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Abstract: The accurate estimate of sediment load is important for management of the river ecosystem,
designing of water infrastructures, and planning of reservoir operations. The direct measurement of
sediment is the most credible method to estimate the sediments. However, this requires a lot of time
and resources. Because of these two constraints, most often, it is not possible to continuously measure
the daily sediments for most of the gauging sites. Nowadays, data-based sediment prediction models
are famous for bridging the data gaps in the estimation of sediment loads. In data-driven sediment
predictions models, the selection of input vectors is critical in determining the best structure of models
for the accurate estimation of sediment yields. In this study, time series inputs of snow cover area, basin
effective rainfall, mean basin average temperature, and mean basin evapotranspiration in addition to
the flows were assessed for the prediction of sediment loads. The input vectors were assessed with
artificial neural network (ANN), adaptive neuro-fuzzy logic inference system with grid partition
(ANFIS-GP), adaptive neuro-fuzzy logic inference system with subtractive clustering (ANFIS-SC),
adaptive neuro-fuzzy logic inference system with fuzzy c-means clustering (ANFIS-FCM), multiple
adaptive regression splines (MARS), and sediment rating curve (SRC) models for the Gilgit River,
the tributary of the Indus River in Pakistan. The comparison of different input vectors showed
improvements in the prediction of sediments by using the snow cover area in addition to flows,
effective rainfall, temperature, and evapotranspiration. Overall, the ANN model performed better
than all other models. However, as regards sediment load peak time series, the sediment loads
predicted using the ANN, ANFIS-FCM, and MARS models were found to be closer to the measured
sediment loads. The ANFIS-FCM performed better in the estimation of peak sediment yields with a
relative accuracy of 81.31% in comparison to the ANN and MARS models with 80.17% and 80.16% of
relative accuracies, respectively. The developed multiple linear regression equation of all models
show an R2 value of 0.85 and 0.74 during the training and testing period, respectively.

Keywords: suspended sediment concentrations; Gilgit basin; snow cover fraction; artificial neural
network; MARS model; Hindukush

1. Introduction

Eroded sediment originating from drainage basins due to hydrometeorological processes like
rainfall, snow melt, and ice melting, etc., is transported in the form of suspended loads and bed
loads [1–3]. The bed loads are transported in the form of coarse particles of different shapes and sizes
continuously in contact with the river bed [4]. The suspended load, transports in suspension state
formed due to the erosion of fine particles from the sheet and gully, runoff in the catchment, river
banks, and channel beds [5]. The increased runoff due to the rising rainfall, snow cover depletion,
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or glacier ablation, etc., often leads to an increase in flood events, increase in suspended sediments,
channel bed erosion, pollutants in river ecosystem, and depletion of water storages, and damages or
affects hydropower operations [6].

Sediment deposition in rivers and reservoirs is a very serious challenge worldwide. It leads to
rapid depletion of water storage capacities which ultimately affects the supply of irrigation as well as
power generation. It also affects the operation of water reservoirs to mitigate floods, polluting river
ecosystem, and recreational sites [7,8]. In Asia, during the period 1990–2010 the net reservoir storages
has been lost by 6.5% which is due to higher rate of sedimentations in the world [9]. In Pakistan,
a number of water storages, for example the Tarbela, Mangla, Warsak, and Chashma storages, have lost
considerable storage volumes earlier than expected [10–13] during the past three decades. The cause
of this earlier-than-expected depletion of storages might be the high variance and incorrect estimation
of sediment yields.

The Indus River in Pakistan with its total length of 2880 km supports the major storages and
hydropower generations [14,15]. It is an economical source of hydropower generation having a 29%
share in the country’s total national power generation capacity [16]. The Indus river has the world’s
largest irrigation network, having an irrigated agricultural area of 181,000 km2 [16,17]. Hydropower
projects generating more than 30,000 MW are planned on the Indus River for the future. Therefore,
estimation of sediment yields for reaches in the Upper Indus Basin (UIB) is important for the design
and operation of existing and new water infrastructures.

The erosion and transport of sediments are the outcome of complex physical processes. Their
estimation is a difficult challenge due to the non-linearity of multiple factors controlling the sediment
yield. Many factors including, among others, the amount of flows, sediment supplies, sources of
sediments, catchment gully and channel erosion, river bed configuration, bed form resistance and
slope, forces and moments controlling the incipient motion, and types and properties of sediment
particles, control the amounts of sediments in rivers [18,19]. To overcome the challenges of sediment
yield estimations, soft computing artificial intelligence methods have been developed over the past few
decades. These soft computing machine learning techniques have replaced the traditional sediment
rating curve (SRC), and multiple and auto-regressive models for estimation of sediment yields. The soft
computing algorithms have proven a powerful tool for estimation of sediment yield from highly
nonlinear processes of erosion and sediment transport.

Background

In the recent few decades, many researchers have used several black-box models for the prediction
of sediment yield. The most widely used models among these black-box models include artificial
neural networks (ANN), support vector machines (SVM), artificial neuro-fuzzy logic inference systems
(ANFIS), and genetic programming (GP). Mostly, more than two models were used to compare
the results for finding the best model for the prediction of sediment yields along with the rating
curve (RC) model. For example, in some studies [20–22], ANN was found to be better for the
prediction of sediment yields than the sediment rating curve (SRC) model. Similarly, ANN and
multiple linear regression (MLR) models were used in some studies [23,24] for the estimation of
sediment yields. In these studies, the sediment prediction results of ANN were found to be better
than the sediment prediction results obtained by MLR. In yet another study [25], the grid rainfall and
measured flows are used to predict sediment yields with ANNs by Levenberg-Marquardt (LM), scaled
conjugated gradient (SCG), and Bayesian regulation (BR) algorithms. It was concluded that ANN
with Levenberg-Marquardt algorithm performed fairly better than the other two ANN algorithms for
sparsely distributed catchments with limited climatic recorded data. The results of ANN and ANFIS
were compared by [26,27] for the prediction of sediment yield. In these studies, researchers found
that ANFIS models show a higher accuracy than the ANN and SRC models. It was found in studies
by [28,29] that gene expression algorithms are better than ANN and ANFIS models for predictions of
sediment loads.
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The studies [30,31] used the SVM along with ANFIS and ANN algorithms. The results obtained
by SVM showed less erroring in comparison to those of the ANFIS and ANN models. The researchers
referred to in [32] employed the ANN and SVM models using discharge and rainfall as input data to
predict the sediment yields. They found that ANN is better than SVM for the prediction of sediments.
The studies [33,34] used the wavelet artificial neural network (WANN) to compare their results with
SRC, MLR, and ANN. They found that the WANN model is better than all other models used in the
study. The study [35] used wavelet-based least-squares support vector machines (WLSSVM) along
with WANN to compare the results for finding the better model for sediment predictions. The study
revealed that WLSVM is more robust and better than WANN for estimation of sediment yields.

Heuristic regression models such as multiple adaptive regression splines (MARS), M5 decision
tree regression learner, and support vector regression (SVR) have also been used in the recent decade
for nonlinear modeling in water resources. In linear modeling, to capture the nonlinear behavior of the
process involved in engineering specifically for flows and sediments, some improvements had been
made by introducing methods like polynomial regression. In this regard, the multivariate regression
spline (MARS) has been developed to detect the nonlinear relationship of inputs and outputs like
discharge sediment yields [36,37]. MARS is a nonparametric regression model that identifies the
desired pattern between inputs and desired output in the form of piecewise cubical or linear splines.

MARS, M5 model tree, and SVR are models used for the prediction of flows and sediment yields
in water resources [38–40]. However, the use of MARS is comparatively rare for sediment yield
predictions. The researchers referred to in [41,42] found that the performance of MARS is poor in
comparison to that of dynamic evolving neural-fuzzy inference system (DENFIS) and ANN models.
The study [43] compared the results of hybrid MARS fuzzy regression (HMARS-FR), fuzzy least
squares regression (FLSR), and fuzzy least absolute regression (FLAR) for estimation of sediment yields.
The hybrid MARS fuzzy regression was found to be better than the other two models for predictions of
sediment loads. In another study [44] performed to predict sediment yields, the M5 model tree, SRC,
GEP, and MLR models were used. The M5 model tree performed better than the SRC, GEP, and MLR
models in this study. In yet another study [45] ANN, wavelet regression (WR), and M5 tree models
were used for modeling the sediment yield using the inputs of flows and rainfall. In this study, the M5
model tree performed better than the ANN and wavelet regression models. Similarly, it was found in
a study [46] carried out to predict sediments that the M5 tree model is better than ANN and fuzzy
logic models. The study used hydro-climatic data for the predictions of sediments using five different
algorithms namely, ANN Levenberg-Marquardt, ANN scaled conjugate gradient, SVR, M5 model tree,
and REPTree model. In this study, the researchers found that ANN using the Levenberg-Marquardt
algorithm performed better than other models. Table S1 in section of Supplementary Materials presents
the summary of the literature discussed above.

The study presented in this paper checks the applicability of ANN Levenberg-Marquardt, hybrid
ANFIS embedded grid partition (GP), hybrid ANFIS embedded subtractive clustering (SC), hybrid
ANFIS embedded FCM clustering (FCM), and MARS models with inputs of grid climatic data, snow
cover fraction, and flows to predict the sediment yields for sparsely distributed basins. These models
were selected because, during the past three decades, the ANN and ANFIS data-driven models have
been identified as being robust, powerful tools with a great ability of solving the complex nonlinear
process-like prediction of sediment yields. As a result of the above discussions and scrutiny of
literature review, and to the best knowledge of the authors, no study in artificial intelligence (AI) has
used the combination of spatially averaged grid effective rainfall, mean basin-averaged temperature,
and averaged basin snow cover fractions in combination with flows to predict the sediment yields.
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2. Materials and Methods

2.1. Study Area

The present study was carried out in the Gilgit River basin situated in the Hindukush Mountains of
the Upper Indus Basin (UIB). The Gilgit River originates from Shandoor Lake north of the Gilgit-Baltistan
region in Pakistan. The Baha Lake is the right tributary of the Gilgit River with small tributaries
being e.g., Yasin, Ishkoman, and Phandar. The Phandar Lake is located in Ghizer. The Yasin tributary
joins the main Giglit River near Gupis. Figures 1 and 2 show the hydrological characteristics of the
Gilgit basin that has a drainage area of 12,095 km2. The geographical location of the Gilgit basin is
between latitude 35◦55′35 N and 36◦52′20” N and longitude 72◦26′04” E and 74◦18′25 E. The elevation
of catchment ranges from 1454–7048 m a.s.l. Table S2 in supplementary materials shows the key
features of the Gilgit basin. About 10% of the total catchment area is covered with glaciers and lies
above an elevation of 5000 m. During the winter season, approximately 87% of the catchment area
is covered with snow cover which reduces to 11% during the ablation period in summer. The mean
annual discharge and suspended sediment concentrations (SSC) of the Gilgit basin are 291 m3/sec and
448 mg/L, respectively. The ablation period starts in July after seasonal snow melts. The melting of
the glacier is slow and continues until the month of October. Then, the accumulation period of snow
starts at the end of October. The Gilgit basin receives 75% of its rainfall starting from the mid of spring
(April) to the end of summer (October). The mean annual basin rainfall from grid data in the Gilgit
basin is approximately 670 mm. The mean monthly basin average temperature for the Gilgit basin
ranges from −19.8 to 7.20 ◦C.

The Water and Development Authority (WAPDA) of Pakistan had also installed stream gauging
stations at an altitude of 1430 m a.m. sea level for measuring flows and suspended sediment
concentrations (SSC). The climatic stations installed in the Gilgit basin are sparsely distributed in the
catchment. The climatic stations installed in the valley by the Pakistan Meteorological Department
(PMD) at Gilgit and Gupis have at their disposal long-term daily climatic data collected from 1981–2010.
However, the climatic stations of Uskhkore, Yasin, and Shendure located on higher altitudes are sparsely
distributed and have short-term recorded data accumulated from 1996–2010 which are available from
WAPDA. However, the suspended sediment concentrations (SSC) are recorded on intermittent days per
week. Table 1 shows the detailed information on the data used in this study. The flows, temperature,
and rainfall are recorded on a daily basis. Because of the scarcity of climatic information and the sparse
distribution of climatic stations in the Gilgit catchment (see Figures 1 and 2), the information of grid
climatic, snow cover fractions, and grid evapotranspiration datasets of Table 1 were used for the period
1981–2010 during analysis of this research work. These grid datasets were extracted using the Shuttle
Radar Topography Mission’s (SRTM) Digital elevation model (DEM) of 30 m for Gilgit catchment.



Water 2020, 12, 1481 5 of 27Water 2020, 12, x FOR PEER REVIEW 5 of 29 

 

 
Figure 1. The location map of Gilgit River in the Upper Indus Basin (UIB) of PakistFigure 1. The location map of Gilgit River in the Upper Indus Basin (UIB) of Pakist.
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Figure 2. Graphical presentations of (a) mean basin temperature (T), discharges at Gilgit gauge (Q), 
and suspended sediment concentrations (SSC) at Gilgit gauge, (b) mean basin snow covered area 
(SCA), mean basin rainfall (R), and mean basin evapotranspiration (Evap) for the Gilgit basin during 
period 1981–2010. 

Table 1. Data collected for the prediction of suspended sediment yields for the Gilgit River basin. 
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Q * Daily mean discharge 
(m3/sec) 

Daily, 1981–
2010 

Water and Power Development 
Authority (WAPDA), Pakistan 

SSC * 
Suspended sediment 
concentration (mg/l) 

Intermittent 
days per week 

1981–2010 

Water and Power Development 
Authority (WAPDA), Pakistan 

SCF 
Snow cover fractions 

ranging (0–1) extracted from 
MODIS satellite data 

Weekly, basin 
avg. 

2000–2010 
https://nsidc.org/data/MOD10A2 

T 
Daily mean, maximum & 
minimum air temperature 

(°C) on a 5 × 5 km grid 

Daily, basin 
avg. 

1981–2010 
HI-AWARE project [47,48] 

P Daily mean rainfall 
(mm/day) on a 5 × 5 km grid 

Daily, basin 
avg. 

1981–2010 
HI-AWARE project [47,48] 

Evap 
Daily mean 

Evapotranspiration 
(mm/day) on a 5 × 5 km grid 

Daily, basin 
avg. 

1981–2010 
HI-AWARE project [47,48] 

Note * The variable of discharge (Q) and suspended sediment concentrations (SSC) are measured at 
Gilgit gauging station and variables of SCF, T, P, and Evap are basin averages grid datasets. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) MOD10A2 product was 
downloaded on a weekly basis for the period of 2000–2010 from the National Snow and Ice Data 
Center (NSIDC) online server. The MODIS data with 500 m resolution was used for estimating the 
snow cover area and snow melt runoff [49,50]. The same procedure was adopted in other studies to 
estimate and linearly interpolate the snow cover fractions for daily snow cover fractions of the Gilgit 
basin for the period of 2000–2010 [49,50]. The temperature-index snow model was further used to 
estimate the snow cover fraction for the period of 1981–2010 after calibration and validation of the 
snow model with MODIS snow cover. 

Table 2 shows the Pearson’s correlations of input variables used in this study. Generally, 
correlation analysis such as cross correlation, auto-correlation, and partial auto-correlation are also 
used to determine the input combinations of various variables with lag times. However, the main 
deficiency of these methods is the inability to cover the nonlinear relationship between the input and 

Figure 2. Graphical presentations of (a) mean basin temperature (T), discharges at Gilgit gauge (Q),
and suspended sediment concentrations (SSC) at Gilgit gauge, (b) mean basin snow covered area
(SCA), mean basin rainfall (R), and mean basin evapotranspiration (Evap) for the Gilgit basin during
period 1981–2010.

Table 1. Data collected for the prediction of suspended sediment yields for the Gilgit River basin.

Variable Data Source Period Source

Q * Daily mean discharge
(m3/sec) Daily, 1981–2010 Water and Power Development

Authority (WAPDA), Pakistan

SSC * Suspended sediment
concentration (mg/L)

Intermittent days per
week

1981–2010

Water and Power Development
Authority (WAPDA), Pakistan

SCF
Snow cover fractions

ranging (0–1) extracted from
MODIS satellite data

Weekly, basin avg.
2000–2010 https://nsidc.org/data/MOD10A2

T
Daily mean, maximum &
minimum air temperature

(◦C) on a 5 × 5 km grid

Daily, basin avg.
1981–2010 HI-AWARE project [47,48]

P Daily mean rainfall
(mm/day) on a 5 × 5 km grid

Daily, basin avg.
1981–2010 HI-AWARE project [47,48]

Evap
Daily mean

Evapotranspiration
(mm/day) on a 5 × 5 km grid

Daily, basin avg.
1981–2010 HI-AWARE project [47,48]

Note * The variable of discharge (Q) and suspended sediment concentrations (SSC) are measured at Gilgit gauging
station and variables of SCF, T, P, and Evap are basin averages grid datasets.

The Moderate Resolution Imaging Spectroradiometer (MODIS) MOD10A2 product was
downloaded on a weekly basis for the period of 2000–2010 from the National Snow and Ice Data Center
(NSIDC) online server. The MODIS data with 500 m resolution was used for estimating the snow cover
area and snow melt runoff [49,50]. The same procedure was adopted in other studies to estimate and
linearly interpolate the snow cover fractions for daily snow cover fractions of the Gilgit basin for the
period of 2000–2010 [49,50]. The temperature-index snow model was further used to estimate the snow
cover fraction for the period of 1981–2010 after calibration and validation of the snow model with
MODIS snow cover.

Table 2 shows the Pearson’s correlations of input variables used in this study. Generally,
correlation analysis such as cross correlation, auto-correlation, and partial auto-correlation are also
used to determine the input combinations of various variables with lag times. However, the main
deficiency of these methods is the inability to cover the nonlinear relationship between the input and
output variables like discharge sediment, etc. For this reason, in the current study, the various input
combinations were identified by examining the test accuracy of the model output.

https://nsidc.org/data/MOD10A2
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In general, the discharges trigger the channel erosion. However, in addition to discharges,
the temperature and snow cover area of the snow- and ice-dominated basin also triggers hillslope
erosion, snow melt erosion and glacier melt erosion. The evapotranspiration also has an indirect
relationship with erosion processes in the form of the vegetative cover of the plants and forests. Keeping
in view the importance of direct and indirect factors controlling the erosion of catchments, different
variables other than discharges such as snow cover area, effective rainfall, and evapotranspiration
were also chosen in this study for the prediction of sediment yields. Prior to the analysis for
prediction of sediment yields, the flows and suspended sediment load (SSL) were transferred into
a log transformation form to compensate the biases and very high values in datasets. The datasets
were divided into 70% and 30% for training and testing of the model, respectively. Shahin et al. [51]
suggested that for optimum performance of soft computing methods datasets should be divided into
training (i.e., 70%) and testing (i.e., 30%) phases. The daily datasets of measured SSC were not available
for continuous days. The measured SSC values were available for total 767 days during the period
1981–2010. For the sediment rating curve (SRC) the flows and SSC values for the period 1981–2003
(i.e., 1–537 days) and 2003–2010 (i.e., 538–6767 days) were used for training and testing respectively.
However, the random sampling [52] of whole datasets for training (70%) and remainder datasets as
testing (30%) were conducted in MATLAB to reduce over and under fitting of network. Then ANN,
ANFIS, and MARS models were trained and tested in MATLAB with various input combinations.

Table 2. Relationship of Gilgit basin input variables determined by using the Pearson’s correlation
coefficient. Log Q: logarithm of water discharges at Gilgit gauge; Log SSY: logarithm of sediment
yields at Gilgit gauge; SCA: basin average snow cover area: Tavg: averaged basin mean temperature; P:
basin-averaged effective rainfall; Evap: basin averaged evapotranspiration.

log Q
(m3/day)

log SSY
(tons/day)

SCA
(fractions)

Tavg
(◦C)

P
(mm)

Evap
(mm/day)

log Q (m3/day) 1
log SSY (tons/day) 0.87 1

SCA (fractions) −0.85 −0.74 1
Tavg. (◦C) 0.87 0.79 −0.88 1
P (mm) 0.16 0.15 0.09 0.1 1

Evap. (mm/day) 0.86 0.81 −0.82 0.93 0.06 1

2.2. Application of Temperature-Index Snow Model for Snow Cover Estimates

The climatic stations in the Gilgit basin have less availability of long-term climatic records for
the catchment. Previous studies [53–55] reported that the rainfall on higher elevations starting above
5000 m in the Upper Indus Basin (UIB) is 5–10 times higher than the rainfall recorded in the valley.
For this reason, the grid data for rainfall and temperature from the HI-AWARE project [47,48] was
used in this study. Keeping in view the above-mentioned constraints, the temperature-index snow
model is used in this study. The temperature-index snow model is a simple and spatially distributed
model which, in addition, has less data requirements. In this study, this method is used to simulate the
long-term snow melts and snow cover fractions after calibration and validation of the simulated snow
cover fraction with the MODIS snow cover fractions for the period of 2000–2010.

In the temp-index snow melt model [56,57], precipitation P is first separated into snow and liquid
rain on a daily time scale. The threshold temperature TRS (◦C), daily maximum temperature (◦C),
and daily minimum temperature (◦C) separate the snow and liquid rainfall as:{

Rain = R = CpP
Snow = S = (1−Cp)P

(1)

where,



Water 2020, 12, 1481 8 of 27

Precipitation factor Cp proportionate to temperature difference is calculated as:
Cp = 1 i f Tmin > TRS
Cp = 0 i f Tmax ≤ TRS

Cp =
Tmax−TRS
Tmax−Tmin

i f Tmin ≤ TRS < Tmax

(2)

The threshold temperature TRS is used to define the type of precipitation into rain/snow and the
threshold temperature TSM for the snow melt process which depends on numerous factors like the
boundary layer condition of atmosphere, temperature, and air humidity, etc.

Then, daily rates of snow melt, i.e., Msnow (mm/day) are estimated as:{
Msnow = Ksnow(Tmean − TSM) i f Tmean > TSM

Msnow = 0 i f Tmean > TSM
(3)

Here, the Ksnow (mm/day ◦C) is the degree day factor for snow melts, Tmean (◦C) is the mean daily
air temperature, and TSM (◦C) is the threshold temperature.

After this, the snow model simulates the snow water equivalent or snow depth SD (mm) for each
grid number of i as:

SDi(t) = SDi(t− 1) + Si(t) −Msnowi(t) (4)

Finally, the snow cover fraction SCF for i = 1, 2, 3, 4, . . . , N number of grids for the whole basin is
estimated for calibration and validation with the MODIS snow cover fraction as:

SCF (t) =
1
N

N∑
i=1

H [SDi(t)] (5)

Here, H = unit step function; when H = 0, SD = 0 and H = 1 then SD > 0. The area of integration
N is the entire basin, sub-basins, and elevation bands, etc.

2.3. Artificial Neural Networks (ANN)

Artificial neural networks (ANNs) are data-based black box models primarily inspired by the
concept of functioning of the biological nervous system. ANNs consist of a set of processing elements
referred to as neurons. These neurons work in the parallel systems for acquiring the information and
storing the knowledge for computational use. ANNs consist of three layers as their basic structure.
These layers are the input layer, the hidden layer (processed layer), and the output layer. Each layer is
connected by networks of neurons with preceding layers. This system of networks connected with
neurons is called multilayer perceptron (MLP). There are various types of ANNs that perform various
assignments in science and engineering. Among these ANNs of MLP, feed-forward back propagation
FFBP-ANN is most popular. The literature [58–64] explains the details of the ANN model and its
application to water resources with FFBP-MLP algorithm. In FFBP-MLP, the input data are learned in
forward direction of network from input nodes to the hidden nodes with some transfer functions in the
hidden layer. Then, the information is forwarded from the hidden layer to the output nodes. Figure S1
in supplementary materials explains the architectures of the FFBP ANN. In the output layer, an output
is generated by the network, and the error between predicted and model output is computed. This
output error of the network is back-propagated through the network to correct the connection weights
of neurons in the hidden layer. This learning process of the network is performed until the minimum
error is optimized to avoid overfitting as well underfitting of the network.

A neural network is described with (1) architectures of layers connected with networks of neurons,
(2) transfer functions, and (3) training methods for estimation of weights in nodes. In general,
the performance of ANN depends on its model network, learning complexity, and problem complexity.
The performance of ANN depends on the number of neurons in hidden layers and the number of
hidden layers to avoid the over- and underfittings of the network. The literature suggests the optimum
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neurons to be in the range of 2
√

N1 + N0, where N1 and N0 are the number of input and output
neurons, respectively.

For this study, ANN with FFNN-MLP with Levenberg-Marquardt has been used with one hidden
layer as more than one hidden layer increases the complexity of the network and does not improve the
results, either. The FFNN-MLP with Levenberg-Marquardt is a robust and powerful tool. It has a high
and fast ability of data convergence, and produces more accurate results than other ANN algorithms.

2.4. Adaptive Neuro-Fuzzy Logic Inference System (ANFIS)

The adaptive neuro-fuzzy logic inference system (ANFIS) is a novel architecture with combinations
of neural networks and fuzzy inference systems (FIS). A basic ANFIS [65] structure is shown in Figure S2
in section of supplementary materials. The ANFIS works by tuning the parameters of FIS applying the
neural network learning method. The ANFIS builds a network structure connected with a number
of nodes. These nodes are characterized by fixed or adjustable parameters. The ANFIS uses neural
networks with fuzzy logic if-then rules with appropriate membership functions to translate the input
parameters into output values. Three inference systems are classified as Tsukamoto’s, Mamdani’s,
and Sugenos’s systems. The Mamdani’s system [66] was mostly used in the past. The Sugeno’s
system [67] is more efficient than other systems. In this study, Sugeno’s fuzzy logic structures were used.

As an example, it is assumed that a FIS has two inputs x1 and x2 with target values of z. Here,
input of discharge and snow cover can be supposed as x1 and x2 with output z as sediment yield for a
particular time t. Then, in Sugeno’s fuzzy logic structures, typical rule sets with two IF/THEN rules are
expressed as:

Rule 1 : IF x1 is A1 and x2 is B1, THEN z1 = f1 = p1 x1 + q1 x2+r1 (6)

Rule2 : IF x1 is A2 and x2 is B2, THEN z2 = f2 = p2 x1 + q2 x2+r2 (7)

where pi, qi, and ri are parameters corresponding to Rule 1, Rule 2 . . . Rule n.
The ANFIS consist of five layers.
Layer 1: In the first layer, each node generates a membership grade for the variable of each input.

The output of ith node with generalized bell membership function in the first layer is expressed as:

Oi1 = µ Ai(x1)=
1

1 + ((x1 − ci))ai)2Ni (8)

where, {ai, ci, Ni} are the parameter sets for x1 input in ith node. These parameters change the shape of
the bell function in the range of 0–1.

Layer 2: Layer 2 is labeled with II in each node. In this layer, each node multiplies the incoming
signals coming from layer 1 as:

Oi2 = wi = µ Ai(x1)×µ Bi(x2) , i = 1, 2 (9)

Layer 3: In layer 3, each node calculates the normalized firing strength as its relationship between
firing strength of ith rule to the sum of all rules:

Oi3 = w =
w

w1 + w2
i = 1, 2 (10)

Layer 4: In layer 4, the sums of signals from second- and third-layer networks are calculated for
each ith node toward the model output as:

Oi4 = wi fi = wi(pi x1 + qi x2+ri
)

i = 1, 2 (11)

Here, w is the output from layer 3 in this equation.
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Layer 5: Layer 5 calculates the overall output in the form of a single node as the ANFIS model
output against each target value as:

Oi5 = Σwi fi =
Σwi fi
Σwi

i = 1, 2 (12)

In the ANFIS model, to obtain the model parameters, a hybrid learning method is used for this
study. Further details about the ANFIS model can be found in [68].

In this study, three strategies are used to produce the initial fuzzy inference system for the ANFIS
model. These strategies are grid partition (ANFIS-GP), subtractive clustering (ANFIS-SC), and fuzzy
c-means clustering (ANFIS-FCM). The ANFIS-GP is a combination of ANFIS and grid partition. In grid
partition, the input linguistic variables are partitioned by fuzzy numbers and their membership
functions (MFs). The grid partition uses predefined numbers of MFs to optimize the MFs according
to input–output datasets. The quantitative characteristics of datasets are separated into n partitions
(n = 2, 3, 4 . . . ). In this study, eight MFs were used, such as gaussmf, gauss2mf, trimf, trapmf, gbellmf,
pimf, dsig, mf, and psigmf. In the AFNIS-GP model, the number of rules increases exponentially with
the increase in the number of input variables. For details about the ANFIS-GP, see [65].

The ANFIS-SC model is the extended model derived from the mountain clustering model [69] with
combination of the ANFIS model by using the subtractive clustering strategy. This model was modified
by Chiu [70]. This method has an advantage over the mountain clustering method. It eliminates
the grid resolution to reduce the complex computations in the mountain clustering method. In the
ANFIS-SC model, each dataset is considered as potential cluster. Then, the potential of each data point
of a given dataset is calculated by its distance from all other data points. These data points having
many neighboring data points show a high potential value. The influential radius decides the number
of clusters in the ANFIS-SC model. The small value of influential radius has many numbers of clusters
with more rules in comparison to its large value [71]. Using a hit-and-trial procedure, the suitable
critical value of influential radius is sorted out during the data space clustering procedure. [70,72]
further explain the detailed procedure of the ANFIS-SC model.

The ANFIS-FCM model was proposed in the literature [73–77] and enhanced by Zhang and
Chen [78]. The ANFIS-FCM minimizes the errors by partitioning the X datasets into C clusters. This
method reduces the errors regarding the weighted distance of each data point xi toward all centroids
of the C clusters. After this, the ANFIS-FCM model minimizes the objective function as:

Min JFCM =
C∑

c=1

N∑
i=1

wp
ic‖xi−vc‖

2 s.t.
C∑

c=1

wic = 1, i = 1, 2, . . . , N (13)

where C, N, wic, v, and x are the number of clusters, number of data points, degree belongs to ith data
point of Cith clusters data points, and input data sets. The p (p > 1) entitles to the fuzzifier exponent.
In ANFIS-FCM, wic is calculated as:

wic =
1∑c

i=1

(
dic2

/
di j2

) 1/(p−1)
f or i = 1, 2, . . .N and c = 1, 2, . . .C (14)

In the FCM model after initialization of the center vectors, centers are recomputed as:

vc =

∑N
j=1 wp

Jc x j∑N
j=1 wp

Jc
f or c = 1, 2, . . .N and 1

〈
p
〉
N (15)

The algorithm is run until the convergence condition is completed.
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2.5. Multivariate Adaptive Regression Splines (MARS)

MARS is a non-parametric technique for the prediction of nonlinear processes developed in 1991
by Friedman [79]. The MARS model is a flexible and precise prediction model. It has been successfully
applied in different studies [80–82] for prediction and forecasting purposes. In the MARS model,
the MARS function develops a series of linear segments having different slopes from the input–output
relationships of given datasets. Each linear segment of MARS is then fitted with a linear basis function.
For this study, the datasets were separated into break values between different regions or segments
referred to as knots. Each region has its own regressions line. The shape of a piecewise linear basis
function is expressed as:

[max (0, x− k)] OR [max (0, k− x)] (16)

Here, x represents the predictor variable and k explains about the threshold value of the knots.
In general, MARS consists of combinations of basis functions (BFs) given as:

y = f (x) + ε (17)

f (x) = βo + βmBFm(x) (18)

In the above Equation (12), the variable y is dependent on the estimated values of function f (x)
with the error ε. In Equation (13), βo is a constant value, BFm is the basis function, and βm represents
the coefficient for the maximum number of basis functions (BFs) depending on the input’s datasets.

In the MARS model with polynomial knots, there exist two phases called forward step phase
and backward step phase. The forward step phase generates all possible BFs. After generation of the
BFs, the generalized cross validation criterion (GCV) is used for determining the BFs and appropriate
nodes. After this forward step phase, the backward step phase of the MARS model works to reduce
the number of BFs for improving the predictions and avoiding overfitting of the model. [79] gives
detailed information about the MARS model.

2.6. Sediment Rating Curve (SRC)

The sediment rating curve is an empirical relationship of flows and sediment load or concentrations
described as:

SSL(t) = a×Qb
(t) (19)

where Q (m3/day) is discharge, SSL (tons/day) both in log transformation form, and a and b are the
constants that depend on the characteristics of a river and its catchments.

2.7. Performance Measurement Metrics for Model Evaluation

The performance of models was measured and assed using the following statistics:
Root-mean-square error (RMSE):

RMSE =

√√√
1
N

N∑
i=1

((Sio) − (Sis)) 2 (20)

Nash–Sutcliffe efficiency (NSE):

NSE = 1−

∑N
t=1(Sio − Sis)

2∑N
t=1

(
Sis − Sis

)2 −∞ ≤ NSE ≤ 1 (21)

Pearson’s correlation coefficient (R2):
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R2 =


∑N

i=1

(
Si0 − Sio

)(
Sis − Sis

)
√∑N

i=1

(
Si0 − Sio

)2 ∑N
i=1

(
Sis − Sis

)2


2

(22)

where N refers to the data quantity, Sio is the observed sediment, Sis is the simulated sediments, and Sis
is the mean of the simulated sediments.

Relative accuracy:
The relative accuracy is the %age of accuracy expressed as:

Relative Accuracy (%age) =
(
1−

∣∣∣∣∣∣Spo−Sps

Spo

∣∣∣∣∣∣
)
× 100 (23)

where Spo is the observed peak value of SSY, Sps is the simulated peak value of SSY.

2.8. Application of the ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, and MARS Models

For application of the ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, and MARS models various input
combinations with daily lag time were examined with scenarios starting from S1–S15 by testing the
accuracy of the network using minimum RMSE and maximum values of R2 and NSE as performance
criteria. The input scenarios developed in this study for predictions of sediment yields are listed here:

(a) Flows S1 = SSCt = f (Qt, β1) + ei S2 = SSCt = f (Qt, Qt−1, β1, β2) + ei S3 = SSCt = f (Qt, Qt−1, Qt−2,
β1, β2, β3) + ei S4 = SSCt = f (Qt, Qt−1, Qt−2, Qt−3, β1, β2, β3, β4) + ei S5 = SSCt = f (Qt, Qt−1, Qt−2,
Qt−3, Qt−4, β1, β2, β3, β4, β5) + ei

(b) Flows and snow cover area S6 = SSCt = f (Qt, SCAt, β1, β6) + ei S7 = SSCt = f (Qt, SCAt, SCAt−1,
β1, β6, β7) + ei S8 = SSCt = f (Qt, SCAt, SCAt−1, SCAt−2, β1, β6, β7, β8) + ei

(c) Flow, snow cover area, and effective rainfall S9 = SSCt = f (Qt, Rt−1, SCAt, SCAt−4, β1, β9, β6, β10)
+ ei

(d) Flow, snow cover area, temperature, and evapotranspiration S10 = SSCt = f (Qt, Tt−1, Evapt−1,
SCAt, SCAt−4, β1, β11, β12, β6, β10) + ei

(e) Average mean basin air temperature S11 = SSCt = f (Tt, β13) + ei S12 = SSCt = f (Tt, Tt−1, β13, β11)
+ ei S13 = SSCt = f (Tt, Tt−1, Tt−2, β13, β11, β14) + ei S14 = SSCt = f (Tt, Tt−1, Tt−2, Tt−3, β13, β11,
β14, β15) + ei S15 = SSCt = f (Tt, Tt−1, Tt−2, Tt−3, Tt−4, β13, β11, β14, β15, β16) + ei

In the combinations above, β1–β16 represent the membership functions of layers in the ANN,
ANFIS, and MARS models.

3. Results and Discussion

3.1. Simulation of Snow Melts and Snow Cover Area

The results of the calibrated temperature-index snow melt model are shown in Table 3. The model
was calibrated and validated to simulate the snow cover by using the degree day factor for the
snow model. Table 3 shows the value of the degree day factor ksnow = 4.2 (mm/day/◦C) for the
Gilgit basin. The literature review [49,50,83–86] for the regional case studies shows that the value of
Ksnow ranges from 3–7 (mm/day/◦C) in the Upper Indus Basin (UIB). Thus, during calibration and
validation of the temperature-index snow model for this study, the value of ksnow = 4.2 (mm/day/◦C)
lies within the range of the values of previous studies carried out for snow melt runoff modeling in
the UIB. The difference between the Ksnow value in the current study and that of previous studies
is probably due to the use of different resolutions of input datasets, lengths of calibration datasets,
threshold temperatures for separating rainfall and snow, threshold temperatures for snow melts,
and characteristics of the catchment.
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Table 3. Results of performance measurement statistics during calibration (2000–2007) and validation
(2008–2010) periods of the temperature-index snow model for simulations of snow melt and snow
cover fractions.

ksnow = 4.2 (mm/day/◦C)

Calibration Period (2000–2007) Validation Period (2008–2010)

R2 0.90 0.90
NSE 0.72 0.70

RMSE 0.15 0.15

Table 3 also shows the performance measurement statistics for the snow model during the
calibration and validation periods. The value of R2 is found at 0.90 between the MODIS-observed
snow covered area and model simulated snow cover area both during the calibration and validation
periods. The performance evaluation criteria using the three criteria of R2, NSE, and RMSE show that
goodness of fit between the model and observed MODIS snow cover maps is more than 70% which
is satisfactory in estimation of both the snow melts and snow cover area. Figure 3 also shows the
time series plot between model snow cover area and MODIS-observed snow cover area during the
calibration (2000–2007) and validation (2008–2010) period, respectively.
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For application of the ANN model, the transfer functions logsig, purelin, tansig, and radbas were
used in the hidden layers. The network was trained by using 16 combinations of four transfer functions
for input and output layers. The optimum number of neurons was determined ranging from 3–8 in
single hidden layers for overall input scenarios giving best results at the end. Table 4 shows the results
of various input combinations using ANN model. For the ANFIS-GP, ANFIS-SC, and ANFIS-FCM
models, the hybrid algorithm was used in this study.

For the ANFIS-GP model application, the gaussmf, gauss2mf, trimf, trapmf, gbellmf, pimf, dsigmf,
and psigmf membership functions were used. In ANFIS-GP, the type of membership functions and
number of member functions are important for training the network. Table 5 shows the results of
all scenarios using the ANFIS-GP model with optimal number and type of membership functions.
The optimal number of functions ranges between 2 and 4 for all scenarios.

For application of the ANFIS-SC model, the network is trained with an optimal range of the radius
of clusters which give a minimum value of RMSE and highest values of R2 and NSE. The optimal value
of the cluster radius represents the influence of the cluster radius on the dataset clusters. If the cluster
radius is small, then there are numerous small cluster datasets.
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On the other hand, a large value of the cluster radius means that there are a few large cluster
datasets for training the network. During training of the network, the hit-and-trial method was used
to find out the optimum value of the cluster radius with the smallest value of RMSE for all scenarios
during the testing period. Table 6 shows the results of the ANFIS-SC model for all scenarios. It was
found that the optimal range of the cluster radius is from 0.5–0.9 for all scenarios.

For application of the ANFIS-FCM model, the various numbers of clusters were used to train and
test the network for all scenarios. Table 7 shows the results of the ANFIS-FCM model for all input
combinations. The optimal number of clusters ranges between 2 and 6 for this study with the lowest
value of RMSE and highest value of R2 during testing of the network for all input combinations.

For application of the MARS model, the controlling parameters generally include the maximum
basis functions, maximum interaction, speed factor, minimum number of observations between knots,
penalty of variable, and degree of freedom. However, for this study, the hit-and-trial method was used
to train the model with an optimal number of maximum basis functions ranging from 5 to 25 for all
input scenarios with the remaining parameters being default values in the model. Table 8 shows the
results of the MARS model for various input scenarios used in this study.

For application of the sediment rating curve (SRC) model, the power law function was used
to train the model with 70% of the datasets after transformation of flows and sediment yields into
logarithm form.

After training of SRC with 70% of the data sets, the model was tested with 30% of the remaining
data. Figure 4 shows the plot of the sediment rating curve using the power law functions. Table 9
also shows the results of training and testing of the sediment rating curve (SRC) model and compares
its model performance statistics with other models used for predictions of sediment yields used in
this study.
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3.2. Comparison of the ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, MARS, and SRC Models

The results of the training and validation of the various scenarios are shown in Tables 4–9 for the
ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, MARS, and SRC models for predictions of the sediment
yields for the Gilgit basin. In Table 4, the ANN shows the best performance of S10 scenarios with model
inputs of Qt, Tt−1, Evapt−1, SCAt, and SCAt−4. In the ANN, the model parameters having radbas and
tansig as input and output transfer functions along with five numbers of neurons performed best
with S10 input scenarios during the training and validation phases. Table 5 shows the results of the
ANFIS-GP for all input scenarios. Here, the ANFIS-GP shows the best performance of the model with
S7 scenarios consisting of inputs of Qt, SCAt, and SCAt−1. The ANFIS-GP model performs best with
model parameters consisting of triangular (trimf) membership functions along with two numbers of
membership functions (MFs). The results of the ANFIS-SC model are shown in Table 6.
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Table 4. Training and testing statistics of the ANN model employing the Levenberg-Marquardt algorithm using different input combinations for the Gilgit basin.

Scenarios Model Inputs Neurons
Transfer Function R2 RMSE NSE

Input Output Training Testing Training Testing Training Testing

S1 Qt 3 logsig purelin 0.76 0.81 0.48 0.42 0.76 0.8
S2 Qt, Qt−1 3 logsig purelin 0.77 0.79 0.48 0.44 0.77 0.79
S3 Qt, Qt−1, Qt−2 5 radbas purlin 0.78 0.79 0.46 0.45 0.78 0.79
S4 Qt, Qt−1, Qt−2, Qt−3 5 tansig purelin 0.80 0.80 0.44 0.47 0.80 0.79
S5 Qt, Qt−1, Qt−2, Qt−3, Qt−4 7 logsig purelin 0.81 0.80 0.43 0.44 0.81 0.80

S6 Qt, SCAt 5 tansig purelin 0.79 0.82 0.45 0.44 0.79 0.81
S7 Qt, SCAt, SCAt−1 7 tansig tansig 0.80 0.80 0.44 0.43 0.80 0.8
S8 Qt, SCAt, SCAt−1, SCAt−2 8 tansig tansig 0.80 0.81 0.44 0.43 0.80 0.81

S9 Qt, Rt−1, SCAt, SCAt−4 7 logsig purelin 0.80 0.82 0.44 0.42 0.80 0.82

S10 Qt, Tt−1, Evapt−1, SCAt, SCAt−4 5 radbas tansig 0.81 0.82 0.42 0.43 0.81 0.81

S11 Tt 3 logsig purelin 0.69 0.73 0.55 0.50 0.69 0.73
S12 Tt, Tt−1 3 logsig tansig 0.69 0.74 0.54 0.51 0.69 0.73
S13 Tt, Tt−1, Tt−2 6 tansig tansig 0.74 0.73 0.51 0.51 0.74 0.72
S14 Tt, Tt−1, Tt−2, Tt−3 8 tansig tansig 0.75 0.74 0.49 0.51 0.75 0.74
S15 Tt, Tt−1, Tt−2, Tt−3, Tt−4 7 radbas tansig 0.74 0.76 0.49 0.51 0.74 0.76

Table 5. Training and testing statistics of the AFIS1 grid partition (GP) model employing different input combinations for the Gilgit basin.

Scenarios Model Inputs Membership
Functions

No of
Functions

R2 RMSE NSE

Training Testing Training Testing Training Testing

S1 Qt pimf 4 0.77 0.78 0.46 0.47 0.77 0.78
S2 Qt, Qt−1 pimf 2 0.78 0.78 0.46 0.47 0.78 0.78
S3 Qt, Qt−1, Qt−2 gauss2mf 2 0.79 0.77 0.45 0.49 0.79 0.77
S4 Qt, Qt−1, Qt−2, Qt−3 gbellmf 2 0.81 0.75 0.43 0.50 0.81 0.75
S5 Qt, Qt−1, Qt−2, Qt−3, Qt−4 trimf 2 0.81 0.71 0.43 0.53 0.81 0.69

S6 Qt, SCAt trimf 2 0.79 0.77 0.45 0.45 0.79 0.77
S7 Qt, SCAt, SCAt−1 trimf 2 0.79 0.78 0.44 0.47 0.79 0.78
S8 Qt, SCAt, SCAt−1, SCAt−2 trimf 2 0.82 0.76 0.42 0.47 0.82 0.75

S9 Qt, Rt−1, SCAt, SCAt−4 trimf 2 0.82 0.76 0.41 0.49 0.82 0.76
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Table 5. Cont.

Scenarios Model Inputs Membership
Functions

No of
Functions

R2 RMSE NSE

Training Testing Training Testing Training Testing

S10 Qt, Tt−1, Evapt−1, SCAt, SCAt−4 trimf 2 0.85 0.72 0.38 0.52 0.85 0.72

S11 Tt psigmf 2 0.70 0.70 0.55 0.52 0.70 0.70
S12 Tt, Tt−1 pimf 2 0.71 0.71 0.54 0.51 0.71 0.71
S13 Tt, Tt−1, Tt−2 trimf 2 0.71 0.73 0.52 0.52 0.71 0.73
S14 Tt, Tt−1, Tt−2, Tt−3 trapmf 2 0.72 0.72 0.51 0.53 0.72 0.72
S15 Tt, Tt−1, Tt−2, Tt−3, Tt−4 trimf 2 0.77 0.60 0.46 0.65 0.77 0.59

Table 6. Training and testing statistics of the AFIS2 subtractive clustering (SC) model employing different input combinations for the Gilgit basin.

Scenarios Model Inputs Radii
R2 RMSE NSE

Training Testing Training Testing Training Testing

S1 Qt 0.50 0.77 0.78 0.46 0.47 0.77 0.78
S2 Qt, Qt−1 0.70 0.77 0.78 0.46 0.47 0.77 0.78
S3 Qt, Qt−1, Qt−2 0.70 0.77 0.78 0.46 0.47 0.77 0.78
S4 Qt, Qt−1, Qt−2, Qt−3 0.70 0.78 0.78 0.45 0.47 0.78 0.78
S5 Qt, Qt−1, Qt−2, Qt−3, Qt−4 0.80 0.78 0.78 0.45 0.47 0.78 0.78

S6 Qt, SCAt 0.60 0.78 0.78 0.45 0.47 0.78 0.78
S7 Qt, SCAt, SCAt−1 0.80 0.78 0.78 0.45 0.47 0.78 0.78
S8 Qt, SCAt, SCAt−1, SCAt−2 0.70 0.79 0.77 0.44 0.48 0.79 0.77

S9 Qt, Rt−1, SCAt, SCAt−4 0.60 0.79 0.78 0.45 0.47 0.79 0.78

S10 Qt, Tt−1, Evapt−1, SCAt, SCAt−4 0.90 0.80 0.79 0.43 0.46 0.80 0.79

S11 Tt 0.50 0.70 0.70 0.53 0.55 0.70 0.70
S12 Tt, Tt−1 0.60 0.71 0.70 0.52 0.55 0.71 0.70
S13 Tt, Tt−1, Tt−2 0.80 0.72 0.72 0.51 0.53 0.72 0.72
S14 Tt, Tt−1, Tt−2, Tt−3 0.80 0.72 0.71 0.51 0.54 0.72 0.71
S15 Tt, Tt−1, Tt−2, Tt−3, Tt−4 0.70 0.72 0.73 0.51 0.52 0.72 0.73



Water 2020, 12, 1481 17 of 27

Table 7. Training and testing statistics of the AFIS3 FCM clustering model employing different input combinations for the Gilgit basin.

Scenarios Model Inputs No of
Clusters

R2 RMSE NSE

Training Testing Training Testing Training Testing

S1 Qt 2 0.77 0.78 0.46 0.47 0.77 0.78
S2 Qt, Qt−1 4 0.77 0.78 0.46 0.47 0.77 0.78
S3 Qt, Qt−1, Qt−2 2 0.77 0.78 0.46 0.47 0.78 0.78
S4 Qt, Qt−1, Qt−2, Qt−3 2 0.77 0.78 0.46 0.48 0.77 0.78
S5 Qt, Qt−1, Qt−2, Qt−3, Qt−4 2 0.77 0.78 0.46 0.48 0.77 0.77

S6 Qt, SCAt 2 0.78 0.78 0.45 0.47 0.78 0.78
S7 Qt, SCAt, SCAt−1 2 0.78 0.78 0.45 0.47 0.78 0.78
S8 Qt, SCAt, SCAt−1, SCAt−2 2 0.78 0.77 0.45 0.48 0.80 0.78

S9 Qt, Rt−1, SCAt, SCAt−4 2 0.79 0.78 0.44 0.47 0.79 0.78

S10 Qt, Tt−1, Evapt−1, SCAt, SCAt−4 2 0.80 0.78 0.43 0.47 0.80 0.78

S11 Tt 3 0.70 0.70 0.53 0.55 0.70 0.70
S12 Tt, Tt−1 2 0.71 0.70 0.53 0.55 0.71 0.70
S13 Tt, Tt−1, Tt−2 4 0.72 0.71 0.51 0.54 0.72 0.71
S14 Tt, Tt−1, Tt−2, Tt−3 6 0.76 0.72 0.48 0.53 0.76 0.72
S15 Tt, Tt−1, Tt−2, Tt−3, Tt−4 2 0.72 0.70 0.51 0.55 0.72 0.70

Table 8. Training and testing statistics of the MARS model employing different input combinations for the Gilgit basin.

Scenarios Model Inputs Basis
Function

R2 RMSE NSE

Training Testing Training Testing Training Testing

S1 Qt 5 0.77 0.78 0.47 0.47 0.77 0.78
S2 Qt, Qt−1 15 0.77 0.78 0.47 0.47 0.77 0.78
S3 Qt, Qt−1, Qt−2 15 0.77 0.78 0.47 0.47 0.77 0.78
S4 Qt, Qt−1, Qt−2, Qt−3 15 0.77 0.78 0.47 0.47 0.77 0.78
S5 Qt, Qt−1, Qt−2, Qt−3, Qt−4 15 0.78 0.78 0.47 0.47 0.77 0.78

S6 Qt, SCAt 15 0.77 0.78 0.46 0.48 0.78 0.77
S7 Qt, SCAt, SCAt−1 20 0.77 0.77 0.46 0.48 0.77 0.77
S8 Qt, SCAt, SCAt−1, SCAt−2 15 0.77 0.77 0.46 0.48 0.77 0.77

S9 Qt, Rt−1, SCAt, SCAt−4 25 0.78 0.77 0.45 0.48 0.78 0.77
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Table 8. Cont.

Scenarios Model Inputs Basis
Function

R2 RMSE NSE

Training Testing Training Testing Training Testing

S10 Qt, Tt−1, Evapt−1, SCAt, SCAt−4 10 0.79 0.79 0.45 0.46 0.79 0.79

S11 Tt 20 0.69 0.70 0.54 0.55 0.69 0.70
S12 Tt, Tt−1 15 0.70 0.70 0.53 0.55 0.70 0.70
S13 Tt, Tt−1, Tt−2 10 0.71 0.71 0.52 0.55 0.71 0.70
S14 Tt, Tt−1, Tt−2, Tt−3 10 0.72 0.71 0.52 0.54 0.72 0.71
S15 Tt, Tt−1, Tt−2, Tt−3, Tt−4 20 0.72 0.71 0.51 0.54 0.72 0.71

Table 9. Comparison of performance measurements by using the SRC, ANFIS-GP, ANFIS-SC, ANFIS-SC, ANFIS-FCM, and MARS models in predictions of
sediment yields.

Models
Training Period Testing Period

R2 RMSE NSE R2 RMSE NSE

SRC 0.81 0.49 0.75 0.71 0.60 0.66
ANN 0.81 0.42 0.81 0.82 0.43 0.81

ANFIS-GP 0.79 0.44 0.79 0.78 0.47 0.78
ANFIS-SC 0.80 0.43 0.80 0.79 0.46 0.79

ANFIS-FCM 0.80 0.43 0.80 0.78 0.47 0.78
MARS 0.79 0.45 0.79 0.79 0.46 0.79
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From Table 6, the input scenario S10 involving the inputs of Qt, Tt−1, Evapt−1, SCAt, and SCAt−4

gives the best performance of the ANFIS-SC model. The ANFIS-SC uses the model parameters having
the value of a cluster radius of 0.90 to perform best with S10 input combinations. Table 7 shows the
results of input scenarios by using the ANFIS-FCM model. It is evident that the best performance of
the ANFIS-FCM model, too, was obtained with S10 scenarios having inputs of Qt, Tt−1, Evapt−1, SCAt,
and SCAt−4. In the ANFIS-FCM model, the best network was developed by using the model parameter
having two numbers of clusters with S10 input scenario.

Table 8 represents the results of the MARS model used in this study for prediction of the sediment
yield of the Gilgit River basin. As shown in Table 8, again the input scenario S10 involving the inputs
of Qt, Tt−1, Evapt−1, SCAt, and SCAt−4 developed the best-performing network in the MARS model.
The MARS model performed best with its basis function (BF) parameter having the value of 10 with
the S10 scenario.

Table 9 shows the overall results of the best networks of the ANN, ANFIS-GP, ANFIS-SC,
ANFIS-FCM, and MARS models compared with the sediment rating curve performance for the Gilgit
basin. Table 8 shows that the ANN model performs better than all other models with the least values
of the RMSE errors of 0.42 and 0.43 during the training and testing phase.

Similarly, Figure 5 shows the scatter plot between the observed and predicted SSY by using ANN,
ANFIS-GP, ANFIS-SC, ANFIS-FCM, MARS, and SRC during the testing phase for overall best input
scenarios. From the scatter plot graphs, it can be observed that the ANN-based model has the least
scatters with the highest value of R2 during the testing phase. The ANN has improved the results of
the scatter plot of the R2 value to up to 0.82 in comparison to the rating curve R2 value of 0.71 during
the testing period.

Figure 6 shows the annual time series variation graphs of the observed and estimated SSY by
using the ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, MARS, and SRC models with best- performed
input combinations. This Figure 6 also includes the one detailed graph derived from the main time
series plot to compare all model performances during the peak annual suspended sediment yields
(SSY) period of the year 2005.

It is illustrated in Figure 6 that during the peak SSY period of the year 2005, the estimated SSY of
the models ANN, MARS, and ANFIS-FCM are relatively closer to the observed SSY than those of the
other models. However, the models ANFIS-GP and ANFIS-SC significantly underestimated the SSY
during this peak year period of 2005. Similarly, the SRC model significantly overestimated the SSY
during that period.

Figure 7 shows an overall comparison of different input variable scenarios developed from flows
Q (m3/day), snow cover area SCA (fractions), effective mean basin rainfall R (mm/day), mean basin
average temperatures T (◦C/day), and mean basin evapotranspiration Evap (mm/day) for predictions
of SSY during the testing period in the Gilgit basin. The model performance of R2 was improved up to
the value of 0.82 by introducing the combinations of the snow cover area along with flows, effective
rainfall, temperatures, and evapotranspiration. The input combinations consisting of only the mean
basin average temperature T perform less than other combinations consisting of flows, snow covers,
effective rainfall etc. However, the mean basin average temperature T variable scenarios’ performance
with an R2 value of 0.76 is better than the rating curve with an R2 value of 0.71.

Rajaee et al. [22] applied artificial neural networks (ANNs), neuro-fuzzy (NF), multiple linear
regression (MLR), and sediment rating curve (SRC) for prediction of suspended sediment concentrations
(SSC) for Little Black River and Salt River in United states of America (USA). For example, in Little
Black River gauging station, the value of R2 was 0.69 for NF model, while it was 0.45, 0.25, and 0.23 for
ANN, MLR, and SRC models respectively. In the present study, the value of R2 ranges from 0.78–0.82
using ANN and ANFIS models. It suggests that the soft computing models could be successfully
applied for daily prediction sediment yields.
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Figure 7. Overall comparison of the performance measures of coefficient of determination (R2),
Nash–Sutcliffe efficiency model performance coefficient (NSE), and root-mean-square error (RMSE)
with different input variable scenarios during the testing phase from all models.

The mean values of SSY and relative accuracies of the ANFIS-GP, ANFIS-SC, ANFIS-SC,
ANFIS-FCM, MARS, and SRC models at Gilgit gauging station are shown in Table 10. The ANN model
predicted the means of the peak sediment fluxes to be 6613 (tons/day) and 5186 (tons/day), while
the ANFIS-GP, ANFIS-SC, ANFIS-FCM, MARS, and SRC models resulted in less accurate outcomes.
However, Table 10 also shows that the ANFIS-FCM model with a relative accuracy of 81.31% has a
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superior accuracy in predicting the peak values of sediment yields compared to the ANN (80.17%),
ANFIS-GP (78.45%), ANFIS-SC (75.49%), MARS (80.16%), and SRC (66.33%) models.

Table 10. Comparison of the ANFIS-GP, ANFIS-SC, ANFIS-SC, ANFIS-FCM, MARS, and SRC models’
absolute sediment fluxes and relative accuracies (%age) for peak estimations of SSY for the Gilgit
gauging station.

Year
Peaks >

3200
(tons/day)

ANN
(tons/day)

ANFIS-
GP

(tons/day)

ANFIS-
SC

(tons/day)

ANFIS-
FCM

(tons/day)

MARS
(tons/day)

SRC
(tons/day)

1983 3901 3934
(99.15)

3884
(99.56)

3886
(99.62)

3613
(92.62)

3826
(98.07)

4654
(80.69)

1984 4955 3542
(71.48)

4543
(91.68)

3033
(61.21)

3789
(76.46)

3385
(68.31)

4375
(88.29)

1991 3256 3088
(94.84)

2804
(86.11)

3128
(96.06)

3093
(94.99)

3105
(95.36)

4468
(62.77)

2003 4057 2372
(58.46)

2514
(61.96)

2616
(64.48)

2790
(68.77)

2674
(65.91)

4400
(91.54)

2005 16,898 12,993
(76.89)

8949
(52.95)

9480
(56.10)

12,458
(73.72)

12,365
(73.17)

32,385
(8.35)

Mean
(Relative

Accuracy %)
6613 5186

(80.17)
4539

(78.45)
4429

(75.49)
5149

(81.31)
5071

(80.16)
10,056
(66.33)

3.3. Deveoplement of Multiple Linear Regression Equation

The relationships between the measured sediment yields and the best-performing scenarios of
the ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, and MARS models have been developed using 70% of
the data. The remaining 30% of the data was used to test the equation of multiple linear regression
developed between the measured sediments and data-based model outputs. Equation (24) represents
the relation between log-transferred measured sediments loads and data-based log-transferred modeled
sediment loads as:

y = 0.60x1 + 0.45x2 + 0.11x3 + 0.20x4 − 0.05x5 − 0.19x6 − 0.39 (24)

where y = observed/measured sediment load in log form (tons/day), x1 = ANN model outputs of
sediment load in log form (tons/day), x2 = ANFIS-GP model outputs of sediment load in log form
(tons/day), x3 = ANFIS-SC model outputs of sediment load in log form (tons/day), x4 = ANFIS-FCM
model outputs of sediment load in log form (tons/day), x5 = MARS model outputs of sediment load in
log form (tons/day), and x6 = SRC model outputs of sediment load in log form (tons/day). Figure 8
shows the results of the multiple linear regression Equation (23) during the training and testing periods.
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4. Conclusions

This study was designed to improve the predictions of sediment yields by using different input
variables applying the ANN, ANFIS-GP, ANFIS-SC, ANFIS-FCM, and MARS models in addition to
the SRC model to the snow- and ice melt-dominated Gilgit basin. The objective of the study was to
compare and examine the appropriate input variables based on the knowledge of hydrological process-
and snow- and ice melt-dominated factors controlling erosion and sediment transport for predictions
of sediment yields. To accomplish this objective, we investigated the input such as flows affecting
channel erosion; temperature and snow cover area as snow melt erosion, glacier melt erosion and
hillslope erosions; effective rainfall as mass wasting erosion, hillslope erosions and channel erosion;
and evapotranspiration as effect of vegetation cover controlling catchment erosion for the prediction of
sediment yields. It was concluded that for the prediction of sediment yields, the inputs of snow cover
area, effective rainfall, and evapotranspiration significantly improve the accuracy of the ANN model
when used in addition to flows and temperature as inputs. Combining the snow cover maps, effective
rainfall, temperature, and evapotranspiration as inputs slightly increased the model performance (0.80
and 0.82) of R2 when using the ANN model during the testing phase for the Gilgit River basin. It was
concluded that the estimated snow cover area on land use maps and spatially distributed climatic
information can improve the prediction of sediment yields when using data-based models.

It was also concluded that predictions of the peak values of sediment yields by means of the ANN,
ANFIS-FCM, and MARS models are relatively closer to the values of the observed sediments than
when using the SRC, ANFIS-GP, and ANFIS-SC models. The ANFIS-FCM, ANN, and MARS models
predicted the sediment with relative accuracies of 81.31%, 80.17%, and 80.16%, respectively, against
the peak values of the observed time series. Overall, the ANFIS-FCM model was found to be more
successful than the other models for predicting the peak values of sediments in the Gilgit basin.
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Figure S1: Schematic diagram of the ANN model for prediction of sediment yields with one hidden layer, Figure S2:
Schematic diagram of the ANFIS model for prediction of sediment yields with two inputs., Table S1: Summary of
the reviewed publications of data-based models sorted by year and input variables, Table S2: Characteristics of
the Gilgit River basin in the Upper Indus River.
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