680 research outputs found

    Sustainable Reservoir Management Approaches under Impacts of Climate Change - A Case Study of Mangla Reservoir, Pakistan

    Get PDF
    Reservoir sedimentation is a major issue for water resource management around the world. It has serious economic, environmental, and social consequences, such as reduced water storage capacity, increased flooding risk, decreased hydropower generation, and deteriorated water quality. Increased rainfall intensity, higher temperatures, and more extreme weather events due to climate change are expected to exacerbate the problem of reservoir sedimentation. As a result, sedimentation must be managed to ensure the long-term viability of reservoirs and their associated infrastructure. Effective reservoir sedimentation management in the face of climate change necessitates an understanding of the sedimentation process and the factors that influence it, such as land use practices, erosion, and climate. Monitoring and modelling sedimentation rates are also useful tools for forecasting future impacts and making management decisions. The goal of this research is to create long-term reservoir management strategies in the face of climate change by simulating the effects of various reservoir-operating strategies on reservoir sedimentation and sediment delta movement at Mangla Reservoir in Pakistan (the second-largest dam in the country). In order to assess the impact of the Mangla Reservoir's sedimentation and reservoir life, a framework was developed. This framework incorporates both hydrological and morphodynamic models and various soft computing models. In addition to taking climate change uncertainty into consideration, the proposed framework also incorporates sediment source, sediment delivery, and reservoir morphology changes. Furthermore, the purpose of this study is to provide a practical methodology based on the limited data available. In the first phase of this study, it was investigated how to accurately quantify the missing suspended sediment load (SSL) data in rivers by utilizing various techniques, such as sediment rating curves (SRC) and soft computing models (SCMs), including local linear regression (LLR), artificial neural networks (ANN) and wavelet-cum-ANN (WANN). Further, the Gamma and M-test were performed to select the best-input variables and appropriate data length for SCMs development. Based on an evaluation of the outcomes of all leading models for SSL estimation, it can be concluded that SCMs are more effective than SRC approaches. Additionally, the results also indicated that the WANN model was the most accurate model for reconstructing the SSL time series because it is capable of identifying the salient characteristics in a data series. The second phase of this study examined the feasibility of using four satellite precipitation datasets (SPDs) which included GPM, PERSIANN_CDR, CHIRPS, and CMORPH to predict streamflow and sediment loads (SL) within a poorly gauged mountainous catchment, by employing the SWAT hydrological model as well as SWAT coupled soft computing models (SCMs) such as artificial neural networks (SWAT-ANN), random forests (SWAT-RF), and support vector regression (SWAT-SVR). SCMs were developed using the outputs of un-calibrated SWAT hydrological models to improve the predictions. The results indicate that during the entire simulation, the GPM shows the best performance in both schemes, while PERSIAN_CDR and CHIRPS also perform well, whereas CMORPH predicts streamflow for the Upper Jhelum River Basin (UJRB) with relatively poor performance. Among the best GPM-based models, SWAT-RF offered the best performance to simulate the entire streamflow, while SWAT-ANN excelled at simulating the SL. Hence, hydrological coupled SCMs based on SPDs could be an effective technique for simulating streamflow and SL, particularly in complex terrain where gauge network density is low or uneven. The third and last phase of this study investigated the impact of different reservoir operating strategies on Mangla reservoir sedimentation using a 1D sediment transport model. To improve the accuracy of the model, more accurate boundary conditions for flow and sediment load were incorporated into the numerical model (derived from the first and second phases of this study) so that the successive morphodynamic model could precisely predict bed level changes under given climate conditions. Further, in order to assess the long-term effect of a changing climate, a Global Climate Model (GCM) under Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 for the 21st century is used. The long-term modelling results showed that a gradual increase in the reservoir minimum operating level (MOL) slows down the delta movement rate and the bed level close to the dam. However, it may compromise the downstream irrigation demand during periods of high water demand. The findings may help the reservoir managers to improve the reservoir operation rules and ultimately support the objective of sustainable reservoir use for societal benefit. In summary, this study provides comprehensive insights into reservoir sedimentation phenomena and recommends an operational strategy that is both feasible and sustainable over the long term under the impact of climate change, especially in cases where a lack of data exists. Basically, it is very important to improve the accuracy of sediment load estimates, which are essential in the design and operation of reservoir structures and operating plans in response to incoming sediment loads, ensuring accurate reservoir lifespan predictions. Furthermore, the production of highly accurate streamflow forecasts, particularly when on-site data is limited, is important and can be achieved by the use of satellite-based precipitation data in conjunction with hydrological and soft computing models. Ultimately, the use of soft computing methods produces significantly improved input data for sediment load and discharge, enabling the application of one-dimensional hydro-morphodynamic numerical models to evaluate sediment dynamics and reservoir useful life under the influence of climate change at various operating conditions in a way that is adequate for evaluating sediment dynamics.:Chapter 1: Introduction Chapter 2:Reconstruction of Sediment Load Data in Rivers Chapter 3:Assessment of The Hydrological and Coupled Soft Computing Models, Based on Different Satellite Precipitation Datasets, To Simulate Streamflow and Sediment Load in A Mountainous Catchment Chapter 4:Simulating the Impact of Climate Change with Different Reservoir Operating Strategies on Sedimentation of the Mangla Reservoir, Northern Pakistan Chapter 5:Conclusions and Recommendation

    Effect of sediment load boundary conditions in predicting sediment Delta of Tarbela Reservoir in Pakistan

    No full text
    Setting precise sediment load boundary conditions plays a central role in robust modeling of sedimentation in reservoirs. In the presented study, we modeled sediment transport in Tarbela Reservoir using sediment rating curves (SRC) and wavelet artificial neural networks (WA-ANNs) for setting sediment load boundary conditions in the HEC-RAS 1D numerical model. The reconstruction performance of SRC for finding the missing sediment sampling data was at R-2 = 0.655 and NSE = 0.635. The same performance using WA-ANNs was at R-2 = 0.771 and NSE = 0.771. As the WA-ANNs have better ability to model non-linear sediment transport behavior in the Upper Indus River, the reconstructed missing suspended sediment load data were more accurate. Therefore, using more accurately-reconstructed sediment load boundary conditions in HEC-RAS, the model was better morphodynamically calibrated with R-2 = 0.980 and NSE = 0.979. Using SRC-based sediment load boundary conditions, the HEC-RAS model was calibrated with R-2 = 0.959 and NSE = 0.943. Both models validated the delta movement in the Tarbela Reservoir with R-2 = 0.968, NSE = 0.959 and R-2 = 0.950, NSE = 0.893 using WA-ANN and SRC estimates, respectively. Unlike SRC, WA-ANN-based boundary conditions provided stable simulations in HEC-RAS. In addition, WA-ANN-predicted sediment load also suggested a decrease in supply of sediment significantly to the Tarbela Reservoir in the future due to intra-annual shifting of flows from summer to pre- and post-winter. Therefore, our future predictions also suggested the stability of the sediment delta. As the WA-ANN-based sediment load boundary conditions precisely represented the physics of sediment transport, the modeling concept could very likely be used to study bed level changes in reservoirs/rivers elsewhere in the world

    Prediction of Suspended Sediment Concentration in Kinta River Using Soft Computing Techniques

    Get PDF
    The prediction of suspended sediment concentration in hyperconcentrated rivers is crucial in modeling and designing hydraulic structures such as dams and water intake inlets. In this study, suspended sediment concentration in Kinta River is predicted using soft computing technique, specifically radial basis function. Suspended sediment concentration and stream discharge from the year of 1992 to 1995 and data from the year of 2009 are used as input. The data are divided into three sections, namely training, testing and validation. 824 data are allocated for training, 313 data are allocated for testing purpose and 342 data are allocated for validation purpose. All data are normalized to reduce error. The determination of input neuron is based on correlation analysis. The number of hidden neurons is determined by the application of trial and error method. As for the output, only one output neuron is required which is the predicted value of suspended sediment concentration. The results obtained from the radial basis function model are evaluated to identify the performance of radial basis function model. Performance of the prediction is measured using statistical parameters namely root mean square error (RMSE), mean square error (MSE), Coefficient of efficiency (CE) and coefficient of determination ( ). Radial basis function model performed well producing the value of (0.9856 & 0.9884) for training and testing stages, respectively. However the performance of RBF model in the prediction of suspended sediment concentration for the year 2009 is poor, with the value of of 0.6934. Recommendations to improve the prediction accuracy are by incorporating a wider data span and by including other hydrology parameters that may impact the changes in the value of suspended sediment concentratio

    Integration of ANFIS with PCA and DWT for daily suspended sediment concentration prediction

    Get PDF
    Quantifying sediment load is vital for aquatic and riverine biota and has been the subject of various environmental studies since sediment plays a key role in maintaining ecological integrity, river morphology and agricultural productivity. However, predicting sediment concentration in rivers is difficult because of the non-linear relationships of flow rates, geophysical characteristics and sediment loads. It is thus very important to propose suitable statistical methods which can provide fast, accurate and robust prediction of suspended sediment concentration (SSC) for management guidance. In this study, we developed coupled models of discrete wavelet transform (DWT) with adaptive neuro-fuzzy inference system (ANFIS), named DWT-ANFIS, and principal component analysis (PCA) with ANFIS, named PCA-ANFIS, for SSC time-series modeling. The coupled models and single ANFIS model were trained and tested using long-term daily SSC and river discharge which were measured on the Schuylkill and Iowa Rivers in the United States. The findingsshowed that the PCA-ANFIS performed better than the single ANFIS and the coupled DWT-ANFIS. Further applications of the PCA-ANFIS should be considered for simulation and prediction of other indicators relating to weather, water resources, and the environment &nbsp

    Using Relevance Vector Machines Approach for Prediction of Total Suspended Solids and Turbidity to Sustain Water Quality and Wildlife in Mud Lake

    Get PDF
    Mud Lake is a wildlife refuge located in southeastern Idaho just north of Bear Lake that traps sediment from Bear River water flowing into Bear Lake.Very few water quality and sediment observations, if any, exist spatially in Mud Lake. Spatial patterns of sediment deposition may affect Mud Lake flows and habitat; prediction of those patterns should help refuge managers predict water quality constituents and spatial distribution of fine sediment.This will help sustain the purposes of Mud Lake as a habitat and migratory station for species. The main objective of the research is the development of Multivariate Relevant Vector Machine (MVRVM) to predict suspended fine sediment and water quality constituents, and to provide an understanding for the practical problem of determining the amount of data required for the MVRVM. MVRVM isa statistical learning algorithm that is based on Bayes theory.It has been widely used to predict patterns in hydrological systems and other fields. This research represents the first known attempt to use a MVRVM approach to predict transport of very fine sediment andwater quality constituents in a complex natural system. The results demonstrate the ability of the MVRVM to capture and predict the underlying patterns in data.Also careful construction of the experimental design for data collection can lead the Relevant Vectors (RVs is a subset of training observation which carries significant information that is used for prediction) to show locations of significant patterns. The predictions of water quality constituents will be of potential value to US Fish and Wildlife refuge managers in making decisions for operation and management in the case of Mud Lake based on their objectives, and will lead the way for scientists to expand the use of the MVRVM for modeling of suspended fine sediment and water quality in complex natural systems

    Development of a PSO-ANN Model for Rainfall-Runoff Response in Basins, Case Study: Karaj Basin

    Get PDF
    Successful daily river flow forecasting is necessary in water resources planning and management. A reliable rainfall-runoff model can provide useful information for water resources planning and management. In this study, particle swarm optimization algorithm (PSO) as a metaheuristic approach is employed to train artificial neural network (ANN). The proposed PSO-ANN model is applied to simulate the rainfall runoff process in Karaj River for one and two days ahead. In this regard, different combinations of the input variables including flow and rainfall time series in previous days have been taken under consideration in order to obtain the best model's performances. To evaluate efficiency of the PSO algorithm in training ANNs, separate ANN models are developed using Levenberg-Marquardt (LM) training algorithm and the results are compared with those of the PSO-ANN models. The comparison reveals superiority of the PSO algorithm than the LM algorithm in training the ANN models. The best model for 1 and 2 days ahead runoff forecasting has R2 of 0.88 and 0.78. Results of this study shows that a reliable prediction of runoff in 1 and 2 days ahead can be achieved using PSO-ANN model. Overall, results of this study revealed that an acceptable prediction of the runoff up to two days ahead can be achieved by applying the PSO-ANN model

    Application of soft computing models with input vectors of snow cover area in addition to hydro-climatic data to predict the sediment loads

    Get PDF
    The accurate estimate of sediment load is important for management of the river ecosystem, designing of water infrastructures, and planning of reservoir operations. The direct measurement of sediment is the most credible method to estimate the sediments. However, this requires a lot of time and resources. Because of these two constraints, most often, it is not possible to continuously measure the daily sediments for most of the gauging sites. Nowadays, data-based sediment prediction models are famous for bridging the data gaps in the estimation of sediment loads. In data-driven sediment predictions models, the selection of input vectors is critical in determining the best structure of models for the accurate estimation of sediment yields. In this study, time series inputs of snow cover area, basin effective rainfall, mean basin average temperature, and mean basin evapotranspiration in addition to the flows were assessed for the prediction of sediment loads. The input vectors were assessed with artificial neural network (ANN), adaptive neuro-fuzzy logic inference system with grid partition (ANFIS-GP), adaptive neuro-fuzzy logic inference system with subtractive clustering (ANFIS-SC), adaptive neuro-fuzzy logic inference system with fuzzy c-means clustering (ANFIS-FCM), multiple adaptive regression splines (MARS), and sediment rating curve (SRC) models for the Gilgit River, the tributary of the Indus River in Pakistan. The comparison of different input vectors showed improvements in the prediction of sediments by using the snow cover area in addition to flows, effective rainfall, temperature, and evapotranspiration. Overall, the ANN model performed better than all other models. However, as regards sediment load peak time series, the sediment loads predicted using the ANN, ANFIS-FCM, and MARS models were found to be closer to the measured sediment loads. The ANFIS-FCM performed better in the estimation of peak sediment yields with a relative accuracy of 81.31% in comparison to the ANN and MARS models with 80.17% and 80.16% of relative accuracies, respectively. The developed multiple linear regression equation of all models show an R2^{2} value of 0.85 and 0.74 during the training and testing period, respectively

    Machine Learning Methods for Better Water Quality Prediction

    Get PDF
    In any aquatic system analysis, the modelling water quality parameters are of considerable significance. The traditional modelling methodologies are dependent on datasets that involve large amount of unknown or unspecified input data and generally consist of time-consuming processes. The implementation of artificial intelligence (AI) leads to a flexible mathematical structure that has the capability to identify non-linear and complex relationships between input and output data. There has been a major degradation of the Johor River Basin because of several developmental and human activities. Therefore, setting up of a water quality prediction model for better water resource management is of critical importance and will serve as a powerful tool. The different modelling approaches that have been implemented include: Adaptive Neuro-Fuzzy Inference System (ANFIS), Radial Basis Function Neural Networks (RBF-ANN), and Multi-Layer Perceptron Neural Networks (MLP-ANN). However, data obtained from monitoring stations and experiments are possibly polluted by noise signals as a result of random and systematic errors. Due to the presence of noise in the data, it is relatively difficult to make an accurate prediction. Hence, a Neuro-Fuzzy Inference System (WDT-ANFIS) based augmented wavelet de-noising technique has been recommended that depends on historical data of the water quality parameter. In the domain of interests, the water quality parameters primarily include ammoniacal nitrogen (AN), suspended solid (SS) and pH. In order to evaluate the impacts on the model, three evaluation techniques or assessment processes have been used. The first assessment process is dependent on the partitioning of the neural network connection weights that ascertains the significance of every input parameter in the network. On the other hand, the second and third assessment processes ascertain the most effectual input that has the potential to construct the models using a single and a combination of parameters, respectively. During these processes, two scenarios were introduced: Scenario 1 and Scenario 2. Scenario 1 constructs a prediction model for water quality parameters at every station, while Scenario 2 develops a prediction model on the basis of the value of the same parameter at the previous station (upstream). Both the scenarios are based on the value of the twelve input parameters. The field data from 2009 to 2010 was used to validate WDT-ANFIS. The WDT-ANFIS model exhibited a significant improvement in predicting accuracy for all the water quality parameters and outperformed all the recommended models. Also, the performance of Scenario 2 was observed to be more adequate than Scenario 1, with substantial improvement in the range of 0.5% to 5% for all the water quality parameters at all stations. On validating the recommended model, it was found that the model satisfactorily predicted all the water quality parameters (R2 values equal or bigger than 0.9). © 201

    Assessment of climate change and development of data based prediction models of sediment yields in Upper Indus Basin

    Get PDF
    Hohe Raten von Sedimentflüssen und ihre Schätzungen in Flusseinzugsgebieten erfordern die Auswahl effizienter Quantifizierungsansätze mit einem besseren Verständnis der dominierten Faktoren, die den Erosionsprozess auf zeitlicher und räumlicher Ebene steuern. Die vorherige Bewertung von Einflussfaktoren wie Abflussvariation, Klima, Landschaft und Fließprozess ist hilfreich, um den geeigneten Modellierungsansatz zur Quantifizierung der Sedimenterträge zu entwickeln. Einer der schwächsten Aspekte bei der Quantifizierung der Sedimentfracht ist die Verwendung traditioneller Beziehung zwischen Strömungsgeschwindigkeit und Bodensatzlöschung (SRC), bei denen die hydrometeorologischen Schwankungen, Abflusserzeugungsprozesse wie Schneedecke, Schneeschmelzen, Eisschmelzen usw. nicht berücksichtigt werden können. In vielen Fällen führt die empirische Q-SSC Beziehung daher zu ungenauen Prognosen. Heute können datenbasierte Modelle mit künstlicher Intelligenz die Sedimentfracht präziser abschätzen. Die datenbasierten Modelle lernen aus den eingespeisten Datensätzen, indem sie bei komplexen Phänomenen wie dem Sedimenttransport die geeignete funktionale Beziehung zwischen dem Output und seinen Input-Variablen herstellen. In diesem Zusammenhang wurden die datenbasierten Modellierungsalgorithmen in der vorliegenden Forschungsarbeit am Lehrstuhl für Wasser- und Flussgebietsmanagement des Karlsruher Instituts für Technologie in Karlsruhe entwickelt, die zur Vorhersage von Sedimenten in oberen unteren Einzugsgebieten des oberen Indusbeckens von Pakistan (UIB) verwendet wurden. Die dieser Arbeit zugrunde liegende Methodik gliedert sich in vier Bearbeitungsschritte: (1) Vergleichende Bewertung der räumlichen Variabilität und der Trends von Abflüssen und Sedimentfrachten unter dem Einfluss des Klimawandels im oberen Indus-Becken (2) Anwendung von Soft-Computing-Modellen mit Eingabevektoren der schneedeckten Fläche zusätzlich zu hydro-klimatischen Daten zur Vorhersage der Sedimentfracht (3) Vorhersage der Sedimentfracht unter Verwendung der NDVI-Datensätze (Hydroclimate and Normalized Difference Vegetation Index) mit Soft-Computing-Modellen (4) Klimasignalisierung bei suspendierten Sedimentausträge aus Gletscher und Schnee dominierten Teileinzugsgebeiten im oberen Indus-Becken (UIB). Diese im UIB durchgeführte Analyse hat es ermöglicht, die dominiertenden Parameter wie Schneedecke und hydrologischen Prozesses besser zu und in eine verbesserte Prognose der Sedimentfrachten einfließen zu lassen. Die Analyse der Bewertung des Klimawandels von Flüssen und Sedimenten in schnee- und gletscherdominierten UIB von 13 Messstationen zeigt, dass sich die jährlichen Flüsse und suspendierten Sedimente am Hauptindus in Besham Qila stromaufwärts des Tarbela-Reservoirs im ausgeglichenen Zustand befinden. Jedoch, die jährlichen Konzentrationen suspendierter Sedimente (SSC) wurden signifikant gesenkt und lagen zwischen 18,56% und 28,20% pro Jahrzehnt in Gilgit an der Alam Bridge (von Schnee und Gletschern dominiertes Becken), Indus in Kachura und Brandu in Daggar (von weniger Niederschlag dominiertes Becken). Während der Sommerperiode war der SSC signifikant reduziert und lag zwischen 18,63% und 27,79% pro Jahrzehnt, zusammen mit den Flüssen in den Regionen Hindukush und West-Karakorum aufgrund von Anomalien des Klimawandels und im unteren Unterbecken mit Regen aufgrund der Niederschlagsreduzierung. Die SSC während der Wintersaison waren jedoch aufgrund der signifikanten Erwärmung der durchschnittlichen Lufttemperatur signifikant erhöht und lagen zwischen 20,08% und 40,72% pro Jahrzehnt. Die datenbasierte Modellierung im schnee und gletscherdominierten Gilgit Teilbecken unter Verwendung eines künstlichen neuronalen Netzwerks (ANN), eines adaptiven Neuro-Fuzzy-Logik-Inferenzsystems mit Gitterpartition (ANFIS-GP) und eines adaptiven Neuro-Fuzzy-Logik-Inferenzsystems mit subtraktivem Clustering (ANFIS) -SC), ein adaptives Neuro-Fuzzy-Logik- Inferenzsystem mit Fuzzy-C-Mittel-Clustering, multiplen adaptiven Regressionssplines (MARS) und Sedimentbewertungskurven (SRC) durchgeführt. Die Ergebnisse von Algorithmen für maschinelles Lernen zeigen, dass die Eingabekombination aus täglichen Abflüssen (Qt), Schneedeckenfläche (SCAt), Temperatur (Tt-1) und Evapotranspiration (Evapt-1) die Leistung der Sedimentvorhersagemodelle verbesserne. Nach dem Vergleich der Gesamtleistung der Modelle schnitt das ANN-Modell besser ab als die übrigen Modelle. Bei der Vorhersage der Sedimentfrachten in Spitzenzeiten lag die Vorhersage der ANN-, ANIS-FCM- und MARS-Modelle näher an den gemessenen Sedimentbelastungen. Das ANIS-FCM-Modell mit einem absoluten Gesamtfehler von 81,31% schnitt bei der Vorhersage der Spitzensedimente besser ab als ANN und MARS mit einem absoluten Gesamtfehler von 80,17% bzw. 80,16%. Die datenbasierte Modellierung der Sedimentfrachten im von Regen dominierten Brandu-Teilbecken wurde unter Verwendung von Datensätzen für Hydroklima und biophysikalische Eingaben durchgeführt, die aus Strömungen, Niederschlag, mittlerer Lufttemperatur und normalisiertem Differenzvegetationsindex (NDVI) bestehen. Die Ergebnisse von vier ANNs (Artificial Neural Networks) und drei ANFIS-Algorithmen (Adaptive Neuro-Fuzzy Logic Inference System) für das Brandu Teilnbecken haben gezeigt, dass der mittels Fernerkundung bestimmte NDVI als biophysikalische Parameter zusätzlich zu den Hydroklima-Parametern die Leistung das Modell nicht verbessert. Der ANFIS-GP schnitt in der Testphase besser ab als andere Modelle mit einer Eingangskombination aus Durchfluss und Niederschlag. ANN, eingebettet in Levenberg-Marquardt (ANN-LM) für den Zeitraum 1981-2010, schnitt jedoch am besten mit Eingabekombinationen aus Strömungen, Niederschlag und mittleren Lufttemperaturen ab. Die Ergebnisgenauigkeit R2 unter Verwendung des ANN-LM-Algorithmus verbesserte sich im Vergleich zur Sedimentbewertungskurve (SRC) um bis zu 28%. Es wurde gezeigt, dass für den unteren Teil der UIB-Flüsse Niederschlag und mittlere Lufttemperatur dominierende Faktoren für die Vorhersage von Sedimenterträgen sind und biophysikalische Parameter (NDVI) eine untergeordnete Rolle spielen. Die Modellierung zur Bewertung der Änderungen des SSC in schnee- und gletschergespeiste Gilgit- und Astore-Teilbecken wurde unter Verwendung des Temp-Index degree day modell durchgeführt. Die Ergebnisse des Mann-Kendall-Trendtests in den Flüssen Gilgit und Astore zeigten, dass der Anstieg des SSC während der Wintersaison auf die Erwärmung der mittleren Lufttemperatur, die Zunahme der Winterniederschläge und die Zunahme der Schneeschmelzen im Winter zurückzuführen ist. Während der Frühjahrssaison haben die Niederschlags- und Schneedeckenanteile im Gilgit-Unterbecken zugenommen, im Gegensatz zu seiner Verringerung im Astore-Unterbecken. Im Gilgit-Unterbecken war der SSC im Sommer aufgrund des kombinierten Effekts der Karakorum-Klimaanomalie und der vergrößerten Schneedecke signifikant reduziert. Die Reduzierung des Sommer-SSC im Gilgit Fluss ist auf die Abkühlung der Sommertemperatur und die Bedeckung der exponierten proglazialen Landschaft zurückzuführen, die auf erhöhten Schnee, verringerte Trümmerflüsse Trümmerflüsse und verringerte Schneeschmelzen von Trümmergletschern zurückzuführen sind. Im Gegensatz zum Gilgit River sind die SSC im Astore River im Sommer erhöht. Der Anstieg des SSC im Astore-Unterbecken ist auf die Verringerung des Frühlingsniederschlags und der Schneedecke, die Erwärmung der mittleren Sommerlufttemperatur und den Anstieg des effektiven Niederschlags zurückzuführen. Die Ergebnisse zeigen ferner eine Verschiebung der Dominanz von Gletscherschmelzen zu Schneeschmelzen im Gilgit-Unterbecken und von Schnee zu Niederschlägen im Astore-Unterbecken bei Sedimenteden Sedimentfrachten in UIB. Die vorliegende Forschungsarbeit zur Bewertung der klimabedingten Veränderungen des SSC und seiner Vorhersage sowohl in den oberen als auch in den unteren Teilbecken des UIB wird nützlich sein, um den Sedimenttransportprozess besser zu verstehen und aufbauen auf dem verbessertenProzessverständnis ein angepasstes Sedimentmanagement und angepasste Planungen der zukünftigen Wasserinfrastrukturen im UIB ableiten zu können
    corecore