1,241 research outputs found

    Technology enablers for the implementation of Industry 4.0 to traditional manufacturing sectors: A review

    Get PDF
    The traditional manufacturing sectors (footwear, textiles and clothing, furniture and toys, among others) are based on small and medium enterprises with limited capacity on investing in modern production technologies. Although these sectors rely heavily on product customization and short manufacturing cycles, they are still not able to take full advantage of the fourth industrial revolution. Industry 4.0 surfaced to address the current challenges of shorter product life-cycles, highly customized products and stiff global competition. The new manufacturing paradigm supports the development of modular factory structures within a computerized Internet of Things environment. With Industry 4.0, rigid planning and production processes can be revolutionized. However, the computerization of manufacturing has a high degree of complexity and its implementation tends to be expensive, which goes against the reality of SMEs that power the traditional sectors. This paper reviews the main scientific-technological advances that have been developed in recent years in traditional sectors with the aim of facilitating the transition to the new industry standard.This research was supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (ERDF) under the project CloudDriver4Industry TIN2017-89266-R

    Portable simulation framework for diffusion MRI

    Get PDF
    The numerical simulation of the diffusion MRI signal arising from complex tissue micro-structures is helpful for understanding and interpreting imaging data as well as for designing and optimizing MRI sequences. The discretization of the Bloch-Torrey equation by finite elements is a more recently developed approach for this purpose, in contrast to random walk simulations, which has a longer history. While finite element discretization is more difficult to implement than random walk simulations, the approach benefits from a long history of theoretical and numerical developments by the mathematical and engineering communities. In particular, software packages for the automated solutions of partial differential equations using finite element discretization, such as FEniCS, are undergoing active support and development. However, because diffusion MRI simulation is a relatively new application area, there is still a gap between the simulation needs of the MRI community and the available tools provided by finite element software packages. In this paper, we address two potential difficulties in using FEniCS for diffusion MRI simulation. First, we simplified software installation by the use of FEniCS containers that are completely portable across multiple platforms. Second, we provide a portable simulation framework based on Python and whose code is open source. This simulation framework can be seamlessly integrated with cloud computing resources such as Google Colaboratory notebooks working on a web browser or with Google Cloud Platform with MPI parallelization. We show examples illustrating the accuracy, the computational times, and parallel computing capabilities. The framework contributes to reproducible science and open-source software in computational diffusion MRI with the hope that it will help to speed up method developments and stimulate research collaborations.La Caixa 201

    Research on Multi-specialty Coordination, Multi-discipline and Multifunction Integration Oriented Modeling and Simulation Innovation Technology

    Get PDF
    AbstractThe paper mainly covers the connotations, the functions and the key techniques of the Aircraft Digital Cooperative Robust Integration Optimization Performance Simulation Technology. The Performance Simulation Airplane Integration Design Platform, which has been established by the Performance Simulation Airplane construction analysis, a series of Standard Specification Establishing, the key modules development and a series of the supporting work implementation. It can be customized and be extended, and it is easy to be demonstrated. The platform contains the engineering database including the Performance Simulation Airplane model, simulation process data, simulation results data, and so on. It also provides the closed development process from the initial design to the optimized design, and end to the final detail design. It carries out the configuration selection and performance analysis for the airplane various configurations under the product development requirements in the entire process. It is applicable for the cooperative simulation analysis about the General Configuration research, the Aerodynamic design, the Structure design, the Strength design and some system specialties. This technique system has brought revolutionary changes to the traditional technological concept and Architecture, and it has been proved that the design period of the product is shortened by more than 25%, and the simulation test period is also shortened by more than 25%

    Recent Advanced Computing Methods Employed in Web Service Automation - A Survey

    Get PDF
    Web Service Automation gains momentum for the past two decades. So, various computational algorithms have been developed on different aspects of web service categorization and resource allocation. Research activities are more on comparing the algorithms over time and space complexity. Web designers and service providers make their contribution to enrich the IT products in this area. In this paper, a detail study is attempted on the above aspects of web service Automation. We open an area of web technology for implementation of newer algorithms. Keywords - Web Service Allocation, Zero Knowledge Authentication, Logic Programming, Service Computing, Distributed Algorithms, Cloud computing

    DIG-MAN: Integration of digital tools into product development and manufacturing education

    Get PDF
    General objectives of PRODEM education. Teaching of product development requires various digital tools. Nowadays, the digital tools usually use computers, which have become a standard element of manufacturing and teaching environments. In this context, an integration of computer-based technologies in manufacturing environments plays the crucial and main role, allowing to enrich, accelerate and integrate different production phases such as product development, design, manufacturing and inspection. Moreover, the digital tools play important role in management of production. According to Wdowik and Ratnayake (2019 paper: Open Access Digital Tool’s Application Potential in Technological Process Planning: SMMEs Perspective, https://doi.org/10.1007/978-3-030-29996-5_36), the digital tools can be divided into several main groups such as: machine tools and technological equipment (MTE), devices (D), internet(intranet)-based tools (I), software (S). The groups are presented in Fig. 1.1. Machine tools and technological equipment group contains all existing machines and devices which are commonly used in manufacturing and inspection phase. The group is used in physical shaping of manufactured products, measurement tasks regarding tools and products, etc. The next group of devices (D) is proposed to separate the newest trends of using mobile and computer-based technologies such as smartphones or tablets and indicate the necessity of increased mobility within production sites. The similar need of separation is in the case of internet(intranet)-based tools which indicate the growing interest in network-based solutions. Hence, D and I groups are proposed in order to underline the significance of mobility and networking. These two groups of the digital tools should also be supported in the nearest future by the use of 5G networks. The last group of software (S) concerns computer software produced for the aims of manufacturing environments. There is also a possibility to assign the defined solutions (e.g. computer programs) to more than one group (e.g. program can be assigned to software and internet-based tools). The main role of tools allocated inside separate groups is to support employees, managers and customers of manufacturing firms focused on abovementioned production phases. The digital tools are being developed in order to increase efficiency of production, quality of manufactured products and accelerate innovation process as well as comfort of work. Nowadays, digital also means mobile. Universities (especially technical), which are focused on higher education and research, have been continuously developing their teaching programmes since the beginning of industry 3.0 era. They need to prepare their alumni for changing environments of manufacturing enterprises and new challenges such as Industry 4.0 era, digitalization, networking, remote work, etc. Most of the teaching environments nowadays, especially those in manufacturing engineering area, are equipped with many digital tools and meet various challenges regarding an adaptation, a maintenance and a final usage of the digital tools. The application of these tools in teaching needs a space, staff and supporting infrastructures. Universities adapt their equipment and infrastructures to local or national needs of enterprises and the teaching content is usually focused on currently used technologies. Furthermore, research activities support teaching process by newly developed innovations. Figure 1.2 presents how different digital tools are used in teaching environments. Teaching environments are divided into four groups: lecture rooms, computer laboratories, manufacturing laboratories and industrial environments. The three groups are characteristic in the case of universities’ infrastructure whilst the fourth one is used for the aims of internships of students or researchers. Nowadays lecture rooms are mainly used for lectures and presentations which require the direct communication and interaction between teachers and students. However, such teaching method could also be replaced by the use of remote teaching (e.g. by the use of e-learning platforms or internet communicators). Unfortunately, remote teaching leads to limited interaction between people. Nonverbal communication is hence limited. Computer laboratories (CLs) usually gather students who solve different problems by the use of software. Most of the CLs enable teachers to display instructions by using projectors. Physical gathering in one room enables verbal and nonverbal communication between teachers and students. Manufacturing laboratories are usually used as the demonstrators of real industrial environments. They are also perfect places for performing of experiments and building the proficiency in using of infrastructure. The role of manufacturing labs can be divided as: • places which demonstrate the real industrial environments, • research sites where new ideas can be developed, improved and tested. Industrial environment has a crucial role in teaching. It enables an enriched student experience by providing real industrial challenges and problems

    Study of fluid-dynamics applications by using on-web-browser software

    Get PDF
    This thesis provides an introduction to computational fluid dynamic using on-web-browser soft-ware. Therefore, it presented two classical cases so that the students apply the theory learned inthe lessons and, also, an investigation has been done in order to optimize the meshing procedurewith SimScale. In addition to this, in the last part of the project, the learner is introduced to thecompressible flow and it is described the problems found with the software and some solutions.The two cases are the Pipe Flow and the Flat Plate Flow. Every time, it has been imperative to follow the typical procedure; pre-processing, simulation and post-processing in order to underline tothe learner the importance of the interpretation of the results and the sensitivity of the simulations

    Digital Twins Approaches and Methods Review

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1109/ITC-Egypt58155.2023.10206196This paper investigates the recent advances in Digital Twin technologies. The aim is to compare the approaches, available open source and proprietary technologies and methods, their features, and their integration capabilities. The motivation is to enable better design decisions based on the available literature and case studies. Various tools for 3D reconstruction and visualisation, IoT and sensor integration, Physical simulations and other complete platforms provide complete solutions. A conclusion of current challenges and future work identified that the lack of standardisation and interoperability makes the lifetime of a digital twin short, with a high cost and time to build and rebuild if required
    • …
    corecore