1,440 research outputs found

    Wearable Fall Detector Using Recurrent Neural Networks

    Get PDF
    Falls have become a relevant public health issue due to their high prevalence and negative effects in elderly people. Wearable fall detector devices allow the implementation of continuous and ubiquitous monitoring systems. The effectiveness for analyzing temporal signals with low energy consumption is one of the most relevant characteristics of these devices. Recurrent neural networks (RNNs) have demonstrated a great accuracy in some problems that require analyzing sequential inputs. However, getting appropriate response times in low power microcontrollers remains a difficult task due to their limited hardware resources. This work shows a feasibility study about using RNN-based deep learning models to detect both falls and falls’ risks in real time using accelerometer signals. The effectiveness of four different architectures was analyzed using the SisFall dataset at different frequencies. The resulting models were integrated into two different embedded systems to analyze the execution times and changes in the model effectiveness. Finally, a study of power consumption was carried out. A sensitivity of 88.2% and a specificity of 96.4% was obtained. The simplest models reached inference times lower than 34 ms, which implies the capability to detect fall events in real-time with high energy efficiency. This suggests that RNN models provide an effective method that can be implemented in low power microcontrollers for the creation of autonomous wearable fall detection systems in real-time

    Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition

    Get PDF
    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation

    A novel monitoring system for fall detection in older people

    Get PDF
    Indexación: Scopus.This work was supported in part by CORFO - CENS 16CTTS-66390 through the National Center on Health Information Systems, in part by the National Commission for Scientific and Technological Research (CONICYT) through the Program STIC-AMSUD 17STIC-03: ‘‘MONITORing for ehealth," FONDEF ID16I10449 ‘‘Sistema inteligente para la gestión y análisis de la dotación de camas en la red asistencial del sector público’’, and in part by MEC80170097 ‘‘Red de colaboración científica entre universidades nacionales e internacionales para la estructuración del doctorado y magister en informática médica en la Universidad de Valparaíso’’. The work of V. H. C. De Albuquerque was supported by the Brazilian National Council for Research and Development (CNPq), under Grant 304315/2017-6.Each year, more than 30% of people over 65 years-old suffer some fall. Unfortunately, this can generate physical and psychological damage, especially if they live alone and they are unable to get help. In this field, several studies have been performed aiming to alert potential falls of the older people by using different types of sensors and algorithms. In this paper, we present a novel non-invasive monitoring system for fall detection in older people who live alone. Our proposal is using very-low-resolution thermal sensors for classifying a fall and then alerting to the care staff. Also, we analyze the performance of three recurrent neural networks for fall detections: Long short-term memory (LSTM), gated recurrent unit, and Bi-LSTM. As many learning algorithms, we have performed a training phase using different test subjects. After several tests, we can observe that the Bi-LSTM approach overcome the others techniques reaching a 93% of accuracy in fall detection. We believe that the bidirectional way of the Bi-LSTM algorithm gives excellent results because the use of their data is influenced by prior and new information, which compares to LSTM and GRU. Information obtained using this system did not compromise the user's privacy, which constitutes an additional advantage of this alternative. © 2013 IEEE.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=842305

    Lower-Limb Falling Detection System Using Gated Recurrent Neural Networks

    Get PDF
    Accidental falls are one of the most common causes of premature disability and mortality related to unnatural causes. This affects mainly the elderly population. With the current aging of the population, the rate of accidental falls increases. Computer systems for gait analysis and fast assistance in ubiquitous environments can be effective tools to prevent these accidents. In this article we present the advances in the creation of an intelligent device for detecting falls and risk situations based on accelerometer signals registered on the user’s ankle. The proposed method makes use of Deep Learning techniques, specifically Gated Recurrent Neural Networks. The results show that the proposed model is a viable alternative to detect falls and fall risk, which can be implemented in low performance devices for greater autonomy, lower cost and comfortable portability. These results open the possibility of combining fall detection with a biomechanical analysis system to identify gait deficiencies and their relation with falls

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Highly-efficient fog-based deep learning AAL fall detection system

    Full text link
    [EN] Falls is one of most concerning accidents in aged population due to its high frequency and serious repercussion; thus, quick assistance is critical to avoid serious health consequences. There are several Ambient Assisted Living (AAL) solutions that rely on the technologies of the Internet of Things (IoT), Cloud Computing and Machine Learning (ML). Recently, Deep Learning (DL) have been included for its high potential to improve accuracy on fall detection. Also, the use of fog devices for the ML inference (detecting falls) spares cloud drawback of high network latency, non-appropriate for delay-sensitive applications such as fall detectors. Though, current fall detection systems lack DL inference on the fog, and there is no evidence of it in real environments, nor documentation regarding the complex challenge of the deployment. Since DL requires considerable resources and fog nodes are resource-limited, a very efficient deployment and resource usage is critical. We present an innovative highly-efficient intelligent system based on a fog-cloud computing architecture to timely detect falls using DL technics deployed on resource-constrained devices (fog nodes). We employ a wearable tri-axial accelerometer to collect patient monitoring data. In the fog, we propose a smart-IoT-Gateway architecture to support the remote deployment and management of DL models. We deploy two DL models (LSTM/GRU) employing virtualization to optimize resources and evaluate their performance and inference time. The results prove the effectiveness of our fall system, that provides a more timely and accurate response than traditional fall detector systems, higher efficiency, 98.75% accuracy, lower delay, and service improvement.This research was supported by the Ecuadorian Government through the Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) and has received funding from the European Union's Horizon 2020 research and innovation program as part of the ACTIVAGE project under Grant 732679.Sarabia-Jácome, D.; Usach, R.; Palau Salvador, CE.; Esteve Domingo, M. (2020). Highly-efficient fog-based deep learning AAL fall detection system. Internet of Things. 11:1-19. https://doi.org/10.1016/j.iot.2020.100185S11911“World Population Ageing.” [Online]. Available: http://www.un.org/esa/population/publications/worldageing19502050/. [Accessed: 23-Sep-2018].“Falls, ” World Health Organization. [Online]. Available: http://www.who.int/news-room/fact-sheets/detail/falls. [Accessed: 20-Sep-2018].Rashidi, P., & Mihailidis, A. (2013). A Survey on Ambient-Assisted Living Tools for Older Adults. IEEE Journal of Biomedical and Health Informatics, 17(3), 579-590. doi:10.1109/jbhi.2012.2234129Bousquet, J., Kuh, D., Bewick, M., Strandberg, T., Farrell, J., Pengelly, R., … Bringer, J. (2015). Operative definition of active and healthy ageing (AHA): Meeting report. Montpellier October 20–21, 2014. European Geriatric Medicine, 6(2), 196-200. doi:10.1016/j.eurger.2014.12.006“WHO | What is Healthy Ageing?”[Online]. Available: http://www.who.int/ageing/healthy-ageing/en/. [Accessed: 19-Sep-2018].Fei, X., Shah, N., Verba, N., Chao, K.-M., Sanchez-Anguix, V., Lewandowski, J., … Usman, Z. (2019). CPS data streams analytics based on machine learning for Cloud and Fog Computing: A survey. Future Generation Computer Systems, 90, 435-450. doi:10.1016/j.future.2018.06.042W. Zaremba, “Recurrent neural network regularization,” no. 2013, pp. 1–8, 2015.Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” pp. 1–9, 2014.N. Zerrouki, F. Harrou, Y. Sun, and A. Houacine, “Vision-based human action classification,” vol. 18, no. 12, pp. 5115–5121, 2018.Panahi, L., & Ghods, V. (2018). Human fall detection using machine vision techniques on RGB–D images. Biomedical Signal Processing and Control, 44, 146-153. doi:10.1016/j.bspc.2018.04.014Y. Li, K.C. Ho, and M. Popescu, “A microphone array system for automatic fall detection,” vol. 59, no. 2, pp. 1291–1301, 2012.Taramasco, C., Rodenas, T., Martinez, F., Fuentes, P., Munoz, R., Olivares, R., … Demongeot, J. (2018). A Novel Monitoring System for Fall Detection in Older People. IEEE Access, 6, 43563-43574. doi:10.1109/access.2018.2861331C. Wang et al., “Low-power fall detector using triaxial accelerometry and barometric pressure sensing,” vol. 12, no. 6, pp. 2302–2311, 2016.S.B. Khojasteh and E. De Cal, “Improving fall detection using an on-wrist wearable accelerometer,” pp. 1–28.Theodoridis, T., Solachidis, V., Vretos, N., & Daras, P. (2017). Human Fall Detection from Acceleration Measurements Using a Recurrent Neural Network. IFMBE Proceedings, 145-149. doi:10.1007/978-981-10-7419-6_25F. Sposaro and G. Tyson, “iFall : an android application for fall monitoring and response,” pp. 6119–6122, 2009.A. Ngu, Y. Wu, H. Zare, A.P. B, B. Yarbrough, and L. Yao, “Fall detection using smartwatch sensor data with accessor architecture,” vol. 2, pp. 81–93.P. Jantaraprim and P. Phukpattaranont, “Fall detection for the elderly using a support vector machine,” no. 1, pp. 484–490, 2012.Aziz, O., Musngi, M., Park, E. J., Mori, G., & Robinovitch, S. N. (2016). A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Medical & Biological Engineering & Computing, 55(1), 45-55. doi:10.1007/s11517-016-1504-yV. Carletti, A. Greco, A. Saggese, and M. Vento, “A smartphone-based system for detecting falls using anomaly detection,” vol. 6978, 2017, pp. 490–499.Yacchirema, D., de Puga, J. S., Palau, C., & Esteve, M. (2018). Fall detection system for elderly people using IoT and Big Data. Procedia Computer Science, 130, 603-610. doi:10.1016/j.procs.2018.04.11

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal
    corecore