
sensors

Article

Wearable Fall Detector Using Recurrent
Neural Networks

Francisco Luna-Perejón * , Manuel Jesús Domínguez-Morales and Antón Civit-Balcells

Architecture and Computer Technology Department (Universidad de Sevilla), E.T.S Ingeniería Informática,
Reina Mercedes Avenue, 41012 Seville, Spain; mdominguez@atc.us.es (M.J.D.-M.);
civit.anton@gmail.com (A.C.-B.)
* Correspondence: fralunper@atc.us.es or flunaperejon@gmail.com

Received: 14 October 2019; Accepted: 4 November 2019; Published: 8 November 2019
����������
�������

Abstract: Falls have become a relevant public health issue due to their high prevalence and negative
effects in elderly people. Wearable fall detector devices allow the implementation of continuous
and ubiquitous monitoring systems. The effectiveness for analyzing temporal signals with low
energy consumption is one of the most relevant characteristics of these devices. Recurrent neural
networks (RNNs) have demonstrated a great accuracy in some problems that require analyzing
sequential inputs. However, getting appropriate response times in low power microcontrollers
remains a difficult task due to their limited hardware resources. This work shows a feasibility study
about using RNN-based deep learning models to detect both falls and falls’ risks in real time using
accelerometer signals. The effectiveness of four different architectures was analyzed using the SisFall
dataset at different frequencies. The resulting models were integrated into two different embedded
systems to analyze the execution times and changes in the model effectiveness. Finally, a study of
power consumption was carried out. A sensitivity of 88.2% and a specificity of 96.4% was obtained.
The simplest models reached inference times lower than 34 ms, which implies the capability to
detect fall events in real-time with high energy efficiency. This suggests that RNN models provide
an effective method that can be implemented in low power microcontrollers for the creation of
autonomous wearable fall detection systems in real-time.

Keywords: accelerometer; deep learning; embedded system; fall detection; wearable; recurrent
neural networks

1. Introduction

Falls are major public health problems worldwide for elderly people. Reports from the World
Health Organization (W.H.O.) indicate that approximately 28%–35% of seniors over 65 years old suffer
at least one fall per year [1]. The reports also show that this rate increases when considering people
over 70 years old. The analysis of the records of emergency departments reported in [2] identified that
fall victims suffered at least one new fall every six months. A major factor that influences this fact is that
many elderly people lose confidence and adopt a more sedentary life, losing mobility, quality of life
and, thus, increasing the probability of falling because of their poor shape [3,4]. Direct consequences
of falls can be injuries to muscles or ligaments, bone fractures and head trauma with consequent
brain damage, among others. Major injuries pose significant risk for post-fall morbidity and mortality.
In addition to that, it has strong economic impacts on family and public health. For instance, it was
estimated that the United States spent $19 billion as a consequence of fall related hospitalizations in
2006 [5]. This topic is gaining importance due to the progressive increase in the elderly population [6,7].

Sensors 2019, 19, 4885; doi:10.3390/s19224885 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4352-8759
https://orcid.org/0000-0001-5669-9111
https://orcid.org/0000-0001-8733-1811
http://dx.doi.org/10.3390/s19224885
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/22/4885?type=check_update&version=2

Sensors 2019, 19, 4885 2 of 18

Fall detection systems (FDS) are devices that monitor user activity and ideally alert when a fall
has occurred. Their main goal can be summarized as distinguishing between two states: Activity
of daily living (ADL) and fall events (alerting when this one happens) [8]. These devices allow
sending an accident notification immediately to medical entities, caregivers and family members for
quick assistance.

The detection of falls through technological systems is a very active field of study, given the
importance of the subject. The literature review in [8] distinguishes between context-aware and
wearable systems. The first one uses sensors such as cameras, pressure sensors or microphones,
deployed in the environment. Their main advantages are that it is not necessary to wear any special
device, and that acquisition sensors can be more complex for an increased effectiveness as they do not
have significant computational or energy supply limitations. However, these kinds of solutions are
limited to their deployment area, which usually implies having to perform an installation of sensors
in the different rooms where the user lives or is monitored. These facts mean that these systems
are not suitable in some situations, for instance if the user lives in sparsely populated areas such as
small towns and leaves home often. In addition, these systems are generally expensive because of the
installation they require and the sensors they use, which could make them economically unfeasible
for some population niches. Another important aspect is that its installation in public health systems
could be difficult because these systems would not only collect information from the target patients,
but from other people, undermining their privacy.

On the other hand, wearable devices allow continuous monitoring without any dependence
from environment-based sensors. That makes them ubiquitous systems that only acquire user-related
data, which favors its use in hospitals and many other scenarios. In addition, they usually use simple
sensors, commonly accelerometers and gyroscopes, that require low-power consumption. Several
review studies have been done about this topic and one of them is presented in this work [9]. This fact
allows to reduce the size of the devices and to increase their battery life. This also usually implies
lower economical costs compared to context-aware systems. As disadvantages, these devices need to
be worn by the user and must be charged periodically. In order to make these systems autonomous,
they must combine efficiency and effectiveness: Fall detection techniques require a continuous sensor
monitoring process (several times per second) that may demand a high power consumption if the
data is processed externally (in order to obtain better results); but, if the detection is done inside the
embedded system itself (to reduce power consumption), the detection algorithm may reduce the fall
detection accuracy and the system could have high response times if the algorithm implemented is
computationally expensive.

Among the different algorithms that exist for wearable devices, we can find two main types:
Threshold based and machine learning based algorithms. While threshold based algorithms
show very high performance [10] in terms of detection effectiveness and low computational
complexity, they present many difficulties when trying to adapt them to new types of falls and
user characteristics [11]. Machine learning methods are considered more sophisticated approaches
to solving this problem, but they require a high number of samples to achieve high effectiveness
rates, and nowadays there is a scarcity of datasets for study these events [12]. Other functionalities
that can be investigated for this type of system is the prevention of falls or the possibility of damage
mitigation [13].

Sensors 2019, 19, 4885 3 of 18

Recurrent neural networks (RNN) such as long short-term memory units (LSTM) and gated
recurrent units (GRU) are deep learning networks specifically designed to process sequences. Recent
studies shed some light on the potential of RNNs for dynamic signals classifications [14] and more
precisely for accelerometer data [15,16]. However, these algorithms have a high computational cost
due to the large number of algebraic operations they perform. Running these models on low power
microcontrollers with limited features, suitable for wearable devices, can lead to long response times
and high power consumption, even for simple tasks [17]. This fact makes difficult to create real-time
wearable fall detectors based on RNN.

The research described in this paper aims to assess the feasibility of implementing a wearable
system for the detection of both falls and fall hazards using RNN architectures which has a good
performance in terms of computational complexity and real-time effectiveness.

The article is organized as follows: the current Section 1 continues with the description of the most
recent works in the literature that use machine learning algorithms for fall detection, implemented
on wearable devices, as well as the basis of the two types of RNN used, that is, Long Short Term
Memory (LSTM) and Gated Recurrent Units (GRU); Section 2 describes the proposed materials and
methodology used for the assessment of the RNN-based wearable fall detector systems; Section 3
presents the results and discussion regarding the effectiveness of the trained deep learning models, the
performance obtained after their integration into an embedded system, as well as an analysis of energy
consumption; and Section 4 includes the conclusions and points out possible future works.

1.1. Previous Works

Fall detection systems are a very active research area. In this section we consider several of the
most recent studies that are based on the use of wearable devices to detect falls. Table 1 summarizes
these works highlighting information about the methodology and results.

Sensors 2019, 19, 4885 4 of 18

Table 1. Summary of most recent studies about wearable fall detector systems using machine learning.

Ref. Detector
System Dataset Type of

Sensor
N

Users
N

Records
N

Classes
Body Sensor
Localization Algorithms Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

[18]
Simulation

on PC

1. [19]

2. [20]
Accelerometer

30

30

4500

NS
7 Waist

K-NN
ANN

QSVM
EBT

85.8
91.8
96.1
97.7

NS NS

[21]
Android

application
Acquired in

the study Accelerometer 20
346
381 2

1. Waist
2. Thigh

TBM +
(MLK-SPV)

97.8
91.7

99.5
95.8

95.2
88.0

[22]
Simulation

on PC SisFall [23] Accelerometer 38 2 Waist SVM 99.9 99.5 99.44

[11]
Embedded

system
Acquired in

the study

Accelerometer,
Gyroscope and
Magnetometer

22 NS 2 Wrist

K-NN
LDA
LR
DT

SVM

99.0
96.4
97.4
95.8
97.4

100
99.0
97.9
97.9
97.9

97.9
93.8
96.9
93.8
96.9

[24]
Embedded

system SisFall [23] Accelerometer 38 3820 4 Waist DT 91.7 91.7 97.2

[13]
External
gateway

Acquired in
the study

Surface
electromyography 15 423 2 Lower leg LDA 88.0 91.3 89.5

[25]
Embedded

system + Android
Application

Acquired in
the study Accelerometer 20 660 2

Waist
(front-pocket)

TBM +
K-NN 90.0 83.0 97.0

[26]
Embedded

system SisFall [23] Accelerometer 38 4510 3 Waist RNN (LSTM) 95.51 92.7 94.1

Sensors 2019, 19, 4885 5 of 18

In [18] four different machine learning algorithms were analyzed using two combined datasets:
k-nearest neighbors (K-NN), artificial neural network (ANN), quadratic support vector machine
(QSVM) and ensembled bagged tree (EBT). The main contribution to this research area is the proposal
of a set of new features obtained from accelerometer information, so these can be used as output from
the machine learning algorithms. The best accuracy obtained (97.7%) was obtained with the ensembled
bagged tree algorithm, a type of decision tree algorithm. The study shown in [22] also proposed new
features, based on the first and second order moments, extracting 12 new features that were used with
a Support Vector Machine algorithm. The results are very good, with an accuracy of 99.9% when using
the features.

The work in [21] combines threshold based metrics (TBM) with multiple kernel learning support
vector machine (MKL-SVM). The system was implemented in an Android app, and was trained to
identify falls with the mobile phone located near both the waist and the thigh. The first TBM stages
allow to discard false positives resulting from performing a daily activity that has sharp acceleration
moments, such as lying on a bed. The best results were obtained when the mobile was located in the
waist, with an accuracy of 97.8%.

The study in [11] also considers the effectiveness of different algorithms, that is, k-NN, linear
discriminant analysis (LDA), logistic regression (LR) and classic decision tree (DT). In this case, the fall
detector system consist of an ATMega32 Arduino microcontroller located in the user wrist. Thus,
the features considered as output of these algorithms have to identify arm movement key values.
In this work, k-NN algorithm had the best results with a 99.0% of accuracy, a 100% sensitivity and 97.9%
specificity. In this case, three sensors were used: An accelerometer, a gyroscope and a magnetometer.

The work in [24] showed a fall detection system architecture design that combines big data
techniques used for a continuous improvement of a decision tree algorithm. Initially, the algorithm
was trained with a subset of activities from the SisFall dataset [23] to classify three different classes
of falls, and ADL. It was tested with data obtained from empirical experiments, with good results.
While the wearable device only acts as an accelerometer signal acquisition tool, it would be possible
to create a version that dumps the updated decision tree in the embedded system periodically to get
improved alert times.

A more unusual detection system is described in [13], where the used signals consist of muscle
impulses measured by a surface electromyography sensor. The study analyzes the capacity of a
LDA algorithm to identify the initial phases of a fall and prevent damage with an actuator system.
The results obtained showed that these signals can also be used to detect falls and can complement the
most common acquisition systems to reduce the number of false positives.

The study in [25] also combined TBM with Machine Learning. The TBM stage detected potential
falls and was implemented in an embedded system with accelerometer located in the user front-pocket.
The potential falls were finally classified using a k-NN algorithm implemented in an Android app.
The system was empirically tested with 20 users who simulated falls and activities of daily living.
With this approach short execution times were achieved, which allow real-time classification and
good accuracy.

Finally, the proposal in [26] is unique, to the best of our knowledge, as it assesses the use of a
RNN-based algorithm to detect falls. The used approach, which we address in this work as well, is the
detection of both falls and fall hazards. The obtained effectiveness was exceptionally good, considering
that it is possibly the first study that uses this technology for fall detection using accelerometers,
that the architecture used comes from other studies and no modifications were made to adapt it to this
problem, and that the algorithm inputs are raw sensor samples without preprocessing or calculating
any feature. However, the main problem lies in its computational cost, which ruled out its use in real
time when executed on a microcontroller. One of the reasons that made real-time execution non viable
were the high sampling rates and the complexity of the used RNN architecture. The term architecture
refers to the number and type of layers that configure a specific neural network based algorithm.

Sensors 2019, 19, 4885 6 of 18

In this work we assess architectures where execution times are improved without losing
effectiveness. We also perform tests with different sampling frequencies.

1.2. Gated RNNs

Gated recurrent neural networks are RNN architectures that provides an effective solution to the
vanishing gradient problem [27] and the exploding gradient problem [28] that affected backpropagation
through time [29] in previous RNN versions. The central idea behind these architectures is a memory
cell with nonlinear gating units. The memory cells hold information separated, maintaining its
state over time. The information is managed through a set of activation functions, named gates.
During the training process, each cell adjusts the activation weights, that is, learns to close or open its
gates, according to the relevance of the information obtained from the sequence and the information
currently stored. This information is used in the learning process of the classical RNN part. Since
the information contained in the cells is isolated from the flow of the conventional RNN, they are not
affected by the vanishing and exploding problems.

long short-term memory units [30] were the first proposed Gated RNN. They contain three
gates, two of which, called input and forget gates, are responsible for evaluating the addition of new
information into memory and the deletion of part of the stored information, respectively. A third one,
called output gate, controls what information is provided to the next step of the neural network in the
training process. The set of vector formulas that rule a LSTM layer can be expressed mathematically as

ht = ot ◦ tanh(ct) (1)

ot = σ(Wxoxt + Whoht−1 + wco ◦ ct + bo) (2)

ct = ft ◦ ct−1 + it ◦ c̃t (3)

c̃t = tanh(Wxcxt + Whcht−1 + bc) (4)

ft = σ(Wx f xt + Wh f ht−1 + wc f ◦ ct−1 + b f) (5)

it = σ(Wxixt + Whih
t−1 + wci ◦ ct−1 + bi) (6)

where ht is the unit state. ct represents the cell memory, while c̃t is the new information coming
from the recurrent neural network. ot, ft, it are the results of the output gate, forget gate and input
gates, respectively. σ and tanh represent the sigmoid and hyperbolic tangent activation functions,
respectively. Vectorial pointwise multiplication is denoted by ◦ . We get the following weights:

• Input weights: Wxo, Wxc, Wx f , Wxi ∈ RN×M

• Recurrent weights: Who, Whc, Wh f , Whi ∈ RN×N

• Cell weights: wco, whc, wc f , wci ∈ RN

• Bias weights: bo, bc, b f , bi ∈ RN

where N is the number of LSTM units, and M the number of inputs.
On the other hand, gated recurrent units (GRU) [31] are more recent cells similar to LSTM. They are

distinguished mainly by the lack of the output gate and, thus, what is stored in the memory by the cell
is dumped into the neural network completely during the entire training process. The remaining gates
are named update and reset, which add new input information and clear data stored from previous
iterations, respectively. The equations are quite different from those modeling the LSTM, mainly as a
result of the absence of output gate:

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t (7)

zt = σ(Wxzxt + Whzht−1 + bz) (8)

h̃t = tanh(Wxcxt + Whc(r
t ◦ ht−1)) (9)

Sensors 2019, 19, 4885 7 of 18

rt = σ(Wxrxt + Whrht−1 + br) (10)

where zt, rt are the result of the update gate, and reset gates, respectively. For this architecture, there are
fewer weights involved:

• Input weights: Wxz, Wxc, Wxr ∈ RN×M

• Recurrent weights: Whz, Whc, Whr ∈ RN×N

• Bias weights: bz, br ∈ RN

Both RNN layer alternatives have shown to be similarly effective [32], but GRUs have a slightly
lower computational cost because of the absence of the output gate.

2. Materials and Methods

2.1. Dataset

The research protocol and results presented in this work were performed using the SisFall
dataset [23]. It is composed of several simulated activities mainly classified in falls and ADL.
The participants in the data collection were 38, among which there are 23 adults and 15 elderly
people. Each sample contains accelerometer and gyroscope measurements obtained from a device
fixed to the user’s waist and acquired at 200 Hz. This dataset was complemented in [16] with a labeling
proposal. Each temporary sample was classified according to whether it belonged to a fall event,
a fall hazard or an activity of daily life. To our best knowledge this is the only public fall dataset that
contemplates fall hazard events, consisting of moments before a fall, or during a dangerous situation
where the user was able to avoid a fall.

As mentioned in previous sections, the inputs of recurrent neural networks consist of a sequence
of values with a fixed length. That length is named width. Each value in the sequence has a
fixed dimension. In the context of this problem, the values consist of a tuple with three elements
corresponding to the three axes of the accelerometer. From now on, throughout the manuscript we
will refer to each tuple with the term sample. In the same way, each sequence of samples with fixed
width will be referred as block. To train a RNN model, each block must have an associated label,
corresponding to the event class that contemplates. We used the proposal established in [16], in which
each block is classified according to the percentage of appearance of the most relevant class. The classes
in order of relevance refer to a fall event (FALL), a risk of falling (ALERT) and others, labeled as
background (BKG). Background or BKG class considers the rest of time intervals, that mainly includes
activities of daily life, other activities not related to a fall, such as jumping, and also the time that the
user remains lying after a fall. The classification criteria are schematized in Figure 1 (left). This rule was
applied to each activity record from the dataset, establishing a block width of 256 samples, equivalent
to 1.28 seconds. A 50% stride was applied.

Lastly, three additional versions from the resulting dataset were created, reducing the number of
samples per block, that is, the width. It is intended to evaluate the performance of the models when
they are trained with less information, simulating a lower sampling rate. The process of reduction of
samples consisted in eliminating the samples in even position of each block (see Figure 1, right). It was
performed three times with each resulting dataset, obtaining blocks with a width of 128, 64 and 32
samples, which correspond to 100 Hz, 50 Hz and 25 Hz sampling frequency, respectively.

Sensors 2019, 19, 4885 8 of 18

Figure 1. On the left: Recording segmentation and labeling process. Green circles, yellow triangles
and red hexagons indicate the block is classified as a background (BKG), a risk of falling (ALERT) or a
fall event (FALL), respectively. On the right: Block width reduction process. In the case illustrated, a
256-width block, corresponding to a frequency sampling of 200 Hz, is reduced to 128 samples to obtain
a frequency sampling of 100 Hz. The same process was performed with 128-width and 64-width blocks
to obtain 64-width (50 Hz) and 32-width (25 Hz) datasets, respectively.

2.2. RNN Architectures

Results obtained in [33] showed that the regularization of sample values substantially improves
the effectiveness. To achieve this, a batch normalization layer is included at the beginning of the
architecture. A recent study [34] revealed that this smooths the objective function to improve the
performance. A 10-fold cross validation study [35] determined that this was not effective for obtaining
non-sequential characteristics. Based on these results, in this work we deepened our study and
analyzed the feasibility of integration for four different architectures. These architectures are those
with higher performance determined in previous studies.

The two simplest architectures consist of batch normalization, a RNN layer and a fully-connected
output layer (see Figure 2). Softmax is used to determine the event class. The difference between one
and the other is the use of LSTM or GRU as the recurrent layer. The other two architectures contain a
second RNN layer of the same type as the previous one. While the computational cost in the most
complex versions is higher, their effectiveness is also slightly higher.

In order to optimize the results, we adjusted batch size and learning rate hyperparameters by grid
search. Dropout [36] technique was also applied to the inputs of the fully-connected layer.

Figure 2. Diagram of the four recurrent neural network (RNN) architectures analyzed in this study.

Sensors 2019, 19, 4885 9 of 18

2.3. Embedded System Features

We chose two STM32 32-bit microcontrollers (MCUs) for the integration and performance
analysis of the trained models. Both are based on the high-performance ARM Cortex-M4 processors,
with features that allow real-time capabilities, digital signal processing and low-power operation.

The first device selected is a STM32L476RG, part of the ultra-low-power catalog with the specified
ARM processor MCU. It operates at a frequency up to 80MHz, contents 1 Mbyte of flash memory and
128 Kbyte of SRAM. The second device is a STM32F411RE, that offers a higher processing performance.
It operates at a frequency up to 80 MHz, 512 Kbytes of flash memory and 128 Kbyte of SRAM.
Both feature a floating point unit for a better precision in data-processing.

2.4. Protocol

The feasibility analysis consisted in a set of tests, divided into three stages. The first aims to
study the algorithm effectiveness before the training, optimizing the hyperparameters. Secondly,
the performance of the modes were assessed once they are integrated in the microcontroller. Lastly,
a power consumption analysis was performed.

2.4.1. Effectiveness Analysis

The architectures were trained using the data from 30 users, (near of 80% of the dataset), while the
rest, corresponding to 8 users, were used for the final evaluation. The users for each subset were
randomly chosen, but maintaining an equitable distribution between adults and elderly. The training
subset were the used in [35] applying 10-fold cross validation and estimate the goodness of the models
with a correct reliability. In a first stage, five training processes for each architecture with different
sampling frequencies were performed, in order to determine those with the best performance. In a
second stage, we used smart grid search for optimizing the architectures with better results in the
first stage.

Due to the dataset being highly unbalanced, the overall classification accuracy is not an
appropriate way to measure the effectiveness of the system. We compared the effectiveness employing
the macro F1-score [37], that measures the relations between data’s positive labels and those given by
a classifier through a harmonic mean of macro-precision (precisionm) and macro-recall (recallm).

F1− scorem = 2 ∗ precisionm ∗ recallm
precisionm + recallm

(11)

Precisionm = ∑
c

TPc

TPc + FPc
, c ∈ classes (12)

Recallm = ∑
c

TPc

TPc + FNc
, c ∈ classes (13)

where m index refers to macro metric and classes = {BKG, ALERT, FALL}. TPc, FPc and FNc denotes
the number of true positives, false positives and false negatives of each class c ∈ classes, respectively.

While the F1-score is an appropriate metric for a multi-class problem, it is not usual to assess the
performance of a FDS. In this context, sensitivity and specificity metrics are more commonly used.
Sensitivity is another term to refer to recall. The formula for specificity is

Speci f icity = ∑
c

TNc

TNc + FPc
, c ∈ classes (14)

where TNc denotes the number of true negatives of each class c ∈ classes. These metrics are also
considered in this work.

Sensors 2019, 19, 4885 10 of 18

2.4.2. Performance on Embedded Systems

Two main aspects were analyzed for the embedded devices with each proposed model. First,
the time spent processing a block, that is, the execution time of the integrated model. This parameter
seeks to locate those architectures that can work in real time, that is, that are capable of providing a
response in the time that elapses until a new sample of the accelerometer is read. Secondly, we assessed
the differences on the inference outputs of the models optimized for their execution on the embedded
systems. This is obtained by calculating the relative L2 error:

e =
‖Fgenerated − Foriginal‖

‖Fgenerated‖
(15)

where Fgenerated refers to the flatten array of the generated model last output layer and Foriginal
refers to the flatten of the original model.

2.4.3. Power Usage Analysis

We assessed if the implementation of these kinds of models in an embedded system provides
some advantage in terms of energy consumption. For this, two fall detector system designs were
considered (see Figure 3). The alternative version consisted in using the embedded system as only
an acquisition and transmission tool, so that its tasks are reading of the accelerometer measures and
transmitting each new sample to an external device with greater computational capacity and no energy
related constraints. We considered Bluetooth as the communication technology. This first scenario was
compared with the target version, consisting of an embedded system which integrates the RNN model
and executes it in real-time. This version has as main tasks the accelerometer reading, the execution of
the implemented model and an alert transmission to an external device, only in case of an alert or a fall
event. The power consumption for each task was calculated based on the technique specifications for
the embedded systems and the auxiliary modules: The bluetooth module and the triaxial accelerometer.
The execution time for each task was also estimated based on the hardware features and the RNN
execution time.

Figure 3. Fall detector system versions. In option 1, the microcontroller sends the accelerometer
readings, and a master device executes the RNN algorithm. In option 2, the RNN model is implemented
in the microcontroller, and only sends a notification when a fall or a fall hazard event happens.

Sensors 2019, 19, 4885 11 of 18

3. Results and Discussion

3.1. Models Analysis

The number of blocks per each subset from the dataset is shown in Table 2. As mentioned in the
methods section, the number of blocks from classes ALERT and FALL are much lower than BKG. This
is due to the short duration of risk and fall events. For the training process, we used a graphic processor
unit NVIDIA GTX 1080 Ti and the CuDNN versions of this RNN layer provided, implemented in
the Keras framework. The use of CuDNN RNN layers improves the training speed substantially,
8 to 10 times faster.

Table 2. Dataset distribution for each subset.

Users Blocks

Subset Adults Elderly Total BKG Alert Fall

Training 19 11 94,667 90,173 1172 3322
Test 4 4 22,321 21,425 201 695

The results of F1-score with cross-validation using the training set (Figure 4, left) indicate that
the reduction of the number of samples per block does not affect the results negatively. The standard
deviation (around ±0.25 and ±0.35) reveals a slight dependence on training and validation subsets.
Each architecture was trained five times with initial random weights. Figure 4 (right) shows the
macro F1-score average results using the subset reserved for test. Both architectures presented similar
effectiveness. The architecture with two GRU layers shows a sightly better F1-score. However, we did
not consider the differences between the models substantial enough to discard any model in terms
of effectiveness. On the other hand, since the computational efficiency of these models was greatly
influenced by the reduction in the number of samples processed, the rest of the study was conducted
with blocks of 32 samples (25 Hz).

Figure 4. Macro F1-score results for each architecture and different input width (frequency sampling).
On the left: The results applying 10-fold cross validation with the training subset. On the right: Results
with the training subset and evaluated with the test subset (average results from training five times
each model).

Table 3 covers the values considered for the hyperparameters and the dropout for grid search.
The best results obtained for each model and the associated hyperparameters are shown in Table 4.
The accuracy is greater than the most recent works which consider a multi-class problem. However,
the sensitivity is quite lower. We have assessed the architectures using 10-fold cross-validation to
ensure the results are independent from the test subset used. The effectiveness deviation depending
on the test subset that reveals Figure 4 (left) can explain the differences in the results with [16], where a
typical 80%/20% dataset split was used.

Sensors 2019, 19, 4885 12 of 18

Table 3. Grid search values for exhaustive parameters optimization.

Parameter Value 1 Value 2 Value 3

Learning rate 0.001 0.0005 0.0001
Batch size 32 48 64
Dropout 0 0.2 0.35

Table 4. Best results obtained after grid search optimization.

RNN Learn. Batch RNN
Architecture Rate Size Drop. Accuracy Precision F1-Score Specificity Sensitivity

One LSTM layer 0.0005 32 0 0.963 0.695 0.726 0.964 0.882
Two LSTM layers 0.001 48 0.2 0.961 0.683 0.724 0.971 0.902
One GRU layer 0.001 32 0.35 0.964 0.682 0.725 0.963 0.882
Two GRU layers 0.0005 32 0 0.967 0.681 0.730 0.968 0.875

Macro F1-score results are mainly affected by the low macro precision metric value which, in turn,
is low due to the low precision value in the ALERT class. This is due to the scarcity of data for
this class. A small percentage of BKG events are wrongly predicted as ALERT, but comparing with
the amount of blocks of the ALERT class this is a very significant percentage. This fact reveals the
difficulty in training machine learning algorithms with unbalanced data. A larger quantity of datasets
is necessary, something difficult for this problem, since falls can only be obtained from simulations
and they imply putting at risk the health of the participants, especially if the participants are elderly,
which is unfortunately the target population.

The receiver operating characteristic (ROC) curves (see Figure 5) per each model and class reveal
a good reliability in the inference of event classes. These curves were obtained from the results for
each node of the output layer by modifying the confident threshold. The areas under the curve (AUCs)
are higher than 96%. The confusion matrix for each model (see Figure 6) shows high accuracy values,
but in addition, it reveals the previously mentioned problem about the scarcity of ALERT events and
the percentage of BKG predicted as ALERT.

Figure 5. Cont.

Sensors 2019, 19, 4885 13 of 18

Figure 5. Receiver operating characteristic (ROC) curves of the best models for each architecture
considered (at 25 Hz).

Figure 6. Confusion matrix of the best models for each architecture considered (at 25 Hz).

3.2. Integrated Model Performance

The different RNN models were integrated in the ST-Nucleo boards using the X-CUBE-AI
STM32CubeMX expansion pack. It allows the conversion of pre-trained models optimized for their
execution on SMT32 devices. Furthermore, it provides tools for measuring the execution times of the
model more accurately, as well as for the comparison between the original algorithm version and the
C-model running on the microcontroller. It is important to mention that, due to the models being
trained using CuDNN versions for the RNN layers, it was needed to transmit and adapt the weights
to non-CuDNN equivalent layers, before their conversion to optimized c-models. The framework
allows this. To verify that the change did not affect to the model effectiveness, it was checked that the
classification of the test subset matched to the results shown in the previous section. There were no
differences in the classification.

To evaluate the variation in the effectiveness of the models after their conversion to optimized
versions for ST32 devices, we compared the values of the outputs of the last layer for both cases.
The outputs per block inference consists of three values, one for each class considered, with ranges

Sensors 2019, 19, 4885 14 of 18

between 0 and 1, in floating point. The L2 error for LSTM model (see Table 5) was less than 10−6,
which indicates very little variation in the generated models. However, the L2 error obtained is much
lower in LSTM models than GRU ones. This fact can be due to differences in Keras and X-CUBE-AI
libraries that affect the GRU layer implementation.

Table 5. L2 error per each model (trained model vs. generated c-model).

RNN Architecture 200 Hz 100 Hz 50 Hz 25 Hz

One LSTM layer 8.85 × 10−7 6.47 × 10−7 5.14 × 10−7 2.35 × 10−7

Two LSTM layers 5.08 × 10−7 3.78 × 10−8 3.78 × 10−8 9.30 × 10−7

One GRU layer 3.80 × 10−3 1.92 × 10−1 1.38 × 10−1 3.75 × 10−1

Two GRU layers 2.23E × 10−1 1.83 × 10−1 2.26 × 10−1 9.82 × 10−2

Figure 7 shows the time required for each inference, that is, the classification of a unique block. It
is calculated as the average execution time for 10 executions per model and block size. The lines in the
chart indicate the accelerometer sampling rate, which implies approximately the available deadline of
each model to run in real time. In case of the F411RE device, only the simplest models complied with
the required running time, with a sampling frequency of 25 Hz, equivalent to 32 samples per block.
For the L476RG, only the simplest GRU model satisfied the time requirements, but it was very close
to the sampling rate (35.8 ms per classification). Due to the fact that the microcontroller also has to
perform other operations such as the accelerometer reading, the L476RG device had to be discarded.

Figure 7. RNN model execution times.

Since the system can operate in real time, at a frequency of 25 Hz, this implies that the system is
capable of sending an alert notification in less than 40 ms. Based on the criteria used to classify the
dataset blocks, a fall would be detected in less than 180 ms since it starts. Additionally, an alert event
could be detected in less than 680 ms since it begins. This implies that these types of systems can be a
preventive tool, connected to some element such as a portable airbag.

3.3. Power Consumption Estimations

The components that conform the systems are a ADXL345 accelerometer and a Bluetooth HC-06
module connected to a F411RE microcontroller, and a general-purpose device as receptor. During the
tests, this receptor was a personal computer, but in a real environment it would be ideally a portable

Sensors 2019, 19, 4885 15 of 18

device with a continuous connection to a health emergency center. The transmission protocol used for
the accelerometer was I2C.

According to the technical features of the F411RE microcontroller, the current consumption when
executing from Flash memory should be as low as 100 µA/MHz. In stop mode the power consumption
is lower than 10 µA, which can be considered negligible. Using an I2C protocol for the accelerometer
register values from the ADXL345 sensor the current estimated during the reading process is 5 mA.
In case of the device without an integrated RNN, the battery is mainly used in the transmission of data,
that is determined by the sampling frequency. The current for stage, consisting in transform the values
to be sent, was estimated in 5 mA, and the sample sending via Bluetooth was 43 mA considering the
power consumption in the specifications. At 25 Hz, the device battery life would be approximately
9.9 h if it is powered with a 150 mAh battery.

Regarding to the device with the simplest LSTM model implemented, the energy consumption
comes mainly from the accelerometer values reading and the execution of the algorithm. The current
estimated during the RNN execution is 5 mA, although the time spent running it is considerably longer
than the transformation of values performed in the previous case (82.5% running for the simplest
LSTM model and 57.5% for the simplest GRU model). The remaining power consumption depends
on the number of transmissions made to alert on a fall or a risk event detection. According to [1,38],
the number of falls of an elderly person is near to once a year. However, we consider in this analysis
unfavorable cases, such as the case of people with poor balance or motor difficulties. Figure 8 shows
the battery life considering different number of events. Considering a large number of events, up to
100 K, the device’s battery life is over 35 h when implementing the LSTM model, and over 56 h if it is
running the GRU model.

Figure 8. Battery life with the power consumption estimation for each device and feasible real-time
RNN model.

Results obtained improve the battery life reported by other works with machine learning
solutions [22,26]. Due to this, it can be possible to add new characteristics, such as a wifi module or
connection to mobile networks, instead of bluetooth, to directly transmit information without the need
for an auxiliary device.

Given the scarcity of datasets that currently exists from falls, that is the biggest problem currently
for the improvement of deep learning algorithms, the system should be improved with an infrastructure
based on big data analysis, as proposed in [24]. In order not to affect the battery consumption while in
use, these wearable devices could integrate a data storage module that saves the data registered during
the day, to be synchronized in the cloud when charging the device. This would allow this anonymized
data to be used to improve the algorithm.

Sensors 2019, 19, 4885 16 of 18

4. Conclusions

This work provides a study of the feasibility for the creation of wearable fall detector systems
in real time using RNN architectures. The obtained results reveal that the architectures with 1 RNN
layer at 25 Hz sampling frequency can be executed into a low power microcontroller in real time.
The assessment of the trained models reveals that the reduction in the sampling frequency only affects
the effectiveness very slightly. The estimated consumption indicates that it is possible to use small
batteries. It allows to design a miniaturized device that is easy and comfortable to wear by the users.

The results in accuracy and specificity are greater or similar to other multi-class fall detector
classifiers using accelerometer signals. However, sensitivity is slightly lower. The lack of data on the
optimal values used and absence of F1-score metric in these studies did not allow us to make a more
exhaustive comparison of effectiveness. In this study, 10-fold cross-validation has been used for greater
result reliability, independently of the training subset. This reveals an F1-score deviation depending
of the subset used and can explain the differences in sensitivity with other studies with evaluation
methods that may be influenced by the dataset split used. In any case, this work focuses mainly on
the integration of this type of model in low performance embedded systems. The execution times
obtained with the proposed models are much higher than those obtained in [26], allowing real-time
prediction using low power microcontrollers and higher battery life.

Due to the fact that these systems can be executed in real time, we consider that this work shows
that deep learning RNN architectures are a new approach to the creation of more effective wearable
fall detection systems. Therefore, we encourage research on these models, for instance by applying
techniques that are already used in traditional machine learning models such as the introduction of
features as input data, or reducing the complexity of the proposed models.

In future works a complete fall detection system based on this model will be thoroughly tested
with new participants in order to verify the effectiveness in real scenarios.

Author Contributions: Conceptualization: F.L.-P. and A.C.-B.; Formal analysis: F.L.-P., M.J.D.-M. and A.C.-B.;
Funding acquisition, A.C.-B.; Investigation: F.L.-P. and M.J.D.-M.; Methodology: F.L.-P. and M.J.D.-M.;
Software: F.L.-P.; Supervision: M.J.D.-M. and A.C.-B.; Validation: M.J.D.-M.; Writing—original draft: F.L.-P.;
Writing—review & editing: M.J.D.-M. and A.C.-B.

Funding: This work has been partially supported by the Telefonica Chair “Intelligence in Networks” of the
Universidad de Sevilla, Spain.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

RNN Recurrent Neural Network
FDS Fall detection system
ADL Activity of Daily Living
LSTM long short-term memory
GRU Gated Recurrent Unit
K-NN k-Nearest Neighbors
ANN Artificial Neural Network
QSVM Quadratic Support Vector Machine
EBT ensembled bagged tree
TBM Threshold based Metrics
MKL-SVM Multiple Kernel Learning Support Vector Machine
LDA linear discriminant analysis
LR logistic regression
DT decision tree
MCU Microcontroller Unit
ROC Receiver Operating Characteristic
AUC Area Under the Curve

Sensors 2019, 19, 4885 17 of 18

References

1. Organization, W.H.; Course, A.L.; Halth, F.C. WHO Global Report on Falls Prevention in Older Age; World
Health Organization: Geneva, Switzerland, 2008.

2. Sri-On, J.; Tirrell, G.P.; Bean, J.F.; Lipsitz, L.A.; Liu, S.W. Revisit, subsequent hospitalization, recurrent fall,
and death within 6 months after a fall among elderly emergency department patients. Ann. Emerg. Med.
2017, 70, 516–521. [CrossRef] [PubMed]

3. Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing
2006, 35, ii37–ii41. [CrossRef] [PubMed]

4. Aschkenasy, M.T.; Rothenhaus, T.C. Trauma and falls in the elderly. Emerg. Med. Clin. 2006, 24, 413–432.
[CrossRef] [PubMed]

5. Stevens, J.A.; Corso, P.S.; Finkelstein, E.A.; Miller, T.R. The costs of fatal and non-fatal falls among older
adults. Inj. Prev. 2006, 12, 290–295. [CrossRef] [PubMed]

6. Carone, G.; Costello, D. Can Europe afford to grow old. Financ. Dev. 2006, 43, 1–9.
7. Werner, C.A. The Older Population: 2010. 2010 Census Briefs, 2011; US Census Bureau: Washington, DC, USA,

2011.
8. Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. Online

2013, 12, 66. [CrossRef] [PubMed]
9. Rucco, R.; Sorriso, A.; Liparoti, M.; Ferraioli, G.; Sorrentino, P.; Ambrosanio, M.; Baselice, F. Type and

location of wearable sensors for monitoring falls during static and dynamic tasks in healthy elderly: A review.
Sensors 2018, 18, 1613. [CrossRef] [PubMed]

10. Pannurat, N.; Thiemjarus, S.; Nantajeewarawat, E. Automatic fall monitoring: A review. Sensors 2014,
14, 12900–12936. [CrossRef] [PubMed]

11. de Quadros, T.; Lazzaretti, A.E.; Schneider, F.K. A movement decomposition and machine learning-based
fall detection system using wrist wearable device. IEEE Sens. J. 2018, 18, 5082–5089. [CrossRef]

12. Khan, S.S.; Hoey, J. Review of fall detection techniques: A data availability perspective. Med. Eng. Phys.
2017, 39, 12–22. [CrossRef] [PubMed]

13. Rescio, G.; Leone, A.; Siciliano, P. Supervised machine learning scheme for electromyography-based pre-fall
detection system. Expert Syst. Appl. 2018, 100, 95–105. [CrossRef]

14. Gao, C.; Neil, D.; Ceolini, E.; Liu, S.C.; Delbruck, T. DeltaRNN: A power-efficient recurrent neural network
accelerator. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 25–27 February 2018; ACM: New York, NY, USA, 2018; pp. 21–30.

15. Yu, S. Residual Learning and LSTM Networks for Wearable Human Activity Recognition Problem.
In Proceedings of the 2018 37th IEEE Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018;
pp. 9440–9447.

16. Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online fall detection using recurrent neural
networks. arXiv 2018, arXiv:1804.04976.

17. Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications.
arXiv 2016, arXiv:1605.07678.

18. Chelli, A.; Pätzold, M. A Machine Learning Approach for Fall Detection and Daily Living Activity
Recognition. IEEE Access 2019, 7, 38670–38687. [CrossRef]

19. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A public domain dataset for human activity
recognition using smartphones. In Proceedings of the ESANN European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013.

20. Ojetola, O.; Gaura, E.; Brusey, J. Data set for fall events and daily activities from inertial sensors.
In Proceedings of the 6th ACM Multimedia Systems Conference, Portland, OR, USA, 18–20 March 2015;
ACM: New York, NY, USA, 2015; pp. 243–248.

21. Shahzad, A.; Kim, K. FallDroid: An automated smart-phone-based fall detection system using multiple
kernel learning. IEEE Trans. Ind. Inform. 2018, 15, 35–44. [CrossRef]

22. Saleh, M.; Jeannès, R.L.B. Elderly fall detection using wearable sensors: A low cost highly accurate algorithm.
IEEE Sens. J. 2019, 19, 3156–3164. [CrossRef]

23. Sucerquia, A.; López, J.; Vargas-Bonilla, J. SisFall: A fall and movement dataset. Sensors 2017, 17, 198.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.annemergmed.2017.05.023
http://www.ncbi.nlm.nih.gov/pubmed/28688769
http://dx.doi.org/10.1093/ageing/afl084
http://www.ncbi.nlm.nih.gov/pubmed/16926202
http://dx.doi.org/10.1016/j.emc.2006.01.005
http://www.ncbi.nlm.nih.gov/pubmed/16584964
http://dx.doi.org/10.1136/ip.2005.011015
http://www.ncbi.nlm.nih.gov/pubmed/17018668
http://dx.doi.org/10.1186/1475-925X-12-66
http://www.ncbi.nlm.nih.gov/pubmed/23829390
http://dx.doi.org/10.3390/s18051613
http://www.ncbi.nlm.nih.gov/pubmed/29783647
http://dx.doi.org/10.3390/s140712900
http://www.ncbi.nlm.nih.gov/pubmed/25046016
http://dx.doi.org/10.1109/JSEN.2018.2829815
http://dx.doi.org/10.1016/j.medengphy.2016.10.014
http://www.ncbi.nlm.nih.gov/pubmed/27889391
http://dx.doi.org/10.1016/j.eswa.2018.01.047
http://dx.doi.org/10.1109/ACCESS.2019.2906693
http://dx.doi.org/10.1109/TII.2018.2839749
http://dx.doi.org/10.1109/JSEN.2019.2891128
http://dx.doi.org/10.3390/s17010198
http://www.ncbi.nlm.nih.gov/pubmed/28117691

Sensors 2019, 19, 4885 18 of 18

24. Yacchirema, D.; de Puga, J.S.; Palau, C.; Esteve, M. Fall detection system for elderly people using IoT and big
data. Procedia Comput. Sci. 2018, 130, 603–610. [CrossRef]

25. Fortino, G.; Gravina, R. Fall-MobileGuard: A smart real-time fall detection system. In Proceedings of
the 10th EAI International Conference on Body Area Networks, Sydney, Australia, 28–30 September 2015;
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering): Brussels,
Belgium, 2015; pp. 44–50.

26. Torti, E.; Fontanella, A.; Musci, M.; Blago, N.; Pau, D.; Leporati, F.; Piastra, M. Embedded real-time fall
detection with deep learning on wearable devices. In Proceedings of the 2018 2first IEEE Euromicro
Conference on Digital System Design (DSD), Prague, Czech Republic, 29–31 August 2018; pp. 405–412.

27. Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions.
Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 1998, 6, 107–116. [CrossRef]

28. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE
Trans. Neural Netw. 1994, 5, 157–166. [CrossRef] [PubMed]

29. Williams, R.J.; Zipser, D. Gradient-based learning algorithms for recurrent. In Backpropagation: Theory,
Architectures, and Applications; Psychology Press: London, UK, 1995; Volume 433.

30. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

31. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation:
Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259.

32. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv 2014, arXiv:1412.3555.

33. Luna-Perejon, F.; Civit-Masot, J.; Amaya-Rodriguez, I.; Duran-Lopez, L.; Dominguez-Morales, J.P.;
Civit-Balcells, A.; Linares-Barranco, A. An Automated Fall Detection System Using recurrent neural
networks. In Proceedings of the Conference on Artificial Intelligence in Medicine in Europe, Poznan,
Poland, 26–29 June 2019; Springer: New York, NY, USA, 2019; pp. 36–41.

34. Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How does batch normalization help optimization? In Advances
in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2018; pp. 2483–2493.

35. Luna-Perejón, F.; Civit-Masot, J.; Muñoz-Saavedra, L.; Durán-López, L.; Amaya-Rodríguez, I.;
Domínguez-Morales, J.P.; Vicente-Díaz, S.; Linares-Barranco, A.; Civit-Balcells, A.; Domínguez-Morales, M.
Sampling Frequency Evaluation on recurrent neural networks Architectures for IoT Real-time Fall Detection
Devices. In Proceedings of the International Joint Conference on Computational Intelligence (INSTICC),
Vienna, Austria, 17–19 September 2019; pp. 536–541.

36. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

37. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process.
Manag. 2009, 45, 427–437. [CrossRef]

38. Petronila Gómez, L.; Aragón Chicharro, S.; Calvo Morcuende, B. Caídas en ancianos institucionalizados:
Valoración del riesgo, factores relacionados y descripción. Gerokomos 2017, 28, 2–8.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2018.04.110
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Previous Works
	Gated RNNs

	Materials and Methods
	Dataset
	RNN Architectures
	Embedded System Features
	Protocol
	Effectiveness Analysis
	Performance on Embedded Systems
	Power Usage Analysis

	Results and Discussion
	Models Analysis
	Integrated Model Performance
	Power Consumption Estimations

	Conclusions
	References

