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ABSTRACT 

Variable and uncertain wind power output introduces new challenges to power system 

voltage and frequency stability. To guarantee the safe and stable operation of power 

systems, the control for voltage and frequency regulation is studied in this work.  

Static Synchronous Compensator (STATCOM) can provide fast and efficient reactive 

power support to regulate system voltage. In the literature, various STATCOM control 

methods have been discussed, including many applications of proportional–integral (PI) 

controllers. However, these previous works obtain the PI gains via a trial and error 

approach or extensive studies with a tradeoff of performance and applicability. Hence, 

control parameters for the optimal performance at a given operating point may not be 

effective at a different operating point. To improve the controller’s performance, this work 

proposes a new control model based on adaptive PI control, which can self-adjust the 

control gains during disturbance, such that the performance always matches a desired 

response in relation to operating condition changes. Further, a new method called the 

flatness-based adaptive control (FBAC), for STATCOM is also proposed. By this method, 

the nonlinear STATCOM variables can easily and exactly be controlled by controlling the 

flat output without solving differential equations. Further, the control gains can be 

dynamically tuned to satisfy the time-varying operation condition requirement. 

In addition to the voltage control, frequency control is also investigated in this work. 

Automatic generation control (AGC) is used to regulate the system frequency in power 

systems. Various control methods have been discussed in order to design control gains and 

obtain good frequency response performances. However, the control gains obtained by 
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existing control methods are usually fixed and designed for specific scenarios in the 

studied power system. The desired response may not be obtained when variable wind 

power is integrated into power systems. To address these challenges, an adaptive 

gain-tuning control (AGTC) for AGC with effects of wind resources is presented in this 

dissertation. By AGTC, the PI control parameters can be automatically and dynamically 

calculated during the disturbance to make AGC consistently provide excellent 

performance under variable wind power. Simulation result verifies the advantages of the 

proposed control strategy. 
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  CHAPTER 1

INTRODUCTION AND GENERAL INFORMATION 

1.1 Power System Stability 

1.1.1 Definitions and Classification of Power System Stability 

Renewable energy resources have significantly increased in power systems recently. 

Renewable energy provides 19% of the electricity generation worldwide, and renewable 

power generators spread in many countries [1]. The report on annual energy outlook in [2] 

shown in Figure 1.1 indicates that the share of U.S. electricity generation from renewable 

sources (including conventional hydropower) grew from 9% in 2000 to 12% in 2012, and 

will grow to 16% in 2040. Unfortunately, renewable energy, especially wind, tends to be 

variable and uncertain because the wind depends on natural and meteorological conditions 

[3-4]. This variability introduces many new challenges for power system frequency 

stability. For example, voltage stability, frequency stability and inter-area oscillation have 

become greater concerns than before. Therefore, it is necessary to review the specific 

definition and classification of power system stability. 
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Figure 1.1 Electricity generation by fuel, 1990-2040 (trillion kilowatt hours). 

Based on the literature [3-4], the precise definitions of stability are shown as follows. 

“Power system stability is the ability of an electric power system, for a given initial 

operating condition, to regain a state of operating equilibrium after being subjected to a 

physical disturbance, with most system variables bounded so that practically the entire 

system remains intact”. 

A typical power system is a highly nonlinear system. Operation conditions such as 

loads, generator outputs, key operating parameters, etc. are continually changing. Many 

small and large disturbances may occur in the system from time to time. An unstable 

system condition will lead to outages and shutdown of the power system. Therefore, power 

systems must remain stable under load changes and other small disturbances. Also, power 
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systems must survive numerous disturbances of a severe nature, such as a short circuit on a 

transmission line or the loss of a large generator [3-4].  

Based on the physical nature of the resulting mode of instability, the size of the 

disturbance, processes, and the time span, power system stability can be classified as rotor 

angle stability, voltage stability, and frequency stability. The detail classifications are 

shown in Figure 1.2 [3-4]. 

 

Power Sytem 

Stability

Frequency 

Stability
Voltage 

Stability

Rotor Angle 

Stability

Small-

Disturbance 

Angle Stability

Transient 
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Short Term
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Figure 1.2 Classification of power system stability. 

This work focuses on the voltage and frequency regulations. Therefore, only voltage 

stability and frequency stability will be discussed here. 
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1.1.2 Voltage Stability 

Voltage stability is the ability of a power system to remain steady voltages at all buses 

in the system when it is subject to a disturbance from a given initial operating condition. 

The capability to maintain the equilibrium between the load demand and supply in power 

systems will determine the voltage stability. Voltage instability will result in the loss of 

load in some areas, tripping of transmission lines and other elements by the protective 

systems, and even a large-scale cascading blackout. The Voltage stability can be divided 

into the following two categories [3-4]: 

(1) Large-disturbance voltage stability: This is the ability of power systems to 

maintain steady voltages when a severe disturbance such as system faults, loss of 

the generations, or circuit contingencies occurs in the system. Large-disturbance 

voltage stability is determined by the system and load characteristics, as well as 

the corresponding controls and protections. The study period of large disturbance 

voltage stability may extend from a few seconds to several hours. 

(2) Small-disturbance voltage stability: This is the ability of power systems to 

maintain steady voltages when a small disturbance such as incremental change in 

system load occurs in the system. Small-disturbance voltage stability is affected 

by the characteristics of loads and controls at a given instant of time. 
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As discussed above, the time frame of interest for voltage stability problems may vary 

from a few seconds to several hours. Therefore, voltage stability may be either a short-term 

or a long-term phenomenon as shown in Figure 1.2. 

1.1.3 Frequency Stability 

Frequency stability is the ability of a power system to maintain a steady frequency 

when there is a significant imbalance between generation and load. Frequency stability 

depends on the ability to maintain equilibrium between system generation and load, with 

minimum unintentional loss of load.  

Frequency deviations are caused by a mismatch between power supply and demand in 

the power system. If the power system supply is insufficient to meet the demand, the power 

system frequency will decrease; if the power system supply exceeds the demand, the 

system frequency will increase. Small power mismatches will result in small frequency 

deviations, which can be easily handled. However, large frequency deviations may lead to 

equipment damage and even blackouts. Frequency instability will result in frequency 

swings with generating units and loads tripping. During frequency excursions, the 

characteristic times of the processes and devices that are activated will range from fraction 

of seconds to several minutes. Therefore, as identified in Figure 1.2, frequency stability 

can be a short-term or a long-term phenomenon [5]. 
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1.2 Power system voltage and frequency regulation 

A power system is a large and complex interconnected network which consists of 

thousands of buses and hundreds of generators or even larger. With the increasing need for 

electrical energy, new installations of power generating stations and transmission lines are 

required, and the existing infrastructure operations are extended close to their limits. The 

installation of new lines and generations imposes many environmental and economic 

constraints. It was found that voltage and frequency instability are the main reasons for the 

recent North American blackout in August 2003 [7]. Moreover, renewable energy sources 

such as wind energy and photovoltaic (PV) sources have been widely installed in power 

systems recently, which make power systems under much more pressure than in the past 

regarding stability concerns. The general concept of voltage and frequency regulation will 

be discussed in this section. 

1.2.1 Power system voltage regulation 

If the power voltage becomes unstable, the system voltage will decrease to 

unacceptable low level and become impossible to recover. Then, the interruption of the 

power supply will occur in power systems. Therefore, voltage regulation or reactive 

compensation is an important subject in a power system. Also, it is the utilities’ 

responsibility to keep the customer voltage within specified tolerances [6]. The only way to 

regulate system voltage is to reduce the reactive power load or install the reactive 
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generation devices at the weak voltage points in the system to increase the voltage at these 

weak points [7]. 

 The recent development and use of Flexible Alternating Current Transmission 

Systems (FACTS) in power systems has led to many applications such as Thyristor 

Controlled Series Compensator (TCSC), Static Synchronous Series Compensator (SSSC), 

Static VAR Compensator (SVC), and Static Synchronous Compensator (STATCOM) [7]. 

These devices are not only able improve the voltage stability and provide flexible operation 

capabilities. However, with the growth of industry and the economy, the demands of lower 

power losses, faster response to system parameter change, and higher stability margin have 

become increasingly important. In particular, STATCOMs are one of the most popular 

devices for voltage regulation because of their constant current characteristics when the 

voltage is low/high over the limits. 

STATCOM is a power electronic based synchronous voltage generator that generates a 

three-phase voltage from a dc capacitor. By controlling the magnitude of the STATCOM 

voltage and the reactive power exchanges between the STATCOM and the transmission 

line, the amount of shunt compensation in the power system can be controlled [8-9]. 

Therefore, the system voltage will be kept in the allowable range. In this work, the control 

of STATCOM will be studied. 
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1.2.2 Power system Frequency Regulation 

The imbalance between the generation and the load will degrade a power system 

performance and sometimes will make the power system unstable. The power system 

frequency is sensitive to the power system loads and losses [10, 11]. In an interconnected 

power system, area load changes and abnormal disturbances will lead to mismatches in 

frequency and scheduled power interchanges between areas. These mismatches can be 

corrected by Load Frequency Control (LFC) [10]. This important component in power 

system operation and control is designed to minimize the deviations in frequency and 

tie-line power. It also can reduce steady-state errors to zero when there is a disturbance in 

power systems. Thus, LFC is essential for supplying sufficient and reliable electric power 

[12, 13].  

In a power system, LFC can be divided into three levels [14, 15]: 

(1) Primary control is a local automatic control that adjusts the active power generation of 

the generators and the consumption of controllable loads to restore the balance 

between the load and the generation to eliminate frequency variations. Primary control 

is indispensable for the stability of power systems, and is performed by the speed 

governors of the dedicated power generation units. With primary control, if a variation 

in power system frequency is greater than the dead band of the speed governor, a 

change in unit’s generation will occur. At this time, generators are required to 
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participate in the control by setting the droop according to specifications by the TSO 

(Transmission System Operator).  

(2) Secondary control is a centralized automatic control that adjusts the active power 

production of the generators to restore the frequency and the interchanges with other 

systems to their target values. In other words, if primary control cannot stop frequency 

excursions, secondary control will bring the frequency back to its target value, usually 

set as 60Hz in the United States. As opposed to the primary frequency control, the 

secondary frequency control is dispensable. Frequency control is thus not 

implemented in some power systems where the frequency is regulated using only 

automatic primary and manual tertiary control. However, the secondary frequency 

control is used in all large interconnected systems because manual control does not 

remove overloads on the tie lines quickly enough. Secondary control is also called 

load-frequency control (LFC), while the term automatic generation control (AGC) is 

preferred in North America. Transient time for secondary control is in the order of 

minutes.  

(3) Tertiary control is to manual changes in the dispatch and commitment of generators. 

Tertiary control is used to restore the primary and secondary frequency control 

reserves, to manage congestions in the transmission network, and to bring the 

frequency and the interchanges back to their target value when the secondary control is 
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unable to perform this last task.  

In this work, the control of AGC will be studied. 

1.3 Contribution of this Work 

In a power system, Proportional-integral (PI) controllers have been designed for 

STATCOM to obtain satisfactory dynamic responses [16]. In traditional PI control 

methods, the control gains in these controllers are tuned for a case-by-case study or 

trial-and-error approach. It is a time-consuming job for utility engineers to perform 

trial-and-error studies to find suitable parameters. Further, conventional PI controllers with 

fixed control gains are designed for one specific operating condition. A fixed controller, 

optimal in one specific operating condition may not be suitable in another operation 

condition and large oscillations may occur in the power system.  

The purpose of this work is to propose a control method that can ensure a quick and 

consistent desired response when the system operation condition varies. In other words, we 

want to avoid negative impacts, such as slower response, overshoot, or instability to the 

system performance when external conditions change.  

Based on this fundamental goal, an adaptive PI control of STATCOM for voltage 

regulation is presented. By this adaptive PI control method, the PI control parameters can 

be self-adjusted automatically and dynamically under different disturbances in a power 

system. When a disturbance occurs in the system, the PI control parameters for STATCOM 
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can be computed automatically in every sampling time period and can be adjusted in real 

time to track the reference voltage. Different from other control methods, this method will 

not be affected by the initial gain settings, changes of system conditions, and the limits of 

human experience and judgment. This will make the STATCOM a “plug-and-play” device. 

In addition, this research work demonstrates a fast, dynamic performance of STATCOM in 

various operating conditions. 

Next, a flatness-based adaptive control method (FBAC) is also proposed and applied to 

STATCOM for voltage control in this work. By flatness-based control (FBC), the 

trajectories of all system variables can be directly estimated by flat output and its 

derivatives without solving differential equations. By adaptive control, the control gains 

can be dynamically tuned to satisfy the time-varying operation condition requirement. 

Different from other FBC methods, the proposed control method is robust to various 

system operating conditions and will not be affected by the limits of human experience and 

judgment. Even if the system operation condition has a drastic change, the FBAC method 

can consistently achieve a desired performance of STATCOM. 

Finally, the frequency regulation is also discussed in this work. A number of control 

methods have been discussed in the literature to design control gains for 

proportional-integral (PI) controllers in automatic generation control (AGC) and to obtain 

a good frequency response performance. However, the existing methods are either time 
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consuming or easily affected by the designer’s experience. Further, the control gains 

obtained by existing control methods are usually fixed and designed for specific scenarios 

in the studied power system. The desired response may not be obtained when variable 

wind power is integrated into power systems. To address these challenges, an adaptive 

gain-tuning control (AGTC) for AGC with effects of wind resources is presented in this 

work. By this control method, the PI control parameters can be automatically and 

dynamically calculated during differing disturbances in a power system. In the proposed 

method, the initial gains will be calculated first. Then, the wind energy with actual wind 

speed will be integrated into power systems. The PI control parameters for AGC can be 

computed automatically and can be adjusted in real time based on the area control error 

(ACE) signal to regulate the system frequency. The proposed method will not be affected 

by changes of the system conditions and human experience and judgment. 

1.4 Organizations of the Dissertation 

Chapter 2 provides a detailed review of the literature regarding STATCOM model, 

flatness-based control, and generic adaptive control. 

Chapter 3 addresses the challenge of the traditional PI control methods to obtain the 

optimal response with varying power system operation conditions. Also, this chapter 

proposes a new control model based on adaptive PI control, which can self-adjust the 

control gains during disturbances such that the performance always matches a desired 
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response, regardless of changes in the operating condition. Finally, the conventional 

STATCOM control with tuned, fixed PI gains will be compared with the proposed method 

in simulation part. 

Chapter 4 introduces a new method, called the flatness-based adaptive control (FBAC), 

for STATCOM voltage regulation. By this method, the nonlinear STATCOM variables 

can be easily and exactly controlled by controlling flat output without solving differential 

equations. Further, the control gains can dynamically self-adjust during the voltage 

regulation after a disturbance. In the simulation part, the conventional PI control with tuned, 

fixed PI gains, the flatness based control (FBC) and the FBAC will be compared. 

Chapter 5 introduced an adaptive gain-tuning control (AGTC) for AGC with effects of 

wind resources. In the proposed method, the initial gains will be calculated first. Then, the 

wind energy sources with actual wind speeds are integrated in power systems. The PI 

control parameters for AGC can be computed automatically and adjusted in real time based 

on the area control error (ACE) signal to regulate the system frequency. The proposed 

method is tested in an IEEE 39 bus system with wind resources and compared with 

conventional control approach with well-tuned gains in the simulation.  

In Chapter 6, the conclusion from the entire dissertation work is given, and possible 

future works are also discussed.   
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  CHAPTER 2

LITERATURE REVIEW 

2.1 Chapter Introduction 

This chapter briefly reviews the past and on-going research findings relevant to the 

control of Static Synchronous Compensator (STATCOM) and automatic generation 

control (AGC). 

2.2 Voltage Control of STATCOM Review 

Voltage regulation is a critical consideration for improving the security and reliability 

of power systems. The Static Compensator (STATCOM), a popular device for reactive 

power control based on gate turn-off (GTO) thyristors, has gained much interest in the last 

decade for improving power system stability [17].  

In the past, various control methods have been proposed for STATCOM control. For 

instance, nonlinear optimal control to STATCOM is introduced in [18-20]. A synchronous 

frame voltage regulator is presented in [21] to control system voltage by using separate 

regulation loops for positive and negative sequence components of the voltage. PI 

structures with feed forward are proposed in [22] to improve STATCOM performance. A 

STATCOM damping controller is introduced in [23-24] to offset the negative damping 

effect and to enhance system oscillation stability. A modified non-linear damping 

controller is presented in [25] to provide an improved transient performance over the whole 
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operating range. These previous works mainly focus on the control design rather than 

exploring how to set PI control gains.  

In many STATCOM models, the control logic is implemented with the 

Proportional-integral (PI) controllers. The control parameters or gains play a key factor in 

STATCOM performance. Presently, few studies have focused on the control parameter 

settings. In the previous research works [26-28], the PI controller gains were designed in a 

case-by-case study or trial-and-error approach with tradeoffs in performance and 

efficiency. Generally speaking, it is not feasible for utility engineers to perform 

trial-and-error studies to find suitable parameters when a new STATCOM is connected to a 

system. Further, even if the control gains have been tuned to fit the projected scenarios, 

performance may be disappointing when a change of the system conditions occurs, such as, 

when a line is upgraded or retires from service [29-30]. The situation can be even worse if 

such transmission topology change is due to a contingency. Thus, the STATCOM control 

system may not perform well when critically needed.  

A few, but limited previous works in the literature discuss the STATCOM PI controller 

gains in order to improve voltage stability and to avoid time-consuming tuning. For 

instance, in [31-33], linear optimal controls based on the linear quadratic regular (LQR) 

control are proposed. In [35-36], a fuzzy PI control method is proposed to tune PI 

controller gains. In [40-42], a flatness-based control (FBC) is proposed and applied in the 



 

 16 

voltage source converter. In [29-30], an autonomous and adaptive voltage control for 

distributed energy resources (DERs) is proposed. In subsections 2.2.1 to 2.2.4, the control 

methods in existing literature for control gain tuning will be discussed in detail. 

2.2.1 Linear quadratic regular (LQR) control 

In [31-33], linear optimal controls based on the linear quadratic regular (LQR) control 

are proposed. LQR is also a pole placement method. In this method, the poles of the 

system are placed indirectly by minimizing a given performance index J: 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∝

0
                         (2.1) 

where x is the state variable, u is the vector of input variables, Q and R are the weighting 

matrices, usually Q and R are positive semi-definite which are chosen by the designer. By 

optimizing the given performance index J, the feed-back gain matrix K can be obtained. In 

[31], the matrix Q is chosen to be a diagonal matrix, thus the elements act as a “weighting” 

of the STATCOM states in the performance index. The matrix R is also chosen to be a 

diagonal matrix. In the matrices Q and R, the elements must be chosen carefully. Very 

small values may result in excessive control force demand. However, very large values 

may result in sluggish system performance. The best range of values in Q and R varies 

depending on the system under consideration and the operating point. Therefore, the 

effectiveness of the LQR depends on the choice of the weighting matrices Q and R, and 

the optimal parameters may depend on the designer’s experience.  
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2.2.2 Fuzzy PI control method 

In [35-36], a fuzzy PI control method is proposed to tune PI controller gains. The 

control block is shown in Figure 2.1.  
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Figure 2.1 Direct-Output-Voltage with Fuzzy Control. 

 

In the figure, the fuzzy adjustor is used to adjust the parameters of proportional gain KP 

and integral gain KI based on the error e and the change of error Δe. The control gains are 

determined by: 

𝐾𝑃 = 𝐾𝑃
∗ + ∆𝐾𝑃                  (2.2) 

𝐾𝐼 = 𝐾𝐼
∗ + ∆𝐾𝐼                         (2.3) 

where 𝐾𝑃
∗ and 𝐾𝐼

∗ are the reference values of fuzzy-PI-based controllers. In [35-36], 𝐾𝑃
∗ 
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and 𝐾𝐼
∗ are calculated offline based on the Ziegler Nichols method. 

By fuzzy control, numeric values of error e and the change of error Δe need to be 

translated into a linguistic value with a membership grade. The membership function is 

shown in Figure 2.2. In the figure, the following seven fuzzy sets are chosen: negative big 

(NB), negative medium (NM), negative small (NS), zero, positive small (PS), positive 

medium (PM), and positive big (PB). 

 

-6 -4 -2 0 2 4 6
0

0.5

1

NB NM NS 0 PS PM PB

 

Figure 2.2 Membership functions of fuzzy variables. 

The design process of fuzzy control rules involves defining the rules that relate the 

input variables to the output model properties. The fuzzy control rules usually are 

designed by the designer. In the [36], ΔKP and ΔKI are determined by the following rules: 

1) If |e| is a large value, a large ΔKP will be chosen, and vice versa. 

2) If e
*
Δe>0, a large ΔKP will be selected, and vice versa. 
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3) If |e| and |Δe| are large values, ΔKI is set to zero, which can avoid control saturation. 

4) If |e| is small, ΔKI is effective, and a large value is chosen for ΔKI if |e| is small, 

which is good to decrease the steady-state error.  

In the fuzzy control, the controller rule is mainly obtained from designers’ intuition 

and experience. Therefore, the fuzzy control method essentially gives “fuzzy” 

recommendation and it is still up to the designer to choose the actual, deterministic gains. 

2.2.3 Flatness based control 

A flatness-based control (FBC), is proposed and applied in the voltage source 

converter [40-42]. Flatness is a mathematical property of a system described by a set of 

differential equations. With FBC, a nonlinear flat system is equivalent to a linear 

controllable system, and the trajectories of all system variables can be directly estimated by 

flat output and its derivatives [43-45]. Flat systems are a subset of nonlinear systems; in 

other words, some nonlinear systems may demonstrate the characteristic of flatness. The 

flatness feature can be utilized for motion planning, trajectory generation, and stabilization. 

Theoretically, a flat system can be feedback linearized, which is, however, not a better 

choice than the flat control approach. Further, flatness is a feature independent of 

coordinate choice which is critical to the linearization in nonlinear control. That is, 

choosing a different coordinate system may not convert the nonlinear system to a linear 

one. However, coordinate choice is irrelevant in flatness-based control [46-47].  
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Consider a general nonlinear system of the form: 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢  (2.4) 

𝑥 = [𝑥1, 𝑥2, … 𝑥𝑛]
𝑇  𝑥𝜖𝑅𝑛  (2.5) 

𝑢 = [𝑢1, 𝑢2, … 𝑢𝑚]
𝑇  𝑢𝜖𝑅𝑚  (2.6) 

where (𝑛,𝑚) ∈ 𝑁 . If the state variable x can be parameterized by output y and its 

derivatives, the system is said to be differentially flat and admits the flat output y=[y1, y2 ,…, 

ym]
T
 [43-45]. Then, the state variables and control variables can be written as follows: 

𝑥 = 𝜙(𝑦, �̇�, … , 𝑦(𝛽))  (2.7) 

𝑢 = 𝜙(𝑦, �̇�, … , 𝑦(𝛽+1))  (2.8) 

where β is the finite numbers of derivative. By this process, a nonlinear flat system can be 

equivalent to a linear controllable system as described in references [43-45], the control 

block shown in Figure 2.3. 
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Figure 2.3 Flatness based control block. 
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In the FBC [40-42], the control laws are normally designed by the pole-placement 

method. By this method, the final results will also be affected by the designer’s experiences 

as discussed before. Further, even if the control gains have been tuned to fit the projected 

scenarios, it may not perform as initially expected when a considerable change of the 

system condition occurs such as when a transmission line is upgraded or retires from 

service. The situation can be even worse if such transmission topology change is due to a 

contingency. Thus, the STATCOM control system may not perform well when urgently 

needed. Therefore, this issue leads to an exploration for an improved flatness based 

control.  

2.2.4 Adaptive control by previous work  

In [29-30], adaptive voltage regulation for distributed energy resources (DERs) is 

proposed and an adaptive voltage regulation method is developed with a PI feedback 

controller. Based on these previous researches, if the control gains KP and KI are not 

chosen appropriately, the system response may be poor and even cause instability. So it is 

important to design the control gains. In [29-30], an adaptive PI design is proposed such 

that it can dynamically adjust the PI controller in real-time based on the system behavior 

and configuration. The proposed adaptive PI control method includes three procedures: 

1) Determine the DC source voltage of the DE. 

2) Set the initial controller values. 
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3) Adjust the controller parameters according to the real-time system conditions. 
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Figure 2.4 Adaptive control of the voltage regulation. 

The control diagram for DERs is shown in Figure 2.4. The point of common coupling 

(PCC) voltage vt (or terminal voltage), is measured and its RMS value Vt is calculated. The 

Vt is then compared to the voltage reference V𝑡
∗. The error between the actual voltage Vt 

and reference voltage V𝑡
∗ is fed back to adjust the reference compensator output voltage 

V𝑐
∗, which is the reference for generating pulse-width modulation (PWM) signals to drive 

the inverter. The compensator output voltage V𝑐
∗   is controlled to regulate Vt to the 

reference V𝑡
∗. The expression for V𝑐

∗ can be obtained by: 

𝑉𝑐
∗ = 𝑣𝑡(𝑡) [1 + 𝐾𝑃(𝑉𝑡

∗(𝑡) − 𝑉𝑡(𝑡)) + 𝐾𝐼 ∫ (𝑉𝑡
∗(𝑡) − 𝑉𝑡(𝑡))𝑑𝑡

𝑡

0
] (2.9) 

By the proposed control method, the initial value of control gains KP, can be 

empirically set to half of the right-hand side (RHS) value defined by: 
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𝐾𝑝 ≤

1
2
𝑉𝑑𝑐

𝑉𝑡
0,𝑝−1

∆𝑉𝑡
0    (2.10) 

where ∆𝑉𝑡
0 = 𝑉𝑡

∗(𝑡) − 𝑉𝑡
0(𝑡) is the initial RMS voltage deviation at time 0+.  

By the adaptive control, the actual voltage deviation which is the voltage error between 

the measured voltage and the reference voltage will be compared with the desired voltage 

deviation, which is the voltage error between the defined exponential voltage curve and the 

reference voltage. The PI control gains will be adjusted based on the scaling factor 

rv=actual voltage deviation/ideal voltage deviation. This adaptive control approach will be 

expanded to STATCOM control in this work while eliminating the initial gain settings 

which is somewhat empirically determined.  

2.2.5 Summary 

Based on the above discussion, the gains in LQR control depend on the designer’s 

choice of a weighting matrix. This makes the optimal parameters depend on the designer’s 

experience. The fuzzy control method essentially gives “fuzzy” recommendation and it is 

still up to the designer to choose the actual, deterministic gains. The FBC also uses the 

pole placement method to determine the control gains. Therefore, again, the designer’s 

experience may affect the final results. Different from these previous works, this work 

proposes a control method that can ensure a quick and consistent desired response when 

the system operation condition varies. In other words, the change of the external condition 
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will not have a negative impact, such as slower response, overshoot, or instability on the 

performance. 

2.3 Frequency Control of AGC Review 

The power system frequency is sensitive to power system loads and losses [10, 11]. In 

an interconnected power system, area load changes and abnormal disturbances will lead to 

mismatches in frequency and scheduled power interchanges between areas. All generators 

are equipped with speed governor systems, but during sudden and big load change, zero 

frequency deviation may not be obtained. In this case, the mismatches can be corrected by 

Load Frequency Control (LFC) or automatic generation control (AGC) [10]. AGC, an 

important component in power system operation and control, is designed to minimize the 

deviations in frequency and tie-line power and reduce steady-state errors to zero when 

there is a disturbance in power systems. Thus, its implementation is essential for supplying 

sufficient and reliable electric power [12, 13].  

The commonly used technique for LFC [12-13] is based on the Area Control Error 

(ACE) which is a linear combination of tie line error and frequency deviations. The main 

objectives of the LFC are to minimize the transient errors of the frequency and tie-line 

power and to ensure zero steady-state errors of these quantities. Droop control strategies 

have been proposed for traditional AGC [10-11]. Existing droop controllers are designed 

for small load changes. To improve droop controllers, other classical control methods, 
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such as proportional-integral(PI), integral-derivative (ID), proportional-integral-derivative 

(PID) and integral-double derivative (IDD) controllers, are investigated in [48]. The 

flatness-based controls for automatic generation control (AGC) of a multi-machine system 

are proposed in [49-50]. However, the control gains in these controllers are designed by 

trial and error method which can be time consuming. Moreover, the fixed control gains 

used in these controllers are designed for a specific operation condition, which cannot 

guarantee the optimal control response in varying power system operation conditions. 

In order to obtain a better frequency response, the pole placement method is proposed 

in literatures [13, 67]. Since the gains by this method depend on the designer’s choice of 

the pole, the optimal parameters may depend on the designer’s experience. Therefore, the 

designer’s experience may affect the final results. Intelligent controllers are proposed to 

AGC to obtain fast and good dynamic response for load frequency control. Many 

intelligent techniques such as differential evolution algorithm, particle swarm 

optimizations, bacteria foraging algorithm, etc. are being used extensively and in 

interconnected power systems [54-64, 68]. The detail of selected previous control methods 

will be discussed in subsections 2.3.1 to 2.3.4. 

2.3.1 Differential Evolution  

In [54], the application of differential evolution (DE) algorithm in load frequency 

control for controller parameters tuning is proposed. The DE is a population-based 
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stochastic optimization algorithm. DE works with two populations such as old generation 

and new generation of the same population. The size of the population is adjusted by the 

parameter NP. The population consists of real valued vectors with dimension D which is 

equal to the number of control variables. The population is randomly initialized within 

the initial parameter bounds. The optimization process is conducted by three main steps: 

mutation, crossover, and selection. In each generation, individuals of the current 

population become target vectors. By adding the weighted difference between two 

randomly chosen vectors to a third vector, a mutant vector will be produced during the 

mutation operation. By mixing the parameters of the mutant vector with those of the 

target vector, a new vector, called trial vector, will be generated during the crossover 

operation. If the trial vector obtains a better fitness value than the target vector, then the 

trial vector replaces the target vector in the next generation. The flow chart of the 

differential evolution is shown in Figure 2.5. 
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Figure 2.5 Flow chart of the differential evolution algorithm. 

 

Implementation of DE requires the determination of some fundamental issues like: 

mutation strategy, DE step size function also called scaling factor (F), crossover 
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probability (CR), the number of population (NP), initialization, the termination, and 

evaluation functions. The success of DE is dependent on setting the control parameters 

such as population size NP, DE step size F and crossover probability of CR. Therefore, 

when applying DE, the strategy and control parameters should be carefully chosen for the 

successful implementation of the algorithm. Usually, the control parameters of DE 

algorithm are tuned by carrying out multiple runs of algorithm for each control parameter 

variation which is time consuming.  

2.3.2 Particle swarm optimization 

In [62], a new gain scheduling PI control strategy for AGC based on particle swarm 

optimization (PSO) is proposed. The PSO is a population based optimization algorithm 

which can obtain high quality solutions within shorter calculation time and stable 

convergence characteristics. PSO uses particles which represent potential solutions of the 

problem. Each particle flies in search space at a certain velocity which can be adjusted in 

light of preceding flight experiences. The projected position of the ith particle of the 

swarm xi, and the velocity of this particle vi at (t+1)th iteration are defined and updated as 

the following two equations:  

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑖
𝑡 − 𝑥𝑖

𝑡)  (2.11) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1   (2.12) 

where i = 1~n and n is the size of the swarm, c1 and c2 are positive constants, r1 and r2 are 
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random numbers which are uniformly distributed in [0, 1], t represents the iteration 

number, pi represents the best previous position (the position giving the best fitness value) 

of the ith particle, and g represents the best particle among all the particles in the swarm. 

At the end of the iterations, the best position of the swarm will be the solution of the 

problem. The flow chart of PSO applied in AGC control is shown in Figure 2.6. 

 

Initialize the random 

velocities and positions 

of particles

Evaluate the fitness 

values for each particle

Compare particle 

fitness with its best 

previous one

Best Previous position 

equal to itself

Previous value 

is better

Best Previous position 

equal to the current value

Current value is 

better

Best position is appointed 

to the global best

Change velocities and 

positions according to (6) 

and (7)

Is the criterion met or 

end of iterations?

Stop

Global best position is 

the solution

YesNo

 

Figure 2.6 Flowchart of the standard PSO algorithm. 
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The objective for achieving optimal solutions of control inputs is taken as an 

optimization problem, and the proposed PSO algorithm is being used to tune the gains of 

the controllers and cost function weights w1, w2, and w3. In the AGC system, in order to 

converge to optimal solution, two different cost functions in (2.13) and (2.14) are derived. 

Equation (2.13) is derived through the frequency deviations of the control areas and 

tie-line power changes. Equation (2.14) is derived based on the rates of changes in these 

deviations according to time. 

𝐽 = ∫ 𝑡 [(𝜔1
𝑑∆𝑓1

𝑑𝑡
)
2

+ (𝜔2
𝑑∆𝑓2

𝑑𝑡
)
2

+ (𝜔3
𝑑∆𝑃𝑡𝑖𝑒

𝑑𝑡
)
2

]
𝑡

0
𝑑𝑡 (2.13) 

𝐽 = ∫ 𝑡[(𝜔1∆𝑓1)
2 + (𝜔2∆𝑓2)

2 + (𝜔3∆𝑃𝑡𝑖𝑒)
2]

𝑡

0
𝑑𝑡  (2.14) 

In the PSO algorithm, the continually varying power system operation condition has 

not been considered. Also, the control gains are designed to remain constant during the 

disturbance which prevents obtaining the desired response sometimes. 

2.3.3 Bacteria forging algorithm 

In [64], the bacterial foraging scheme (BF) is proposed to optimize several important 

parameters in automatic generation control (AGC). BF algorithm, a recent evolutionary 

computation technique, used for searching the total solution space, is more popular than 

GA. To overcome the possibility of being trapped in local minima, in GA only two 

operations (crossover and mutation) between the chromosomes are adopted. However, in 

BF, the foraging (methods of locating, handling, and ingesting food) behavior of E.coli 
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bacteria in the intestine is mimicked. BF algorithm can be divided into four sections, 

chemotaxis, swarming, reproduction, and elimination and dispersal. These operations 

among the bacteria are used for searching the total solution space. Thus the possibility of 

avoiding local minimum and achieving faster convergence is much higher than GA.  
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Figure 2.7 Flow chart for bacterial foraging algorithm. 
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In BF algorithm, each bacterium are assigned with random values (Δ) within the 

defined upper and lower limit between which the optimum value is likely to fall. In [64], 

each bacterium is allowed to take all possible values within the range. The objective 

function is defined by the following: 

𝐽 = ∫ {(∆𝑓𝑖)
2 + (∆𝑃𝑡𝑖𝑒𝑖−𝑗)

2
} 𝑑𝑡

𝑇

0
  (2.15) 

where T is the simulation time, ∆𝑓𝑖 is the incremental change in frequency of area i, and 

∆𝑃𝑡𝑖𝑒𝑖−𝑗 is the incremental change in tie power of tie i to j. The flow chart of BF is shown 

in Figure 2.7. In the figure, Nc is the number of iterations to be undertaken in a chemotactic 

loop. Nre is the maximum number of reproductions to be undertaken. Ned is the maximum 

number of elimination and dispersal events to be imposed over bacteria. S is number of 

bacteria. In BF algorithm, the fixed control gains are used at the different system 

operation condition which cannot guarantee the optimal control response. 

2.3.4 Decentralized Sliding Mode Load Frequency Control 

In [68], a novel decentralized sliding mode control, based on PI and slide mode 

control is proposed to solve the LFC problem of multi-area interconnected power systems 

with matched and unmatched uncertainties. The sliding mode control (SMC) has been 

proven to be an effective robust control strategy for nonlinear systems and incompletely 

modeled systems. The SMC utilizes a discontinuous control to force the system state 

trajectories to some predefined sliding surfaces on which the system has desired 



 

 33 

properties such as stability, disturbance rejection capability, and tracking ability. The 

traditional SMC design includes the two relatively independent parts of the sliding mode 

surface δi(t) for the desired performance and the controller law ui to force the system 

trajectory to the surface and to maintain motion on it. 

To improve the dynamic performance and robustness, the PI switching surface is 

selected as: 

𝜎𝑖(𝑡) = G𝑖𝑥𝑖(𝑡) − ∫ 𝐺𝑖(𝐴𝑖
′ − 𝐵𝑖

′𝐾𝑖)
𝑡

0
𝑥𝑖(𝜏)𝑑𝜏  (2.16) 

where Gi and Ki are constant matrices. Matrix Gi is selected to assure that matrix 𝐺𝑖𝐵𝑖
′ is 

nonsingular. Matrix Ki is designed through pole assignment such that the eigenvalues of 

matrix (𝐴𝑖
′ − 𝐵𝑖

′𝐾𝑖) are less than zero. When the dynamic trajectory reaches the sliding 

mode, the switching function satisfies the following conditions. 

𝜎𝑖(𝑡) = 0 and �̇�𝑖(𝑡) = 0   (2.17) 

In the SMC, the control gains are designed to remain the same during the disturbance, 

which sometimes prevents obtaining the desired response. 

2.3.5 Summary 

The discussions from 2.3.1 to 2.3.4 have not considered the continually varying 

power system operation condition. Moreover, the control gains in these previous AGC 

control methods are designed for different operation conditions, but during the 

disturbance, the control gains are kept the same. This makes the optimal response 
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unachievable when variable wind power is integrated into a power system. To address 

these challenges, an adaptive gain-tuning control (AGTC) for AGC with wind resources 

effects is presented in this work. By this control method, the PI control parameters can be 

automatically and dynamically calculated during different disturbances in a power 

system. 

2.4 Scope of this Work 

As discussed in 2.2, the traditional PI control methods for STATCOM use the 

time-consuming try and error methods to calculate the control gains. The fixed control 

gains may obtain the optimal response in a specific condition. However, when a 

considerable change of the system conditions occurs such as when a line is upgraded or 

retires from service, performance may be disappointing. To improve this, some new 

control methods such as pole placement and fuzzy control methods are proposed. These 

methods are affected by the designer’s experience which makes obtaining the optimal 

response uncontrollable. 

Therefore, an adaptive PI control of STATCOM for voltage regulation is presented in 

this work. By this adaptive PI control method, the PI control parameters can be 

self-adjusted automatically and dynamically under different disturbances in a power 

system. When a disturbance occurs in the system, the PI control parameters for STATCOM 

can be computed automatically in every sampling time period and can be adjusted in real 
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time to track the reference voltage. Different from other control methods, this method will 

not be affected by the initial gain settings, changes of system conditions, and the limits of 

human experience and judgment. This will make the STATCOM a “plug-and-play” device. 

In addition, this research work demonstrates a fast, dynamic performance of STATCOM in 

various operating conditions. 

Next, a flatness-based adaptive control (FBAC) method is proposed and applied to 

STATCOM for voltage control in this work, since the existing flatness based control (FBC) 

may not satisfy the requirements of the varying power system operation conditions. By this 

method, the nonlinear STATCOM variables can be easily and exactly controlled by 

controlling flat output without solving differential equations. Further, the control gains can 

dynamically self-adjust during the voltage regulation after a disturbance. Thus, the 

performance from the FBAC will consistently match a desired response, regardless of the 

change of operating conditions. 

Finally, as discussed in 2.3, automatic generation control (AGC) is very important to 

regulate power system frequency. A number of control methods have been discussed in 

order to design control gains for proportional-integral (PI) controllers in AGC and to 

obtain the desired frequency response performances. However, the existing methods are 

either time consuming or are affected by the designer’s experience. Also, the control gains 

obtained by existing control methods are usually fixed and designed for specific scenarios 
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in the studied power system. The desired response may not be obtained when variable wind 

power is integrated into power systems. To address these challenges, an adaptive 

gain-tuning control (AGTC) for AGC is proposed in this paper. The wind speed recordings 

from an actual field data are used in the MATLAB simulation and wind power model is 

built. By the proposed control method, PI control gains can be dynamically self-adjusted to 

reach the desired performance. In addition, the proposed control provides better AGC 

response with less deviation of system frequency and tie line flow under variable wind 

power. 
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  CHAPTER 3

ADAPTIVE PI CONTROL OF STATCOM  

3.1 Chapter Introduction 

This chapter presents an adaptive PI control of STATCOM for voltage regulation. By 

this adaptive PI control method, the PI control parameters can be self-adjusted 

automatically and dynamically under different disturbances in the power system.  

3.2 STATCOM Model and Control 

3.2.1 System Configuration 

Vas

Vbs

Vcs

Ls Rs

ias

ibs

ics

Voltage 

Source 

Inverter

C Rc

Vdc
idc

Val

Vbl

Vcl

STATCOM
 

Figure 3.1 Equivalent circuit of STATCOM. 

The equivalent circuit of the STATCOM is shown in Figure 3.1. In this power system, 

the resistance Rs in series with the voltage source inverter represents the sum of the 

transformer winding resistance losses and the inverter conduction losses. The inductance 
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Ls represents the leakage inductance of the transformer. The resistance Rc in shunt with the 

capacitor C represents the sum of the switching losses of the inverter and the power losses 

in the capacitor. In Figure 3.1, Vas, Vbs, and Vcs are the three-phase STATCOM output 

voltages; Val, Vbl, and Vcl are the three phase bus voltages; ias, ibs, and ics are the three-phase 

STATCOM output currents [31]. 

3.2.2 STATCOM Dynamic Model 

The three-phase mathematical expressions of the STATCOM can be written in the 

following form [31]: 

𝐿𝑠
𝑑𝑖𝑎𝑠

𝑑𝑡
= −𝑅𝑠𝑖𝑎𝑠 + 𝑉𝑎𝑠 − 𝑉𝑎𝑙   (3.1) 

𝐿𝑠
𝑑𝑖𝑏𝑠

𝑑𝑡
= −𝑅𝑠𝑖𝑏𝑠 + 𝑉𝑏𝑠 − 𝑉𝑏𝑙  (3.2) 

𝐿𝑠
𝑑𝑖𝑐𝑠

𝑑𝑡
= −𝑅𝑠𝑖𝑐𝑠 + 𝑉𝑐𝑠 − 𝑉𝑐𝑙  (3.3) 

𝑑

𝑑𝑡
(
1

2
𝐶𝑉𝑑𝑐

2 (𝑡)) = −[𝑉𝑎𝑠𝑖𝑎𝑠 + 𝑉𝑏𝑠𝑖𝑏𝑠 + 𝑉𝑐𝑠𝑖𝑐𝑠] −
𝑉𝑑𝑐
2 (𝑡)

𝑅𝑐
  (3.4) 

In order to conveniently analyze the balanced three-phase system, the three-phase 

voltages and currents are converted to synchronous rotating frame by abc/dq 

transformation. By this rotation, the control problem is greatly simplified since the system 

variables become DC values under the balanced condition. Further, multiple control 

variables are decoupled, permitting the use of the classic control method. The 

transformation from phase variables to d and q coordinates is given as follows: 
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 [
𝑖𝑑𝑠
𝑖𝑞𝑠
0

] = [𝐶] [
𝑖𝑎𝑠
𝑖𝑏𝑠
𝑖𝑐𝑠

] =
2

3

[
 
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 

[
𝑖𝑎𝑠
𝑖𝑏𝑠
𝑖𝑐𝑠

]   (3.5) 

[
𝑉𝑑𝑠
𝑉𝑞𝑠
0

] = [𝐶] [
𝑉𝑎𝑠
𝑉𝑏𝑠
𝑉𝑐𝑠

] =
2

3

[
 
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 

[
𝑉𝑎𝑠
𝑉𝑏𝑠
𝑉𝑐𝑠

]  (3.6) 

where ids and iqs are the d and q currents corresponding to ias, ibs, and
 
ics; Vds and Vqs 

represent the d and q voltages corresponding to Vas, Vbs, and
 
Vcs. 

The output voltage of the STATCOM can be expressed as: 

𝑉𝑑𝑠 = 𝐾𝑉𝑑𝑐 cos(𝛼)   (3.7) 

𝑉𝑞𝑠 = 𝐾𝑉𝑑𝑐 sin(𝛼)    (3.8) 

where K is a factor that relates the DC voltage to the peak phase-to-neutral voltage on the 

AC side; Vdc 
is the DC-side voltage; α is the phase angle which the STATCOM output 

voltage leads the bus voltage. 

By using the abc/dq transformation, the equations from (3.1) to (3.4) can be rewritten 

as: 

𝑑

𝑑𝑡
[

𝑖𝑑𝑠
𝑖𝑞𝑠
𝑉𝑑𝑐

] =

[
 
 
 
 −

𝑅𝑠

𝐿𝑠
𝜔

𝐾

𝐿𝑠
cos 𝛼

−𝜔 −
𝑅𝑠

𝐿𝑠

𝐾

𝐿𝑠
sin 𝛼

−
3𝐾

2𝐶
cos 𝛼 −

3𝐾

2𝐶
sin 𝛼 −

1

𝑅𝑐𝐶 ]
 
 
 
 

[

𝑖𝑑𝑠
𝑖𝑞𝑠
𝑉𝑑𝑐

] −
1

𝐿𝑠
[
𝑉𝑑𝑙
𝑉𝑞𝑙
0

]  (3.9) 

where ω is the synchronously rotating angle speed of the voltage vector; Vdl and Vql 
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represent the d and q axis voltage corresponding to Val, Vbl, and Vcl. Since Vql 
=0, based on 

the instantaneous active and reactive power definition, (3.10) and (3.11) can be obtained as 

follows [23-24]: 

𝑝𝑙 =
3

2
𝑉𝑑𝑙𝑖𝑑𝑠  (3.10) 

𝑞𝑙 =
3

2
𝑉𝑑𝑙𝑖𝑞𝑠  (3.11) 

Based on the above equations, the traditional control strategy can be obtained, and the 

STATCOM control block diagram is shown in Figure 3.2 [26-27]. 
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Figure 3.2 Traditional STATCOM PI control block diagram. 

As shown in Figure 3.2, the phase locked loop (PLL) provides the basic synchronizing 

signal which is the reference angle to the measurement system. Measured bus line voltage 
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Vm is compared with the reference voltage Vref and the voltage regulator provides the 

required reactive reference current Iqref. The droop factor, Kd, is defined as the allowable 

voltage error at the rated reactive current flow through the STATCOM. The STATCOM 

reactive current Iq is compared with Iqref, and the output of the current regulator is the angle 

phase shift of the inverter voltage w.r.t. the system voltage. The limiter is the limit imposed 

on the value of control with the consideration of the maximum reactive power capability of 

the STATCOM. 

3.3 Adaptive PI Control for STATCOM 

3.3.1 Concept of the proposed adaptive PI control method 

The STATCOM with fixed PI control parameters may not reach the desired and 

acceptable response in a power system when the power system operating condition (e.g., 

loads or transmissions) changes. An adaptive PI control method is presented in this section 

in order to obtain the desired response and to avoid performing trial-and-error studies to 

find suitable parameters for PI controllers when a new STATCOM is installed in a power 

system. With this adaptive PI control method, the dynamical self-adjustment of PI control 

parameters can be realized.  
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An adaptive PI control block for STATCOM is shown in Figure 3.3. In Figure 3.3, the 

measured voltage Vm(t) and the reference voltage Vref(t), the q-axis reference current Iqref 

and the q-axis current Iq are in per unit values. The proportional and integral parts of the 

voltage regulator gains are denoted by Kp_V and Ki_V, respectively. Similarly, the gains Kp_I 

and Ki_I represent the proportional and integral parts, respectively, of the current regulator. 

In this control system, the allowable voltage error Kd is set to 0. The Kp_V, Ki_V, Kp_I and Ki_I 

can be set to an arbitrary initial value such as simply 1.0. One exemplary desired curve is 

an exponential curve in terms of the voltage growth, shown in Figure 3.4, which is set as 

the reference voltage in the outer loop. Other curves may also be used than the depicted 

exponential curve so long as the measured voltage returns to the desired steady state 

voltage in the desired time duration.  
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Figure 3.3 Adaptive PI control block for STATCOM.  
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Figure 3.4 Reference voltage curve. 

The process of adaptive voltage control method for STATCOM is described as follows: 

(1) The bus voltage Vm(t) is measured in real time.  

(2) When the measured bus voltage over time 𝑉𝑚(𝑡) ≠Vss , the target steady-state voltage 

(which is set to 1.0 per unit (p.u.) in the discussion and examples), the measured voltage 

is compared with Vss. Based on the desired reference voltage curve, Kp_V  and Ki_V are 

dynamically adjusted in order to make the measured voltage match the desired reference 

voltage, and the q-axis reference current Iqref 
can be obtained. 

(3) In the inner loop, Iqref is compared with the q-axis current Iq. Using the similar control 

method like the one for the outer loop, the parameters Kp_I and Ki_I 
can be adjusted based 

on the error. Then, a suitable angle can be found and eventually the DC voltage in 
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STATCOM can be modified such that STATCOM provides the exact amount of 

reactive power injected into the system to keep the bus voltage at the desired value. 

It should be noted that the current Imax and Imin and the angle αmax and αmin are the limits 

imposed with the consideration of the maximum reactive power generation capability of 

the STATCOM controlled in this manner. If one of the maximum or minimum limits is 

reached, the maximum capability of the STATCOM to inject reactive power has been 

reached. Certainly, as long as the STATCOM sizing has been appropriately studied during 

planning stages for inserting the STATCOM into the power system, the STATCOM should 

not reach its limit unexpectedly.  

3.3.2 Derivation of the key equations 

Since the inner loop control is similar to the outer loop control, the mathematical 

method to automatically adjust PI controller gains in the outer loop is discussed in this 

section for illustrative purpose. Similar analysis can be applied to the inner loop.  

Here the measured bus voltages of three phases are denoted by Val(t), Vbl(t), and Vcl(t), 

respectively. Then, Vdl(t) and Vql(t)  can be computed with d-q transformation. 

[
𝑉𝑑𝑙(𝑡)

𝑉𝑞𝑙(𝑡)

0

] =
2

3

[
 
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2
1

√2

1

√2

1

√2 ]
 
 
 
 

[

𝑉𝑎𝑙(𝑡)

𝑉𝑏𝑙(𝑡)

𝑉𝑐𝑙(𝑡)
]  (3.12) 

Then, we have 
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𝑉𝑚(𝑡) = √𝑉𝑑𝑙
2 (𝑡) + 𝑉𝑞𝑙

2 (𝑡)    (3.13) 

Based on Vm(t), the reference voltage Vref(t) is set as:  

V𝑟𝑒𝑓(𝑡) = 𝑉𝑆𝑆 − (𝑉𝑠𝑠 − 𝑉𝑚(𝑡))𝑒
−
𝑡

𝜏    (3.14) 

In (3.14), Vss is the target steady-state voltage (which is set to 1.0 per unit (p.u.) in the 

discussion and examples); Vm(t) is the measured voltage; τ=0.01s. The curve in Figure 3.4 

is one of the examples for Vref(t). 

 If the system is operating in the normal condition, then Vm(t)=1 p.u., and thus, Vref(t)=1 

p.u. This means that Kp_V and Ki_V will not change and the STATCOM will not inject or 

absorb any reactive power to maintain the voltage meeting the reference voltage. However, 

once there is a voltage disturbance in the power system, based on 𝑉𝑟𝑒𝑓(𝑡) = 𝑉𝑆𝑆 −

(𝑉𝑠𝑠 − 𝑉𝑚(𝑡))𝑒
−
𝑡

𝜏, Kp_V and Ki_V will become adjustable and the STATCOM will provide 

reactive power to increase the voltage. Here, the error between Vref(t) and Vm(t) is denoted 

by ∆V(t) when there is a disturbance in the power system. Based on the adaptive voltage 

control model, at any arbitrary time instant t, the following equation can be obtained: 

∆V(𝑡)𝐾𝑝_𝑉(𝑡) + 𝐾𝑖_𝑉(𝑡) ∫ ∆V(𝑡)𝑑𝑡
𝑡+𝑇𝑠

𝑡
= 𝐼𝑞𝑟𝑒𝑓(𝑡 + 𝑇𝑠)    (3.15) 

where in this example, Ts is the sample time, which is set to 2.5×10
-5

 second. 

In this system, the Discrete-Time Integrator block in place of the Integrator block is 

used to create a purely discrete system, and the Forward-Euler method is used in the 
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Discrete-Time Integrator block. Therefore, the resulting expression for the output of the 

Discrete-Time Integrator block at t is 

𝑦(𝑡) = 𝑦(𝑡 − 𝑇𝑠) + 𝐾𝑖_𝑉(𝑡 − 𝑇𝑠) × 𝑇𝑠 × ∆V(𝑡 − 𝑇𝑠)    (3.16) 

where 𝑦(𝑡) = 𝐾𝑖_𝑉(𝑡) ∫ ∆V(𝑡)𝑑𝑡
𝑡+𝑇𝑠

𝑡
 ; 𝑦(𝑡 − 𝑇𝑠) = 𝐾𝑖_𝑉(𝑡 − 𝑇𝑠) ∫ ∆V(𝑡 − 𝑇𝑠)𝑑𝑡

𝑡

𝑡−𝑇𝑠
. 

Considering 𝑦(𝑡 − 𝑇𝑠) = 𝐼𝑞𝑟𝑒𝑓(𝑡), we can rewrite (3.15) as follows: 

∆V(𝑡)𝐾𝑝_𝑉(𝑡) + 𝐾𝑖_𝑉(𝑡) ∫ ∆V(𝑡)𝑑𝑡
𝑡+𝑇𝑠

𝑡
− 𝐾𝑖_𝑉(𝑡 − 𝑇𝑠)…   

∫ ∆V(𝑡 − 𝑇𝑠)𝑑𝑡
𝑡

𝑡−𝑇𝑠
= 𝐼𝑞𝑟𝑒𝑓(𝑡 + 𝑇𝑠) − 𝐼𝑞𝑟𝑒𝑓(𝑡)     (3.17) 

Over a very short time duration, we can consider 𝐾𝑖_𝑉(𝑡) = 𝐾𝑖_𝑉(𝑡 − 𝑇𝑠). Hence, (3.17) 

can be rewritten as: 

∆V(𝑡)𝐾𝑝_𝑉(𝑡) + 𝐾𝑖_𝑉(𝑡) ∫ A𝑑𝑡
𝑡+𝑇𝑠

𝑡
= 𝐼𝑞𝑟𝑒𝑓(𝑡 + 𝑇𝑠) − 𝐼𝑞𝑟𝑒𝑓(𝑡)  (3.18) 

where A=∆V(𝑡) − ∆V(𝑡 − 𝑇𝑠). 

Based on (3.16), if we can determine in ideal response the radio  
𝐼𝑞𝑟𝑒𝑓(𝑡+𝑇𝑠)−𝐼𝑞𝑟𝑒𝑓(𝑡)

∆V(𝑡)
 and 

the ideal ratio 
𝐾𝑖_𝑉(𝑡)

𝐾𝑝_𝑉(𝑡)
, the desired Kp_V(t) and Ki_V(t) can be solved. 

Assuming at the ideal response, we have 

𝐼𝑞𝑟𝑒𝑓(𝑡 + 𝑇𝑠) − 𝐼𝑞𝑟𝑒𝑓(𝑡) = 𝑅 × ∆V(𝑡)    (3.19) 

Since the system is expected to be stable, without losing generality, we may assume 

that the bus voltage will come back to 1 per unit in 5τ, where 5τ is the delay defined by 

users as shown in Figure 3.4. Since Iqref(t0)=0 based on (3.15) and (3.19), (3.15) can be 

rewritten as: 



 

 47 

∆V(𝑡0)𝐾𝑝_𝑉(𝑡0) + 𝐾𝑖_𝑉(𝑡0) ∫ ∆V(𝑡)𝑑𝑡
𝑡0+5𝜏

𝑡0
= 𝑅 × ∆V(𝑡0) (3.20) 

where t0 is the time that the system disturbance occurs. 

Set Ki_V(t0
-
)=0, then we have 

𝐾𝑝_𝑉(𝑡0) = 𝑅    (3.21) 

Set Kp_V(t0
-
)=0, then we have 

𝐾𝑖_𝑉(𝑡0) =
∆V(𝑡0)×𝑅

∫ ∆V(𝑡)𝑑𝑡
𝑡0+5𝜏
𝑡0

   (3.22) 

Now the ratio 𝑚𝑉 =
𝐾𝑖_𝑉(𝑡0)

𝐾𝑝_𝑉(𝑡0)
  can be considered as the ideal ratio of the values of 

Kp_V(t) and Ki_V(t) after disturbances. 

Thus, (3.19) can be rewritten as 

𝐼𝑞𝑟𝑒𝑓(𝑡 + 5𝜏) − 𝐼𝑞𝑟𝑒𝑓(𝑡) = 𝑘𝑉 × ∆V(𝑡0)   (3.23) 

Here kV can be considered as the steady and ideal ratio 
𝐼𝑞𝑟𝑒𝑓(𝑡+𝑇𝑠)−𝐼𝑞𝑟𝑒𝑓(𝑡)

∆V(𝑡)
. 

Based on the system bus capacity and the STATCOM rating, ΔVmax can be obtained, 

which means any voltage change greater than ΔVmax cannot come back to 1 per unit. Since 

we have -1≤Iqref(t) ≤1, we have the following equation: 

∆𝑉(𝑡0)

∆𝑉𝑚𝑎𝑥
= 𝑘𝑉 ×

∆V(𝑡0)𝐾𝑝_𝑉(𝑡0)+𝐾𝑖_𝑉(𝑡0) ∫ ∆V(𝑡)𝑑𝑡
𝑡0+5𝜏
𝑡0

𝑅
 (3.24) 

 

Based on (3.20), (3.23) and (3.24), kv can be calculated by: 

𝑘𝑉 =
R×∆V(𝑡0)

(𝐾𝑝_𝑉(𝑡0)∆V(𝑡0)+𝐾𝑖_𝑉(𝑡0) ∫ ∆V(𝑡)𝑑𝑡
𝑡0+5𝜏
𝑡0

)×∆V𝑚𝑎𝑥
  (3.25) 

In order to exactly calculate the PI controller gains, based on (3.18), we can derive: 



 

 48 

∆V(𝑡)𝐾𝑝_𝑉(𝑡) + 𝑚𝑉𝐾𝑝_𝑉(𝑡) ∫ A𝑑𝑡
𝑡+𝑇𝑠

𝑡
= 𝑘𝑉 × ∆V(𝑡) (3.26) 

Therefore, Kp_V(t) and Ki_V(t) can be computed by the following equations: 

𝐾𝑝_𝑉(𝑡) =
𝑘𝑉×∆V(𝑡)

(∆V(𝑡)+𝑚𝑉×∫ A𝑑𝑡
𝑡+𝑇𝑠
𝑡 )

  (3.27) 

𝐾𝑖_𝑉(𝑡) = 𝑚𝑉 × 𝐾𝑝_𝑉(𝑡) (3.28) 

Therefore, based on (3.27) and (3.28), Kp_V(t) and Ki_V(t) can be adjusted dynamically. 

Using similar process, the following expressions for current regulator PI gains can be 

obtained: 

𝐾𝑝_𝐼(𝑡) =
𝑘𝐼×∆I𝑞(𝑡)

(∆I𝑞(𝑡)+𝑚𝐼×∫ B𝑑𝑡
𝑡+𝑇𝑠
𝑡 )

  (3.29) 

𝐾𝑖_𝐼(𝑡) = 𝑚𝐼 × 𝐾𝑝_𝐼(𝑡) (3.30) 

where ΔIq(t) is the error between Iqref and Iq; kI is the steady and ideal ratio 
𝛼(𝑡+𝑇𝑠)−𝛼(𝑡)

∆I𝑞(𝑡)
 and 

α(t) is the angle that phase shift of the inverter voltage with respect to the system voltage at 

time t; mI is the ideal ratio of the values of Kp_I(t) and Ki_I(t) after disturbances; and B is 

equal to ΔIq(t)- ΔIq(t-TS).  

Note that the derivation from Equations (3.14) to (3.30) is fully reversible so it ensures 

that the measured voltage curve can follow the desired ideal response, as defined in Eq. 

(3.14). 
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3.3.3 Flow charts of the adaptive PI control procedure 
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Figure 3.5 Adaptive PI control algorithm flow chart. 
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Figure 3.5 is an exemplary flowchart of the proposed adaptive PI control for 

STATCOM for the block diagram of Figure 3.3. 

The adaptive PI control process begins at Start. The bus voltage over time Vm(t) is 

sampled according to a desired sampling rate. Then, Vm(t) is compared with Vss, the desired 

steady-state voltage. If Vm(t)=Vss, then, there is no reason to change any of the identified 

parameters: Kp_V(t), Ki_V(t), Ki_I(t) and Kp_I(t). The power system is running smoothly. On 

the other hand, if 𝑉𝑚(𝑡) ≠ Vss, then adaptive PI control begins.  

The measured voltage is compared with Vref(t), the reference voltage defined in (3.14). 

Then,  Kp_V(t) and Ki_V(t) are adjusted in the voltage regulator block (outer loop) based on 

Eqs. (3.27) and (3.28), which leads to an updated Iqref via a current limiter as shown in 

Figure 3.3.  

Then, the Iqref is compared with the measured q-current, Iq. The control gains Kp_I(t) and 

Ki_I(t) are adjusted based on Eqs. (3.29) and (3.30). Then, the phase angle α is determined 

and passed through a limiter for output, which essentially decides the reactive power 

output from the STATCOM.  

Next, if |ΔV(t)| is not within a tolerance threshold, Vε, which is a very small value such 

as 0.001 p.u., the voltage regulator block and current regulator blocks are reentered until 

the change is less than the given threshold Vε. Thus, the values for Kp_V(t), Ki_V(t), Ki_I(t) 

and Kp_I(t) are maintained.  
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If it is needed to continuously perform the voltage control process which is usually the 

case, then the process returns to measured bus voltage. Otherwise, the voltage control 

process stops, i.e., the STATCOM control is deactivated. 

3.4 Simulation Results  

3.4.1 System Data 

In the system simulation diagram shown in Figure 3.6, a +/-100 MVAR STATCOM is 

implemented with a 48-pulse VSC and connected to a 500kV bus. This is the standard 

sample STATCOM system in MATLAB/Simulink library, and all machines used in the 

simulation are dynamical models [26-28]. Here, the attention is focused on the STATCOM 

control performance in bus voltage regulation mode. In the original model, the 

compensating reactive power injection and the regulation speed are mainly affected by PI 

controller parameters in the voltage regulator and the current regulator. The original 

control will be compared with the proposed adaptive PI control model.  

Assume the steady-state voltage, Vss=1.0 per unit. In subsection 3.4.2, 3.4.3 and 3.4.6, a 

disturbance is assumed to cause a voltage drop at 0.2 sec from 1.0 to 0.989 per unit at the 

source (substation A). Here, the 0.989 p.u. voltage at the substation is the lowest voltage 

that the STATCOM system can support due to its capacity limit. The third simulation study 

in subsection 3.4.4 assumes a voltage drop from 1.0 to 0.991 under a changed load. The 
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fourth simulation study in subsection 3.4.5 assumes a disturbance at 0.2 sec causing a 

voltage rise from 1.0 to 1.01 per unit at the substation under a modified transmission 

network. When there is a severe voltage sag (i.e. to 60% of the rated voltage), the voltage 

will be corrected to the maximum of STATCOM’s capability (i.e., injecting the highest 

reactive current). When the fault clears, the voltage should get back to 1.0 per unit or very 

close. This case is studied in substation 3.4.7. In all simulation studies, the STATCOM 

immediately operates after the disturbance with the expectation of bringing the voltage 

back to 1.0 p.u. 

STATCOM

500 kV, 
8500 MVA 300 MW 200 MW

500 kV, 
6500 MVA

B1

B2

B3
L1=200 km

L2=75 km L3=180 km

A

Load
Load

500 kV, 
9000 MVA

 

Figure 3.6 The studied system. 

3.4.2 Response of the original model 

In the original model, Kp_V=12, Ki_V=3000, Kp_I=5, Ki_I=40. Here, we keep all the 

parameters unchanged. The initial voltage source, shown in Figure 3.6, is 1.0 p.u., with the 
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voltage base being 500kV. In this case, if we set R=1, based on (3.21) and (3.22), then we 

have the initial mv calculated as: 

𝑚𝑉 =
𝐾𝑖_𝑉(𝑡0)

𝐾𝑝_𝑉(𝑡0)
= 770.8780  

Based on (3.25), kV =84.7425 can be obtained. Then, based on (3.27) to (3.30), we 

have

 
𝐾𝑝_𝑉(𝑡) =

84.7425×∆V(𝑡)

(∆V(𝑡)+770.8780×∫ A𝑑𝑡
𝑡+𝑇𝑠
𝑡 )

    (3.31) 

𝐾𝑖_𝑉(𝑡) = 770.8480 × 𝐾𝑝_𝑉(𝑡)       (3.32) 

𝐾𝑝_𝐼(𝑡) =
57.3260×∆I𝑞(𝑡)

(∆I𝑞(𝑡)+2.3775×∫ B𝑑𝑡
𝑡+𝑇𝑠
𝑡 )

   (3.33)  

𝐾𝑖_𝐼(𝑡) = 2.3775 × 𝐾𝑝_𝐼(𝑡)   (3.34) 

Based on (3.31) to (3.34), the adaptive PI control system can be designed. mV and kV 

will be changed according to the different disturbances. The steps listed above show how 

to obtain the control gains in the above case. The PI control gains of the proposed control 

are also shown in Figures 3.7 and 3.8. In order to avoid unnecessary overshooting, the 

threshold for Ki_V and Ki_I is 10000. The threshold for Kp_V and Kp_I is 400. The sample 

time in this simulation model is 25μs. Since during some sample times the control gains 

change quickly to track the desired response, which causes the spikes in the 0.2 sec to 0.6 

sec time range. The spikes actually show the change of control gains in very short time 

(see Figure 3.8). The results of the original control method and the adaptive PI control 

method are shown in Figure 3.9, 3.10 and 3.11 respectively. Observations are summarized 

in Table 3.1.  
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Figure 3.7 PI control gains of voltage regulator using the same network and loads. 

 

 

Figure 3.8 PI control gains of current regulator using the same network and loads. 
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Figure 3.9 Results of the voltages using the same network and loads.  

 

 

Figure 3.10 Results of the output reactive power using the same network and loads.   
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Figure 3.11 Results of α using the same network and loads.  

Table 3.1 Performance comparison for the original system parameters 

 Original Ctrl. Adaptive Ctrl. 

Lowest Voltage after disturbance 0.9938 p.u. 0.9938 p.u. 

Time (sec) when V=1.0 0.4095 sec 0.2983 sec 

∆t to reach V=1.0 0.2095 sec 0.0983 sec 

Var Amount at steady state 97.76 MVar 97.65 MVar 

Time to reach steady state Var 0.4095 sec 0.2983 sec 
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From the results, it is obvious that the adaptive PI control can achieve quicker response 

than the original control. The needed reactive power amount is the same while the adaptive 

PI approach runs faster, as the voltage does. 

Set ωt = α + θ, where α is the output angle of the current regulator, θ is the reference 

angle to the measurement system. In the STATCOM, it is ωt that decides the control signal. 

Since θ is a very large value (varying between 0 to 2π), the ripples of α in the scale shown 

in Figure 3.11 will not affect the final simulation results.  

Note, there is a very slight difference of 0.12 MVar in Var amount at steady state in 

Table 3.1, which should be caused by computational round-off error. The reason is that the 

sensitivity of dVAR/dV is around 100MVar/0.011 p.u. of voltage. For simplicity, we may 

assume the ∆Var/∆V sensitivity is a linear function. Thus, when the voltage error is 

0.00001 p.u., ∆Var is 0.0909 MVar which is in the same range as the 0.12 MVar mismatch. 

Thus, it is reasonable to conclude that the slight Var difference in Table 3.1 is due to 

round-off error in the dynamic simulation which always gives tiny ripples beyond 5
th

 digits 

even in the final steady state.  

3.4.3 Change of Kp and Ki 

In this scenario, the other system parameters remain unchanged while the PI controller 

gains for the original control are changed to: Kp_V=1, Ki_V=1, Kp_I=1, Ki_I=1.  

The dynamic control gains, which are independent of the initial values before the 
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disturbance but depending on the post-fault conditions, are given as: 

𝐾𝑝_𝑉(𝑡) =
80.1632×∆V(𝑡)

(∆V(𝑡)+732.3115×∫ A𝑑𝑡
𝑡+𝑇𝑠
𝑡

)
   (3.35) 

𝐾𝑖_𝑉(𝑡) = 732.3115 × 𝐾𝑝_𝑉(𝑡)  (3.36) 

𝐾𝑝_𝐼(𝑡) =
47.4959×∆I𝑞(𝑡)

(∆I𝑞(𝑡)+1.8232×∫ B𝑑𝑡
𝑡+𝑇𝑠
𝑡 )

  (3.37)  

𝐾𝑖_𝐼(𝑡) = 1.8232 × 𝐾𝑝_𝐼(𝑡)  (3.38) 

Based on (3.35) to (3.38), the adaptive PI control model can be designed. The PI 

control gains of the proposed control are also shown in Figure 3.12 and Figure 3.13. The 

results of original and the adaptive PI control methods are shown in Figure 3.14, Figure 

3.15 and Figure 3.16 respectively. 

 

Figure 3.12 PI control gains of voltage regulator with changed Kp and Ki. 
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Figure 3.13 PI control gains of current regulator with changed Kp and Ki. 

 

 

Figure 3.14 Voltages with changed Kp and Ki in the original control. 
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Figure 3.15 Output reactive power with changed Kp and Ki in the original control. 

 

 

Figure 3.16 Results of α with changed Kp and Ki in the original control. 
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From Figure 3.14, it can be observed that when Kp and Ki are changed to different 

values, the original control model cannot make the bus voltage get back to 1.0 p.u. and the 

STATCOM has a poor response. The reactive power cannot be increased to a level to meet 

the need. However, by the adaptive PI control, the STATCOM can response to disturbance 

perfectly as desired, and the voltage can get back to 1.0 p.u. quickly within 0.1 sec. Figure 

3.15 also shows that the reactive power injection cannot be continuously increased in the 

original control to support voltage, while the adaptive PI control performs as desired.  

3.4.4 Change of Load 

In this case, the original PI controller gains are kept, which means Kp_V=12, Ki_V=3000, 

Kp_I=5 and Ki_I=40. However, the load at Bus B1 is changed from 300MW to 400MW.  

In this case, we have the dynamic control gains given by: 

𝐾𝑝_𝑉(𝑡) =
93.3890×∆V(𝑡)

(∆V(𝑡)+187.5579×∫ A𝑑𝑡
𝑡+𝑇𝑠
𝑡 )

   (3.39) 

𝐾𝑖_𝑉(𝑡) = 187.5579 × 𝐾𝑝_𝑉(𝑡)  (3.40) 

𝐾𝑝_𝐼(𝑡) =
8.1731×∆I𝑞(𝑡)

(∆I𝑞(𝑡)+13.1652×∫ B𝑑𝑡
𝑡+𝑇𝑠
𝑡 )

  (3.41)  

𝐾𝑖_𝐼(𝑡) = 13.1652 × 𝐾𝑝_𝐼(𝑡)  (3.42) 

Based on (3.39) to (3.42), the adaptive PI control model can be designed for automatic 

reaction to change in loads. The PI control gains of the proposed control are also shown in 

Figures 3.17 and 3.18. The results from the original and the adaptive PI control methods 

are shown in Figures 3.19, 3,20 and 3.21. Table 3.2 shows a few key observations of the 

performance.  
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Figure 3.17 PI control gains of voltage regulator with change of load. 

 

 

Figure 3.18 PI control gains of current regulator with change of load. 
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Table 3.2 Performance comparison with a change of load. 

 Original Ctrl. Adaptive Ctrl. 

Lowest Voltage after disturbance 0.9949 p.u. 0.9949 p.u. 

Time (sec) when V=1.0 0.4338 sec 0.3125 sec 

∆t to reach V=1.0 0.2338 sec 0.1125 sec 

Var Amount at steady state 93.08 MVar 92.72 MVar 

Time to reach steady state Var 0.4338 sec 0.3125 sec 

 

 

Figure 3.19 Results of measured voltage with change of load. 



 

 64 

 

Figure 3.20 Results of output reactive power with change of load. 

 

 

Figure 3.21 Results of α with change of load. 
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From the data shown in Table 3.2 as well as Figure 3.19 and Figure 3.20, it is obvious 

that the adaptive PI control can achieve quicker response than the original one. 

3.4.5 Change of Transmission Network 

In this case, the PI controller gains remain unchanged, as in the original model. 

However, line 1 is switched off at 0.2 sec to represent a different network which may 

corresponds to scheduled transmission maintenance. Here, we have 

𝐾𝑝_𝑉(𝑡) =
18.3245×∆V(𝑡)

(∆V(𝑡)+286.9512×∫ A𝑑𝑡
𝑡+𝑇𝑠
𝑡 )

   (3.43) 

𝐾𝑖_𝑉(𝑡) = 286.9512 × 𝐾𝑝_𝑉(𝑡)  (3.44) 

𝐾𝑝_𝐼(𝑡) =
41.4360×∆I𝑞(𝑡)

(∆I𝑞(𝑡)+412.0153×∫ B𝑑𝑡
𝑡+𝑇𝑠
𝑡 )

  (3.45)  

𝐾𝑖_𝐼(𝑡) = 412.0153 × 𝐾𝑝_𝐼(𝑡)    (3.46) 

Based on (3.43) to (3.46), the adaptive PI control model can be designed to 

automatically react to changes in the transmission network. The PI control gains of the 

proposed control are also shown in Figure 3.22 and Figure 3.23. The results from the 

original and the adaptive PI control methods are shown in Figure 3.24, Figure 3.25 and 

Figure 3.26. Key observations are summarized in Table 3.3.  
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Figure 3.22 PI control gains of voltage regulator with change of transmission network. 

 

 

Figure 3.23 PI control gains of current regulator with change of transmission network. 
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Figure 3.24 Results of measured voltage with change of transmission network. 

 

 

Figure 3.25 Results of output reactive power with change of transmission network. 
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Figure 3.26 Results of α with change of transmission network. 

 

Table 3.3 Performance comparison with changed transmission  

 Original Ctrl. Adaptive Ctrl. 

Lowest Voltage after disturbance 0.9954 p.u. 0.9954 p.u. 

Time (sec) when V=1.0 0.4248 sec 0.2744 sec 

∆t to reach V=1.0 0.2248 sec 0.0744 sec 

Var Amount at steady state -84.92 MVar -85.02 MVar 

Time to reach steady state Var 0.4248 sec 0.2744 sec 
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Note the STATCOM absorbs VAR from the system in this case. Here, the disturbance 

is assumed to give a voltage rise at the source (substation) from 1.0 to 1.01 p.u.. Meanwhile, 

the system has a transmission line removed which tends to lower the voltages. The overall 

impact leads to a voltage rise to higher than 1.0 at the controlled bus in the steady state if 

the STATCOM is not activated. Thus, the STATCOM needs to absorb VAR in the final 

steady-state to reach 1.0 p.u. voltage at the controlled bus. Also, note that the initial 

transients immediately after 0.2 sec lead to an over-absorption by the STATCOM, while 

the adaptive PI control gives a much smoother and quicker response, as shown in Figure 

3.24 and Figure 3.25. 

3.4.6 Two consecutive disturbances 

In this case, a disturbance at 0.2 sec causing a voltage decrease from 1.0 to 0.989 p.u. 

occurs at the substation. After that, line 1 is switched off at 0.25 sec. The PI control gains of 

the proposed control are also shown in Figure 3.27 and Figure 3.28.  
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Figure 3.27 PI control gains of voltage regulator in two consecutive disturbances.  

 

 

Figure 3.28 PI control gains of current regulator in two consecutive disturbances. 
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Figure 3.29 Results of measured voltage in two consecutive disturbances. 

 

 

Figure 3.30 Results of output reactive power in two consecutive disturbances. 
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Figure 3.31 Results of α in two consecutive disturbances. 

 

The results from the original and the adaptive PI control methods are shown in Figure 

3.29, Figure 3.30 and Figure 3.31. From the results, it is apparent that the adaptive PI 

control can achieve a much quicker response than the original one, which makes the 

system voltage drop much less than the original control during second disturbance. Note, in 

Figure 3.29, the largest voltage drop during the second disturbance event (starting at 0.25 

sec) with the original control is 0.012 p.u., while it is 0.006 p.u. with the proposed adaptive 

control. Therefore, the system is more robust in responding consecutive disturbances with 

adaptive PI control. 
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3.4.7 A Severe Disturbance 

In this case, a severe disturbance at 0.2 sec causing a voltage decrease from 1.0 to 0.6 

p.u. occurs at the substation. After that, the disturbance is cleared at 0.25 sec. The PI 

control gains of the proposed control are also shown in Figure 3.32 and Figure 3.33. The 

results from the original and the adaptive PI control methods are shown in Figure 3.34, 

Figure 3.35 and Figure 3.36. 

 

 

Figure 3.32 PI control gains of voltage regulator in a severe disturbance. 
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Figure 3.33 PI control gains of current regulator in a severe disturbance. 

 

 

Figure 3.34 Results of measured voltage in a severe disturbance. 
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Figure 3.35 Results of output reactive power in a severe disturbance. 

 

 

Figure 3.36 Results of α in a severe disturbance. 
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Due to the limit of the STATCOM capacity, the voltage cannot get back to 1.0 p.u. 

when there is a severe voltage drop from 1.0 p.u. to 0.6 p.u.. After the disturbance is cleared 

at 0.25 sec, from Figure 3.34 and Figure 3.35, it is obvious that the adaptive PI control can 

bring the voltage back to 1.0 p.u. with a quicker and smoother response than the original 

control. 

3.5 Conclusions 

From the above six case studies shown in subsections 3.4.2 to 3.4.7, it is evident that 

the adaptive PI control can achieve faster and more consistent response than the original 

control. The response time and the curve of the proposed adaptive PI control is almost 

identical under various conditions such as a change of (initial) control gains, a change of 

load, a change of network topology, consecutive disturbances and a severe disturbance. In 

contrast, the response curve of the original control model varies greatly under a change of 

system operating conditions and may fail to correct the voltage to the expected value.  

The advantage of the proposed adaptive PI control approach is expected because the 

control gains are dynamically and autonomously adjusted during the voltage correction 

process, therefore, the desired performance can be achieved. In contrast, the original fixed 

PI controller may be well tuned for the given operating condition, but may be inefficient or 

incapable to correct voltage under other operating conditions.  
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  CHAPTER 4

FLATNESS-BASED ADAPTIVE CONTROL OF STATCOM 

4.1 Chapter Introduction 

In this chapter, a flatness-based adaptive control (FBAC) method is proposed and 

applied to STATCOM for voltage control. By the flatness-based control (FBC), the 

trajectories of all system variables can be directly estimated by the flat output and its 

derivatives without solving differential equations. By the adaptive control, the control 

gains can be dynamically tuned to satisfy the time-varying operation condition 

requirement. 

4.2 STATCOM Model and Control for Flatness-based Adaptive 

Control 

The equivalent circuit of the STATCOM is shown in Figure 4.1. In this power system, 

the equivalent connecting impedance consists of Rs and Ls in series with the voltage source 

inverter. Here, the equivalent resistance Rs accounts for the sum of the transformer winding 

losses and the inverter conduction losses, and the equivalent inductance Ls represents the 

transformer leakage inductance. C represents the capacitance of the dc side capacitor. In 

Figure 4.1, Val, Vbl , and Vcl are the three-phase STATCOM output voltages; Vas, Vbs , and 

Vcs are the three phase bus voltages; and ias, ibs , and ics are the three-phase currents [31, 66]. 

 



 

 78 

Vas

Vbs

Vcs

Ls Rs

ias

ibs

ics

Voltage 

Source 

Inverter

C

Vdc
Val

Vbl

Vcl

STATCOM
 

Figure 4.1 STATCOM Model. 

 

The three-phase mathematical expressions of the STATCOM can be written similar to 

(3.1) to (3.4). By using the abc/dq transformation, the mathematical expressions can be 

rewritten as: 

{
 
 

 
 𝐿𝑠

𝑑𝑖𝑑𝑠

𝑑𝑡
= −𝑅𝑠𝑖𝑑𝑠 + 𝜔𝐿𝑠𝑖𝑞𝑠 + 𝑉𝑑𝑠 − 𝑉𝑑𝑙

𝐿𝑠
𝑑𝑖𝑞𝑠

𝑑𝑡
= −𝑅𝑠𝑖𝑞𝑠 − 𝜔𝐿𝑠𝑖𝑑𝑠 + 𝑉𝑞𝑠 − 𝑉𝑞𝑙

𝑑

𝑑𝑡
(
1

2
𝐶𝑉𝑑𝑐

2 ) =
3

2
(𝑉𝑑𝑙𝑖𝑑𝑠 + 𝑉𝑞𝑙𝑖𝑞𝑠)

    (4.1) 

𝑉𝑑𝑙 =
1

2
𝑉𝑑𝑐𝑚𝛼𝑐𝑜𝑠𝛿  (4.2) 

𝑉𝑞𝑙 =
1

2
𝑉𝑑𝑐𝑚𝛼𝑠𝑖𝑛𝛿  (4.3) 

where 𝜔 is the synchronously rotating angle speed of the voltage vector; ids and iqs are the 

d and q axis currents corresponding to ias, ibs, and ics; Vds and Vqs represent the d and q axis 

voltages corresponding to Vas, Vbs , and Vcs; Vdl and Vql represent the d and q axis voltage 

corresponding to Val, Vbl , and Vcl; ma is the ratio between the peak amplitude of the phase 
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converter voltage to dc voltage and 𝛿 is the STATCOM voltage vector position in the d-q 

frame.  

Based on the above equations, the traditional control strategy can be obtained, and the 

STATCOM control block diagram is shown in Figure 4.2 [35, 66]. 
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Figure 4.2 A typical double-loop control block of STATCOM. 

 

In Figure 4.2, a typical double-loop control strategy is used in STATCOM. The outer 

loop forms the desired active and reactive current references to maintain the voltages at the 

point of common coupling (PCC), and the inner loop is to control inverter currents with 

zero steady-state errors. This control strategy needs four PI controllers in its control 
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systems. Therefore, it can be a tedious and time-consuming work for utility engineers to 

perform trial-and-error studies to find suitable parameters when a new STATCOM is 

connected or when the system operating condition has significant changes to demand new 

tuning of STATCOM control parameters. Moreover, this control system has a coupling 

relationship between the active current and the reactive current, and thus, it is hard to 

maintain the voltages at the PCC with small effects on the dc-link voltage. These are 

potential difficulties for a large-scale utilization of STATCOM. Therefore, the FBAC is 

proposed in this chapter. 

4.3 Flatness-Based Control for STATCOM 

4.3.1 Flatness-based Control Design for STATCOM 

To realize flatness-based control (FBC) in STATCOM, we set the state variable as: 

x=(x1, x2, x3)
T
=(ids, iqs, Vdc)

T
, and the input control variable as: u=(u1, u2)

T
=(macosδ, masinδ)

 

T
. Neglecting the inductance and converter losses and the change in the energy stored in the 

inductance [19, 39], we can rewrite (4.1) in standard form �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 as follows: 

{
 
 

 
 �̇�1 = −

𝑅𝑠

𝐿𝑠
𝑥1 + 𝜔𝑥2 +

𝑉𝑑𝑠

𝐿𝑠
−
𝑥3𝑢1

2𝐿𝑠

�̇�2 = −
𝑅𝑠

𝐿𝑠
𝑥2 − 𝜔𝑥1 +

𝑉𝑞𝑠

𝐿𝑠
−
𝑥3𝑢2

2𝐿𝑠

�̇�3 =
3

2𝐶𝑥3
(𝑥1𝑉𝑑𝑠)

  (4.4) 

Since all system variables can be determined if we know Iq and Vdc. Therefore, the flat 

output in this system can be set as: 
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 {
𝑦1 = 𝑥2
𝑦2 = 𝑥3

 (4.5) 

Based on (4.4) and (4.5), the following equation can be derived: 

{

�̇�1 = �̇�2
�̇�2 = �̇�3

�̈�2 =
3(�̇�1𝑥3𝑉𝑑𝑠−�̇�3𝑥1𝑉𝑑𝑠)

2𝐶𝑥3
2

 (4.6) 

Using y and y’s derivative to express x=(x1, x2, x3)
T
 and u=(u1, u2)

T
, we have: 

{
𝑥1 =

2𝐶

3𝑉𝑑𝑠
�̇�2𝑦2

𝑥2 = 𝑦1
𝑥3 = 𝑦2

 (4.7)

 
{
𝑢1 =

2

𝑦2
(−𝐿𝑆

2𝐶

3𝑉𝑑𝑠
(𝑦2�̈�2 + �̇�2

2) + 𝜔𝐿𝑆𝑦1 − 𝑅𝑆
2𝐶

3𝑉𝑑𝑠
𝑦2�̇�2 + 𝑉𝑑𝑠)

𝑢2 =
2

𝑦2
(−𝐿𝑆�̇�1 − 𝜔𝐿𝑆

2𝐶

3𝑉𝑑𝑠
𝑦2�̇�2 − 𝑅𝑆𝑦1 + 𝑉𝑞𝑠)

  (4.8)

 

Then the following equations can be obtained as (4.9) and (4.10). 

m𝑎 = √𝑢1
2 + 𝑢2

2  (4.9) 

δ = arctan
𝑢2

𝑢1
 (4.10) 

Based on (4.4)-(4.10), the flatness-based control can be implemented with the control 

block shown in Figure 4.3.  
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Equ.(4.4), 

(4.7),(4.8)

Control 

Law

2y

1y

am



mV

Equ.(4.9),(4.10)

1u
2u 1y2y

STATCOM

refy1

refy2

Equ.(4.5)

2x

3x

 

Figure 4.3 Flatness-based control block. 

 

In Figure 4.3, y1ref and y2ref are defined by the system desired initial and final conditions. 

As shown in Figure 4.3, the nonlinear STATCOM system can be equivalent to a linear 

system, and the trajectories of all system variables can be directly estimated by flat output 

and its derivatives without solving differential equations. This is the advantage of 

flatness-based control when applied to STATCOM control. 

4.3.2 Flat Output  

Assume that the initial disturbance occurs at time t0; the final time instant of the 

dynamic study is t1; the desired initial states are Iq(t0) (or simply Iq(0)) and Vdc(t0) (or 

simply Vdc(0)); and the final states are Iq(t1) and Vdc(t1). 

The initial and final conditions are modeled as follows: 
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{
 
 

 
 
𝑦1𝑟𝑒𝑓(𝑡0) = 𝐼𝑞(𝑡0)

𝑦1𝑟𝑒𝑓(𝑡1) = 𝐼𝑞(𝑡1)

𝑦2𝑟𝑒𝑓(𝑡0) = 𝑉𝑑𝑐(𝑡0)

𝑦2𝑟𝑒𝑓(𝑡1) = 𝑉𝑑𝑐(𝑡1)

 (4.11) 

{
  
 

  
 
�̇�1𝑟𝑒𝑓(𝑡0) = 0

�̇�1𝑟𝑒𝑓(𝑡1) = 0

�̇�2𝑟𝑒𝑓(𝑡0) = 0

�̇�2𝑟𝑒𝑓(𝑡1) = 0

�̈�2𝑟𝑒𝑓(𝑡0) = 0

�̈�2𝑟𝑒𝑓(𝑡0) = 0

 (4.12) 

In order to satisfy Eqs. (4.11) and (4.12), the desired trajectory for flat output can be 

expressed as: 

(1) 0<t<t0 

{
𝑦1𝑟𝑒𝑓(𝑡) = 𝐼𝑞(0)

𝑦2𝑟𝑒𝑓(𝑡) = 𝑉𝑑𝑐(0)
 

(2) t0≤t≤t1 

  {
𝑦1𝑟𝑒𝑓(𝑡) = 𝐼𝑞(0) + (𝐼𝑞(𝑡1) − 𝐼𝑞(0)) × 𝑑𝑑1

𝑦2𝑟𝑒𝑓(𝑡) = 𝑉𝑑𝑐(0) + (𝑉𝑑𝑐(𝑡1) − 𝑉𝑑𝑐(0)) × 𝑑𝑑2
 

Without losing generality, in order to make the output curve as smooth as possible, we 

may set: 

{
 
 

 
 𝑦1𝑟𝑒𝑓(𝑡) =∑

𝑎𝑗

𝑗!

𝑁

𝑗=0

(𝑡 − 𝑡0)
𝑗

𝑦2𝑟𝑒𝑓(𝑡) =∑
𝑏𝑗

𝑗!

𝑁

𝑗=0

(𝑡 − 𝑡0)
𝑗

 

Based on (4.11) and (4.12), dd1 and dd2 can be obtained as follows: 
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{
 
 

 
 𝑑𝑑1 = (4 × (

𝑡 − 𝑡0
𝑡1 − 𝑡0

)
2

− 4 × (
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
3

+ (
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
4

)

𝑑𝑑2 = (9 × (
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
3

− 12 × (
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
4

+ 3 × (
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
5

+ (
𝑡 − 𝑡0
𝑡1 − 𝑡0

)
6

)

 

(3) t>t1 

{
𝑦1𝑟𝑒𝑓(𝑡) = 𝐼𝑞(𝑡1)

𝑦2𝑟𝑒𝑓(𝑡) = 𝑉𝑑𝑐(𝑡1)
 

4.4 Control Law for Flatness-based Adaptive Control  

The differential parameterization of the control input u=(u1,u2)
T
 can be expressed by 

Tyyyyy ),,,,( 22121
 . Also, the proposed flat output trajectory tracking is to control 1y  and 

2y . This can be accomplished by the following linear feedback control law: 

{
�̇�1 = �̇�1𝑟𝑒𝑓 − (𝑦1 − 𝑦1𝑟𝑒𝑓)𝐾11

�̈�2 = �̈�2𝑟𝑒𝑓 − 𝐾22(�̇�2 − �̇�2𝑟𝑒𝑓) + 𝐾21(𝑦2 − 𝑦2𝑟𝑒𝑓)
  (4.13) 

In the previous work [44], the choice of the coefficients K11, K21 and K22 is to guarantee 

the satisfaction of the Hurwitz polynomial condition (namely, to guarantee that the roots 

are located in the left part of the complex plane). Thus, the asymptotic exponential stability 

to zero of the tracking error is guaranteed.  

However, the constant gains cannot ensure an optimized and consistently efficient 

performance for various external conditions. In order to achieve a control method that can 

ensure a fast and desirable response when the system operation condition varies, an 

adaptive control scheme is combined with flat control. Here, the flat control gains are 
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dynamically and adaptively adjusted based on the external condition. Thus, the proposed 

control method is termed flatness-based adaptive control (FBAC). 

Set err1(t)=y1(t)-y1ref(t), err2(t)=y2(t)-y2ref(t), and 𝑒𝑟𝑟̇ 2(t) = �̇�2(t) − �̇�2𝑟𝑒𝑓(t) . The 

process of adaptive control design is described below with different scenarios of the error 

value.  

Based on the system bus capacity and the STATCOM rating, ΔVmax can be obtained, 

which means any voltage change greater than ΔVmax cannot come back to 1 per unit. Based 

on [65], the sensitivity of diqs/dV is around 1 p.u. /0.034 p.u. of voltage in this paper. For 

simplicity, we may assume the ∆iqs/∆V sensitivity is a linear function. When the voltage 

error is 휀2 = 0.0001 p.u., ∆iqs is 휀1 = 0.003 p.u.. If the system voltage error is less than 

휀2 p.u., the system is considered as stable and control gains are kept the same. Otherwise, 

the control gains need to be tuned to make system voltage get back to 1 p.u.. Since y1=iqs, 

err1 is considered. If |𝑒𝑟𝑟1(𝑡)| < 휀1, the system is considered as stable, and K11(t) can be 

set as initial values (such as 1). If |𝑒𝑟𝑟1(𝑡)| > 휀1, the following approach is employed to 

tune control gains. 

(1) When 0 < 𝑡 < 𝑡0: y1ref(0)≠0 and y1(t) needs to be increased to y1ref(t) as quickly as 

possible (i.e., in one sampling cycle Δt ) to ensure err1=0. Without losing generality, 

we can assume y1(t)=y1ref(t) after Δt. Thus, we have K11(𝑡) =
1

∆𝑡
. 

(2) When 𝑡0 ≤ t ≤ 𝑡1: since the final ideal state �̇�1(𝑡) = 0, based on (4.13), we can 
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obtain: 

0 = �̇�1𝑟𝑒𝑓(𝑡) − (𝑦1(𝑡) − 𝑦1𝑟𝑒𝑓(𝑡))𝐾11(𝑡)  (4.14) 

Therefore: 

K11(𝑡) = |
�̇�1𝑟𝑒𝑓(𝑡)

𝑒𝑟𝑟1(𝑡)
|  (4.15) 

(3) When t > 𝑡1: y1(t) needs to be increased to y1ref(t) as quickly as possible to ensure 

err1=0. Since we consider y1(t)=y1ref(t) after Δt, we have K11(𝑡) =
1

∆𝑡
. 

Next, err2(t) is considered in a similar yet different way. Based on [65], ∆Vdc and the 

system voltage error are in the same range. Therefore, if |𝑒𝑟𝑟2(𝑡)| < 휀2, K21(t) and K22(t) 

can be set as initial values (such as 1). If |𝑒𝑟𝑟2(𝑡)| > 휀2, the approach listed below is 

employed to tune control gains. 

(1) In the ideal state, ÿ2(𝑡) = ÿ2𝑟𝑒𝑓(𝑡) . Without losing generality, we can set 

K22(t)=K(t)K21(t). Then, we have K(t) = |
𝑒𝑟𝑟2(𝑡)

𝑒𝑟𝑟2̇ (𝑡)
|. 

(2) When 0 < 𝑡 < 𝑡0 or t > 𝑡1: ÿ2(𝑡) needs to be decreased to �̈�2𝑟𝑒𝑓(𝑡) as quickly as 

possible (i.e., in one sampling cycle Δt) to ensure err2=0. Therefore, we have 

𝐾21(𝑡) = |
𝑒𝑟𝑟̇ 2(𝑡)/𝛥𝑡

𝑒𝑟𝑟2(𝑡)+𝐾(𝑡)𝑒𝑟𝑟̇ 2(𝑡)
| and

 

𝐾22(𝑡) = K(t) |
𝑒𝑟𝑟̇ 2(𝑡)/𝛥𝑡

𝑒𝑟𝑟2(𝑡)+𝐾(𝑡)𝑒𝑟𝑟̇ 2(𝑡)
|. 

(3) When 𝑡0 ≤ t ≤ 𝑡1: the ideal state ÿ2(𝑡) = 0. Set tt=t-Δt, and in a very short time 

control gains stay the same, such as K21(t)= K21(tt) and K22(t) = K22(tt). if the system 

stable, we have: 

0 = �̈�2𝑟𝑒𝑓(𝑡) − 𝐾22(𝑡)𝑒𝑟𝑟2̇ (𝑡) − 𝐾21(𝑡)𝑒𝑟𝑟2(𝑡)  (4.16) 
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0 = �̈�2𝑟𝑒𝑓(𝑡𝑡) − 𝐾22(𝑡)𝑒𝑟𝑟2̇ (𝑡𝑡) − 𝐾21(𝑡)𝑒𝑟𝑟2(𝑡𝑡)  (4.17) 

Based on (4.16) and (4.17), the following equation can be obtained: 

K(𝑡) = |
�̈�2𝑟𝑒𝑓(𝑡)𝑒𝑟𝑟2(𝑡𝑡)−�̈�2𝑟𝑒𝑓(𝑡𝑡)𝑒𝑟𝑟2(𝑡)

𝑒𝑟𝑟̇ 2(𝑡)�̈�2𝑟𝑒𝑓(𝑡𝑡)−𝑒𝑟𝑟̇ 2(𝑡𝑡)�̈�2𝑟𝑒𝑓(𝑡)
| (4.18) 

𝐾21(𝑡) = |
�̈�2𝑟𝑒𝑓(𝑡)

𝑒𝑟𝑟2(𝑡)+𝐾(𝑡)𝑒𝑟𝑟̇ 2(𝑡)
| (4.19) 

K22(t)=K(t)K21(t) (4.20) 

Based on the proposed control law, the FBAC can be implemented as shown in 

Figure 4.4. This module is the “Control Law” block in Figure 4.3 which shows the FBAC 

diagram. 

-
+ K11

Adjust K11

refy1

1y

du/dt +

-

1y

-
+ K21

refy2

2y

du/dt +

-

du/dt

K22du/dt -

2y

Adjust K21, K22 

 

Figure 4.4 Implementation of the adaptive control module 
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Based on the flatness-based control logic and the adaptive control module shown in 

Figure 4.3 and Figure 4.4, respectively, the FBAC can be designed and implemented. Next, 

in Section 4.5, the simulation results from the original control, the FBC and the FBAC will 

be discussed and compared. 

4.5 Simulation Results 

4.5.1 System data 

 

STATCOM

500 kV, 

3000 MVA
100 MW

B1 B2L1=300 km

Load 500 kV, 

2500 MVA2 MW
Load

L2=300 km

300 MW
Load

B3

 

Figure 4.5 The test system for simulation study 

 

In the system simulation diagram shown in Figure 4.5, the STATCOM is used for Bus 

B2 voltage regulation on a 500 kV transmission line. The power grid consists of two 500 

kV equivalents (3000 MVA and 2500 MVA, respectively) connected by a 600-kilometer 

transmission line. In this study system, the STATCOM has a rating of +/- 100MVA. It is a 

phasor model of a typical three-level PWM STATCOM. DC link nominal voltage is 40 kV 
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with an equivalent capacitance of 375 uF. The transformer leakage reactance and the phase 

reactor of the IGBT bridge of an actual PWM STATCOM are 0.22 p.u. on 100 MVA in this 

system [65].  

In the original model, the control system is realized by four PI controllers and 

referred to as the original control in this section. Note, the original control gains shown in 

literature [65] are well tuned. In the flatness-based control (FBC), which is elaborated in 

section 4.3, the control gains K11, K21 and K22 are also well tuned based on the trial and 

error approach for the first case study (i.e., Subsection 4.5.2 below) and are set at 1.6, 0.9 

and 0.9, respectively. In the proposed flatness-based adaptive control (FBAC), which is a 

combined model of sections 4.3 and 4.4, the initial control gains are set to 1’s, and then the 

gains are dynamically adjusted based on the method described in section 4.4. The original 

control, the FBC and the FBAC are compared in this section. In the simulation, the 

reference voltage at Bus B2, shown in Figure 4.5, is 1.0 p. u. at the beginning, with the 

voltage base being 500 kV. Assume the initial disturbance occurs at t0=0.2 sec; and the 

system is expected to reach back the desired normal state at t1=0.3 sec.  

4.5.2 Change of Reactive Load 

Here, we keep all the parameters unchanged, as in the original studied system. At 

t0=0.2 sec, a new reactive load of 80 MVar is added at B2 as a disturbance. The results of 
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Bus B2 voltage (V), STATCOM reactive power output (Q), the d and q axis currents are 

shown in Figure 4.6 to Figure 4.9 respectively. Observations are summarized in Table 4.1. 

 

Table 4.1 Performance comparison for change of reactive load 

 
Original 

Ctrl. 

Flatness based Ctrl. 

(FBC) 

Flatness based adaptive Ctrl. 

(FBAC) 

Lowest Voltage after 

disturbance 
0.9713 p.u. 0.9713 p.u. 0.9713 p.u. 

Time (sec) when V=1.0 0.4293 sec 0.3001 sec 0.2895 sec 

∆t to reach V=1.0 0.2293 sec 0.1001 sec 0.0895 sec 

Var Amount at steady state -0.83 p.u. -0.83 p.u. -0.83 p.u. 

 

 

Figure 4.6 Results of V with change of reactive load  
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Figure 4.7 Results of Q with change of reactive load 

 

 

Figure 4.8 Results of Id with change of reactive load 
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Figure 4.9 Results of Iq with change of reactive load 

 

From the results, it is obvious that the FBC and the proposed FBAC can achieve 

quicker response than the original control. The needed reactive power, ids, and iqs are the 

same while the FBC and the FBAC perform much faster to bring the voltage back to 1.0. 

Note, as previously mentioned, the control gains K11, K21 and K22 in the FBC are well tuned 

based on this case using the trial and error approach and are set at 1.6, 0.9 and 0.9, 

respectively. Since the parameters are well tuned for this case, the FBC can give desirable 

responses very close to the response of the proposed FBAC in this case. 
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4.5.3 Change of Transmission Network 

In this case, the original system parameters are kept. However, a new Line L3 of 125 

km is added between bus B2 and B3 at the system to mimic a new operation topology. 

Then, Line L3 is switched off at t0=0.2 sec to mimic a disturbance. 

The results from the original control, the FBC and the proposed FBAC are shown in 

Figure 4.10 to Figure 4.14. Observations are summarized in Table 4.2. 

 

 

Figure 4.10 Results of V with change of transmission network. 
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Figure 4.11 Results of Q with change of transmission network. 

 

 

Figure 4.12 Results of Id with change of transmission network. 
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Figure 4.13 Results of Iq with change of transmission network. 

 

 
Figure 4.14 Results of FBC with change of transmission network. 
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Table 4.2 Performance comparison for change of transmission network 

 Original Ctrl. 
Flatness based 

Ctrl. (FBC) 

Flatness based 

adaptive Ctrl. 

(FBAC) 

Highest Voltage after 

change of transmission 

network 

1.0245 1.0245 1.0245 

Time (sec) when V=1.0 

after change of 

transmission network 

N/A N/A 0.0765 

Lowest Voltage after 

disturbance 
0.9955 p.u. 0.992 p.u. 0.9955 

Time (sec) when V=1.0 

after disturbance 
0.3824 sec 2.2863 0.2914 sec 

∆t to reach V=1.0 after 

disturbance 
0.1824 sec 2.0863 0.0914 sec 

Var Amount at steady 

state 
0.67 p.u. 0.67 p.u. 0.67 p.u. 

 

From the results, we can find out that when the transmission network changes, the 

original control and the FBC cannot bring the system voltage back to 1 p.u. even during the 

initialization stage before the disturbance occurs at 0.2 sec. This also implies that the gains 

in the original PI control and FBC must be manually re-tuned to achieve a satisfying 

performance under a new topology.  

After the disturbance (switching off Line L3) occurs at 0.2 sec, the FBC cannot 

make the system reach its steady-state voltage within 0.6 sec. Note, a separate diagram in 

Figure 4.14 with extended simulation time shows that the voltage eventually reaches back 
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to 1 p.u. at t=2.2863 sec, or 2.0863 sec after the disturbance of topology change. This is 

also shown in Table 4.2. The original control performs better, reaching 1.0 p.u. in 0.1824 

sec after the topology change. However, this is still much slower than the proposed FBAC 

which brings the system voltage back to 1 p.u. in 0.0914 sec after the disturbance, as shown 

in Table 4.2.  

The response time (i.e., ∆t to reach V=1.0) of the FBAC is only 50% of the original 

control and 4.3% of the FBC. In other words, the FBAC shortens the response time by 0.1 

sec and 2.0 sec respectively, as opposed to the original control and the FBC. Since 0.1 sec 

can be significant in modern STATCOM control and makes a big difference in STATCOM 

performance [31], the improved performance with FBAC is considerable. Therefore, the 

proposed FBAC can achieve a response quicker than the original control and even much 

quicker than the FBC. Thus, the control gains K11, K21 and K22 in the original control and 

the FBC are not optimal under this new topology. Some form of gain tuning of K11, K21 and 

K22 must be performed to achieve the same response as the proposed FBAC. Apparently, 

the tuning-free FBAC has an advantage over the other two controls. 

4.5.4 Change of Transmission Network and Load 

In this case, the original system parameters are kept. However, a 125km new Line L3 

is added between bus B2 and B3 at the system to mimic the new operation system. Line 1 is 

switched off and a new load 200MW is added at B2 at 0.2 sec as a large disturbance. The 
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results of three controls are shown in Figure 4.15 to Figure 4.19. Again, it should be noted 

that the initial dynamics in these figures are due to the change of transmission network. 

Observations are summarized in Table 4.3. 

 

 

Figure 4.15 Results of V with change of transmission network and load. 

 



 

 99 

 

Figure 4.16 Results of Q with change of transmission network and load. 

 

  
Figure 4.17 Results of Id with change of transmission network and load. 
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Figure 4.18 Results of Iq with change of transmission network and load. 

 

 
Figure 4.19 Results of FBC with change of transmission network and load. 

 

 

 

 

 



 

 101 

Table 4.3 Performance comparison for change of transmission network and load. 

 
Original 

Ctrl. 

Flatness 

based Ctrl. 

(FBC) 

Flatness based 

adaptive Ctrl. 

(FBAC) 

Highest Voltage after 

change of transmission 

network 

1.0245 1.0245 1.0245 

Time (sec) when V=1.0 

after change of transmission 

network 

N/A N/A 0.0619 

Lowest Voltage after 

disturbance 
0.9698 p.u. 0.9652 p.u. 0.97 p.u. 

Time (sec) when V=1.0 

after disturbance 
0.4166 sec 1.9082 0.3025 sec 

∆t to reach V=1.0 after 

disturbance 
0.2166 sec 1.7082 0.1025 sec 

Var Amount at steady state -0.02 p.u. -0.02 p.u. -0.02 p.u. 

 

From the results, the FBAC response remains unchanged under this disturbance, 

while the original control method gives slower response and the FBC cannot bring the 

voltage back to steady-state in 0.6 sec. Note, a separate diagram in Figure 4.19 with 

extended simulation time shows that the voltage eventually reaches back to 1 p.u. at 

t=1.9082 sec, or 1.7082 sec after the disturbance. This is also shown in Table 4.3. 

The observation is similar to the previous case. The response time (i.e., ∆t to reach 

V=1.0) of the FBAC is only 47% of the original control and 6% of the FBC. Hence, similar 

to the previous case, the advantage of the proposed FBAC method is clearly demonstrated 

again. 
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4.6 Conclusions 

The three case studies in Subsections 4.5.2 to 4.5.4 show the advantage of the proposed 

FBAC over the original control and the FBC. The original control and the FBC models 

may have a desirable response in a specific system. However, when the system operating 

condition changes, the FBC gains and traditional PI control gains need to be redesigned or 

re-tuned to obtain satisfying responses; otherwise, the original control and the FBC may be 

subject to slower response, as demonstrated in subsections 4.5.3 to 4.5.4. However, the 

proposed FBAC can consistently achieve fast, smooth, and desirable responses under 

various changes of system operating conditions such as a change of load and a change of 

network, and the response curves are almost identical in all cases.  
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  CHAPTER 5

ADAPTIVE GAIN-TUNING CONTROL METHOD FOR AGC WITH 

EFFECTS OF WIND RESOURCES 

5.1 Chapter Introduction 

This chapter builds the wind power model on the partial load area. An adaptive 

gain-tuning control (AGTC) for AGC with effects due to wind resources is presented. By 

this control method, the PI control parameters can be automatically and dynamically 

calculated during different disturbances in a power system. In the proposed method, the 

initial gains will be calculated first. Then, the variable wind energy will be integrated into 

the power systems. Then, the PI control parameters for AGC will be computed 

automatically and will be adjusted in real time based on the area control error (ACE) signal 

to keep the frequency stable.  

5.2 AGC Model and Control 

A large, interconnected power system is usually divided into several control area for 

efficient operation and control. The control areas are connected by the tie-lines. In each 

control area, an automatic generation controller (AGC) monitors the system frequency and 

tie-line flows. To maintain stable operation of the system, both constant frequency and 

constant tie-line power exchange must be ensured. Also, area control error (ACE) for each 
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area will be calculated and kept in a low range. Therefore, ACE, which is defined as a 

linear combination of power net-interchange and frequency deviations, is generally taken 

as the controlled output of AGC. As the ACE is driven to zero by the AGC, both frequency 

and tie-line power errors will be forced to zeroes [5-6]. Figure 5.1 shows the studied n-area 

power system.  

 

Area 1

ACE1

ΔPtie1 ΔPL1

Area 2

ACE2

ΔPtie2  ΔPL2

Area 3

ACE3

ΔPtie3 ΔPL3

. . .

. . 
. Area n

ACEn

ΔP tie
n Δ

PLn

 

Figure 5.1 n-area power system. 

 

The parameters for the n area power system are as follows:  

ACEi = ΔPtiei + BiΔωi the area control errors for area i; 

ΔPtiei = tie line flow for area i; 

ΔPLi = load changes for area i;  

Δωi= the angular frequency deviations for area i; 
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𝐵𝑖 = 𝐷𝑖 +
1

𝑅𝑖
 frequency bias factors for area i; 

Rj= the speed regulations for generator j; 

Dj = damping constant for generator j; 

Hj= inertia constants for generator j; 

τgj = governor time constants for generator j; 

τTj= turbine time constants for generator j; 

i=1, 2, 3,…, n; and 

j=1, 2, 3,…, m; 

m=the total number of generators; 

In the original AGC control, the proportional integral (PI) controllers are used [12-13, 

49, 75]. The control gains are usually designed by: 

1) Trial and error approach;  

2) Pole placement method; or 

3) Population based search techniques. 

The first method is very time-consuming and the second method is easily affected by 

the designer’s experience. All these methods with fixed control gains may not obtain the 

desired response when the power system operation conditions change, especially when 

power systems operate with variable wind power. To ensure the desired response, an 
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adaptive gain-tuning control (AGTC) is presented for the AGC with wind power. A key 

feature of the proposed AGTC method is the dynamic, self-adjustment of control 

parameters to continuously follow the desired response, which is set to be ACEi=0 in this 

work. The AGTC block for AGC in the area i is shown in Figure 5.2. In the figure, Ui is the 

output of the PI controller. KPi, KIi are PI controller gains for area i (i=1~n). The parameters 

KPi, KIi will be dynamically adjusted based on ACEi. In this work, steam turbine with no 

heat type is modeled to realize the AGTC. The control gains in the system with steam 

turbine of reheat type and hydraulic turbine can be designed in a similar way.  

 

 

Figure 5.2 AGTC block for area i. 

 

On one hand, larger values of KPi and KIi may induce the oscillation; on the other hand, 

smaller values of KPi and KIi may lead the slow response. These effects are also mentioned 

and analyzed in [29]. Therefore, the proper control parameters are highly important to 
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achieve better AGC responses. In the next section, the PI control gain design will be 

introduced. 

5.3 Gain Design for AGC 

5.3.1 Initial gains setting 

Under the initial condition, we may assume that ΔPtiei=0 and the power output of the 

units with only primary control will keep the same. Based on Figure 5.2, the closed-loop 

transfer function of the area i can be obtained [3]. 

−
∆𝜔𝑖(𝑠)

∆𝑃𝐿𝑖(𝑠)
=

(1+𝜏𝑔𝑖𝑠)(1+𝜏𝑇𝑖𝑠)𝑠

(2𝐻𝑖𝑆+𝐷𝑖)(1+𝜏𝑔𝑖𝑠)(1+𝜏𝑇𝑖𝑠)𝑠+𝐵𝑖(𝐾𝑃𝑖𝑠+𝐾𝐼𝑖)+
𝑠

𝑅𝑖

  (5.1) 

Then, the characteristic polynomial equation for each area can be shown as: 

𝑎4s
4 + 𝑎3s

3 + 𝑎2s
2 + 𝑎1s + 𝑎0s

0 = 0  (5.2) 

where: 

𝑎4 = 2H𝑖𝜏𝑔𝑖𝜏𝑇𝑖      (i=1~3) 

𝑎3 = (2H𝑖𝜏𝑔𝑖 + 2H𝑖𝜏𝑇𝑖 + 𝐷𝑖𝜏𝑔𝑖𝜏𝑇𝑖)  

𝑎2 = (2H𝑖 + 𝐷𝑖𝜏𝑔𝑖 + 𝐷𝑖𝜏𝑇𝑖)  

a1 = (Di + BiKpi +
1

Ri
) 

𝑎0 = 𝐵𝑖𝐾𝐼𝑖  

Based on the Routh-Hurwitz criterion, if the system is stable, then we have 
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{
 
 

 
 
𝑎4 > 0
𝑎3 > 0
𝑏31 > 0
𝑏41 > 0
𝑎0 > 0

   (5.3) 

where 𝑏31 =
𝑎2𝑎3−𝑎4𝑎1

𝑎3
 ;  𝑏32 = 𝑎0 ; and 𝑏41 =

𝑏31𝑎1−𝑏32𝑎3

𝑏31
 . 

Since KPi>0, and KIi>0, we can obtain that a4>0, a3>0 and a0>0. If the system is stable, 

the following equations need to be satisfied. 

{
𝑎2𝑎3 − 𝑎4𝑎1 > 0
𝑏31𝑎1 − 𝑏32𝑎3 > 0

   (5.4) 

Based on (5.4), the initial value for KPi and KIi (i=1~3) can be obtained. 

5.3.2 Control gain design during the disturbance 

At arbitrary time instant t=t1, set t2=t1-τ, in which τ is set to be 0.1 sec. PI control gains 

stay the same within 0.1s, such that KPi(t1)= KPi(t2) = KPi(t0); KIi(t1)= KIi(t2)= KIi(t0). Under 

normal conditions, each area can carry out its control obligation, and steady-state 

corrective action of AGC is confined to the area that the deficit or excess generation occurs 

[3,11], [69-70]. Therefore, when the system is stable, we can obtain: 

𝑈𝑖(𝑡1) = 𝐴1𝑖𝐾𝑃𝑖(𝑡0) + 𝐵1𝑖𝐾𝐼𝑖(𝑡0)   (5.5) 

𝑈𝑖(𝑡2) = 𝐴2𝑖𝐾𝑃𝑖(𝑡0) + 𝐵2𝑖𝐾𝐼𝑖(𝑡0)  (5.6) 

where Ui(t1), Ui(t2), A1i, B1i, A2i and B2i are known variable. KPi(t0) and KIi(t0) are unknown 

variables. Ui(t1) and Ui(t2) are equal to corresponding load changes at area i, namely 

Ui(t1)=|ΔPLi(t1)|  and Ui(t2)=|ΔPLi(t1)| (here, |ΔPLi(t1)| >0 |ΔPLi(t2)| >0).  

𝐴1𝑖 = 𝐴𝐶𝐸𝑖(𝑡1) 
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𝐴2𝑖 = 𝐴𝐶𝐸𝑖(𝑡2) 

𝐵1𝑖 = ∫ 𝐴𝐶𝐸𝑖(𝑡)
𝑡1

𝑡0

𝑑𝑡 

𝐵2𝑖 = ∫ 𝐴𝐶𝐸𝑖(𝑡)
𝑡2

𝑡0

𝑑𝑡 

In case that (5.5) and (5.6) are singular, we can simply assume KPi(t0)=KIi(t0) to reach a 

solution. Based on (5.5), we can obtain: 

K𝑃𝑖(𝑡0) =
𝑈𝑖(𝑡1)

𝐴1𝑖+𝐵1𝑖
  (5.7) 

Based on (5.6) and (5.7), the following equations can be obtained. 

K𝐼𝑖(𝑡0) =
𝑈𝑖(𝑡2)−𝐴2𝑖K𝑃𝑖(𝑡0)

𝐵2𝑖
   (5.8) 

K𝑃𝑖(𝑡0) =
𝑈𝑖(𝑡1)−𝐵1𝑖K𝐼𝑖(𝑡0)

𝐴1𝑖
    (5.9) 

Based on (5.7) to (5.9), the control gains for each area can be calculated during the 

disturbance. 

5.3.3 Flow Chart 

Figure 5.3 is an exemplary flowchart of the proposed AGTC method for AGC. 

The adaptive gain-tuning control (AGTC) process begins at Start. The initial PI control 

gains are calculated. The tie line flow ΔPtiei and the angular frequency deviations Δωi 

(i=1~n) is sampled according to a desired sampling rate and  𝐴𝐶𝐸𝑖  is calculated. If 

|ΔACEi|<ε1, (the tolerance threshold, ε1, which is a very small value such as 0.0001 p.u.), 

then, there is no reason to change any of the identified parameters: KPi(t) and KIi(t) (i=1~n) 
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and the power system is under normal state. On the other hand, if |ΔACEi|>ε1, AGTC 

begins to work, then, KPi(t) and KIi(t) are adjusted based on (5.7), (5.8) and (5.9). 

 

Start

Setting initial values 

for Kpi(t) and KIi(t) 

Calculated gains 

based on (5.7)-(5.9)

Yes

Substitute control gains to (5.4), 

check whether satisfy the Routh-

Hurwitz criterion 

Adjust control gains in PI 

controller

Using initial 

control gains

Stop

Yes

No

Yes

No

 

Yes

PI control gains Remain 

unchagned 

Continue frequency control?

No

Yes

No|ACEi|>ε1

Calculated ACEi

 

|ACEi|>ε1

 

Figure 5.3 AGTC algorithm flow chart. 
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After obtaining the PI control gains, KPi(t) and KIi(t) need to be substituted to (5.4) to 

check whether the PI control gains satisfy the Routh-Hurwitz criterion. If satisfied, the PI 

control gains will be updated based on the calculated control gains; otherwise, the initial 

control gains will be selected instead of the calculated control gains to avoid system 

frequency oscillation.  

After checking the Routh-Hurwitz criterion, ACEi will be checked again to see whether 

it is within the tolerance threshold ε1. If it is not within the threshold, the PI control gains 

need to be recalculated until the ACEi is less than the given threshold ε1. When ACEi is less 

than ε1, the algorithm stops and the control gains remain the same. 

Since it is necessary to continuously perform the frequency control process, the process 

returns to the block of measuring load changes. 

5.4 Wind Power Model 

The wind energy tends to be variable and uncertain due to the effects of the natural and 

topographical conditions. Based on the previous works [1, 71], wind speed can be modeled 

as (5.10) to mimic the real time wind speed. 

𝑉(𝑡) = 𝑉𝑚(𝑡) + 𝑉𝑒(𝑡) (5.10) 

A normal distribution is applied to the wind speed forecast error in this paper. The 

model is written as follows: 
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𝑉𝑒(𝑡) = N(𝜇𝑒(𝑡), 𝜎𝑒
2(𝑡)) (5.11) 

where 

Vm(t)=forecast wind speed 

Ve(t)= wind speed forecast error at time t; 

N denotes normal distribution; 

μe(t)= mean value of Ve(t); 

𝜎𝑒
2(𝑡)= variance of Ve(t); 

Then, the wind power output of the aerodynamic system can be expressed as equation 

as following, 

𝑃𝑡 = 𝐶𝑝(𝜆, 𝛽)
ρπ𝑅2

2
𝑉(𝑡)3 (5.12) 

where, Pt is the mechanical output power of the wind turbine; Cp is the performance 

coefficient of the wind turbine; ρ is the air density; R is the radius of wind turbine blades; 

V(t) is the real time wind speed; λ is the tip speed ratio of the rotor blade tip speed to wind 

speed,  𝜆 =
𝑅𝜔𝑡

𝑉(𝑡)
 in which ωt is the speed of the low-speed shaft; and β is the blade pitch 

angle.  

A generic equation is used to model 𝐶𝑝(𝜆, 𝛽): 

 𝐶𝑝(𝜆, 𝛽) = 0.5176 (
116

𝜆𝑖
− 0.4𝛽 − 5) 𝑒

−
21

𝜆𝑖 + 0.0068𝜆 (5.13) 

with 

1

𝜆𝑖
=

1

𝜆+0.08𝛽
−

0.035

𝛽3+1
 (5.14) 
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Therefore, with given wind speed, the wind power output can be calculated. In this 

work, the wind energy conversion system (WECS) operating in partial load region is 

considered since this region contains considerable wind power variation. A maximum 

power point tracking (MPPT) algorithm is used in WECS such that the energy conversion 

efficiency is maximized in the partial load region.  𝐶𝑝(𝜆, 𝛽) can be chosen as 0.45 and the 

other wind turbine system parameters are chosen in accordance with [72].  

5.5 Simulation Results 

5.5.1 Studied System 

In this section, the adaptive gain-tuning control (AGTC) is tested on the IEEE 39-bus 

system with 3 areas, 10 machines and 3 wind farms as shown in Figure 5.4. The studied 

system is simulated based on MATLAB software. The intra-area lines are considered in the 

power flow calculation, and the tie-line flows are used for control studies. The simulation 

result is compared with the original control with fixed control gains. The system 

parameters are shown in Table 5.1 [49, 73]. 
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Figure 5.4 IEEE 39 bus system 

 

Table 5.1 System Parameters 

Area Gen. H R D τg τT 

1 

1 70.0 0.05 1 0.08 0.04 

2 30.3 0.05 1 0.08 0.04 

3 35.8 0.05 1 0.08 0.04 

2 

4 28.6 0.05 1 0.08 0.04 

5 26 0.05 1 0.08 0.04 

6 34.8 0.05 1 0.08 0.04 

7 26.4 0.05 1 0.08 0.04 

3 

8 24.3 0.05 1 0.08 0.04 

9 34.5 0.05 1 0.08 0.04 

10 20.0 0.05 1 0.08 0.04 
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In the simulation, the wind speeds at area 1, area 2 and area 3 are obtained from actual 

operational data at National Wind Technology Center M2 Meter on Mar. 27th 2014 [74]. 

The wind speed shown in Table 5.2 was measured per minute. The measured wind speed is 

considered as forecast wind speed Vm(t). The mean value of the wind speed forecast error 

μe(t) is set at 0 and the deviation of the wind speed forecast error 𝜎𝑒
2(𝑡) is set at 0.05Vm(t). 

In the simulation, the wind speed is sampled every second. The rated wind power output 

for areas 1, 2 and 3 is 150 MW. 

 

Table 5.2 Wind Speed Data 

Time (min) Area 1(m/s) Area 2(m/s) Area 3(m/s) 

1 7.1368 8.1652 5.7231 

2 6.8243 7.5242 5.5949 

3 5.5789 12.516 5.3815 

4 5.5942 14.156 5.6022 

5 5.0617 10.113 5.5912 

6 5.6466 11.407 5.4507 

7 5.2773 11.683 5.5002 

8 5.6786 11.138 5.6437 

9 5.0952 10.335 5.7857 

10 5.3341 13.044 5.742 

11 4.9394 11.198 5.9416 

12 5.4907 8.8389 6.4208 

13 5.466 10.234 6.4463 

14 5.3939 12.642 6.4113 

15 4.2183 9.3247 6.5934 
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Table 5.3 Initial PI control gains 

Area PI 

Controller 

AGTC 

(Initial Gains) 

Original 

(Well Tuned) 

1 KP 0.05 0.118 

KI 0.05 0.118 

2 KP 0.07 

 

0.118 

KI 0.07 0.118 

3 KP 0.1 0.118 

KI 0.1 0.118 

 

Figure 5.5 shows the wind power profiles. In the system, the original control is 

conventional PI controller with fixed control gains. In this part, the proposed control 

method will be compared with the original control with wind energy sources in different 

areas. The initial PI control gains are shown in Table 5.3. Note, the initial gains shown in 

Table 5.3 are one of many choices from the solution scope. All the initial control gains 

satisfying the conditions in Section 5.3.1 can be chosen. However, in order to avoid 

possible overshooting, smaller control gains satisfying (5.4) are chosen for the PI 

controllers. The original control with fixed control gains in Table 5.3 are tuned based on 

the trial and error approach. The subsections from 5.5.2 to 5.5.4 compared the proposed 

control simulation results with the original control using the well-tuned control gains.  
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Figure 5.5 Wind power profile for the three areas. 

 

5.5.2 Integrated Wind Power in Areas 1 and 3 

All the parameters are kept unchanged. The wind power is added in areas 1 and 3. The 

results of the original control method and the proposed AGTC method are shown in 

Figures 5.6 and 5.7.  
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Figure 5.6 Results of frequency deviation with wind in Areas 1 and 3.  

 

 

Figure 5.7 Results of tie power deviation with wind in Areas 1 and 3. 
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Figures 5.6 and 5.7 show the frequency deviations, Δf, and the tie line flow deviation, 

ΔPtie, in each area, respectively. From the results, it is evident that the proposed AGTC can 

achieve a better and smoother response than the original PI control which has well-tuned 

control gains especially in Area 3. The reason is that the fixed PI control gains cannot 

guarantee the desirable response during variable wind power. However, with AGTC, the PI 

control gains are continually self-adjusted to meet the requirement of varying power 

system operation condition. 

The PI control gains of the proposed control are also shown in Figures 5.8 and 5.9. It 

can be observed that with the proposed AGTC, the PI control parameters are no longer 

fixed under different wind speed over the studied time duration. They are dynamically 

self-adjusted in real time to keep system frequency at 60Hz under different wind speed. 

Also, with the proposed control method, the control parameter adaption is immediate and 

can be considered as no delay, because the computing time is around milliseconds which 

can be ignored and the hardware delay is also negligible. 
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Figure 5.8 Results of KP with wind in areas 1 and 3.  
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Figure 5.9 Results of KI with wind in areas 1 and 3.   
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5.5.3 Integrated Wind Power in Areas 1 and 2 

All the parameters are kept unchanged in this case study. The wind power is added in 

areas 1 and 2. The results of the original control method and the proposed AGTC method 

are shown in Figure 5.10 and Figure 5.11, respectively. 

 

 

Figure 5.10 Results of frequency deviation with wind in areas 1 and 2.  
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Figure 5.11 Results of tie power deviation with wind in areas 1 and 2. 

 

Figure 5.10 and Figure 5.11 illustrate the frequency deviations Δf and the tie line flow 

deviation ΔPtie in each area. From the results, it is evident that the proposed AGTC can 

achieve a better and smoother response than the original method with the well-tuned 

control gain. With AGTC, both frequency deviation and tie line flow deviation are 

reduced. 

The PI control gains of the proposed control approach for each area are shown in Figure 

5.12 and Figure 5.13. Similar to the study in the previous sub-section 5.5.2, with the 

proposed AGTC, the PI control parameters can be automatically and dynamically adjusted 

under different wind speeds during the disturbance to keep system frequency at 60Hz. 
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Figure 5.12 Results of KP with wind in areas 1 and 2. 
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Figure 5.13 Results of KI with wind in areas 1 and 2. 
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5.5.4 Integrate Wind Power in All Areas 

In this simulation study, all the parameters are kept unchanged from the original one. 

The wind power sources are added in all three areas: areas 1, area 2, and area 3. The results 

of the original control method and the proposed AGTC are shown in Figures 5.14 and 5.15, 

which illustrate the frequency deviation Δf and the tie line flow deviation ΔPtie in each area.  

 

 

Figure 5.14 Results of frequency deviation with wind in all areas. 
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Figure 5.15 Results of tie power deviation with wind in all areas. 

 

From the results, it is evident that the proposed AGTC can keep the system frequency 

stable. Since the fixed control gains cannot satisfy the requirements of the varying wind 

power, the AGC with original control cannot bring the system frequency back to 60 Hz and 

the AGC has a very poor response. However, with AGTC, both frequency deviations and 

tie line flow deviations are dramatically reduced.  

The PI control gains of the proposed control for each area are shown in Figure 5.16 and 

Figure 5.17. Similar to the study in the previous sub-sections 5.5.2 and 5.5.3, with the 

proposed AGTC, the PI control parameters can be automatically and dynamically adjusted 
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under different wind speeds over the 900-second duration such that the control gains can be 

always dynamically adjusted and the AGC has much better responses. 
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Figure 5.16 Results of KP with wind in all areas.  
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Figure 5.17 Results of KI with wind in all areas. 

 

5.6 Conclusions 

The above AGC studies show convincing results that the proposed AGTC can achieve a 

better and more consistent response than the original control. With the proposed AGTC, 

the initial PI control gains are calculated in advance and kept the same for each specific 

area. Then, the PI control gains will be dynamically and autonomously adjusted during the 

frequency control process, based on the area control error (ACE) for area 1, area 2 and area 

3, respectively. Therefore, a much better response for frequency regulation in real-time can 

always be obtained with the dynamic PI gains, and the desired performance can be 
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achieved. However, the original fixed-gain controller, which is well tuned for a specific 

given operating condition, may be inefficient or incapable of regulating the frequency 

under continuously varying operating conditions.   
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  CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary of Contributions 

Various STATCOM control methods have been reviewed including many applications 

of PI controllers. However, these previous works obtain the PI gains via a trial and error 

approach or extensive studies with a tradeoff of performance and applicability. Hence, 

control parameters for the optimal performance at a given operating point may not be 

effective at a different operating point.  

To address the challenge, this work proposes a new control model based on adaptive PI 

control, which can self-adjust the control gains dynamically during a disturbance such that 

the performance always matches a desired response, regardless of the change of the 

operating condition. Since the adjustment is autonomous, this gives the “plug-and-play” 

capability for STATCOM operation. In the simulation study, the proposed adaptive PI 

control for STATCOM is compared with the conventional STATCOM control with 

pre-tuned fixed PI gains to verify the advantages of the proposed method. The results show 

that the adaptive PI control gives consistently excellent performance under various 

operating conditions such as different initial control gains, different load levels, changes of 

transmission network, consecutive disturbances and a severe disturbance. In contrast, the 
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conventional STATCOM control with fixed PI gains may perform acceptable in the 

original system, but may not perform as efficiently as the proposed control method when 

there is a change of the system conditions.  

Next, this work proposes the flatness-based adaptive control (FBAC) method for 

STATCOM voltage regulation. By this method, the nonlinear STATCOM system is 

equivalent to a linear system, and the trajectories of all system variables can be directly and 

easily controlled by controlling flat output and its derivatives without solving differential 

equations. Further, the control gains can dynamically self-adjust during the voltage 

regulation after a disturbance. Thus, the performance from the FBAC always gives a 

consistent match to a desired response, regardless of the change of operating conditions. 

However, the original PI control and the flatness-based control (FBC), even if well-tuned 

for the given operating condition, may be inefficient or incapable to correct voltage when 

there is a change of the operating conditions. 

Finally, an adaptive gain-tuning control (AGTC) for AGC with effects of wind 

resources is presented in this dissertation. By the proposed control method, the initial 

control gains are calculated first. Then, the wind energy with actual wind speed is 

integrated in power systems. During the disturbance, the control gains are dynamically 

adjusted such that the performance always matches a desired response. In the simulation 

study, the proposed control for AGC is compared with the conventional control with 
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pre-tuned PI gains to verify the advantages of the proposed method. The results show that 

the AGTC consistently provides excellent performance under variable wind power. 

Moreover, the deviation of angular frequency and tie line flow with the proposed control is 

much lower than the original control. 

6.2 Future Works 

The following directions may be considered as future works of this dissertation. 

6.2.1 Develop a generic control method 

 Extension to other power system control problems such as DFIG can be explored. 

 More research work can focus on developing a generic control model with 

plug-and-play feature from the proposed method. 

6.2.2 Test in a hardware test bed 

 The proposed control methods may be tested in a hardware test bed, and a real 

system application can be explored.  
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