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ABSTRACT 
 
 

Using Relevance Vector Machines Approach for Prediction of Total Suspended Solids 

and Turbidity to Sustain Water Quality and Wildlife in Mud Lake 

 
 

by 
 
 

Hussein Aly Batt, Doctor of Philosophy 

Utah State University, 2012 
 
 
Major Professor: Dr. David K. Stevens 
Department: Civil and Environmental Engineering 
 
 

Mud Lake is a wildlife refuge located in southeastern Idaho just north of Bear 

Lake that traps sediment from Bear River water flowing into Bear Lake.Very few water 

quality and sediment observations, if any, exist spatially in Mud Lake. Spatial patterns of 

sediment deposition may affect Mud Lake flows and habitat; prediction of those patterns 

should help refuge managers predict water quality constituents and spatial distribution of 

fine sediment.This will help sustain the purposes of Mud Lake as a habitat and migratory 

station for species. 

The main objective of the research is the development of Multivariate Relevant 

Vector Machine (MVRVM) to predict suspended fine sediment and water quality 

constituents, and to provide an understanding for the practical problem of determining the 

amount of data required for the MVRVM. MVRVM isa statistical learning algorithm that 

is based on Bayes theory.It has been widely used to predict patterns in hydrological 
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systems and other fields. This research represents the first known attempt to use a 

MVRVM approach to predict transport of very fine sediment andwater quality 

constituents in a complex natural system.  

The results demonstrate the ability of the MVRVM to capture and predict the 

underlying patterns in data.Also careful construction of the experimental design for data 

collection can lead the Relevant Vectors (RVs is a subset of training observation which 

carries significant information that is used for prediction) to show locations of significant 

patterns.  

The predictions of water quality constituents will be of potential value to US Fish 

and Wildlife refuge managers in making decisions for operation and management in the 

case of Mud Lake based on their objectives, and will lead the way for scientists to expand 

the use of the MVRVM for modeling of suspended fine sediment and water quality in 

complex natural systems. 

(103 pages) 
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PUBLIC ABSTRACT 
 

Hussein Batt 
 
 

The main objective of the research is the development of Multivariate Relevant 

Vector Machine (MVRVM) to predict suspended fine sediment, water quality 

constituents, and provide an understanding for the practical problem of determining the 

amount of data required for the MVRVM. MVRVM is a statistical learning algorithm 

that is based on Bayes theory. It has been widely used to predict patterns in hydrological 

systems and other fields. This research represents the first known attempt to use a 

MVRVM approach to predict transport of very fine sediment and water quality 

constituents in a complex natural system.  

The results demonstrate the ability of the MVRVM to capture and predict the 

underlying patterns in data. Also careful construction of the experimental design for data 

collection can lead the Relevant Vectors (RVs is a subset of training observation which 

carry significant information that is used for prediction) to show locations of significant 

patterns. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 General Introduction 
 

Wetlands are partially or fully covered with water during much of the year. 

Historically wetlands were thought of as wasted areas that can be utilized for agricultural 

activities; thus they were commonly drained [US EPA, 2010]. As a consequence of 

draining wetlands, various species became extinct (e.g. giant Mekong cat fish). As a 

matter of fact wetlands provide great benefits nationwide, they function as: 1-flood 

control in coastal areas by forcing water passing through it to slow and thus decrease 

damage to surrounding areas; 2-when wetlands are flooded with water, their roots and 

stems act as sediment traps providing a protection to downstream water bodies; 3-

wetlands vegetation function as a giant kidney filtering water from impurities, chemicals 

and nutrients often attached to sediment; 4-wetlands provide vital habitat for many 

endangered species; about 35% of all animals and plants listed as endangered either 

depend on wetlands or live on wetlands; 5-land thick vegetation and associated 

invertebrate provides a source of food for fish and important rearing habitat for many 

species, as well as migration stations for other species; and6-wetlands also provide 

recreationalopportunities thus contribute to the economy of the country[US EPA, 2010]. 

[Deknijf, 2010] mentioned that the Mud Lake Unit is a part of Bear Lake National 

Wildlife Refuge located in the southern part of Idaho, which is managed by the US Fish 

and Wildlife Service[see Appendix C]. The refuge was established in 1968 for the 

purpose of protecting and managing the habitat of migratory birds. The refuge is a 
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nesting area for white faced ibis, herons, egrets, gulls, terns, grebes, ducks, and geese. 

Mud Lake consists of wetland and open water; Mud lake functions as: 1-sediment trap to 

water flowing from the Bear River, thus protecting the Bear Lake; 2-it provides a habitat 

to migrating species, and habitat for numerous resident species; 3-the vegetation acts as a 

filter for sediment flowing into Mud lake with nutrients; 4-irrigation source for farmers. 

[Deknijf, 2010] raised concerns about issues needing to be addressed in the refuge 

as: 1-should the public access to Mud Lake be reduced or eliminated? 2-what are the best 

means to attain productive habitat for wildlife? 3-how can water quality of the refuge be 

improved?  

The concerns of the refuge manager were one of the motives behind this study 

[Deknijf, 2010]. However these were not the only major challenges that were recognized 

in MudLake, which functions as a complex natural system with fine sediment flowing 

into it [see Appendix C]. As a consequence we are trying to identify an appropriate 

methodology for modeling the pattern (spatial and temporal) of suspended fine sediment 

transported in Mud Lake.  

Well known techniques used to study sediment transport are: 1-indired methods 

for sediment transport based on grain size distributions (e.g. Einstein method, Yang 

method, and Toffaleti method) [Garcia, 2002] where the total sediment load is calculated 

through the bed load and suspended load function. 2-direct methods for determining total 

sediment load based on the stream power [Garcia, 2002].However as will be detailed 

below the suspended sediment flowing in our case is characterized by being very fine, 

which is difficult, both theoretically and practically, to model by the previously 

mentioned techniques. 
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In this research, the statistical learning tool MVRVM is considered as an 

alternative to the previously mentioned techniques. These statistical learning tools are 

data driven algorithms that rely on patterns in data to create a framework for prediction. 

However as we will demonstrate in the next chapter ANN, and SVM require large 

amounts of data. RVM is characterized by the ability to capture the hidden relationships 

among variables using only a few observations. Thus it is proposed as a modeling 

algorithm for this study, which will help also in evaluating options and making decisions. 

 
1.2 Research Motivation 
 

This research is motivated by a number of factors: 

1- The effects of operation scenarios of Mud Lake should be considered since the 

habitat of some endangered species relies on the quality of water within MudLake 

and changes in operation may result in loss of habitat. 

2- The spatial distribution of sediment in Mud Lake is not well understood. This 

uncertainty may contribute to filling MudLake with sediment in the near future 

[BLWAMM, 2009]. 

3- Mud Lake is used as a sediment trap for water flowing from the Bear River into 

Bear Lake; however studying the sediment circulating in different zones of 

MudLake and its concentration has not been reported. 

4- Sediment carries various nutrients (e.g. phosphorous) which create a concern 

about its accumulation. 

5- The concern related to the fluctuations of water quality constituents which can 

affect the ecosystem. 
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6- Given the complexity of Mud Lake, there is a need to develop a framework to 

predict the spatialfine suspended sediment distribution, and water quality 

constituents that can be used by the refuge managers to address their concerns. 

7- A novel machine learning method the Multi Variate Relevance Vector Machine 

(MVRVM) hasnot been explored yet to model very fine sediment transport in 

estuaries and lakes. 

 
1.3 Research Contribution 
 

The proposed research is expected to contribute to the literature of the RVM and 

suspended fine sediment transport by using the MVRVM algorithm for the first time to 

model acomplex natural system as: 

 Model the spatial distribution of suspended fine sediment in a complex natural 

system using Mud Lake as a case study. 

 Model selected water quality constituents in the natural system. 

 Demonstrate how the RVs can help decision makers understand the practical 

problems of how much data are sufficient to support this class of model.  

Success in the above mentioned tasks can spawn research that focuses on the 

spatial distribution and fate of contaminants attached to sediment particles, and the effect 

of operationalscenarioson the dynamics of water quality constituent concentrations. 

 
1.4 Organization of the Dissertation 
 

The dissertation consists of five chapters. The first chapter is a general 

introduction to the problems in the Mud Lake Unit, as well as the concerns of the refuge 
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managers. This chapter also contains the motivation and contribution of this research to 

the literature. 

In Chapter 2 we demonstrate the previous techniques that have been used to 

model suspended fine sediment transport and the limitations of these techniques. It will 

provide a brief review of the statistical learning tools and why the RVM is considered for 

the study. We will present the data collected in Mud Lake (for the different constituents 

e.g. DO, pH, Temperature, Turbidity, TSS) to serve the primary question addressed in the 

research: what is the driving force of the change of the dynamics of sediments and water 

quality constituents inMud Lake, and the methodology that was used to select the 

sampling locationsand how often the data were collected. We will show the different 

patterns of time series for the observations and their importance on water quality 

measures and model selection. This chapter also describes the main water quality 

constituents and the associated range for survival of key aquatic life, and whether the 

collected observations were outside this range. And thus raises a concern on creating a 

model to predict these constituents. 

The Chapter 3 details development of the statistical learning tools, and basis for 

the selection of the MVRVM [Tipping, 2001]. We demonstrate in this chapter the results 

from the MVRVM model, the range of observations for each sample location, and tested 

water quality constituents, and their errors (prediction errors and not sampling errors) at 

these locations. We will discuss why the observed patterns in the data exist. 

The Chapter 4addresses whether the arrangement of the observations as a time 

series helped to resolve the issue of how much data are really needed to carry out in this 

class of modeling. We demonstrate the number of the selected RVs for each water quality 
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constituent tested, and the location for each of these RVs in the natural system and over 

time. We will explain how the significance of these selected locations affects the collection 

of observations for water quality constituents in Mud Lake.  

Chapter 5 is an overall summary of and conclusions from the findings of this 

research and recommendations for future research in both Mud Lake and the sediment 

transport field. 

This dissertation is formatted as a multi-paper dissertation format. Thus some 

repetition has occurred in the demonstration of the RVM algorithm structure. 

 
References 
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2012) 
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ASCE 0-7844-0814-9. 

 
Tipping, M.E., (2001), Sparse Bayesian learning and the Relevance vector machine. J. 

Machine Learning Res., l(3): 211-244. 
http://mi.eng.cam.ac.uk/~at315/MVRVM.htm 
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CHAPTER 2 
 

RELEVANCE VECTOR MACHINE MODELS OF VERY FINE SEDIMENT 

TRANSPORT IN A SHALLOW LAKE – I. DATA COLLECTION 

 
Abstract 
 

Mud Lake is a part of wildlife refuge located in the southern part of Idaho and is 

operated by PacifiCorp. Mud Lake is used as a sediment trap for the water flowing from 

the Bear River into Bear Lake; however the model development for predicting different 

seasonal operations and its effect on sediment circulating in different zones of Mud Lake 

and its concentration has not been accomplished yet. These reasons combined with the 

facts: 1-some parts of Mud Lake might fill up with sediments, 2-sediment carries various 

nutrients (phosphorous) which create a concern about its accumulation, and 3-the system 

has complicated hydrodynamics and biological characteristics were the motive behind 

this study which will be based on developing a model to predict suspended fine sediment 

and its spatial distribution.  

In this study we propose the RVM as an approach for predicting the total 

suspended solids, water quality measures and sediment transport within Mud Lake. In 

Chapter 2, we describe an experimental design for the collection of turbidity, total 

suspended solids, hydraulic parameters, hydrodynamic model output as inputs to select 

the relevant parameters for the RVM model; and determine whether these data have 

characteristics that lend themselves to modeling with RVM. In Chapter 3, we describe the 

RVM approach and apply it to the data from Mud Lake.  
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2.1Introduction to Problems Facing the Study of Sediment Transport 
 

Management of sediment and its effect on water quality and habitat is an 

important problem for resource managers. Tools for predicting sediment dynamics with 

accuracy required for management are limited and often require large amounts of data 

that are typically not available for most water bodies. New tools are needed for accurate 

assessment of sediment dynamics with limited data. 

Sediment transport and deposition in water bodies depends on factors such as 

flow, velocity, and sediment characteristics [Garcia, 2002]. Two categoriesof sediment 

are transported inflowing water: 1- bed load, consisting of larger particles eroded from 

the water body’s bed and 2- wash load, consisting of fine material coming from the 

banks, the watershed, overland flow, and bed [Garcia, 2002].When a stream approaches 

a relatively quiescent water body, such as a lake or estuary, flow characteristics generally 

change as the gradient decreases and the stream widens and deepens [Garcia, 2002]. The 

increase in cross sectional area and decrease in flow velocity often result in significant 

amounts of sediment deposition.  

 
2.1.1 PhysicsDriven Methods  
 

Recentresearch concerning transport of various grain size classes has focused 

mainly on the hydrodynamic conditions of the rivers; where the transport potential of 

sediment sizes is based on momentum balances on one grain size or grain size 

distributions (e.g. Einstein method, Yang method, and Toffaleti method) [Garcia, 2002]. 

The use of the physics driven models requires complete information about grain size 

distribution, sediment density, fluid properties, and hydraulic conditions;however this use 
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of particle size is unsatisfactory in fine sediment-dominated systems because models 

generally perform poorly for very fine sediment sizes [Jain, 2001; Nagy, 2002; Sen, 

2004].  

Other calculation techniques for sediment load include: 1-Reservoir survey: this 

technique is used by calculating the volumetric sediment deposit in the reservoir and 

continuous monitoring of the sediment discharged into the system [Odhiambo and Boss, 

2004]; 2- Fluvial Data [Guy and Norman, 1970]: A sediment rating curve is computed 

over a range of discharges to relate the sediment concentration and the flow. The 

resulting relationship usually exhibits scatter varying over two orders of magnitude at a 

given discharge. The use of sediment discharge rating curves can be applied if the data 

used by the curves were collected over years through several flood events, a major 

limitation in many systems. 

 
2.1.2DataDriven (Statistical) Methods 
 

Statistical learning tools, developed recently to represent complex patterns in data 

by assemblies of simple functions, have been used to estimate sediment concentration in 

water bodies by a number of researchers [Dogan et al., 2007;Jain, 2001;Nagy, 2002], and 

combining these estimates with flow data to produce estimates of the sediment yield. 

Three of these methods are artificial neural networks support vector machines, and multi-

variate relevance vector machines (MVRVM). 
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2.1.2.1 Artificial Neural Network (ANN) 

Neural networks were developed by analogy to the human brain in which 

complexity is achieved through selective interconnection of larger numbers of neurons 

that modify inputs to produce desired outputs.  

The neural network consists of an input layer, a hidden layer or layers, and an 

output layer. The input layer, representing the collection of data, simply passes inputs to 

the hidden layer for processing. The hidden middle layer (or layers) is where the neurons 

are interconnected and assigned weights to control the passing signal. The ANN 

algorithm modifies the network by adjusting the weights in the hidden layer to alter the 

outputs. Finally, the output layer simply collects the modified inputs to produce results 

for comparison with observations. The ANN is characterized by fast computational time 

compared with physics based models. 

In the past few decades ANNs, such as the multilayer back propagation neural 

network, have been widely used in various applications concerned with the study of 

sediment transport, and estimation of sediment load. However there are disadvantages to 

the use of the ANN algorithm, namely that traditional ANNs can get trapped in local 

minima, suggesting that the ANN may not be producing unique results. [Doganet al., 

2007] mentioned that because of this disadvantage newer training algorithms have been 

developed. One of these algorithms is support vector machines (SVM). 

 
2.1.2.2 Support Vector Machine (SVM) 
 

A second statistical learning approach, SVMs, is used for classification and 

regression. The SVM algorithm is based on separation between levels of input values; 
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thus if the levels are distinct, the SVM selects a model that minimizes the error; by 

locating data groups or support vectors that maximize the gaps between data levels 

Where the data levels are non-distinct the SVM tries to find the plane that maximizes the 

data level gaps while minimizing the error. This can be achieved by projecting the inputs 

into a higher dimensional feature space to formulate a linear classification. 

 
2.1.2.3 Relevance Vector Machine 
 

Vapnik[1995]and Tipping[2001] suggested that the SVM suffers from limitations: 

1- SVM makes excessive use of the kernel function requiring the number of required 

observations to grow for training the model; 2- estimation of error/margin parameter 

using cross-validation is an extra step in the analysis. He introduced the MVRVM as a 

new algorithm based on a Bayesian approach that does not suffer from the limitations of 

SVM and requires many fewer kernel functions. The MVRVM algorithm adopts a 

Bayesian learning technique, which introduces a probabilistic framework for the selection 

of important information used for training the algorithm. 

Developed for pattern recognition, the MVRVM is a relatively new approach that 

has not been used widely in modeling suspended fine sediment that occurs in many 

natural environmental systems [Dogan et al., 2007]. Given its inherent ability to 

recognize patterns and the presence of consistent patterns in space and time for water 

quality constituents and suspended fine sediment, the MVRVM was considered as an 

approach to model water quality constituents, andfine suspended sediment patterns in a 

wetland lake in southeast Idaho, USA. 
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The MVRVM was considered in this research for using the patterns of velocity, 

turbidity and water quality as an alternative to physics based models to address a practical 

problem of designing an efficient monitoring system for suspended fine sediment, and 

water quality constituentsto better serve the management objectives 

 
2.2 The Study Area and Challenges 

 
The study area, Mud Lake, with a surface area of approximately 20 km2, is 

located three miles north of the towns of Montpelier and Paris in southeast Idaho [Figure 

2-1] and, since 1911, has served as a sediment trap and filter for waters from the Bear 

River flowing into Bear Lake, immediately to the south, as well as a refuge for migratory 

birds. Prior to 1911, the flow to the lake consisted mainly of overflows from Bear Lake 

and surrounding creeks [BLWAMM, 2005].  The quality of nesting habitat for ducks and 

waterfowl has been observed to be in an inverse relationship with the turbidity in Mud 

Lake which affects the vegetation growth that is used for nesting and source of food 

[Bjornn, 1989].In 1911, Bear Lake was converted to a storage reservoir for flows from 

the Bear River, turning Mud Lake into a conveyance area between the sediment-laden 

Bear River and relatively sediment-free Bear Lake. Currently, when water is required for 

irrigation at the end of the summer, water is pumped from Bear Lake into Mud Lake, and 

then conveyed via Paris Dike to farmers [see Figure 2-1] [BLWAMM, 2005]. 

Although Mud Lake has never been assessed for the US EPA 303(d) list, this 

situation might change in the next few years without proper flow and sedimentation 

management and control [ADIMLW, 2002]. Mud Lake and Dingle Marsh (just north of 

Paris Dike, see Figure 2-1) became a part of the U.S. National Wildlife Refuge System in 
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1986. Accordingly, parts of the marsh were dredged in order to better control water 

levels, and enhance conveyance of water [BLWAMM, 2005]. The Causeway that 

separates Mud Lake and Bear Lake was accidently breached in 1993, resulting in large 

amounts of sediment and sediment-associated nutrients being transported to Bear Lake, 

with the potential to affect water quality [BLWAMM, 2005]. 

 The current flow management strategy in Mud Lake is controlled for hydropower 

production. During spring runoff the flow is diverted from the Bear River into the 

Rainbow Canal and Mud Lake. At the end of the summer when river flow is not 

sufficient for irrigation purposes the water is pumped from Bear Lake back into Mud 

Lake from which it flows into a discharge canal and back into the Bear River or into 

irrigation canals. This flow management strategy contributes to movement of sediment 

through the system but details of the fate of sediment as it flows through the parts of Mud 

Lake are unknown. 

The complexity of flow management and the spatial distribution of suspended 

fine sediments in light of the complex hydrodynamics within Mud Lake, or any similar 

shallow impoundment, require attention to spatial and temporal patterns in the data. 

Zicari[2010] notes that “patterns of data modeling are very important. They enable data 

modeling efforts to be both effective and efficient. Working without patterns is like 

wandering around in the data wilderness trying to find your way”. 
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2.3Objectives and Experimental Design 
 
 
2.3.1 Objectives 
 

The operation of the lake produces the patterns required for the MVRVM model 

to predict the proposed modeled constituents. Thus, the objectives of this research areto: 

1- evaluate the use of an MVRVM modeling approach and assessits efficacy in a 

complex hydraulic systemwith limited observations to model suspended fine sediment 

and water quality constituents. 2- Expand the use of the MVRVMfor thehydraulics and 

suspended fine sediment dynamicswithout the need of developing physics-based models. 

3- Verify that the collected data embody patterns that are required for effective use of the 

MVRVM. 4- Demonstrate that the data from the 30 locationsare sufficient to capture the 

needed patternsresulting from operational time based management of the lake [see 

Appendix A]. 

In this study, we describe an experimental programfor the collection of 

topographic and hydraulic data, turbidity, total suspended solids and other water quality 

constituent data, and the production of hydrodynamic model output, as inputs to select 

the relevant MVRVM model parameters. A second chapter provides model details and 

demonstrates the use of the MVRVM for the Mud Lake case study. 

However it is possible to foresee several challenges in studying Mud Lake and 

similar systems: 

1. The flow in Mud Lake is controlled by a private third party where the flow is 

estimated based on daily average of recorded gate flow. 
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2. Absence of velocity data inventory- such data allow identifying ways the 

sediment is flowing and potentially depositing into different locations of the lake. 

3. Flow management - the effects of changing flow management strategy should be 

considered since the habitat of ducks and waterfowl relies on the quality of water 

within Mud Lake and changes in operation can result of loss of habitat [Bjornn, 

1989]. 

4. Sediment distribution - the spatial distribution fine sediment deposited in Mud 

Lake is unknown. This may contribute to filling some parts of the lake with 

sediment in the near future and limiting its usefulness as a refuge [BLWAMM, 

2005]. 

5. The flow management in the lake by the third party is the driving force for 

patterns of all constituents in the Lake. 

To meet the challenges created by complex natural system and achieve the 

objectives of our study the following steps were taken: 

1. Select monitoring locations: Preliminary sampling revealed that the changes of 

hydraulic properties in the lake couldbe modeledby creating sampling locations that 

can trackall the constituents’range of change. Thirty locations are considered for 

modeling and sampling. These locations are proposed to be sufficient to track the 

suspended fine sediment circulating in Mud Lake. 

2. Identification of patterns: Patterns will be sought for the water quality measures and 

suspended fine sediment at all the selected locations. 
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3. Examine flow scenarios: Study of various flow scenarios combined with the 

transported suspended sediment will give a better understanding of the amount of 

sediment and water quality constituents in different locations in Mud Lake. 

4. Create velocity inputs: A variety of flow scenarios are modeled to understand how 

the water flow is routed through Mud Lake.The MVRVM model required flow 

velocities at each of the 30 locations, however, the collection of velocity vector 

observations was found to time consuming compared to collection of other water 

quality constituents, and, moreover, most of the observations were below detection 

limit, thus we used amechanistic two dimensional hydrodynamic model, CCHE2D 

[Zhang, 2001], to provide estimates of velocity vectors for each location to use as 

input for the MVRVM model. The collection for 30 locations over 2 days showed 

that the observation were above the detection limit only in 7 locations. 

 
2.3.2 Experimental design 
 

The study aims to collect and evaluate hydraulic, sediment-related, and water 

quality data to support the MVRVM modeling approach in the shallow, natural but highly 

managed Mud Lake. The MVRVM approach has essentially two requirements. First the 

data must be of a nature to capture the nuances of sediment and other water quality 

constituents; and second the datamust be available in sufficient quantities that the 

MVRVM algorithm can discover those data that capture model-relevant information 

(relevant vectors) but exclude data that have little information content or are highly 

correlated with data that are retained by the MVRVM. 
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Special metadata (geographic data, and field data) werecollected to clarify the 

nature of Mud Lake, in addition to the sediment and water quality data to construct the 

MVRVM model. 

 
2.3.2.1 Geographic and field data. 
 
 1- GIS coordinates for identifyingthe sampling locations within the lake. The data from 

these locations will serve in both the training and the predictions step of the MVRVM 

model. 

 2-Mud Lake boundaries using aerial photographs to assist in identifying various features 

within Mud Lake, such as inflows, vegetation location, and water pathways. 

 3-Bathymetry and cross-section data using a Garmin Echo 500c ultrasonic depth 

sounder to be used as input to the development of the hydraulic modeling. (Star Marine 

Depot Inc, Coral Springs, FL). 

 4-Flow andvelocity profile observation data were collected for the thirty locations twice 

during summer 2009 [FLO-MATE Model 2000 Flowline Manufacturing Ltd, UK].These 

data are used in calibrating the hydrodynamic model to generate velocity vector estimates 

for each location. The importance of these data is because flow and other hydraulic data 

were not available in real timeor historically. 

 
2.3.2.2 Sediment/ water quality 
 

The study of the fine sediment transport phenomena requires the study of the 

suspended load data. Thesedata wereobtained by weekly samplingduring the ice-free 

periodsof 2009 and 2010. Total suspended solids (TSS) samples were collected at mid-

depth using a Niskin type sampler (General Oceanic Inc., Miami,FL), and TSS 
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concentrations were measured at the Utah Water Research Laboratory following the 

procedure based on the US EPA Method 160.2 at all 30 sampling locations and Standard 

Methods 2540.D to determinethe TSS concentration. A Hydrolab Sonde series MS 5 

(Hach Company, Loveland, CO) was used to measurethe water quality constituents: 

turbidity, pH, temperature, and dissolved oxygen [see Appendix B]. All data were 

recorded in a field book, and then transferred to and saved in Microsoft Excel spread 

sheets (Microsoft Inc., Redmond, WA).Statistical analysis was carried outusing the R 

statistics package [Ihaka and Gentleman, 1996].For quality control purposes we collected 

duplicate TSS samples for 3 random locations during every field trip. 

 
2.4Field Results and Discussion 
 

The bathymetry data [Figure 2-1b](used for developing the hydrodynamic 

model)revealed that Mud Lake depth ranged between 0.5 to 2 meters. The study area is 

characterized by complicated hydraulics. The flow data [see Table 2-1] reveals that there 

are 2 main operating scenarios. The first is during the spring runoff season during which 

the water flows from the Bear River via Rainbow Canal [see Figure 2-1] throughthe lake 

and sometimes continuing into Bear Lake. The second is during the late summer period 

when water is pumped from Bear Lake backinto Mud Lake to satisfy 

downstreamirrigation requirements when the Bear River flow is not high enough to meet 

irrigation demand. 

 
2.4.1 Assessment of water quality in Mud Lake 
 

Dissolved Oxygen (DO):The dissolved oxygen minimum for most aquatic life is 

5 to 6 mg/l [DEQ, 2011]. Constant oxygen concentration in water is optimalfor survival 
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of aquatic life[CEES, 2005].Fluctuationsof DO levels can result from aquatic vegetation 

photosynthesis and respiration. Systems can lose DO due to decomposition of organic 

matter by bacteria and chemical reactions consuming oxygen, and low levels of DO can 

stress aquatic organisms and cause mortality[CEES, 2005]. The levels of DO within Mud 

Lake were generally above the level for aquatic life; however a small number 

ofobservations were recorded below the minimum in station 10 through 13 in Zone 1 

where Bear river flows into Mud Lake which raise questions of whether Mud Lake is 

fully supporting aquatic life. 

pH: The pH controls many chemical and biological processes in aquatic systems. 

The survival of aquatic organisms and health of an ecosystem require a specific range of 

pH (6.5 to 9.0 [DEQ, 2011]) because aquatic organisms are tolerant to a very narrow 

range around neutralpH. High pH can result from algae and aquatic vegetation using CO2 

for photosynthesis. Low pH, caused by respiration of the same organisms, can mobilize 

many toxic chemicals, particularly heavy metals, to become available for uptake by 

aquatic plants and animals, creating the potential for toxic conditions foraquatic life 

[CEES, 2005]. Although the pH in Mud Lake was generally between 6.5 and 9, 

occasionally the pH fluctuated outside that range especially inZone 3 where the water is 

clear and plant density is high. 

Water Temperature: Aquatic organisms are adapted to specific temperature 

ranges for growth and survival; when temperature is outside the range for prolonged 

periods of time it can cause stress or death for aquatic organisms [CEES, 2005]. Water 

temperature also influences the dissolved oxygen saturation available in water that 

strongly affects many aquatic organisms. The Bull Trout standard for the state of Idaho is 
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9 degree Celsius during spawning time [DEQ, 2011]). The temperature range in Mud 

Lake varied from freezing to 25 oC [see Figure 2-3] shows that during April the 

temperature conditions are adequate for the Bull Trout spawning at all stations. 

Turbidity and sediment: Increased sediment transport into water bodies has an 

impact on quality of ecosystem required for the survival of inhabiting species [Schubel, 

1977]. Turbidity can reduce the amount of light entering the water column thus decrease 

photosynthesis from aquatic plants. Nutrients, particularly phosphorus, can adsorb onto 

sediment particles [Bjornn, 1989], thus the spatial distribution of fine sediment is of great 

importance to determine the fate of nutrients [Schubel, 1977]. Sedimentcan disrupt food 

production dynamics through decreased predator success with respect to prey survival. 

[Moore, 1977;Simenstad, 1990;Coen, 1995]. In the case of Mud Lake the turbidity ranged 

from 0 NTU to 357 NTU (DEQ guidelines for turbidity are given as the background 

turbidity + 50 NTU, [DEQ, 2011]). [Figure 2-3] shows that from October through the 

beginning of the runoff season the turbidity is within the DEQ acceptable range, while 

during the rest of the year the turbidity was often above 50 NTU. The analysis of the TSS 

duplicate samples showed thatpooled standard deviation was 0.5%. 

Velocity vector magnitude: Velocity is the driving force responsible for 

determining the fate and transport of sediment through the lake. Sediment may 

alsocarryattached nutrients and could affect the levels of DO by transporting suspended 

fine sediment that may inhibitphotosynthesis; pH, modified by growth of algae caused by 

nutrients may also be affected. Because of their small magnitude, velocities were not as 

thoroughly quantified as the water quality constituents, the results from the 

hydrodynamic model [Figure 2-3] showed that more than 90% of the velocity magnitudes 
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are below the detection limit However, the velocity magnitudes were higher in Zone 1 

and decreased to near zero through Zone 3. 

However collection of velocity observations proved difficult due to the small 

magnitude of the observed velocities, which were usually below the detection limit of the 

velocity instrumentation.As an alternative, the flow direction was observedindirectly in 

the field trips by notingthe direction of the wake around on the current meter rod inserted 

in the flow stream. 

 
2.4.2 Suitability of observations to the RVM 
 

On the basis of our preliminary field observations, it was determined [see Figure 

2-1] that Mud Lake could be logically divided into three zones, based on location and 

onobserved hydraulic and water quality similarities, as mentioned previously. 

Observations at some locations may be expected to be different than at other locations, 

due to ecological conditions observed during data collection that might affect the 

modeling results. Some locations, especially in Zone 3, had aquatic vegetation and algae 

that canaffect the DO and pH observations and, since the observations reported here were 

taken during daylight, the DO and pH might be expected to be somewhat higher than the 

average over the day. Also, attimes, local rain during the time surrounding the sampling 

eventat some Mud Lake locations could dilute the constituents in the lake waterand 

change the collected data significantly. 

Zone 1 is characterized as a network of canals and provides the source for 

sediment into Mud Lake. Some parts of this zone are very shallow due to historical 

sediment deposition; during sampling we observed that channels have been dredged, 
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presumably to promote flow from the Rainbow Canal toward the irrigation canal and to 

distribute flow and sediment through all of Mud Lake [Bjornn, 1989]. This zone is clear 

ofvegetation in its water ways but vegetated between channels.  

Zone 2 is near the center of Mud Lake withpatchy vegetation; transition between 

turbid and clear water takes place in this zone. The vegetation is low density 

rootedvegetation (approximately 0.2 meter height), which may affect the pH and DO 

observations 

Zone 3 is filled with rootedvegetation, often emergent, (>approximately 0.2 m 

height) at the majority of locations.The DO and pH increase significantly relative to 

Zones 1 and 2, likely due to photosynthetic activity during the daytime sampling. Zone 3 

is characterized by extremely low velocities especially in the east; thus providing an 

opportunity for the fine sediment to settle, and leading to low TSS and turbidity.  

Pattern type I [see Figure 2-2 and 2-3] Temperature is characterized consistent 

percentile ranges for observations at all the locations: the temperature pattern didn’t vary 

significantly from Zone 1 to Zone 3. 

Pattern type II [see Figure 2-2 and 2-3] pH and DO are characterized by change in the 

percentile range of observations across locations, especially in the third Zone3 where 

there is an increase of vegetation and algae; which increases the pH and DO observations 

relative to Zone 2. This was expected due to the presence of small amounts of vegetation 

in Zone 2 compared with Zone 3 where the vegetation was denser. 

Pattern type III [see Figure 2-2 and 2-3](described by the Turbidity, TSS, and velocity 

magnitude) is described by a variable range of change for percentiles in Zones 1 and 2and 

then drop to near zero in the Zone 3. The turbidity is related to the TSS; however the 
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accuracy of measuring turbidity is higher. TSS is heterogeneous and during collection of 

grab samples we might capture clumps of sediment in either the sample or the smaller 

portion taken for filtering, which does not represent the whole water. These problems 

lead to errors in observing TSS as high as 10-20%. 

The observations [see Figures 2-2 and 2-3] support the presence of repeated 

patterns (the observations in every location with respect to time acts in an arrangement of 

repeated features) for all locations. These patterns follow the water quality measures (an 

example of this overall pattern is illustrated in [see Figure 2-4]), thus the time serieswere 

used to represent the data during the ice-free periods for the three zones [see Figure 2-3]. 

The general similarity among observations in each zone suggests that the MVRVM 

model, for which a subset of the observations is selected for model fitting, should have 

sufficient data for accurate representation of the variables at each sampling location. 

 
2.5 Conclusion  
 

The review of previous modeling efforts used for sediment transport emphasizes 

the conclusion that these models are less suitable to simulate the spatial sediment 

distribution because of the fine sediment nature of Mud Lake and low in-lake velocity. It 

was also demonstrated that the data collected embody patterns that can be useful for the 

use of the MVRVM, to capture the patterns resulting from time based operation and 

management of the lake. The operation of the lake caused the presence of these patterns 

for the proposed modeled constituents. 

The collected observations show distinct patterns with respect to the flow 

conditions at each location and also it reveals that some of the observations were outside 
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the range designated by the Idaho Department of Environmental Quality that supports 

aquatic growth [DEQ, 2011]. Even though we have large number of observations, 

experience has shown they are insufficient to support use of ANN or SVM models.We 

hypothesize that the data set is more than adequate for modeling using the MVRVM [Batt 

and Stevens, 2012]. As will be seen in the next chapter, the MVRVM shows promise in 

modeling systems with complex patterns not only in hydraulics but also for modeling 

water quality constituents. 
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Table 2-1.Operation scenarios used in Mud Lake as: Inflows and outflows in Mud 
Lake measured by PacifiCorp in Rainbow Canal, farmers irrigation canal, 
Causeway, and Lifton. The two colors of cells represent different operation 
scenario in the Lake. 

 

 
 
Table 2-2.Constituents percentile according to zones in Mud Lake, as (a) DO 

mg/l, (b) pH, (c) Temperature oC, (d) Turbidity NTU, (e) TSS mg/l, (f) 
Velocity cm/s 

  

Day Rainbow Irrig. farmers Causeway Lifton
6/3/2009 919 5 983 0

7/13/2009 800 986 0 360
7/30/2009 168 645 0 675
8/11/2009 144 424 0 360
8/14/2009 144 551 0 720
8/19/2009 207 571 0 345
9/2/2009 152 406 0 340

9/10/2009 140 328 0 340
9/19/2009 64 84 0 0

10/23/2009 220 5 131 0
10/29/2009 185 5 131 0
11/2/2009 255 744 0 426
11/5/2009 256 194 0 0

11/12/2009 240 5 219 0
4/29/2010 200 5 219 0
5/19/2010 50 5 44 0
5/21/2010 135 5 44 0
5/28/2010 90 5 132 0
6/4/2010 160 5 132 0

6/11/2010 950 5 967 0
6/18/2010 2050 5 2050 0
6/28/2010 857 1156 0 378
7/9/2010 485 708 0 1060

Flows location cfs

Min 25 
Percentile

50 
Percentile

75 
Percentile Max

Zone 1 4.92 7.44 8.11 9.33 11.48

Zone 2 4.48 6.81 7.88 9.35 11.19

Zone 3 5.95 8.21 9.01 10.37 14.63

Zone 1 6.35 7.98 8.12 8.26 8.95

Zone 2 7.74 8.17 8.33 8.56 9.12

Zone 3 5.22 8.32 8.62 9.07 10.18

Zone 1 1.46 7.20 14.27 17.93 23.81

Zone 2 1.41 7.91 14.88 18.82 25.01

Zone 3 0.97 8.19 15.07 19.28 25.56

Zone 1 0 14.67 27.67 52.00 170.67

Zone 2 0 10.67 17.00 34.33 108.67

Zone 3 0 3.33 6.00 10.67 100.00

Zone 1 0 19.38 49.75 94.55 357.30

Zone 2 0 13.50 29.15 60.20 175.30

Zone 3 0 0 2.95 14.48 78.40

Zone 1 0 1.72 5.22 10.73 55.11

Zone 2 0 0.07 0.40 3.14 91.64

Zone 3 0 0 0.01 2.22 156.66

Velocity 
magnitude 2% 

+ 1.5 cm/s

DO + 0.2 mg/l 

pH + 0.2

Temperature.  
+ 0.1 Celcius

TSS + 15% 
mg/l

Turbidity +
3% NTU
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Figure 2-1.Mud Lake map as (a) Bathymetry (b) Sampling locations and zones 
(the dots mark the sample locations of change of hydraulics). 
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Figure 2-2.Box-whisker plots of collected observations in the thirty locations of 

Mud Lake during 2009-2010 as (a) DO mg/l, (b) pH, Standard Units, (c) 
Temperature oC, (d) Turbidity NTU, (e) TSS mg/l, (f) Velocity cm/s. 
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Figure 2-3.Time series observations in the thirty locations of Mud Lake during 

2009-2010 as(a) DO mg/l, (b) pH, Standard Units, (c) Temperature oC, (d) 
Turbidity NTU, (e) TSS mg/l, (f) Velocity cm/s. 
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Figure 2-4.Water quality measures relationship as it occurs in Mud Lake. Each 
curve represents a different sampling date. 
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CHAPTER 3 

CAN SUSPENDED FINE SEDIMENT TRANSPORT IN SHALLOW LAKES BE 

PREDICTED USINGMVRVM WITH LIMITED OBSERVATIONS? 

 
Abstract 
 

The study of sediment transport in water natural bodies is a challenging task. 

There have been several attempts to describe sediment mathematically using hydraulic 

characteristics of water bodies. Most researchers who developed empirical formulas to 

describe sediment transport performed laboratory experiments with assumptions that 

didn’t take into account variation of hydraulic parameters, and fine sediment sizes that is 

part of this phenomenon. Recently, new approaches for studying sediment transport have 

been developed involving the use of machine learning algorithms that have proven 

accuracy and efficiency in predicting sediment transport.  

A novel machine learning method the Multivariate Relevance Vector Machine 

(MVRVM) has yet to be tested to model sediment transport in estuaries and lakes. The 

selection of the MVRVM is due to the presence of very limited field observations which 

present a challenge to use other Statistical learning machines. This Chapter tests the 

success of calibrating the MVRVM model to predict suspended fine sediment transport 

and other environmental measures in the Mud Lake. We demonstrate the training and 

prediction results of turbidity, total suspended solids, pH, DO, and water temperature and 

whether these results would support the use of the MVRVM or not.  
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3.1 Introduction 
 

The amount of sediment carried by river flow or is deposited in a water body 

depends on several factors such as flow rate and sediment characteristics.  Two types of 

sediment are transported by flow: 1- bed load eroded from the water body’s bed and 2- 

the wash load consisting of fine material coming from the banks, the watershed, overload 

flow, and bed. When a stream approaches a lake or estuary, flow characteristics change. 

The sudden increase in cross sectional area and decrease in flow velocity often result in a 

significant amount of sediment deposition. The amount of sediment transport into and out 

of a lake is related to management requirements and beneficial use of the lake which 

might not have taken into consideration the dead storage occupied by the sediment.  

Over the past few decades research concerning transport of various grain size 

classes in rivers focused mainly on the hydrodynamic conditions; where the transport 

potential of sediment sizes is based on various formulas that use one grain size or a 

distribution of grain sizes (e.g. Einstein method, Yang method, and Toffaleti method) 

[Garcia, 2002]. Thus the sediment sizes are an important factor in selecting, or creating a 

model. However this use of particle size is considered difficult in shallow lakes and 

natural systems because: 1-the recent models developed in the last few decades perform 

poorly in terms of the very fine sediment sizes that dominate natural systems [Jain, 2001; 

Nagy et al., 2002; Senand Altunkaynak, 2004]. Physics-based sediment transport models 

require detailed information about the temporally and spatially variable physical 

characteristics of the sediment, 2-Alternative modeling approaches using recent advances 

in statistical learning theory show promise in providing predictive capability in such 

cases, 3-often sediment water quality criteria are expressed as the more easily measured 
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turbidity (NTU), models that address sediment particles directly will be less useful for 

management decision making. 

As a result, developing a model to describe the turbidity associated with fine 

sediments discourages consideration of physics-based models which predict sediment 

transport based on sediment physical characteristics rather than indirect measures such as 

turbidity. 

 
3.2 DataDriven (Statistical) Methods  
 

Statistical learning tools algorithms have been used to estimate the sediment 

concentration in different water bodies, and combining these estimates with flow data 

produce estimates of the sediment yield. Other studies have examined statistical learning 

tools to predict the levels of other water quality constituents. Three of these methods are: 

artificial neural networks (ANN), support vector machines (SVM), and relevance vector 

machines (RVM). 

 
3.2.1 Artificial Neural Networks (ANN) 
 

An artificial neural network is a mathematical representation of the human brain, 

and contains billions of neurons that function to recognize patterns, and process data. 

Like the brain, the ANN algorithm is able to adapt as new data become available and 

process information which makes it useful in prediction of sedimentation transport. 

Recent studies related to using ANN in sediment transport have shown success 

compared with traditional, physics-based methods[Jain, 2001] mentioned that it is 

difficult in all cases to find the conventional sediment rating curves sufficiently reliable 

to correctly estimate the mass of sediment transported by rivers. He proposed the use of 
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the three layer feed forward ANN to create and study sediment rating curves. He created 

integrated stage discharge sediment concentration relations for two gauging sites to make 

a comparison with ANN and conventional curve fitting approaches for predicting 

suspended sediment concentration. The artificial neural network showed better results for 

both of the two gauging sites with a one order of magnitude-reduction in the sum of the 

squared errors compared to the conventional curve fitting approach.  

Sen and Altunkaynak,[2004] concluded that the different sediment prediction 

models in practice, which were developed from rational formulations, suffer from having 

their parameters estimated using regression methods from a single historical data set. He 

coupled the ANN with Kalman filtering to model discharge and sediment concentration 

for the Mississippi River Basin. The resulting statistical analysis of his study showed that 

this approach improved the prediction, reducing the residual sum of squares by 50% for 

the loading compared to the regression methods.  

Partal[2008] proposed a different ANN approach to accurately predict the 

suspended sediment loads in streams. His study was divided into two parts: 1- to predict 

sediment load using past data, and 2- to predict the sediment load using daily river flow 

measurements. He coupled normal techniques for forming the ANN with wavelet 

methods (methods that use periodic functions to help capture patterns of data.), and 

mentioned that the input for this model was selected by applying the wavelet 

components. These components helped in deciding the parameters which have large 

effects on the sediment load. From the output it was proven that the coupled wavelet with 

ANN provided a good fit to the observations for the testing period. The results of this 
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research were compared to traditional ANN, to show that the wavelet-ANN approach had 

superior predictions in all cases including the peak estimation of sediment values. 

Despite the advantage of using the ANN indicated above there remains a major 

disadvantage to this algorithm, namely that traditional ANNs can get trapped in local 

minima, suggesting that the “best” ANN models arenot unique,Dogan et al.[2007] 

mentioned that because of this disadvantage newer statistical learning algorithms have 

been developed.  

 
3.2.2 Support Vector Machine (SVM) 
 

SVMs are derived from statistical learning theory and have been used for 

classification and regression. The SVM algorithm is based on separation between input 

data classes to select subsets of training data that contain important information to be 

used for testing. 

Singh et al.[2008] focused on estimation of discharge, and normal depth in a 

trapezoidal channel having various bottom slopes using SVM. He used data from the 

literature collected by Ahmad[2001] and empirical relations suggested by Ahmad[2001] 

and Gupta et al. [1993]. He found that the correlation coefficient to evaluate the 

efficiency of settling basins for all the bed slopes was higher than 0.995 for both 

prediction of discharge and end depth. He suggested the use of SVM to estimate 

discharge instead of the traditional physics-based approaches. 

Lizhong et al.[2007] modeled water quality in lakes using remotely sensed 

images, and support vector machines, finding that the relationships between remote 

sensed image data and water quality parameters are nonlinear. He recommended the use 
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of data driven methods that can accommodate nonlinearity. He attempted the use of ANN 

but due to the limited number of water monitoring stations to provide enough data for 

training ;the iterations would stop at local minima of the loss function (e.g. sum of 

squared errors), and fail to find the optimum parameter set. A Support Vector Machine 

was used for its simple structure and good generalization ability, and its ability to 

perform well in cases of fewer observations than ANN. The results from his study of 

Lake Taihu in China supported his hypothesis for using SVM, outperforming the ANN to 

model the water quality in the lake. 

Misra et al.[2009] focused on simulation of runoff and sediment yield using 

SVM, noting that physical models for computing runoff and sediment yield are complex. 

He modeled the sediment yield from a 7820 km2 watershed in India using data from the 

monsoon period with SVM,concludingthat the SVM predicted the sediment yield and the 

runoff more accurately than using ANNs. 

Goel and Pal[2008] modeled scour, and its effect on a grade control structure 

using both ANN and SVM. He noted that scour was represented by empirical 

relationships based on laboratory/ field experiments on flow, time, material, type of 

structure) that were computed from particular situations. These empirical formulas didnot 

offer a general computational prediction capability that can be applied to all cases.  He 

pointed out that many scholars have started adopting the ANN algorithms to model scour; 

in his research he used the SVM with available data from earlier published studies to 

model the scour and compared the results to those obtained from ANN algorithm with 

feed forward/back propagation.  He recommended the use of the SVM modeling 

approach in modeling scour because it performed statistically better in comparison to 
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both ANN and empirical relationships. Similarly, Singh et al.[2008] studiedsediment 

removal efficiency in settling basins using ANN and SVM and reported that the 

performance of SVM was found to be better statistically compared to the ANN. 

 
3.2.3 Relevance Vector Machine (RVM) 
 

Tipping[2001] found that the SVM suffers from some disadvantages: first,SVM 

makes excessive use of the kernel function thus the number of required observations 

grows with the training set; second, estimation of a trade off error/margin parameter, 

which is accomplished using a cross-validation process (technique used to partition the 

sample data into subsets and performing the analysis using one of the sets and then 

validates the analysis using the other set - this is repeated using different data sets and the 

validation is averaged over all the sets) that is wasteful of data. He introduced the 

Relevance Vector Machine (RVM) as an alternative based on a Bayesian approach, 

which does not suffer from the disadvantages of SVM and requires fewer Kernel 

functions. Tipping explained that the RVM is a probabilistic Sparse Kernel model similar 

to SVM, where the sparsity is achieved when the algorithm identifies only those 

observations that improve the performance of the model. The important difference 

between SVM and RVM is that the RVM method generally requires many fewer 

observations than the SVM to achieve the same degree of predictive accuracy. 

Dogan et al.[2009] mentioned that the RVM is a new algorithm that has not been 

used widely in modeling sediment transport in natural environmental systems. Dogan et 

al.[2009] worked with RVM to estimate sediment concentration time series in streams 

and rivers. He used the data for building his model from a data pool compiled from river 
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bed load of various kinds and sizes in the U.S and Europe,without considering spatial 

distribution of sediment in lakes or rivers.He divided the data randomly into a training 

data set and a model validation data set. He used dimensional analysis to select input 

parameters (based on physics of sediment and hydraulics of rivers) for his model to 

develop the statistical estimation of sediment concentration. He concluded that the use of 

this technique is superior to other methods for sediment concentration prediction; 

however, as with ANN and SVM, it shouldnot be used for prediction outside the range of 

the training data.  

Huang et al.[2008] examined the use of RVM to predict stock indices. Similarly 

to Partal[2008] with ANN, Huang et al. combined the RVM algorithm with wavelet 

techniques to build his model, usingwaveletsto extract patterns from the variables’ time 

series and the extracted features were used as the RVM input to make predictions. The 

RVM/wavelet results were statistically compared with the SVM and other traditional 

methods using (standard deviation, measures of Skewness and Kurtosis), and it was 

found that the use of RVM gave better prediction results. 

Wong et al.[2008] worked on a fully automated emotion recognition system on 

the basis of facial analysis using RVM. His research was based on dividing the 

recognition system into four components (only the first two components were used in his 

research). Using different types of kernels to train his model, his results, using a database 

of facial expression data, showed detection rates of over 96% for different kernels used, 

while the detection rate of less than 51% using a non facial database[recognition of 

objects]. 
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Yuan et al.[2007] used RVM with the cross validation to optimize a seed 

separation process. He used the cross validation process to minimize the approximate 

error of the data. He then compared the results of this model to an SVM model with cross 

validation statistically using the root mean square error (RMSE). The results from the 

statistical analysis supported his approach for the proposed model. 

Silva and Ribeiro[2007] examined the RVM for the purpose of text classification, 

using different types of kernels to help in defining a higher dimensional space. The 

results of the model were compared to Reuters benchmark, and showed performance 

improvement by 10% when compared with a commonly adopted text classification 

benchmark. 

The assessment of theadequacy for supporting aquatic life in the presence of 

sediment in water bodies are often given in terms of turbidity (NTU) [e.g. DEQ, 2011], a 

measure related to the amount of fine sediment in water that aggregates the degree to 

which particulates reflect light over all particle sizes. Physics-based sediment transport 

models require detailed information about the temporally and spatially variable physical 

characteristics of the sediment. Developing a model to describe the turbidity in 

shallowlakesdiscourages consideration of physics-based models which predict 

sedimenttransport based on sediment physical characteristics rather than indirect 

measures such as turbidity. 

The review of the previous methods, the need to verify the ability of data driven 

models to introduce an easy frame work to the public that can model turbidity and other 

water quality constituents without dealing with complex data requirement for physics 
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based models and the water quality criteria requirements, support the exploration of the 

RVM to study very fine sediment using turbidity as a surrogate. 

 
3.3RVM Model Structure  
 

The goal of any model is to provide predictions that faithfully represent the target 

observations with a simple formulation as the observations allow. As discussed 

previously, RVMs are sparse data driven models that use techniques pioneered in pattern 

recognition applications. The RVM adopts a Bayesian approach to learn which 

observations in a data set, x, are key to reproducing the patterns represented by those 

observations, and seeking sparsity by using only those observations that contain 

independent useful information about the process being modeled. 

The RVM model is fitted to a set of target observations of a particular type, n, 

(suspended solids, dissolved oxygen, etc.) by first creating a kernel function, Φ (n) 

(xi
(n),xd,i), that represents both the influence of underlying system drivers xd,i  , and the 

observations for type n, xi
(n) , and defining a set of weights, w, that multiply the kernel 

function. These products are then summed to form the vector of predicted values for 

observation type n. The RVM algorithm then modifies the weights, w, to minimize the 

discrepancy between the observed target values and the corresponding predicted values. 

Sparsity is achieved when one or more of the estimated weights equals zero, indicating 

that the corresponding observations do not significantly improve the model ‐ represented 

mathematically by a matrix with most of the elements equal to zero, while the non‐zero 

elements are used for prediction. The importance of sparsity is to minimize the amount of 
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data required for observations. Once the relevant observation vectors are identified, this 

information can be used to improve the design of future monitoring campaigns. 

Mathematically, the predicted value for the target observations is given by 

y x,w ∑ w Φ , x ,   (3.1) 

∑ w Φ , x ,  (3.2) 

Φ , x ,  (3.3) 

in which y x,w  is the vector of predictions for variable of type n given the 

observations matrix, x and the vector of weights for variable of type n, w(n). The kernel 

function Φ , x ,  is the inner product of a mapping function for observations that 

relates the system drivers and the target observations of variable type n. Although the 

mapping function is general, here we assume a Gaussian kernel, yielding: 

Φ , x , ||x , ||  (3.4) 

in which r is the kernel width (selected and fixed for a particular RVM model) that 

provides the multi‐plane representation of x. The targets (observations matrix used to 

train the MVRVM model) are samples from the observations, which will contain error 

after training y ,   where ε is independent zero-mean Gaussian noise with 

variance , and ε ∼ 0, ; 

From this, it can be inferred that the probability distribution of , conditioned on 

the observations x 

is 

p | N |y   , σ  (3.5) 
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The likelihood of the complete data set is represented by  

p t | , σ 2πσ –  exp
σ
‖t Φ ||  (3.6) 

where 

t t , t  , ⋯ , t , N 1 vector (3.7) 

,  , ⋯ , , N 1 1 vector (3.8) 

Φ ,Φ  , ⋯ ,Φ , N N 1  matrix (3.9) 

The Bayesian training algorithm requires the definition of explicit prior distributions for 

the weights: 

p w|α ∏ N |0, α         (3.10) 

in which α is a vector of N 1  prior parameters. For a given test point ∗ we predict 

the probability of ∗ 

p t∗|t p t∗|w, α, σ p w, α, σ |t dw dαdσ  (3.11) 

where p w, α, σ |t  is defined by Bayes rule as 

p w, α, σ |t
| ,α,σ . ,α,σ

 (3.12) 

Tipping[2001] mentioned that “we cannot perform these computations in full 

analytically, and must seek an approximation. We cannot compute the posterior 

p w, α, σ |t  directly instead, we decompose the posterior as:” 

p w, α, σ |t  = p w|t, α, σ . p α, σ |t
| ,σ . ,α

| ,σ ,α
 (3.13) 

The posterior over weight (constrained over the distribution of weights) is expressed as 

p w|t, α, σ
| ,σ . ,α

| ,σ ,α
 (3.14) 
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All the probability density functions are Gaussian, thus we can obtain an analytical 

expression for the posterior probability density function equation over the weight: 

p w|t, α, σ 2π – ∑
–

exp
μ ∑ μ  

 (3.15) 

∑ σ Φ Φ A  (3.16) 

A diag α , α , … , α  (3.17) 

μ σ ∑Φ t (3.18) 

Relevance vector (learning) thus becomes the search for the hyper (multi dimension) 

parameters that maximize 

p α, σ |t ∝ p t|α, σ p α p σ  (3.19) 

with respect to α and σ . 

 
3.4 Objectives and Experimental Design 
 
 The objective of this paper is focused on development of and testing the Multi 

Variate Relevance Vector Machine (or MVRVM) as a mathematical algorithm thatcan be 

used to predict patterns in the concentration of suspended fine sediment, and 

otherenvironmental constituents and, andhelp to find, how many observations are 

requiredto model the complex hydraulics, sediment, and water quality constituents. The 

MVRVM hasnot been used in many studies to predict sediment concentration in estuaries 

and lakes [Dogan et al., 2009].  

This paper will examine whether the MVRVM is able to carry out predictions for 

suspended fine sediment and otherwater quality constituents. 
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3.4.1 Experimental design 
 

The study was carried out using Mud Lake, a part of the Bear River National 

Wildlife refuge in southeastern Idaho [Figure 3-1] that functions as a sediment trap for 

flows into the adjacent Bear Lake in addition to functioning as a habitat to support 

migratory species.  

The evaluation of environmental quality in Mud Lake to ensure satisfying its 

beneficial uses can be improved by successful modeling of environmental constituents. 

However the hydraulic operation, limited observations, and the variable particle size of 

sediment transported through Mud Lake present challenges to select an appropriate 

modeling technique or sediment transport function. 

To test and validate the MVRVM for the objective, data were collected as detailed 

in[Batt and Stevens, 2012], and consist of concentrations of fine suspended sediment, 

turbidity ,dissolved oxygen, pH, and temperature at 30 locations , in Mud Lakebiweekly 

over two ice-free seasons in 2009 and 2010. 

The investigation of the use of the MVRVM model requires the existence of 

representative patterns (spatial and temporal) of observations at many locations [Batt and 

Stevens, 2012]. Consistent patterns in the data were the key requirement to support the 

use of the MVRVM with limited observations.Initially it was assumed that the flow 

hydrodynamics (flow velocity, depth, direction) in Mud Lake represented the major 

driving force for all variables. This assumption was found to be inadequate in the case of 

modeling the water quality constituents, for which the successful prediction required the 

collection of additional data which was not considered during the preliminary data 

collection, namely the effect of vegetation and algae on the observations for DO, and pH.  
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For the Mud Lake case study, 30 locations were selected for observation, and 

sediment and water quality observations were made biweekly during the ice-free periods 

from April - October 2009 and 2010. Details of the data collection efforts are provided in 

[Batt and Stevens, 2012] and the observation set consists of time series of levels of the six 

constituents at each of the 30 locations. 

The model runs for training, verifying, and prediction required arrangement of the 

data according to the time and location of the observation. The time series observations 

consist of 25 days of observation. Based on the preliminary analysis for the RVs of the 

TSS it was found that 22 days were required for training the MVRVM; while the testing 

consisted of 3 days. The data are arranged in matrix form for all the constituents and the 

location of each observation. The input data consists of time series observations matrix 

for water quality parameters, velocity vectors magnitude and turbidity for the four input 

locations in the Lake (stations 1, 8, 7, 25 in Figure 3-1), while the MVRVM output data 

consists of time series observations matrix for the 30 locations for water quality 

parameters, velocity vector magnitude and turbidity in the Lake. The algorithm is 

executed while changing the model width, with changing the kernel equation, and 

number of iterations. The output is then used, with the field observations to plot the 

RMSE and residuals in order to identify the error in the MVRVM algorithm parameters 

and what parameters should be changed to minimize the errors.  

The MVRVM training and verification were done using a library created for 

Matlab. The model runs in this study took a range of 5 to 15 minutes to select the 

required RVS for each constituent using a dual core 2.4 GHZ machine. Jolliffe[1991] 

mentioned that the quartile analysis is easy to understand and is considered an easy way 
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to summarize the data; he mentioned also that the quartiles are useful to summarize data 

and not influenced by the extreme observations. Thus we choose to present our 

observations and modeled data using the quartiles to eliminate relying on any single 

extreme observation that can mislead the readers in their understanding the range that 

prevails in the observation.  

 
3.5Results and Discussion 
 

The water quality observation matrix described in [Batt and Stevens, 2012] was 

used for training the MVRVM algorithm. During training, the MVRVM algorithm selects 

observations that provide relevant information to the model based on Bayesian 

probability theory. Once an observation is selected as relevant, the remaining 

observations at the same time are added to the prediction matrix. This process continues 

until the addition of a new observation supplies no new information for the model; 

creating a matrix of vector observations containing the string of important vector 

information and convergence is declared. The Term Relevance Vector can be misleading 

in some study cases; as the scientists refer to single observations with high probability 

selected by the model as a vector, forgetting that the model selects more information 

from the training data set and create the string of Relevant Vector Observations. Sparsity 

is measured by the fraction of total number of observation that are significant, as an 

example in the case of velocity vector when the model selected 15 RVs it will mean that 

15 out of 660 observations significant. The number of RVs that are a subset of the 

training data; these sets of RVs are then used for the prediction in the algorithm [Khalil et 

al., 2005].  
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Khalil et al.[2005] described the complexity of the model as proportional to the 

number of the selected RVs, and it was expected that the number of RVs would likely 

change depending on the complexity of the observed pattern.The number of relevant 

vectors relative to the total size of the set of observations is the measure of sparsity of the 

model. Here, we express this measure of sparsity as the percentage of the total number of 

observations that are included in the set of RVs.As described subsequently and in Batt 

and Stevens[2012] the physical metadata related to the RVs (i.e. time and location) may 

provide information for designing future monitoring systems. 

The results from the MVRVM model areprovided as box-and-whisker plots in 

Figure 3-2, with each adjacent box and whisker pair representing the distributions of the 

observations (unshaded box, left) and predictions (shaded box, right). The MVRVM 

model was capable of predicting the water quality constituents and moreover, to capture 

the patterns of change in the different locations in our case study. The quality 

assurance/control for collecting observations (Batt and Stevens, 2012), and design of the 

experiment minimized any effect of changing the number of iterations that are used to run 

the MVRVM. For the water quality constituents tested here, the fact that the MVRVM 

parameter estimate routine readily converged before all data vectors were used suggested 

that the data collected were sufficient for the MVRVM algorithm.  

Residuals plots for the tested constituents [Figure 3-3] that the residuals (observed 

– predicted levels of the constituents at each time/location) are centered around zero and 

donot follow a specific pattern (random). Figure 3-4 shows that the observations and 

predictions donot perfectly fall on the 45 degree line of agreement thus the error exists 

but spread on all the locations. 
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The range of percentile observations follows 3 patterns data constituents among 

the data collection sites. For discussion purposes locations with same characteristics were 

groups in three zones [for more information about zones see Figure 3-1, and Batt and 

Stevens [2012].  

1. Pattern type I [Figure 3-1c, Table 3-1](temperature) is characterized by no 

significant change in the percentile range of observations through all the locations. 

The RMSE was constant in all three zones, which was expected because the 

meteorological conditions that affected temperature were common for all spatial 

locations. The temperature pattern didn’t vary significantly from Zone1 to Zone 3. 

Since the range of the temperature across location for each time was small, only six 

RVs, about 0.9% of the observations, were required to adequately represent 

temperature. 

2. Pattern type II[Figure 3-1( a and b), Table 3-1]pH and DO are characterized by 

change in the percentile range of observations for all the locations especially in the 

Zone 3, where there is an increase of vegetation and algae that affects the pH and DO 

observations during the daytime. The MVRVM algorithm was able to capture the 

range of percentile change for the pH and DO observations in all the. The pH and DO 

pattern is represented by 16 and 13 RVs respectively. The RMSE for the pH and DO 

increased from Zone 1 to Zones 2 and 3, likely due to the increasing amounts of 

vegetation from Zone 1 through Zones 2 and 3. 

3. Pattern type III [Figure 3-1 (d, e and f), Table 3-1](Turbidity, TSS, and velocity 

magnitude) is described by  random level with larger variability for percentiles in the 

first zone, decreased variability in the second zone, and then dropping to near zero for 
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both level and variability in the third zone. The MVRVVM algorithm reflected this 

change in the output of the model compared to the field observations. The turbidity is 

a very interesting constituent because it is related to the TSS, and is measured under 

the same conditions as the TSS. However the accuracy of measuring turbidity is 

higher. This accuracy leads to selecting 16 RVs which is less than for the TSS (22 

RVs).  

In the case of velocity vector the noise in collecting the observations and the small 

magnitude of velocity in Mud Lake resulted in the number of RVs to be 15, implying 

similar results as TSS and turbidity. However the selection of the 15 relevant vectors is 

an artifact of the algorithm which is not robust when the signal-to-noise ratio is low. This 

number would likely change in case of existence of observations that are above the 

detection limit of the equipment used. 

The turbidity RMSE in zone 1 (2%, which is less than the device error) increased 

to 10% in zones 2 and 3, which indicates that zones 2 and 3 have the same error. The 

source of error can result from more complex hydraulics compared to the deeper waters 

of zone 1, the shallower regions in zones 2 and 3. TSS is heterogeneous and during 

collection of grab samples we might capture clumps of sediment in either the sample or 

the smaller portion taken for filtering, which actually does not represent the whole water. 

These problems lead to an error in observing TSS as high as 10-20% of the mean 

concentration. The average RMSE was small for the zones 1 and 2 (6%) and zone 3 (14 

%) however the error in the 3 zones are within range of the typical measurement error for 

TSS of 10-20%. The RMSE for velocity seemed high in the first 2 zones but the 

magnitudes of the velocities were small and close to the error in the device accuracy. 
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Also the RMSE in zone 3 is (1%) but this error does not mean there is no error because 

the magnitude of the velocities of this zone close to zero. 

The results shown above confirmed that the MVRVM is able to model each water 

quality constituents.The success of prediction varied depending on the type of constituent 

tested and the complexity of the hydraulics affecting the sampling location. The 

MVRVM demonstrated an ability to vary with the minimum and maximum range of the 

parameters. The MVRVM method found an average number of observations that 

contribute important information (RVs) between 1 and 3 percent of the total number of 

observations. However the question remains concerning whether this number of RVs 

means that 3% of the observations are sufficient to model complex water quality 

constituents. In the next paper we examine in more detail how much data are required to 

successfully model the complex water quality constituents and how the RVs are related to 

this data. 

 
3.6 Conclusions 
 

This paper is the first study to consider the use of MVRVM to model suspended 

fine sediment transport and other water quality constituents in complex natural systems as 

in the case of Mud Lake. The MVRVM output demonstrated the capability of the method 

to capture the spatial and temporal change in patterns in observations for suspended fine 

sediment and a variety of water quality constituents. The assumption of using the sample 

location to construct the MVRVM for modeling the selected water quality parameters and 

suspended fine sediment has proven to work adequately for most of the tested 

constituents. 
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The MVRVM results showed a changing RMSE from Zone to Zone based on the 

type of constituent tested and the sampling location. It is suggested that additional types 

of observations (e.g. algae, other vegetation) that may influence the selected constituents 

should be included in future work. For example for DO and pH the amount of algae or 

other vegetation present near the sampling locations in Mud Lake may improve the 

predictive ability of the MVRVM model. 

The number of MVRVM relevance vectors changed according to the complexity 

of the modeled pattern. This information could be used to inform design monitoring 

programs for the purpose of MVRVM. 
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Table 3-1Observed, modeled Constituents percentile, and RMSE percentage with respect 
to Zones in Mud Lake, as (a) DO mg/l, (b) pH, (c) Temperature oC, (d) Turbidity 
NTU, (e) TSS mg/l, (f) Velocity cm/s. 

 

  

Min
25 

Percentile
50 

Percentile
75 

Percentile Max RMSE %

Zone 1 4.92 7.44 8.11 9.33 11.48

MVRVM 5.04 7.17 7.90 9.14 11.46 5

Zone 2 4.48 6.81 7.88 9.35 11.19

MVRVM 6.27 7.54 8.28 9.25 11.51 10

Zone 3 5.95 8.21 9.01 10.37 14.63

MVRVM 6.31 8.38 9.25 9.76 12.30 16

Zone 1 6.35 7.98 8.12 8.26 8.95

MVRVM 6.35 7.96 8.11 8.23 8.82 10

Zone 2 7.74 8.17 8.33 8.56 9.12

MVRVM 7.82 8.20 8.33 8.52 9.09 15

Zone 3 5.22 8.32 8.62 9.07 10.18

MVRVM 6.74 8.34 8.61 9.00 9.90 14

Zone 1 1.46 7.20 14.27 17.93 23.81

MVRVM 2.16 7.27 14.42 17.65 23.79 3.5

Zone 2 1.41 7.91 14.88 18.82 25.01

MVRVM 2.46 7.72 15.17 19.33 23.93 3.5

Zone 3 0.97 8.19 15.07 19.28 25.56

MVRVM 2.21 7.93 15.44 19.69 24.32 3.5

Zone 1 0 14.67 27.67 52.00 170.67

MVRVM 0 14.80 25.15 51.14 194.60 6

Zone 2 0 10.67 17.00 34.33 108.67

MVRVM 0 8.39 14.66 28.08 108.28 6

Zone 3 0 3.33 6.00 10.67 100.00

MVRVM 0 1.85 3.80 8.47 99.78 14

Zone 1 0 19.38 49.75 94.55 357.30

MVRVM 0 22.74 50.02 90.04 357.33 2

Zone 2 0 13.50 29.15 60.20 175.30

MVRVM 1.04 15.97 29.32 61.04 164.85 10

Zone 3 0 0 2.95 14.48 78.40

MVRVM 0 0.80 3.93 14.32 78.30 10

Zone 1 0 1.72 5.22 10.73 55.11

MVRVM 0 1.65 4.45 8.48 54.92 11

Zone 2 0 0.07 0.40 3.14 91.64

MVRVM 0 0.09 0.39 3.24 91.64 10

Zone 3 0 0 0.01 2.22 156.66

MVRVM 0 0 0.02 2.13 156.48 1

Velocity 
magnitude 2% 

+ 1.5 cm/s

DO + 0.2 mg/l 

pH + 0.2

Temperature.  
+ 0.1 Celcius

TSS + 15% 
mg/l

Turbidity +
3% NTU
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Figure 3-1 Box Plots of collected observations in the thirty locations of Mud Lake during 
2009-2010 and Predicted MVRVM output as (a) TSS, mg/L, (b) turbidity 
(NTU), (c) DO, mg/l, (d) p, std. units, (e) Temperature oC, (f) Velocity cm/s. 
The shaded bars contain the observation distributions and MVRVM prediction 
distributions for each location. 
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Figure 3-2 Residual plots of observations in the thirty locations of Mud Lake during 
2009-2010 versus and Predicted MVRVM output as (a) pH, (b) DO mg/l, (c) 
TSS mg/l, (d) Turbidity NTU, (e)Temperature oC,(f) Velocity cm/s. The different 
plotting symbols represent different sampling dates. 
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Figure 3-3 Scaled plots of observations in the thirty locations of Mud Lake during 2009-
2010 versus and Predicted MVRVM output as (a) pH, (b) DO mg/l, (c) TSS 
mg/l, (d) Turbidity NTU, (e)Temperature oC,(f) Velocity cm/s. The different 
plotting symbols represent different sampling dates. 
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CHAPTER 4 
 

HOW TO UTILIZE RELEVANCE VECTORS TO COLLECT REQUIRED DATA FOR 

MODELING WATER QUALITY CONSTITUENTS, AND FINE SEDIMENT IN 

NATURAL SYSTEMS? 

 
Abstract 
 

Relevant Vectors are subsets of the training data set that containssignificant 

information aboutthe modeling state variables. Previous studies that focused on modeling 

water resources, sediment transport,and water quality measures, using statistical learning 

tools like MVRVM, have not considered important factors related to the practical use of 

the MVRVM such as: 1-how much data does the Relevant Vectors correspond to with 

respect to forming the prediction matrix?and 2-what is the significance of the Relevance 

Vectors on making decisions?In this chapter we will use the case study of Mud Lake to 

investigate how careful experimental design and the construction of the 

MVRVMframework can answer these questions. Results showed that using the MVRVM 

can eliminate the need of more than 50 % of the data collected. 

 
4.1 Background 
 

The multivariate relevant vector machine, (MVRVM), is a statistical learning tool 

that has proven capability to extract information contained in time series of data [Zaman, 

2010]. Khalil et al.[2005] described Relevance Vectors (RVs) as the subset of the 

observations that are found to contain the most relevant information on which the 

MVRVM model is built. The MVRVM is an extension to the simple RVM learning tools 

that allows categorization of data by, for example, time and spatial location. 
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Ticlavilcaand McKee[2011] used a MVRVM to develop a model for predictions of 

required daily irrigation releases from a multiple reservoir system. He also used the 

selection of Relevance Vectors to determine the significance of the category year on 

reservoir release.  

Each of these efforts can be viewed from the perspective of the design of a 

monitoring system, with the specific spatial and temporal metadata associated with the 

RVs specifying observations events that will best inform the MVRVM model. In this 

paper we will explore how RVs maybe used in different ways to design experiments in 

research, and how the construction of the model itself can reveal or mask the importance 

of each observation to the model. 

This paper describes the use of the MVRVM for predicting fine sediment 

distribution and general water quality in a wetland-lake system used as a wildlife refuge 

and as a sediment trap, subject to flow scheduling related to irrigation requirements. For 

the case study described below, collection of preliminary data to develop an observation 

network suggested that a single driving force, system hydraulics, controlled the spatial 

suspended fine sediment distribution. Although this assumption may not be correct for all 

the constituents, it was considered practical for situations in which observations may be 

unavailable. Collecting data at a frequency suitable for management decisions concerning 

fine sediment transport is expensive, and it is a challenge to determine how much data is 

sufficient. We propose here that the selection of the RVs from constructing an MVRVM 

may be used to understand which locations in the aquatic system are the most beneficial 

and lead to a more effective monitoring system. 
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4.2 Objectives 
 

This chapter will address the following objectives: 

1- Verify whether the selected relevance vectors are linked to important locations in 

MudLake and understand why they were selected. 

2- Address the concern of whether the relevance vectors can help to decrease the 

data required for modeling. 

 
4.3 Methods 
 

The study area is Mud Lake, a unit of the Bear River Wildlife Refuge in 

southeastern Idaho [Figure 4-1] and detailed in [Batt and Stevens, 2012a], which 

functions as a sediment trap for the Bear River, as well as a habitat for migrant species. 

Mud Lake is characterized by complex hydraulics due to its heterogeneous vegetation 

patterns and bathymetry, and only small numbers of observations for either water quality 

measures or spatial sediment distribution. For purposes of this study, the sampling 

locations in Mud Lake were organized into three zones based on observations similarities 

in the data, as shown in Figure 4-1 that represent the lake inlet (Zone I), a transitional 

region (Zone II) and the lake outlet to Bear Lake (Zone III). 

To achieve the objectives of exploring the relevance vectors as monitoring system 

design aids, the environmental system of Mud Lake was idealized as an irregular network 

grid where the observations at each location potentially interact with those at surrounding 

locations. Batt and Stevens[2012a] collected 660 observations from 22 time series in 

2009 and 2010, for suspended fine sediment and thewater quality constituents dissolved 

oxygen, temperature, pH, and turbidity in Mud Lake. For use in the MVRVM, 
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observations were organized as time series for each of 30 sampling locations for 

suspended fine sediment and each water quality constituent. Storing them as time series is 

one of the keys for making use of the relevance vectors with the MVRVM algorithm 

structure, as is summarized by [Tipping, 2001]. 

The RVM model is fitted to a set of target observations of a particular type, n, 

(suspended solids, dissolved oxygen, etc.) by first creating a kernel function, Φ (n) 

(xi
(n),xd,i), that represents both the influence of underlying system drivers xd,i  , and the 

observations for type n, xi
(n) , and defining a set of weights, w, that multiply the kernel 

function. These products are then summed to form the vector of predicted values for 

observation type n. The RVM algorithm then modifies the weights, w, to minimize the 

discrepancy between the observed target values and the corresponding predicted values. 

Sparsity is achieved when one or more of the estimated weights equals zero, indicating 

that the corresponding observations do not significantly improve the model ‐ represented 

mathematically by a matrix with most of the elements equal to zero, while the non‐zero 

elements are used for prediction. The importance of sparsity is to minimize the amount of 

data required for observations. Once the relevant observation vectors are identified, this 

information can be used to improve the design of future monitoring campaigns. 

Mathematically, the predicted value for the target observations is given by 

y x,w ∑ w Φ , x ,  (4.1) 

∑ w Φ , x ,  (4.2) 

Φ , x ,  (4.3) 
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in which y x,w  is the vector of predictions for variable of type n given the 

observations matrix, x and the vector of weights for variable of type n, w(n). The kernel 

function Φ , x ,  is the inner product of a mapping function for observations that 

relates the system drivers and the target observations of variable type n. Although the 

mapping function is general, here we assume a Gaussian kernel, yielding: 

Φ , x , ||x , ||  (4.4) 

in which r is the kernel width (selected and fixed for a particular RVM model) that 

provides the multi‐plane representation of x. The targets (observations matrix used to 

train the MVRVM model) are samples from the observations, which will contain error 

after training y ,   where ε is independent zero-mean Gaussian noise with 

variance , and ε ∼ 0, ; 

From this, it can be inferred that the probability distribution of , conditioned on 

the observations x 

is 

p | N |y   , σ  (4.5) 

The algorithm selects an observation as relevant based on the probability 

mentioned in equation 5. 

 
4.4 Results and Discussion 
 

Batt and Stevens[2012b] found that the MVRVM output results for sediment and 

water quality constituents supported the capability of the MVRVM to model and forecast 

these constituents, and that the number of selected RVs for each constituent corresponds 
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to the number of observations used for prediction. They also found that the root-mean-

square error (RMSE), 
∑

for each constituent depended on the 

sampling location, the sampling and measurement error, and parameters that influence 

constituent levels. The results in Table 4-1 and Figure 4-2 suggest that in Mud Lake there 

is an effect of the sampling locations selected by the MVRVM, noting that 60% of the 

selected relevance vectors for the tested constituents are in Zone 1 (the source of input 

flow to Mud Lake), and the remaining 40% of the RVs are divided equally among Zone 2 

and Zone 3. If we had grouped the flow input location from Bear Lake with the 

remaining input in Zone 1; it would likely result in an increase of the relevant vectors to 

80% in Zone 1, leaving the remaining 20% of the relevant vectors to the other two zones. 

A description of significant locations for the data pattern in Mud Lake is as 

follows [Figure 4-1]: locations (8, 9, 10, and 11) are near the inlet of the lake, the source 

of suspended fine sediment input to Mud Lake, sample locations (12, 13, 14, and 15) are 

located in the north eastern (canal like) part of Mud Lake which conveys part of the 

suspended fine sediment from the source to the rest of Mud Lake. Sample locations (0, 1, 

2, 3, 16, 17, and 18) are located where the canal like portions joins together with the open 

water in the middle of Mud Lake. On the western side of the lake, sample locations (4, 5, 

6, and 7) are in the irrigation canal where the relatively sediment-free water from Bear 

Lake is flowing toward the open water of Mud Lake. Sample locations (19, 20 and 21) 

are in remote locations in the southeast part of the lake, separated from the open lake by 

dense vegetation, and are least likely to be affected by changing hydraulic conditions. 

The remaining monitoring locations (23, 24, 25, 26, 27, 28, and 29) were not selected by 
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the MVRVM because their patterns are correlated in nearby locations that were already 

selected as RVs. The selection of the amount of data needed to train the MVRVM 

algorithm was created by using the TSS data because its pattern contained noise 

compared to the other tested constituents. So we started the training using all the data we 

have (25 series), but we have noticed that the algorithm in this case required only 22 

series of the data; thus we decided that this will be the required number for creating a 

training data set. The results for all constituents can be found in Table 4-1 and Figure 4-2. 

TSS: Although closely related, TSS and turbidity are not the same. TSS samples are 

difficult to collect and analyze because TSS is heterogeneous and, during collection of 

grab samples, we might capture or exclude clumps of sediment in either the sample or the 

measurement aliquot, which actually does not represent the whole water. These 

limitations lead to errors in observed TSS as high as 10-20%, consistent with published 

norms [US EPA Method 160.2]. Because error clouds information in data, the number of 

RVs selected by the model is likely to be larger than for other, more easily measured 

constituents. The MVRVM found that 22 relevance vectors were needed to create the 

frame work to model the TSS and was the highest among all constituents, likely due to 

the complex pattern of sediment in Mud Lake, and the larger sampling and measurement 

errors. The selection of this number of RVs means that 100% of the 660 observations 

were needed to create the frame work of the MVRVM model. This selection of relevant 

vectors corresponds to observations that have the highest probability and they occurred in 

these locations. 

TURBIDITY: The observed turbidity results closely follow the TSS, however the 

MVRVM choose only 16 relevance vectors (locations 0, 1, 2, 5, 6, 7, 9, 13, 14, 15, 16, 
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17, 18, 19, 20, 21), compared with the 22 RVs for the TSS, likely because the turbidity 

measurements are less prone to the variability inherent in the TSS measurements, but also 

that turbidity showed a less complex pattern than the TSS. Turbidity is much more 

consistent in the observations because the turbidity instrumentation averaged the signal 

over a longer time (approximately 30 seconds) compared to the time required to obtain a 

grab sample; so many short term variations are averaged out. These factors lead to 

reduced variability in turbidity measurements and suggest that the complexity observed 

in the turbidity patterns is more likely to be true complexity of the system and less so 

random variability. The selection of the 16 RVs means that 72% of the 660 observations 

are needed to create the frame work of the MVRVM model for turbidity.  

VELOCITY VECTOR MAGNITUDE: The velocity magnitude is a special case due to 

the presence of many censored observations, recorded as< 15 cm/s (instrument detection 

limit) at most locations. As described in Batt and Stevens[2012b] the MVRVM algorithm 

used results from the hydrodynamic model rather than direct observations. During 

training the MVRVM selected 15 relevance vectors from the hydrodynamic model 

results, at sampling locations (0, 1, 2, 3, 4, 5, 9, 10, 12, 14, 15, 19, 20, 21, and 22). The 

RVs were selected in locations of hydraulic change; however the RMSE results should be 

discounted because the training was generated from mechanistic model rather than using 

direct observations. The selection of this number of RVs means that 70 % of the 660 

observation data is needed to create the frame work of the MVRVM model. 

DO: The MVRVM selected 13 samples (1, 3, 6, 7, 8, 9, 10, 11, 13, 15, 18, 20, and 21) to 

be relevant for dissolved oxygen; from the water quality measures there was an inverse 

relationship between the sediment concentration in the water body and DO, in addition 
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the presence of algae in any location will increase the observed DO. These factors 

demonstrated that the RVs were located closely to the RVs for turbidity as in the inflow 

locations and wherever hydraulics change. Relevant vectors for DO were also located in 

vegetated areas and where algae were observed. The selection of this number of RVs 

represented 59% of the 660 observation data as needed to create the frame work of the 

MVRVM model.  

pH:The MVRVM in the case of pH chose locations (1, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 16, 

17, 18, 19, and 21) to be significant for the model. Similar to the case of DO, the RVs of 

the pH were also located where the hydraulics changed in Mud Lake and existence of 

vegetation or algae. However the observation pattern was somewhat more complex 

compared to the DO and required more RVs: 70% of the 660 observation data were 

needed to create the frame work of the MVRVM model. 

TEMPERATURE: The MVRVM chose 6 RVs (27% of observations) at locations (0, 6, 

9, 13, 16, and 18). This number of RVs was the smallest among tested constituents, 

because temperature fluctuations across the locations were small during the daily 

collection period. The individual RVs represent the different major areas of Mud Lake, 

but note that locations adjacent to those selected were excluded. It is not surprising that 

location 9, at Mud Lake inlet, is represented since the major driver of temperature is the 

inlet flow, as it responds to snowmelt, etc. The remaining locations represent the 

influence of the flow paths through Mud Lake and the climate conditions that would 

warm or cool the water. Location 6 reflects the influence of the flow from Bear Lake 

which will generally have much different temperature fluctuations than in Mud Lake’s 

interior. 
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The experimental design for data collection can be improved by understanding the 

outcome the RVs selection by the MVRVM algorithm for collection of future 

observations to serve the management objectives. As an example the runoff to Mud Lake 

in 2011 was considerably higher than in 2009 and 2010, the years of our case study. 

Because of this change in runoff, the collected constituents’ patterns would likely be 

different; reflecting the presence of high flows and additional MVRVM training would be 

beneficial. In this case, to collect new observations we can use the relevant locations 

selected by the MVRVM and according to the required amount by the relevant vectors. 

The experimental design and the data collection can be improved through 

examining the important objectives of the study. For example, using the results of our 

study, if the key constituent is turbidity rather than TSS, thus we require only 16 

locations (see Table 4-1) from which to collect samples rather than the 22 locations as in 

the case of TSS. For temperature, only six locations would be required to capture 

temperature dynamics. A similar assessment would be made for each constituent under 

study. 

The management decision can play a part in changing the experimental design. As 

an example if the management decision is to monitor the change of DO because of a 

change in conditions in the lake, such as the onset of low flow conditions, managers can 

use the locations that were selected by the MVRVM code without missing information 

relevant to the model. 
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4.5 Summary and Conclusion 
 

The MVRVM statistical algorithm can be used to model water quality 

constituents in complex natural systems. The careful planning of field observations, and 

arrangement of the frame work for the MVRVM, will help in creating a series of 

relevance vectors (RVs) that can be used to better understand the patterns (spatial and 

temporal) of suspended fine sediment and water quality constituents in the natural 

system. Keeping the collected observations in time series related to the sampling 

locations created an advantage to indicate how much data is sufficient to construct the 

MVRVM framework. This paper has demonstrated the ability of RVs to select subsets of 

observation that capture important patterns (spatial and temporal) that might be obscured 

by random variability, and thus can be used as aids to construct experimental designs. 
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Table 4-1Locations of RVs for different constituents, percentage of selected RVs from 
data, and percentage of required observation for successful modeling based on 
RVs 

 

  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
RVs % 

from data
% required 

data
DO X X X X X X X X X X X X X 2 59
pH X X X X X X X X X X X X X X X X 2 73

Temp. X X X X X X 1 27
TSS X X X X X X X X X X X X X X X X X X X X X X 3 100

Turbidity X X X X X X X X X X X X X X X X 2 73
Velocity X X X X X X X X X X X X X X X 2 68
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Figure 4-1 Example of selected RVs in DO pattern, where the red points represent the 

RVS, black lines represent series which contain RVs, and colored lines represent 
series which contain no RVs and not used to make predictions 

 

 

Figure 4-2 Sample Locations in Mud Lake, and selected Relevant Locations from 
MVRVM model (the black lines represent time series, the red points represent 
the selected RV, the colored series represent series which don’t have RVs)
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CHAPTER 5 
 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 
 
 
Summary and Conclusions 
 

Wetlands provide great benefits nationwide; adequate food habitat to endangered 

species, resting stations for migratory birds, function as a kidney to filter nutrients as well 

as sediment, and in some cases protection to downstream water bodies. Mud Lake is a 

model case for similar wetlands; it is a unit of the Bear Lake Wildlife Refuge operated by 

the US Fish and Wildlife Service; MudLake functions as a fine sediment trap and a 

nutrient filter for flows into the downstream Bear Lake. It also acts as a habitat for 

endangered species and migratory birds. Mud Lake is characterized by complex 

hydraulics and water allocation operations; which raises concerns from Refuge managers 

to the way the Mud Lake is operated. 

Natural systems can be complex environmental habitats, which are considered a 

challenge to modeling the environmental parameters that are affecting these systems. The 

objective of this dissertation was to: 1- observed and verify the presence of patterns 

(spatial and temporal) of water quality and suspended fine sediment in the collected data 

in Mud Lake, 2- test and verify a novel statistical framework, MVRVM, capability to 

model suspended fine sediment and water quality constituents in Mud Lake, and 3-verify 

the ability of the statistical tools to select relevance vectors that can solve the practical 

problem of the quantity, and spatial and temporal distribution of data that will be 

sufficient to understand and model this natural system. The success in this objective can 
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serve as a tool for the refuge managers to forecast the water quality constituents and thus 

inform decision making. 

Chapter 2 is anintroduction for the case study of Mud Lake and provides general 

information about the challenges in MudLake, as well as the experimental design to 

collect data such as GIS data, lake boundaries, bathymetry data, velocity profiles, water 

quality data and suspended fine sediment concentration. The hydraulic scenarios for 

operating Mud Lake were presented. In this chapter we introduced the methodology of 

collecting preliminary observations in MudLake to support decisions on how many 

sampling locations are to be selected for consideration. We presented the observations for 

the selected water quality constituents at all the sampling locations, and demonstrated the 

existence of patterns. We showed that the sampling locations in MudLake can grouped in 

zones according to the range of observations for each water quality type and the behavior 

in every parameter. Statistical percentile results (25th, 50th and 75th percentile) for all 

the parameters in different zones were presented to establish an understanding of the 

situation in MudLake. The different water quality constituents’ relationships were 

confirmed among their observations.  As an example, the increase of DO is directly 

proportional to increase of pH and inversely proportional with the turbidity. In this 

chapter a short  demonstration of the statistical learning tools as ANN and SVM was 

included which clarified that these statistical learning tools require a lot of data; hence 

our only choice is to use the MVRVM. 

Chapter 3 presents of ANN and SVM as statistical learning tools within their 

historical context, and the efforts of the scientists to use them to model and predict data in 

hydraulics, and suspended fine sediment transport were mentioned. This provided 
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evidence to use the MVRVM; however the MVRVM is a relatively new algorithm that 

has never been used to model suspended fine sediment transport and water quality 

constituents in natural systems. We presented the framework and experimental design for 

constructing the MVRVM. We explained in this chapter that there were sources of errors 

in the modeling output which might have resulted from overlooking constituents that may 

affect the observations, as in the case of algae and other vegetation growth on pH and 

DO. We demonstrated the output from the MVRVM model for the water quality 

constituents against the collected observations, the RMSE, and the residuals in all of the 

locations. We also presented the selected numbers of RVs for each parameter tested and 

the percentage of total observation they represent. We have established that complex 

patterns in observations are responsible for increasing the number of relevance vectors. 

Examination of the selected water quality residuals and the RMSE supported the 

assumption that the MVRVM is able to model these constituents in cases of limited 

observations in a complex natural system 

In Chapter 4 we indicated that the RVM as an algorithm has proven success to 

model different applications, however few scientists considered the practical use of the 

selected RVs in selecting the relevant samples and locations. Hence the locations for the 

selected RVs for each water quality constituent were presented.The RVs showed 

similarities for significant locations for some of the parameters. In this chapter we explain 

the significance of arranging the MVRVM training data in time series for each location 

with respect to the parameter tested. It was found that more than 60% of the RVs are 

located in Zone 1 which is the upstream zone of the Lake corresponding to the source of 

sediment flow in the Lake. The locations of RVs supported the experimental design for 
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collecting observations which was the foundation for observing that patterns exist in the 

observations. The RVs also showed that the number of observations that can be used to 

carry out modeling can be reduced by 50 to 70 % in case of less complex patterns, or 

only save less than 5 % of the data in cases of very complex patterns.  

In general the careful choice of the experimental design can change the meaning 

of MVRVM output. The output of the model has emphasized the selection of the 

MVRVM that have the advantage of their simple calibration, and input process which can 

help US Fish and Wildlife managers benefit from this frame work.   

 
Recommendations for Future Work 
 

The work presented in this research describes an effort to develop simple 

statistical tools that can be used to model environmental quality constituents and 

suspended fine sediment transport in complex natural system, thus provide a simple 

frame work for managers of US Fish and Wildlife Refuge Agencies to use and make 

decision to preserve the function of the refuge for species that inhabitit. The spatial 

observations used in this research were collected especially for the purpose due to lack of 

historical data in MudLake. There is a need to collect more velocity vector observations 

because this data helps in improving the understanding of the hydraulics. 

Future research can be focused on identifying the amount of nutrient phosphorous 

that flow into MudLake since nutrients are often attached to sediment particles. The 

MVRVM can be used in the same way of this research to model the spatial distribution of 

phosphorous. 
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Future research can also focus on considering algae and vegetation effects on the 

observation of pH and DO; observations related to their effect can be used as another 

parameter and modeled in the same way as other parameters in this research. 

More efforts should be focusedto: 1-address and verify the success of RVs in 

decision making with regard to sampling location and understanding the concept; 

whether it can really provide an estimate of the amount of data required for modeling in 

complex natural systems.2- collect field observations for the velocity variable to use in 

the MVRVM to enhance the understanding of how the contaminants circulate 
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CHAPTER 6 
 

ENGINEERING SIGNIFICANCE 
 
 

Wetlands are areas that can be partially or fully covered with water much of the 

time. Wetlands are multitasking; they act as flood control, sediment trap, filter for 

impurities, source of food for growing species, and vital habitat for 35% of endangered 

species. Mud Lake is a unit from Bear River wildlife refuge, which is considered to be a 

typical example of a wetland; that acts as sedimenttrap to Bear River, and habitat for 

thousands of migrating birds. The refuge managers have been concerned about the best 

means to attain adequate habitat for wildlife, and improve the quality of water in Mud 

Lake. 

The collection of data concerning several water quality constituents confirmed 

that the constituents were below the adequate range to support aquatic life on more than 

one occasion. Development of a simple framework to use by the refuge managers was an 

objective to help them to prepare and investigate ways to enhance the conditions in Mud 

Lake. An open source statistical Learning tool MVRVM was considered for this case. 

The MVRVM has been used to model various applications in hydraulics and hydrology 

with small number of observations and have proven accuracy. 

The MVRVM has proven an ability to accurately model, and capture spatial 

hidden patterns in water quality constituents, and turbidity in Mud Lake with very limited 

observations. The careful construction of the experimental design and arrangement of 

observations for code runs with MVRVM revealed the significant locations to collect 
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observations. The success of the MVRVM should encourage the refuge managers to use 

the same methodology to find the best scenarios to preserve the function of MudLake.  

When using the MVRVM for modeling the spatial water quality constituents in 

Mud Lake or any other lake. A fewconsiderationsshould be soughtin case of using the 

MVRVM as an example: 1- collection of new observations to be added to the training of 

the algorithm that reflect extreme cases; which were not considered during the 

development of the model. 2-depending on the accuracy required, collection of 

metrological observations should be considered to correct for the corresponding un 

explained errors. 3- Identification of algae and photosynthesis effects on DO and pH to 

be included as correction parameters to enhance the modeling results of DO and pH. 4- 

Collection of more accurate velocity vector magnitude observations to promote the 

understanding of circulation of different water quality constituents. Economically the 

MVRVM can be used to select significant locations for sample collections, thus decrease 

the cost for data collection. 

To conclude this part; as an advice for scientists or professionals seeking the use 

of the MVRVM is to careful construct their experimental design; to be based on the 

objectives required from the study or the assignment. Because this statistical tools are 

data driven tools and without proper understanding for the way the parameters affect each 

other; can lead to unexplainable results.  
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APPENDIX A. 

Coordinates of observation locations in Mud Lake 

 

   

sample 
location UTMX UTMY Latitude Longtude

0 473148.3 4668851 42° 10' 16.854" N 111° 19' 30.409" W
1 473077.4 4668873 42° 10' 19.407" N 111° 19' 33.918" W
2 473258.7 4668512 42° 10' 6.955" N 111° 19' 25.799" W
3 473136.7 4668387 42° 10' 3.805" N 111° 19' 30.900" W
4 473715.5 4665636 42° 8' 31.854" N 111° 19' 5.052" W
5 473535.4 4665681 42° 8' 36.241" N 111° 19' 13.177" W
6 473874.6 4664734 42° 8' 4.150" N 111° 19' 0.250" W
7 473723.5 466482 42° 7' 57.430" N 111° 19' 4.621" W
8 475541.2 46703414 42° 11' 5.642" N 111° 17' 46.331" W
9 475551.5 4670286 42° 10' 50.531" N 111° 17' 59.123" W

10 475264.3 4669900 42° 11' 3.389" N 111° 17' 45.781" W
11 475282.4 4669826 42° 10' 48.982" N 111° 17' 57.500" W
12 475579.1 4670000 42° 10' 55.328" N 111° 17' 44.329" W
13 475166.1 4668973 42° 10' 21.659" N 111° 18' 2.691" W
14 476103.1 4667946 42° 9' 48.905" N 111° 17' 21.734" W
15 457492.4 4667913 42° 9' 47.846" N 111° 17' 48.122" W
16 475133.6 4667222 42° 9' 25.319" N 111° 18' 3.636" W
17 474274.4 4667201 42° 9' 23.471" N 111° 18' 41.059" W
18 475861.1 4666648 42° 9' 5.896" N 111° 17' 31.342" W
19 477086.5 4665428 42° 8' 25.767" N 111° 16' 38.022" W
20 477397.1 4664850 42° 8' 7.582" N 111° 16' 24.660" W
21 477973 4664189 42° 7' 46.221" N 111° 15' 59.480" W
22 477543.9 4662779 42° 7' 0.479" N 111° 16' 17.977" W
23 476922.7 4663852 42° 7' 35.200" N 111° 16' 45.180" W
24 476589.6 4663497 42° 7' 23.630" N 111° 16' 59.639" W
25 475273.9 4663310 42° 7' 17.442" N 111° 17' 57.158" W
26 476081.4 4664394 42° 7' 52.685" N 111° 17' 21.905" W
27 474061.9 4664699 42° 8' 2.404" N 111° 18' 26.395" W
28 475499.7 4665592 42° 8' 31.434" N 111° 17' 47.420" W
29 474895.5 4666196 42° 8' 51.138" N 111° 18' 13.837" W
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APPENDIX B 

Calibration of Hydrolab (Jim  Millesan/ Utah Water Research Lab)  

1. The Hydrolab is calibrated against known standard solutions and/or values 

before data collection with maximum 24 hours. 

2. If the Surveyor does not have built-in barometric pressure, obtain the local 

reading from the Utah Climate Center. A value corrected to sea level and 

reported in inches can be converted by subtracting 4.55 inches, then 

multiplying by 25.4 to give mm.  

3. Dissolved Oxygen sensor is calibrated by drying the sensor and allowing it to 

measure saturated air (100%) by placing an inch of water in the calibration 

cup, and correcting for the current barometric pressure. 

4. Specific Conductivity probe is calibrated against a known standard of 718 

us/cm. 

5. pH probe is calibrate using both a 7.0 pH buffer solution and a 10.0 pH buffer 

solution, which brackets the anticipated pH values of 7-8.5 in local waters. 

6. Turbidity probe is calibrated against a known standard of 0.0 NTU (distilled 

water) and 100.0 NTU. 
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Appendix C 
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