ARN-Agent Control System

Claire E. Gerrard, John McCall, Christopher Macleod,

IDEAS Research Institute,

Robert Gordon University,

Aberdeen, Scotland.

c.e.gerrard@rgu.ac.uk, j.mccall@rgu.ac.uk,

chris.macleod@rgu.ac.uk

George M. Coghill,

Department of Computing Science

University of Aberdeen

Aberdeen, Scotland.

g.coghill@abdn.ac.uk

Abstract—The Artificial Reaction Network (ARN) is an

Artificial Chemistry representation inspired by cell signaling

networks. The ARN has previously been applied to the

simulation of the chemotaxis pathway of Escherichia coli and to

the control of limbed robots. In this paper we discuss the design

of an ARN control system composed of a combination of network

motifs found in actual biochemical networks. Using this control

system we create multiple cell-like autonomous agents capable of

coordinating all aspects of their behavior, recognizing

environmental patterns and communicating with other agent’s

stigmergically. The agents are applied to simulate two phases of

the life cycle of Dictyostelium discoideum: vegetative and

aggregation phase including the transition. The results of the

simulation show that the ARN is well suited for construction of

biochemical regulatory networks. Furthermore, it is a powerful

tool for modeling multi agent systems such as a population of

amoebae or bacterial colony.

Keywords— Artificial Reaction Networks; Artificial Chemistry;

Swarm Agents

I. INTRODUCTION

Artificial Chemistry (A-Chem) is a subfield of A-Life and,

in its broadest sense, it describes man-made systems which are

similar to real chemical systems [1]. Chemical information

processing has many desirable properties, it is: decentralized

asynchronous, fault tolerant, evolvable, self-organizing and

adaptive [1]. A-Chem focuses on harnessing these properties

by either creating Molecular Computing devices where

computation is achieved using either real chemicals or by

utilizing the principles of the chemical metaphor to construct

novel software or hardware architectures in silico [1]. The

latter is termed Artificial Chemistry Computing (CCM) and is

the focus of this paper. In the chemical metaphor, data is

stored in the form of molecular species and information

processing occurs through interactions (reactions) between

these molecules. The result of this computation emerges from

the numerous low-level interactions and appears as a global

behavior [1]. ACC is used in two main applications:

simulating complex systems (biological, social or ecological)

and in developing novel solutions to engineering or

computational problems. The Artificial Reaction Network

(ARN) is an ACC representation inspired by the properties and

mechanisms of information processing found in biological Cell

Signaling Networks (CSNs). In our previous work, it was

applied to simulate the chemotaxis signaling pathway of E. coli

[2], and later investigated as a means to produce complex

temporal waveforms to control limbed robots [3,4].

Within a cell, data is represented by a set of spatially

distributed molecular concentrations; CSNs process this

information within elaborate hierarchical network control

structures which connect species together in productive or

inhibitory unions. In this way, cells are able to respond to

changes within their environment, communicate with other

cells, and perform internal self maintenance operations [5].

The ability of chemical networks to perform computational

processing is well documented. For example it has been

shown both theoretically and in wet lab experiments that such

networks can perform Boolean and Fuzzy logic functions

[1,5]. A number of researchers have identified structural

motifs in such biochemical networks which can form basic

computational processing units [5,6].

The aim of this paper is to show that the ARN is a powerful

modeling tool and can produce realistic approximations of the

complex network circuitry that exists within and between cells.

This ARN is firstly used to construct real biochemical network

regulatory motifs. These motifs are then combined to create a

control system for an autonomous ARN-agent. The control

system implements a set of cell-like behaviors which allow the

agent to recognize and respond to environmental patterns by

modifying its trajectory. A swarm of ARN-agents are then

instantiated within an artificial environment and used to

simulate the collective behavior of a population of D.

discoideum (Dd) cells throughout two phases of the organism’s

life cycle: vegetative and aggregative.

The paper is structured as follows: Section II provides a

summary of the ARN representation; this is followed by a

discussion about network motifs and the ARN-agent control

system in Section III and IV. The experimental details are

discussed in Section V followed by results in Section VI.

Finally, Section VII presents the conclusions.

A62

II. ARTIFICIAL REACTION NETWORKS

A summary of the ARN is provided here. Verification and
further discussion of the ARN representation can be found in
our previous work [2-4]. The ARN comprises a set of
networked reaction nodes (circles), pools (squares), and inputs
(triangles) and is depicted as a directed weighted graph as
shown in Fig. 1 Each pool stores a current available chemical
species concentration (avail); thus, the complete set of pool
concentrations at time t, corresponds to the current state of the
system.

Fig. 1. The Artificial Reaction Network representation.

 tCKBAKC CBA W

availCr

W

avail

W

availCf)()(
 (1)

 D

W

W
CCC

C

C
availavail

 (2)

 Cavailavail DWCCC (3)

Where:

A, B, C, D = Species Concentrations

W = Reaction order (weight)

avail = Available species concentration

Kf = Forward rate constant

∆C = Change in species concentration C

Kr = Reverse rate constant

α=sum of other incoming weights to D

In this paper and the following example we use conserved mass
quantities, however, the ARN may also be used to model non-
conserved quantities such as the number of available
molecules. The choice affects the way in which each pool is
updated and is discussed later. While many ACs assume a
well-stirred reactor, the use of pools within the ARN provides a
discrete spatial structure. Inside a biological cell concentrations
of chemical species are spatially distributed into localized
compartments. This localization restricts which molecules may
react together, thus affects the overall dynamics of the system.
Representing the spatial distribution of chemicals allows fine
grained control over the system dynamics and thus is highly

beneficial when modeling biochemical circuitry. For example it
allows the representation of flow structures such as membrane
channels, transport processes; network motifs, and provides a
means to explore disease pathways [7]. Thus, in the ARN, each
pool is represented as a well-stirred reactor and approximates a
spatial compartment. Inputs are a special type of pool; the only
difference is that they are of fixed value and thus can be used to
represent the continuous flow of environmental inputs or
enzymes. Each circle corresponds to a reaction unit,
representing a reaction between a number of chemicals. Data is
processed by reaction nodes transforming incoming pool
values to connected outgoing pool values. Connections
symbolize the flow of chemical into and out of reaction units
and their weight (W) corresponds to reaction order.
Connections provide the facility to create complex control
structures using combinations of inhibitory and excitatory
connections. Fig. 1 shows the reaction between species A and B
to produce species C. At time interval ∆t, each reaction unit’s
temporal flux value is calculated by applying Euler’s
approximation to the differential rate equation as shown in (1).
This value is then used to update the current concentration of
each reaction’s connecting pools as shown in (2). A reaction
step may proceed if it meets its preconditions. Preconditions
are met if incoming inhibitory pools are inactive, and incoming
excitatory pools are active. In a similar way the completion of a
reaction step will fulfill a number of post conditions, which
depend on the parameters and connections of the reaction step.
Pools may asymptotically approach 0, and thus below a
particular threshold a pool is considered empty and its value set
to zero.

As previously mentioned the ARN is not restricted to
representing conserved quantities such as mass, one may
choose to model the exchange of molecules between pools.
Thus using the example in Fig. 1, to generate one molecule of
product C requires WA molecules of reactant A and WB
molecules of reactant B. In this case pool C is updated by
applying (3).

III. BACKGROUND THEORY

The ARN presented in Section IV is composed of
regulatory motifs found in real biochemical networks. These
motifs are combined in such as way to provide the control
system for an ARN-agent. In this Section a summary of two
behavioral modes implemented within the ARN-agent control
system are described. This is followed by the structure and
function of common network motifs, including biological
examples.

A. Foraging and Starvation Modes of ARN-agents

Dd is a cellular slime mould which exists as a collection of
amoeba and transitions to a multicellular slug during the
aggregation phase of its life cycle. During its vegetative stage,
amoebae move up gradients of folic acid (FA) secreted by its
bacterial prey. The behavior of these unpolarised cells is
characterized as a random biased walk where cells extend
random pseudopods in a biased manner toward the source of
FA resulting in overall movement up the gradient of FA [8].
Dd amoebae begin to starve when the food resource has been
depleted, and begin the aggregation phase. During

KEY (For all ARN figures):

Pool: Reaction Unit: *Inhibitory

Connection:

Input:

Excitatory

Connection:
 *Forward/reverse

reaction

*Used in Fig.2 & Table I only

Cavail= Equation 2

∆C= Equation 1

∆D
1

∆C

Cavail
WA

WC

C

2

A

B

Aavail

Bavail To

Reaction D

A63

aggregation, starving cells secrete cAMP (cyclic adenosine
monophosphate) which serves as a signal to attract
surrounding amoebae towards a central location [9].
Aggregating Dd cells are polarized, thus one side becomes the
leading edge which always faces in the direction of travel [9,
10]. Depending on parameters such as environmental
conditions, and Dd population density, migrating cells often
form transient emergent patterns such as streams, waves and
spirals [9, 10]. Streaming describes a pattern of motion where
cells line up in close order files, with the head of one
following the rear of another [10].

The agent performs two behavior modes- foraging and
starvation based respectively on vegetative and aggregative
behaviors of Dd amoebae. During the foraging phase, agent’s
alternate periods of forward motion termed “runs” and random
redirections called “tumbles”. The bias is provided by
reducing the period of tumbles when moving up the food
gradient. At each passing location food is consumed. The
agents enter starvation mode if food has not been consumed
within a time period. Each starving agent emits a continuous
signal of cAMP into its surrounding environment. Instead of
turning in a random direction, agents turn in the direction
weighted toward the highest concentration of cAMP within its
surrounding area.

B. Functional Motifs In Biochemical Networks

Cell membranes are studded with receptors which are
sensitive to external parameters such as chemicals, pH,
temperature and light. These receptors are responsible for
detecting and transducing environmental signals. These
signals trigger information processing events within the CSN
which update cell activity such as changes in gene expression.

Components of CSNs are linked through productive unions
(union of reactants triggers production/activation of other
components) and inhibitory unions (union of two reactants
inhibits production/activation). In the same way the network is
separated through productive and inhibitory isolations (union
does not occur or does not produce any effect). Such links
arrange chemicals into elaborate circuitry which functions as
the information processing machine of the cell.

A fundamental challenge in Molecular Biology is to
understand such signal processing and thus enable the
prediction of the effects of disease and intervention of
pharmaceuticals. To this end a number of researchers have
identified functional structural motifs within these networks
[5, 6]. A summary of the structure (in ARN format), function
and biological examples of a number of the most common
motifs is provided in Table 1. A more detailed discussion is
provided by Tyson [6]. Note that these motifs are shown for
simplicity as 2 or 3 component but there are larger versions
with the same function. For example, an additional component
may be added to motif 9 to create a 4 component oscillator.

IV. ARN-AGENT CONTROL SYSTEM

In this Section we discuss an ARN control system
composed of the structural motifs in Table 1. This system is
designed to control an autonomous ARN-agent termed a
“Cytobot” (“cyto” from Greek for cell, and “bot” from robot).

The cytobot has two behavior modes: foraging and starvation,
based on the previously described behavior of Dd amoeba
during its respective vegetative and aggregative phases. In the
experiments described in Section V a number of these
cytobots are instantiated and interact to produce global
emergent behavior. The relationship between the ARN control
system and the cytobot is similar to that of a CSN to an
amoeba. Thus the control system allows a cytobot to recognize
environmental patterns, updating its trajectory within an
artificial 2D environment and to communicate stigmergically
with other cytobots. The environment contains a distribution
of artificial chemicals. These chemicals represent attractants
of either food or cAMP. When a cytobot moves to a new
position, the surrounding level of chemical is used to set the
inputs to its ARN. Consequently this changes the internal state
of the ARN and updates the agent’s trajectory. During this
process, the agent modifies the state of the environment by
consuming food or releasing cAMP.

The cytobot ARN is composed of 6 subnetworks as shown
in Fig. 2. Each subnetwork contributes a functional aspect to
either or both starvation and foraging behaviors. The design of
the subnetworks is discussed in the following Sections.

A. The Master Oscillator

The Master Oscillator functions to synchronize the outputs
from all the other subnetworks together and is what each
cytobot references at each time step to ascertain its current
behavior. It is a 4 component oscillator (Table 1 motif 9) with a
token unit of chemical cycling around it. It consists of 4
reaction units: M0, M1, M2, and M3 (all with reaction rate of
1) and 4 pools MA, MB, MC and MD and generates a pulsed
width modulated waveform. Each pool is associated with 1 of 3
behaviors. Every time step that a particular pool contains the
token unit, its corresponding behavior is performed. Pool MA
activates turn, MC activates run and MB and MD activate stop.
Thus, if pool MC contains a chemical for 10 time steps, the
agent will move forward for 10 time steps. Note that this motif
could control motor actuators on a simple wheeled robot: MC
would switch on all wheel motors, while MA would switch on
left wheel motors only, thus turning the robot. The remaining
pools would act as off switches. The other subnetworks inhibit
(motif 2) or excite (motif 1) the reaction units of the master
oscillator to allow or prevent chemical flow.

B. The Food and Run Length Network

The food network interfaces with the environment at pool
FA using an excitatory connection (motif 1) and inhibits the
runlength network in accordance with the level of detected
food. The forward rate of reaction node F0 is 1, thus the
content of FA is transferred to pool FB in a single time step.
The presence of chemical FB inhibits (motif 2) R0 for a
number of time steps according to the level of food (by setting
forward rate of unit F1 to 1 and weight to 0 this can be an
exact correlation). The run length network is a 3 component
oscillator (motif 9). While reaction R0 is inhibited it prevents
pool RC from emptying. RC inhibits reaction M2 (motif 2) of
the master oscillator thus preventing pool MC from emptying
for the same number of time steps. As discussed previously,

A64

the number of time steps which pool MC contains the token
unit represents the number of time steps to move forward.

C. The Signalling Network

The signaling network functions as a switch between
starvation and foraging mode. Low food levels trigger the

starvation response and allow the weighted direction network
to control each new angle. Sufficient food will switch off the
weighted direction network and allow the chaotic network to
control each new angle. It is a 3 component oscillator (motif
9) with a token unit of chemical flowing around it. Pool CA
acts as a switch between foraging and starvation behavior.

TABLE I EXAMPLES OF FUNCTIONAL MOTIFS FOUND IN BIOCHEMICAL NETWORKS

Motif No., Name and Description Structure (in ARN

format)

Biological Example

1. Excitatory (E)

The presence of X activates Y
 Elementary motif common throughout pathways. E.g. Ras is a membrane associated

protein that is normally activated in response to the binding of extracellular signals

such as growth factors [6].

2. Inhibitory (Y)

The presense of X inhibits Y. Acts as a
NOT gate.

 Elementary motif common throughout pathways. E.g. E-cadherin (a calcium-

dependent cell–cell adhesion molecule) suppresses cellular transformation by
inhibiting β-catenin [6].

3. Positive Feedback Loop (PFL)

The presence of X activates Y and in turn
the presence of Y activates X

 The pathway of caspase activation is essential for apoptosis induction. A PFL exists

between caspase-3 and caspase-9 [6].

4. Negative Feedback Loop (NFL)

The presence of X activates Y and in turn

the presence of Y inhibits X

 The proteins Mdm2 and p53 (p53 is a tumor suppressor protein) are involved in a
NFL which functions to keep the level of p53 low in the absence of p53-stabilizing

signals [6].

5. Double-negative Feedback (DNF)

The presence of X inhibits Y and the
presence of Y inhibits X

 BAX is protein which promotes apoptosis by competing with BCL. A DNF is

formed between the proteins BAX and BCL [6].

6. Branch (B)

The presence of X activates Y and Z

 Transcription factors such as E2F or P53 frequently modulate the expression of
more than one gene. Enzymes often modify more than one substrate e.g. CycB-

dependant kinase [6].

7. Logic Gate (LG1)

AND gate: 2 excitatory connections from
X and Y when both X and Y are present

they activate Z

NOR gate: two inhibitory connections
from X and Y. Both X and Y must be

absent for Z to be activated

SWITCH: Excitatory connection from X
and inhibitory connection from Y. The

presence of X but not Y activates Z

 AND: The protein gCam 2 kinase becomes active when both calcium ions (Ca2+
)

and Calmodulin (CaM) are present [5].
NOR: The activity of transcription factor E2F is a NOR function of RB and CycB

where E2F is active when both RB and CycB are inactive [6].

SWITCH: The enzyme aspartate transcarbamylase is composed of multiple catalytic
sites. It is activated by binding of its substrates (aspartate and carbamoyl phosphate)

and inactivated by cytidine triphosphate causing its substrates to dissociate [5].

8. Logic Gate (LG2)

OR Gate: : 2 excitatory connections
from X and Y when either X or Y are

present they activate

 Ras is a membrane associated protein that is activated by a number of different

signals. E.g. in response to the binding of extracellular signals such as a number of
growth factors [6].

9. Oscillator (OSC)
The presence of X activates Y. In turn the
presence of Y activates Z but inhibits X.

The presence of Z inhibits Y and

activates X.

 There are many examples e.g. in the cyanobacteria clock protein KaiC has a well

defined closed cycle of phosphorylation and dephosphorylation states (composed of
KaiA, KaiB and KaiC). In the motif shown here, all 3 components oscillate and

each inhibits the reaction clockwise left. Oscillators may have less inhibitory

connections, the number of which is dependent on the mobility of the reaction
species. However, the presence of all inhibitors increases stability in the presence of

fluctuating environmental parameters e.g. temperature. Note that this oscillator can

also be thought of as a PFL (motif 3) combined with a system of DNFs (motif 5).

Key: Either inhibitory or excitatory. X/Y/Z: Chemical species * Note that these motifs may combine arbitrary numbers of components.

Y X

X Y

 X Y

Y X

Y X

X

Y

Z

X

Y

Z

X

Z

Y

X

Z

Y

A65

Fig. 2. The cytobot ARN network. Each cytobot is controlled by an instance of this network. The network is composed of 6 subnetworks

Here the presence of chemical in CA inhibits the weighted
direction network (motif 2) while its absence switches on the
weighted direction network; this in turn inhibits the chaotic
network, as shown in Fig. 2. In this oscillatory network, all
reaction units have a forward flux of 0.5; which produces a
continuous oscillating waveform and ensures a minimum
number of time steps for each behavior. A NOR gate (motif 7)
activates pool CB in the absence of food chemical in both
pools FB and FC of the food network, thus allowing pool CB
to empty. While an AND gate (motif 7) will lead to pool CA to
eventually refill by activating pool CC only when food is
present in input FA and pool FC of the food network.

D. The Weighted Direction Network

The weighted direction network senses food within the
agents’ immediate environment and calculates a tumble angle
which is weighted toward higher food levels. This network
interfaces with the environment via a number of receptor pools
(AW, ANW, AN, ANE, AEA) which sense the level of food
around the cytobot. These pools represent receptors and are
positioned at points around the front of its perimeter (as shown
in Fig. 3), allowing the agent to travel in a similar way to that
of a polarized Dd cell. For example, during the aggregation
phase of their life cycle, Dd cells are polarized, and one side
becomes the leading edge which always faces in the direction
of travel [10]. Each receptor input pool forms one input of an
AND gate (motif 7), the other input is a static pool containing a
fixed level of chemical in correspondence to its direction.
Directions start from AW (west) with a corresponding numeric
value of 0 (A00) and progress in 45 degree steps through each
direction to east. As the receptor positions around the agent are
fixed, directions are always relative to that in which the agent
is facing. All connections have a weight of 1 with the exception

of the connection between pool AD and reaction A12 which
has a weight of -1. This negative connection raises the sum of
food detected in AD to -1, which multiplied by AB, allows an
average angle to be calculated.

Fig. 3. Location of the ARN-agent (cytobot) sensors around its perimeter.

The calculated angle interfaces with the remaining
subnetworks at pool AE. Pool AE is the output of an OR gate
(motif 8) where inputs from either the weighted direction
network or the chaotic angle network activate AE. AE also
forms the inhibitory input of a SWITCH (motif 7) where the
presence of chemical in MA and absence in AE activates pool
MB of the master oscillator. In an actual organism receptors
are set around the cell perimeter and direct movement
appropriately. In this simulation, for simplicity, a count of the
number of time steps “n” that MA contains the token unit is
processed to gain the new heading “h” relative to the agents’
current heading “c” using (4). Thus if the number time steps is

A66

120 and the agent is facing north, then the current heading
would equal 0 and the new heading would equal 30.

 360mod))90((cnh (4)

E. The Chaotic Network

The chaotic network, as shown in Fig. 2, is responsible for
generating pseudo random angles which agents use to perform
the foraging mode tumble behavior. It is a networked
implementation of a Logistic Map, see (5). Without prior
knowledge of the initial conditions the output of the logistic
map is unpredictable, while it is deterministic with prior
knowledge. Therefore, the series cannot be described as truly
random but as pseudo random. Its output has long been
proposed as a pseudo-random number generator [11] and it has
been successfully used in this capacity by several researchers
[12]. The probability density distribution of the Logistic Map is
non-uniform and is described in [12]. When λ=4 the
distribution is “U” shaped, with higher probability of values
closer to the minima and maxima of X and a symmetric
distribution at the midpoint. The general shape of the
distribution is invariant for the complete range of state
variables from 0 to 1.

)1(1 nnn XXX (5)

Where:

Xn= state variable of value 0 ≤ Xn ≤ 1

λ= system parameter of value 1 ≤ λ ≤ 4

To implement the logistic map a number of motifs are

combined including multiple branch motifs (motif 6- KB
activates KD and KE), PFLs (motif 3- a multi component PFL
exists where KA leads to activation of KE, which results in the
activation of KA) and NFLs (motif 4- KA activates KD which
in turn inhibits KA). At the start of the simulation, pools KA
and KB are initialized to the same random value (a unique
number for each cytobot) between 0 and 1 (to 5 decimal
places). This represents the first value of X of (5). All the
other pools are initialized to 0 with the exception of the static
pools KI and RK whose initial values are 360 and 1
respectively. Reaction K2 is responsible for generating each
new value of X and has a forward and reverse rate of 4 (the
logistic map exhibits chaotic behavior when λ is 4). The
connection between KA and K2 has a weight of 1 and that
between K2 and KB has a weight of 2. The remaining series of
reactions function to copy the value of X 3 times, where 2
copies serve as the new initial values of KA and KB and one
participates in the final output of the network at KH. KI has a
fixed value of 360 which allows the network to convert the
pseudo random number at KH to an angle value between 0 and
360 at reaction K0. However, reaction K0 cannot proceed until
all 11 pools that inhibit it are empty. These inhibitory
connections (motif 2) ensure that random angles are not output
while the agent is in starvation mode, and that pool AE is
empty before adding more chemical. The ARN
implementation of the Logistic Map was tested against the
recursive relation (5), the details of which are given in our

previous work [13]. The frequency distribution gained from
the ARN is identical to that of (5).

V. METHODOLOGY

In the following experiments, multiple cytobots are
instantiated and used to model aggregating and vegetative Dd
cells, where each cytobot represents a cell. Two sets of
experiments are performed: aggregation (AG) and foraging to
aggregation (AGF). In the AG experiments (AG1-10 of Table
2) only the aggregative phase is modeled, where each
experiment is performed at varying population densities of
cytobots (p) and different ranges of detection of cAMP (r). In
experiments AGF3 and AGF8 the vegetative and aggregative
phases are simulated (and the transition between these phases)
using the same population density and range as experiments
AG3 and AG8 respectively. The emergent patterns, numbers
of mounds, and length of time to complete phases is examined
and compared in both sets of experiments.

In the AGF experiments, the environment is initialized
with a radially outward decreasing gradient of food as
described by (6), where x and y are on the horizontal plane.
Here the cytobots remain in foraging mode until the food
resource is depleted and starvation mode is triggered. In a real
environment food is non-uniformly distributed, may be
regenerated and can move (in the case of bacterial prey). Thus,
this setup is highly simplified, but is comparable to other
simulations [14].

 22 yxz (6)

The results of the AGF experiments are compared with
those of the AG experiments, where, the environment never
contains food, thus agents immediately enter and stay in the
starvation mode. The agents’ behavior is initially explored at
biologically realistic p and r values and compared with the
behavior of the actual organism and other simulations. These
parameters are then extended outwith the biological range in
order to examine the emergent properties of the system. The
Cytobots move within a simulated 2D environment of area
5.06 mm

2
- approximately half the maximum recorded

aggregation territory [9]. Each pixel represents 4.5 μm and the
grid is 500 × 500 pixels, giving a total area of 5.06 mm

2
. In

nature, aggregating Dd cell densities are typically 250 per
mm

2
 to 1x10

4
per mm

2
[9]. Due to the computational resources

required to manage a population of cytobots within the upper
range, two cell densities of 250 agents per mm

2
 (1250 agents)

and 150 per mm
2
 (750 agents) were chosen. In all

experiments, the agents are initialized at random positions
within the simulated environment. Foraging cytobots consume
food at each passing location, while those in starving mode
emit a cAMP signal at equal strength around their
circumference into the environment. This cAMP signal is
detected by other agents within or equal to r. If an agent in
foraging mode detects cAMP it will switch to starvation mode
behavior.

In these experiments a range of r values are explored (see
Table 2), including that of real cells of 1, 0.5, and 0.1 mm [8].

A67

The actual cAMP signal degrades linearly with increasing
distance (d) from the emitting cell. Each agent detects the
cAMP signal of all starving cells within or equal to r, and a
total value for each direction is calculated. Each cycle
represents 1 minute of time. In this time the agent moves 9μm-
a distance which corresponds to that reported in the literature
[15]. Therefore, after 1 hour motion the agent travels a
distance of 540μm. In reality there are always remaining cells
that do not aggregate, and thus the simulation runs until 95%
of agents are at a distance of less than 0.1mm from their
nearest neighbor.

VI. RESULTS

The results for all 12 experiments are given in Table 2.
Each experiment was performed 100 times. In experiments
AG8-10 and AGF8 the value of r and d are within the ranges
for real Dd cells. These experiments are used to compare the
behaviors and aggregation time with the values for real Dd in
the literature. In experiments AG8-9 and AFG8 mound
formation completes within the range reported for the actual
organism of 9-13 hours [14, 16]. These results are comparable
with other work. For instance, in [14] the aggregation time
reported was 11.6 hours for a cell density of 200mm

2
. In

experiment AG10, the population never satisfied the criteria
for completion of mound formation. The likely explanation is
firstly because the simulation does take into account
glycoprotein’s which allow aggregating cells to attach together
on contact. Furthermore, because r is small, fewer agents are
detected by each cytobot. Thus higher numbers of
momentarily larger clusters with higher attraction strength go
undetected and quickly dissipate. In the AG experiments
increasing p by 100mm

2
the number of mounds formed at each

r decrease with the exception of experiment AG6. This is not
surprising, as denser populations should have more chance of
interacting, and thus form fewer clusters, but with higher
numbers of agents. Similarly, decreasing r results in a general
increase to the number of mounds formed at both values of p.
In the AGF experiments, agents generally focus on consuming
food in each remaining highest concentration area (see Fig.
4K-L). Having consumed almost all the food, agents begin
switching to starvation mode (Fig. 4M). In these experiments
the number and location of resulting mounds differs from that
of the AG experiments at the same values of r and d. For
example experiment AG8 results in 4.3 mounds while AGF8
results in 6.8 mounds with a general shift in mound formation
further away from the centre of the environment (as shown in
Fig. 4).

Fig. 4. Screenshots of the Dd simulation. Dots represent the cytobots (black- vegetative and red- aggregative cells), and greyscale color represents the food

distribution. A-E: Cytobot aggregation experiment AG8 at A- 1hr, B- 2hr, C-5hr, D- 8hr, E- 10hr; Image F- real Dd cells aggregating; G- Lower right hand corner
of image C demonstrating streaming behavior; H-J Shows pattern formation; K-O Cytobot experiment AGF8 at K-0hr vegetation, L-4hr vegetation, M-transition

to aggregation 0hr aggregation, N-5hrs aggregation, O-10hr aggregation.

Diagram F courtesy of T, Gregor, Laboratory for the Physics of Life, Princeton University, 2013 Used with permission.

A68

The likely explanation for this is that, at the time of switching
to aggregation, the majority of cells had been forced outward,
toward the next remaining highest concentration of food.
Emergent behaviors and clustering patterns similar to the
biological organism were also observed. As previously
discussed, the cytobots are polarized. Implementing the agents
in this way allowed us to observe whether or not the
previously described streaming behavior occurs. A close-up of
the right-hand corner of screenshot C is shown in Fig. 4G
showing agents beginning to form a cluster. The protruding
head of each agent can be seen clearly, where each lines up its
head to the rear of another agent and forms a stream. As can
be seen in Fig. 4F, this is very similar to the streaming
behavior in real cells of Dd. Other emergent patterns occurred
during different experiments including spirals (Fig. 4H),
symmetric patterns (Fig. 4I), and waves (Fig. 4J).

TABLE II CYTOBOT SIMULATION RESULTS

No. Density
(p) per

mm2

Range
(r) in

mm

Mean No.
of mounds;

(σ)

Aggregation Phase
Mean time in Hours;

(σ); *Literature 9-13

hours

AG1 150 5 1
(0)

8.98
(0.09)

AG2 150 2.5 4

(0.31)

9.63

(0.17)

AGF3 150 1 5.9

(1.16)

9.47

(0.65)

AG3 150 1 5.2

(0.82)

9.92

(0.34)

AG4 150 0.5 8.4
(1.19)

10.23
(0.59)

AG5 150 0.1 14.2

(2.36)

10.6

(1.82)

AG6 250 5 1
(0)

8.95
(0.11)

AG7 250 2.5 1

(0)

9.6

(0.20)

AGF8 250 1 6.8

(1.81)

9.71

(0.87)

AG8 250 1 4.3

(0.37)

10.05

(0.58)

AG9 250 0.5 6.7

(1.62)

12.65

(1.94)

AG10 250 0.1 - -

VII. CONCLUSIONS

The results of the Dd experiments presented above show
that ARN-agents are able to simulate individual behaviors,
stigmergic interactions and emergent behaviors of unicellular
organisms by combining structural motifs found in real
biochemical networks. This highlights a potential use as a
means to simulate groups of interacting cells - such as a
bacterial colony or tissue component within a multicellular
organism, including the effects of disease (e.g. faulty gene
expression) and pharmaceuticals on global behavior. The
results demonstrate the parallels between ARN agents and the
biological counterpart from which they were inspired. Like
amoebae, their internal network of spatially distributed
dynamic chemical species allows them to autonomously

coordinate and direct their movement, recognize and respond
to patterns in the environment, and produce high-level
behavior. This application demands an internal control system
which can function without reference to other agents within
the environment which are operating in parallel.

In future work, it is intended to further investigate ARN-
agents in biological simulations. Importantly a study into ways
in which the pathways of ARN-agents can be evolved and
how such agents can learn and adapt to the environment
autonomously.

REFERENCES

[1] P. Dittrich, J. Zeigler, and W. Banzhaf, “Artificial Chemistries- a
reivew”. Artifi. Life vol. 7, no. 3, pp. 225-275, 2001.

[2] C. E. Gerrard, J. McCall, G. M, Coghill, and C. Macleod, “Artificial
Reaction Networks,” Proceedings of the 11th UK Workshop on
Computational Intelligence, Manchester, UK, pp. 20-26, September
2011.

[3] C. E. Gerrard, J. McCall, G. M, Coghill, and C. Macleod, “Temporal
patterns in Artificial Reaction Networks,” Proceedings of The 22nd
International Conference on Artificial Neural Networks Lausanne, part
1, vol. 7552, pp. 1-8, September 2012.

[4] C. E. Gerrard, J. McCall, G. M. Coghill, and C. Macleod, “Adaptive
Dynamic Control of Quadrupedal Robotic gaits with Artificial Reaction
Networks,” Proceedings of The 19th International Conference on Neural
Information Processing Doha, vol. 7663, part 1, pp. 280-287, November
2012.

[5] D. Bray. “Protein molecules as computational elements in living cells,”
Nature, vol. 376, no. 6538, pp. 307-12, 1995.

[6] J. J. Tyson, and B. Novák. "Functional motifs in biochemical reaction
networks." Annu. Rev. Phys. Chem., vol. 61, pp. 219-240, 2010.

[7] P. Kreyssig, P Dittrich, “Reaction flow artificial chemistries,” Advances
in Artificial Life, ECAL 2011: Proceedings of the Eleventh European
Conference on the Synthesis and Simulation of Living Systems, pp. 431-
437. MIT Press, 2011.

[8] C. P McCann, P. W. Kriebel, C. A. Parent, W. Losert, “Cell speed,
persistence and information transmission during signal relay and
collective migration,” J. Cell. Sci., vol. 123, pp. 1724-1731, 2010.

[9] J. C. Dallon, and H. G. Othmer, “A discrete cell model with adaptive
signaling for aggregation of Dictyostelium discoideum,” Phil. Trans. R.
Soc. B, vol. 352, no. 1351, pp. 391–417, 1997.

[10] R. H. Kessin, “Making Streams,”Nature, vol. 422, pp. 481-482, 2003.

[11] S. M. Ulam and J. von Neumann, “On combinations of stochastic and
deterministic processes,” Bull. Amer. Math. Soc, vol. 53, pp. 1120,
1947.

[12] V. Patidar, K. K. Sud, and N. K Pareek, “A Pseudo Random Bit
Generator Based on Chaotic Logistic Map and its Statistical Testing,”
Informatica, vol. 33, pp. 441-452, 2009.

[13] C. E. Gerrard, J. McCall, G. Coghill and C. Macleod. “Artificial
Chemistry Approach to Solving Search Spaces using Artificial Reaction
Network Agents”, Presented at the IEEE Congress in Evolutionary
Computing, Cancún, Mexico, 2013, in press.

[14] M. Becker. “Simulation model for the whole life cycle of slime mould
Dictyostelium Discoideum,” Proceedings of the European conference on
modeling and simulation, pp. 247-253, 2010.

[15] J. L. Rifkin. and R. R. Goldberg. “Effects of chemoattractant pteridines
upon speed of D. discoideum vegetative amoeba. Cell Motility and the
Cytoskeleton,” vol. 63 no.1, pp 1-5, 2006.

[16] D. A. Cotter, T. W. Sands, K. J. Virdy, M. J. North, G. Klein, M. Satre,
“Patterning of development in Dictyostelium discoideum: factors
regulating growth, differentiation, spore dormancy and germination,”
Biochem. Cell Biol., vol. 70, no. 10-11, pp. 892-919, 1992.

A69

A70

Paper 5: ‘Artificial Chemistry Approach to Exploring Search Spaces
using Artificial Reaction Network Agents’.

Reference:
Gerrard, C., McCall, J., Coghill, G., and Macleod, C. (2013) ‘Artificial chemistry

Approach to Exploring Search Spaces using Artificial Reaction Network Agents’,

Congress on Evolutionary Computation (CEC)’, IEEE, Cancún, pp.1201-12.

Artificial Chemistry Approach to Exploring Search

Spaces Using Artificial Reaction Network Agents

Claire E. Gerrard, John McCall, Christopher Macleod,

IDEAS Research Institute,

Robert Gordon University,

Aberdeen, Scotland.

c.e.gerrard@rgu.ac.uk, j.mccall@rgu.ac.uk,

chris.macleod@rgu.ac.uk

George M. Coghill,

Department of Computing Science,

University of Aberdeen,

Aberdeen, Scotland.

g.coghill@abdn.ac.uk

Abstract— The Artificial Reaction Network (ARN) is a cell

signaling network inspired representation belonging to the

branch of A-Life known as Artificial Chemistry. It has properties

in common with both AI and Systems Biology techniques

including Artificial Neural Networks, Petri Nets, Random

Boolean Networks and S-Systems. The ARN has been previously

applied to control of limbed robots and simulation of biological

signaling pathways. In this paper, multiple instances of

independent distributed ARN controlled agents function to find

the global minima within a set of simulated environments

characterized by benchmark problems. The search behavior

results from the internal ARN network, but is enhanced by

collective activities and stigmergic interaction of the agents. The

results show that the agents are able to find best fitness solutions

in all problems, and compare well with results of cell inspired

optimization algorithms. Such a system may have practical

application in distributed or swarm robotics.

Keywords— Artificial Reaction Networks; Artificial Chemistry;

Swarm Robotics

I. INTRODUCTION

Single celled organisms display an astonishing array of
complex behaviors. Some can avoid light with photo-sensitive
spots; some actively hunt prey; while others can build
protective shelters [1]. Such behaviors improved these
organisms’ chances of survival through the process of natural
selection. In recent years a growing body of research has
illuminated the remarkable capabilities of single cells to store
and process information [2, 3]. The mechanisms involved are
quite different from those of a digital computer. Within a cell,
the current state is represented as a set of spatially distributed
concentrations of chemical species. This data is processed by
vast networks of chemical reactions termed cell signaling
networks (CSNs). In this way, cells are able to respond to
current environmental conditions, communicate with other
cells, and perform internal self maintenance operations.

Several researchers have highlighted the processing
capabilities of these networks [2, 4, 5] and similarities to
Artificial Neural Networks (ANNs) [2, 5]. For example, it has
been demonstrated that such networks can perform Boolean
and fuzzy logic functions and are equivalent to a Turing

machine [2, 4]. Furthermore, CSNs contain topological features
such as feedback loops and interconnectivity, thus forming
highly complex systems [2, 5, 6].

It is possible to abstract the computational properties of
such chemical processing to create a type of model called an
Artificial Chemistry. Artificial Chemistry is a subfield of A-
Life, and in its broadest sense, it describes man-made systems
which are similar to real chemical systems [7]. In previous
work, a new Artificial Chemistry representation of CSNs- the
Artificial Reaction Network (ARN) was introduced and
investigated as a means to control limbed robots [8, 9, 10].

Our first aim is to show that an ARN network can be
instantiated and used as the internal control system for multiple
instances of cell-like autonomous distributed agents. Like
biological cells these agents react to their environment, and
stigmergically communicate to facilitate collective emergent
behavior. Our second aim is not to present a new optimization
algorithm; rather it is to show that these agents can perform a
range of useful search behaviors in a variety of situations, and
that their search strategy can compare to that of established
optimization algorithms using similar cell inspired strategies.
The agents are placed within a simulated environment with the
task of finding the global minima of a set of well-known
benchmark problems. The search spaces chosen are not high
dimensional, but chosen to reflect problems which situated
robotic agents could perform in real world environments.

The paper is structured as follows: section 2 provides an
overview of the ARN representation; this is followed by an
overview of the ARN agents in section 3. The experimental
details are discussed in section 4 followed by results in section
5. Finally section 6 presents the conclusions.

II. ARTIFICIAL REACTION NETWORKS

A full account and verification of the ARN representation
can be found in our work [8, 9, 10]; thus to preserve space only
a brief summary is provided here.

The ARN comprises a set of networked reaction nodes
(circles), pools (squares), and inputs (triangles) as shown in
Fig. 1. Each pool stores the current available chemical species
concentration (avail); this concentration represents data within

A71

the system. Thus, the complete set of pool concentrations at
time t, corresponds to the current state of the system. Inputs are
a special type of pool, the only difference being that they are
not updated by flux at each time step, and are used to represent
continuous concentrations, for example, environmental inputs
or enzymes. Each circle corresponds to a reaction unit,
representing a reaction between a number of chemicals. Data is
processed by reaction nodes transforming incoming pool
values to connected outgoing pool values. Connections
symbolize the flow of chemical into and out of reaction units
and their weight (w) corresponds to reaction order.
Connections provide the facility to create complex control
structures using combinations of inhibitory and excitatory
connections. Fig. 1 shows the reaction between species A and
B to produce species C. At time interval ∆t, each reaction unit’s
temporal flux value is calculated by applying Euler’s
approximation to the differential rate equation as shown in (1).

Fig. 1. The Artificial Reaction Network representation.

tCKBAKC CBA W
availCr

W
avail

W
availCf

)()((1)

 D

W

W
CCC

C

C

availavail

 (2)

Where:

A, B, C, D = Species Concentrations

W = Reaction order (weight)

avail = Available species concentration

Kf = Forward rate constant

∆C = Change in species concentration C

Kr = Reverse rate constant

α=sum of other incoming weights

This value is then used to update the current concentration

of each reaction’s connecting pools as shown in (2). Pools may

asymptotically approach 0, and thus below a particular

threshold a pool is considered empty and its value set to zero.

A reaction step may proceed if it meets its preconditions.

Preconditions are met if incoming inhibitory pools are inactive,

and incoming excitatory pools are active. In a similar way the

completion of a reaction step will fulfill a number of post

conditions, which depend on the parameters and connections of

the reaction step.

III. ARN CONTROLLED AGENTS

In the following experiments a number of autonomous
ARN controlled software agents termed “cytobots” (“cyto”
from Greek for cell, and “bot” from robot) are created and
initialized within an artificial environment containing a nutrient
landscape. The cytobots task is to find the maximum food level
by moving around within this simulated environment in as few
evaluations (reading the value of food at the current position)
as possible. Similar to the way in which a CSN acts as the
control system to a cell, the behavior of each cytobot is
controlled by its own instance of an ARN network. In this way,
the ARN directs the agent’s movement, enables the agent to
react to situated environmental patterns, and allows it to
stigmergically communicate with other cytobots to contribute
to higher level function. The cytobot ARN network was
designed to produce two simple behavioral modes: foraging
and starvation, both are based on the movement patterns of
unicellular organisms. Cytobots forage by performing a biased
random walk behavior while consuming food at each passing
location. This pattern of movement is exemplified by the
bacteria Escherichia coli (E. coli), where foraging cells
alternate periods of runs (forward motion) and random
redirections known as tumbles. By comparing concentrations
of attractants and repellants in a temporal fashion, the organism
is able to reduce the frequency of tumbles up concentration
gradients of attractants, and down gradients of repellants, thus
providing the bias. This behavior implements a type of
optimization where biased periods of movement in the
direction of attractants lead to overall travel toward more
favorable conditions [11].

The starvation behavior is based on the pattern of motion
displayed by starving cells of the cellular slime mould
Dictyostelium discoideum (D. discoideum). During the
vegetative stage of D. discoideum, cells move up gradients of
folic acid secreted by its bacterial prey. When the food resource
has been depleted, the amoebae begin to starve and enter the
aggregation phase of their life cycle. During aggregation,
starving cells secrete cAMP (cyclic adenosine monophosphate)
which serves as a signal to attract surrounding amoebae
towards a central location [12]. In this simulation, when the
cytobots enter starvation mode, the level of food surrounding
the agent represents corresponding levels of attractant cAMP.
When a cytobot travels over areas of low or zero food it enters
the starvation mode. Instead of turning in a random direction,
the new direction is weighted toward higher concentrations of
food within its surrounding area. This behavior forces
exploration of unexplored search space because previously
visited positions have a food level of 0.

A72

Fig. 2. The cytobot ARN network. Each cytobot is controlled by an instance of this network. The network is composed of 6 subnetworks

Consumption of environmental food therefore serves as a
stigmergic signal, where agents are inclined to move up the
nutrient gradient created by their foraging activities. The
cytobot ARN was designed to perform the starvation and
foraging behaviors described above and is composed of 6
subnetworks as shown in Fig. 2. Each subnetwork contributes a
functional aspect to either or both starvation and foraging
behaviors. The subnetworks are discussed below.

A. The Master Oscillator

The master oscillator functions to synchronize all the
outputs from all the other subnetworks together and is what
each agent references at each time step to ascertain its current
behavior. It is a simple closed loop, with a token unit of
chemical cycling around it. It consists of 4 reaction units: M0,
M1, M2, and M3 (all with reaction rate of 1) and 4 pools MA,
MB, MC and MD. Each pool activates one of three behaviors,
and for every time step that a particular pool contains the token
unit, its corresponding behavior is performed. Pool MA
activates turn, MC activates run and pools MB and MD
activate stop. If these pools were switches to motor actuators
on a simple wheeled robot, pool MC would switch on all wheel
motors, while pool MA would switch on wheel motors on the
left side only, thus turning the robot. The remaining pools
would act as off switches. The other subnetworks inhibit or
excite the reaction units of the master oscillator to allow or
prevent chemical flow. The number of time steps that a
chemical is present in a particular pool indicates the length of
time that a particular behavior is performed. Thus if pool MC
contains a chemical for 10 time steps, then the agent will move
forward for 10 time steps; similarly if this were pool MA, the
agent would turn for 10 time steps.

B. The Food Network and The Run Length Network

The food network senses the level of food within the
environment and connects to the run length network to modify
the number of steps forward according to the level sensed. The
value of food at the cytobots’ current position is stored at input
pool FA. The forward rate of reaction node F0 is 1, thus the
content of FA is transferred to pool FB in a single time step.
The presence of chemical in pool FB inhibits the run network
reaction R0 for a number of time steps according to the level of
food (by setting forward rate of unit F1 to 1 and weight to 0
this can be an exact correlation). This in turn stops pool RC in
the run length network from emptying. Pool RC inhibits
reaction M2 of the master oscillator thus preventing pool MC
from emptying for the same number of time steps. As
discussed previously, the number of time steps which pool MC
contains the token unit represents the number of time steps to
move forward.

C. The Signaling Network

The signaling network functions as a switch between
starvation and foraging mode. Low food levels trigger the
starvation response and allow the weighted direction network
to control each new angle. Sufficient food will switch off the
weighted direction network and allow the chaotic network to
control each new angle. It is a simple closed loop with a token
unit of chemical flowing around it. Pool CA acts as a switch
between foraging and starvation behavior, where the presence
of chemical in CA inhibits the weighted direction network-
while its absence switches on the weighted direction network;
this in turn inhibits the chaotic network, as shown in Fig. 2. In
this component, all reaction units have a forward flux of 0.5;
which ensures a minimum number of time steps for each
behavior.

A73

D. The Weighted Direction Network

The weighted direction network senses food within the
agents’ immediate environment and calculates a tumble angle
which is weighted toward higher food levels. This network
interfaces with the environment via a number of receptor pools
(AW, ANW, AN, ANE, AEA) which sense the level of food
around the cytobot. These pools represent receptors positioned
at points around the front of its perimeter, allowing the agent to
travel in a similar way to that of a polarized biological cell. For
example, during the aggregation phase of their life cycle, D.
discoideum cells are polarized, and one side becomes the
leading edge which always faces in the direction of travel [12].
For each receptor input pool, there is a static pool containing a
fixed level of chemical in correspondence to its direction.
Directions start from AW (west) with a corresponding numeric
value of 0 (A00) and progress in 45 degree steps through each
direction to east. As the receptor positions around the agent are
fixed, directions are always relative to that in which the agent
is facing. All connections have a weight of 1 with the exception
of the connection between pool AD and reaction A12 which
has a weight of -1. This negative connection raises the sum of
food detected in pool AD to -1, which multiplied by AB,
allows an average angle to be calculated.

The calculated angle interfaces with the remaining
subnetworks at pool AE. In an actual organism receptors are
set around the cell perimeter and direct movement
appropriately. In this simulation, for simplicity, a count of the
number of time steps that MA contains the token unit is
processed to gain the turn angle relative to the agents’ current
heading using (3). Thus if the number time steps is 120 and
the agent is facing north, then the current heading would equal
0 and the new heading would equal 30.

 360mod))90((cnh (3)

Where:

h= new heading

n = count of time steps pool MA contained chemical

c = current heading

E. The Chaotic Network

The chaotic network, as shown in Fig. 2, is responsible for
generating pseudo random angles which agents use to perform
the foraging tumble behavior. It is a networked
implementation of a Logistic Map, see (4). Without prior
knowledge of the initial conditions the output of the logistic
map is unpredictable, whereas with prior knowledge it is
deterministic- therefore the series cannot be described as truly
random but as pseudo random. Its output has long been
proposed as a pseudo-random number generator. Ulam and von
Neumann [13] were the first to examine this and it has been
successfully used in this capacity by several researchers [14].
The probability density distribution of the Logistic Map is non-
uniform and is described by (5) [14]. When λ=4 the
distribution is “U” shaped with higher probability of values
closer to the minima and maxima of X and symmetric

distribution at the midpoint. The general shape of the
distribution is invariant for the complete range of state
variables from 0 to 1.

)1(1 nnn XXX (4)

Where:

Xn= state variable of value 0 ≤ Xn ≤ 1

λ= system parameter of value 1 ≤ λ ≤ 4

)1(

1
)(

XX
XP

 (5)

Where:

P(X) = probability of X occurring

The chaotic network component, as shown in Fig. 2, operates

in the following manner. At the start of the simulation, the

pools KA and KB of each cytobots’ chaotic network are

initialized to the same random value between 0 and 1 (to 5

decimal places). This represents the first value of X where X

is the state variable of (4). All the other pools are initialized to

0 with the exception of the static pools KI and RK whose

initial values are 360 and 1 respectively. Reaction K2 is

responsible for generating each new value of X and has a

forward and reverse rate of 4 (the logistic map exhibits chaotic

behavior when λ is 4). The connection between KA and K2

has a weight of 1 and the connection between K2 and KB has

a weight of 2. The remaining series of reactions function to

copy the value of X 3 times, where 2 copies serve as the new

initial values of KA and KB and the remaining copy

participates in the final output of the network at KH. Static

pool KI has a fixed value of 360 which in reaction K0, allows

the network to convert the pseudo random number at KH to an

angle value between 0 and 360. However, reaction K0 cannot

proceed until all 11 pools that inhibit it are empty. These

inhibitory connections ensure that random angles are not

output while the agent is in starvation mode, and that pool AE

is empty before adding more chemical.

The ARN implementation of the Logistic Map was tested

against the recursive relation shown in (4). The results

generated for (4), were obtained using Matlab, where λ=4,

initial X = 0.927725, and iterated 100000 steps. The complete

range of state variables between 0 and 1 were divided into 100

equal subintervals and the frequency of occurrence of each

subinterval interval was plotted. Similarly, the chaotic network

component of the ARN was run for 100000 cycles, using the

same parameters of X and λ. These results were processed in

the same way and are shown in Fig. 3. The frequency

distribution gained from the ARN is identical to that obtained

using matlab and by other researchers using the same

parameters [14]. The same comparison was repeated 100 times

at different values of X, and the ARN consistently produced

the same values as (4).

A74

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

X-Value

F
re

q
u
e
n
c
y
 C

o
u
n
ts

Fig. 3. Frequency distribution for each value of X resulting from the chaotic

network when the first value of X is 0.927725 and λ=4

IV. METHODOLOGY

In the following experiments, cytobot agents are applied to the
task of finding the minima in a number of benchmark 2D
optimization problems. These are the following functions:
Rosenbrock, Peaks, Inverted sinc, and Bowl (see Table 1 for
formulae, domains, and minima). Three experiments were
performed for each function, where each uses either 1, 3 or 6
cytobots and is performed 100 times. The task of the agents is
to find the minima of the functions within as few evaluations
(reading value of food at current x, y coordinate) as possible.
The range of output values for each of the functions represents
the concentration of food (also the fitness of an agent at that
point) within a simulated environment. Values approaching the
minima represent higher food levels, and values approaching
the maxima represent lower food levels. The simulated
environment consists of a 2D area of 400 x 400 pixels. A
scaling factor is used to map the domain to the actual
dimensions of the simulation, e.g. Rosenbrock domain of [-2,
2] mapped to a simulation space of [-200, 200] by a scaling
factor of 100. For display purposes, a corresponding grayscale
color is used to show the distribution of food within the
environment as displayed in the screenshot of the simulation in
Fig. 4. Each agent consists of a token to mark its current
position and an instance of an ARN network, as discussed in
section 3. At the start of each experimental run, each agent’s
ARN network is initialized as described in section 3, and each
is positioned at random x,y coordinates within the search
space. The agents undergo alternating phases of “searching”
and “repositioning,” for a number of cycles until one reaches a
position of within 0.04 of the global minima of the function.
This value was chosen as it is within 1% of the global minima
for all the functions used. The high level pseudocode
describing the searching and repositioning phases is provided
in Fig. 5. Searching is characterized by the 2 ARN controlled
behaviors- foraging and starvation, as described in section 3. In
each search phase each agent performs a total of 3 moves (3
evaluations of the environment). The length of a run

corresponds to the number of pixels a cytobot moves forward
and is subject to the output from the run length network. After
each tumble, and before moving forward, the food level at the
current position is input into the ARN network as described
previously. The agents travel at a speed of 1 pixel per time
step, thus the number of time steps produced by the run length
network corresponds directly to the number of pixels the agent
moves forward. As a cytobot travels, the food at each passing
position is consumed and its path within the simulation is
represented in black (as shown in Fig. 4). During the search
phase, a central control unit, external to all cytobot agents,
keeps track of each cytobots best fitness and the coordinates of
that value.

Let },,{
N

aaA o equal the set of all agents

N

a
atot ff

0

 (6)

*}{\ Then aAa

tot

a
ra

f

f
f (7)

 *aaax xxd (8)

 *aaay yyd (9)

raax

N

a
ax fdxp

0

* (10)

raay

N

a
ay fdyp

0

* (11)

 xa prrandx)((12)

 ya prrandx)((13)

Where:

a*= agent with highest fitness

fa= fitness of agent an

ftot= total fitness of all agents

fra= ratio of agent an fitness to ftot

xa*= the x coordinate of a*

ya*= the y coordinate of a*

xa= agent an x coordinate

ya = agent an y coordinate

dax=difference between xa and xa*

day= difference between ya and ya*

px=total of all dax

py= total of all day

rand(r)= a random value within a defined radius r

A75

INITIALISE cytobots
WHILE (best fitness outwith 0.04 of global minima)

 START search phase
 WHILE (more searching phase moves)

 FOR each agent start searching phase

 Turn agent
 Set receptor pools of food network

 Set receptor pools of weighted direction network

 Move agent forward
 IF (new food level > previous food level)

 Record fitness

 Record current position
 END IF

 END FOR

 ENDWHILE
 END search phase

 START reposition phase
 CALCULATE new central point P to reposition

 INITIALISE agents at new position

 END reposition phase
 END WHILE

Fig. 4. A screen shot of the simulation showing 6 cytobots in the inverted

sinc search space. The greyscale color represents the food distribution.

Fig. 5. High level pseudocode for each experiment

After completing the searching phase, agents switch to the
repositioning phase. This phase is used to focus searching
toward areas containing higher food levels and is inspired by
stages of the life cycle of D. discoideum. Having depleted the
level of nutrients within the immediate environment, D.
discoideum cells begin to starve, and aggregate to form a slug.
The slug travels in the direction of more favorable conditions
by moving toward attractants such as light, warmth, and
humidity. On finding a suitable location, it eventually forms a
fruiting body which disperses spores within its immediate
surroundings. The spores mature into cells, and begin foraging
within the new environment [12]. When the cytobots enter the
repositioning phase, the central control unit processes each
agent’s best fitness position to compute a new central point P,
weighted in favor of higher fitness, as described by equations
(6-13). Agents are then repositioned randomly within an area

of radius r from point P to begin the next search phase. For the
purposes of this simulation travelling to the new position was
not modeled, as this does not affect overall behavior and would
only occur if the cytobots were applied to real world
environments.

V. RESULTS

The experimental results are displayed in Table 1. For each
experiment, the average best, fa, and best solution, fb, for 100
independent runs are presented. The average number of
evaluations and the standard deviation for all agents is
displayed as “Avg Eval for all agents” and “Std Dev”
respectively. The average number of relocations for each agent
is presented in the final column as “Avg Reloc per agent”.

In all experiments the cytobots were able to find the global
minima. Cytobots performed best in Bowl and Rosenbrock
functions, where, using 6 cytobots, the average number of total
evaluations and relocations per agent respectively for Bowl
was 56.4 and 2.1 and for Rosenbrock was 79.8 and 3.4. The
cytobots performed least well in the Inverted Sinc search space,
where the lowest number of total evaluations was 94.8 using 6
cytobots. In all the experiments, a slight increase in the number
of cytobots generally results in a significant reduction in the
total number of evaluations performed. This is most significant
for Peaks where using 3 and 6 cytobots results in
approximately 30% and 60% respective reductions in the total
number of evaluations when compared to the results for 1
cytobot. The Mann Whitney U test was used to determine any
significant (95% confidence) statistical difference in the total
number of evaluations between experiments using 1 and 3 and
3 and 6 cytobots. In all experiments there was a significant
difference between 1 and 3 agents, with the exception of the
Inverted Sinc function. In Peaks there was a significant
difference in all experiments, while in the Inverted Sinc there
was no significant difference found. Thus increasing the
number of cytobots from 1 to 3 both reduces the time to find
the global minima and the number of evaluations, but this
effect can be quickly reversed if too many cytobots are added.

The paths of agents through the search space indicate
reasons for variation in results. In simple landscapes such as
Bowl, agents descend steadily toward the minima, as shown in
Fig. 6. Similarly in Rosenbrock, agents quickly descend to the
narrow valley and are forced to steadily move along it by
moving up the nutrient gradient created by the consumption of
food, until finding the global minima. In Peaks, agents move
from their initial positions and search many parts of the
domain. Fig. 7 shows the agents’ trajectories, one can see that
peaks are avoided and troughs are pursued. However, if fewer
agents are used they may quickly become trapped in local
minima causing a significant rise in the number of evaluations.
Increasing the number of agents by a small amount expands
the amount of search space explored per cycle, and increases
the chance of finding better solutions and/or leaving local
minima. Another possibility is to increase the number of
moves for each searching phase, thus allowing an agent to
travel a sufficient distance to escape local minima. Similar
solutions could be adopted in the Inverted Sinc function.

A76

Fig. 6. Typical path of 1 cytobot in Bowl search space

Fig. 7. Typical path of 3 cytobots in Peaks search space

TABLE I. CYTOBOT AGENTS 2D SEARCH SPACE RESULTS

Functions No. of

Agents

Formulae Avg (fa)

Best and

Best (fb)

Results

Domain f(x*) = f* Avg Eval

for all

agents

(Std

Dev)

Avg

Reloc

per

agent

Rosenbrock’s

Function

1 2
1

22
12)1()(100)(xxxxf

fa =

0.04

fb = 0

]2,2[, 21 xx 0)1,1(f 98.5

(16.3)

32

Rosenbrock’s

Function

3 As above

fa =
0.03

fb = 0

As above

As above

84.6
 (9.5)

8.4

Rosenbrock’s

Function

6 As above

fa =
0.01

fb = 0

As above

As above

79.8
 (4.8)

3.4

Bowl 1 2
2

2
1)(xxxf fa =

0.03

fb = 0

]1,1[, 21 xx

0)0,0(f 81.9
(14.8)

26.3

Bowl 3 As above fa =
0.02
fb = 0

As above As above 64.2

 (7.6)

6.1

Bowl 6 As above fa = 0.02

fb = 0

As above

As above

56.4

 (5.8)

2.1

Peaks 1

))1(exp(3/1

)exp()5/(10

))1()(exp()1(*3)(

2
2

2
1

2
2

2
1

5
2

3
11

2
2

2
1

2
1

xx

xxxxx

xxxxf

fa =

-6.51

fb = -6.55

]3,3[, 21 xx

-6.55

)63.1,23.0(

f

 151.7

(59.2)

49.6

Peaks 3 As above fa = -6.51

fb = -6.55

As above As above 108.9

 (17.4)

11.1

Peaks 6 As above

fa = -6.52

fb = -6.55

As above

As above

64.8

 (5.7)

2.6

Inverted sinc

function

1

2
2

2
1

2
2

2
1sin

1)(

xx

xx

xf

fa = -1.04

fb = -1
]10,10[, 21 xx

-1)0,0(f 163.5

(63.4)

53.5

Inverted sinc

function

3 As above

fa = -1.03

fb = -1

As above

As above

109.5

 (30.1)

11.2

Inverted sinc

function

6 As above

fa = -1.03
fb = -1

As above

As above

94.8
 (10.1)

4.2

A77

These results are compared with other optimization
algorithms inspired by behaviors of single celled organisms.
For example, Passino developed the Bacterial Foraging
Optimization Algorithm (BFOA), inspired by foraging
behaviors, reproduction and dispersal events in the life cycle
of E. coli [15]. Like the foraging behavior of the cytobots,
movement is modeled as a biased random walk, where, after
each random redirection, the cell moves forward a length
according to current food levels. In a nutrient hill-climbing
experiment (without swarming effects), 50 cells are initialized
at random starting positions within a 2D search space. This
search space is similar to Peaks but with 5 troughs and a
domain of [30, 30]. Similarly to cytobots the cells tend toward
valleys and avoid peaks. After 4 generations (4 reproductive
steps), and moving 100 chemotactic steps (moves) between
generations, the cells find the global minima.

Similarly in other work, Chen et al applied BFOA using 6
cells to the 2D Bowl function with domain [-5,5], and the
global minima was found within 50 chemotactic steps [16]. In
our experiments, 6 cytobots find the global minima after an
average of 9.4 evaluations, which is the equivalent to 9.4
moves (or 9.4 chemotactic steps in the terminology of Chen et
al). After adjusting for the difference in domain size, the
numbers of moves are highly consistent for cytobots and the
cells in BFOA. In other related work, Monismith et al created
the slime mould optimization algorithm inspired by the life
cycle of D. discoideum [17]. The state space is represented as
a sparse mesh which cells populate and make modifications to,
for example, deposit attractant. Using a combination of
behavioral states inspired by the life cycle of D. discoideum,
artificial cells perform local searches, and move to positions in
favor of their personal best and the best fitness of their
neighborhood. The slime mould optimization algorithm, like
the cytobots, finds the global minima of the 2D Rosenbrock
function.

VI. CONCLUSIONS

The results presented above show that the agents are able to
find best fitness solutions in all problems, and match the
performance of cell inspired optimization algorithms in similar
search spaces. Increasing the number of agents by small
increments (2 or 3), can half the number of function
evaluations required to find the global minima. These
experiments serve as a preliminary to implementing ARN
systems to control real world distributed autonomous robotic
agents. Such agents could be applied to similar search
problems in real world environments, for example oil spill
cleanup operations, where the objective is to travel to higher
concentrations of oil, while consuming it at each passing
location. The cytobots obviously do not compare directly with
conventional optimization techniques like Genetic Algorithms,
since they have a complex internal structure. However this is
not their purpose and they may be much more effectively
utilized as the control systems in autonomous agents. This
application demands an internal control system which can
function without reference to other agents within the
environment which are operating in parallel. By modifying the
environment, (in this case by consumption of food), the agents
can stigmergically communicate and enhance and/or facilitate

emergent behavior. The cytobots offer a unique range of
abilities. Like cells, their internal network of spatially
distributed dynamic chemical species allows them to
autonomously coordinate and direct their movement,
recognize and respond to patterns in the environment, and
produce high-level behavior.

In future work, it is intended to further explore the AI
applications of the cytobot agents, and later, to create swarms
of cytobot robots with applications in real world
environments.

REFERENCES

[1] B. J. Ford, “Are cells Ingenious?,” The Microscope. vol. 52, no. 3-4, pp.
135-144, 2004.

[2] D. Bray, “Protein molecules as computational elements in living cells,”
Nature, vol. 376, no. 6538, pp. 307-12, July 1995.

[3] T. Nakagaki, H. Yamada, and A. Toth, “Maze-solving by an amoeboid
organism,”. Nature, vol. 407, no. 6803, pp. 470-470, September 2000.

[4] A. Arkin, J. Ross, “Computational functions in biochemical reaction
networks,” Biophys. J., vol. 67, pp. 560-578, August 1994.

[5] U. S. Bhalla, “Understanding complex signaling networks through
models and metaphors,” Prog. Biophys . Mol. Biol. vol. 81, no. 1, pp.
45-65, January 2003.

[6] B. Kholodenko, “Cell signaling dynamics in time and space,” Nat. Rev.
Mol. Cell Biol., vol. 7, no. 3, pp. 165-176, March 2006.

[7] P. Dittrich, J. Zeigler, and W. Banzhaf, W. Artificial Chemistries- a
reivew. Artifi. Life vol. 7, no. 3, pp. 225-275, 2001.

[8] C. E. Gerrard, J. McCall, G. M, Coghill, and C. Macleod, “Artificial
Reaction Networks,” Proceedings of the 11th UK Workshop on
Computational Intelligence, Manchester, UK, pp. 20-26, September
2011.

[9] C. E. Gerrard, J. McCall, G. M, Coghill, and C. Macleod, “Temporal
patterns in Artificial Reaction Networks,” Proceedings of The 22nd
International Conference on Artificial Neural Networks Lausanne, part
1, vol. 7552, pp. 1-8, September 2012.

[10] C. E. Gerrard, J. McCall, G. M. Coghill, and C. Macleod. “Adaptive
Dynamic Control of Quadrupedal Robotic gaits with Artificial Reaction
Networks,” Proceedings of The 19th International Conference on Neural
Information Processing Doha, vol. 7663, part 1, pp. 280-287, November
2012.

[11] N. Vladimirov, and V. Sourjik, “Chemotaxis: how bacteria use
memory,” J. Biol. Chem., vol. 390, no. 11, pp. 1097-1104, November
2009.

[12] R. H. Kessin, “Making Streams,”Nature, vol. 422, pp. 481-482, April
2003.

[13] S. M. Ulam and J. von Neumann, “On combinations of stochastic and
deterministic processes,” Bull. Amer. Math. Soc, vol. 53, pp. 1120,
1947.

[14] V. Patidar, K. K. Sud, and N. K Pareek, “A Pseudo Random Bit
Generator Based on Chaotic Logistic Map and its Statistical Testing,”
Informatica, vol. 33, pp. 441-452, 2009.

[15] K. M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control”, IEEE Control Systems, vol. 22, no. 3, pp.52–
67, June, 2002.

[16] H. Chen, Y. Zhu, and K. Hu, “Cooperative bacterial foraging
optimization,” Discrete Dyn. Nat. Soc., vol. 2, no. 1, pp. 501-517,
August 2009.

[17] D. R. Monismith, and B. E. Mayfield, “Slime mold as a model for
numerical optimization,” IEEE Swarm Intelligence Symposium, St
Louis, USA, pp. 21-23, 2008.

A78

A79

Paper 6: ‘Adaptive Dynamic Control of Quadrupedal Robotic gaits
with Artificial Reaction Networks’

Reference:
Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2012) ‘Adaptive Dynamic

Control of Quadrupedal Robotic gaits with Artificial Reaction Networks’, Proceedings

of the 19th International Conference on Neural Information Processing (ICONIP),

Lecture Notes in Computer Science, vol. 7663, part 1, Springer, Doha, pp 280-287.

Adaptive Dynamic control of Quadrupedal Robotic Gaits

with Artificial Reaction Networks

Claire Gerrard1 , John McCall
1
, George M. Coghill

2
 and Christopher Macleod3.

1 Ideas Institute, The Robert Gordon University, Aberdeen, AB25 1HG, Scotland, UK

2 The Department of Computing, University of Aberdeen, AB24 3FX, Scotland, UK
3 School of Engineering, The Robert Gordon University, Aberdeen, Scotland, UK

Abstract. The Artificial Reaction Network (ARN) is a bio-inspired connection-

ist paradigm based on the emerging field of Cellular Intelligence. It has proper-

ties in common with both AI and Systems Biology techniques including Artifi-

cial Neural Networks, Petri Nets, and S-Systems. In this paper, properties of

temporal dynamics and pattern recognition are combined within a single ARN

control system for a quadrupedal robot. The results show that the ARN has sim-

ilar applicability to Artificial Neural Network models in robotic control tasks.

In comparison to neural Central Pattern Generator models, the ARN can control

gaits and offer reduced complexity. Furthermore, the results show that like

spiky neural models, the ARN can combine pattern recognition and control

functionality in a single network.

Keywords: Artificial Neural Networks, Artificial Reaction Networks, Cellular

Intelligence, Biochemical Networks

1 Introduction

Researchers have become increasingly interested in the array of complex behaviors

displayed by the simple, commonly unicellular organisms called protists. Some can

avoid light with photo-sensitive spots; some actively hunt prey; while others can build

protective shelters [1]. Such complex behaviors have led researchers to investigate

how such traits of primitive intelligence might arise. Well known examples of such

work are that by Nakagaki and Yamada, who demonstrated that the slime-mould

Physarum polycephalum was able to solve a simple maze [2]. Similar research by

Saigusa et al showed that this same organism was able to learn and change its behav-

ior in anticipation of the next environmental stimuli [3]. These high level behaviors

are mediated by Cell Signaling Networks (CSNs) [4]. Such networks are composed of

interacting proteins within the cell’s cytoplasm. Several researchers have highlighted

the processing capabilities of these networks and similarities between Artificial Neu-

ral Networks (ANNs) [4-8]. For example, it has been demonstrated that such net-

works can perform Boolean and fuzzy logic and are equivalent to a Turing machine.

Furthermore CSNs contain topological features such as feedback loops and intercon-

nectivity, thus forming highly complex systems [9].

A80

The overall aim of our research is twofold. Firstly, to continue exploration of our

previously developed connectionist representation of CSNs- the Artificial Reaction

Network (ARN) [10], in terms of its possible application in AI. Secondly, to investi-

gate and elucidate mechanisms that contribute to high level behavior or “cell intelli-

gence”, which may help in the understanding of intelligence in its widest sense.

This paper investigates the ability, of the ARN like a CSN, to combine pattern

recognition and control within a single networked system. A complete control system

for a quadrupedal robot is explored, where the ARN responds dynamically to input

patterns by generating the associated temporal pattern or “gait”. The results are com-

pared with those of similar Artificial Neural Network (ANN) models.

The paper is structured as follows: the first section provides an overview of the

ARN representation; this is followed by experimental details and results, and finally

conclusions.

1.1 The Artificial Reaction Network Representation

 Fig. 1. The Artificial Reaction Network (ARN)

A brief summary of the ARN model is given below. A full account is provided in our

previous paper [10]. The ARN, as shown in Figure 1, is a connectionist representation

of a CSN, and is structured in a similar way to an ANN. It comprises a set of connect-

ed reaction nodes (circles), pools (squares), and inputs (triangles). The inputs are ex-

ternal and constant, each pool represents the current available protein species concen-

tration (avail) and each circle corresponds to a reaction unit, representing an interac-

tion (reaction) between a number of proteins. Figure 1 shows the reaction between

species A and B to produce species C. Connections symbolize the flow of species into

and out of reaction units and their weight (w) corresponds to reaction order. Flux

(∆A/∆B/∆C) at ∆t is given by Equation (1). This is derived from the standard Rate

Law equation [11], and is equal to the aggregate of connected incoming pools and

connected outgoing pools raised to n powers of weighted connections and multiplied

by rate constants. At time interval ∆t, each reaction unit’s temporal flux value is cal-

culated using Euler’s approximation as shown in Equation 1. This value is then used

∆D

 tCKBAKC CBA W

availCr
W
avail

W
availCf)()(

1

Aavail

Bavail

WB

∆C
To

Reaction D

Cavail
WA

WC
C

2

A

B

KEY (For Figures 1 & 3)

W : Order

Kf : Forward rate constant

Kr : Reverse rate constant
avail: Available

∆t : Time step

α : Sum of other weights
connected to inputs of unit D

A, B, C, D: Species concentration

 : Excitatory : Pool

 : Reaction Unit : Input

: Inhibitory (Figure 2 only)

A81

to update the current concentration of each reaction’s connecting pools. Thus, the

complete set of pool concentrations at time t, corresponds to the current state of the

system.

 tCKBAKC CBA W

availCr
W
avail

W
availCf)()(

(1)

Where:

A, B, C = Species Concentrations W = reaction order (weight)

avail = available species concentration Kf = Forward rate constant

∆C = Change in species concentration C Kr = Reverse rate constant

2 A Complete ARN System for Robotic Control

By means of their CSNs, cells are able to dynamically recognize and respond to envi-

ronmental patterns [4]. The response is to update the spacio-temporal activations of

intracellular species, which in turn encode the high level behavior of the cell [4, 8]. In

the following experiments the computational properties and AI applications of such

behaviors are explored using a quadrupedal robot.

A single ARN system was created, as shown in Figure 2 and is functionally divid-

ed into 3 components: pattern recognition, control, and a connecting network. This

section first discusses the setup, function, and results of each component separately

before providing the results for the overall system.

2.1 Control Component

The control component is responsible for generating particular temporal patterns,

which correspond to robotic gaits. Terrestrial locomotion of limbed animals is

achieved by multiple phase locked patterns of limb movements known as gaits. For

example, quadrupeds commonly walk, trot and gallop [12]. The gait phase is a value

that ranges from 0 to 1 as the cycle proceeds, and thus each limb can be described

relative to the cycle. The ideal quadrupedal gaits are described by Dagg [12] and oth-

ers [13], and are used as a standard for comparison here and similarly in other studies

[14]. The walk gait is characterized where each leg is a quarter cycle out of phase

with each other. In the trot gait each pair of diagonal limbs move half a cycle out of

phase with one another. Here, the ARN control component was implemented, to gen-

erate the trot and walk gaits of a Lynxsmotion dual-servo quadruped 2 (Q2) robot.

Each robotic leg is controlled by two servo motors, one for each degree of freedom

(DOF), where one raises the leg, the other moves it. Further details of the robot legs

are given by Toth and Parker [15]. Signals are sent by the ARN to each motor and

control the angle of the rotor for each DOF, using a simple position to pulse width

modulator interface circuit to control the servo. The ARN control component is

shown in Figure 2 and consists of two copies of the same network- one for walk, the

other for trot (each labeled). It comprises four identical modules (one module is

A82

shown enclosed in a dotted line), where each controls the two motors (one for each

DOF) of a separate leg.

Fig. 2. The complete ARN control system comprising 3 smaller network components: Pattern

recognition, Connection and Control.

A module comprises 3 reaction units, and 3 pools: A, B and C. Pool A controls the

up/down (U/D) motor, Pool B the back/forward (B/F) motor and Pool C controls the

off period for both motors. Pool activity is regulated by a series of excitatory and

inhibitory connections between reaction units and represents properties of specialized

regulatory proteins common to CSNs such as enzymes. The entire structure is orga-

nized as a closed loop, thus chemical species are recycled to the first module, and

generate a temporal oscillatory pattern. The network structure and parameters were

hardcoded so that the outputs could be directly compared with other published work

on similar Central Pattern Generators (CPGs). However, there is no reason why con-

nection weights cannot be set using an Evolutionary Algorithms as will be shown

later. The gait produced by this network is modified by adjustment of the initial pool

values. For example, initializing one C pool generates a walk gait, where the C pool

chosen will determine the starting leg, and the value determines the angle to which the

leg is raised (the DOF angle). Similarly, a trot gait is achieved by initializing 2 C

pools within alternate modules. The output for the walk subunit is displayed in Figure

3, and shows legs are a quarter cycle out of turn, with phases of 0.0, 0.25, 0.5, 0.75

between limbs in clockwise order from front left (FL) leg. Similarly, the trot gait re-

2

2 6

B

0

C

0
C3 C2 B1 B3 1 11

12 13

03

B3

A2 A3

01

21

21 22

13

23

0

1

2

4

5

C3

23

A

0

B

0

C

0

 B1

0

1

2

A1

01

11 C2

A2

03

4

 6 6

A

0

C1

C1

B2

B2

A1

0

2

02

02

0

1

2

3

0

1

4

5

A3

12

22

0

1

3

0

1

3

5

3

Control ARN: Walk

Pattern Recognition ARN Connection ARN

0
4

5

3

2

1

0

1

0

1

2

4

5

3

4

5

6

7

8

9

Control ARN: Trot

1

 11

1

A83

sults were half a cycle out of turn with phases respectively of 0.0, 0.5, 0.0, 0.5. Both

phase locked limb patterns match the standard, and compare well with other connec-

tionist models. For example, Billard and Ijspeert present a CPG (central pattern gen-

erator) based neural controller for a quadrupedal AIBO robot with 2 DOFs for each

leg [16]. The network is composed of 8 coupled non-linear oscillators and each oscil-

lator consists of 6 leaky integrator neurons (total of 96 neurons). Each neuron imple-

ments an activation approximately as complex as the ARN reaction unit function.

Thus the complexity of this network is equivalent to approximately 96 ARN reaction

units. Similar correspondence is found in other sources. For instance, Collins explores

a CPG based neural controller for a quadrupedal robot with 1 DOF per limb, and

compares 3 types of activation function models. The controller is composed of a net-

work of 4 coupled non-linear oscillators [14], where each oscillator controls a sepa-

rate limb. These models produce gaits within 10% of the standard, whereas the ARN

matches the standard for both gaits. Each model has approximately twice the com-

plexity as the ARN reaction unit, and all require a pulsing signal to drive the network.

Fig. 3. Output generated by ARN controller for walk gait. Solid lines are legs up/down motor,

dashed lines are back/forward motor. Legs move independently in order: FL, FR, RR, RL.

2.2 Pattern Recognition Component

The pattern recognition component serves as the interface between the environ-

ment and the ARN system. Here external concentrations are processed, where particu-

lar patterns switch off or on robotic gaits through the connecting network. The net-

work was trained to recognize 3 patterns, each comprising 4 inputs (triangles 0-3) and

these were associated with 4 output values. Each pattern comprised values of either

0.1, representing low concentration or 1 corresponding to high concentration. This

component (shown in Figure 2) consists of 4 inputs, 7 pools, and 7 reaction units or-

ganized into 2 layers. The associated output generated corresponds to the steady state

values of the final layer of pools (squares 3-6). The input and associated output pat-

terns are given in Table 1. A genetic algorithm (GA) was used to train the network to

associate the required outputs before being connected to the other components. In this

GA a population of 100 solutions was randomly initialized, where each comprised a

complete set of network parameters including the forward and reverse rates for each

unit and the weights for each connection. Due to its temporal properties, the network

was run for 100 cycles (a cycle ends when the complete set of pools are updated once)

in order to obtain steady state output values. The solution fitness was then calculated,

where fitness was the error on output. The least fit half of the population was discard-

A84

ed, and the remainder was subject to rates of 0.4 single point crossover and 10% uni-

form mutation and trained to the target error value of 0.01. On completion of training,

the network was able to associate all 3 patterns within the target error. Although there

is not room for a full comparison, multilayer perceptron ANNs (MLPs) [17] produce

comparable results. However, MLPs lack an explicit time dimension, whereas the

ARN processes continuous inputs over a time period.

Table 1. Patterns applied to the pattern recognition network and their outputs (output is the

input to connection component). Connection component output and expected gait generated.

Pattern Pattern

Recognition

Network

Input Pool

No.

Pattern

Recognition

Network

Input Value

Connection

Network Input

Pool No.

Connection

Network Input

Value (also output

of the pattern

ecognition

network)

Connection

Network

Output Pool

No.

Connection

Network

Output

Value

Gait

1 0 1 0 1 4 1 Inhibit

Walk 1 0.1 1 1

2 1 2 0 5 0 Trot

3 0.1 3 0

2 0 0.1 0 0 4 0 Walk

1 1 1 0

2 0.1 2 1 5 1 Inhibit

Trot 3 1 3 1

3 0 1 0 1 4 1 Inhibit

Walk 1 0.1 1 1

2 0.1 2 1 5 1 Inhibit

Trot 3 1 3 1

2.3 Connection Component and Results for the Complete System

The connecting module functions to process the output from the pattern recognition

network, and produce a signal which switches off/on the required gait. This module

comprises 6 pools and 2 reaction units, as shown in Figure 2. Each input (pools 0-3),

is linked directly to a corresponding output pool of the pattern recognition network

(pools 3-6). Essentially the network operates as two parallel Boolean AND gaits,

where a value of 1 at pools 0 and pool 1 outputs a value of 1 at pool 4, as will a value

of 1 at pools 2 and 3 output a 1 at pool 5.

Table 2. Pattern applied to the network and expected durations of gaits.

Pattern Walk ARN

Network

Trot ARN

Network

Start Time End Time Duration

2 On Off 0 210 210

1 Off On 210 440 230

2 On Off 440 560 120

1 Off On 560 700 140

3 Off Off 700 800 100

Two negative feedback connections between the connecting network and both ARN

control system sub units (shown as dashed line connections) are responsible for

switching between the gaits. Therefore if a value of 1 is output at pool 4, it will inhibit

all the reaction 2’s of the ARN trot subunit, thus stopping the trot gait from being

generated. Conversely if a value of 0 is output at pool 4 the trot will be generated. In

the same way pool 5 controls the switching on/off of the walk control subunit. Table 1

A85

shows the input, and associated output of this component and the range of behaviors

that should be generated in response to particular outputs. The complete system was

tested to confirm its ability to both generate the correct behavior and automatically

transition between the behaviors in response to firing input patterns 0-3. The time

periods in which patterns were applied, and the expected output states are shown in

Table 2. As shown in Figure 4 the on/off periods of both trot and walk gaits are in

agreement with the expected durations displayed in Table 2 with a slight transitional

delay, in order: walk, trot, walk, trot, off. The gait transitions are now compared with

the same models used to compare the ARN controller, and gait phases in section 2.1.

The results given for the Billard and Ijspeert model [16], show smooth transitions

from walk to gallop in approximately 4 leg cycles. The ARN similarly transitions

from walk to trot smoothly within 1 leg cycle. In the Collins paper [14], gaits transi-

tion quickly within approximately 2 leg cycles, whereas the transitions are very irreg-

ular in contrast to the ARN and the Billard and Ijspeert model.

Fig. 4. The output of the complete ARN control system over 800 seconds.

3 Conclusions

The ARN is a bio-inspired connectionist representation based on properties and

mechanisms found in CSNs that together result in emergent behavior or “cell intelli-

gence”. A complete ARN based control system was constructed to dynamically re-

spond to external patterns, where each pattern triggers a specific gait of a quadrupedal

robot. This system was designed to exploit topological features found in CSNs includ-

ing negative feedback, and cycles. It was demonstrated that the ARN, like a CSN, is

capable of both recognizing patterns and controlling overall behavior in a single net-

work. With the exception of spiky models few ANNs can easily achieve this func-

tionality, and thus the ARN provides an alternative in similar applications. The gait

phases and transitions compared well with CPG neural controllers and showed that

the ARN has application in similar robotic control tasks where it can offer lower

A86

computationally complexity. These experiments illustrate how a CSN might perform

the complex processing associated with the high level behaviors displayed by single

celled organisms. Furthermore it shows that abstractions of both neural networks and

CSNs operate in similar ways, and have comparable functionality. Thus this work

illustrates a close relationship between emergent neural intelligence and emergent cell

intelligence.

In future work, it is intended to further explore the AI applications of the ARN, in-

cluding more complex networks that can recognize patterns and control simultaneous

behaviors.

4 References

1. Ford, B. J.: Are cells Ingenious? The Microscope. 52, 135-144 (2004)

2. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature. 407

(6803), 470-470 (2000)

3. Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y. Amoebae Anticipate Periodic Events.

Phys. Rev. 100 (1), 1-4 (2008)

4. Bray, D.: Protein molecules as computational elements in living cells. Nature. 376 (6538)

307-12 (1995)

5. Arkin, A., Ross, J.: Computational functions in biochemical reaction networks. Biophys.

J., 67, 560-578 (1994)

6. Wang, B., Kitney, R.I., Joly, N., Buck, M.: Engineering Modular and Orthogonal genetic

logic gates for robust digital-like synthetic biology. Nat Commun. 2, 508 (2011)

7. Hellingwerf, K. J.: Bacterial observations: a rudimentary form of intelligence. T. I. M., 13

(4), 152- 158 (2005)

8. Bhalla, U. S.: Understanding complex signaling networks through models and metaphors.

Prog. Biophys . Mol. Biol. 81, 41-65 (2003)

9. Kholodenko, B.: Cell Signaling dynamics in Time and Space. Nature Rev. Mol. Cell Biol.

7 (3), 165-176 (2006)

10. Gerrard, C.E, McCall, J., Coghill, G.M., Macleod, C.: Artificial Reaction Networks. In:

Proceedings of the 11th UK Workshop on Computational Intelligence, pp. 20-26. UK

(2011)

11. Morris, J.G. A Biologist’s Physical Chemistry. 2nd ed. Barrington EJW, Willis AJ, editors.

Great Britain: Edward Arnold; (1974)

12. Dagg, A., I.: Gaits in mammals. Mammal Rev. 3:135-154, (1973)

13. Hildebrand, M. Analysis of asymmetrical gaits: J. Mammal. 58:131-156, (1977)

14. Collins, J.J., Richmond, S.A.: Hard-wired central pattern generators for quadrupedal ro-

bots. Biol. Cybern. 71, 375-385 (1994)

15. Toth, D, Parker, G. Evolving Gaits for the Lynx motion Hexapod II Robot. In: Proceedings

of the 7th World Multiconference on Systems, Cybernetics, and Informatics, 3, pp. 229-

234. Orlando, USA (2003)

16. Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for motor control in

quadruped robot. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference

on Neural Networks, pp. 637-641. IEEE, Italy (2000)

17. Yegnanarayana, B. Artificial neural networks for pattern recognition. Sadhana, 19, 147–

169 (1994)

A87

A88

Paper 7: ‘Temporal patterns in Artificial Reaction Networks’

Reference:
Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2012) ‘Temporal patterns in

Artificial Reaction Networks’, Proceedings of The 22nd International Conference on

Artificial Neural Networks (ICANN), Lecture Notes in Computer Science, vol. 7552,

part 1, Springer, Lausanne, pp 1-8.

Temporal Patterns in Artificial Reaction Networks

Claire Gerrard1, John McCall
1
, George M. Coghill

2
 and Christopher Macleod3.

1 Ideas Institute, The Robert Gordon University, Aberdeen, AB25 1HG, Scotland, UK

2 The Department of Computing, University of Aberdeen, AB24 3FX, Scotland, UK
3 School of Engineering, The Robert Gordon University, Aberdeen, Scotland, UK

Abstract. The Artificial Reaction Network (ARN) is a bio-inspired connection-

ist paradigm based on the emerging field of Cellular Intelligence. It has proper-

ties in common with both AI and Systems Biology techniques including Artifi-

cial Neural Networks, Petri Nets, and S-Systems. This paper discusses the tem-

poral aspects of the ARN model using robotic gaits as an example and com-

pares it with properties of Artificial Neural Networks. The comparison shows

that the ARN based network has similar functionality.

Keywords: Artificial Neural Networks, Artificial Reaction Networks, Cellular

Intelligence, Biochemical Networks

1 Introduction

When Artificial Intelligence (AI) researchers want to develop connectionist models of

intelligence, it is only natural that they should look to the brain for inspiration. The

result, of course, is the Artificial Neural Network (ANN). However, as discussed in

this paper, there is an alternative, biologically inspired, connectionist paradigm based

on the emerging field of Cellular Intelligence – the Artificial Reaction Network

(ARN) [1].

In recent years, researchers have become increasingly interested in the behaviors

displayed by single celled organisms, in particular protists. These eukaryotes, display

an astonishing array of complex behaviors. Some can avoid light with photo-sensitive

spots; some actively hunt prey; while others can build protective shelters [2].

These complex behaviors have led researchers to investigate how such traits of

primitive intelligence might arise. Well known examples of such work are that by

Nakagaki and Yamada, who demonstrated that the slime-mould Physarum

polycephalum was able to solve a simple maze [3]. Similar research by Saigusa et al

showed that this same organism was able to learn and change its behavior in anticipa-

tion of the next environmental stimuli [4].

These high level behaviors are mediated by Cell Signaling Networks (CSNs)

which, as this paper will discuss, are analogs to ANNs. Such networks are composed

of interacting proteins within the cell’s cytoplasm that function to regulate virtually

all cellular activity.

The ARN is a new representation based on CSNs. This paper explores the ARNs

ability to generate temporal oscillations in protein species – a common theme in

A89

CSNs. It discusses its similarities and differences to ANNs by comparing them in

similar applications - specifically in the generation of robotic gaits. The aim of this

research is firstly, to explore the mechanisms of cell intelligence in order to broaden

understanding of intelligence in its widest sense as well as have possible applications

in biological modeling. Secondly, to investigate the resulting representation in terms

of its possible application for use as an AI technique.

1.1 Mechanisms of Cellular Intelligence

CSNs consist of different protein species, the interactions of which are shown by

connecting lines in a similar way to a neural network. Via a system of complex mech-

anisms, CSNs adjust their set of protein activation levels to fine tune cellular activity

appropriate to current conditions. An instantaneous set of these protein concentrations

serves like a memory, containing an imprint of the current environmental state [5].

Individual spatio-temporal activation patterns of protein concentrations emerge from a

multitude of low level interactions and result in a range of cellular responses and be-

haviors [6-8]. The network therefore represents cascades of numerous protein coupled

interactions with topological features such as feedback loops and interconnectivity,

forming highly complex systems [5, 8].

Bray claims that the processing performed by individual CSN units is similar to

Boolean and fuzzy logic and further speculates that these networked logical units can

perform computational processing equivalent to a Turing machine [5]. Similar reports

were documented by a number of other researchers [9-11].

Many researchers highlight the similarities between CSNs and ANNs [5-7, 12].

Bray, observes both networks are made up of highly connected parallel distributed

units, where each unit simultaneously integrates and processes signals. Both are able

to recognize patterns, and provide the correct response in the presence of noise and

loss of units, and are therefore robust [5, 12]. One difference is that while simple tra-

ditional ANNs like the perceptron lack an explicit time dimension, CSN functionality

incorporates this in a similar way to spiking neuron models. Bhalla notes that the high

level cellular behavior is encoded by temporal spatial patterns of intracellular species

generated in this way [12]. One such common motif is oscillating patterns, resulting

from feedback structures and cyclic loops [8].

2 The Artificial Reaction Network

2.1 Techniques Used to Develop Model

The ARN representation was designed to incorporate the previously discussed mech-

anisms of cell intelligence. Our previous paper provides a complete description, and

verification of the ARNs accuracy and biological plausibility [1]

There are many methods used to model biochemical reactions, some are very sim-

ple Boolean-based techniques, others complex quantum mechanical abstractions [13],

here the two most relevant adopted techniques are described. The first is S-Systems;

these have proven themselves accurate and provide a similar degree of system ab-

straction to an ANN. They comprise sets of ordinary differential equations (ODEs)

A90

that exploit a power law representation to approximate chemical flux [13]. Similarly

to traditional rate law [13], each ODE is equal to the difference between two concep-

tually distinct functions; the first function includes all terms contributing to system

influx, the second to decay. S-systems provide simple but accurate representations of

temporal dynamics, including both steady and transient state. However, in their gen-

eral form, terms are highly coupled, and therefore are difficult to manipulate without

interference.

Like an ANN, Petri Nets (PNs) offer a modular approach. PNs are a graphical and

mathematical modeling tool used to study processes characterized as parallel, distrib-

uted, concurrent, and asynchronous [14]. They are used extensively in several types of

information processing, including modeling CSNs. Each PN is a networked structure

of separate self-maintaining units called “places”, where movement between connec-

tions is defined by separate transitions, thus PNs exploit benefits of modularization.

2.2 The Artificial Reaction Network Model

The authors combined the continuous mathematical nature of S-systems, the modular

properties of PNs, and weighted connections of ANNs. The ARN, as shown in Figure

1, is a modular and expandable S-System. It comprises a set of connected reaction

nodes (circles), pools (squares), and inputs (triangles). Each pool represents the cur-

rent available protein species concentration (avail) and each circle corresponds to a

reaction unit, representing an interaction (reaction) between a numbers of proteins.

For example, Figure 1 shows the reaction between species A and B to produce species

C. Connections symbolize the flow of species into and out of reaction units and their

weight (W) corresponds to reaction order. This structure can be compared to a percep-

tron, where the pools correspond to inputs, the reaction units to the weighted sum

function, and these are joined together by weighted connections. Both are instances of

highly connected parallel distributed networks, where units simultaneously integrate

and process signals.

 tCKBAKC CBA W

availCr

W

avail

W

availCf)()(
(1)

Where:

A, B, C = Species Concentrations

avail = available species concentration

W = reaction order

∆C = Change in species concentration C

Kf = Forward rate constant

Kr = Reverse rate constant

∆t = time step

Each reaction unit calculates flux (∆A/∆B/∆C) at ∆t as given by Equation (1), and

is equal to an aggregate of connected contributing (incoming) pools and connected

decay (outgoing) pools raised to n powers of weighted connections and multiplied by

pseudo rate constants. This can be compared to the Sigma-pi ANN model, where the

A91

output depends on a function of the product of the inputs. Unlike the feedforward

perceptron, species can flow in either direction, depending on the sign of the flux

calculated by Equation 1. Dissimilarly to a perceptron, the ARN incorporates a tem-

poral dimension, where at time interval ∆t, each reaction unit’s temporal flux value is

calculated, which then is used to update the current concentration values of each reac-

tion’s connecting pools. Thus the complete set of pool concentrations at time t corre-

sponds to the current state of the system. Euler’s approximation was adopted in favor

of other evaluation methods because it supports modularization. Its disadvantage is

that net error accumulates with every cycle; however by decreasing step size error is

reduced. The intention however, is to characterize high-level system properties and

thus requires only sufficient low level detail to represent its contributing mechanisms

such as temporal dynamics and complex network topologies.

Fig. 1. The Artificial Reaction Network (ARN)

3 Experiments

As previously discussed, complex mechanisms found in CSNs lead to stable temporal

patterns of species concentrations, where each relates to a high-level behavior. One

way to investigate the ability of the ARN to produce such temporal oscillatory pat-

terns is by applying it to generate those associated with robotic gaits. Furthermore,

this allows comparison with similar results obtained using ANN models.

Terrestrial locomotion of limbed animals is achieved by multiple phase locked pat-

terns of limb movements known as gaits. For example, depending on speed of loco-

motion and terrain, quadrupeds commonly walk, trot and gallop [15]. The gait phase

is a value that ranges from 0 to 1 as the gait cycle proceeds. Therefore, the motion of

each limb can be described relative to the gait phase. The ideal quadrupedal gaits are

described by Dagg [15] and others [16], and are used as a standard for comparison

here and similarly in other studies [17]. The walk gait is characterized where, each leg

is a quarter cycle out of phase; in the trot gait each pair of diagonal limbs move half a

cycle out of phase with one another. An ARN based robotic controller was imple-

mented, to produce trot and walk gaits of a simulated Lynxsmotion dual-servo quad-

ruped 2 (Q2) robot. The structure of the ARN controller was designed to include ab-

 tCKBAKC CBA W

availCr
W

avail

W

availCf)()(

KEY (For Figures 1 and 2)

W : Order
Kf : Forward rate constant

Kr : Reverse rate constant

avail: Available
A, B, C, D: species concentration

∆t : Time Step

 : Excitatory : Pool

: Reaction Unit : Input

: Inhibitory (Figure 2 only)

1

Aavail

Bavail

WB

∆C
∆D

To

Reaction

D

Cavail
WA

WC

C

2

A

B

α equals sum of other weights connected to inputs of unit D

A92

stractions of regulatory mechanisms found in CSNs including inhibitory/excitatory

reactions, cyclic loops, and feedback structures.

3.1 The Robot and the ARN Controller

Each robotic leg is controlled by two servo motors, one for each degree of freedom

(DOF), where one raises the leg, the other turns it. Signals are sent by the ARN to

each motor and control the angle of the rotor for each DOF, using a simple position to

pulse width modulator interface circuit to control the servo. The physical structure

and control are described in detail in other papers [18].

Fig. 2. The ARN based controller displayed contains 4 identically structured modules, a mod-

ule is shown surrounded by a dashed line.

Figure 2 illustrates the structure of the ARN controller, it comprises four identical

modules (a module is highlighted by a dashed line) each controlling the motors for a

separate leg. Each module contains 3 reaction units, and 3 pools: A, B and C. Pool A

controls the up/down (U/D) motor, Pool B the back/forward (B/F) motor and Pool C

controls the off period for both motors. The activity of pools is regulated by a series

of excitatory and inhibitory connections between reaction units. These connections

represent properties of specialized regulatory proteins common to CSNs such as en-

zymes. The connection weights were hardcoded using the same method as used in the

Billard and Ijspeert model [19]. The entire structure is organized as a closed loop,

allowing chemical species to be recycled to the first module, and thus generate a sta-

ble repeating temporal pattern. The type of robot gait is easily modified by a simple

adjustment of the initial pool values. For example, by initializing a C pool, a walk gait

will be generated, where the C pool chosen will determine the starting leg. Similarly,

a trot gait is achieved by initializing 2 C pools within alternate modules. In this par-

ticular design, the value to which the C pool(s) are initialized determines the DOF

angle and were set specifically for the physicality of the particular robot, although it

can be freely varied.

4 Results

The ARN controller was considered to generate a specific gait if the relative phases of

the respective oscillatory signals were within 2% of the standard gait cycle described

previously. Higher values of 10% were used in other studies [17], and this was con-

0

1 B0

A0

C0

2

01

11 B1

A1

C1

21

02

12 B2

A2

C2

22

03

13 B3

A3

C3

23

A93

sidered reasonable due to the variation found in real animal gaits [20]. In each case,

the controller first generates the U/D motor oscillation and on reaching the maximum

value the B/F motor is initiated. As can be seen the walk gait results (Figure 3) show

legs are a quarter cycle out of turn, with phases of 0.0, 0.25, 0.5, 0.75 between limbs

in clockwise order from FL leg. Similarly the trot gait shows opposite legs are half a

cycle out of turn with phases respectively of 0.0, 0.5, 0.0, 0.5. Both phase locked limb

patterns match the standard, and compare well with other connectionist models. For

example, Billard and Ijspeert present a CPG (central pattern generator) based neural

controller for a quadrupedal AIBO robot, similarly with 2 DOFs for each leg [19].

Here, the network is composed of 8 coupled non-linear oscillators and each oscillator

consists of 6 leaky integrator neurons (total of 96 neurons). Each neuron implements

an activation approximately as complex as the ARN reaction unit function. Thus the

complexity of this network is equivalent to approximately 96 ARN reaction units.

The oscillatory signals produced by this network for both walk and trot gaits show

that the limb phases correspond to the standard and to those produced by the ARN.

Similar correspondence is found in numerous other sources. For instance, Collins

explores a CPG based neural controller for a quadrupedal robot with 1 DOF per limb,

and compares 3 types of activation function models. The controller is composed of a

network of 4 coupled non-linear oscillators [17], where each oscillator controls a sep-

arate limb. The reported limb phases correspond to the standard, although those re-

ported for the trot were within 10% of the ideal, whereas the ARN matches the stand-

ard for both gaits. Each model has approximately twice the complexity of the ARN

reaction unit and, unlike the ARN, all require a pulsing signal to drive the network.

Overall the ARN affords a higher degree of accuracy where fine tuning of parameters

can provide finite levels of control. For instance, the frequency of oscillations and

therefore the gait speed can be easily modified by uniform increase or decrease of Kf

of each unit. Similarly, independent variation of speed for each type of DOF (B/F or

U/D) or for a specific leg DOF motor. These results show the ARN has a very similar

capacity in robotic control tasks as other connectionist robotic controllers, where it

can offer reduced computational complexity. Furthermore the ARNs ability to pro-

duce gaits illustrates how cellular networks can generate the complex temporal pat-

terns necessary in emergent behavior.

Fig. 3. Output generated by ARN controller for walk gait. Solid lines are legs up/down motor,

dashed lines are back/forward motor. Legs move independently in order: FL (front left), FR

(front right), RR (rear right), RL (rear left).

A94

Fig. 4. ARN controller output for trot gait. Diagonal legs are in phase and operate in order FL

and RR then FR and RL.

5 Conclusions

The ARN is a bio-inspired connectionist representation based on mechanisms found

in CSNs that contribute to the emergence of cell intelligence. One feature of CSNs is

the ability to generate high level behavior by regulating temporal activation patterns

of its component proteins. The ARN was tested as a means to artificially produce

similar pattern regulation, and its potential applicability was explored. Here an ARN

based control system was designed to exploit topological features such as negative

feedback, and cycles found in real CSNs. The controller was applied to produce the

temporal oscillatory patterns associated with quadrupedal trot and walk gaits. The

results confirmed the ability of the ARN to regulate temporal oscillating patterns with

applicability in robotic control. These results are in good correspondence with ANN

models, where both generate very similar spatial temporal patterns. A significant

number of parallels between ARNs and ANNs were highlighted, suggesting the na-

ture of cell intelligence may not be that different from neural intelligence. These simi-

A95

larities highlight the potential of single celled organisms to produce complex behavior

similar to that produced by a neural network. This will be explored further, in particu-

lar by generating more complex temporal patterns, regulating composite behavior and

chaotic components.

6 References

1. Gerrard, C.E, McCall, J., Coghill, G.M., Macleod, C.: Artificial Reaction Networks. In:

Proceedings of the 11th UK Workshop on Computational Intelligence, pp. 20-26. UK

(2011)

2. Ford, B. J.: Are cells Ingenious? The Microscope. 52, 135-144, (2004)

3. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature. 407

(6803), 470-470, (2000)

4. Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y. Amoebae Anticipate Periodic Events.

Phys. Rev. 100 (1), 1-4, (2008)

5. Bray, D.: Protein molecules as computational elements in living cells. Nature. 376 (6538)

307-12, (1995)

6. Helikar, T., Konvalina, J., Heidel, J., Rogers, J.A.: Emergent decision making in biological

signal transduction. In: Proc. Natl. Acad. Sci. USA. 105,1913–1918, (2008)

7. Hjelmfelt, A., Ross, J.: Mass Coupled Chemical Systems with Computational Properties. J.

Phys. Chem. 97, 7988-7992, (1993)

8. Kholodenko, B.: Cell Signaling dynamics in Time and Space. Nature Rev. Mol. Cell Biol.

7 (3), 165-176, (2006)

9. Stadtman, E. R., Chock, P. B.: Superiority of interconvertible enzyme cascades in metabol-

ic regulation: analysis of multicyclic systems. Proc. Natl. Acad. Sci. USA, 74, 2766-2770,

(1977)

10. Arkin, A., Ross, J.: Computational functions in biochemical reaction networks. Biophys.

J., 67, 560-578, (1994)

11. Wang, B., Kitney, R.I., Joly, N., Buck, M.: Engineering Modular and Orthogonal genetic

logic gates for robust digital-like synthetic biology. Nat. Commun. 2, 508, (2011)

12. Bhalla, U. S.: Understanding complex signaling networks through models and metaphors.

Prog. Biophys .Mol. Biol. 81, 41-65, (2003)

13. M. A., Savageau, E. O., Voit.: Recasting Nonlinear Differential Equations as S-Systems: A

Canonical Nonlinear Form. Math. Biosci. 87 (1), 83–115, (1987)

14. Baldan, P., Cocco, N., Marin, A., Simeoni, M.: Petri Nets for Modeling Metabolic Path-

ways: A Survey. Natural computing . 9(4), 955-989, (2010)

15. Dagg, A. I.: Gaits in mammals. Mammal Rev. 3:135-154, (1973)

16. Hildebrand, M. Analysis of asymmetrical gaits.: J. Mammal. 58:131-156, (1977)

17. Collins, J.J., Richmond, S.A.: Hard-wired central pattern generators for quadrupedal ro-

bots. Biol. Cybern. 71, 375-385, (1994)

18. Macleod, C., Maxwell, G., Muthuraman, S.: Incremental Growth in Modular Neural Net-

works. Eng. Appl. Artif. Intel. 22 (4-5), 660-666, (2009)

19. Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for motor control in

quadruped robot. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference

on Neural Neural Networks, pp. 637-641. IEEE, Italy (2000)

20. Afelt, Z., Blaszczyk, J., Dobrzecka, C.: Speed control in animal locomotion: transitions be-

tween symmetrical and nonsymmetrical gaits in the dog. Acta. Neurobiol. Exp. 43, 235-

250, (1983)

A96

A97

Paper 8: ‘Artificial Reaction Networks’

Reference:
Gerrard, C., McCall, J., Coghill, G. and Macleod, C. (2011) ‘Artificial Reaction Networks’,

Proceedings of the 11th UK Workshop on Computational Intelligence (UKCI), Manchester UK, pp

20-26.

Abstract—In this paper we present a novel method of

simulating cellular intelligence, the Artificial Reaction Network

(ARN). The ARN can be described as a modular S-System, with

some properties in common with other Systems Biology and AI

techniques, including Random Boolean Networks, Petri Nets,

Artificial Biochemical Networks and Artificial Neural

Networks. We validate the ARN against standard biological

data, and successfully apply it to simulate cellular intelligence

associated with the well-characterized cell signaling network of

Escherichia coli chemotaxis. Finally, we explore the

adaptability of the ARN, as a means to develop novel AI

techniques, by successfully applying the simulated E. coli

chemotaxis to a general optimization problem.

I. INTRODUCTION

Natural evolution has transformed the world into a

resource rich in examples of elegant solutions to complex

problems. However, these solutions are often hidden in

layers of biochemical detail, and are consequently little

understood. Cell Signaling Networks (CSNs) are an example

of one such natural “solution”. They refer to the network of

biochemical reactions which allow communication, response

and feedback within and between cells. Many scientists have

reasoned that the characteristics of cellular intelligence such

as recognition, classification, response, communication,

learning and self-organization [1] are the result of these

complex networks [2], [3].

Significant advances in biotechnology have resulted in a

surge of biochemical data, allowing hidden aspects of cell

signaling to be uncovered. As understanding of cell

signaling becomes further developed, its significant role in

cellular intelligence is emerging. Many parallels have been

drawn between CSNs, computational processing and

artificial intelligence techniques. For instance, their ability to

perform processing analogous to Boolean logic,

negative/positive feedback loops, integration, amplification,

and temporal regulation [4]. However, the fact remains that

no man-made system can yet compare to the degree of

sophistication inherent in these networks.

Claire. E. Gerrard and John McCall are with the IDEAS Research

Institute, Robert Gordon University, Aberdeen, AB25 1HG, UK (phone:

+44(0)1224-26-2476; email: c.e.gerrard@rgu.ac.uk).

Geroge M. Coghill. is with the Department of Computing, University of

Aberdeen, Aberdeen, AB24 3FX, UK.

Christopher Macleod is with the School of Engineering, Robert Gordon

University, Aberdeen, AB25 1HG, UK.

Artificial intelligence has progressed enormously since

the birth of bio-inspired approaches (for example: genetic

algorithms (GAs), Particle Swarm Optimization (PSO), and

Ant Colony Optimization (ACO) [5]), some such approaches

are inspired by biochemical networks: Artificial biochemical

networks [6] and Artificial Immune Systems (AIS) [5].

In this paper we focus on exploring the mechanisms of

cellular intelligence to facilitate the development of novel

CSN inspired AI techniques. For this purpose a new simple

representation was developed: the “Artificial Reaction

Network” ARN. Rather than focus on micro-molecular

detail, the ARN aims to elucidate emergent behavior within

a network of chemical reactions. Its biological basis is

validated using real biochemical data, including simulation

of the well characterized signaling network of E.coli

chemotaxis. Furthermore, this network is examined as a

source of inspiration for development of novel AI

techniques.

II. BACKGROUND

Nakagaki and Yamada demonstrated that the slime mould

Physarum polycephalum was able to solve a simple maze

[7]. A maze was built from plastic films set on agar gel with

four possible routes of different length between two food

sources. The organism eventually formed a thick plasmodial

tube via the shortest pathway between the two food sources.

This behavior increased its foraging capability, conserved its

energy and thus increased its chances of survival. A further

study by Saigusa et al showed that, when subjected to a

distinct pattern of periodic environmental changes, this

organism was able to learn and change its behavior in

anticipation of the next stimulus [8]. The researchers argue

that the behaviors illustrated in these experiments: problem

solving, recalling, and anticipating events are the result of a

“primitive intelligence” that emerges from the simple low-

level cellular dynamics found in CSNs.

An account of how this primitive cellular intelligence

arises is provided by Bray; he describes how interconnected

protein units of CSNs result in a range of sophisticated

processing capabilities analogous to computational

components within a circuit [4]. CSNs continuously process

changing environmental stimuli via this network to generate

behavior suited to current conditions. Bray refers to an

instantaneous set of protein concentrations as a random

access memory containing an imprint of the current

environmental state. The activity is determined by kinetic

factors such as binding affinities or in reaction kinetic

terminology: the reaction rate, reaction order and

concentration of the reacting molecules. Where conditions

are highly reactive, a processing unit acts like a molecular

Artificial Reaction Networks

Claire E. Gerrard, John McCall, George M. Coghill and Christopher Macleod.

A98

switch giving a binary response. Such processing can be

compared to that of Boolean logic. Or, in cases of lower

reactivity, a unit may provide a more gradual response

comparable to fuzzy logic. These processing units are linked

together in cascades of protein coupled interactions with

various network topological features such as feedback loops

and interconnectivity and are thus capable of forming

immensely complex networks. Bray claims that such a

network of logical units can perform any kind of

computational processing, equivalent to a finite state-

machine with the same capability as a Turing machine.

Evidence concerning the logical operation of protein units

can be found in a number of independent studies. Stadtman

et al demonstrated that the interconversion between

phosphorylated and non-phosphorylated proteins can act as a

flexible computational unit [9]. Similar results were

documented by Arkin and Ross who examined the

computational properties of enzymatic reactions [10].

Bray highlights the similarities between CSNs and ANNs.

Both are examples of networked processors, simultaneously

integrating and processing signals. Where weights in a

neural network are set by a learning algorithm, the strength

of connections within a CSN is set by natural evolution.

CSNs are the principle machinery of cellular intelligence.

They may inspire new AI techniques, not only because they

allow adaptive “intelligent” behavior, but also because of

their intrinsic computational and processing abilities.

III. THE E. COLI CHEMOTAXIS PATHWAY

The chemotaxis CSN of Escherichia coli is well

characterized [11], and as such presents an ideal pathway to

explore emergent properties of cell intelligence. E. coli have

four types of transmembrane chemoreceptor proteins called

methyl accepting proteins or MCPs responsible for sensing

environmental chemoeffectors and a common set of

cytoplasmic signaling proteins e.g. CheA, which transmit

signals by reversible phosphorylation. Where no

chemoeffectors are present, E.coli alternates between runs

and tumbles, with runs lasting approximately 1 second and

tumbles for 0.1 second [11]. In the presence of

chemoeffectors, tumbling frequency is reduced up

concentration gradients of attractants and down gradients of

chemorepellents, resulting in a biased random walk. Thus,

longer duration of swims in response to higher attractant

gradients result in the emergence of a high level behavior

characterized by net locomotion toward more favorable

conditions.

To prevent the cell from being locked in either the swim

or tumbling state, the cell also has a complex adaptation

response. This response increases or decreases the sensitivity

of the cell, depending on current ligand occupancy, by

regulating the methylization of the MCP complex, so giving

the cell a primitive memory.

In the two-state model [12] the MCP receptor complex is

in equilibrium between two states: swim and tumble, where

chemorepellents bind to the tumble form of receptor. As

methylization of the MCP complex increases the receptors

shift toward the tumble form of the receptor. In this form,

the receptors phosphorylate CheA molecules which then

transfer phosphoryl groups to aspartate residues on CheY

and CheB. Phosphorylated CheY (CheYp) interacts with the

flagellar motor proteins triggering clockwise motor rotation

(CW) resulting in a tumbling response. As CheYp

concentration increases so does the tumbling frequency.

CheZ is responsible for dephosphorylation of CheYp. CheB

and CheR are responsible for updating the methylation

record and hence the adaptation response. The adaptation

response drives the CSN toward its pre-stimulus equilibrium

by demethylization of the MCP complex. A comprehensive

description of this network is provided by Vladimirov and

Sourjik [11].

IV. RELATED TECHNIQUES

The exploration of cellular intelligence requires a

representation which focuses on high-level behaviors that

emerge from CSN system dynamics, yet still capture the

processing behaviors of individual reaction units. There are

numerous methods of representing chemical reactions,

ranging from the meticulously detailed quantum mechanical

to the highly abstracted discrete Boolean models. Gilbert et

al provides an excellent overview of current popular

methods [13]. In this paper we shall consider only the most

relevant, that is, those which capture their networked

topology.

Random Boolean Networks, introduced by Kauffman,

consist of a set of logical nodes, where each node

corresponds to a real world object such as a gene or protein

[14]. The nodes are connected to form a circuit, where the

current state of each node is calculated by performing a

Boolean function on its inputs. These, although focused on

network dynamics, discard most unit behavior, preferring a

binary switch response rather than continuous signals, and

therefore cannot capture subtle system dynamics.

The Artificial Biochemical Network (AB-net) is a highly

abstracted model of a CSN, intended for robotic control. It

consists of a set of nodes representing protein activity, linked

by weighted connections. The output of each node is a

binary square-wave signal based on the input protein

activities [6].

A more recent approach is the artificial biochemical

neuron (AB-neuron); currently applied to phosphorylation

cycles [15]. Similarly to the AB-net, it consists of a number

of nodes with weighted connections. In this model the

Michalis-Menton equation provides the unit output,

representing the steady-state concentration of the product.

Both the AB-neuron and the AB-net are simplified

representations and neither capture realistic biological

behavior.

Petri Nets are used extensively in several types of

information processing, including modeling CSNs [16].

They work by passing tokens representing molecules

between network units. In their simplest form they have

similar functionality and limitations to RBNs. However, a

A99

Fig. 1. The Artificial Reaction Network (ARN).

number of researchers have used them as a basis to produce

more complex models.

Space precludes a complete discussion of all related

models; however, it should be noted that there are several

other network representations, less relevant to the problem at

hand. For example, artificial immune network algorithms,

and protein-protein interaction networks.

V. THE ARTIFICIAL REACTION NETWORK

As explained in the previous sections, our focus is to

capture the emergent cellular behavior that results from

intracellular CSN processes. To achieve this, a model

capable of representing sizeable networks and complex

topologies, yet still maintaining biological plausibility was

required. For this purpose, current methodologies were

unsuitable, being either too simple or too complex, thus the

authors created the ARN based on the following methods.

Developed by Savageau, S-systems are a popular

representation used to model biological systems since the

late 1960s [17]. They are composed of sets of ordinary

differential equations (ODEs) that exploit a canonical power

law representation to approximate chemical flux. Each ODE

is composed of species concentration variables, raised to a

power and multiplied by pseudo rate constants, as shown in

Equation (1). Similarly to a traditional rate law, each ODE is

equal to the difference between two conceptually distinct

functions, the first term contributing to system influx, the

second to decay.

To meet the previously discussed requirements, the

authors combined the S-system approach with features found

in RBNs and Petri Nets. By exploiting the simplified

modular properties of RBNs with molecular transitions

characteristic of Petri Nets, the ARN, as shown in Figure 1,

represents a new, innovative, modular and expandable S-

System. The ARN comprises a set of connected reaction

nodes (circles), pools (squares), and inputs (triangles). Each

pool represents a current species concentration (avail)

measured in mols/L. Each circle represents a reaction, and

calculates current flux at each time step (∆t), using Euler’s

approximation to the rate equation shown in Equation (1).

 (1)

Where:

[S]
n
= S is a species concentration, n its reaction order.

 = Current reaction rate

kF = Forward rate constant

kR = Reverse rate constant

Connections symbolize the flow of species into and out of

reaction units and their weight (w) corresponds to reaction

order. Flux (∆A/∆B/∆C) as in Equation (1) and similar to S-

systems, is equal to an aggregate of connected contributing

(incoming) pools and connected decay (outgoing) pools

raised to n powers of weighted connections and multiplied

by pseudo rate constants. The pools are further subject to an

optional degradation term (L), representing the natural

cytoplasmic decay of species over time. This method

provides each reaction with a temporal flux value, which is

then used to update the current concentration values of each

reaction’s corresponding incoming and outgoing pools. Thus

the complete set of pool concentrations at t, corresponds to

the current state of the system.

The pool concept originates in Petri Nets and allows the

system to account for accumulated molecular concentrations

within the cytoplasm. By chaining several pools together

chemical gradients and translocation through membranes can

be represented; this facility is not available in standard S-

systems.

Where S-systems are highly coupled sets of ODEs, the

ARN is a modular approach offering finer degree of control,

flexibility and adaptation. This not only supports simulation

development by promoting object-orientation but is

perceptually intuitive, mirroring the topology and

modularization of its real-world counterpart. Thus the ARN

representation is ideally suited to characterize emergent

A100

behavior resulting from both subtle and high-level complex

temporal system dynamics.

VI. RESULTS

Before the ARN could be applied to simulate cellular

intelligence, its accuracy needed to be verified against

known biological data and standard models. This was

achieved by application of varied sets of real biochemical

data to a single ARN unit. The resultant output was

compared with those recorded in literature, manual

calculation and by running the experiment on the Berkeley

Madonna [18] programme. The outputs of these experiments

confirmed its accuracy, with a minor error as expected from

Euler’s approximation. Figures 2 and 3 provide typical

results from one such experiment. Here reaction kinetic data

(rate constants, reaction order) were used to create a model

of the reversible isomerisation reaction between cis and trans

1-ethyl-2-methyl cyclopropane on Berkeley Madonna and on

a single ARN unit. Figure 2 shows the product output from

Berkeley Madonna, and Figure 3 is that of the single ARN

unit. After 2000 seconds, it can be seen that the product

concentration produced by Berkeley Madonna and the single

ARN are both 9.1x10
-3

 mol dm
-3

. This result is the same as

that recorded by the standard literature, thus confirming the

biological plausibility of a single ARN unit.

Fig. 2. The product concentration produced by Berkeley Madonna.

Fig. 3. The product concentration produced by the single ARN unit.

Having verified the biological plausibility of a single

ARN unit, the ARN was tested as a means of capturing

properties of cellular intelligence. A two state model, (refer

to section3), was used as a basis to create a simulation of the

chemotaxis CSN of E. coli. The structure of this simulation

is shown in Figure 4 and is represented in the ARN format

described in Figure 1 of the previous section. It is composed

of a network of 10 reaction units numbered 0-9, 11 pools of

intracellular signaling proteins, a single input representing

the chemorepellent, and arrowed lines to show not only the

connections but direction of signal flow through the

network. The behavior of the simulated chemotaxis pathway

in varying levels of environmental chemorepellent was setup

using real biological data gathered from sources at the

University of Cambridge [19], [20]. The output from this

network is shown in Figures 5 and 6. Figure 5 shows the

steady state concentration levels of CheYp in mols/L

generated by the ARN simulation at four different

continuous concentration levels of environmental

chemorepellent. It can be seen from the graph that as the

level of environmental chemorepellent increases so does the

concentration of CheYp and therefore the tumbling

frequency of the cell increases. The results are in clear

agreement with published data from respected systems

biology simulations [12].

To prevent the cell from being locked in either the swim

or tumbling state the cell also has a complex adaptation

response (refer to section 3). To ascertain the ability of the

ARN to capture this behavior, the steady state concentration

in mols/L of methylized MCP receptor complex obtained by

the ARN simulation were examined at varying levels of

continuous environmental chemorepellent.

 The output is displayed in Figure 6, where it can be seen

that when chemorepellent concentration increases CheYp

increases, and methylized MCP decreases thus driving the

network back to the pre-stimulus equilibrium. Although a

minor change to rate constant values were required, it can be

seen that the adaptation response was attained and is in good

agreement with previous work [21]

Finally to demonstrate the emergent behavior of the

simulated CSN, it was decided to show the chemorepellent

avoiding behavior in the context of an optimization problem.

Here we observed the behavior of the simulated E. coli

chemotaxis pathway to ascertain its ability to find a

minimum chemorepellent level in an inverted bowl search

space where x and y are on the horizontal plane:

 (2)

Figure 7 displays the search space and an example run.

The centre of the search space (solid black square)

corresponds to an area of 0 chemorepellent concentration.

With each progression outwards repellant concentration

increases, and the outermost perimeter signifies a maximum

concentration of 1x10
-7

 mols/L. The path of the simulated E.

coli is displayed as a white line. Over 100 seconds the cell

A101

remains in high concentration areas (above 1x10
-9

 mols/L)

for 11 seconds and low (below 1x10
-9

mols/L) for 89

seconds. These results were verified statistically over 100

run, and are in good correspondance with the reported

behaviour of E. coli chemotaxis described in literature and

using other simulation methods [21].

Fig. 4. A two-state model of the chemotaxis CSN of E. coli is shown diagrammatically using the format specified in Figure 1.

Fig. 5. The steady state concentration levels of CheYp in mols/L recorded

by the ARN when subjected to varied levels of chemorepellent.

Fig. 6. The steady state concentration levels of CheYp and methylized

MCP in mols/L recorded by the ARN when subjected to varied levels of
chemorepellent.

A102

Fig. 7. Minimum seeking behavior in an inverted bowl search space.

VII. CONCLUSIONS

In this paper, the ARN representation was presented as a

novel method of simulating cellular intelligence. Initially, its

ability to successfully represent single node reaction

dynamics was shown. Its efficacy and applicability was

demonstrated by creating a working model of the CSN of

E.coli chemotaxis. This confirmed its ability to effectively

simulate both the tumbling frequency regulation and

adaptation response behavior of the bacteria. Furthermore,

the emergent random biased walk behavior generated by the

ARN was demonstrated in a general optimization problem.

The ARN approach has several advantages over other

similar techniques. Its network-like structure exploits the

benefits of modularization found in RBNs. It uses the

molecular accounting approach of Petri Nets; however, it

also incorporates the complex temporal dynamics of

individual reactions found in S-Systems. The addition of

pools and loss mechanisms allows more flexibility to

represent intracellular compartmentalization than other

techniques. The authors therefore feel that its representation

is ideally suited to the characterization of emergent

behaviors resulting from both subtle and high-level temporal

system dynamics. Furthermore, it offers a perceptually

intuitive method, as it mirrors the topology and

modularization of its real-world counterpart. Aside from

biological systems, this approach may also have some

advantages in the simulation of other chemical systems; in

particular, in the complex networks of reactions present in

soil and environmental chemistry.

The modularized form of the ARN makes it particularly

suitable for the application of evolutionary algorithms. The

success of simulating real biological systems is generally

predicated on obtaining good experimental data, which is

often missing or is unreliable. Thus, the ARNs evolvability

may prove useful since it promotes the identification of

network parameters.

The parallels between E. coli chemotaxis and robotic

control should be obvious. The next stage of our work

involves adapting the ARN into a cellular intelligence

inspired AI technique. It is intended to explore its potential

as a source for development of robotic control systems and

optimization techniques.

VIII. REFERENCES

[1] B. J. Ford, “Are cells Ingenious?,” The Microscope, vol. 52, no. 3-4,

pp. 135-144, 2004.
[2] K. J. Hellingwerf, “Bacterial observations: a rudimentary form of

intelligence,” Trends in Microbiology, vol. 13, no. 4, pp. 152- 158,

Apr. 2005.
[3] E. Ben-Jacob, “Bacterial self-organization: co-enhancement of

complexification and adaptability in a dynamic environment,”

Philosophical Transactions A, vol. 361, no. 1807, pp. 1283-1312, Jun.
2003.

[4] D. Bray, “Protein molecules as computational elements in living

cells,” Nature, vol. 376, no. 6538, pp. 307-12, Jul. 1995.
[5] J. Y. Potvin, “A review of bio-inspired algorithms for vehicle

routing,” in Bio-inspired Algorithms for the Vehicle Routing Problem,
F. B. Pereira, and J. Tavares, Ed. Berlin: Springer, 2009, pp. 1-34.

[6] C. MacLeod, and N. F. Capanni, “Artificial biochemical networks: a

different connectionist paradigm,” Artificial intelligence review, vol.
33, no. 1-2 , pp. 124-135, Feb. 2010.

[7] T. Nakagaki, H. Yamada, and A. Toth, “Maze-solving by an

amoeboid organism,” Nature, vol. 407, no. 6803, pp.470-470, Sep.

2000.

[8] T. Saigusa, A. Tero, T. Nakagaki and Y. Kuramoto, “Amoebae

Anticipate Periodic Events,” Physical Review Letters, vol. 100, no. 1,
pp. 1-4, Jan. 2008.

[9] E. R. Stadtman, and P.B. Chock, “Superiority of interconvertible

enzyme cascades in metabolic regulation: analysis of monocyclic
systems,” in Proceedings of the National Academy of Sciences USA,

vol. 74, no. 7, pp. 2761-2765, Jul. 1977.

[10] A. Arkin, and J. Ross. “Computational functions in biochemical
reaction networks,” Biophysical Journal, vol. 67, no. 2, pp. 560-578,

Aug. 1994.

[11] N. Vladimirov, and V. Sourjik, “Chemotaxis: how bacteria use
memory,” Journal of Biological Chemistry, vol. 390, no. 11, pp. 1097-

1104, Nov. 2009.

[12] S. Asakura and H. Honda, “Two-state model for bacterial
chemoreceptor proteins. The role of multiple methylation,” Journal

of Molecular Biology, vol. 176, no. 2, pp. 349-367, Jul. 1984.

[13] D. Gilbert, H. Fub, X. Gu, R. Orton, S. Robinson, V. Vyshemirsky, M.
J. Kurth, C. S. Downes, and W. Dubitzky, “Computational

methodologies for modeling, analysis and simulation of signaling

networks,” Briefings in Bioinformatics, vol.7, no.4, pp. 339-353, Jan.
2006.

[14] S. A. Kauffman, “Metabolic stability and epigenesis in randomly

constructed genetic nets,” Journal of Theoretical Biology, vol. 22, no.
3, pp. 437-467, Mar. 1969.

[15] H. M. M. Ten Eikelder, S. P. M. Crijns, M. N. Steijart, A. M. L.

Liekens, and P. A. J. Hilburs, “Computing with feedforward networks
of artificial biochemical neurons,” in Natural computing Proceedings

in Information and Communications Technology, Nagoya, 2009, vol.

1, pp. 38-47.
[16] J. L. Peterson, Petri Net Theory and the Modeling of' Systems.

Englewood Cliff, N.J: Prentice-Hall, 1981.

[17] M. A. Savageau, and E. O. Voit, “Recasting Nonlinear Differential
Equations as S-Systems: A Canonical Nonlinear Form,”

Mathematical Biosciences, vol. 87, no. 1, pp. 83–115, Nov. 1987.

[18] R. Macey, G. Oster, and T. Zahnley (2011, Feb 12). Berkeley
Madonna v.5, and User's Guide 2000. [Online]. Available:

http://www.berkeleymadonna.com

[19] D. Bray (2011, May 20). Biochemical data (1998-2010) Bacterial
chemotaxis in silico [Online] Available:

http://www.pdn.cam.ac.uk/groups/comp-cell/Data.html

[20] C. J. Morton-Firth and R. B. Bourret (2011, May, 20). Experimental
data in bacterial chemotaxis [Online] Available:

www.pdn.cam.ac.uk/groups/comp-cell/Exp_data/exptdata.doc
[21] D. Bray, M. D. Levin, and K. Lipkow, “The chemotactic behavior of

computer-based surrogate bacteria,” Current Biology, vol. 17, no. 1,

pp. 12-19, Jan. 2007.

A103

A104

Appendix 2

This appendix contains the data used to set the ARN network parameters to create a model of

the chemotaxis CSN of the bacteria E. coli in chapter 5 section 5.2-5.3. The data represents a

collection of wet lab results published by leading researchers in the field. These results were

gathered by researchers at the University of Cambridge to create a central resource for those

studying or modelling this pathway.

A105

Network Parameters for the ARN Simulation of the E. coli Chemotaxis Pathway
Unit

Input
pools

Chemical
Species in

Initial
conc. in
µmol/L

Output
pools

Chemical
species out

Initial
Conc.
out
µmol/L

Overall
Order

Forward
Rate
(mol s-1)

Reverse
rate
(mol s-1)

Reaction 0: R + TTWWAA TTM WWAA + R
0 0 R 1 2 MCPM 5 1 2.36 x 10-4

 1 MCP 5

Reaction 1: TTmWWAA + a TTLMWWAA

1 2 MCPM 5 4 MCPLM 0 1 1 x 109 1 x 103
 3 ligand 0

Reaction 2: TTLMWWAA TTLMWWAAp

2 4 MCPLM 0 5 Ap 1 1 1.9 x100 ------

Reaction 3: TTWWAA TTWWAAp
3 1 MCP 5 5 Ap 1 4.7 x 10-2 ------

Reaction 4: Y + Ap Yp + A (Ap part of MCP complex)
4 5 Ap 2 7 Yp 10 2 3 x 107 ------
 6 Y 10 8 MCP 5

Reaction 5: Yp + Z Y + Z
5 8 Yp 10 6 Y 10 1 5 x 105 ------
 9 Z 20

Reaction 6: MCP (various forms) MCP
6 7 MCP 5 1 MCP 5 1

Reaction 7: B + AAp Bp + AA (Ap is part of MCP complex)
7 5 Ap 1 10 Bp 1 2 6 x 106 ------
 9 B 1 1 A 2

Reaction 8: CheBp CheB
8 10 Bp 1 9 B 1 1 3.5 x 10-1 ------

Reaction 9: TTmWWAA + CheBp TTWWAA + CheBp
9 2 TTmWWAA 2 1 TTWWAA 2 1 1x105 ------
 10 Bp 1

KEY
TTWWAA MCP complex MCP (shorthand

version of
TTWWAA)

MCP complex MCPLM Methylated
MCP complex
bound to ligand

A cheA

TTmWWAA Methylated MCP
complex

MCPm Methylated MCP
complex

MCPL MCP complex
bound to ligand

Ap Phosphorylated
cheA

Y CheY CheB CheB R CheR
Yp Phosphorylated

CheY
CheBp Phosphorylated

CheB

*Approximately equal amounts of MCPM and MCP when no chemoreceptor is bound (initial state).

Data gathered from:

Morton-Firth, C. J, & Bourret, R. B. Experimental data in bacterial chemotaxis [Online]
Available: www.pdn.cam.ac.uk/groups/comp-cell/Exp_data/exptdata.doc, [Last Accessed 10 May 2011].

http://www.pdn.cam.ac.uk/groups/comp-cell/Exp_data/exptdata.doc

A106

Appendix 3

This appendix provides, for clarity, a larger version of the diagram given in chapter 7 which

shows the Cytobot ARN structure. Each Cytobot is controlled by an instance of this network. It

is composed of 6 subnetworks these are:

1. Master Oscillator

2. Run Length Network

3. Food Network

4. Signalling Network

5. Chaotic Network

6. Weighted Direction Network.

Each subnetwork contributes a functional aspect to either or both the Cytobot’s Starvation and

Foraging behavioural modes. The structure of each is based on functional motifs found in

biochemical networks.

Note that Pools are considered empty when value of its component chemical is ≤ 1x10-3

A107

A108

Appendix 4

The complete listing of the Cytobot ARN parameters is provided in the table below.

This includes:

• Input and output pools of each reaction
• Weights of each connection
• Forward and reverse rates of each reaction
• Initial value of each pool.

The only parameters subject to change during the period of operation are the value of each
pool. The initial values at time equals 0 are provided.

* Note that -5 means inhibitory connection and thus when active will switch off that reaction
completely.

A109

Run Length Network
Reaction Input pool Weight Output

Pool
Weight Forward

Rate
Reverse
Rate

Pool Initial
Value

R0 RB -5 RA 1 0.9 0 RA 1

 RC 1 RB 0

 FB -5 RC 0

R1 RA 1 RB 1 1 0

 RC -5

 MA -5

 MC -5

 MD -5

R2 RA -5 RC 1 1 0

 RB 1

Food Network

Reaction Input pool Weight Output
Pool

Weight Forward
Rate

Reverse
Rate

Pool Initial
Value

F0 FA 1 FB 1 1 0 FA 0

 FB -5 FB 0

 MA -5 FC 1

 MC -5

 MD -5

 AW -5

 ANW -5

 AN -5

 ANE -5

 AEA -5

 AB -5

 AD -5

 AE -5

F1 FB 0 FC 0 1 0

F2 FC 1 FD 1 0.5 0

A110

Signalling Network
Reaction Input pool Weight Output

Pool
Weight Forward

Rate
Reverse
Rate

Pool Initial
Value

C0 CA 0 CB 1 0.5 0 CA 1

 CC -5 CB 0

 FA -5 CC 0

 FB -5

 FC -5

C1 CA -5 CC 1 1 0

 CB 1

 FA 0

 FC 0

C2 CB -5 CA 1 1 0

 CC 1

Master Oscillator
Reaction Input pool Weight Output

Pool
Weight Forward

Rate
Reverse
Rate

Pool Initial
Value

M0 MA 1 MB 1 1 0 MA 0

 MD -5 MB 0

 AE -5 MC 0

M1 MA -5 MC 1 1 0 MD 1

 MB 1

 RA -5

M2 MB 5 MD 1 1 0

 MC 1

 RC -5

M3 MC -5 MA 1 1 0

 MD 1

 AE 0

A111

Weighted Direction Network
Reaction Input pool Weight Output

Pool
Weight Forward

Rate
Reverse
Rate

Pool Initial
Value

A0 A00 1 AB 1 1 0 A00 0

 AW 1 AW 0

 AB -5 A45 45

 AD -5 ANW 0

 AE -5 A90 90

 MA -5 AN 0

 MB -5 A135 135

 MC -5 ANE 0

A1 AW 1 AD 1 1 0 A180 180

 AB -5 AEA 0

 AD -5 AA 0

 AE -5 AB 0

 MA -5 AC 0

 MB -5 AD 0

 MC -5 AE 0

A2 A45 1 AB 1 1 0 AF 0

 ANW 1

 AB -5

 AD -5

 AE -5

 MA -5

 MB -5

 MC -5

A3 ANW 1 AD 1 1 0

 AB -5

 AD -5

 AE -5

 MA -5

 MB -5

 MC -5

A4 A90 1 AB 1 1 0

 AN 1

 AB -5

 AD -5

 AE -5

 MA -5

 MB -5

 MC -5

A112

A5 AN 1 AD 1 1 0

 AB -5

 AD -5

 AE -5

 MA -5

 MB -5

 MC -5

A6 A135 1 AB 1 1 0

 ANE 1

 AB -5

 AD -5

 AE -5

 MA -5

 MB -5

 MC -5

A7 ANE 1 AD 1 1 0

 AB -5

 AD -5

 AE -5

 MA -5

 MB -5

 MC -5

A8 A180 1 AB 1 1 0

 AEA 1

 AB -5

 AD -5

 AE -5

 MA -5

 MB -5

 MC -5

A9 AE 1 AD 1 1 0

 AB -5

 AD -5

 AE -5

 MA -5

 MB -5

 MC -5

A10 AB 1 AA 1 1 0

A11 AD 1 AC 1 1 0

A12 AB 1 AE 1 1 0

 AD -1

A13 AE 0 AF 1 1 0

Random Angle Network
Reaction Input pool Weight Output

Pool
Weight Forward

Rate
Reverse
Rate

Pool Initial Value

A113

K0 KI 1 AE 1 1 0 KA 0.67839

 KH 1 KB 0.67839

 AW -5 KC 0

 ANW -5 KD 0

 AN -5 KE 0

 ANE -5 KF 0

 AEA -5 KH 0

 AB -5 KI 360

 AD -5 RK 1

 AE -5

 MA -5

 MB -5

 MC -5

K1 KG 0 KH 1 1 0

 KE 1

K2 KA 1 KB 2 4 4

 KD -5 KD -5

 KH -5 KH -5

K3 KB 1 KE 1 1 0

 KD 0

K4 KA 1 KC 1 1 0

 KD 0

K5 KB 1 KD 1 1 0

 KD -5

 KH -5

K6 KD 1 KF 1 1 0

K7 KE 1 KB 1 1 0

 KG 0

K8 KE 1 KA 1 1 0

 KG 0

A114

Appendix 5

In this appendix a working example of the Chaotic Network component of the Cytobot ARN

control system presented in chapter 7 is provided.

1. At ∆t0 KA and KB are initialised to 0.38475.

2. At ∆t1, the flux generated at K2 will be 0.94687 (Applying Eq. (3) of chapter 4 to

calculate the flux: (0.38475)1-4(0.38475)2 = 0.94687). At the same time the values in

pools KA and KB are being processed by reactions K4 and K5 respectively. In both

these reactions the weights and forwards rates are 1, thus the entire content of pool KA

and KB are transferred to pools KC and KD respectively in a single time step. KB has

an additional connecting reaction, K3, but it cannot proceed until the connecting pool,

KD, is active (not empty). Pools are updated at the end of each discrete time step, thus

at ∆t1 pool KB will now have a value of 0.94687 (due to the positive flux generated at

reaction unit K2) while pools KD and KC will each have a value of 0.38475.

3. At ∆t2, reaction K5 cannot proceed because pool KD is actively inhibiting, while

reaction K3 may now proceed because pool KD and KB must both contain chemical in

order for it to proceed. Reaction K3 has a forward rate and weight of 1, thus

transferring its entire content of 0.94687 to pool KE in one time step. At the same time

the entire content of pool KD is transferred to KF which acts as a waste pool

(representing for example the environment) where chemical is eliminated from the

system.

4. At ∆t3 the content of pool KE is being simultaneously processed by reactions K1, K7

and K8. In all these reactions pools KE and the static pool RK react, where the forward

rate is 1 the weight between the static pool and the reaction is 0. These reactions

function to make copies of the current value, allowing one copy to be used as the

A115

network output and the other two as the new initial values of pools KA and KB to

restart the network cycle. In our example the flux generated for each reaction is

0.94687, and each copy of flows into pools KA, KB and KH.

5. At ∆t4 pool KH actively inhibits reaction K2 thus the next network cycle cannot

commence until pool KH has emptied. Pool KH represents the output of the chaotic

network and it interfaces with the rest of the network through reaction K0. Reaction K0

processes KH and static pool KI, in a single time step, where both forward rate and

weight is 1. Static pool KI has a fixed value of 360 which allows the network to convert

the pseudo random number to an angle value between 0 and 360. Thus in this example

the value of 0.94687 becomes 340.8732. However, reaction K0 cannot proceed until all

11 pools that inhibit it are empty. These inhibitory connections ensure that random

angles are not output while the agent is in starvation mode, and that pool AE is empty

before adding more chemical.

A116

Appendix 6

The following screenshots show the search spaces used in the Cytobot optimisation

experiments outlined in section 8.2. This includes the following functions: 1. Inverted sinc; 2.

Peaks; and 3. Rosenbrock.

1. Inverted sinc function with 6 Cytobots

A117

2. Peaks with 3 Cytobots

3. Rosenbrock function with 1 Cytobot

	Gerrard thesis coversheet
	Gerrard thesis final 09-07-14
	Computational Aspects of Cellular Intelligence and Their Role in Artificial Intelligence
	Title i

	1. Introduction
	1.1 Research Background
	1.2 Aims, Objectives & Research Questions
	1.2.1 Research Questions

	1.3 Overall Aim and Objectives
	1.3.1 Objectives

	1.4 Original Contributions to the Art
	1.5 Chapter Overview
	Chapter 2: Cellular Intelligence
	Chapter 3: Artificial Intelligence Inspired by Cell Signalling
	Chapter 4: The Artificial Reaction Network
	Chapter 5: ARN Based Simulation of E. coli Chemotaxis
	Chapter 6: Spatial & Temporal Properties of the ARN
	Chapter 7: Cytobots: ARN-Controlled Agents
	Chapter 8: Applications of ARN-agents
	Chapter 9: Summary and Conclusions

	1.6 Papers in Appendix 1

	2. Cellular Intelligence
	2.1 What is Cellular Intelligence?
	2.2 The Machinery of Cellular Intelligence
	2.2.1 An Example of Cellular Intelligence

	2.3 Computational Aspects of Cell Signalling Networks
	2.4 Representations of Cell Signalling Networks
	2.4.1 Potential Energy Models
	2.4.2 Probability Distribution Models
	2.4.3 Ordinary Differential Equation Models
	2.4.4 Abstract Machine Models
	2.4.5 Boolean Function Models

	Reaction
	Reaction
	3. Artificial Intelligence Inspired by Cell Signalling
	3.1 Introduction to Bio-inspired AI
	3.2 Artificial Chemistry
	3.3 AI Inspired by Reactions of the Endocrine System
	3.4 AI Inspired by Reactions of the Immune System
	3.5 AI Inspired by Reactions of the Metabolic System
	3.6 AI Inspired by Reactions of the Nervous System
	3.7 AI Inspired by Reactions of the Gene Regulatory System
	3.8 AI Inspired by Generic Chemical Reactions

	4. The Artificial Reaction Network
	4.1 Basic Formulation
	4.2 A Networked Representation
	4.3 Computational Properties
	4.4 Disadvantages
	4.5 Verification of the Model

	5. An ARN Based Simulation of E. coli Chemotaxis
	5.1 Overview of E. coli Chemotaxis
	5.1.1 E. coli Random Biased Walk
	5.1.2 The E. coli chemotaxis CSN

	5.2 Simulation of the E. coli Chemotaxis CSN
	5.2.1 Structure of the Simulated Pathway
	5.2.2 Simulation Parameters

	5.3 Experiments and Results
	5.3.1 Experiment 1: CheYP Levels in Varying Chemorepellent Environments
	5.3.2 Experiment 2: The Adaptation Response
	5.3.3 Experiment 3: Minimum Seeking Behaviour of ARN Simulated E. coli

	6. Spatial & Temporal Properties of the ARN
	6.1 Pattern Recognition
	6.2 Spatio-Temporal Dynamics of the ARN
	6.2.1 ARN-based Quadrupedal Robotic Control System
	6.2.2 ARN-based Robotic Control System Featuring Crosstalk
	6.2.3 Complete Robotic Control System

	7. Cytobots: ARN-Controlled Agents
	7.1 Cytobot Behaviour
	7.1.1 Biological Counterpart: D. discoideum
	7.1.2 Cytobot Foraging Mode
	7.1.3 Cytobot Starvation Mode

	7.2 Cytobot ARN Design and Implementation
	7.2.1 The Master Oscillator
	7.2.3 The Signalling Network
	7.2.4 The Weighted Direction Network
	7.2.5 The Chaotic Network

	8. Cytobot Experiments and Results
	8.1 Cytobot D. discoideum Simulation
	8.1.1 Cytobot D. discoideum Simulation: Methodology
	8.1.2 Cytobot D. discoideum Simulation: Results and Discussion

	8.2 Cytobot Optimisation Experiments
	8.2.1 Cytobot Optimisation Experiments: Methodology
	8.2.2 Cytobot Optimisation Experiments: Results and Discussion

	8.3 Cytobots Oil-Spill Clean-up Simulation
	8.3.1 Cytobots Oil-Spill Clean-up Simulation: Methodology
	8.3.2 Cytobots Oil-Spill Clean-up Simulation: Results and Discussion

	9. Summary & Conclusions
	9.1 Introduction
	9.2 The Project Objectives Revisited
	9.2.1 Evaluation of Objective Attainment

	9.3 Original Contributions to the Art

	2. The production of complex waveforms for control of limbed robotic gaits by combining functional motifs found in CSNs within a rate law based connectionist system (chapter 6).
	3. The construction of the E. coli chemotaxis pathway using a connectionist based Artificial Chemistry (chapter 5).
	4. The implementation of chaotic dynamics by combining functional motifs found in CSNs within a rate law based connectionist system (chapter 7).
	5. The production of a complete limbed robotic control system by combining functional motifs found in CSNs within a rate law based connectionist system (chapter 6).
	6. The construction of multiple distributed cell-like agents by combining functional motifs found in CSNs within a rate law based connectionist system (chapters 7 and 8).
	9.4 Suggestions for Future Work
	9.4.1 Improvements to Model
	9.4.2 Applications

	9.5 Concluding Remarks

	Paper 1: ‘Applications and Design of Cooperative Multi-agent ARN based Systems’
	Reference:
	1 Introduction
	2 The Artificial Reaction Network
	3 Cytobot Behaviour
	3.1 Biological Basis of Cytobot Behaviour: Chemotaxis of D. discoideum Amoebae
	3.2 Cytobot Foraging Mode
	3.3 Cytobot Starvation Mode

	4 Cytobots: Design and Implementation
	4.2 The Cytobot ARN
	4.2.1 The Master Oscillator
	4.2.2 The Food and Run Length Network
	4.2.3 The Signalling Network
	4.2.4 The Weighted Direction Network
	4.2.5 The Chaotic Network

	5 Experiments and Results
	5.1.1 D. discoideum Simulation Methodology
	5.1.2 D. discoideum Simulation Results and Discussion
	5.2 Oil-spill Confrontation Simulation
	5.2.1 Oil-spill Simulation Methodology

	6 Conclusions
	Paper 2: ‘Exploring aspects of Cell Intelligence with Artificial Reaction Networks’
	Reference:

	1 Introduction
	2 The Artificial Reaction Network
	2.1 Basic Formulation
	2.2 A Networked Representation
	2.3 Computational Properties
	2.4 Disadvantages

	3 Experiments and Results
	3.1 Pattern Recognition
	3.2 Regulation of Temporal Dynamics and Control of Limbed Robots
	3.3 Complete Robotic Control System

	6 Conclusions
	10 References
	Paper 3: ‘Artificial Reaction Network Agents’
	Reference:

	Introduction
	The Artificial Reaction Network
	ARN Agents
	Cytobot Foraging Behavior
	Cytobot Starvation Behavior
	The Master Oscillator
	The Food Network and the Run Length Network
	The Signaling Network
	The Weighted Direction Network
	The Chaotic Network

	Slime Mould Aggregation Simulation
	Results

	Oil Spill Clean-up Simulation
	Results

	Conclusions
	References
	Paper 4: ‘Combining Biochemical Network Motifs within an ARN-Agent Control System’
	Reference:
	Paper 5: ‘Artificial Chemistry Approach to Exploring Search Spaces using Artificial Reaction Network Agents’.
	Reference:
	Paper 6: ‘Adaptive Dynamic Control of Quadrupedal Robotic gaits with Artificial Reaction Networks’
	Reference:
	Paper 7: ‘Temporal patterns in Artificial Reaction Networks’
	Reference:
	Paper 8: ‘Artificial Reaction Networks’
	Reference:
	Appendix 2
	Appendix 5
	Appendix 6

