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ABSTRACT

Variable and uncertain wind power output introduces new challenges to power system
voltage and frequency stability. To guarantee the safe and stable operation of power
systems, the control for voltage and frequency regulation is studied in this work.

Static Synchronous Compensator (STATCOM) can provide fast and efficient reactive
power support to regulate system voltage. In the literature, various STATCOM control
methods have been discussed, including many applications of proportional—integral (PI)
controllers. However, these previous works obtain the Pl gains via a trial and error
approach or extensive studies with a tradeoff of performance and applicability. Hence,
control parameters for the optimal performance at a given operating point may not be
effective at a different operating point. To improve the controller’s performance, this work
proposes a new control model based on adaptive PI control, which can self-adjust the
control gains during disturbance, such that the performance always matches a desired
response in relation to operating condition changes. Further, a new method called the
flatness-based adaptive control (FBAC), for STATCOM is also proposed. By this method,
the nonlinear STATCOM variables can easily and exactly be controlled by controlling the
flat output without solving differential equations. Further, the control gains can be
dynamically tuned to satisfy the time-varying operation condition requirement.

In addition to the voltage control, frequency control is also investigated in this work.
Automatic generation control (AGC) is used to regulate the system frequency in power
systems. Various control methods have been discussed in order to design control gains and

obtain good frequency response performances. However, the control gains obtained by



existing control methods are usually fixed and designed for specific scenarios in the
studied power system. The desired response may not be obtained when variable wind
power is integrated into power systems. To address these challenges, an adaptive
gain-tuning control (AGTC) for AGC with effects of wind resources is presented in this
dissertation. By AGTC, the PI control parameters can be automatically and dynamically
calculated during the disturbance to make AGC consistently provide excellent
performance under variable wind power. Simulation result verifies the advantages of the

proposed control strategy.
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CHAPTER 1
INTRODUCTION AND GENERAL INFORMATION

1.1 Power System Stability
1.1.1 Definitions and Classification of Power System Stability

Renewable energy resources have significantly increased in power systems recently.
Renewable energy provides 19% of the electricity generation worldwide, and renewable
power generators spread in many countries [1]. The report on annual energy outlook in [2]
shown in Figure 1.1 indicates that the share of U.S. electricity generation from renewable
sources (including conventional hydropower) grew from 9% in 2000 to 12% in 2012, and
will grow to 16% in 2040. Unfortunately, renewable energy, especially wind, tends to be
variable and uncertain because the wind depends on natural and meteorological conditions
[3-4]. This variability introduces many new challenges for power system frequency
stability. For example, voltage stability, frequency stability and inter-area oscillation have
become greater concerns than before. Therefore, it is necessary to review the specific

definition and classification of power system stability.
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Figure 1.1 Electricity generation by fuel, 1990-2040 (trillion kilowatt hours).

Based on the literature [3-4], the precise definitions of stability are shown as follows.
“Power system stability is the ability of an electric power system, for a given initial
operating condition, to regain a state of operating equilibrium after being subjected to a
physical disturbance, with most system variables bounded so that practically the entire
system remains intact”.

A typical power system is a highly nonlinear system. Operation conditions such as
loads, generator outputs, key operating parameters, etc. are continually changing. Many
small and large disturbances may occur in the system from time to time. An unstable
system condition will lead to outages and shutdown of the power system. Therefore, power

systems must remain stable under load changes and other small disturbances. Also, power



systems must survive numerous disturbances of a severe nature, such as a short circuit on a
transmission line or the loss of a large generator [3-4].

Based on the physical nature of the resulting mode of instability, the size of the
disturbance, processes, and the time span, power system stability can be classified as rotor
angle stability, voltage stability, and frequency stability. The detail classifications are

shown in Figure 1.2 [3-4].

Power Sytem
Stability
Rotor Angle Frequency Voltage
Stability Stability Stability
Small- q Large- Small-
Disturbance -gtzgs.:im Disturbance Disturbance
Angle Stability y Voltage Stability | [Voltage Stability
Short Term Short Term Long Term
Short Term Long Term

Figure 1.2 Classification of power system stability.

This work focuses on the voltage and frequency regulations. Therefore, only voltage

stability and frequency stability will be discussed here.
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1.1.2 Voltage Stability

Voltage stability is the ability of a power system to remain steady voltages at all buses
in the system when it is subject to a disturbance from a given initial operating condition.
The capability to maintain the equilibrium between the load demand and supply in power
systems will determine the voltage stability. Voltage instability will result in the loss of
load in some areas, tripping of transmission lines and other elements by the protective
systems, and even a large-scale cascading blackout. The Voltage stability can be divided
into the following two categories [3-4]:

(1) Large-disturbance voltage stability: This is the ability of power systems to
maintain steady voltages when a severe disturbance such as system faults, loss of
the generations, or circuit contingencies occurs in the system. Large-disturbance
voltage stability is determined by the system and load characteristics, as well as
the corresponding controls and protections. The study period of large disturbance
voltage stability may extend from a few seconds to several hours.

(2) Small-disturbance voltage stability: This is the ability of power systems to
maintain steady voltages when a small disturbance such as incremental change in
system load occurs in the system. Small-disturbance voltage stability is affected

by the characteristics of loads and controls at a given instant of time.



As discussed above, the time frame of interest for voltage stability problems may vary
from a few seconds to several hours. Therefore, voltage stability may be either a short-term
or a long-term phenomenon as shown in Figure 1.2.

1.1.3 Frequency Stability

Frequency stability is the ability of a power system to maintain a steady frequency
when there is a significant imbalance between generation and load. Frequency stability
depends on the ability to maintain equilibrium between system generation and load, with
minimum unintentional loss of load.

Frequency deviations are caused by a mismatch between power supply and demand in
the power system. If the power system supply is insufficient to meet the demand, the power
system frequency will decrease; if the power system supply exceeds the demand, the
system frequency will increase. Small power mismatches will result in small frequency
deviations, which can be easily handled. However, large frequency deviations may lead to
equipment damage and even blackouts. Frequency instability will result in frequency
swings with generating units and loads tripping. During frequency excursions, the
characteristic times of the processes and devices that are activated will range from fraction
of seconds to several minutes. Therefore, as identified in Figure 1.2, frequency stability

can be a short-term or a long-term phenomenon [5].



1.2 Power system voltage and frequency regulation

A power system is a large and complex interconnected network which consists of
thousands of buses and hundreds of generators or even larger. With the increasing need for
electrical energy, new installations of power generating stations and transmission lines are
required, and the existing infrastructure operations are extended close to their limits. The
installation of new lines and generations imposes many environmental and economic
constraints. It was found that voltage and frequency instability are the main reasons for the
recent North American blackout in August 2003 [7]. Moreover, renewable energy sources
such as wind energy and photovoltaic (PV) sources have been widely installed in power
systems recently, which make power systems under much more pressure than in the past
regarding stability concerns. The general concept of voltage and frequency regulation will
be discussed in this section.
1.2.1 Power system voltage regulation

If the power voltage becomes unstable, the system voltage will decrease to
unacceptable low level and become impossible to recover. Then, the interruption of the
power supply will occur in power systems. Therefore, voltage regulation or reactive
compensation is an important subject in a power system. Also, it is the utilities’
responsibility to keep the customer voltage within specified tolerances [6]. The only way to

regulate system voltage is to reduce the reactive power load or install the reactive
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generation devices at the weak voltage points in the system to increase the voltage at these
weak points [7].

The recent development and use of Flexible Alternating Current Transmission
Systems (FACTS) in power systems has led to many applications such as Thyristor
Controlled Series Compensator (TCSC), Static Synchronous Series Compensator (SSSC),
Static VAR Compensator (SVC), and Static Synchronous Compensator (STATCOM) [7].
These devices are not only able improve the voltage stability and provide flexible operation
capabilities. However, with the growth of industry and the economy, the demands of lower
power losses, faster response to system parameter change, and higher stability margin have
become increasingly important. In particular, STATCOMs are one of the most popular
devices for voltage regulation because of their constant current characteristics when the
voltage is low/high over the limits.

STATCOM is a power electronic based synchronous voltage generator that generates a
three-phase voltage from a dc capacitor. By controlling the magnitude of the STATCOM
voltage and the reactive power exchanges between the STATCOM and the transmission
line, the amount of shunt compensation in the power system can be controlled [8-9].
Therefore, the system voltage will be kept in the allowable range. In this work, the control

of STATCOM will be studied.



1.2.2 Power system Frequency Regulation
The imbalance between the generation and the load will degrade a power system

performance and sometimes will make the power system unstable. The power system

frequency is sensitive to the power system loads and losses [10, 11]. In an interconnected
power system, area load changes and abnormal disturbances will lead to mismatches in
frequency and scheduled power interchanges between areas. These mismatches can be
corrected by Load Frequency Control (LFC) [10]. This important component in power
system operation and control is designed to minimize the deviations in frequency and
tie-line power. It also can reduce steady-state errors to zero when there is a disturbance in
power systems. Thus, LFC is essential for supplying sufficient and reliable electric power
[12, 13].
In a power system, LFC can be divided into three levels [14, 15]:

(1) Primary control is a local automatic control that adjusts the active power generation of
the generators and the consumption of controllable loads to restore the balance
between the load and the generation to eliminate frequency variations. Primary control
is indispensable for the stability of power systems, and is performed by the speed
governors of the dedicated power generation units. With primary control, if a variation
in power system frequency is greater than the dead band of the speed governor, a

change in unit’s generation will occur. At this time, generators are required to
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)

(3)

participate in the control by setting the droop according to specifications by the TSO
(Transmission System Operator).

Secondary control is a centralized automatic control that adjusts the active power
production of the generators to restore the frequency and the interchanges with other
systems to their target values. In other words, if primary control cannot stop frequency
excursions, secondary control will bring the frequency back to its target value, usually
set as 60Hz in the United States. As opposed to the primary frequency control, the
secondary frequency control is dispensable. Frequency control is thus not
implemented in some power systems where the frequency is regulated using only
automatic primary and manual tertiary control. However, the secondary frequency
control is used in all large interconnected systems because manual control does not
remove overloads on the tie lines quickly enough. Secondary control is also called
load-frequency control (LFC), while the term automatic generation control (AGC) is
preferred in North America. Transient time for secondary control is in the order of
minutes.

Tertiary control is to manual changes in the dispatch and commitment of generators.
Tertiary control is used to restore the primary and secondary frequency control
reserves, to manage congestions in the transmission network, and to bring the

frequency and the interchanges back to their target value when the secondary control is
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unable to perform this last task.

In this work, the control of AGC will be studied.
1.3 Contribution of this Work

In a power system, Proportional-integral (P1) controllers have been designed for
STATCOM to obtain satisfactory dynamic responses [16]. In traditional PI control
methods, the control gains in these controllers are tuned for a case-by-case study or
trial-and-error approach. It is a time-consuming job for utility engineers to perform
trial-and-error studies to find suitable parameters. Further, conventional P1 controllers with
fixed control gains are designed for one specific operating condition. A fixed controller,
optimal in one specific operating condition may not be suitable in another operation
condition and large oscillations may occur in the power system.

The purpose of this work is to propose a control method that can ensure a quick and
consistent desired response when the system operation condition varies. In other words, we
want to avoid negative impacts, such as slower response, overshoot, or instability to the
system performance when external conditions change.

Based on this fundamental goal, an adaptive Pl control of STATCOM for voltage
regulation is presented. By this adaptive PI control method, the PI control parameters can
be self-adjusted automatically and dynamically under different disturbances in a power

system. When a disturbance occurs in the system, the PI control parameters for STATCOM
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can be computed automatically in every sampling time period and can be adjusted in real
time to track the reference voltage. Different from other control methods, this method will
not be affected by the initial gain settings, changes of system conditions, and the limits of
human experience and judgment. This will make the STATCOM a “plug-and-play” device.
In addition, this research work demonstrates a fast, dynamic performance of STATCOM in
various operating conditions.

Next, a flatness-based adaptive control method (FBAC) is also proposed and applied to
STATCOM for voltage control in this work. By flatness-based control (FBC), the
trajectories of all system variables can be directly estimated by flat output and its
derivatives without solving differential equations. By adaptive control, the control gains
can be dynamically tuned to satisfy the time-varying operation condition requirement.
Different from other FBC methods, the proposed control method is robust to various
system operating conditions and will not be affected by the limits of human experience and
judgment. Even if the system operation condition has a drastic change, the FBAC method
can consistently achieve a desired performance of STATCOM.

Finally, the frequency regulation is also discussed in this work. A number of control
methods have been discussed in the literature to design control gains for
proportional-integral (PI) controllers in automatic generation control (AGC) and to obtain

a good frequency response performance. However, the existing methods are either time
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consuming or easily affected by the designer’s experience. Further, the control gains
obtained by existing control methods are usually fixed and designed for specific scenarios
in the studied power system. The desired response may not be obtained when variable
wind power is integrated into power systems. To address these challenges, an adaptive
gain-tuning control (AGTC) for AGC with effects of wind resources is presented in this
work. By this control method, the PI control parameters can be automatically and
dynamically calculated during differing disturbances in a power system. In the proposed
method, the initial gains will be calculated first. Then, the wind energy with actual wind
speed will be integrated into power systems. The PI control parameters for AGC can be
computed automatically and can be adjusted in real time based on the area control error
(ACE) signal to regulate the system frequency. The proposed method will not be affected
by changes of the system conditions and human experience and judgment.
1.4 Organizations of the Dissertation

Chapter 2 provides a detailed review of the literature regarding STATCOM model,
flatness-based control, and generic adaptive control.

Chapter 3 addresses the challenge of the traditional PI control methods to obtain the
optimal response with varying power system operation conditions. Also, this chapter
proposes a new control model based on adaptive Pl control, which can self-adjust the

control gains during disturbances such that the performance always matches a desired
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response, regardless of changes in the operating condition. Finally, the conventional
STATCOM control with tuned, fixed PI gains will be compared with the proposed method
in simulation part.

Chapter 4 introduces a new method, called the flatness-based adaptive control (FBAC),
for STATCOM voltage regulation. By this method, the nonlinear STATCOM variables
can be easily and exactly controlled by controlling flat output without solving differential
equations. Further, the control gains can dynamically self-adjust during the voltage
regulation after a disturbance. In the simulation part, the conventional PI control with tuned,
fixed PI gains, the flatness based control (FBC) and the FBAC will be compared.

Chapter 5 introduced an adaptive gain-tuning control (AGTC) for AGC with effects of
wind resources. In the proposed method, the initial gains will be calculated first. Then, the
wind energy sources with actual wind speeds are integrated in power systems. The Pl
control parameters for AGC can be computed automatically and adjusted in real time based
on the area control error (ACE) signal to regulate the system frequency. The proposed
method is tested in an IEEE 39 bus system with wind resources and compared with
conventional control approach with well-tuned gains in the simulation.

In Chapter 6, the conclusion from the entire dissertation work is given, and possible

future works are also discussed.
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CHAPTER 2
LITERATURE REVIEW
2.1 Chapter Introduction

This chapter briefly reviews the past and on-going research findings relevant to the
control of Static Synchronous Compensator (STATCOM) and automatic generation
control (AGC).

2.2 Voltage Control of STATCOM Review

Voltage regulation is a critical consideration for improving the security and reliability
of power systems. The Static Compensator (STATCOM), a popular device for reactive
power control based on gate turn-off (GTO) thyristors, has gained much interest in the last
decade for improving power system stability [17].

In the past, various control methods have been proposed for STATCOM control. For
instance, nonlinear optimal control to STATCOM is introduced in [18-20]. A synchronous
frame voltage regulator is presented in [21] to control system voltage by using separate
regulation loops for positive and negative sequence components of the voltage. Pl
structures with feed forward are proposed in [22] to improve STATCOM performance. A
STATCOM damping controller is introduced in [23-24] to offset the negative damping
effect and to enhance system oscillation stability. A modified non-linear damping

controller is presented in [25] to provide an improved transient performance over the whole
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operating range. These previous works mainly focus on the control design rather than
exploring how to set PI control gains.

In many STATCOM models, the control logic is implemented with the
Proportional-integral (P1) controllers. The control parameters or gains play a key factor in
STATCOM performance. Presently, few studies have focused on the control parameter
settings. In the previous research works [26-28], the PI controller gains were designed in a
case-by-case study or trial-and-error approach with tradeoffs in performance and
efficiency. Generally speaking, it is not feasible for utility engineers to perform
trial-and-error studies to find suitable parameters when a new STATCOM is connected to a
system. Further, even if the control gains have been tuned to fit the projected scenarios,
performance may be disappointing when a change of the system conditions occurs, such as,
when a line is upgraded or retires from service [29-30]. The situation can be even worse if
such transmission topology change is due to a contingency. Thus, the STATCOM control
system may not perform well when critically needed.

A few, but limited previous works in the literature discuss the STATCOM PI controller
gains in order to improve voltage stability and to avoid time-consuming tuning. For
instance, in [31-33], linear optimal controls based on the linear quadratic regular (LQR)
control are proposed. In [35-36], a fuzzy Pl control method is proposed to tune PI

controller gains. In [40-42], a flatness-based control (FBC) is proposed and applied in the
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voltage source converter. In [29-30], an autonomous and adaptive voltage control for
distributed energy resources (DERS) is proposed. In subsections 2.2.1 to 2.2.4, the control
methods in existing literature for control gain tuning will be discussed in detail.
2.2.1 Linear quadratic regular (LQR) control

In [31-33], linear optimal controls based on the linear quadratic regular (LQR) control
are proposed. LQR is also a pole placement method. In this method, the poles of the
system are placed indirectly by minimizing a given performance index J:

J = fooc(xTQx + uTRu)dt (2.1)
where X is the state variable, u is the vector of input variables, Q and R are the weighting
matrices, usually Q and R are positive semi-definite which are chosen by the designer. By
optimizing the given performance index J, the feed-back gain matrix K can be obtained. In
[31], the matrix Q is chosen to be a diagonal matrix, thus the elements act as a “weighting”
of the STATCOM states in the performance index. The matrix R is also chosen to be a
diagonal matrix. In the matrices Q and R, the elements must be chosen carefully. Very
small values may result in excessive control force demand. However, very large values
may result in sluggish system performance. The best range of values in Q and R varies
depending on the system under consideration and the operating point. Therefore, the
effectiveness of the LQR depends on the choice of the weighting matrices Q and R, and

the optimal parameters may depend on the designer’s experience.
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2.2.2 Fuzzy PI control method
In [35-36], a fuzzy PI control method is proposed to tune PI controller gains. The

control block is shown in Figure 2.1.
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Adjustor Decoupled System

Vdc)\ AKp | [AK) p————— i

Ao
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\J
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dc | .

| 0 STATCOM
|

| PWM

A';ijlzj;?{)r : Generator

|

|

|

Feedforward Decoupling
Control

Figure 2.1 Direct-Output-Voltage with Fuzzy Control.

In the figure, the fuzzy adjustor is used to adjust the parameters of proportional gain Kp
and integral gain K, based on the error e and the change of error 4e. The control gains are
determined by:

Kp = Kj + AKp (2.2)
K, = K; + AK; (2.3)

where K; and K; are the reference values of fuzzy-Pl-based controllers. In [35-36], Kp
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and K; are calculated offline based on the Ziegler Nichols method.

By fuzzy control, numeric values of error e and the change of error de need to be
translated into a linguistic value with a membership grade. The membership function is
shown in Figure 2.2. In the figure, the following seven fuzzy sets are chosen: negative big
(NB), negative medium (NM), negative small (NS), zero, positive small (PS), positive

medium (PM), and positive big (PB).

NBE NM NS 0 PS PM PB

1

0.5
0

6 4 -2 0 2 4 0
Figure 2.2 Membership functions of fuzzy variables.

The design process of fuzzy control rules involves defining the rules that relate the
input variables to the output model properties. The fuzzy control rules usually are
designed by the designer. In the [36], 4Kp and 4K, are determined by the following rules:

1) If|e|isa large value, a large 4Kp will be chosen, and vice versa.

2) If e'4e>0, a large 4Kp will be selected, and vice versa.
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3) |If|e| and |4e| are large values, 4K is set to zero, which can avoid control saturation.
4) If |e| is small, 4K is effective, and a large value is chosen for 4K if |e| is small,
which is good to decrease the steady-state error.

In the fuzzy control, the controller rule is mainly obtained from designers’ intuition
and experience. Therefore, the fuzzy control method essentially gives “fuzzy”
recommendation and it is still up to the designer to choose the actual, deterministic gains.
2.2.3 Flatness based control

A flatness-based control (FBC), is proposed and applied in the voltage source
converter [40-42]. Flatness is a mathematical property of a system described by a set of
differential equations. With FBC, a nonlinear flat system is equivalent to a linear
controllable system, and the trajectories of all system variables can be directly estimated by
flat output and its derivatives [43-45]. Flat systems are a subset of nonlinear systems; in
other words, some nonlinear systems may demonstrate the characteristic of flatness. The
flatness feature can be utilized for motion planning, trajectory generation, and stabilization.
Theoretically, a flat system can be feedback linearized, which is, however, not a better
choice than the flat control approach. Further, flatness is a feature independent of
coordinate choice which is critical to the linearization in nonlinear control. That is,
choosing a different coordinate system may not convert the nonlinear system to a linear

one. However, coordinate choice is irrelevant in flatness-based control [46-47].
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Consider a general nonlinear system of the form:

x=f(x)+g()u (2.4)
x = [x1,%5, .. xy]T  x€R™ (2.5)
u = [ug, uy, . ty|]’ ueR™ (2.6)

where (n,m) € N. If the state variable x can be parameterized by output y and its
derivatives, the system is said to be differentially flat and admits the flat output y=[ys, y2,...,
yml]" [43-45]. Then, the state variables and control variables can be written as follows:
x=¢».9,..,.yP) 2.7)
u=¢(yy,.,y*m) (2.8)
where f is the finite numbers of derivative. By this process, a nonlinear flat system can be
equivalent to a linear controllable system as described in references [43-45], the control

block shown in Figure 2.3.

yRi, Control | ¥ | Inverse | u | Flat | Y
y » Law "| Dynamics | System

Figure 2.3 Flatness based control block.
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In the FBC [40-42], the control laws are normally designed by the pole-placement
method. By this method, the final results will also be affected by the designer’s experiences
as discussed before. Further, even if the control gains have been tuned to fit the projected
scenarios, it may not perform as initially expected when a considerable change of the
system condition occurs such as when a transmission line is upgraded or retires from
service. The situation can be even worse if such transmission topology change is due to a
contingency. Thus, the STATCOM control system may not perform well when urgently
needed. Therefore, this issue leads to an exploration for an improved flatness based
control.

2.2.4 Adaptive control by previous work

In [29-30], adaptive voltage regulation for distributed energy resources (DERS) is
proposed and an adaptive voltage regulation method is developed with a Pl feedback
controller. Based on these previous researches, if the control gains Kp and K, are not
chosen appropriately, the system response may be poor and even cause instability. So it is
important to design the control gains. In [29-30], an adaptive PI design is proposed such
that it can dynamically adjust the PI controller in real-time based on the system behavior
and configuration. The proposed adaptive PI control method includes three procedures:

1) Determine the DC source voltage of the DE.

2) Set the initial controller values.
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3) Adjust the controller parameters according to the real-time system conditions.
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Figure 2.4 Adaptive control of the voltage regulation.

The control diagram for DERs is shown in Figure 2.4. The point of common coupling

(PCC) voltage v; (or terminal voltage), is measured and its RMS value V. is calculated. The

V¢ is then compared to the voltage reference V;. The error between the actual voltage V;

and reference voltage V; is fed back to adjust the reference compensator output voltage

V7, which is the reference for generating pulse-width modulation (PWM) signals to drive

the inverter. The compensator output voltage V;

reference V;. The expression for V; can be obtained by:

is controlled to regulate V; to the

Ve = (0 [1+ Kp (Ve () = Vo) + K, [ (Ve () = V() dt| (29)

By the proposed control method, the initial value of control gains Kp, can be

empirically set to half of the right-hand side (RHS) value defined by:
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where AV? = Vi (t) — V2(¢t) is the initial RMS voltage deviation at time 0+.

By the adaptive control, the actual voltage deviation which is the voltage error between
the measured voltage and the reference voltage will be compared with the desired voltage
deviation, which is the voltage error between the defined exponential voltage curve and the
reference voltage. The Pl control gains will be adjusted based on the scaling factor
r,=actual voltage deviation/ideal voltage deviation. This adaptive control approach will be
expanded to STATCOM control in this work while eliminating the initial gain settings
which is somewhat empirically determined.

2.25 Summary

Based on the above discussion, the gains in LQR control depend on the designer’s
choice of a weighting matrix. This makes the optimal parameters depend on the designer’s
experience. The fuzzy control method essentially gives “fuzzy” recommendation and it is
still up to the designer to choose the actual, deterministic gains. The FBC also uses the
pole placement method to determine the control gains. Therefore, again, the designer’s
experience may affect the final results. Different from these previous works, this work
proposes a control method that can ensure a quick and consistent desired response when

the system operation condition varies. In other words, the change of the external condition
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will not have a negative impact, such as slower response, overshoot, or instability on the
performance.
2.3 Frequency Control of AGC Review

The power system frequency is sensitive to power system loads and losses [10, 11]. In
an interconnected power system, area load changes and abnormal disturbances will lead to
mismatches in frequency and scheduled power interchanges between areas. All generators
are equipped with speed governor systems, but during sudden and big load change, zero
frequency deviation may not be obtained. In this case, the mismatches can be corrected by
Load Frequency Control (LFC) or automatic generation control (AGC) [10]. AGC, an
important component in power system operation and control, is designed to minimize the
deviations in frequency and tie-line power and reduce steady-state errors to zero when
there is a disturbance in power systems. Thus, its implementation is essential for supplying
sufficient and reliable electric power [12, 13].

The commonly used technique for LFC [12-13] is based on the Area Control Error
(ACE) which is a linear combination of tie line error and frequency deviations. The main
objectives of the LFC are to minimize the transient errors of the frequency and tie-line
power and to ensure zero steady-state errors of these quantities. Droop control strategies
have been proposed for traditional AGC [10-11]. Existing droop controllers are designed

for small load changes. To improve droop controllers, other classical control methods,
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such as proportional-integral(PI), integral-derivative (ID), proportional-integral-derivative
(PID) and integral-double derivative (IDD) controllers, are investigated in [48]. The
flatness-based controls for automatic generation control (AGC) of a multi-machine system
are proposed in [49-50]. However, the control gains in these controllers are designed by
trial and error method which can be time consuming. Moreover, the fixed control gains
used in these controllers are designed for a specific operation condition, which cannot
guarantee the optimal control response in varying power system operation conditions.

In order to obtain a better frequency response, the pole placement method is proposed
in literatures [13, 67]. Since the gains by this method depend on the designer’s choice of
the pole, the optimal parameters may depend on the designer’s experience. Therefore, the
designer’s experience may affect the final results. Intelligent controllers are proposed to
AGC to obtain fast and good dynamic response for load frequency control. Many
intelligent techniques such as differential evolution algorithm, particle swarm
optimizations, bacteria foraging algorithm, etc. are being used extensively and in
interconnected power systems [54-64, 68]. The detail of selected previous control methods
will be discussed in subsections 2.3.1 to 2.3.4.

2.3.1 Differential Evolution
In [54], the application of differential evolution (DE) algorithm in load frequency

control for controller parameters tuning is proposed. The DE is a population-based
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stochastic optimization algorithm. DE works with two populations such as old generation
and new generation of the same population. The size of the population is adjusted by the
parameter Np. The population consists of real valued vectors with dimension D which is
equal to the number of control variables. The population is randomly initialized within
the initial parameter bounds. The optimization process is conducted by three main steps:
mutation, crossover, and selection. In each generation, individuals of the current
population become target vectors. By adding the weighted difference between two
randomly chosen vectors to a third vector, a mutant vector will be produced during the
mutation operation. By mixing the parameters of the mutant vector with those of the
target vector, a new vector, called trial vector, will be generated during the crossover
operation. If the trial vector obtains a better fitness value than the target vector, then the
trial vector replaces the target vector in the next generation. The flow chart of the

differential evolution is shown in Figure 2.5.
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Figure 2.5 Flow chart of the differential evolution algorithm.

Implementation of DE requires the determination of some fundamental issues like:

mutation strategy, DE step size function also called scaling factor (F), crossover
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probability (CR), the number of population (Np), initialization, the termination, and
evaluation functions. The success of DE is dependent on setting the control parameters
such as population size Np, DE step size F and crossover probability of CR. Therefore,
when applying DE, the strategy and control parameters should be carefully chosen for the
successful implementation of the algorithm. Usually, the control parameters of DE
algorithm are tuned by carrying out multiple runs of algorithm for each control parameter
variation which is time consuming.
2.3.2  Particle swarm optimization
In [62], a new gain scheduling PI control strategy for AGC based on particle swarm
optimization (PSO) is proposed. The PSO is a population based optimization algorithm
which can obtain high quality solutions within shorter calculation time and stable
convergence characteristics. PSO uses particles which represent potential solutions of the
problem. Each particle flies in search space at a certain velocity which can be adjusted in
light of preceding flight experiences. The projected position of the iy, particle of the
swarm X;, and the velocity of this particle v; at (t+1)y, iteration are defined and updated as
the following two equations:
vt = v + e (pf — x{) + (i — X{) (2.11)
xft = xb+ vt (2.12)

where i = 1~n and n is the size of the swarm, c¢; and c; are positive constants, r; and r, are
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random numbers which are uniformly distributed in [0, 1], t represents the iteration
number, p; represents the best previous position (the position giving the best fitness value)
of the iy, particle, and g represents the best particle among all the particles in the swarm.
At the end of the iterations, the best position of the swarm will be the solution of the

problem. The flow chart of PSO applied in AGC control is shown in Figure 2.6.
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Figure 2.6 Flowchart of the standard PSO algorithm.
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The objective for achieving optimal solutions of control inputs is taken as an
optimization problem, and the proposed PSO algorithm is being used to tune the gains of
the controllers and cost function weights w1, w,, and ws. In the AGC system, in order to
converge to optimal solution, two different cost functions in (2.13) and (2.14) are derived.
Equation (2.13) is derived through the frequency deviations of the control areas and
tie-line power changes. Equation (2.14) is derived based on the rates of changes in these
deviations according to time.

J = fott [(w1 %{1)2 + (wz ds:z)z + (w3 %)2] dt (2.13)

J = [} tl(@10f)? + (@,85)2 + (30P)2 dt (2.14)

In the PSO algorithm, the continually varying power system operation condition has
not been considered. Also, the control gains are designed to remain constant during the
disturbance which prevents obtaining the desired response sometimes.

2.3.3  Bacteria forging algorithm

In [64], the bacterial foraging scheme (BF) is proposed to optimize several important
parameters in automatic generation control (AGC). BF algorithm, a recent evolutionary
computation technique, used for searching the total solution space, is more popular than
GA. To overcome the possibility of being trapped in local minima, in GA only two
operations (crossover and mutation) between the chromosomes are adopted. However, in

BF, the foraging (methods of locating, handling, and ingesting food) behavior of E.coli
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bacteria in the intestine is mimicked. BF algorithm can be divided into four sections,
chemotaxis, swarming, reproduction, and elimination and dispersal. These operations
among the bacteria are used for searching the total solution space. Thus the possibility of

avoiding local minimum and achieving faster convergence is much higher than GA.
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Figure 2.7 Flow chart for bacterial foraging algorithm.
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In BF algorithm, each bacterium are assigned with random values (A) within the
defined upper and lower limit between which the optimum value is likely to fall. In [64],
each bacterium is allowed to take all possible values within the range. The objective
function is defined by the following:

J = [ {f)? + (MPueiy) } dt (2.15)
where T is the simulation time, Af; is the incremental change in frequency of area i, and
APy ; is the incremental change in tie power of tie i to j. The flow chart of BF is shown
in Figure 2.7. In the figure, N is the number of iterations to be undertaken in a chemotactic
loop. Nre is the maximum number of reproductions to be undertaken. Neg is the maximum
number of elimination and dispersal events to be imposed over bacteria. S is number of
bacteria. In BF algorithm, the fixed control gains are used at the different system
operation condition which cannot guarantee the optimal control response.

2.3.4  Decentralized Sliding Mode Load Frequency Control

In [68], a novel decentralized sliding mode control, based on Pl and slide mode
control is proposed to solve the LFC problem of multi-area interconnected power systems
with matched and unmatched uncertainties. The sliding mode control (SMC) has been
proven to be an effective robust control strategy for nonlinear systems and incompletely
modeled systems. The SMC utilizes a discontinuous control to force the system state

trajectories to some predefined sliding surfaces on which the system has desired
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properties such as stability, disturbance rejection capability, and tracking ability. The
traditional SMC design includes the two relatively independent parts of the sliding mode
surface ¢i(t) for the desired performance and the controller law u;to force the system
trajectory to the surface and to maintain motion on it.

To improve the dynamic performance and robustness, the Pl switching surface is
selected as:

0;(t) = Gyxy () — [, G (A} — B{K)) x;(1)dx (2.16)
where G; and K; are constant matrices. Matrix G; is selected to assure that matrix G;B; is
nonsingular. Matrix K; is designed through pole assignment such that the eigenvalues of
matrix (A; — B;K;) are less than zero. When the dynamic trajectory reaches the sliding
mode, the switching function satisfies the following conditions.

oi(t)=0andg;(t) =0 (2.17)

In the SMC, the control gains are designed to remain the same during the disturbance,
which sometimes prevents obtaining the desired response.
235 Summary

The discussions from 2.3.1 to 2.3.4 have not considered the continually varying
power system operation condition. Moreover, the control gains in these previous AGC
control methods are designed for different operation conditions, but during the

disturbance, the control gains are kept the same. This makes the optimal response
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unachievable when variable wind power is integrated into a power system. To address
these challenges, an adaptive gain-tuning control (AGTC) for AGC with wind resources
effects is presented in this work. By this control method, the PI control parameters can be
automatically and dynamically calculated during different disturbances in a power
system.

2.4 Scope of this Work

As discussed in 2.2, the traditional Pl control methods for STATCOM use the
time-consuming try and error methods to calculate the control gains. The fixed control
gains may obtain the optimal response in a specific condition. However, when a
considerable change of the system conditions occurs such as when a line is upgraded or
retires from service, performance may be disappointing. To improve this, some new
control methods such as pole placement and fuzzy control methods are proposed. These
methods are affected by the designer’s experience which makes obtaining the optimal
response uncontrollable.

Therefore, an adaptive Pl control of STATCOM for voltage regulation is presented in
this work. By this adaptive Pl control method, the Pl control parameters can be
self-adjusted automatically and dynamically under different disturbances in a power
system. When a disturbance occurs in the system, the PI control parameters for STATCOM

can be computed automatically in every sampling time period and can be adjusted in real
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time to track the reference voltage. Different from other control methods, this method will
not be affected by the initial gain settings, changes of system conditions, and the limits of
human experience and judgment. This will make the STATCOM a “plug-and-play” device.
In addition, this research work demonstrates a fast, dynamic performance of STATCOM in
various operating conditions.

Next, a flatness-based adaptive control (FBAC) method is proposed and applied to
STATCOM for voltage control in this work, since the existing flatness based control (FBC)
may not satisfy the requirements of the varying power system operation conditions. By this
method, the nonlinear STATCOM variables can be easily and exactly controlled by
controlling flat output without solving differential equations. Further, the control gains can
dynamically self-adjust during the voltage regulation after a disturbance. Thus, the
performance from the FBAC will consistently match a desired response, regardless of the
change of operating conditions.

Finally, as discussed in 2.3, automatic generation control (AGC) is very important to
regulate power system frequency. A number of control methods have been discussed in
order to design control gains for proportional-integral (P1) controllers in AGC and to
obtain the desired frequency response performances. However, the existing methods are
either time consuming or are affected by the designer’s experience. Also, the control gains

obtained by existing control methods are usually fixed and designed for specific scenarios

35



in the studied power system. The desired response may not be obtained when variable wind
power is integrated into power systems. To address these challenges, an adaptive
gain-tuning control (AGTC) for AGC is proposed in this paper. The wind speed recordings
from an actual field data are used in the MATLAB simulation and wind power model is
built. By the proposed control method, PI control gains can be dynamically self-adjusted to
reach the desired performance. In addition, the proposed control provides better AGC
response with less deviation of system frequency and tie line flow under variable wind

power.
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CHAPTER 3

ADAPTIVE PI CONTROL OF STATCOM

3.1 Chapter Introduction
This chapter presents an adaptive PI control of STATCOM for voltage regulation. By
this adaptive Pl control method, the Pl control parameters can be self-adjusted

automatically and dynamically under different disturbances in the power system.

3.2 STATCOM Model and Control

3.2.1  System Configuration
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Figure 3.1 Equivalent circuit of STATCOM.

The equivalent circuit of the STATCOM is shown in Figure 3.1. In this power system,
the resistance R in series with the voltage source inverter represents the sum of the

transformer winding resistance losses and the inverter conduction losses. The inductance
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L represents the leakage inductance of the transformer. The resistance R in shunt with the
capacitor C represents the sum of the switching losses of the inverter and the power losses
in the capacitor. In Figure 3.1, Vg, Vps, and V¢ are the three-phase STATCOM output
voltages; Vai, Vi1, and Vg are the three phase bus voltages; ias, Ips, and ics are the three-phase
STATCOM output currents [31].
3.22 STATCOM Dynamic Model

The three-phase mathematical expressions of the STATCOM can be written in the

following form [31]:

Ly =8 = —Ryigs + Vas — Vay (3.1)
LS = —Ryipg + Vs — Vi (32)
Ly S8 = —Ryics + Vs — Vey (3.3)
2 (2CVED) = ~Wasias + Visins + Visies] =422 3.0

In order to conveniently analyze the balanced three-phase system, the three-phase
voltages and currents are converted to synchronous rotating frame by abc/dg
transformation. By this rotation, the control problem is greatly simplified since the system
variables become DC values under the balanced condition. Further, multiple control
variables are decoupled, permitting the use of the classic control method. The

transformation from phase variables to d and g coordinates is given as follows:
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1 -1 _1
ids ias [ 2 2 ] _ias
[iqs] = [C] [ibs] =§ 0 ? —g ibs] (3.5)
0 ics i i i -ics
L/E V2 V2 J
[1 119
Vds Vas 2 \/52 23 Vas
Vqs = [C] Vbs = g 0 ? —? Vbs (3-6)
0 Ves li 11 Ves
V2 V2 vz

where igs and igs are the d and g currents corresponding to ias, ins, and ics; Vs and Vs
represent the d and q voltages corresponding to Vas, Vis, and V.
The output voltage of the STATCOM can be expressed as:
Vs = KV,4. cos(a) (3.7)
Vgs = KV, sin(a) (3.8)
where K is a factor that relates the DC voltage to the peak phase-to-neutral voltage on the
AC side; Vqc is the DC-side voltage; a is the phase angle which the STATCOM output
voltage leads the bus voltage.

By using the abc/dg transformation, the equations from (3.1) to (3.4) can be rewritten

as:
R K
, [ - = w —cosal|
4 las | s R I? | las . Vai
. S - .
—|igs| = —w - —sina || igs [ ——{Vy (3.9
dt s s s
Vac 3K 3K 1 | Wace 0
—=cosa —=—sina ——
2C 2C R.C

where o is the synchronously rotating angle speed of the voltage vector; Vg and Vg
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represent the d and q axis voltage corresponding to Vg, Vi, and V. Since Vg =0, based on
the instantaneous active and reactive power definition, (3.10) and (3.11) can be obtained as
follows [23-24]:
3 .
Pt =5 Vailas (3.10)
3 .
0 = 5 Vailgs (3.11)
Based on the above equations, the traditional control strategy can be obtained, and the

STATCOM control block diagram is shown in Figure 3.2 [26-27].

Regulation Slope

P.m

Limiter Current  Limiter
Regulator Converter
EO—».—» ) Gate
Vref ¥ Voltage | ] o X+ Pattern | Vs
q|+ .
Regulator 0 Logic
STATCOM dq _
Current Transformation
PLL
VmT

Figure 3.2 Traditional STATCOM PI control block diagram.

As shown in Figure 3.2, the phase locked loop (PLL) provides the basic synchronizing

signal which is the reference angle to the measurement system. Measured bus line voltage
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Vnm is compared with the reference voltage Vi and the voltage regulator provides the
required reactive reference current lyr. The droop factor, Kq, is defined as the allowable
voltage error at the rated reactive current flow through the STATCOM. The STATCOM
reactive current I, is compared with Iqrer, and the output of the current regulator is the angle
phase shift of the inverter voltage w.r.t. the system voltage. The limiter is the limit imposed
on the value of control with the consideration of the maximum reactive power capability of

the STATCOM.

3.3 Adaptive Pl Control for STATCOM
3.3.1 Concept of the proposed adaptive PI control method

The STATCOM with fixed PI control parameters may not reach the desired and
acceptable response in a power system when the power system operating condition (e.g.,
loads or transmissions) changes. An adaptive P1 control method is presented in this section
in order to obtain the desired response and to avoid performing trial-and-error studies to
find suitable parameters for P1 controllers when a new STATCOM is installed in a power
system. With this adaptive PI control method, the dynamical self-adjustment of PI control

parameters can be realized.
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An adaptive PI control block for STATCOM is shown in Figure 3.3. In Figure 3.3, the
measured voltage Vn(t) and the reference voltage Viei(t), the g-axis reference current lgres
and the g-axis current I are in per unit values. The proportional and integral parts of the
voltage regulator gains are denoted by K, v and K; v, respectively. Similarly, the gains K, |
and K; , represent the proportional and integral parts, respectively, of the current regulator.
In this control system, the allowable voltage error Kqis set to 0. The K, v, Ki v, Ky jand Kj
can be set to an arbitrary initial value such as simply 1.0. One exemplary desired curve is
an exponential curve in terms of the voltage growth, shown in Figure 3.4, which is set as
the reference voltage in the outer loop. Other curves may also be used than the depicted
exponential curve so long as the measured voltage returns to the desired steady state

voltage in the desired time duration.

:' ‘Measured . |
Voltage Imax| ! 10ref amay |
0 0) |
| . PI Controller PI Controller
| Imin| 1! il !
| \\r Ll amin| |
I |1 | I
| Vref Adjust Kp P Adjust Kp |
| Reference and Ki || and Ki '
I Voltage I !
- e |
Voltage Regulator Current Regulator
block (outer loop) block (inner loop)

Figure 3.3 Adaptive PI control block for STATCOM.
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Figure 3.4 Reference voltage curve.

The process of adaptive voltage control method for STATCOM is described as follows:

(1) The bus voltage Vy(t) is measured in real time.

(2) When the measured bus voltage over time V,,(t) #Vss , the target steady-state voltage
(which is set to 1.0 per unit (p.u.) in the discussion and examples), the measured voltage
is compared with V. Based on the desired reference voltage curve, K, v and K; v are
dynamically adjusted in order to make the measured voltage match the desired reference
voltage, and the g-axis reference current Iqrer Can be obtained.

(3) Inthe inner loop, lqrer is compared with the g-axis current Iq. Using the similar control
method like the one for the outer loop, the parameters K, ; and K; ; can be adjusted based

on the error. Then, a suitable angle can be found and eventually the DC voltage in

43



STATCOM can be modified such that STATCOM provides the exact amount of

reactive power injected into the system to keep the bus voltage at the desired value.

It should be noted that the current Inax and Inin and the angle amax and amin are the limits
imposed with the consideration of the maximum reactive power generation capability of
the STATCOM controlled in this manner. If one of the maximum or minimum limits is
reached, the maximum capability of the STATCOM to inject reactive power has been
reached. Certainly, as long as the STATCOM sizing has been appropriately studied during
planning stages for inserting the STATCOM into the power system, the STATCOM should
not reach its limit unexpectedly.

3.3.2  Derivation of the key equations

Since the inner loop control is similar to the outer loop control, the mathematical
method to automatically adjust Pl controller gains in the outer loop is discussed in this
section for illustrative purpose. Similar analysis can be applied to the inner loop.

Here the measured bus voltages of three phases are denoted by Vg (t), Vi(t), and Vg (t),

respectively. Then, Vq(t) and Vg (t) can be computed with d-q transformation.

oy " | e
Va@®| =30 + -7 Vi (£) (3.12)
0 1 1 1 Ve (0)
v 7 "

Then, we have
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nl®) = [VE© + VA (3.13)
Based on Vp,(t), the reference voltage V(1) is set as:
Vyer (8) = Vos — (Vi — Vn(D))e 7 (3.14)
In (3.14), Vs is the target steady-state voltage (which is set to 1.0 per unit (p.u.) in the
discussion and examples); Vi(t) is the measured voltage; =0.01s. The curve in Figure 3.4
is one of the examples for Vi(t).
If the system is operating in the normal condition, then Vp,(t)=1 p.u., and thus, V(t)=1
p.u. This means that K, v and K; v will not change and the STATCOM will not inject or
absorb any reactive power to maintain the voltage meeting the reference voltage. However,
once there is a voltage disturbance in the power system, based on V,.f(t) = Vgs —
(Ves — Vm(t))e_g, K, v and K; v will become adjustable and the STATCOM wiill provide
reactive power to increase the voltage. Here, the error between Vi(t) and Vi (t) is denoted
by AV(t) when there is a disturbance in the power system. Based on the adaptive voltage
control model, at any arbitrary time instant t, the following equation can be obtained:
AV(DKy, y(8) + Ky (8) [ AV(E)dt = Lgpep (¢ +T) (3.15)
where in this example, Ts is the sample time, which is set to 2.5x10 second.
In this system, the Discrete-Time Integrator block in place of the Integrator block is

used to create a purely discrete system, and the Forward-Euler method is used in the
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Discrete-Time Integrator block. Therefore, the resulting expression for the output of the
Discrete-Time Integrator block at t is
() = y(t = T) + K; y (¢ — Ts) X Ty X AV(t — ) (3.16)
where y(£) = K; (&) [, "* AVt 3 y(t = To) = Ky (t = T) [ AV(E = Tdt.
Considering y(t — Ty) = Igef(t), we can rewrite (3.15) as follows:
AV(DK, () + Ky (D) [ AV(©)dt — Ky y (E = Ty) ..
S AV(E = Tt = Igyep(t +T,) = Igrep (t) (3.17)
Over a very short time duration, we can consider K; (t) = K; (t — Ts). Hence, (3.17)

can be rewritten as:

t+Ts

AV()K, v (6) + K; y(©) [, . CAdt = Lo (t+ To) = Igres(t) (3.18)

where A=AV(t) — AV(t — Ts).

I (t+Ts)—I ®)
qref S qref and

Based on (3.16), if we can determine in ideal response the radio

AV(t)
the ideal ratio II:‘V((?) the desired K, v(t) and K; v(t) can be solved.
p.V B -
Assuming at the ideal response, we have
Lyrer(t + Tg) — Igrep (£) = R X AV(2) (3.19)

Since the system is expected to be stable, without losing generality, we may assume
that the bus voltage will come back to 1 per unit in 5t, where 5t is the delay defined by
users as shown in Figure 3.4. Since lqyf(to)=0 based on (3.15) and (3.19), (3.15) can be

rewritten as:
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V() Ky y (to) + Kiy (t0) [.°77 AV(£)dE = R X AV(t,)  (3.20)
where 1y is the time that the system disturbance occurs.
Set Kj v(to)=0, then we have

Ky (to) = R (3.20)

Set K, v(to)=0, then we have

Av(to) XR

Ki y(to) = wrsr (3.22)
= O av(Da
Now the ratio m, = II:‘V—((Z")) can be considered as the ideal ratio of the values of
p_V\{to

Ko v(t) and K; v(t) after disturbances.
Thus, (3.19) can be rewritten as

Lyref(t + 5T) — Igres(t) = ky X AV(t,) (3.23)

qref(t+Ts)_1qref(t)
AV(t) '

Here ky can be considered as the steady and ideal ratio d
Based on the system bus capacity and the STATCOM rating, 4Vax can be obtained,
which means any voltage change greater than A7 ax cannot come back to 1 per unit. Since

we have -1<ly(t) <1, we have the following equation:

AV(t)Ky v(to)+K; v (to) [0 T av(e)dt
W) _ oy x — e (3.24)

AVmax

Based on (3.20), (3.23) and (3.24), k, can be calculated by:

RXAV(to)

to+5T

k., =
VT (Rp v (E0)AV (t)+K v (t0) [0 °T AV(D)dt ) XAV nax

(3.25)

In order to exactly calculate the PI controller gains, based on (3.18), we can derive:
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AV(OK, v (©) + myK, (0 [

Adt =k, x AV(t) (3.26)

Therefore, K, v(t) and K v(t) can be computed by the following equations:

ey XAV(t)
(av(t)+myx [T Aat)

K, y(t) = (3.27)
Ki y(©) = my X Kp, y(t) (3.28)
Therefore, based on (3.27) and (3.28), K, v(t) and K;_v(t) can be adjusted dynamically.

Using similar process, the following expressions for current regulator P1 gains can be

obtained:
B XAl (£)
Kpi(8) = (8140 +myx ;TS Bat) (3.29)
Ki ;(t) = m; X Kp ;(t) (3.30)

a(t+Ts)—a(t)

e and

where A14(t) is the error between lqer and lg; k; is the steady and ideal ratio
a(t) is the angle that phase shift of the inverter voltage with respect to the system voltage at
time t; m, is the ideal ratio of the values of K (t) and K; (t) after disturbances; and B is
equal to A71y(t)- AL,(t-Ts).

Note that the derivation from Equations (3.14) to (3.30) is fully reversible so it ensures

that the measured voltage curve can follow the desired ideal response, as defined in Eq.

(3.14).
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3.3.3  Flow charts of the adaptive PI control procedure

Measure bus voltage

m

Y

V. (® =V.(e.g.,, 1.0 p.u.) }—2Es
v No [
— ioas Ve ®=Ve— V-V, 0k ¢
Voltage Define: AVO =V, -V, ®
Regulator ¢
Block

AdjustK,,® and K based
> | on equations (3.27) and (3.28)

A 4
Obtain I in outer loop

A 4
- | Compare with measured Iq

Current l

ReBglmaliOr Adjust K, ,® and K @ based
oc on equations (3.29) and (3.30)

\ 4
- Obtain ¢ in inner loop

\ 4
Reactive power from STATCOM

will be injected to the system

v

Yes [ avolv. |

I $NO

K0, K,0, K ®and K, , @ keep the same | ¢ |

\ 4
Yes Continue voltage control ?

vNo

( Stop )

Figure 3.5 Adaptive PI control algorithm flow chart.
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Figure 3.5 is an exemplary flowchart of the proposed adaptive PI control for
STATCOM for the block diagram of Figure 3.3.

The adaptive PI control process begins at Start. The bus voltage over time Vy(t) is
sampled according to a desired sampling rate. Then, Vi (t) is compared with Vg, the desired
steady-state voltage. If Vi (t)=Vs, then, there is no reason to change any of the identified
parameters: K, v(t), Ki v(t), Ki i(t) and K, (t). The power system is running smoothly. On
the other hand, if 1;,,(t) # Vs, then adaptive PI control begins.

The measured voltage is compared with Vi(t), the reference voltage defined in (3.14).
Then, K, v(t) and K; y(t) are adjusted in the voltage regulator block (outer loop) based on
Eqgs. (3.27) and (3.28), which leads to an updated Iy via a current limiter as shown in
Figure 3.3.

Then, the lqrf is compared with the measured g-current, lq. The control gains K, (t) and
Ki i(t) are adjusted based on Eqgs. (3.29) and (3.30). Then, the phase angle o is determined
and passed through a limiter for output, which essentially decides the reactive power
output from the STATCOM.

Next, if [AV(t)| is not within a tolerance threshold, V,, which is a very small value such
as 0.001 p.u., the voltage regulator block and current regulator blocks are reentered until
the change is less than the given threshold V.. Thus, the values for K, v(t), Ki v(t), Ki (t)

and K, (t) are maintained.

50



If it is needed to continuously perform the voltage control process which is usually the
case, then the process returns to measured bus voltage. Otherwise, the voltage control

process stops, i.e., the STATCOM control is deactivated.

3.4 Simulation Results
3.4.1 System Data

In the system simulation diagram shown in Figure 3.6, a +/-100 MVAR STATCOM is
implemented with a 48-pulse VSC and connected to a 500kV bus. This is the standard
sample STATCOM system in MATLAB/Simulink library, and all machines used in the
simulation are dynamical models [26-28]. Here, the attention is focused on the STATCOM
control performance in bus voltage regulation mode. In the original model, the
compensating reactive power injection and the regulation speed are mainly affected by Pl
controller parameters in the voltage regulator and the current regulator. The original
control will be compared with the proposed adaptive PI control model.

Assume the steady-state voltage, Vs=1.0 per unit. In subsection 3.4.2, 3.4.3 and 3.4.6, a
disturbance is assumed to cause a voltage drop at 0.2 sec from 1.0 to 0.989 per unit at the
source (substation A). Here, the 0.989 p.u. voltage at the substation is the lowest voltage
that the STATCOM system can support due to its capacity limit. The third simulation study

in subsection 3.4.4 assumes a voltage drop from 1.0 to 0.991 under a changed load. The
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fourth simulation study in subsection 3.4.5 assumes a disturbance at 0.2 sec causing a
voltage rise from 1.0 to 1.01 per unit at the substation under a modified transmission
network. When there is a severe voltage sag (i.e. to 60% of the rated voltage), the voltage
will be corrected to the maximum of STATCOM'’s capability (i.e., injecting the highest
reactive current). When the fault clears, the voltage should get back to 1.0 per unit or very
close. This case is studied in substation 3.4.7. In all simulation studies, the STATCOM

immediately operates after the disturbance with the expectation of bringing the voltage

back to 1.0 p.u.
- L1=200 km B3
12=75 kn |  L3=180 km
B2
500 kV, Load 500 kV,
Load 500 kV,
8500 MVA 300 M 6500 MVA 200 T 9000 WA

A STATCOM =

Figure 3.6 The studied system.

3.4.2  Response of the original model
In the original model, K, v=12, K; yv=3000, K, =5, K; ;=40. Here, we keep all the

parameters unchanged. The initial voltage source, shown in Figure 3.6, is 1.0 p.u., with the
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voltage base being 500kV. In this case, if we set R=1, based on (3.21) and (3.22), then we

have the initial m, calculated as:

— Ki_V(to)
v Kp v (to)

= 770.8780

Based on (3.25), ky =84.7425 can be obtained. Then, based on (3.27) to (3.30), we

have

84.7425XAV(t)

Kp v (0) = (av()+7708780x [ "5 Aat) (3.31)

Ky (t) = 770.8480 X K,, , (t) (3.32)
B 57.3260xA14(t)

K (D) = (814(t)+2.3775x [, S Bat) (3:33)

K, ((t) = 23775 x K, ,(£) (3.34)

Based on (3.31) to (3.34), the adaptive PI control system can be designed. my and ky
will be changed according to the different disturbances. The steps listed above show how
to obtain the control gains in the above case. The PI control gains of the proposed control
are also shown in Figures 3.7 and 3.8. In order to avoid unnecessary overshooting, the
threshold for K v and K; ; is 10000. The threshold for K, v and K, ; is 400. The sample
time in this simulation model is 25us. Since during some sample times the control gains
change quickly to track the desired response, which causes the spikes in the 0.2 sec to 0.6
sec time range. The spikes actually show the change of control gains in very short time
(see Figure 3.8). The results of the original control method and the adaptive PI control
method are shown in Figure 3.9, 3.10 and 3.11 respectively. Observations are summarized

in Table 3.1.
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Figure 3.7 PI control gains of voltage regulator using the same network and loads.
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Figure 3.8 PI control gains of current regulator using the same network and loads.
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Table 3.1 Performance comparison for the original system parameters

Original Ctrl. |  Adaptive Cirl.
Lowest Voltage after disturbance | 0.9938 p.u. 0.9938 p.u.
Time (sec) when V=1.0 0.4095 sec 0.2983 sec
At to reach V=1.0 0.2095 sec 0.0983 sec
Var Amount at steady state 97.76 MVar 97.65 MVar
Time to reach steady state Var 0.4095 sec 0.2983 sec
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From the results, it is obvious that the adaptive Pl control can achieve quicker response
than the original control. The needed reactive power amount is the same while the adaptive
Pl approach runs faster, as the voltage does.

Set wt = a + 6, where a is the output angle of the current regulator, 9 is the reference
angle to the measurement system. In the STATCOM, it is et that decides the control signal.
Since @ is a very large value (varying between 0 to 2x), the ripples of a in the scale shown
in Figure 3.11 will not affect the final simulation results.

Note, there is a very slight difference of 0.12 MVar in Var amount at steady state in
Table 3.1, which should be caused by computational round-off error. The reason is that the
sensitivity of dVAR/dV is around 100MVar/0.011 p.u. of voltage. For simplicity, we may
assume the AVar/AV sensitivity is a linear function. Thus, when the voltage error is
0.00001 p.u., AVaris 0.0909 MVar which is in the same range as the 0.12 MVar mismatch.
Thus, it is reasonable to conclude that the slight Var difference in Table 3.1 is due to
round-off error in the dynamic simulation which always gives tiny ripples beyond 5™ digits
even in the final steady state.

3.4.3 Change of Kp and Ki

In this scenario, the other system parameters remain unchanged while the PI controller

gains for the original control are changed to: K, v=1, Ki v=1, K;, |=1, K; |=1.

The dynamic control gains, which are independent of the initial values before the
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disturbance but depending on the post-fault conditions, are given as:

80.1632xAV(t)

Ky v(8) = (AV(t)+732.3115xftt+TsAdt) (3.35)

Ky (t) = 732.3115 X K, , (£) (3.36)
_ 47.4959xAl4(t)

K, ,(t) = (Alq(t)+1.8232><ftt+Ts Bar) (3.37)

K () = 1.8232 X K, ,(t) (3.38)

Based on (3.35) to (3.38), the adaptive Pl control model can be designed. The PI
control gains of the proposed control are also shown in Figure 3.12 and Figure 3.13. The
results of original and the adaptive PI control methods are shown in Figure 3.14, Figure

3.15 and Figure 3.16 respectively.
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Figure 3.12 PI control gains of voltage regulator with changed K and K;.
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From Figure 3.14, it can be observed that when K, and K; are changed to different
values, the original control model cannot make the bus voltage get back to 1.0 p.u. and the
STATCOM has a poor response. The reactive power cannot be increased to a level to meet
the need. However, by the adaptive PI control, the STATCOM can response to disturbance
perfectly as desired, and the voltage can get back to 1.0 p.u. quickly within 0.1 sec. Figure
3.15 also shows that the reactive power injection cannot be continuously increased in the
original control to support voltage, while the adaptive PI control performs as desired.

3.44 Change of Load
In this case, the original PI controller gains are kept, which means K, v=12, K; v=3000,
K, 1=5 and K; ;=40. However, the load at Bus B1 is changed from 300MW to 400MW.

In this case, we have the dynamic control gains given by:

93.3890%AV(t)

Ky v(t) = (av(t)+187.5579% ftHTSAdt) (3.39)

K y(t) = 187.5579 x K,, (t) (3.40)
_ 8.1731xAl4(t)

K (0) = (a1q(t)+13.1652% [ " Bat) (3:41)

K ,(£) = 13.1652 X K,, ;(£) (3.42)

Based on (3.39) to (3.42), the adaptive PI control model can be designed for automatic
reaction to change in loads. The PI control gains of the proposed control are also shown in
Figures 3.17 and 3.18. The results from the original and the adaptive Pl control methods
are shown in Figures 3.19, 3,20 and 3.21. Table 3.2 shows a few key observations of the

performance.
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Figure 3.17 PI control gains of voltage regulator with change of load.
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Table 3.2 Performance comparison with a change of load.

Original Ctrl. | Adaptive Ctrl.

Lowest Voltage after disturbance | 0.9949 p.u. | 0.9949 p.u.

Time (sec) when V=1.0 0.4338sec | 0.3125sec

At to reach V=1.0 0.2338 sec 0.1125 sec

Var Amount at steady state 93.08 MVar | 92.72 MVar

Time to reach steady state Var | 0.4338sec | 0.3125sec
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Figure 3.19 Results of measured voltage with change of load.
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From the data shown in Table 3.2 as well as Figure 3.19 and Figure 3.20, it is obvious
that the adaptive PI control can achieve quicker response than the original one.
3.4.5 Change of Transmission Network

In this case, the Pl controller gains remain unchanged, as in the original model.
However, line 1 is switched off at 0.2 sec to represent a different network which may

corresponds to scheduled transmission maintenance. Here, we have

18.3245xAV(t)

Kp v (8) = (av()+286.9512x [ *"5 Aat) (3.43)

K,y (t) = 286.9512 X K,, ; (t) (3.44)
_ 41.4360xAl4(t)

Kp1(8) = (a1q(t)+412.0153x [, """ Bat) (3.45)

K. () = 412.0153 X K,, ;(t) (3.46)

Based on (3.43) to (3.46), the adaptive Pl control model can be designed to
automatically react to changes in the transmission network. The PI control gains of the
proposed control are also shown in Figure 3.22 and Figure 3.23. The results from the
original and the adaptive PI control methods are shown in Figure 3.24, Figure 3.25 and

Figure 3.26. Key observations are summarized in Table 3.3.
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Table 3.3 Performance comparison with changed transmission

Original Ctrl. | Adaptive Ctrl.
Lowest Voltage after disturbance | 0.9954 p.u. 0.9954 p.u.
Time (sec) when V=1.0 0.4248 sec 0.2744 sec
At to reach V=1.0 0.2248 sec 0.0744 sec

Var Amount at steady state -84.92 MVar | -85.02 MVar
Time to reach steady state Var 0.4248 sec 0.2744 sec
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Note the STATCOM absorbs VAR from the system in this case. Here, the disturbance
is assumed to give a voltage rise at the source (substation) from 1.0 to 1.01 p.u.. Meanwhile,
the system has a transmission line removed which tends to lower the voltages. The overall
impact leads to a voltage rise to higher than 1.0 at the controlled bus in the steady state if
the STATCOM is not activated. Thus, the STATCOM needs to absorb VAR in the final
steady-state to reach 1.0 p.u. voltage at the controlled bus. Also, note that the initial
transients immediately after 0.2 sec lead to an over-absorption by the STATCOM, while
the adaptive PI control gives a much smoother and quicker response, as shown in Figure
3.24 and Figure 3.25.

3.4.6  Two consecutive disturbances

In this case, a disturbance at 0.2 sec causing a voltage decrease from 1.0 to 0.989 p.u.

occurs at the substation. After that, line 1 is switched off at 0.25 sec. The PI control gains of

the proposed control are also shown in Figure 3.27 and Figure 3.28.
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The results from the original and the adaptive PI control methods are shown in Figure
3.29, Figure 3.30 and Figure 3.31. From the results, it is apparent that the adaptive PI
control can achieve a much quicker response than the original one, which makes the
system voltage drop much less than the original control during second disturbance. Note, in
Figure 3.29, the largest voltage drop during the second disturbance event (starting at 0.25
sec) with the original control is 0.012 p.u., while it is 0.006 p.u. with the proposed adaptive
control. Therefore, the system is more robust in responding consecutive disturbances with

adaptive PI control.
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3.4.7 A Severe Disturbance

In this case, a severe disturbance at 0.2 sec causing a voltage decrease from 1.0 to 0.6
p.u. occurs at the substation. After that, the disturbance is cleared at 0.25 sec. The PI
control gains of the proposed control are also shown in Figure 3.32 and Figure 3.33. The
results from the original and the adaptive PI control methods are shown in Figure 3.34,

Figure 3.35 and Figure 3.36.
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Figure 3.32 PI control gains of voltage regulator in a severe disturbance.
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Due to the limit of the STATCOM capacity, the voltage cannot get back to 1.0 p.u.
when there is a severe voltage drop from 1.0 p.u. to 0.6 p.u.. After the disturbance is cleared
at 0.25 sec, from Figure 3.34 and Figure 3.35, it is obvious that the adaptive Pl control can
bring the voltage back to 1.0 p.u. with a quicker and smoother response than the original

control.

3.5 Conclusions

From the above six case studies shown in subsections 3.4.2 to 3.4.7, it is evident that
the adaptive PI control can achieve faster and more consistent response than the original
control. The response time and the curve of the proposed adaptive Pl control is almost
identical under various conditions such as a change of (initial) control gains, a change of
load, a change of network topology, consecutive disturbances and a severe disturbance. In
contrast, the response curve of the original control model varies greatly under a change of
system operating conditions and may fail to correct the voltage to the expected value.

The advantage of the proposed adaptive Pl control approach is expected because the
control gains are dynamically and autonomously adjusted during the voltage correction
process, therefore, the desired performance can be achieved. In contrast, the original fixed
Pl controller may be well tuned for the given operating condition, but may be inefficient or

incapable to correct voltage under other operating conditions.
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CHAPTER 4
FLATNESS-BASED ADAPTIVE CONTROL OF STATCOM
4.1 Chapter Introduction
In this chapter, a flatness-based adaptive control (FBAC) method is proposed and
applied to STATCOM for voltage control. By the flatness-based control (FBC), the
trajectories of all system variables can be directly estimated by the flat output and its
derivatives without solving differential equations. By the adaptive control, the control
gains can be dynamically tuned to satisfy the time-varying operation condition
requirement.
4.2 STATCOM Model and Control for Flatness-based Adaptive
Control
The equivalent circuit of the STATCOM is shown in Figure 4.1. In this power system,
the equivalent connecting impedance consists of Rs and Ls in series with the voltage source
inverter. Here, the equivalent resistance Rs accounts for the sum of the transformer winding
losses and the inverter conduction losses, and the equivalent inductance L represents the
transformer leakage inductance. C represents the capacitance of the dc side capacitor. In
Figure 4.1, Va, Vi, and V, are the three-phase STATCOM output voltages; Vas, Vis , and

Vs are the three phase bus voltages; and i, ips , and ics are the three-phase currents [31, 66].
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Figure 4.1 STATCOM Model.

The three-phase mathematical expressions of the STATCOM can be written similar to
(3.1) to (3.4). By using the abc/dg transformation, the mathematical expressions can be

rewritten as:

digs

LS at = _RSidS + wLSiqS + VdS - le
di . ,
Ly d‘zs = —Rsigs — wLgigs + Vos — Vg (4.2)

\ % (%CVch) = %(leids + Vaiigs)

Vg = %Vdcmaws& (4.2)

Var = 3 Vacmasind (4.3)
where w is the synchronously rotating angle speed of the voltage vector; igs and igs are the
d and q axis currents corresponding to ias, ins, and ics; Vs and Vs represent the d and q axis
voltages corresponding to Vas, Vs , and Ves; Vg and Vg represent the d and q axis voltage

corresponding to Va, Vi, and V¢ ; my is the ratio between the peak amplitude of the phase
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converter voltage to dc voltage and § is the STATCOM voltage vector position in the d-q
frame.
Based on the above equations, the traditional control strategy can be obtained, and the

STATCOM control block diagram is shown in Figure 4.2 [35, 66].

Outer DC Voltage

Control Loop_ |~~~ T T~ }
By | |
| dc II |
I
Jl/dcref | I
I Lo,
: I—
: WLs \Y
————— I l_’ I| Va
v, Iy s

I p|L|_<:)_.P|—>(:)—|-I
| Iqsref

I
Vs ! |
- — — _— — — _ _ 4
Outer Reactive Inner Current
Voltage Control Loop Control Loop

Figure 4.2 A typical double-loop control block of STATCOM.

In Figure 4.2, a typical double-loop control strategy is used in STATCOM. The outer
loop forms the desired active and reactive current references to maintain the voltages at the
point of common coupling (PCC), and the inner loop is to control inverter currents with

zero steady-state errors. This control strategy needs four Pl controllers in its control
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systems. Therefore, it can be a tedious and time-consuming work for utility engineers to
perform trial-and-error studies to find suitable parameters when a new STATCOM is
connected or when the system operating condition has significant changes to demand new
tuning of STATCOM control parameters. Moreover, this control system has a coupling
relationship between the active current and the reactive current, and thus, it is hard to
maintain the voltages at the PCC with small effects on the dc-link voltage. These are
potential difficulties for a large-scale utilization of STATCOM. Therefore, the FBAC is
proposed in this chapter.
4.3 Flatness-Based Control for STATCOM
4.3.1  Flatness-based Control Design for STATCOM

To realize flatness-based control (FBC) in STATCOM, we set the state variable as:
X=(X1, X2, X3)' =(igs, igs, Vaic) ', and the input control variable as: u=(Us, U,)'=(M,C0sd, M,sind)
T. Neglecting the inductance and converter losses and the change in the energy stored in the

inductance [19, 39], we can rewrite (4.1) in standard form x = f(x) + g(x)u as follows:

Ls 2Lg

. R Vgs X3Uy
x2=—L—:x2—wx1 +-E-=22 (4.4)

. R vV X3U
le =—Zx +wx, +-L£-=2
LS
I Ly 2L

. 3
Xs = 5o (4 Vas)
Since all system variables can be determined if we know Iq and Vgc. Therefore, the flat

output in this system can be set as:
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Ga=

Based on (4.4) and (4.5), the following equation can be derived:

V1 =X
Y2 = X3

3(X1x3Vas—%3%1Vgs)
2Cx2

V2 =

Using y and y’s derivative to express X=(X1, Xz, X3)T and u=(uy, uz)T, we have:

2C )
U, = ;( S Vo (}’23’2 + yz) + a)LSy1 RSTdsyzyZ + Vds)

Uy = ;(—Lsh CULS Py J’ZYZ Rey, + V;]s)

Then the following equations can be obtained as (4.9) and (4.10).

m, = Ju? + uj

u
8§ = arctan—=
Uz

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

Based on (4.4)-(4.10), the flatness-based control can be implemented with the control

block shown in Figure 4.3.
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Figure 4.3 Flatness-based control block.

In Figure 4.3, y1rer and Yores are defined by the system desired initial and final conditions.
As shown in Figure 4.3, the nonlinear STATCOM system can be equivalent to a linear
system, and the trajectories of all system variables can be directly estimated by flat output
and its derivatives without solving differential equations. This is the advantage of
flatness-based control when applied to STATCOM control.
4.3.2  Flat Output

Assume that the initial disturbance occurs at time tp; the final time instant of the
dynamic study is ti; the desired initial states are Iy(to) (or simply 14(0)) and Vgc(to) (or
simply Vgc(0)); and the final states are 14(t1) and Vgc(t1).

The initial and final conditions are modeled as follows:
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I{ylref(to) = Iq(to)
4 ylref(tl) = Iq(t1)

Varer (to) = Vac(to) (4.12)
Lymf(tl) = V4. (t1)

O.ﬁref(to) =0

ylref(tﬂ =0

eref(to) =0 (4.12)

eref(t1) =0
yZTef(tO) =0
U}Zref(to) =0

In order to satisfy Eqs. (4.11) and (4.12), the desired trajectory for flat output can be

expressed as:

(1) 0<t<to
{ ylref(t) = Iq(o)
eref(t) = Vg (0)
(2) to<t<ty
{ Virer(®) = 14(0) + (Io(t2) = 14(0)) x dds
Varer () = Ve (0) + (Vg (t1) — Vo (0)) X dd,

Without losing generality, in order to make the output curve as smooth as possible, we

may set:

N
s © =Y % (0 1)
ylref - j! 0
X J=0

N

b; .
Varer@® = ) (¢ = 1)

Based on (4.11) and (4.12), dd; and dd, can be obtained as follows:
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t—to\? t—to\> [t—ty\*

dd, = 4><( )—4><( )+< )
th —to t —to th —to
4 5

t—to)\> t — to t—to t—to\°
= (9 (L20) 12 (L200) g (200Y 4 (£20)
k t1 — Lo ty — o t1 — o 1 —

(3) tty

{ ylref(t) = Iq(tl)
Varer (£) = Vgc(t1)

4.4 Control Law for Flatness-based Adaptive Control
The differential parameterization of the control input u=(us,u,)’ can be expressed by
(Y1, Y5, Y1, ¥, ¥,)" - Also, the proposed flat output trajectory tracking is to control y, and

y,. This can be accomplished by the following linear feedback control law:

o _ _ K
{ Y1 = YViref (}’1 ylref) 11 (4.13)

Vo = Voref — Kzz(f’z - 5’2ref) + K21()’2 - eref)

In the previous work [44], the choice of the coefficients Ky, Ky; and Ky, is to guarantee
the satisfaction of the Hurwitz polynomial condition (namely, to guarantee that the roots
are located in the left part of the complex plane). Thus, the asymptotic exponential stability
to zero of the tracking error is guaranteed.

However, the constant gains cannot ensure an optimized and consistently efficient
performance for various external conditions. In order to achieve a control method that can
ensure a fast and desirable response when the system operation condition varies, an

adaptive control scheme is combined with flat control. Here, the flat control gains are
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dynamically and adaptively adjusted based on the external condition. Thus, the proposed
control method is termed flatness-based adaptive control (FBAC).

Set erry(t)=y1(t)-yurer(t), erra(t)=ya(t)-yares(t), and eir,(t) = y,(t) — Yorep(t) . The
process of adaptive control design is described below with different scenarios of the error
value.

Based on the system bus capacity and the STATCOM rating, 4V yax can be obtained,
which means any voltage change greater than 47 max cannot come back to 1 per unit. Based
on [65], the sensitivity of dig/dV is around 1 p.u. /0.034 p.u. of voltage in this paper. For
simplicity, we may assume the Aiq/AV sensitivity is a linear function. When the voltage
error is &, = 0.0001 p.u., Aigs is € = 0.003 p.u.. If the system voltage error is less than
&, p.u., the system is considered as stable and control gains are kept the same. Otherwise,
the control gains need to be tuned to make system voltage get back to 1 p.u.. Since y;=igg,
erry is considered. If |err,(t)| < &, the system is considered as stable, and Ky;(t) can be
set as initial values (such as 1). If |err,(t)| > &,, the following approach is employed to
tune control gains.

(1) When 0 <t < ty: Yiref(0)20 and y1(t) needs to be increased to yir(t) as quickly as
possible (i.e., in one sampling cycle 4¢ ) to ensure err;=0. Without losing generality,

we can assume Yi (t)=y1ref(t) after A¢. Thus, we have K, (t) = i.

(2) When t, <t < ty: since the final ideal state y,(t) = 0, based on (4.13), we can
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obtain:

0= Yirer(®) = (3108 = Yirer ) Kia () (4.14)
Therefore:
_ J71ref(t)
Kul® = 5o (4.15)

(3) When t > t;: yi(t) needs to be increased to yir(t) as quickly as possible to ensure

err;=0. Since we consider y1(t)=Yy1r(t) after 4z, we have K,;(t) = i.

Next, err,(t) is considered in a similar yet different way. Based on [65], AVq and the
system voltage error are in the same range. Therefore, if |err,(t)| < &,, Ko (t) and Kyy(t)
can be set as initial values (such as 1). If |err,(t)| > ¢,, the approach listed below is
employed to tune control gains.

(1) In the ideal state, ¥,(t) = ¥orer(t). Without losing generality, we can set

erry(t)

Kaa(t)=K(t)Kz1(t). Then, we have K(t) =

61’:7"2 (t) )

(2) When 0 <t <tport>ty: y,(t) needs to be decreased to J,,..¢(t) as quickly as

possible (i.e., in one sampling cycle 4f) to ensure err,=0. Therefore, we have

eirry (t)/At
erry (t)+K(t)erry (t)

erry(t)/At
erry (O +K(t)eir, (O]

Ky (t) =

| and K(6) = KV

(3) When t, <t < ty: the ideal state y,(t) = 0. Set tt=t-A¢, and in a very short time
control gains stay the same, such as K (t)= Kai(tt) and Kaa(t) = Koo(tt). if the system
stable, we have:

0 = Jorer (£) — Kpa(D)erry () — Kaq ()erry (t) (4.16)
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0= eref(tt) — Ky (D)err,(tt) — Kp1 (D) err,(tt) (4.17)

Based on (4.16) and (4.17), the following equation can be obtained:

_ |Varer®erra(8)=Forep(tt)erry(t)
K(®) = iy () arer(t) —eirs(t)Jorer () (4.18)
_ yzref(t)
K21 (8) = erry () +K(D)eiry (t) (4.19)
Kao(t)=K(D)K21(t) (4.20)

Based on the proposed control law, the FBAC can be implemented as shown in
Figure 4.4. This module is the “Control Law” block in Figure 4.3 which shows the FBAC

diagram.

Y1 K1 > -
A y
75
Adjust K11
ylref A
> du/dt >+
bl du/dt o] Kze ——l-
Y2 + K2 i I Y
I e
»Adjust K21, K22
y2ref 1
»>| du/dt— du/dt +

Figure 4.4 Implementation of the adaptive control module
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Based on the flatness-based control logic and the adaptive control module shown in
Figure 4.3 and Figure 4.4, respectively, the FBAC can be designed and implemented. Next,
in Section 4.5, the simulation results from the original control, the FBC and the FBAC will
be discussed and compared.

4.5 Simulation Results

45.1 System data

Bl L1=300 km B2  12=300km B3
500 kV,
3000 MV Load Load Load 500 kV,
100 MW 2 MW 300 MW 2500 MVA

|STATCOM|

Figure 4.5 The test system for simulation study

In the system simulation diagram shown in Figure 4.5, the STATCOM is used for Bus
B2 voltage regulation on a 500 kV transmission line. The power grid consists of two 500
kV equivalents (3000 MVA and 2500 MVA, respectively) connected by a 600-kilometer
transmission line. In this study system, the STATCOM has a rating of +/- L00MVA. Itis a

phasor model of a typical three-level PWM STATCOM. DC link nominal voltage is 40 kV
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with an equivalent capacitance of 375 uF. The transformer leakage reactance and the phase
reactor of the IGBT bridge of an actual PIWM STATCOM are 0.22 p.u. on 100 MVA in this
system [65].

In the original model, the control system is realized by four PI controllers and
referred to as the original control in this section. Note, the original control gains shown in
literature [65] are well tuned. In the flatness-based control (FBC), which is elaborated in
section 4.3, the control gains K1, Ky; and Ky, are also well tuned based on the trial and
error approach for the first case study (i.e., Subsection 4.5.2 below) and are set at 1.6, 0.9
and 0.9, respectively. In the proposed flatness-based adaptive control (FBAC), which is a
combined model of sections 4.3 and 4.4, the initial control gains are set to 1’s, and then the
gains are dynamically adjusted based on the method described in section 4.4. The original
control, the FBC and the FBAC are compared in this section. In the simulation, the
reference voltage at Bus B2, shown in Figure 4.5, is 1.0 p. u. at the beginning, with the
voltage base being 500 kV. Assume the initial disturbance occurs at t,=0.2 sec; and the
system is expected to reach back the desired normal state at t;=0.3 sec.

45.2 Change of Reactive Load
Here, we keep all the parameters unchanged, as in the original studied system. At

t,=0.2 sec, a new reactive load of 80 MVar is added at B2 as a disturbance. The results of
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Bus B2 voltage (V), STATCOM reactive power output (Q), the d and g axis currents are

shown in Figure 4.6 to Figure 4.9 respectively. Observations are summarized in Table 4.1.

Table 4.1 Performance comparison for change of reactive load

Original | Flatness based Ctrl. | Flatness based adaptive Ctrl.
Ctrl. (FBC) (FBAC)
LOWZSi’tst\:f;;ig;aﬂer 0.9713pu.| 09713 p.u. 0.9713 p.u.
Time (sec) when V=1.0 |0.4293 sec 0.3001 sec 0.2895 sec
At to reach V=1.0 0.2293 sec 0.1001 sec 0.0895 sec
Var Amount at steady state | -0.83 p.u. -0.83 p.u. -0.83 p.u.
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Figure 4.6 Results of V with change of reactive load
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From the results, it is obvious that the FBC and the proposed FBAC can achieve
quicker response than the original control. The needed reactive power, igs, and iqs are the
same while the FBC and the FBAC perform much faster to bring the voltage back to 1.0.
Note, as previously mentioned, the control gains Kj1, K»; and Ky, in the FBC are well tuned
based on this case using the trial and error approach and are set at 1.6, 0.9 and 0.9,
respectively. Since the parameters are well tuned for this case, the FBC can give desirable

responses very close to the response of the proposed FBAC in this case.
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45.3  Change of Transmission Network
In this case, the original system parameters are kept. However, a new Line L3 of 125
km is added between bus B2 and B3 at the system to mimic a new operation topology.
Then, Line L3 is switched off at t,=0.2 sec to mimic a disturbance.
The results from the original control, the FBC and the proposed FBAC are shown in

Figure 4.10 to Figure 4.14. Observations are summarized in Table 4.2.
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Figure 4.10 Results of V with change of transmission network.
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Table 4.2 Performance comparison for change of transmission network

Flatness based
. Flatness based .
Original Ctrl. Ctrl. (FBO) adaptive Ctrl.
' (FBAC)
Highest Voltage after
change of transmission 1.0245 1.0245 1.0245
network
Time (sec) when V=1.0
after change of N/A N/A 0.0765
transmission network
Lowest Voltage after
west vollag 0.9955 p.u. 0.992 p.u. 0.9955
disturbance
Time (sec) when V=101 3004 sec 22863 0.2914 sec
after disturbance
Attoreach V=1.0after | 1554 o 2.0863 0.0914 sec
disturbance
Var A t at stead
ar Amotint at steady 0.67 p.u. 0.67 p.u. 0.67 p.u.
state

From the results, we can find out that when the transmission network changes, the
original control and the FBC cannot bring the system voltage back to 1 p.u. even during the
initialization stage before the disturbance occurs at 0.2 sec. This also implies that the gains
in the original PI control and FBC must be manually re-tuned to achieve a satisfying
performance under a new topology.

After the disturbance (switching off Line L3) occurs at 0.2 sec, the FBC cannot
make the system reach its steady-state voltage within 0.6 sec. Note, a separate diagram in

Figure 4.14 with extended simulation time shows that the voltage eventually reaches back
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to 1 p.u. at t=2.2863 sec, or 2.0863 sec after the disturbance of topology change. This is
also shown in Table 4.2. The original control performs better, reaching 1.0 p.u. in 0.1824
sec after the topology change. However, this is still much slower than the proposed FBAC
which brings the system voltage back to 1 p.u. in 0.0914 sec after the disturbance, as shown
in Table 4.2.

The response time (i.e., At to reach V=1.0) of the FBAC is only 50% of the original
control and 4.3% of the FBC. In other words, the FBAC shortens the response time by 0.1
sec and 2.0 sec respectively, as opposed to the original control and the FBC. Since 0.1 sec
can be significant in modern STATCOM control and makes a big difference in STATCOM
performance [31], the improved performance with FBAC is considerable. Therefore, the
proposed FBAC can achieve a response quicker than the original control and even much
quicker than the FBC. Thus, the control gains Ki3, Kz; and K, in the original control and
the FBC are not optimal under this new topology. Some form of gain tuning of Kj3, K»; and
K22 must be performed to achieve the same response as the proposed FBAC. Apparently,
the tuning-free FBAC has an advantage over the other two controls.

45.4  Change of Transmission Network and Load
In this case, the original system parameters are kept. However, a 125km new Line L3
is added between bus B2 and B3 at the system to mimic the new operation system. Line 1 is

switched off and a new load 200MW is added at B2 at 0.2 sec as a large disturbance. The
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results of three controls are shown in Figure 4.15 to Figure 4.19. Again, it should be noted
that the initial dynamics in these figures are due to the change of transmission network.

Observations are summarized in Table 4.3.
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Table 4.3 Performance comparison for change of transmission network and load.

. Flatness Flatness based
Original .
Cirl based Ctrl. adaptive Ctrl.
' (FBC) (FBAC)
Highest VVoltage after
change of transmission 1.0245 1.0245 1.0245
network
Time (sec) when V=1.0
after change of transmission ~ N/A N/A 0.0619
network
Lowest Voltage after
0.9698 p.u.| 0.9652 p.u. 0.97 p.u.
disturbance P P P
Tim hen V=L1.
me (sec? Whe 0 0.4166 sec 1.9082 0.3025 sec
after disturbance
At t h V=1.0 aft
o T 102166 sec|  1.7082 0.1025 sec
disturbance
Var Amount at steady state| -0.02 p.u. | -0.02 p.u. -0.02 p.u.

From the results, the FBAC response remains unchanged under this disturbance,
while the original control method gives slower response and the FBC cannot bring the
voltage back to steady-state in 0.6 sec. Note, a separate diagram in Figure 4.19 with
extended simulation time shows that the voltage eventually reaches back to 1 p.u. at
t=1.9082 sec, or 1.7082 sec after the disturbance. This is also shown in Table 4.3.

The observation is similar to the previous case. The response time (i.e., At to reach
V=1.0) of the FBAC is only 47% of the original control and 6% of the FBC. Hence, similar
to the previous case, the advantage of the proposed FBAC method is clearly demonstrated

again.
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4.6 Conclusions

The three case studies in Subsections 4.5.2 to 4.5.4 show the advantage of the proposed
FBAC over the original control and the FBC. The original control and the FBC models
may have a desirable response in a specific system. However, when the system operating
condition changes, the FBC gains and traditional PI control gains need to be redesigned or
re-tuned to obtain satisfying responses; otherwise, the original control and the FBC may be
subject to slower response, as demonstrated in subsections 4.5.3 to 4.5.4. However, the
proposed FBAC can consistently achieve fast, smooth, and desirable responses under
various changes of system operating conditions such as a change of load and a change of

network, and the response curves are almost identical in all cases.
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CHAPTER 5
ADAPTIVE GAIN-TUNING CONTROL METHOD FOR AGC WITH

EFFECTS OF WIND RESOURCES

5.1 Chapter Introduction

This chapter builds the wind power model on the partial load area. An adaptive
gain-tuning control (AGTC) for AGC with effects due to wind resources is presented. By
this control method, the PI control parameters can be automatically and dynamically
calculated during different disturbances in a power system. In the proposed method, the
initial gains will be calculated first. Then, the variable wind energy will be integrated into
the power systems. Then, the Pl control parameters for AGC will be computed
automatically and will be adjusted in real time based on the area control error (ACE) signal

to keep the frequency stable.

5.2 AGC Model and Control

A large, interconnected power system is usually divided into several control area for
efficient operation and control. The control areas are connected by the tie-lines. In each
control area, an automatic generation controller (AGC) monitors the system frequency and
tie-line flows. To maintain stable operation of the system, both constant frequency and

constant tie-line power exchange must be ensured. Also, area control error (ACE) for each
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area will be calculated and kept in a low range. Therefore, ACE, which is defined as a
linear combination of power net-interchange and frequency deviations, is generally taken
as the controlled output of AGC. As the ACE is driven to zero by the AGC, both frequency
and tie-line power errors will be forced to zeroes [5-6]. Figure 5.1 shows the studied n-area

power system.

Area 3
ACE3
APyieg AP 3

Figure 5.1 n-area power system.

The parameters for the n area power system are as follows:
ACE; = AP;,; + B;jAw; the area control errors for area i;
APy = tie line flow for area i;
AP, = load changes for area i;

Awi= the angular frequency deviations for area i;
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B, =D; + Rii frequency bias factors for area i;
R;= the speed regulations for generator j;
D; = damping constant for generator j;
H;= inertia constants for generator j;
7gj = governor time constants for generator j;
7rj= turbine time constants for generator j;
i=1,2,3,...,n; and
=1,2,3,...,m;
m=the total number of generators;
In the original AGC control, the proportional integral (PI) controllers are used [12-13,

49, 75]. The control gains are usually designed by:

1) Trial and error approach;
2) Pole placement method; or

3) Population based search techniques.

The first method is very time-consuming and the second method is easily affected by
the designer’s experience. All these methods with fixed control gains may not obtain the
desired response when the power system operation conditions change, especially when

power systems operate with variable wind power. To ensure the desired response, an
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adaptive gain-tuning control (AGTC) is presented for the AGC with wind power. A key
feature of the proposed AGTC method is the dynamic, self-adjustment of control
parameters to continuously follow the desired response, which is set to be ACE;=0 in this
work. The AGTC block for AGC in the area i is shown in Figure 5.2. In the figure, U; is the
output of the Pl controller. Kp;, Kj; are P1 controller gains for area i (i=1~n). The parameters
Kpi, Kii will be dynamically adjusted based on ACE;. In this work, steam turbine with no
heat type is modeled to realize the AGTC. The control gains in the system with steam

turbine of reheat type and hydraulic turbine can be designed in a similar way.

APLI
| ~ 1
1+TT.['S / o ZH,’S'I"D,'

AP, Adjust Kpi ,Kri r APy;

ACE;

PI Controller

ey
W/

Units on Primary Control
Only

Figure 5.2 AGTC block for area i.

On one hand, larger values of Kp; and K;; may induce the oscillation; on the other hand,
smaller values of Kp;j and K; may lead the slow response. These effects are also mentioned

and analyzed in [29]. Therefore, the proper control parameters are highly important to
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achieve better AGC responses. In the next section, the PI control gain design will be

introduced.

5.3 Gain Design for AGC
5.3.1 Initial gains setting

Under the initial condition, we may assume that 4P;=0 and the power output of the
units with only primary control will keep the same. Based on Figure 5.2, the closed-loop

transfer function of the area i can be obtained [3].

Awi(s) (1+74i5)A+T75)s

_APLi(S) - (ZHL'S+DL')(1+‘L’gi5)(1+TTiS)S+Bi(KpiS+K”)+% (51)
Then, the characteristic polynomial equation for each area can be shown as:
ass* +azsd+as?+a;s+ags® =0 (5.2)

where:
Ay = ZHiTgiTTi (|=1"'3)
as = (ZHiTgi + ZHiTTi + DiTgiTTi)

a, = (ZHl + DiTgi + Dl'TTi)
1

aq = (Dl + BiKpi + E)

ap = BiKj;

Based on the Routh-Hurwitz criterion, if the system is stable, then we have
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a, >0

az; >0
by > 0 (5.3)
a, >0
- b -b
where bs; = —“2“3a3a4a1 ; b3y =ag ;and by, = —31‘1231326‘3

Since Kpi>0, and K;;>0, we can obtain that a,>0, az>0 and ap>0. If the system is stable,

the following equations need to be satisfied.

{ a2a3 - a4a1 > O (54)

Based on (5.4), the initial value for Kp; and Kj; (i=1~3) can be obtained.
5.3.2  Control gain design during the disturbance
At arbitrary time instant t=t;, set t,=t;-z, in which 7 is set to be 0.1 sec. PI control gains
stay the same within 0.1s, such that Kpi(t1)= Kpi(t2) = Kpi(to); Kii(t1)= Kii(t2)= Kii(to). Under
normal conditions, each area can carry out its control obligation, and steady-state
corrective action of AGC is confined to the area that the deficit or excess generation occurs
[3,11], [69-70]. Therefore, when the system is stable, we can obtain:
Ui(t1) = Ay Kpi(to) + B1iKii(to) (5.5)
Ui(ty) = AyiKpi(to) + By K;i(to) (5.6)
where Ui(t1), Ui(t2), Az, Bii, Asi and By are known variable. Kpi(to) and Ki(to) are unknown
variables. Uj(t;) and Uj(t;) are equal to corresponding load changes at area i, namely

Ui(tl)zldpu(tl)l and Ui(tZ):MPLi(tl)l (here, |AP|_i(t1)| >0 |AP|_i(t2)| >0)

Ay = ACE(t,)
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Ay = ACE;(t;)

ty

to

By = ftzACEi(t) dt
to
In case that (5.5) and (5.6) are singular, we can simply assume Kg;(t))=K;(t,) to reach a
solution. Based on (5.5), we can obtain:
Kpi(t) = 5 (5.7)

Based on (5.6) and (5.7), the following equations can be obtained.

K,i(to) = Ui(tz)_;zziiKPi(tO) (58)
Kpi(to) = Ui(t1)—j11iiK1i(to) (5.9)

Based on (5.7) to (5.9), the control gains for each area can be calculated during the
disturbance.

533 Flow Chart

Figure 5.3 is an exemplary flowchart of the proposed AGTC method for AGC.

The adaptive gain-tuning control (AGTC) process begins at Start. The initial Pl control
gains are calculated. The tie line flow 4P and the angular frequency deviations Aw;
(i=1~n) is sampled according to a desired sampling rate and ACE; is calculated. If
|AACE;|<e1, (the tolerance threshold, &;, which is a very small value such as 0.0001 p.u.),

then, there is no reason to change any of the identified parameters: Kp;(t) and Ki(t) (i=1~n)
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and the power system is under normal state. On the other hand, if |[44CEj|>¢;, AGTC

begins to work, then, Kpi(t) and K;(t) are adjusted based on (5.7), (5.8) and (5.9).

Setting initial values
for Kp.(t) and K;(t)

v

»| Calculated ACEi

v

|ACEi[> &, No

v Yes

Calculated gains
"l based on (5.7)-(5.9)

wies

Substitute control gains to (5.4),

check whether satisfy the Routh-,
Hurwitz criterion No

Yes v

A\ 4

Adjust control gains in Pl Using initial
controller control gains

A

\ 4
|ACEi|> ¢,

Yes

No
v

PI control gains Remain
unchagned

A

\4

Yes

Continue frequency control?

No
v

( Stop )

Figure 5.3 AGTC algorithm flow chart.
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After obtaining the PI control gains, Kpi(t) and Ki(t) need to be substituted to (5.4) to
check whether the PI control gains satisfy the Routh-Hurwitz criterion. If satisfied, the Pl
control gains will be updated based on the calculated control gains; otherwise, the initial
control gains will be selected instead of the calculated control gains to avoid system
frequency oscillation.

After checking the Routh-Hurwitz criterion, ACE; will be checked again to see whether
it is within the tolerance threshold €1. If it is not within the threshold, the PI control gains
need to be recalculated until the ACE; is less than the given threshold €1. When ACE; is less
than g1, the algorithm stops and the control gains remain the same.

Since it is necessary to continuously perform the frequency control process, the process

returns to the block of measuring load changes.

54  Wind Power Model
The wind energy tends to be variable and uncertain due to the effects of the natural and
topographical conditions. Based on the previous works [1, 71], wind speed can be modeled
as (5.10) to mimic the real time wind speed.
V(t) = V() + V,(t) (5.10)
A normal distribution is applied to the wind speed forecast error in this paper. The

model is written as follows:
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Vo (t) = N(ue (1), 02 (1)) (5.11)

where

V(t)=forecast wind speed

Ve(t)= wind speed forecast error at time t;

N denotes normal distribution;

te(t)= mean value of V¢(t);

a2 (t)= variance of Ve(t);

Then, the wind power output of the aerodynamic system can be expressed as equation
as following,

Py = (4, 8) v (6)? (5.12)
where, P; is the mechanical output power of the wind turbine; C, is the performance
coefficient of the wind turbine; p is the air density; R is the radius of wind turbine blades;
V(t) is the real time wind speed; 2 is the tip speed ratio of the rotor blade tip speed to wind
speed, A= % in which «; is the speed of the low-speed shaft; and g is the blade pitch

angle.

A generic equation is used to model C, (4, B):

21
116

C,(4, B) = 0.5176 (Ti —0.4f —5)e % +0.00681 (5.13)

with

1 1 0.035

A A+0088  B3+1 (5.14)
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Therefore, with given wind speed, the wind power output can be calculated. In this
work, the wind energy conversion system (WECS) operating in partial load region is
considered since this region contains considerable wind power variation. A maximum
power point tracking (MPPT) algorithm is used in WECS such that the energy conversion
efficiency is maximized in the partial load region. C, (4, £) can be chosen as 0.45 and the

other wind turbine system parameters are chosen in accordance with [72].

5.5 Simulation Results
55.1  Studied System

In this section, the adaptive gain-tuning control (AGTC) is tested on the IEEE 39-bus
system with 3 areas, 10 machines and 3 wind farms as shown in Figure 5.4. The studied
system is simulated based on MATLAB software. The intra-area lines are considered in the
power flow calculation, and the tie-line flows are used for control studies. The simulation
result is compared with the original control with fixed control gains. The system

parameters are shown in Table 5.1 [49, 73].
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Figure 5.4 IEEE 39 bus system

Table 5.1 System Parameters

Area Gen. H R D Ty T
1 70.0 0.05 1 0.08 0.04
1 2 30.3 0.05 1 0.08 0.04
3 35.8 0.05 1 0.08 0.04
4 28.6 0.05 1 0.08 0.04
) 5 26 0.05 1 0.08 0.04
6 34.8 0.05 1 0.08 0.04
7 26.4 0.05 1 0.08 0.04
8 24.3 0.05 1 0.08 0.04
3 9 34.5 0.05 1 0.08 0.04
10 20.0 0.05 1 0.08 0.04

114




In the simulation, the wind speeds at area 1, area 2 and area 3 are obtained from actual
operational data at National Wind Technology Center M2 Meter on Mar. 27th 2014 [74].
The wind speed shown in Table 5.2 was measured per minute. The measured wind speed is
considered as forecast wind speed Vy(t). The mean value of the wind speed forecast error
ue(t) is set at 0 and the deviation of the wind speed forecast error g2 (t) is set at 0.05Vy(t).
In the simulation, the wind speed is sampled every second. The rated wind power output

forareas 1, 2 and 3 is 150 MW.

Table 5.2 Wind Speed Data

Time (min) Area 1(m/s) Area 2(m/s) Area 3(m/s)
1 7.1368 8.1652 5.7231
2 6.8243 7.5242 5.5949
3 5.5789 12.516 5.3815
4 5.5942 14.156 5.6022
5 5.0617 10.113 5.5912
6 5.6466 11.407 5.4507
7 5.2773 11.683 5.5002
8 5.6786 11.138 5.6437
9 5.0952 10.335 5.7857

10 5.3341 13.044 5.742
11 4.9394 11.198 5.9416
12 5.4907 8.8389 6.4208
13 5.466 10.234 6.4463
14 5.3939 12.642 6.4113
15 4.2183 9.3247 6.5934
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Table 5.3 Initial PI control gains

Area Pl AGTC Original
Controller (Initial Gains) (Well Tuned)
1 Kp 0.05 0.118
K, 0.05 0.118
2 Kp 0.07 0.118
K, 0.07 0.118
3 Kp 0.1 0.118
Ki 0.1 0.118

Figure 5.5 shows the wind power profiles. In the system, the original control is
conventional PI controller with fixed control gains. In this part, the proposed control
method will be compared with the original control with wind energy sources in different
areas. The initial P1 control gains are shown in Table 5.3. Note, the initial gains shown in
Table 5.3 are one of many choices from the solution scope. All the initial control gains
satisfying the conditions in Section 5.3.1 can be chosen. However, in order to avoid
possible overshooting, smaller control gains satisfying (5.4) are chosen for the PI
controllers. The original control with fixed control gains in Table 5.3 are tuned based on
the trial and error approach. The subsections from 5.5.2 to 5.5.4 compared the proposed

control simulation results with the original control using the well-tuned control gains.
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Figure 5.5 Wind power profile for the three areas.

5.5.2 Integrated Wind Power in Areas 1 and 3
All the parameters are kept unchanged. The wind power is added in areas 1 and 3. The

results of the original control method and the proposed AGTC method are shown in

Figures 5.6 and 5.7.
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Figure 5.6 Results of frequency deviation with wind in Areas 1 and 3.
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Figure 5.7 Results of tie power deviation with wind in Areas 1 and 3.
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Figures 5.6 and 5.7 show the frequency deviations, Af, and the tie line flow deviation,
APy, in each area, respectively. From the results, it is evident that the proposed AGTC can
achieve a better and smoother response than the original P1 control which has well-tuned
control gains especially in Area 3. The reason is that the fixed Pl control gains cannot
guarantee the desirable response during variable wind power. However, with AGTC, the PI
control gains are continually self-adjusted to meet the requirement of varying power
system operation condition.

The PI control gains of the proposed control are also shown in Figures 5.8 and 5.9. It
can be observed that with the proposed AGTC, the PI control parameters are no longer
fixed under different wind speed over the studied time duration. They are dynamically
self-adjusted in real time to keep system frequency at 60Hz under different wind speed.
Also, with the proposed control method, the control parameter adaption is immediate and
can be considered as no delay, because the computing time is around milliseconds which

can be ignored and the hardware delay is also negligible.
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Figure 5.8 Results of Kp with wind in areas 1 and 3.
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5.5.3 Integrated Wind Power in Areas 1 and 2
All the parameters are kept unchanged in this case study. The wind power is added in

areas 1 and 2. The results of the original control method and the proposed AGTC method

are shown in Figure 5.10 and Figure 5.11, respectively.
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Figure 5.10 Results of frequency deviation with wind in areas 1 and 2.
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Figure 5.11 Results of tie power deviation with wind in areas 1 and 2.

Figure 5.10 and Figure 5.11 illustrate the frequency deviations Afand the tie line flow
deviation 4Py in each area. From the results, it is evident that the proposed AGTC can
achieve a better and smoother response than the original method with the well-tuned
control gain. With AGTC, both frequency deviation and tie line flow deviation are
reduced.

The PI control gains of the proposed control approach for each area are shown in Figure
5.12 and Figure 5.13. Similar to the study in the previous sub-section 5.5.2, with the
proposed AGTC, the PI control parameters can be automatically and dynamically adjusted

under different wind speeds during the disturbance to keep system frequency at 60Hz.
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55.4 Integrate Wind Power in All Areas

In this simulation study, all the parameters are kept unchanged from the original one.
The wind power sources are added in all three areas: areas 1, area 2, and area 3. The results
of the original control method and the proposed AGTC are shown in Figures 5.14 and 5.15,

which illustrate the frequency deviation Afand the tie line flow deviation 4Py in each area.
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Figure 5.14 Results of frequency deviation with wind in all areas.
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From the results, it is evident that the proposed AGTC can keep the system frequency

stable. Since the fixed control gains cannot satisfy the requirements of the varying wind

power, the AGC with original control cannot bring the system frequency back to 60 Hz and

the AGC has a very poor response. However, with AGTC, both frequency deviations and

tie line flow deviations are dramatically reduced.

The P1 control gains of the proposed control for each area are shown in Figure 5.16 and

Figure 5.17. Similar to the study in the previous sub-sections 5.5.2 and 5.5.3, with the

proposed AGTC, the PI control parameters can be automatically and dynamically adjusted
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under different wind speeds over the 900-second duration such that the control gains can be

always dynamically adjusted and the AGC has much better responses.
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Figure 5.16 Results of Kp with wind in all areas.
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5.6 Conclusions

The above AGC studies show convincing results that the proposed AGTC can achieve a
better and more consistent response than the original control. With the proposed AGTC,
the initial PI control gains are calculated in advance and kept the same for each specific
area. Then, the PI control gains will be dynamically and autonomously adjusted during the
frequency control process, based on the area control error (ACE) for area 1, area 2 and area
3, respectively. Therefore, a much better response for frequency regulation in real-time can

always be obtained with the dynamic PI gains, and the desired performance can be

127



achieved. However, the original fixed-gain controller, which is well tuned for a specific
given operating condition, may be inefficient or incapable of regulating the frequency

under continuously varying operating conditions.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of Contributions

Various STATCOM control methods have been reviewed including many applications
of PI1 controllers. However, these previous works obtain the PI gains via a trial and error
approach or extensive studies with a tradeoff of performance and applicability. Hence,
control parameters for the optimal performance at a given operating point may not be
effective at a different operating point.

To address the challenge, this work proposes a new control model based on adaptive Pl
control, which can self-adjust the control gains dynamically during a disturbance such that
the performance always matches a desired response, regardless of the change of the
operating condition. Since the adjustment is autonomous, this gives the “plug-and-play”
capability for STATCOM operation. In the simulation study, the proposed adaptive Pl
control for STATCOM is compared with the conventional STATCOM control with
pre-tuned fixed PI gains to verify the advantages of the proposed method. The results show
that the adaptive PI control gives consistently excellent performance under various
operating conditions such as different initial control gains, different load levels, changes of

transmission network, consecutive disturbances and a severe disturbance. In contrast, the
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conventional STATCOM control with fixed Pl gains may perform acceptable in the
original system, but may not perform as efficiently as the proposed control method when
there is a change of the system conditions.

Next, this work proposes the flatness-based adaptive control (FBAC) method for
STATCOM voltage regulation. By this method, the nonlinear STATCOM system is
equivalent to a linear system, and the trajectories of all system variables can be directly and
easily controlled by controlling flat output and its derivatives without solving differential
equations. Further, the control gains can dynamically self-adjust during the voltage
regulation after a disturbance. Thus, the performance from the FBAC always gives a
consistent match to a desired response, regardless of the change of operating conditions.
However, the original PI control and the flatness-based control (FBC), even if well-tuned
for the given operating condition, may be inefficient or incapable to correct voltage when
there is a change of the operating conditions.

Finally, an adaptive gain-tuning control (AGTC) for AGC with effects of wind
resources is presented in this dissertation. By the proposed control method, the initial
control gains are calculated first. Then, the wind energy with actual wind speed is
integrated in power systems. During the disturbance, the control gains are dynamically
adjusted such that the performance always matches a desired response. In the simulation

study, the proposed control for AGC is compared with the conventional control with
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pre-tuned P1 gains to verify the advantages of the proposed method. The results show that
the AGTC consistently provides excellent performance under variable wind power.
Moreover, the deviation of angular frequency and tie line flow with the proposed control is

much lower than the original control.

6.2 Future Works
The following directions may be considered as future works of this dissertation.

6.2.1  Develop a generic control method
e Extension to other power system control problems such as DFIG can be explored.
e More research work can focus on developing a generic control model with

plug-and-play feature from the proposed method.

6.2.2 Testin a hardware test bed
e The proposed control methods may be tested in a hardware test bed, and a real

system application can be explored.
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