64,606 research outputs found

    WSACT : a model for Web Services access control incorporating trust

    Get PDF
    Today, organisations that seek a competitive advantage are adopting virtual infrastructures that share and manage computing resources. The trend is towards implementing collaborating applications that are supported by web services technology. Even though web services technology is rapidly becoming a fundamental development paradigm, adequate security constitutes the main concern and obstacle to its adoption as an industry solution. An important issue to address is the development of suitable access control models that are able to not only restrict access to unauthorised users, but also to discriminate between users that originate from different collaborating parties. In web services environments, access control is required to cross the borders of security domains, in order to be implemented between heterogeneous systems. Traditional access control systems that are identity-based do not provide a solution, as web services providers have to deal with unknown users, manage a large user population, collaborate with others and at the same time be autonomous of nature. Previous research has pointed towards the adoption of attribute-based access control as a means to address some of these problems. This approach is still not adequate, as the trustworthiness of web services requestors cannot be determined. Trust in web services requestors is thus an important requirement to address. For this reason, the thesis investigated trust, as to promote the inclusion of trust in the web services access control model. A cognitive approach to trust computation was followed that addressed uncertain and imprecise information by means of fuzzy logic techniques. A web services trust formation framework was defined that aims to populate trust concepts by means of automated, machine-based trust assessments. The structure between trust concepts was made explicit by means of a trust taxonomy. This thesis presents the WSACT – or the Web Services Access Control incorporating Trust –model. The model incorporates traditional role-based access control, the trust levels of web services requestors and the attributes of users into one model. This allows web services providers to grant advanced access to the users of trusted web services requestors, in contrast to the limited access that is given to users who make requests through web services requestors with whom a minimal level of trust has been established. Such flexibility gives a web services provider the ability to foster meaningful business relationships with others, which portrays humanistic forms of trust. The WSACT architecture describes the interacting roles of an authorisation interface, authorisation manager and trust manager. A prototype finally illustrates that the incorporation of trust is a viable solution to the problem of web services access control when decisions of an autonomous nature are to be made.Thesis (PhD (Computer Science))--University of Pretoria, 2008.Computer Scienceunrestricte

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    Enabling quantitative data analysis through e-infrastructures

    Get PDF
    This paper discusses how quantitative data analysis in the social sciences can engage with and exploit an e-Infrastructure. We highlight how a number of activities which are central to quantitative data analysis, referred to as ‘data management’, can benefit from e-infrastructure support. We conclude by discussing how these issues are relevant to the DAMES (Data Management through e-Social Science) research Node, an ongoing project that aims to develop e-Infrastructural resources for quantitative data analysis in the social sciences

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    Supporting security-oriented, inter-disciplinary research: crossing the social, clinical and geospatial domains

    Get PDF
    How many people have had a chronic disease for longer than 5-years in Scotland? How has this impacted upon their choices of employment? Are there any geographical clusters in Scotland where a high-incidence of patients with such long-term illness can be found? How does the life expectancy of such individuals compare with the national averages? Such questions are important to understand the health of nations and the best ways in which health care should be delivered and measured for their impact and success. In tackling such research questions, e-Infrastructures need to provide tailored, secure access to an extensible range of distributed resources including primary and secondary e-Health clinical data; social science data, and geospatial data sets amongst numerous others. In this paper we describe the security models underlying these e-Infrastructures and demonstrate their implementation in supporting secure, federated access to a variety of distributed and heterogeneous data sets exploiting the results of a variety of projects at the National e-Science Centre (NeSC) at the University of Glasgow

    A flexible architecture for privacy-aware trust management

    Get PDF
    In service-oriented systems a constellation of services cooperate, sharing potentially sensitive information and responsibilities. Cooperation is only possible if the different participants trust each other. As trust may depend on many different factors, in a flexible framework for Trust Management (TM) trust must be computed by combining different types of information. In this paper we describe the TAS3 TM framework which integrates independent TM systems into a single trust decision point. The TM framework supports intricate combinations whilst still remaining easily extensible. It also provides a unified trust evaluation interface to the (authorization framework of the) services. We demonstrate the flexibility of the approach by integrating three distinct TM paradigms: reputation-based TM, credential-based TM, and Key Performance Indicator TM. Finally, we discuss privacy concerns in TM systems and the directions to be taken for the definition of a privacy-friendly TM architecture.\u
    • …
    corecore