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Abstract 

In any aquatic system analysis, the modelling water quality parameters are of considerable significance. 

The traditional modelling methodologies are dependent on datasets that involve large amount of 

unknown or unspecified input data and generally consist of time-consuming processes. The 

implementation of artificial intelligence (AI) leads to a flexible mathematical structure that has the 

capability to identify non-linear and complex relationships between input and output data. There has 

been a major degradation of the Johor River Basin because of several developmental and human 

activities. Therefore, setting up of a water quality prediction model for better water resource 

management is of critical importance and will serve as a powerful tool. The different modelling 

approaches that have been implemented include: Adaptive Neuro-Fuzzy Inference System (ANFIS), 

Radial Basis Function Neural Networks (RBF-ANN), and Multi-Layer Perceptron Neural Networks 

(MLP-ANN). However, data obtained from monitoring stations and experiments are possibly polluted 

by noise signals as a result of random and systematic errors. Due to the presence of noise in the data, it 

is relatively difficult to make an accurate prediction. Hence, a Neuro-Fuzzy Inference System (WDT-

ANFIS) based augmented wavelet de-noising technique has been recommended that depends on 
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historical data of the water quality parameter. In the domain of interests, the water quality parameters 

primarily include ammoniacal nitrogen (AN), suspended solid (SS) and pH. In order to evaluate the 

impacts on the model, three evaluation techniques or assessment processes have been used. The first 

assessment process is dependent on the partitioning of the neural network connection weights that 

ascertains the significance of every input parameter in the network. On the other hand, the second and 

third assessment processes ascertain the most effectual input that has the potential to construct the 

models using a single and a combination of parameters, respectively. During these processes, two 

scenarios were introduced: Scenario 1 and Scenario 2. Scenario 1 constructs a prediction model for water 

quality parameters at every station, while Scenario 2 develops a prediction model on the basis of the 

value of the same parameter at the previous station (upstream). Both the scenarios are based on the 

value of the twelve input parameters. The field data from 2009–2010 was used to validate WDT-ANFIS. 

The WDT-ANFIS model exhibited a significant improvement in predicting accuracy for all the water 

quality parameters and outperformed all the recommended models. Also, the performance of Scenario 2 

was observed to be more adequate than Scenario 1, with substantial improvement in the range of 0.5% 

to 5% for all the water quality parameters at all stations. On validating the recommended model, it was 

found that the model satisfactorily predicted all the water quality parameters (R2 values equal or bigger 

than 0.9). 
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1. Introduction 1 

Rivers are considered as one of the most critical sources of water for irrigation purposes, 2 

industrial needs and other uses. The dynamic nature of the river systems and their easy 3 

accessibility for waste disposal make the river systems most vulnerable to the adverse effects 4 

of environmental pollution. The term “water quality” refers to the state or condition of water, 5 

which takes into account the physical, chemical, and biological properties of the water. In 6 

conducting the study of any aquatic system, modelling the water quality parameters is of 7 

utmost significance. Evaluation and prediction of the surface water quality is necessary for 8 

effective management of river basins so that sufficient measures can be adopted to ensure 9 

that the pollution levels remain within permissible limits. Accurate prediction of future 10 

phenomena in relation to the water quality is the essence of optimal water resources 11 

management. The conventional process-based modelling methods offer comparatively 12 

accurate predictions for water quality parameters. However, these models have limitations as 13 

they depend on data sets that require a substantial amount of processing time and a huge 14 

amount of input data that is often unknown.  15 

Nearly 60% of the major rivers in Malaysia are used for agricultural, household and 16 

industrial applications (DID, 2000). As per Rosnani Ibrahim (Ibrahim, 2001), the major 17 

sources of pollution that affect these rivers are dumping of sewage, waste releases from 18 

medium and small-sized industries not having proper waste matter treatment equipment, 19 

clearing of land and groundwork activities. On the basis of the records of 1999, 50 20 

catchments (that is 42% of river) were contaminated with SS (suspended solids) caused by 21 

badly planned and unregulated earth clearing attempts and 33 catchments (that is, 28% of 22 

river) were polluted with AN (ammoniacal nitrogen) from activities related to cattle breeding 23 

and household sewage dumping. 24 
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Johor River is regarded as somewhat polluted as per DOE (Department of 25 

Environment)(DOE, 2007) because of the developmental activities alongside the bank of the 26 

river. Moreover, the river continues to be chocked and dumped by waste and litter due to lack 27 

of enforcement by the local administration. These pollutants ultimately end up in the Joho 28 

River tributaries, rich areas for nourishment and breeding of poultry and fish. Consequently, 29 

several statistical frameworks and computer simulations must be introduced as powerful and 30 

critical tools for planning and monitoring the maintenance of the water bodies. 31 

Growing concerns regarding environment, along with scarce funding, are giving rise to a 32 

growing interest in cost-effective and judicious strategies for the management of water 33 

quality. Since the quality of water directly affects the health of the humans, quality 34 

improvement of the water accessible for human use will play a significant role in decreasing 35 

health related hazards.  36 

The project of water pollution regulation is based on the management of water quality. It 37 

estimates the kind of water quality from the present water quality condition, as well as from 38 

the rules of disposal of the pollutants into the river. Moreover, many models for water 39 

quality, like stochastic and deterministic models, have been created so as to provide best 40 

processes to conserve the quality of water (Hull et al., 2008). Nevertheless, getting efficient 41 

and precise water quality model in complex water resources is still difficult because of the 42 

variations and complications in the actual world, the ambiguities in the framework and 43 

variables of the model, and the deviations in the field data. Thus, conventional methods for 44 

data processing are not sufficiently efficient anymore for solving issues related to the water 45 

quality. Additional efforts are required to improve the consistency of the findings of the 46 

model. 47 

Deterministic models try to represent all the chemical and physical processes included in 48 

statistical terms, with variables acquired either from past data or obtained empirically, or 49 
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computed by experience or examination. Generally, the differential equations are simplified 50 

so as to find solutions suitable for the model. Solution of the involved equations may need 51 

suppositions and simplifications which are derived from the performance of the model, and 52 

usually practical experience is necessitated from the user prior to achievement of optimal 53 

outcomes.  54 

Statistical models attempt to seek general rules from the experimental data, which can be 55 

done by obtaining information from the field data. Statistical modelling and assessment 56 

involve a meticulous selection of techniques for analysis, and validation of suppositions as 57 

well as data. A majority of such models are quite complex and involve a substantial field data 58 

amount to conduct the analysis. Moreover, several statistical-based models of water quality, 59 

which assume the association among the prediction and the response variables, are 60 

distributed normally and linear in nature. Nevertheless, since the quality of water can be 61 

impacted by several parameters, conventional techniques for data processing are not 62 

sufficiently efficient anymore for solving this issue, and as such parameters show a complex 63 

non-linear relation to the water quality prediction parameters. Thus, using statistical 64 

techniques generally does not have high accuracy. 65 

Of late, the AI (Artificial Intelligence) approach has been recognised as an effective 66 

alternative method for modelling of complicated non-linear systems. Generally, such models 67 

do not take into account the internal process but develop models through the inputs and 68 

outputs correlation. Presently, AI is used exhaustively for estimating several water-related 69 

regions (Muttil and Chau, 2006). 70 

Recently, AI has offered the techniques for operation optimisation and selection of 71 

equipment, and problem solving that involve large quantities of data that cannot be processed 72 

by humans for the purpose of decision making. For this purpose, AI methods are proficient to 73 

replicate this behaviour and balance the deficiency. Thus, the growth of technology of 74 
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efficient parallel computing and growing computing power have facilitated the researchers to 75 

employ the AI approaches (for instance, ANN (Artificial Neural Network) and ANFIS 76 

(Adaptive Neuro-Fuzzy Inference System)) for field data modelling solutions. The 77 

neuro-fuzzy technique has been used effectively in certain fields of water bodies engineering 78 

like the rainfall-runoff model (Chang and Chen, 2001)and basin operation (Chang and 79 

Chang, 2006; Chang et al., 2005). ANFIS has been known to enhance the accuracy of 80 

day-to-day estimation of evaporation (Kişi, 2006), reservoir water level prediction (Chang & 81 

Chang, 2006) and prediction of the river flow (Firat and Güngör, 2007). 82 

The data obtained from experimentation and examination may be corrupted by signals of 83 

noise because of objective and/or subjective errors. For instance, experimental faults may be 84 

caused by measuring, recording, reading and external situations. As this noise can possibly 85 

distort the model outcomes, it is essential to eliminate them (i.e. signal de-noising) prior to 86 

the use of this data. The noisy signals can be de-noised by applying a series of linear filters 87 

(Bell and Martin, 2004). Nonetheless, these filters are more suitable for linear systems rather 88 

than the non-linear ones. Moreover, the FAT (Fourier analysis technique) is a standard tool 89 

for de-noising, though it is only favourable for de-noising signals or data involving stable 90 

noises. In addition, as there are unstable noises in real situations, it cannot be applied 91 

effectively. Thus, to solve the issues of conventional de-noising methods, more complex 92 

methods, like the WDT (wavelet de-noising technique), have been recommended. Above all, 93 

WDT is effective for de-noising multi-dimensional temporal or spatial signals having stable 94 

or unstable noises. Also, it has been extensively applied to industrial systems for information 95 

finding and patterns recognition (Avci, 2007; Tirtom et al., 2008). Nonetheless, some of 96 

these investigations were employed for water quality monitoring, where its data was utilised 97 

for estimation of parameters (Dohan and Whitfield, 1997).  98 
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In Malaysia WQIP requires extensive calculations and transformations. Two studies 99 

have been proposed to use Artificial Intelligence techniques (AI) in Malaysia in order to 100 

develop an accurate predictive model to WQP. However, many studies show that AI needs 101 

pre-processing tool to enhance the accuracy of the model practically in dealing with 102 

measured water quality data which is often contain noise (Han et al. 2011, Xu and Liu 2013).   103 

 104 

The main objective of this investigation is to evolve a computationally proficient and 105 

robust method for the estimation of water quality variables decreasing the labour and cost for 106 

measurement of those parameters. This study focuses on the Malaysian Johor River situated 107 

in Johor State where the water quality dynamics are significantly altered. This research has 108 

many primary objectives, as follows: 109 

 To evaluate and assess the correlation among the parameters of water quality on the 110 

basis of the experimental data using ANN (Artificial Neural Network). 111 

 To propose various ANN approaches, like MLP (Multi-Layer Perceptron) Neural 112 

Network and RBF (Radial Basis Function) Neural Network so as to confirm the 113 

effectiveness of these techniques in the estimation of the parameters of water quality. 114 

 To get familiar with the correctness of the ANFIS (Adaptive Neuro-Fuzzy Inference 115 

System) in the prediction of the parameters of water quality. 116 

 To develop an augmented WDT-ANFIS (wavelet de-noising technique with the 117 

Neuro-Fuzzy Inference System).  118 

 To examine the effectiveness of the suggested model for spatial position by 119 

presenting two different situations: the first situation (Scenario 1) is designed to set 120 

the model prediction at each station pertaining to the water parameters by considering 121 

the 13 input parameters from the same station. Where for Scenario 2, the input 122 

parameters for this scenario based on the measured water quality parameters from the 123 

same station and the predicted parameter from upstream station. 124 



  

6 

 

 To validate the augmented WDT-ANFIS (wavelet de-noising technique with the 125 

Neuro-Fuzzy Inference System) based on the experimental data for the duration 126 

2009-2010. 127 

3. Case Study: Johor River Basin 128 

Johor state is regarded as the third largest region in Malaysia with an area of 19.984 km
2
. 129 

It comprises of eight districts namely are Kota Tinggi, Muar, Pontian, Johor Bahru, Segamat 130 

Kluang, and lastly Batu Pahat which is considered as the second largest districts in Johor with 131 

an area of 187,702.06 hectares. Johor state has five principal rivers which are Sungai Muar, 132 

Sungai Johor, Sungai Endau, Sungai Batu Pahat and Sungai Sedilfi. This research sheds the 133 

light solely on Sungai Johor river. The Johor river basin is located in the southeast of 134 

Peninsular Malaysia. At an altitude of 1010 m, the Johor river orginates from the Gunung 135 

Belumut and from Bukit Gemuruh at an altitude of 109 m un the north. The river has irregular 136 

shape, its drainage area is around 2636 km2 and its length is approximately 122.7 Km. The 137 

river flows southeast into the Johor straits. An average annual precipitation of 2470 mm 138 

added to the river while during the period of 1963-1992, the annual mean discharge at Rantau 139 

Panjang was found to be 37.5 m3/s. The Johor river and its tributaries play a significant role 140 

as water suppliers for the state of Johor as well as for Singapore. Many factors contribute to 141 

the deterioration of the water quality of Johor River, mainly include the release of different 142 

kinds of pollutants at levels exceeding the allowed limits with the absence of local 143 

authorities’ enforcement. These pollutants travel through Johor River and ultimately end in 144 

the estuaries of the rivers which are known to be a natural feeding area for poultries and 145 

fishes and a natural environment that provide spawning. Figure 1 depicts the location map of 146 

the surveying area which compromises of four monitoring stations on Johor River. 147 

 148 
 149 
 150 
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Figure 1.  158 

 159 
 160 
 161 
 162 
 163 
 164 

3. Methodology 165 

3.1 Multi-Layer Perceptron Neural Network (MLP-ANN) 166 

A feed-forward network is the multi-layer perceptron neural network (MLPNN) that 167 

includes many layers of neurons, where one neuron’s output is propagated to the other 168 

neuron’s input that is in the next layer. Figure 2 presents the multi-layer perceptron neural 169 

network. In MLPNN, the input layer’s nodes only propagate the input values of the first 170 

hidden layer’s nodes. In the hidden layers, each node’s input-output relationship can be 171 

presented as follows: 172 

 













 

j

jj bxwfy            (1) 173 

where, jx  signifies the output from the previous layer’s j  node, jw  denotes the 174 

connection weight between the current node and j  node, b  represents the current node’s 175 

bias, and f  defines a non-linear transfer function usually of the sigmoid form as shown in 176 

Equation (3.4): 177 

)exp(1

1
)(
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zf


               (2)         178 
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where, z  denotes the weighted sum pertaining to the input to the neuron and )(zf  179 

signifies the neuron output. The output nodes’ input-output relationship is comparable to the 180 

one defined by Equation (3.4), with the exception of the case where the network is employed 181 

for function approximation, and the type of function f  could vary (e.g. linear function). 182 

 183 

 184 

Figure 2.  185 

 186 

 187 

The units define a MLPNN architecture, which allows computation of a non-linear 188 

function in terms of the scalar product pertaining to the weight vector and input vector. 189 

Overall, the MLPNN models’ performance relies on the network’s inherent architecture. 190 

Apart from the number of hidden layers as well as the number of neurons pertaining to each 191 

layer, it also includes the computation type applied to each neuron. 192 

 193 

3.2 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 194 

Jang (Jang, 1993) first put forward the Adaptive Neuro-Fuzzy Inference System 195 

(ANFIS) that allowed realising a highly non-linear mapping and compared with common 196 

linear methods, it is considered to be superior in yielding non-linear time series (Jang, 1993). 197 

The ANFIS architecture was employed throughout this research for the first-order Sugeno 198 

fuzzy model (Sugeno and Kang, 1988). ANFIS can be defined as a multi-layer feed-forward 199 

network that employs neural network learning algorithms as well as fuzzy reasoning to aid in 200 

mapping input space with that of the output space (Chang and Chang, 2006). Considering 201 

that for a first-order Sugeno fuzzy model, the fuzzy inference system has one output, f, and 202 
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two inputs, x and y, a common rule set that includes two fuzzy ‘if.then’ rules can be defined 203 

as follows: 204 

 205 

Rule 1: If x is A1 and y is B1, then f1 = p1 x+q1 y+r1     (3) 206 

Rule 2: If x is A2 and y is B2, then f2 = p2 x+q2 y+r2     (4) 207 

 208 

 209 

where, A1, A2 and B1, B2 signify the membership functions (mfs) pertaining to inputs x 210 

and y, respectively; pi, qi and ri (i = 1 or 2) represent the linear parameters pertaining to the 211 

first-order Sugeno fuzzy model’s consequent part. Figure 3(a) represents the fuzzy reasoning 212 

mechanism pertaining to this Sugeno model that also allows deriving the output function (f) 213 

from that of inputs x and y. Figure 3(b) presents the corresponding equivalent ANFIS 214 

architecture, in which similar functions are associated with the same layer’s nodes. ANFIS 215 

comprises five layers as stated below: 216 

 217 

Figure 3.  218 

 219 

 220 

3.3 WAVELET DE-NOISING 221 

The next logical step is characterised by wavelet analysis post the short-time Fourier 222 

transforms (STFT). This is with regards to the windowing technique that includes 223 

variable-sized regions. With the help of wavelet transform (WT), long time intervals can be 224 

employed in those areas where more precise low frequency information is needed, as well as 225 

for shorter regions in which high frequency information is needed. Overall, the key benefit 226 

provided by the wavelets is allowing conducting local analysis for localised area pertaining 227 

to a larger signal. The discrete-time WT pertaining to a time domain signal      can be 228 

expressed as follows (Dohan and Whitfield, 1997): 229 
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  (5) 230 

 231 

Here,     defines the mother wavelet, while   represents the scaling and   denotes 232 

the shifting indices. The DWT logarithmic frequency coverage is provided through scaling, 233 

as opposed to the uniform frequency coverage of STFT. This analysis technique includes 234 

segmenting a signal into components at various frequency levels, which are linked by the 235 

powers of two (a dyadic scale). The filtering approach that is applied to multi-resolution WT 236 

involves formation of a series of half-band filters that segment a spectrum into low and high 237 

frequency bands. The formulation is based on a wavelet function or high-pass (UP) filter as 238 

well as a scaling function or low-pass (LP) filter. Wavelet multi-resolution analysis 239 

(WMRA) allows constructing a pyramidal structure that needs an iterative application of 240 

wavelet functions and scaling to high-pass and low-pass filters, respectively. At the 241 

beginning, these filters are first applied to the entire signal band under high frequency 242 

(small-scale values) and then the signal band is decreased at every stage gradually. As 243 

presented in Figure 4, the detail coefficients of Dl, D2 and D3 define the high-frequency band 244 

outputs, while the approximation coefficients of Al, A2 and A3 define the low-frequency 245 

band outputs. 246 

 247 

 248 

Figure 4.  249 

 250 

Numerous factors need to be accounted when wavelets are employed to de-noise the 251 

WQP data. Examples of such choices include the level of decomposition, wavelet and 252 

thresholding methods to be employed. MATLAB provides various families of wavelets such 253 

as Morlet, Meyer, Mexican hat, Coiflets, Haar, Symlets, Daubechies and Spline biorthogonal 254 

wavelets, and also offers additional documentation regarding these wavelet families 255 
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(“Wavelet Toolbox - MATLAB,” n.d.). Only orthogonal wavelets need to be accounted to 256 

get perfect reconstruction results. Certain advantages are associated with the orthogonal 257 

wavelet transform. It can be characterised as being relatively concise, permitting perfect 258 

reconstruction of the original signal and relatively easy to calculate. The two common 259 

employed approaches for thresholding a signal include hard thresholding and soft 260 

thresholding, which are employed in the MATLAB wavelet toolbox. Although the easiest 261 

method is hard thresholding, better results are achieved through soft thresholding versus hard 262 

thresholding. Thus, this study uses soft thresholding. Four threshold selection rules can be 263 

used with the wavelet toolbox, which employ statistical regression pertaining to the noisy 264 

coefficients over time that allows getting a non-parametric estimation regarding the 265 

reconstructed signal absent noise. This study examined just Sqtwolog, wherein a fixed form 266 

of threshold is employed, leading to minimax performance that is multiplied by a factor 267 

proportional of signal length’s logarithm. In this research, in terms of the decomposition 268 

level, we can conclude that a level 4 decomposition offered reasonable results post applying 269 

the trial-and-error method to all modules. 270 

 271 

 272 

 273 

 274 

3.4 Model Performance Evaluation 275 

 276 

It is necessary to clearly recognise the criteria that are associated with judging the 277 

model’s performance. The criteria employed to assess the performance of the model in this 278 

study were clearly mentioned in the literature. Dogan et al. (Dogan et al., 2009) employed the 279 

Average Absolute Relative Error (AARE), which not only provides the performance index 280 

with regards to predicting water quality parameters but also demonstrates the prediction 281 

errors distribution. To examine the performance of the model, Singh et al. (2009) employed 282 

the bias statistical index. The bias signifies the mean of all the individual errors as well as 283 
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allows determining if the dependent variable is underestimated or overestimated by the 284 

model. In this study, correlation coefficient as well as Root Mean Square Error (RMSE) was 285 

employed to examine the model’s performance (Soyupak et al., 2003; Zhao et al., 2007).  286 

Usually, the model performance is assessed through coefficient of determination, as put 287 

forward by Nash and Sutcliffe (1970), while MSE is employed to check the level of fitness 288 

between the network output and desired output. 289 

In this research work, the models’ performances were assessed based on three statistical 290 

indexes. As mentioned by Nash and Sutcliffe (1970) coefficient of efficiency (CE) is 291 

commonly employed to assess the performance of the model. 292 

 293 
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  294 

where n represents the number of observations, mX
 and pX

 define the measured and 295 

predicted parameters, respectively, and mX  signifies the average of measured parameter.   296 

Mean square error (MSE) is employed to see the level of fitness between network output 297 

and the desired output. Better performances are guaranteed with smaller MSE values. It is 298 

defined as follows: 299 

 300 
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More commonly, the coefficient of correlation (CC) is employed to examine the linear 301 

relationship between the measured and predicted dissolved oxygen. This can be expressed as 302 

follows: 303 

 304 
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 305 

Further, for visual comparison of the predicted and measured values, the Scatter plot was 306 

employed (Kuo et al., 2007). 307 

 308 

3.5 Input Variables and Data Processing 309 

 310 

One of the key functions of ANN is to identify the model input parameters that could 311 

impact the output parameters considerably. As indicated above, the selection of input 312 

parameters depends on a priori knowledge regarding causal variables as well as statistical 313 

analysis pertaining to the potential outputs and inputs. In the literature, different input 314 

parameters were employed to develop the model to determine water quality parameters, as 315 

presented in Table 1.  316 

 317 

Table 1.  318 

 319 

On the basis of the literature, the following water quality parameters were chosen for 320 

ANN modelling: temperature (Temp), electrical conductivity (COND), salinity (SAL), 321 

nitrate (NO3), turbidity (TURB), phosphate (PO4), chloride (CI), potassium (K), sodium 322 

(Na), magnesium (Mg), iron (Fe) and Escherichia coli (E-coli). The basic statistical 323 

parameters, i.e. mean, minimum, maximum, standard deviation (S.D.), and coefficient of 324 

variation (CV) of the input and output parameters deployed in this study are depicted in Table 325 

2 and Table 3. 326 

 327 

 328 

http://www.sciencedirect.com/science/article/pii/S0301479710003002#tbl2
http://www.sciencedirect.com/science/article/pii/S0301479710003002#tbl2
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Table 2.  329 

 330 

Based on the concentration levels of both output and input parameters, large changes 331 

between the samples were seen, along with a high coefficient of variation (i.e. 254.94% for 332 

AN and 325.96% for E. coli). The coefficient of variation (CV) can be defined as a measure 333 

of statistical dispersion pertaining to the data. For a given data set, it is the mean normalised 334 

standard deviation (CV %) that can be computed as (standard deviation/mean) × 100. The 335 

existence of large disparity in the parameters’ concentrations can be attributed to the types 336 

(non-point and point) and nature of sources that have been distributed in the river basin’s 337 

wide geographical area. During the course, the river flows through different townships, and 338 

many tributaries and wastewater drains pouring large quantities of untreated wastewater into 339 

the river’s main channel. A coefficient of variation in the range of 3.08% and 325.96% was 340 

seen with the parameters. Such variability that exists amongst the samples could be due to 341 

large geographical variations in climate as well as seasonal effects pertaining to the study 342 

region. For the various sampling sites, a spatial and significant variation was seen in terms of 343 

Johor River’s turbidity, which varied from 0.2 to 343 NTU. It was higher, which could 344 

because of the mixing of industrial effluents and domestic sewerage water in Johor River. 345 

The rise in turbidity near downstream sites can be attributed to settling factors and flow 346 

turbulences. At downstream sites, the observed trend of turbidity, i.e. SN02, SN03 and SN04, 347 

was seen to support the above-mentioned hypothesis. Comparable patterns pertaining to 348 

spatial variations in turbidity were reported by (Khadse et al., 2007) when investigating 349 

Kanhan River’s water quality. Amongst the sampling sites, the conductivity of the Johor 350 

River water was found to be considerably different, in which the mean ranged from 54 to 64 351 

μS, although least significant difference was between SN01 and SN03. The high conductivity 352 

at SN04 and SN02 sites signify sewerage mixing into the river water. The dilution of 353 

industrial and urban runoffs could be attributed to the lower conductivity seen in the 354 



  

15 

 

downstream water. Nitrate is considered to be a crucial parameter of river water that could be 355 

an indicator for the pollution status and anthropogenic load in river water.  356 

The mean of nitrate ranged from 0.66 to 163.5 mg/l for Johor River. At the site wherein 357 

urban runoff mixing was noticed, NO3 was seen to be the maximum. It is interesting to note 358 

that in the downstream non-point pollution sites, lower NO3 was seen. The concentration of 359 

chloride in water was deemed not to be harmful. A higher concentration of chloride found in 360 

freshwater signified that pollutants are present. Moreover, in Johor River, the chloride level 361 

fell in the range of 5.27 to 7.37 mg/l. Nonetheless, at various sampling sites, a clear trend was 362 

not seen with chloride concentration in terms of the non-point or point pollution sites. The 363 

mixing of industrial effluents or urban wastewater in the river water is signified by higher 364 

levels of chloride content at SN04. 365 

 366 

Table 3.  367 

 368 

pH of water indicates alkaline and acidic conditions. DOE (DOE, 2007) suggested that 369 

pH for water in the range of 6.5–8.5 can be employed for any purposes in that respect; the 370 

ranges showed that Johor River had moderately alkaline water. The change in mean pH 371 

ranged from 6.22 to 6.36 at various locations. At some sites, higher pH could be a result of 372 

carbonate and bicarbonates of magnesium and calcium in water. The key source pertaining to 373 

such chemicals include industrial wastewater or urban runoff. SS further signifies the river 374 

water’s salinity behaviour. The mean SS content pertaining to river water was found in the 375 

range of 72.61 to 91.01 mg/l. The chemical and biological oxygen demand increase in 376 

tandem with higher SS level in the water system, which ultimately results in depletion of the 377 

dissolved oxygen level in water. In water, SS stems from natural sources, industrial 378 

wastewater, urban runoff, sewage and chemicals employed in the water treatment process. 379 
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For the current neural network modelling, the second assessment of selecting the input 380 

parameters is done by considering a statistical correlation analysis pertaining to the field data. 381 

Calculation of the correlation coefficient existing between the input and output parameters 382 

was done and listed in Table 4.  383 

Based on the table, pH was clearly seen to be inversely associated with water 384 

temperature (r = -0.306) as well as potassium (r = -0.425). We performed an experiment by 385 

taking water quality variables that were accounted along with the parameters mentioned 386 

above pertaining to various models to realise the optimal predictive model as well as reduce 387 

the monitoring cost by accounting for fewer input parameters. 388 

 389 

Table 4.  390 

 391 

3.6 Stopping Criteria 392 

 393 

Normally, there is a gradual decrease in the training error of AI since the training process 394 

is on-going. Nonetheless, this minimisation of training error does not guarantee enhancement 395 

of generalisation ability, which gained our interest. It is not necessary that AI showing good 396 

performance with the training set will do the same with the testing data. Therefore, it is also 397 

sometime important to stop the training phase at the right time before over-fitting occurs. 398 

When a generalisation characteristic is lost by the neural network, an over-fitting issue 399 

follows. However, relations between the training inputs as well as their associated outputs to 400 

similar hidden patterns pertaining to the unobserved data cannot be generalised. Thus, this 401 

occurs as a result of a difficult question that asks how long a network needs to be trained. The 402 

issue of over-fitting is usually solved by employing techniques like weight elimination, 403 

weight decay and early stopping. Stopping criteria is the most commonly employed method 404 

to address this issue. As noted by numerous researchers (e.g. Singh et al. (Singh et al., 2009); 405 
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Palani et al. (Palani et al., 2008)), two frequently employed stopping criteria include stopping 406 

post a specific number of runs via the complete training data (it needs to be noted that an 407 

epoch is defined as each run that passes through the complete training data) and stopping on 408 

reaching some low level by the target error.  409 

 410 

 411 

3.6. Different Scenarios 412 

 413 

Two different scenarios have been proposed in this study. The concept behind the 414 

development of these both scenarios is based on the spatial pattern of the input-output 415 

structure of the model. Mainly, the reason behind proposing these scenarios is to examine the 416 

model performance considering the spatial dimension of the model input. Keeping in mind 417 

that the model output in both scenarios is the prediction values of the AN, pH and SS, the 418 

input patterns has been changed in terms of the number of the inputs and location of the 419 

monitored data. In order to clarify the structure and show the difference between these two 420 

scenarios, an example for the structure of both scenarios to predict the AN parameter will be 421 

presented. For scenario I, to predict AN parameter at certain station, different twelve input 422 

parameters were used that have been acquired at the same station. While, the structure of 423 

scenario II is developed as, in addition to the same twelve water quality parameters used as 424 

inputs in scenario I, the value of AN parameter that has been acquired from the upstream 425 

station will be added. 426 

The prediction procedure can be defined as an operation that allows offering water 427 

quality parameter patterns for the future. This research employs the WDT-ANFIS along with 428 

its stochastic and non-linear modelling capabilities to design a prediction model that mirrored 429 
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the water quality parameter patterns pertaining to Johor River with regards to the 12 input 430 

parameters (Scenario 1) cited earlier, which is represented as follows: 431 

)( 43 NNNNNNNNNNNNANFISWDTN coliENaMgKFePOCINOTURSALCONDTempfWQIP     (9) 432 

4,3,2,1N  433 

Where WQIPN signifies the water quality index parameters pertaining to station N, and 434 

fWDT-ANFIS(.) defines the non-linear function predictor built via the WDT-ANFIS network. 435 

Thus, at each station, four models were built for predicting the parameters for water quality. 436 

A majority of the recent studies were aimed at predicting the concentrations pertaining to the 437 

parameters of water quality at every station. Usually, discharge via the local area from the 438 

upstream station causes an impact on the water pollution pertaining to a downstream station 439 

(Zaqoot et al., 2009). Therefore, in the put forward model, it was important to consider the 440 

impact cast by water parameters at the upstream station. Thus, the second scenario (Scenario 441 

2) was designed to set the model prediction at each station pertaining to the water parameters 442 

by considering the 13 input parameters. At the previous station (upstream), the predicted 443 

WQIP could be represented by following Eq. (10). Repetition of this procedure involving the 444 

predicted WQIP is done for the fourth and third stations at downstream. Figure 5 presents a 445 

schematic representation pertaining to the put forward networks for Scenario 2. 446 

 447 

)( 431 pNNNNNNNNNNNNNANFISWDTN WQIPcoliENaMgKFePOCINOTURSALCONDTempfWQIP     (10)448 

  449 

 450 

Figure 5.  451 

 452 

 453 

 454 
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7. Results and Discussion 455 

7.1 MLP-ANN Training 456 

The construction of an ANN model normally includes three steps. The training stage is 457 

the first step, in which the network is exposed to a training set pertaining to the input-output 458 

patterns. The second step involves the validation stage, in which the network’s performance 459 

is evaluated when patterns are not ‘observed’ by the network in the training stage. The third 460 

step includes the testing stage, in which the network’s performance is evaluated when the 461 

unknown patterns were not ‘observed’ during the stages of validating and training (Bowden 462 

et al., 2005). Designing of three MLP-ANN architectures was done (one for each parameter). 463 

The Levenberg-Marquardt back propagation algorithm (LMA) is employed by all three 464 

networks in the entire training procedure. This study employed three activation functions, 465 

namely tan-sigmoidal (Tansig), log-sigmoidal (logsig) function and linear transfer function 466 

(purelin). After initialising the network weights and biases during the training process, 467 

iterative adjustments of the weights and biases pertaining to the network were carried out to 468 

decrease the network performance function pertaining to mean square error (MSE) – the 469 

average squared error between the target outputs and the network outputs. 470 

We introduced different values of learning rate (lr) to the networks in a bid to achieve the 471 

optimum result pertaining to this study. For back propagation learning algorithm, the 472 

learning rate is important as it helps determine the level of weight changes. However, since 473 

the learning process tends to slow down when smaller learning rate values are employed for 474 

training, it is not a favoured choice. Employing larger learning rates values for training could 475 

lead to network oscillation in the weight space. One approach to enhance the gradient descent 476 

method is by introducing an additional momentum parameter (mc) that facilitates larger 477 

learning rates leading to faster convergence while decreasing the oscillation tendency 478 

(Rumelhart et al., 1986). The momentum term is introduced so that the next weight changes 479 
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are similarly aligned to the same direction as the previous one, which allows minimising the 480 

oscillation impact of larger learning rates. Although there are certain systematic approaches 481 

to simultaneously choose the learning rate and momentum, the best values pertaining to these 482 

learning parameters are normally selected based on experimentation. Since any value falling 483 

between 0 and 1 can be accounted by the learning rate and the momentum, it becomes almost 484 

impossible to perform an exhaustive search to detect the best combinations pertaining to 485 

these training parameters. In this research paper, we evaluated different momentum and 486 

learning rates pertaining to both networks; in real practice, 0.9 and 0.95 were selected as 487 

momentum and optimum learning rate pertaining to SS, AN and pH models, respectively.  488 

 489 

7.2 Optimisations of the Neurons Number 490 

The number of neurons in the hidden layer is the key characteristic pertaining to AI 491 

technique. The network fails to model the complex data that could lead to poor fitting if the 492 

number of neurons employed is insufficient. On the flip side, the training time could become 493 

unreasonably long as well as the network may also over fit the data if there are too many 494 

neurons employed. In this paper, to investigate the best performance, various MLP-ANN 495 

architectures were employed. In fact, a formal and/or mathematical approach does not exist, 496 

which allows determination of appropriate ‘optimal set’ pertaining to neural network’s key 497 

parameters. Thus, the trial-and-error method was selected to perform this task. 498 

Randomisation of the hidden layer’s neurons was done from N=1 to 20 neurons. In the 499 

hidden layer, the best numbers of nodes are those that provide the lowest error (Lek et al., 500 

1996). Based on two performance indices, determination of the optimum number of neurons 501 

was done. The root-mean-square error (RMSE) value pertaining to the prediction error is the 502 

first index, while the value of the maximum error is the second index. To get both indices, the 503 

ANN model was evaluated by considering the WQP data between 1998 and 2007. When 504 
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building such a predicting model that employs the neural network, the model could do well 505 

during the training period and could give a higher level of error when assessment was done 506 

during either the testing or validation period. Based on this study, these performance indices 507 

were employed to ensure that the put forward model would offer consistent accuracy levels 508 

during all periods. As the performance indicator for the put forward model, the key benefit of 509 

using these two statistical indices is to ensure that the highest error falls within the acceptable 510 

error range for the forecasting model when the performance is being evaluated. This is done 511 

when RMSE is employed and making sure that the summation of the error distribution is not 512 

high in the validation period. Consequently, employing both indices ensures consistent level 513 

of errors and offers high potential to maintain the same error level while evaluating the model 514 

for unseen data during the testing period.  515 

When the number of hidden neurons to the network is varied, it has a clear impact to a 516 

considerable degree on the prediction performance. It clearly demonstrates that there is a rise 517 

in prediction performance with increase in the number of hidden neurons (from 1 to 18), 518 

along with subsequent decrease in RMSE and maximum error pertaining to all parameters. 519 

However, a drop in prediction performance occurred when hidden neurons were added 520 

further (19 to 20) to the network. For instance, it can be seen that the best combination 521 

pertaining to the put forward statistical indices to examine the predicting model for the pH 522 

was when 18 neurons with RMSE 0.15 were associated with the ANN architecture and a 523 

maximum error as 3.22%. The best combination pertaining to the put forward statistical 524 

indices to examine the predicting model for the SS was when 17 neurons with RMSE 0.30 525 

were associated with the ANN architecture and a maximum error of 3.46%. Table 5 lists out 526 

the optimal numbers of neurons pertaining to the remaining parameters. 527 

Table 5.  528 

 529 
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7.3 WATER QUALITY PREDICTION MODEL OF MLP-ANN 530 

The MLP-ANN model for the estimation of the 6 parameters of water quality (as the 531 

output), which are SS, AN and pH, was evaluated in this section. Figure 6 depicts the 532 

measured and estimated parameters of water quality for the most excellent network, which 533 

provided the most precise estimation. On the whole, the predictive capability of this model 534 

was fairly good for each of the parameters of the water quality in the training duration, 535 

though less accurate when the validation and testing stages were carried out. The findings 536 

showed that it was challenging to develop a consistent model using the MLP-ANN models 537 

due to high variations and intrinsic non-linear correlation among the parameters of the water 538 

quality because of the probabilistic nature and chemical procedure. Additionally, the 539 

MLP-ANN models encountered delayed convergence during the training because of the 540 

necessity of comparatively a huge amount of hidden neurons. Also, several researchers 541 

observed that these models failed to acquire values lying outside the scope of values included 542 

in the calibration data of MLP-ANN (boundary values) (Campolo et al., 1999; DAWSON 543 

and WILBY, 1998; Hsu et al., 1995; Karunanithi et al., 1994; MINNS and HALL, 1996). 544 

This constraint, arising chiefly due to the application of a logistic function to translate the 545 

output of the model, makes these models inappropriate for several applications. 546 

Alternatively, the RBF-ANN (Radial Basis Function Network) is commonly employed 547 

for strict interpolation issues in space with multiple dimensions, which has equivalent 548 

abilities as the MLP-ANN in solving problems related to function estimations (Park and 549 

Sandberg, 1993). There are chiefly 2 benefits of the RBF-ANN: (a) network training in 550 

shorter duration in comparison to MLP-ANN , and (b) best solution estimation without 551 

managing the local minimums. In addition, RBF-ANN works as a local network in contrast 552 

to the feed-forward networks which are global mapping networks. Also, RBF-ANN employs 553 

one processing units set, and every unit is most accessible to a local area of the input region. 554 
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Due to this, RBFNs are employed more recently as a substitute NN model in function 555 

estimation applications and prediction of time series (Sheta and De Jong, 2001; Yu et al., 556 

2008). Thus, the following section describes the attempt to get familiar with RBF-ANN 557 

suitability to be used as a model for predicting the parameters of water quality. 558 

 559 

Figure 6.  560 

 561 

7.4 SENSITIVITY ANALYSIS 562 

To assess the input variables, impact on the model, 3 assessment methods were used. 563 

First method was based on dividing the NN connection weights so as to establish the relative 564 

significance of every input variable in the network (Stern and Garson, 1999).  In this 565 

research, the recommended network comprises 12 environmental variables. Presuming the 566 

connection weights from the input nodes to the hidden nodes exhibit the relative predictive 567 

significance of the independent parameter, the significance of every input parameter can be 568 

articulated as follows: 569 

 570 
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 571 

Where Ij represents the relative significance of jth input variable on the output variable, 572 

Ni and Nh denote the quantities of input and hidden neurons, correspondingly, and W 573 

represents the connection weight. Also, the superscripts ‘i’, ‘h’ and ‘o’ signify the input, 574 

hidden and output levels, correspondingly, while the subscripts ‘k’, ‘m’ and ‘n’ signify the 575 
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input, hidden and output neurons, correspondingly. The first method of evaluation was to 576 

assess the relative significance of every input variable as calculated by Eq. (11) and 577 

illustrated in Figure 7. The relative significance demonstrates the importance of a variable in 578 

comparison to the other variables belonging to the model. Even though the network did not 579 

essentially signify physical sense using weights, it indicates that all the variables had intense 580 

effects on the estimation of all output variables, in which the estimator contribution varied 581 

from 5 to 14%.  Apparently, the most useful inputs were considered to be those that involved 582 

oxygen containing nitrate (NO3) and phosphate (PO4). Conversely, pH and Temp were 583 

discovered to be the least useful parameters. Additionally, MG proved to be providing the 584 

greatest contribution for the recommended model for AN. For pH, it was apparent that the 585 

most useful input was Temp. 586 

 587 

Figure 7. Relative importance of each input parameter. 588 

 589 

7.5 WATER QUALITY PREDICTION MODEL OF ANFIS 590 

As a matter of fact, among the difficulties in ANFIS-based modelling is establishing its 591 

variables for optimal learning (i.e. the membership function number and step size’s initial 592 

value) before training, in a way that the optimal training is achieved. Two techniques have 593 

been proposed by several researchers for establishing these variables in ANFIS: optimisation 594 

techniques (Hassanain et al., 2004) and the trial-and-error approach (Kim et al., 2002). While 595 

determining the variables for optimal learning could be ensured by the optimisation 596 

algorithms (i.e. derivative based or derivative free optimisation), this alternative has a 597 

downside of being computationally costly. Conversely, the trial-and-error technique has been 598 

confirmed to be effective in case the target root mean square error can be realised. This 599 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFY-4NXHCC9-4&_user=6470374&_coverDate=12%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1561074319&_rerunOrigin=google&_acct=C000012458&_version=1&_urlVersion=0&_userid=6470374&md5=e2739efde0441696c739eccea37142d4&searchtype=a#fd10
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFY-4NXHCC9-4&_user=6470374&_coverDate=12%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1561074319&_rerunOrigin=google&_acct=C000012458&_version=1&_urlVersion=0&_userid=6470374&md5=e2739efde0441696c739eccea37142d4&searchtype=a#tbl4
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technique is also advantageous as it yields a knowledge rule-base having a lower possibility 600 

of surpassing the data set of training in comparison to the optimisation technique. Thus, this 601 

research did not include the optimisation technique and established the variables for optimal 602 

learning of ANFIS through the trial-and-error technique. 603 

For every parameter related to the water quality, this study employed the architectures 604 

proposed in the preceding section, in which 12 inputs were utilised to estimate the WQIP. It 605 

is noteworthy that there is no systematic technique to establish the optimal quantity of MFs. 606 

The optimal quantity of MFs is generally established inductively and validated empirically. 607 

Thus, the quantity of MFs was selected using the trial-and-error method. Meanwhile, it is to 608 

be observed that this study had tested 4 kinds of membership functions: (a) triangular, (b) 609 

gaussian, (c) trapezoidal, and (d) bell-shaped, to compose the fuzzy numbers. Following 610 

several trials, the outcome revealed a distributed membership function having bell-shaped 611 

nature in comparison to others which had acquired the minimal relative error. Table 6 612 

demonstrates the kinds and quantity of MFs that were implemented in this study to develop 613 

the modules. 614 

 615 

Table 6.  616 

 617 

For demonstrating the performance of the suggested ANFIS model, an evaluation of 618 

predicted against observed parameters of water quality during training, validation and 619 

experimentation phases is displayed in the Figure 8. It is apparent that the suggested ANFIS 620 

model procedure provided the estimated variables that mimicked the dynamics (pattern) in 621 

the noted values besides those boundary values measured during this time. 622 

Figure 8. 623 

 624 
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 625 

 626 

7.6 WATER QUALITY PREDICTION MODEL OF WDT-ANFIS 627 

The above findings were obtained with the general assumption that the mined data must 628 

be precise and reliable. Nevertheless, the data acquired from the study, test, and simulation 629 

procedures may be corrupted by noise because of objective and/or subjective errors (Li and 630 

Shue, 2004). For instance, the errors arising in the experiment may be caused by measuring, 631 

recording, reading, or external scenarios; the errors from simulation might cover 632 

uncertainties of the model and parameters, as well as computational errors. As these noisy 633 

signals possibly distort the data mining outcomes, it is necessary to eliminate them (i.e. signal 634 

de-noising process) before the use of any initial data. Thus, an augmented WDT-ANFIS 635 

based on historical information for WQPP will be presented. 636 

Training and cross-validation processes of the model of WDT-ANFIS were carried out 637 

to reduce the Root Mean Square Error among the output as well as predicted responses. The 638 

WDT-ANFIS model outperformed the ANFIS model and provided improvement in 639 

estimation accuracy of all the variables, while the ANFIS model performed inefficiently. As 640 

the noise intensity increased, it was obvious that WQP possibly had more accurate estimation 641 

values due to de-noising of data. This suggests the WDT superiority in data cleaning. Despite 642 

the occurrence of errors during stages of training, validation and experimentation, which 643 

were regarded as considerably high in comparison to the training and cross-validation stages, 644 

it had obtained a high precision for all variables. The findings displayed in Figure 9 645 

demonstrate that the WDT-ANFIS model could be regarded as a suitable technique for 646 

modelling for estimation like WQP. 647 

 648 

Figure 9.  649 
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 650 

7.7 COMPARATIVE ANALYSIS 651 

The models introduced in prior discussion were all compared for the purpose of 652 

providing precise predictions for each water-quality parameter at Johor River. Similar 653 

findings were achieved in determining models for predicting suspended solids concentrations 654 

(SS), wherein WDT-ANFIS forecast SS with comparatively less accuracy, in which errors 655 

for most records were below 10%. Peak SS values were more closely approximated using 656 

WDT-ANFIS in comparison to that attained using other techniques, as depicted in Figure 10. 657 

The numbers of inaccurate SS forecasts decreased meaningfully using WDT-ANFIS. The 658 

use of physics-based distributed processing in complex computer software is frequently 659 

problematic, owing to the usage of idealised sedimentation components or the requirement of 660 

large volumes of detailed temporal and spatial data on the environment which is not always 661 

available (Cigizoglu, 2004). It should be noted that AI approaches to determining 662 

suspended-sediment data estimations remain sparse in the relevant literature (Abrahart and 663 

White, 2001).  664 

The success attained in modelling dynamic systems implies that this strategy may well 665 

provide an efficient and productive means for simulating complex suspended-sediment 666 

processes in rivers, under conditions where precise knowledge of internal sub-processes is 667 

not necessary. Each proposed model in this study was constructed on the assumption that 668 

land cover/use would remain unchanged during this research. However, land cover/use 669 

remains an important factor in the production and transport of sediments, along with other 670 

factors. More precise predictions of suspended sediments may be attained by including 671 

variables that represent land cover/use status into the scheme. We are planning such 672 

analytical studies soon enough. In conclusion, this research establishes WDT as an 673 

appropriate method, along with classical ANFIS, for modelling suspended sediments in river 674 
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environments. It is therefore worth considering the use of WDT-ANFIS approaches in such 675 

analysis, given the findings of studies regarding the physics embedded in ANFIS structures. 676 

 677 

Figure 10.  678 

 679 

With regards to pH, Figure 11 depicts comparisons between ANFIS and other models’ 680 

performances, based on the test data set. In the figure, it is clear that ANFIS performance 681 

exceeds that of the two ANN methods. Furthermore, the effort reveals the challenges in 682 

devising reliable schemes based on MLP-ANN RBF-ANN models, as a result of the high 683 

variances as well as the inherent non-linear associations among the water-quality parameters, 684 

as a result of the stochastic quality and chemical-based process. Furthermore, as depicted in 685 

Figure 10, the findings show that WDT-ANFIS-based modules outperform ANFIS and also 686 

have the ability to improve predictive accuracy for pH, albeit for MAE with comparatively 687 

lesser accuracy, whereby errors for most records were below 7%. Otherwise, inefficient 688 

executions were observed based on the ANFIS module, wherein most errors were above 689 

15%. Clearly, given increases in noise intensities, WQP offers more precise predictions from 690 

data de-noised with WDT than data without such de-noising. This suggests the advantage of 691 

using WDT to clean the data. 692 

It is fact that the training process for big data using any of AI models is both time- 693 

consuming and computation- and memory-intensive especially when several number of 694 

model’ inputs variables is used. The computer specification that have been used to run 695 

models are Intel Processor Core i7 (12M Cache, up to 4.60 GHz) and Ram 16 Gb. It is fact 696 

that in our study the data used is not big data to be considered as problem to the 697 

computational memory. However, due to the fact that the number of the model’ input 698 



  

29 

 

variables is relatively big (twelve or thirteen based on the structure of scenario I and scenario 699 

II, respectively), the training process is slightly time-consuming to achieve the performance 700 

goal. Table 7 summarize the training time for each models in seconds where it is noticeable 701 

that the ANFIS and WDT-ANFIS models consuming more time than ANN models (MLP 702 

and RBF) but it is still minimal.  703 

Figure 11. 704 

Table 7 705 

 706 

7.8 SCENARIOS 707 

The comparatively low correlation among forecast and observed values during test 708 

phases was perhaps a result of the non-homogenous nature of water-quality parameters. 709 

Moreover, Ying et al. (Zhao et al., 2007) demonstrated that the selection of influential factors 710 

(namely, input parameters) has a critical role as these factors greatly affect forecasts. Clearly, 711 

the low correlations in this research can be attributed to the realisation that its input 712 

parameters had not included every relevant parameter. Furthermore, pollution levels at 713 

downstream stations were associated with discharge from upstream stations. To overcome 714 

this difficulty, the researchers applied another approach (i.e. Scenario 2), such that higher 715 

levels of accuracy could be attained. This strategy is associated with the prediction of each 716 

water-quality parameter, given the actual values measured at upstream stations as model 717 

inputs, as described by Eq. (12). For a most appropriate analysis, the researchers 718 

implemented an accuracy improvement (AI) index for the correlational coefficient statistical 719 

index, in order to determine the significance of Scenario 2 as against Scenario 1, described as 720 

follows: 721 

 722 
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 723 

Wherein CCScen2 denotes the coefficient of correlation for Scenario 2, whereas 724 

CCScen1 denotes a similar statistical index for Scenario 1. From Table 8, it is clear that 725 

Scenario 2 is more satisfactory than Scenario 1, with meaningful improvements observed in 726 

every station, which ranged from 0.5% to 5%. Predictive accuracy was meaningfully 727 

enhanced after introducing Scenario 2 for every station. As in the case for pH, Scenario 2 728 

showed more satisfactory performance than Scenario 2, with meaningful improvements 729 

observed in AI, which ranged from 3% in Station 2 to 5% in Station 3.  730 

Conversely, less improvement was gained with AN, wherein AI was equal to 0.5 in 731 

Stations 1 and 3. Even though it is clear that Scenario 2 was less efficient with AN, accuracy 732 

does increase by 2% once it is applied to Station 3. Furthermore, the findings indicate that 733 

Scenario 2 not only showed improved accuracy for certain parameters, but this particular 734 

model had the ability to capture temporal patterns in water-quality parameters. This enabled 735 

the scheme to apply meaningful improvements to station scenarios. 736 

 737 

Table 8.  738 

 739 

7.9 MODEL VALIDATION 740 

Models must be verified whenever resulting outputs and observed values are near 741 

enough to satisfy all validation criteria (Palani et al., 2008). To investigate the effectiveness 742 

of this proposed scheme, validation of the enhanced wavelet de-noising method using the 743 

Neuro-Fuzzy Inference System (WDT-ANFIS), in accordance with field measurements 744 

collected from 2009 to 2010, is therefore applied. The scatter plots among the forecast and 745 
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observed values for all 5 selected parameters for water quality are depicted in Figure 12. 746 

Clearly, the majority of forecast water-quality parameters had closely approximated actual 747 

observations. As well, R
2
 must be as near 1 as possible, with values that exceed 0.9 implying 748 

very satisfactory model execution, values from 0.6 to 0.9 implying fairly good execution, and 749 

values below 0.5 indicating unsatisfactory execution. Based on these criteria, the 750 

WDT-ANFIS model’s ability to predict both pH and SS concentrations is very satisfactory 751 

(in that R
2
 values are at least 0.9) for every station but for AN, wherein models showed 752 

merely decent performances (in that R
2
 values were below 0.9) for Station 3. Based on these 753 

findings, WDT-ANFIS can be said to demonstrate good predictive performance. For 754 

predictions of water-quality parameters using AI, other researchers have advanced network 755 

modelling strategies that apply differing types of AI as well as input datasets. Moatar et al. 756 

(Moatar et al., 1999) applied solar radiation and discharge levels in predictions of pH, with an 757 

R
2
 value equal to 0.86. For predictions of AN, WDT-ANFIS predictive performance in this 758 

research managed better in comparison (R
2
 ranging from 0.88 to 0.96) with ANN predictive 759 

performance. Cigizoglu (Cigizoglu, 2004) utilised ANN models that were trained and then 760 

tested with daily flows, for predicting SS concentrations a day ahead, with R
2
 values ranging 761 

from 0.75 to 0.81 (with upstream flows as inputs). A comparable prediction for SS was 762 

similarly claimed by Zhu et al. (Zhao et al., 2007). For predictions of SS, the WDT-ANFIS 763 

predictive performance in this research managed better in comparison (R
2
 ranging from 0.91 764 

to 0.95) to previous studies. The proposed scheme demonstrated efficiency in its predictions 765 

of the concentrations of water-quality parameters for the Johor River, which corresponds to 766 

the findings of other research. The findings also show that the proposed scheme is a useful 767 

alternative that offers a comparatively fast algorithm, featuring decent theoretical properties 768 

for predicting water-quality parameters, which could be extended to predictions of other 769 

water-quality parameters. 770 
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 771 

Figure 12. 772 

 773 

8. CONCLUSION  774 

The study proposes the use of enhanced Wavelet De-noising Techniques using 775 

Neuro-Fuzzy Inference Systems (WDT-ANFIS) according to historical water-quality 776 

parametric data. The effectiveness of each model was examined in order to predict key 777 

parameters that could be affected as a result of urbanisation surrounding rivers. This area of 778 

research accords with the available secondary data for each water-quality parameter of Johor 779 

River. The parameters comprise ammoniacal nitrogen (AN), suspended solid (SS), and pH. 780 

Dual scenarios were presented: the first (Scenario 1) was designed to confirm prediction 781 

models for water-quality parameters at each stations according to 12 input parameters, 782 

whereas the second (Scenario 2) is designed to confirm prediction models for water-quality 783 

parameters according to 12 input parameters, as well as the parametric values from prior 784 

upstream stations. In evaluating the impact of input parameters on this scheme, validation of 785 

enhanced Wavelet De-noising Techniques using Neuro-Fuzzy Inference Systems 786 

(WDT-ANFIS), in accordance with measurements taken from 2009 to 2010, was thereby 787 

employed. The findings showed the challenge of determining reliable schemes based on 788 

MLP-ANN models, from the high variances as well as inherent non-linear associations 789 

among the water-quality parameters that emerge as a result of the stochastic quality and 790 

chemical-based process. Furthermore, MLP-ANN was subject to slow convergence during 791 

training, as a result of the requirement for comparatively large numbers of hidden neurons. In 792 

the example of RBF-ANN, its predictive capability for water-quality parameters in training 793 

phases was decent, but showed less precision during validation and test phases. The findings 794 
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indicated that ANFIS determined solutions faster than alternative MLP-ANN and 795 

RBF-ANN methods and is the most precise and reliable method for processing large volumes 796 

of non-linear as well as non-parametric data. Of note is the performance of the WDT-ANFIS 797 

scheme, which exceeded that of ANFIS and improved predictive accuracy for every quality 798 

parameter, in that this model achieves higher prediction accuracy overall. Generally, 799 

WDT-ANFIS can therefore be seen as having the best network architecture, since it 800 

outperformed ANFIS. The findings indicate that WDT-ANFIS not only offered a means to 801 

improve accuracy but it also features the ability to capture temporal patterns in water 802 

quality. This enables it to provide meaningful improvements in the generation of forecasts. 803 

Consequently, the ANFIS model appears more capable at capturing the more complex and 804 

dynamic processes that are hidden within the data for WQP, following enhancement with 805 

WDT. In comparisons between Scenarios 1 and 2, Scenario 2 achieved higher accuracy in 806 

terms of simulating the patterns and magnitudes for every water-quality parameter, at every 807 

station. The suggested WDT-ANFIS model in Scenario 2 gave predictions for water-quality 808 

parameters that ably mimicked patterns (dynamics) in recorded values, aside from extreme 809 

outliers observed within this period. Furthermore, validation of WDT-ANFIS, according to 810 

measurements collected from 2009 to 2010, demonstrated that WDT-ANFIS performed well 811 

in predicting both pH and SS concentrations (with R
2
 values of at least 0.9) for every station 812 

but for AN, wherein models still showed decent performances (with R
2
 values lower than 813 

0.9) for Station 3. Since forecasts of water quality are readily influenced by external 814 

environments, the acquired model would at times generate findings that deviated much from 815 

the observed values. In general, the methodology of the proposed models development for 816 

water quality has proved its effectiveness. However, it should be highlighted that there are no 817 

structured methods today to identify which network structure that can best in predicting 818 

water quality parameters. Moreover, the optimal selection of the hyper parameters still 819 
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requires to be achieved by augmenting the AI model with other advanced meta-heuristic 820 

optimization algorithms. Overall, this study integrates several analytical and modelling 821 

techniques that could become useful to institutions that are committed to river basin 822 

management within Malaysia. Furthermore, the approach utilised in this research could lay 823 

ground for better decision-making that assists policy makers in maintaining and improving 824 

river basin management. 825 
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Figures 945 
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 947 

Figure 1. A map showing the geographical setting of the survey area with four field 948 

monitoring stations on the main stream 949 
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 951 

Figure 2. A multi-layer perceptron neural network architecture. 952 
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 959 

 960 

Figure 3. (a) A two-input first-order Sugeno fuzzy model with two rules; (b) An 961 

equivalent ANFIS structure. 962 
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 970 

Figure 4. A schematic representation of the pyramid structure representing the 971 

WMRA. 972 

 973 

 974 

 975 

 976 

Figure 5. Schematic representation of the proposed networks for Scenario 2. 977 
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Figure 6. Performance of the MLP-ANN model: A comparison between the 981 

predicted and observed values. 982 
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Figure 7. Relative importance of each input parameter. 989 
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Figure 8. Performance of the ANFIS model: A comparison between the predicted 1001 

and observed values. 1002 
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Figure 9. Performance of the WDT-ANFIS model: A comparison between the 1006 

predicted and observed values. 1007 
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Figure 10. Comparison between the predicted SS versus the observed SS utilizing 1013 

different techniques. 1014 
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Figure 11. Comparison between the predicted pH versus the observed pH utilising 1019 

different techniques. 1020 
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 1029 

Figure 12. WDT-ANFIS model verification for each water quality parameter at 1030 

each station. 1031 
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Tables 1047 

 1048 

Table 1. Input parameters used in previous studies for the ANN model. 1049 

Author(s) and year Input variable Location(s) 

   

Rabia (Koklu, 2006) BOD, Temp, Water 

discharge, NO2-N, 

NO3-N 

N/A 

Kuo et al. (Kuo et al., 2007) 

 

pH, Chl-a, NH4N, 

No3N, temp, month 

Te-Chi Reservoir, Taiwan 

Ying et al. (Zhao et al., 2007) Turbidity, Temp, pH, 

Hardness, Alkalinity, 

Chloride, NH4-N, 

NO2-N 

Yuqiao reservoir, China 

Palani et al. (Palani et al., 2008) DO, Chl-a, temp Singapore coastal, Singapore 

Zaqoot et al. (Zaqoot et al., 2009) Conductivity, 

Turbidity, Temp, PH, 

Wind speed 

Mediterranean Sea along Gaza, 

Palestine 

Singh et al. (Singh et al., 2009) 

 

pH, TS, T-AlK, 

T-Hard, CL, PO4, K, 

Na, NH4N, No3N, 

COD   

Gomti, India 

 1050 
 1051 

 1052 

Table 2. Basic statistical analysis for input parameters. 1053 

 Unit Mean Minimum Maximum SD CV 

SN01 

TEMP o C 27.03 24.08 30.33 0.83 3.08 

COND μS 55.42 32.00 92.00 13.82 24.93 

SAL ppt 0.64 0.01 2.93 0.36 56.00 

TUR NTU 0.03 0.01 0.20 0.05 152.38 

NO3 mg/l 163.50 15.50 775.00 130.61 79.88 

CL mg/l 5.27 1.00 18.00 2.49 47.16 

PO4 mg/l 0.04 0.01 1.08 0.12 283.32 

FE mg/l 4.61 1.00 10.30 1.74 37.63 

K mg/l 0.87 0.10 2.40 0.44 50.59 

MG mg/l 3.13 1.22 11.54 1.42 45.18 

NA mg/l 0.87 0.08 2.32 0.44 51.20 

E-COLI cfu/100ml 3844.98 40.00 48000.00 6377.64 165.87 

SN02 

TEMP o C 27.16 24.08 29.82 1.11 4.10 

COND μS 62.64 28.00 300.00 38.78 61.91 

SAL ppt 0.02 0.01 0.07 0.01 54.16 



  

49 

 

TUR NTU 127.79 30.70 370.00 77.64 60.76 

NO3 mg/l 0.73 0.12 5.55 0.69 93.53 

CL mg/l 5.66 1.00 24.00 3.28 57.89 

PO4 mg/l 0.07 0.01 0.66 0.12 159.91 

FE mg/l 0.82 0.09 2.02 0.48 58.85 

K mg/l 4.63 0.90 7.80 1.56 33.76 

MG mg/l 0.80 0.10 1.40 0.33 40.69 

NA mg/l 3.27 1.40 26.70 3.33 101.77 

E-COLI cfu/100ml 2564.82 20.00 22000.00 3802.25 148.25 

SN03 

TEMP o C 26.14 23 31.93 1.38 5.07 

COND μS 54.16 26.07 373.00 45.62 84.24 

SAL ppt 9.56 0.01 61.00 20.43 213.64 

TUR NTU 113.33 0.01 820.00 139.73 123.29 

NO3 mg/l 11.55 0.00 133.00 27.26 236.03 

CL mg/l 5.43 0.06 20.00 2.78 51.13 

PO4 mg/l 0.09 0.00 1.02 0.22 233.34 

FE mg/l 1.21 0.15 5.60 1.35 111.53 

K mg/l 3.87 0.40 7.00 1.66 42.84 

MG mg/l 1.03 0.20 5.20 0.82 79.40 

NA mg/l 3.23 1.00 20.80 2.69 83.17 

E-COLI cfu/100ml 3498.07 0.00 86000.00 11402.45 325.96 

SN04 

TEMP o C 27.43 24.58 29.78 1.10 4.02 

COND μS 64.54 37.80 186.00 28.93 44.82 

SAL ppt 0.02 0.01 0.07 0.01 64.09 

TUR NTU 104.31 2.00 343.00 77.09 73.90 

NO3 mg/l 0.66 0.06 3.22 0.40 61.13 

CL mg/l 7.32 2.00 28.00 5.60 76.50 

PO4 mg/l 0.08 0.01 0.99 0.21 249.18 

FE mg/l 0.68 0.03 2.02 0.48 71.03 

K mg/l 4.03 0.40 6.40 1.22 30.30 

MG mg/l 0.94 0.20 2.90 0.54 57.05 

NA mg/l 4.15 1.60 24.00 3.79 91.28 

E-COLI cfu/100ml 4950.04 0.00 41000.00 7419.36 149.88 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 
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 1061 

Table 3. Basic statistical analysis for three water quality parameters. 1062 

 Unit Mean Minimum Maximum SD CV 

SN01 

PH - 6.39 5.49 7.83 0.45 7.07 

SS mg/l 91.01 11.00 372.00 56.26 61.81 

NH3-NL mg/l 0.14 0.01 1.07 0.18 129.30 

SN02       

PH - 6.22 5.43 7.28 0.36 5.77 

SS mg/l 73.44 7.00 274.00 50.16 68.30 

NH3-NL mg/l 0.10 0.01 0.45 0.11 103.81 

SN03 

PH - 6.36 5.67 8.41 0.48 7.59 

SS mg/l 72.61 1.00 574.00 83.44 114.91 

NH3-NL mg/l 0.15 0.01 2.46 0.38 254.94 

SN04 

PH - 6.29 5.59 8.09 0.41 6.56 

SS mg/l 47.98 1.00 146.00 32.05 66.80 

NH3-NL mg/l 0.15 0.01 0.83 0.20 131.79 

 1063 

 1064 

 1065 

 1066 

Table 4. Correlation coefficient between WQP and the input parameters. 1067 

 PH SS NH3-NL PH SS NH3-NL PH SS NH3-NL PH SS NH3-NL 

 
SN01 SN02 SN03 SN04 

TEMP 0.316 -0.171 -0.137 -0.425 0.361 0.014 -0.022 0.090 0.083 -0.295 0.154 -0.076 

COND -0.029 0.301 0.208 -0.113 0.061 0.144 0.216 0.002 -0.069 -0.290 0.083 0.094 

NO3 0.228 0.131 0.383 -0.364 -0.101 0.067 -0.183 -0.279 0.201 -0.264 -0.196 0.054 

SAL 0.202 -0.043 0.393 0.835 -0.118 -0.115 0.844 -0.071 -0.028 0.757 -0.147 -0.073 

TURB -0.167 0.766 0.137 0.071 0.061 0.000 -0.079 -0.200 0.191 -0.008 0.131 0.221 

Cl -0.114 0.354 0.411 -0.063 0.287 0.084 0.146 -0.076 -0.316 -0.302 0.067 0.245 

PO4 0.181 -0.148 0.065 0.025 0.121 -0.083 0.077 -0.114 0.454 0.088 0.052 0.569 

K -0.306 0.184 0.253 -0.005 0.014 -0.108 -0.012 0.039 0.018 0.325 0.013 -0.248 

MG 0.038 0.191 0.376 0.247 -0.023 0.152 0.115 -0.104 -0.192 0.020 -0.074 0.142 

NA 0.127 0.088 0.400 0.106 0.283 0.077 -0.027 0.104 0.269 -0.268 0.176 0.025 

FE 0.023 -0.080 -0.038 -0.165 0.143 -0.001 0.152 -0.045 0.017 -0.345 -0.024 0.106 

E-coli -0.085 0.315 0.007 0.142 0.024 0.014 0.223 -0.095 0.036 -0.042 0.143 0.367 

 1068 

 1069 

 1070 

 1071 
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 1072 

Table 5. ANN architecture for each parameter. 1073 

Parameter No. of neuron RMSE Maximum error (%) TFHL TFOL TA 

pH 18 0.15 3.22 TS PL LMA 

SS 17 0.30 3.46 LS PL LMA 

AN 17 0.26 3.12 TS PL LMA 

TFHL: Transfer function between input layer and hidden layer; TFOL: Transfer function between hidden layer 1074 
and output layer; TA: Training algorithm; LS: Log sigmoid; TS: Tan sigmoid; PL: Pure-line; LMA: 1075 
Levenberg–Marquardt algorithm. 1076 

 1077 

Table 6. The number and types of MFs for each module. 1078 

Parameter 
AFNIS Module 

MFs (Type) MFs (Number) 

PH gbellmf 3   4   

SS gbellmf 4 

NH3-NL gbellmf 3   4   4 

 1079 

Table 7. The running time (seconds) of training process for each model 1080 

Model MLP RBF ANFIS WDT-ANFIS 

pH 51 44 67 78 

SS 53 46 71 81 

AN 49 43 64 75 

 1081 

Table 8. A summary of correlation coefficients for Scenario 1, Scenario 2 and the AI %. 1082 

Model SNO2 SNO3 SNO4 AI (%) 

 Scen1 Scen2 Scen1 Scen2 Scen1 Scen2 SNO2 SNO3 SNO4 

pH 0.95 0.98 0.94 0.98 0.93 0.98 3.1 4.1 5.1 

SS 0.96 0.97 0.97 0.98 0.97 0.98 1.1 1 1 

AN 0.96 0.97 0.96 0.97 0.95 0.97 0.5 0.5 2 

 1083 

 1084 

 1085 
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1. Introduction 1 

Rivers are considered as one of the most critical sources of water for irrigation purposes, 2 

industrial needs and other uses. The dynamic nature of the river systems and their easy 3 

accessibility for waste disposal make the river systems most vulnerable to the adverse effects 4 

of environmental pollution. The term “water quality” refers to the state or condition of water, 5 

which takes into account the physical, chemical, and biological properties of the water. In 6 

conducting the study of any aquatic system, modelling the water quality parameters is of 7 

utmost significance. Evaluation and prediction of the surface water quality is necessary for 8 

effective management of river basins so that sufficient measures can be adopted to ensure 9 

that the pollution levels remain within permissible limits. Accurate prediction of future 10 

phenomena in relation to the water quality is the essence of optimal water resources 11 

management. The conventional process-based modelling methods offer comparatively 12 

accurate predictions for water quality parameters. However, these models have limitations as 13 

they depend on data sets that require a substantial amount of processing time and a huge 14 

amount of input data that is often unknown.  15 

Nearly 60% of the major rivers in Malaysia are used for agricultural, household and 16 

industrial applications (DID, 2000). As per Rosnani Ibrahim (Ibrahim, 2001), the major 17 

sources of pollution that affect these rivers are dumping of sewage, waste releases from 18 

medium and small-sized industries not having proper waste matter treatment equipment, 19 

clearing of land and groundwork activities. On the basis of the records of 1999, 50 20 

catchments (that is 42% of river) were contaminated with SS (suspended solids) caused by 21 

badly planned and unregulated earth clearing attempts and 33 catchments (that is, 28% of 22 

river) were polluted with AN (ammoniacal nitrogen) from activities related to cattle breeding 23 

and household sewage dumping. 24 

*Revised manuscript with no changes marked
Click here to view linked References

http://ees.elsevier.com/hydrol/viewRCResults.aspx?pdf=1&docID=50079&rev=1&fileID=1416547&msid={9413BB7D-2E86-4FE3-8555-DA20A88019AA}
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Johor River is regarded as somewhat polluted as per DOE (Department of 25 

Environment)(DOE, 2007) because of the developmental activities alongside the bank of the 26 

river. Moreover, the river continues to be chocked and dumped by waste and litter due to lack 27 

of enforcement by the local administration. These pollutants ultimately end up in the Joho 28 

River tributaries, rich areas for nourishment and breeding of poultry and fish. Consequently, 29 

several statistical frameworks and computer simulations must be introduced as powerful and 30 

critical tools for planning and monitoring the maintenance of the water bodies. 31 

Growing concerns regarding environment, along with scarce funding, are giving rise to a 32 

growing interest in cost-effective and judicious strategies for the management of water 33 

quality. Since the quality of water directly affects the health of the humans, quality 34 

improvement of the water accessible for human use will play a significant role in decreasing 35 

health related hazards.  36 

The project of water pollution regulation is based on the management of water quality. It 37 

estimates the kind of water quality from the present water quality condition, as well as from 38 

the rules of disposal of the pollutants into the river. Moreover, many models for water 39 

quality, like stochastic and deterministic models, have been created so as to provide best 40 

processes to conserve the quality of water (Hull et al., 2008). Nevertheless, getting efficient 41 

and precise water quality model in complex water resources is still difficult because of the 42 

variations and complications in the actual world, the ambiguities in the framework and 43 

variables of the model, and the deviations in the field data. Thus, conventional methods for 44 

data processing are not sufficiently efficient anymore for solving issues related to the water 45 

quality. Additional efforts are required to improve the consistency of the findings of the 46 

model. 47 

Deterministic models try to represent all the chemical and physical processes included in 48 

statistical terms, with variables acquired either from past data or obtained empirically, or 49 
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computed by experience or examination. Generally, the differential equations are simplified 50 

so as to find solutions suitable for the model. Solution of the involved equations may need 51 

suppositions and simplifications which are derived from the performance of the model, and 52 

usually practical experience is necessitated from the user prior to achievement of optimal 53 

outcomes.  54 

Statistical models attempt to seek general rules from the experimental data, which can be 55 

done by obtaining information from the field data. Statistical modelling and assessment 56 

involve a meticulous selection of techniques for analysis, and validation of suppositions as 57 

well as data. A majority of such models are quite complex and involve a substantial field data 58 

amount to conduct the analysis. Moreover, several statistical-based models of water quality, 59 

which assume the association among the prediction and the response variables, are 60 

distributed normally and linear in nature. Nevertheless, since the quality of water can be 61 

impacted by several parameters, conventional techniques for data processing are not 62 

sufficiently efficient anymore for solving this issue, and as such parameters show a complex 63 

non-linear relation to the water quality prediction parameters. Thus, using statistical 64 

techniques generally does not have high accuracy. 65 

Of late, the AI (Artificial Intelligence) approach has been recognised as an effective 66 

alternative method for modelling of complicated non-linear systems. Generally, such models 67 

do not take into account the internal process but develop models through the inputs and 68 

outputs correlation. Presently, AI is used exhaustively for estimating several water-related 69 

regions (Muttil and Chau, 2006). 70 

Recently, AI has offered the techniques for operation optimisation and selection of 71 

equipment, and problem solving that involve large quantities of data that cannot be processed 72 

by humans for the purpose of decision making. For this purpose, AI methods are proficient to 73 

replicate this behaviour and balance the deficiency. Thus, the growth of technology of 74 
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efficient parallel computing and growing computing power have facilitated the researchers to 75 

employ the AI approaches (for instance, ANN (Artificial Neural Network) and ANFIS 76 

(Adaptive Neuro-Fuzzy Inference System)) for field data modelling solutions. The 77 

neuro-fuzzy technique has been used effectively in certain fields of water bodies engineering 78 

like the rainfall-runoff model (Chang and Chen, 2001)and basin operation (Chang and 79 

Chang, 2006; Chang et al., 2005). ANFIS has been known to enhance the accuracy of 80 

day-to-day estimation of evaporation (Kişi, 2006), reservoir water level prediction (Chang & 81 

Chang, 2006) and prediction of the river flow (Firat and Güngör, 2007). 82 

The data obtained from experimentation and examination may be corrupted by signals of 83 

noise because of objective and/or subjective errors. For instance, experimental faults may be 84 

caused by measuring, recording, reading and external situations. As this noise can possibly 85 

distort the model outcomes, it is essential to eliminate them (i.e. signal de-noising) prior to 86 

the use of this data. The noisy signals can be de-noised by applying a series of linear filters 87 

(Bell and Martin, 2004). Nonetheless, these filters are more suitable for linear systems rather 88 

than the non-linear ones. Moreover, the FAT (Fourier analysis technique) is a standard tool 89 

for de-noising, though it is only favourable for de-noising signals or data involving stable 90 

noises. In addition, as there are unstable noises in real situations, it cannot be applied 91 

effectively. Thus, to solve the issues of conventional de-noising methods, more complex 92 

methods, like the WDT (wavelet de-noising technique), have been recommended. Above all, 93 

WDT is effective for de-noising multi-dimensional temporal or spatial signals having stable 94 

or unstable noises. Also, it has been extensively applied to industrial systems for information 95 

finding and patterns recognition (Avci, 2007; Tirtom et al., 2008). Nonetheless, some of 96 

these investigations were employed for water quality monitoring, where its data was utilised 97 

for estimation of parameters (Dohan and Whitfield, 1997).  98 
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In Malaysia WQIP requires extensive calculations and transformations. Two studies 99 

have been proposed to use Artificial Intelligence techniques (AI) in Malaysia in order to 100 

develop an accurate predictive model to WQP. However, many studies show that AI needs 101 

pre-processing tool to enhance the accuracy of the model practically in dealing with 102 

measured water quality data which is often contain noise (Han et al. 2011, Xu and Liu 2013).   103 

 104 

The main objective of this investigation is to evolve a computationally proficient and 105 

robust method for the estimation of water quality variables decreasing the labour and cost for 106 

measurement of those parameters. This study focuses on the Malaysian Johor River situated 107 

in Johor State where the water quality dynamics are significantly altered. This research has 108 

many primary objectives, as follows: 109 

 To evaluate and assess the correlation among the parameters of water quality on the 110 

basis of the experimental data using ANN (Artificial Neural Network). 111 

 To propose various ANN approaches, like MLP (Multi-Layer Perceptron) Neural 112 

Network and RBF (Radial Basis Function) Neural Network so as to confirm the 113 

effectiveness of these techniques in the estimation of the parameters of water quality. 114 

 To get familiar with the correctness of the ANFIS (Adaptive Neuro-Fuzzy Inference 115 

System) in the prediction of the parameters of water quality. 116 

 To develop an augmented WDT-ANFIS (wavelet de-noising technique with the 117 

Neuro-Fuzzy Inference System).  118 

 To examine the effectiveness of the suggested model for spatial position by 119 

presenting two different situations: the first situation (Scenario 1) is designed to set 120 

the model prediction at each station pertaining to the water parameters by considering 121 

the 13 input parameters from the same station. Where for Scenario 2, the input 122 

parameters for this scenario based on the measured water quality parameters from the 123 

same station and the predicted parameter from upstream station. 124 
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 To validate the augmented WDT-ANFIS (wavelet de-noising technique with the 125 

Neuro-Fuzzy Inference System) based on the experimental data for the duration 126 

2009-2010. 127 

3. Case Study: Johor River Basin 128 

Johor state is regarded as the third largest region in Malaysia with an area of 19.984 km
2
. 129 

It comprises of eight districts namely are Kota Tinggi, Muar, Pontian, Johor Bahru, Segamat 130 

Kluang, and lastly Batu Pahat which is considered as the second largest districts in Johor with 131 

an area of 187,702.06 hectares. Johor state has five principal rivers which are Sungai Muar, 132 

Sungai Johor, Sungai Endau, Sungai Batu Pahat and Sungai Sedilfi. This research sheds the 133 

light solely on Sungai Johor river. The Johor river basin is located in the southeast of 134 

Peninsular Malaysia. At an altitude of 1010 m, the Johor river orginates from the Gunung 135 

Belumut and from Bukit Gemuruh at an altitude of 109 m un the north. The river has irregular 136 

shape, its drainage area is around 2636 km2 and its length is approximately 122.7 Km. The 137 

river flows southeast into the Johor straits. An average annual precipitation of 2470 mm 138 

added to the river while during the period of 1963-1992, the annual mean discharge at Rantau 139 

Panjang was found to be 37.5 m3/s. The Johor river and its tributaries play a significant role 140 

as water suppliers for the state of Johor as well as for Singapore. Many factors contribute to 141 

the deterioration of the water quality of Johor River, mainly include the release of different 142 

kinds of pollutants at levels exceeding the allowed limits with the absence of local 143 

authorities’ enforcement. These pollutants travel through Johor River and ultimately end in 144 

the estuaries of the rivers which are known to be a natural feeding area for poultries and 145 

fishes and a natural environment that provide spawning. Figure 1 depicts the location map of 146 

the surveying area which compromises of four monitoring stations on Johor River. 147 

 148 
 149 
 150 
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 151 
 152 
 153 
 154 
 155 
 156 
 157 

Figure 1.  158 

 159 
 160 
 161 
 162 
 163 
 164 

3. Methodology 165 

3.1 Multi-Layer Perceptron Neural Network (MLP-ANN) 166 

A feed-forward network is the multi-layer perceptron neural network (MLPNN) that 167 

includes many layers of neurons, where one neuron’s output is propagated to the other 168 

neuron’s input that is in the next layer. Figure 2 presents the multi-layer perceptron neural 169 

network. In MLPNN, the input layer’s nodes only propagate the input values of the first 170 

hidden layer’s nodes. In the hidden layers, each node’s input-output relationship can be 171 

presented as follows: 172 

 













 

j

jj bxwfy            (1) 173 

where, jx  signifies the output from the previous layer’s j  node, jw  denotes the 174 

connection weight between the current node and j  node, b  represents the current node’s 175 

bias, and f  defines a non-linear transfer function usually of the sigmoid form as shown in 176 

Equation (3.4): 177 
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where, z  denotes the weighted sum pertaining to the input to the neuron and )(zf  179 

signifies the neuron output. The output nodes’ input-output relationship is comparable to the 180 

one defined by Equation (3.4), with the exception of the case where the network is employed 181 

for function approximation, and the type of function f  could vary (e.g. linear function). 182 

 183 

 184 

Figure 2.  185 

 186 

 187 

The units define a MLPNN architecture, which allows computation of a non-linear 188 

function in terms of the scalar product pertaining to the weight vector and input vector. 189 

Overall, the MLPNN models’ performance relies on the network’s inherent architecture. 190 

Apart from the number of hidden layers as well as the number of neurons pertaining to each 191 

layer, it also includes the computation type applied to each neuron. 192 

 193 

3.2 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 194 

Jang (Jang, 1993) first put forward the Adaptive Neuro-Fuzzy Inference System 195 

(ANFIS) that allowed realising a highly non-linear mapping and compared with common 196 

linear methods, it is considered to be superior in yielding non-linear time series (Jang, 1993). 197 

The ANFIS architecture was employed throughout this research for the first-order Sugeno 198 

fuzzy model (Sugeno and Kang, 1988). ANFIS can be defined as a multi-layer feed-forward 199 

network that employs neural network learning algorithms as well as fuzzy reasoning to aid in 200 

mapping input space with that of the output space (Chang and Chang, 2006). Considering 201 

that for a first-order Sugeno fuzzy model, the fuzzy inference system has one output, f, and 202 
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two inputs, x and y, a common rule set that includes two fuzzy ‘if.then’ rules can be defined 203 

as follows: 204 

 205 

Rule 1: If x is A1 and y is B1, then f1 = p1 x+q1 y+r1     (3) 206 

Rule 2: If x is A2 and y is B2, then f2 = p2 x+q2 y+r2     (4) 207 

 208 

 209 

where, A1, A2 and B1, B2 signify the membership functions (mfs) pertaining to inputs x 210 

and y, respectively; pi, qi and ri (i = 1 or 2) represent the linear parameters pertaining to the 211 

first-order Sugeno fuzzy model’s consequent part. Figure 3(a) represents the fuzzy reasoning 212 

mechanism pertaining to this Sugeno model that also allows deriving the output function (f) 213 

from that of inputs x and y. Figure 3(b) presents the corresponding equivalent ANFIS 214 

architecture, in which similar functions are associated with the same layer’s nodes. ANFIS 215 

comprises five layers as stated below: 216 

 217 

Figure 3.  218 

 219 

 220 

3.3 WAVELET DE-NOISING 221 

The next logical step is characterised by wavelet analysis post the short-time Fourier 222 

transforms (STFT). This is with regards to the windowing technique that includes 223 

variable-sized regions. With the help of wavelet transform (WT), long time intervals can be 224 

employed in those areas where more precise low frequency information is needed, as well as 225 

for shorter regions in which high frequency information is needed. Overall, the key benefit 226 

provided by the wavelets is allowing conducting local analysis for localised area pertaining 227 

to a larger signal. The discrete-time WT pertaining to a time domain signal      can be 228 

expressed as follows (Dohan and Whitfield, 1997): 229 
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  (5) 230 

 231 

Here,     defines the mother wavelet, while   represents the scaling and   denotes 232 

the shifting indices. The DWT logarithmic frequency coverage is provided through scaling, 233 

as opposed to the uniform frequency coverage of STFT. This analysis technique includes 234 

segmenting a signal into components at various frequency levels, which are linked by the 235 

powers of two (a dyadic scale). The filtering approach that is applied to multi-resolution WT 236 

involves formation of a series of half-band filters that segment a spectrum into low and high 237 

frequency bands. The formulation is based on a wavelet function or high-pass (UP) filter as 238 

well as a scaling function or low-pass (LP) filter. Wavelet multi-resolution analysis 239 

(WMRA) allows constructing a pyramidal structure that needs an iterative application of 240 

wavelet functions and scaling to high-pass and low-pass filters, respectively. At the 241 

beginning, these filters are first applied to the entire signal band under high frequency 242 

(small-scale values) and then the signal band is decreased at every stage gradually. As 243 

presented in Figure 4, the detail coefficients of Dl, D2 and D3 define the high-frequency band 244 

outputs, while the approximation coefficients of Al, A2 and A3 define the low-frequency 245 

band outputs. 246 

 247 

 248 

Figure 4.  249 

 250 

Numerous factors need to be accounted when wavelets are employed to de-noise the 251 

WQP data. Examples of such choices include the level of decomposition, wavelet and 252 

thresholding methods to be employed. MATLAB provides various families of wavelets such 253 

as Morlet, Meyer, Mexican hat, Coiflets, Haar, Symlets, Daubechies and Spline biorthogonal 254 

wavelets, and also offers additional documentation regarding these wavelet families 255 
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(“Wavelet Toolbox - MATLAB,” n.d.). Only orthogonal wavelets need to be accounted to 256 

get perfect reconstruction results. Certain advantages are associated with the orthogonal 257 

wavelet transform. It can be characterised as being relatively concise, permitting perfect 258 

reconstruction of the original signal and relatively easy to calculate. The two common 259 

employed approaches for thresholding a signal include hard thresholding and soft 260 

thresholding, which are employed in the MATLAB wavelet toolbox. Although the easiest 261 

method is hard thresholding, better results are achieved through soft thresholding versus hard 262 

thresholding. Thus, this study uses soft thresholding. Four threshold selection rules can be 263 

used with the wavelet toolbox, which employ statistical regression pertaining to the noisy 264 

coefficients over time that allows getting a non-parametric estimation regarding the 265 

reconstructed signal absent noise. This study examined just Sqtwolog, wherein a fixed form 266 

of threshold is employed, leading to minimax performance that is multiplied by a factor 267 

proportional of signal length’s logarithm. In this research, in terms of the decomposition 268 

level, we can conclude that a level 4 decomposition offered reasonable results post applying 269 

the trial-and-error method to all modules. 270 

 271 

 272 

 273 

 274 

3.4 Model Performance Evaluation 275 

 276 

It is necessary to clearly recognise the criteria that are associated with judging the 277 

model’s performance. The criteria employed to assess the performance of the model in this 278 

study were clearly mentioned in the literature. Dogan et al. (Dogan et al., 2009) employed the 279 

Average Absolute Relative Error (AARE), which not only provides the performance index 280 

with regards to predicting water quality parameters but also demonstrates the prediction 281 

errors distribution. To examine the performance of the model, Singh et al. (2009) employed 282 

the bias statistical index. The bias signifies the mean of all the individual errors as well as 283 
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allows determining if the dependent variable is underestimated or overestimated by the 284 

model. In this study, correlation coefficient as well as Root Mean Square Error (RMSE) was 285 

employed to examine the model’s performance (Soyupak et al., 2003; Zhao et al., 2007).  286 

Usually, the model performance is assessed through coefficient of determination, as put 287 

forward by Nash and Sutcliffe (1970), while MSE is employed to check the level of fitness 288 

between the network output and desired output. 289 

In this research work, the models’ performances were assessed based on three statistical 290 

indexes. As mentioned by Nash and Sutcliffe (1970) coefficient of efficiency (CE) is 291 

commonly employed to assess the performance of the model. 292 

 293 
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  294 

where n represents the number of observations, mX
 and pX

 define the measured and 295 

predicted parameters, respectively, and mX  signifies the average of measured parameter.   296 

Mean square error (MSE) is employed to see the level of fitness between network output 297 

and the desired output. Better performances are guaranteed with smaller MSE values. It is 298 

defined as follows: 299 
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More commonly, the coefficient of correlation (CC) is employed to examine the linear 301 

relationship between the measured and predicted dissolved oxygen. This can be expressed as 302 

follows: 303 

 304 
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 305 

Further, for visual comparison of the predicted and measured values, the Scatter plot was 306 

employed (Kuo et al., 2007). 307 

 308 

3.5 Input Variables and Data Processing 309 

 310 

One of the key functions of ANN is to identify the model input parameters that could 311 

impact the output parameters considerably. As indicated above, the selection of input 312 

parameters depends on a priori knowledge regarding causal variables as well as statistical 313 

analysis pertaining to the potential outputs and inputs. In the literature, different input 314 

parameters were employed to develop the model to determine water quality parameters, as 315 

presented in Table 1.  316 

 317 

Table 1.  318 

 319 

On the basis of the literature, the following water quality parameters were chosen for 320 

ANN modelling: temperature (Temp), electrical conductivity (COND), salinity (SAL), 321 

nitrate (NO3), turbidity (TURB), phosphate (PO4), chloride (CI), potassium (K), sodium 322 

(Na), magnesium (Mg), iron (Fe) and Escherichia coli (E-coli). The basic statistical 323 

parameters, i.e. mean, minimum, maximum, standard deviation (S.D.), and coefficient of 324 

variation (CV) of the input and output parameters deployed in this study are depicted in Table 325 

2 and Table 3. 326 

 327 

 328 

http://www.sciencedirect.com/science/article/pii/S0301479710003002#tbl2
http://www.sciencedirect.com/science/article/pii/S0301479710003002#tbl2
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Table 2.  329 

 330 

Based on the concentration levels of both output and input parameters, large changes 331 

between the samples were seen, along with a high coefficient of variation (i.e. 254.94% for 332 

AN and 325.96% for E. coli). The coefficient of variation (CV) can be defined as a measure 333 

of statistical dispersion pertaining to the data. For a given data set, it is the mean normalised 334 

standard deviation (CV %) that can be computed as (standard deviation/mean) × 100. The 335 

existence of large disparity in the parameters’ concentrations can be attributed to the types 336 

(non-point and point) and nature of sources that have been distributed in the river basin’s 337 

wide geographical area. During the course, the river flows through different townships, and 338 

many tributaries and wastewater drains pouring large quantities of untreated wastewater into 339 

the river’s main channel. A coefficient of variation in the range of 3.08% and 325.96% was 340 

seen with the parameters. Such variability that exists amongst the samples could be due to 341 

large geographical variations in climate as well as seasonal effects pertaining to the study 342 

region. For the various sampling sites, a spatial and significant variation was seen in terms of 343 

Johor River’s turbidity, which varied from 0.2 to 343 NTU. It was higher, which could 344 

because of the mixing of industrial effluents and domestic sewerage water in Johor River. 345 

The rise in turbidity near downstream sites can be attributed to settling factors and flow 346 

turbulences. At downstream sites, the observed trend of turbidity, i.e. SN02, SN03 and SN04, 347 

was seen to support the above-mentioned hypothesis. Comparable patterns pertaining to 348 

spatial variations in turbidity were reported by (Khadse et al., 2007) when investigating 349 

Kanhan River’s water quality. Amongst the sampling sites, the conductivity of the Johor 350 

River water was found to be considerably different, in which the mean ranged from 54 to 64 351 

μS, although least significant difference was between SN01 and SN03. The high conductivity 352 

at SN04 and SN02 sites signify sewerage mixing into the river water. The dilution of 353 

industrial and urban runoffs could be attributed to the lower conductivity seen in the 354 
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downstream water. Nitrate is considered to be a crucial parameter of river water that could be 355 

an indicator for the pollution status and anthropogenic load in river water.  356 

The mean of nitrate ranged from 0.66 to 163.5 mg/l for Johor River. At the site wherein 357 

urban runoff mixing was noticed, NO3 was seen to be the maximum. It is interesting to note 358 

that in the downstream non-point pollution sites, lower NO3 was seen. The concentration of 359 

chloride in water was deemed not to be harmful. A higher concentration of chloride found in 360 

freshwater signified that pollutants are present. Moreover, in Johor River, the chloride level 361 

fell in the range of 5.27 to 7.37 mg/l. Nonetheless, at various sampling sites, a clear trend was 362 

not seen with chloride concentration in terms of the non-point or point pollution sites. The 363 

mixing of industrial effluents or urban wastewater in the river water is signified by higher 364 

levels of chloride content at SN04. 365 

 366 

Table 3.  367 

 368 

pH of water indicates alkaline and acidic conditions. DOE (DOE, 2007) suggested that 369 

pH for water in the range of 6.5–8.5 can be employed for any purposes in that respect; the 370 

ranges showed that Johor River had moderately alkaline water. The change in mean pH 371 

ranged from 6.22 to 6.36 at various locations. At some sites, higher pH could be a result of 372 

carbonate and bicarbonates of magnesium and calcium in water. The key source pertaining to 373 

such chemicals include industrial wastewater or urban runoff. SS further signifies the river 374 

water’s salinity behaviour. The mean SS content pertaining to river water was found in the 375 

range of 72.61 to 91.01 mg/l. The chemical and biological oxygen demand increase in 376 

tandem with higher SS level in the water system, which ultimately results in depletion of the 377 

dissolved oxygen level in water. In water, SS stems from natural sources, industrial 378 

wastewater, urban runoff, sewage and chemicals employed in the water treatment process. 379 
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For the current neural network modelling, the second assessment of selecting the input 380 

parameters is done by considering a statistical correlation analysis pertaining to the field data. 381 

Calculation of the correlation coefficient existing between the input and output parameters 382 

was done and listed in Table 4.  383 

Based on the table, pH was clearly seen to be inversely associated with water 384 

temperature (r = -0.306) as well as potassium (r = -0.425). We performed an experiment by 385 

taking water quality variables that were accounted along with the parameters mentioned 386 

above pertaining to various models to realise the optimal predictive model as well as reduce 387 

the monitoring cost by accounting for fewer input parameters. 388 

 389 

Table 4.  390 

 391 

3.6 Stopping Criteria 392 

 393 

Normally, there is a gradual decrease in the training error of AI since the training process 394 

is on-going. Nonetheless, this minimisation of training error does not guarantee enhancement 395 

of generalisation ability, which gained our interest. It is not necessary that AI showing good 396 

performance with the training set will do the same with the testing data. Therefore, it is also 397 

sometime important to stop the training phase at the right time before over-fitting occurs. 398 

When a generalisation characteristic is lost by the neural network, an over-fitting issue 399 

follows. However, relations between the training inputs as well as their associated outputs to 400 

similar hidden patterns pertaining to the unobserved data cannot be generalised. Thus, this 401 

occurs as a result of a difficult question that asks how long a network needs to be trained. The 402 

issue of over-fitting is usually solved by employing techniques like weight elimination, 403 

weight decay and early stopping. Stopping criteria is the most commonly employed method 404 

to address this issue. As noted by numerous researchers (e.g. Singh et al. (Singh et al., 2009); 405 
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Palani et al. (Palani et al., 2008)), two frequently employed stopping criteria include stopping 406 

post a specific number of runs via the complete training data (it needs to be noted that an 407 

epoch is defined as each run that passes through the complete training data) and stopping on 408 

reaching some low level by the target error.  409 

 410 

 411 

3.6. Different Scenarios 412 

 413 

Two different scenarios have been proposed in this study. The concept behind the 414 

development of these both scenarios is based on the spatial pattern of the input-output 415 

structure of the model. Mainly, the reason behind proposing these scenarios is to examine the 416 

model performance considering the spatial dimension of the model input. Keeping in mind 417 

that the model output in both scenarios is the prediction values of the AN, pH and SS, the 418 

input patterns has been changed in terms of the number of the inputs and location of the 419 

monitored data. In order to clarify the structure and show the difference between these two 420 

scenarios, an example for the structure of both scenarios to predict the AN parameter will be 421 

presented. For scenario I, to predict AN parameter at certain station, different twelve input 422 

parameters were used that have been acquired at the same station. While, the structure of 423 

scenario II is developed as, in addition to the same twelve water quality parameters used as 424 

inputs in scenario I, the value of AN parameter that has been acquired from the upstream 425 

station will be added. 426 

The prediction procedure can be defined as an operation that allows offering water 427 

quality parameter patterns for the future. This research employs the WDT-ANFIS along with 428 

its stochastic and non-linear modelling capabilities to design a prediction model that mirrored 429 
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the water quality parameter patterns pertaining to Johor River with regards to the 12 input 430 

parameters (Scenario 1) cited earlier, which is represented as follows: 431 

)( 43 NNNNNNNNNNNNANFISWDTN coliENaMgKFePOCINOTURSALCONDTempfWQIP     (9) 432 

4,3,2,1N  433 

Where WQIPN signifies the water quality index parameters pertaining to station N, and 434 

fWDT-ANFIS(.) defines the non-linear function predictor built via the WDT-ANFIS network. 435 

Thus, at each station, four models were built for predicting the parameters for water quality. 436 

A majority of the recent studies were aimed at predicting the concentrations pertaining to the 437 

parameters of water quality at every station. Usually, discharge via the local area from the 438 

upstream station causes an impact on the water pollution pertaining to a downstream station 439 

(Zaqoot et al., 2009). Therefore, in the put forward model, it was important to consider the 440 

impact cast by water parameters at the upstream station. Thus, the second scenario (Scenario 441 

2) was designed to set the model prediction at each station pertaining to the water parameters 442 

by considering the 13 input parameters. At the previous station (upstream), the predicted 443 

WQIP could be represented by following Eq. (10). Repetition of this procedure involving the 444 

predicted WQIP is done for the fourth and third stations at downstream. Figure 5 presents a 445 

schematic representation pertaining to the put forward networks for Scenario 2. 446 

 447 

)( 431 pNNNNNNNNNNNNNANFISWDTN WQIPcoliENaMgKFePOCINOTURSALCONDTempfWQIP     (10)448 

  449 

 450 

Figure 5.  451 

 452 

 453 

 454 
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7. Results and Discussion 455 

7.1 MLP-ANN Training 456 

The construction of an ANN model normally includes three steps. The training stage is 457 

the first step, in which the network is exposed to a training set pertaining to the input-output 458 

patterns. The second step involves the validation stage, in which the network’s performance 459 

is evaluated when patterns are not ‘observed’ by the network in the training stage. The third 460 

step includes the testing stage, in which the network’s performance is evaluated when the 461 

unknown patterns were not ‘observed’ during the stages of validating and training (Bowden 462 

et al., 2005). Designing of three MLP-ANN architectures was done (one for each parameter). 463 

The Levenberg-Marquardt back propagation algorithm (LMA) is employed by all three 464 

networks in the entire training procedure. This study employed three activation functions, 465 

namely tan-sigmoidal (Tansig), log-sigmoidal (logsig) function and linear transfer function 466 

(purelin). After initialising the network weights and biases during the training process, 467 

iterative adjustments of the weights and biases pertaining to the network were carried out to 468 

decrease the network performance function pertaining to mean square error (MSE) – the 469 

average squared error between the target outputs and the network outputs. 470 

We introduced different values of learning rate (lr) to the networks in a bid to achieve the 471 

optimum result pertaining to this study. For back propagation learning algorithm, the 472 

learning rate is important as it helps determine the level of weight changes. However, since 473 

the learning process tends to slow down when smaller learning rate values are employed for 474 

training, it is not a favoured choice. Employing larger learning rates values for training could 475 

lead to network oscillation in the weight space. One approach to enhance the gradient descent 476 

method is by introducing an additional momentum parameter (mc) that facilitates larger 477 

learning rates leading to faster convergence while decreasing the oscillation tendency 478 

(Rumelhart et al., 1986). The momentum term is introduced so that the next weight changes 479 
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are similarly aligned to the same direction as the previous one, which allows minimising the 480 

oscillation impact of larger learning rates. Although there are certain systematic approaches 481 

to simultaneously choose the learning rate and momentum, the best values pertaining to these 482 

learning parameters are normally selected based on experimentation. Since any value falling 483 

between 0 and 1 can be accounted by the learning rate and the momentum, it becomes almost 484 

impossible to perform an exhaustive search to detect the best combinations pertaining to 485 

these training parameters. In this research paper, we evaluated different momentum and 486 

learning rates pertaining to both networks; in real practice, 0.9 and 0.95 were selected as 487 

momentum and optimum learning rate pertaining to SS, AN and pH models, respectively.  488 

 489 

7.2 Optimisations of the Neurons Number 490 

The number of neurons in the hidden layer is the key characteristic pertaining to AI 491 

technique. The network fails to model the complex data that could lead to poor fitting if the 492 

number of neurons employed is insufficient. On the flip side, the training time could become 493 

unreasonably long as well as the network may also over fit the data if there are too many 494 

neurons employed. In this paper, to investigate the best performance, various MLP-ANN 495 

architectures were employed. In fact, a formal and/or mathematical approach does not exist, 496 

which allows determination of appropriate ‘optimal set’ pertaining to neural network’s key 497 

parameters. Thus, the trial-and-error method was selected to perform this task. 498 

Randomisation of the hidden layer’s neurons was done from N=1 to 20 neurons. In the 499 

hidden layer, the best numbers of nodes are those that provide the lowest error (Lek et al., 500 

1996). Based on two performance indices, determination of the optimum number of neurons 501 

was done. The root-mean-square error (RMSE) value pertaining to the prediction error is the 502 

first index, while the value of the maximum error is the second index. To get both indices, the 503 

ANN model was evaluated by considering the WQP data between 1998 and 2007. When 504 



  

21 

 

building such a predicting model that employs the neural network, the model could do well 505 

during the training period and could give a higher level of error when assessment was done 506 

during either the testing or validation period. Based on this study, these performance indices 507 

were employed to ensure that the put forward model would offer consistent accuracy levels 508 

during all periods. As the performance indicator for the put forward model, the key benefit of 509 

using these two statistical indices is to ensure that the highest error falls within the acceptable 510 

error range for the forecasting model when the performance is being evaluated. This is done 511 

when RMSE is employed and making sure that the summation of the error distribution is not 512 

high in the validation period. Consequently, employing both indices ensures consistent level 513 

of errors and offers high potential to maintain the same error level while evaluating the model 514 

for unseen data during the testing period.  515 

When the number of hidden neurons to the network is varied, it has a clear impact to a 516 

considerable degree on the prediction performance. It clearly demonstrates that there is a rise 517 

in prediction performance with increase in the number of hidden neurons (from 1 to 18), 518 

along with subsequent decrease in RMSE and maximum error pertaining to all parameters. 519 

However, a drop in prediction performance occurred when hidden neurons were added 520 

further (19 to 20) to the network. For instance, it can be seen that the best combination 521 

pertaining to the put forward statistical indices to examine the predicting model for the pH 522 

was when 18 neurons with RMSE 0.15 were associated with the ANN architecture and a 523 

maximum error as 3.22%. The best combination pertaining to the put forward statistical 524 

indices to examine the predicting model for the SS was when 17 neurons with RMSE 0.30 525 

were associated with the ANN architecture and a maximum error of 3.46%. Table 5 lists out 526 

the optimal numbers of neurons pertaining to the remaining parameters. 527 

Table 5.  528 

 529 
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7.3 WATER QUALITY PREDICTION MODEL OF MLP-ANN 530 

The MLP-ANN model for the estimation of the 6 parameters of water quality (as the 531 

output), which are SS, AN and pH, was evaluated in this section. Figure 6 depicts the 532 

measured and estimated parameters of water quality for the most excellent network, which 533 

provided the most precise estimation. On the whole, the predictive capability of this model 534 

was fairly good for each of the parameters of the water quality in the training duration, 535 

though less accurate when the validation and testing stages were carried out. The findings 536 

showed that it was challenging to develop a consistent model using the MLP-ANN models 537 

due to high variations and intrinsic non-linear correlation among the parameters of the water 538 

quality because of the probabilistic nature and chemical procedure. Additionally, the 539 

MLP-ANN models encountered delayed convergence during the training because of the 540 

necessity of comparatively a huge amount of hidden neurons. Also, several researchers 541 

observed that these models failed to acquire values lying outside the scope of values included 542 

in the calibration data of MLP-ANN (boundary values) (Campolo et al., 1999; DAWSON 543 

and WILBY, 1998; Hsu et al., 1995; Karunanithi et al., 1994; MINNS and HALL, 1996). 544 

This constraint, arising chiefly due to the application of a logistic function to translate the 545 

output of the model, makes these models inappropriate for several applications. 546 

Alternatively, the RBF-ANN (Radial Basis Function Network) is commonly employed 547 

for strict interpolation issues in space with multiple dimensions, which has equivalent 548 

abilities as the MLP-ANN in solving problems related to function estimations (Park and 549 

Sandberg, 1993). There are chiefly 2 benefits of the RBF-ANN: (a) network training in 550 

shorter duration in comparison to MLP-ANN , and (b) best solution estimation without 551 

managing the local minimums. In addition, RBF-ANN works as a local network in contrast 552 

to the feed-forward networks which are global mapping networks. Also, RBF-ANN employs 553 

one processing units set, and every unit is most accessible to a local area of the input region. 554 
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Due to this, RBFNs are employed more recently as a substitute NN model in function 555 

estimation applications and prediction of time series (Sheta and De Jong, 2001; Yu et al., 556 

2008). Thus, the following section describes the attempt to get familiar with RBF-ANN 557 

suitability to be used as a model for predicting the parameters of water quality. 558 

 559 

Figure 6.  560 

 561 

7.4 SENSITIVITY ANALYSIS 562 

To assess the input variables, impact on the model, 3 assessment methods were used. 563 

First method was based on dividing the NN connection weights so as to establish the relative 564 

significance of every input variable in the network (Stern and Garson, 1999).  In this 565 

research, the recommended network comprises 12 environmental variables. Presuming the 566 

connection weights from the input nodes to the hidden nodes exhibit the relative predictive 567 

significance of the independent parameter, the significance of every input parameter can be 568 

articulated as follows: 569 

 570 
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 571 

Where Ij represents the relative significance of jth input variable on the output variable, 572 

Ni and Nh denote the quantities of input and hidden neurons, correspondingly, and W 573 

represents the connection weight. Also, the superscripts ‘i’, ‘h’ and ‘o’ signify the input, 574 

hidden and output levels, correspondingly, while the subscripts ‘k’, ‘m’ and ‘n’ signify the 575 
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input, hidden and output neurons, correspondingly. The first method of evaluation was to 576 

assess the relative significance of every input variable as calculated by Eq. (11) and 577 

illustrated in Figure 7. The relative significance demonstrates the importance of a variable in 578 

comparison to the other variables belonging to the model. Even though the network did not 579 

essentially signify physical sense using weights, it indicates that all the variables had intense 580 

effects on the estimation of all output variables, in which the estimator contribution varied 581 

from 5 to 14%.  Apparently, the most useful inputs were considered to be those that involved 582 

oxygen containing nitrate (NO3) and phosphate (PO4). Conversely, pH and Temp were 583 

discovered to be the least useful parameters. Additionally, MG proved to be providing the 584 

greatest contribution for the recommended model for AN. For pH, it was apparent that the 585 

most useful input was Temp. 586 

 587 

Figure 7. Relative importance of each input parameter. 588 

 589 

7.5 WATER QUALITY PREDICTION MODEL OF ANFIS 590 

As a matter of fact, among the difficulties in ANFIS-based modelling is establishing its 591 

variables for optimal learning (i.e. the membership function number and step size’s initial 592 

value) before training, in a way that the optimal training is achieved. Two techniques have 593 

been proposed by several researchers for establishing these variables in ANFIS: optimisation 594 

techniques (Hassanain et al., 2004) and the trial-and-error approach (Kim et al., 2002). While 595 

determining the variables for optimal learning could be ensured by the optimisation 596 

algorithms (i.e. derivative based or derivative free optimisation), this alternative has a 597 

downside of being computationally costly. Conversely, the trial-and-error technique has been 598 

confirmed to be effective in case the target root mean square error can be realised. This 599 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFY-4NXHCC9-4&_user=6470374&_coverDate=12%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1561074319&_rerunOrigin=google&_acct=C000012458&_version=1&_urlVersion=0&_userid=6470374&md5=e2739efde0441696c739eccea37142d4&searchtype=a#fd10
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFY-4NXHCC9-4&_user=6470374&_coverDate=12%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1561074319&_rerunOrigin=google&_acct=C000012458&_version=1&_urlVersion=0&_userid=6470374&md5=e2739efde0441696c739eccea37142d4&searchtype=a#tbl4
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technique is also advantageous as it yields a knowledge rule-base having a lower possibility 600 

of surpassing the data set of training in comparison to the optimisation technique. Thus, this 601 

research did not include the optimisation technique and established the variables for optimal 602 

learning of ANFIS through the trial-and-error technique. 603 

For every parameter related to the water quality, this study employed the architectures 604 

proposed in the preceding section, in which 12 inputs were utilised to estimate the WQIP. It 605 

is noteworthy that there is no systematic technique to establish the optimal quantity of MFs. 606 

The optimal quantity of MFs is generally established inductively and validated empirically. 607 

Thus, the quantity of MFs was selected using the trial-and-error method. Meanwhile, it is to 608 

be observed that this study had tested 4 kinds of membership functions: (a) triangular, (b) 609 

gaussian, (c) trapezoidal, and (d) bell-shaped, to compose the fuzzy numbers. Following 610 

several trials, the outcome revealed a distributed membership function having bell-shaped 611 

nature in comparison to others which had acquired the minimal relative error. Table 6 612 

demonstrates the kinds and quantity of MFs that were implemented in this study to develop 613 

the modules. 614 

 615 

Table 6.  616 

 617 

For demonstrating the performance of the suggested ANFIS model, an evaluation of 618 

predicted against observed parameters of water quality during training, validation and 619 

experimentation phases is displayed in the Figure 8. It is apparent that the suggested ANFIS 620 

model procedure provided the estimated variables that mimicked the dynamics (pattern) in 621 

the noted values besides those boundary values measured during this time. 622 

Figure 8. 623 

 624 
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 625 

 626 

7.6 WATER QUALITY PREDICTION MODEL OF WDT-ANFIS 627 

The above findings were obtained with the general assumption that the mined data must 628 

be precise and reliable. Nevertheless, the data acquired from the study, test, and simulation 629 

procedures may be corrupted by noise because of objective and/or subjective errors (Li and 630 

Shue, 2004). For instance, the errors arising in the experiment may be caused by measuring, 631 

recording, reading, or external scenarios; the errors from simulation might cover 632 

uncertainties of the model and parameters, as well as computational errors. As these noisy 633 

signals possibly distort the data mining outcomes, it is necessary to eliminate them (i.e. signal 634 

de-noising process) before the use of any initial data. Thus, an augmented WDT-ANFIS 635 

based on historical information for WQPP will be presented. 636 

Training and cross-validation processes of the model of WDT-ANFIS were carried out 637 

to reduce the Root Mean Square Error among the output as well as predicted responses. The 638 

WDT-ANFIS model outperformed the ANFIS model and provided improvement in 639 

estimation accuracy of all the variables, while the ANFIS model performed inefficiently. As 640 

the noise intensity increased, it was obvious that WQP possibly had more accurate estimation 641 

values due to de-noising of data. This suggests the WDT superiority in data cleaning. Despite 642 

the occurrence of errors during stages of training, validation and experimentation, which 643 

were regarded as considerably high in comparison to the training and cross-validation stages, 644 

it had obtained a high precision for all variables. The findings displayed in Figure 9 645 

demonstrate that the WDT-ANFIS model could be regarded as a suitable technique for 646 

modelling for estimation like WQP. 647 

 648 

Figure 9.  649 
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 650 

7.7 COMPARATIVE ANALYSIS 651 

The models introduced in prior discussion were all compared for the purpose of 652 

providing precise predictions for each water-quality parameter at Johor River. Similar 653 

findings were achieved in determining models for predicting suspended solids concentrations 654 

(SS), wherein WDT-ANFIS forecast SS with comparatively less accuracy, in which errors 655 

for most records were below 10%. Peak SS values were more closely approximated using 656 

WDT-ANFIS in comparison to that attained using other techniques, as depicted in Figure 10. 657 

The numbers of inaccurate SS forecasts decreased meaningfully using WDT-ANFIS. The 658 

use of physics-based distributed processing in complex computer software is frequently 659 

problematic, owing to the usage of idealised sedimentation components or the requirement of 660 

large volumes of detailed temporal and spatial data on the environment which is not always 661 

available (Cigizoglu, 2004). It should be noted that AI approaches to determining 662 

suspended-sediment data estimations remain sparse in the relevant literature (Abrahart and 663 

White, 2001).  664 

The success attained in modelling dynamic systems implies that this strategy may well 665 

provide an efficient and productive means for simulating complex suspended-sediment 666 

processes in rivers, under conditions where precise knowledge of internal sub-processes is 667 

not necessary. Each proposed model in this study was constructed on the assumption that 668 

land cover/use would remain unchanged during this research. However, land cover/use 669 

remains an important factor in the production and transport of sediments, along with other 670 

factors. More precise predictions of suspended sediments may be attained by including 671 

variables that represent land cover/use status into the scheme. We are planning such 672 

analytical studies soon enough. In conclusion, this research establishes WDT as an 673 

appropriate method, along with classical ANFIS, for modelling suspended sediments in river 674 
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environments. It is therefore worth considering the use of WDT-ANFIS approaches in such 675 

analysis, given the findings of studies regarding the physics embedded in ANFIS structures. 676 

 677 

Figure 10.  678 

 679 

With regards to pH, Figure 11 depicts comparisons between ANFIS and other models’ 680 

performances, based on the test data set. In the figure, it is clear that ANFIS performance 681 

exceeds that of the two ANN methods. Furthermore, the effort reveals the challenges in 682 

devising reliable schemes based on MLP-ANN RBF-ANN models, as a result of the high 683 

variances as well as the inherent non-linear associations among the water-quality parameters, 684 

as a result of the stochastic quality and chemical-based process. Furthermore, as depicted in 685 

Figure 10, the findings show that WDT-ANFIS-based modules outperform ANFIS and also 686 

have the ability to improve predictive accuracy for pH, albeit for MAE with comparatively 687 

lesser accuracy, whereby errors for most records were below 7%. Otherwise, inefficient 688 

executions were observed based on the ANFIS module, wherein most errors were above 689 

15%. Clearly, given increases in noise intensities, WQP offers more precise predictions from 690 

data de-noised with WDT than data without such de-noising. This suggests the advantage of 691 

using WDT to clean the data. 692 

It is fact that the training process for big data using any of AI models is both time- 693 

consuming and computation- and memory-intensive especially when several number of 694 

model’ inputs variables is used. The computer specification that have been used to run 695 

models are Intel Processor Core i7 (12M Cache, up to 4.60 GHz) and Ram 16 Gb. It is fact 696 

that in our study the data used is not big data to be considered as problem to the 697 

computational memory. However, due to the fact that the number of the model’ input 698 
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variables is relatively big (twelve or thirteen based on the structure of scenario I and scenario 699 

II, respectively), the training process is slightly time-consuming to achieve the performance 700 

goal. Table 7 summarize the training time for each models in seconds where it is noticeable 701 

that the ANFIS and WDT-ANFIS models consuming more time than ANN models (MLP 702 

and RBF) but it is still minimal.  703 

Figure 11. 704 

Table 7 705 

 706 

7.8 SCENARIOS 707 

The comparatively low correlation among forecast and observed values during test 708 

phases was perhaps a result of the non-homogenous nature of water-quality parameters. 709 

Moreover, Ying et al. (Zhao et al., 2007) demonstrated that the selection of influential factors 710 

(namely, input parameters) has a critical role as these factors greatly affect forecasts. Clearly, 711 

the low correlations in this research can be attributed to the realisation that its input 712 

parameters had not included every relevant parameter. Furthermore, pollution levels at 713 

downstream stations were associated with discharge from upstream stations. To overcome 714 

this difficulty, the researchers applied another approach (i.e. Scenario 2), such that higher 715 

levels of accuracy could be attained. This strategy is associated with the prediction of each 716 

water-quality parameter, given the actual values measured at upstream stations as model 717 

inputs, as described by Eq. (12). For a most appropriate analysis, the researchers 718 

implemented an accuracy improvement (AI) index for the correlational coefficient statistical 719 

index, in order to determine the significance of Scenario 2 as against Scenario 1, described as 720 

follows: 721 

 722 
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 723 

Wherein CCScen2 denotes the coefficient of correlation for Scenario 2, whereas 724 

CCScen1 denotes a similar statistical index for Scenario 1. From Table 8, it is clear that 725 

Scenario 2 is more satisfactory than Scenario 1, with meaningful improvements observed in 726 

every station, which ranged from 0.5% to 5%. Predictive accuracy was meaningfully 727 

enhanced after introducing Scenario 2 for every station. As in the case for pH, Scenario 2 728 

showed more satisfactory performance than Scenario 2, with meaningful improvements 729 

observed in AI, which ranged from 3% in Station 2 to 5% in Station 3.  730 

Conversely, less improvement was gained with AN, wherein AI was equal to 0.5 in 731 

Stations 1 and 3. Even though it is clear that Scenario 2 was less efficient with AN, accuracy 732 

does increase by 2% once it is applied to Station 3. Furthermore, the findings indicate that 733 

Scenario 2 not only showed improved accuracy for certain parameters, but this particular 734 

model had the ability to capture temporal patterns in water-quality parameters. This enabled 735 

the scheme to apply meaningful improvements to station scenarios. 736 

 737 

Table 8.  738 

 739 

7.9 MODEL VALIDATION 740 

Models must be verified whenever resulting outputs and observed values are near 741 

enough to satisfy all validation criteria (Palani et al., 2008). To investigate the effectiveness 742 

of this proposed scheme, validation of the enhanced wavelet de-noising method using the 743 

Neuro-Fuzzy Inference System (WDT-ANFIS), in accordance with field measurements 744 

collected from 2009 to 2010, is therefore applied. The scatter plots among the forecast and 745 
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observed values for all 5 selected parameters for water quality are depicted in Figure 12. 746 

Clearly, the majority of forecast water-quality parameters had closely approximated actual 747 

observations. As well, R
2
 must be as near 1 as possible, with values that exceed 0.9 implying 748 

very satisfactory model execution, values from 0.6 to 0.9 implying fairly good execution, and 749 

values below 0.5 indicating unsatisfactory execution. Based on these criteria, the 750 

WDT-ANFIS model’s ability to predict both pH and SS concentrations is very satisfactory 751 

(in that R
2
 values are at least 0.9) for every station but for AN, wherein models showed 752 

merely decent performances (in that R
2
 values were below 0.9) for Station 3. Based on these 753 

findings, WDT-ANFIS can be said to demonstrate good predictive performance. For 754 

predictions of water-quality parameters using AI, other researchers have advanced network 755 

modelling strategies that apply differing types of AI as well as input datasets. Moatar et al. 756 

(Moatar et al., 1999) applied solar radiation and discharge levels in predictions of pH, with an 757 

R
2
 value equal to 0.86. For predictions of AN, WDT-ANFIS predictive performance in this 758 

research managed better in comparison (R
2
 ranging from 0.88 to 0.96) with ANN predictive 759 

performance. Cigizoglu (Cigizoglu, 2004) utilised ANN models that were trained and then 760 

tested with daily flows, for predicting SS concentrations a day ahead, with R
2
 values ranging 761 

from 0.75 to 0.81 (with upstream flows as inputs). A comparable prediction for SS was 762 

similarly claimed by Zhu et al. (Zhao et al., 2007). For predictions of SS, the WDT-ANFIS 763 

predictive performance in this research managed better in comparison (R
2
 ranging from 0.91 764 

to 0.95) to previous studies. The proposed scheme demonstrated efficiency in its predictions 765 

of the concentrations of water-quality parameters for the Johor River, which corresponds to 766 

the findings of other research. The findings also show that the proposed scheme is a useful 767 

alternative that offers a comparatively fast algorithm, featuring decent theoretical properties 768 

for predicting water-quality parameters, which could be extended to predictions of other 769 

water-quality parameters. 770 
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 771 

Figure 12. 772 

 773 

8. CONCLUSION  774 

The study proposes the use of enhanced Wavelet De-noising Techniques using 775 

Neuro-Fuzzy Inference Systems (WDT-ANFIS) according to historical water-quality 776 

parametric data. The effectiveness of each model was examined in order to predict key 777 

parameters that could be affected as a result of urbanisation surrounding rivers. This area of 778 

research accords with the available secondary data for each water-quality parameter of Johor 779 

River. The parameters comprise ammoniacal nitrogen (AN), suspended solid (SS), and pH. 780 

Dual scenarios were presented: the first (Scenario 1) was designed to confirm prediction 781 

models for water-quality parameters at each stations according to 12 input parameters, 782 

whereas the second (Scenario 2) is designed to confirm prediction models for water-quality 783 

parameters according to 12 input parameters, as well as the parametric values from prior 784 

upstream stations. In evaluating the impact of input parameters on this scheme, validation of 785 

enhanced Wavelet De-noising Techniques using Neuro-Fuzzy Inference Systems 786 

(WDT-ANFIS), in accordance with measurements taken from 2009 to 2010, was thereby 787 

employed. The findings showed the challenge of determining reliable schemes based on 788 

MLP-ANN models, from the high variances as well as inherent non-linear associations 789 

among the water-quality parameters that emerge as a result of the stochastic quality and 790 

chemical-based process. Furthermore, MLP-ANN was subject to slow convergence during 791 

training, as a result of the requirement for comparatively large numbers of hidden neurons. In 792 

the example of RBF-ANN, its predictive capability for water-quality parameters in training 793 

phases was decent, but showed less precision during validation and test phases. The findings 794 
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indicated that ANFIS determined solutions faster than alternative MLP-ANN and 795 

RBF-ANN methods and is the most precise and reliable method for processing large volumes 796 

of non-linear as well as non-parametric data. Of note is the performance of the WDT-ANFIS 797 

scheme, which exceeded that of ANFIS and improved predictive accuracy for every quality 798 

parameter, in that this model achieves higher prediction accuracy overall. Generally, 799 

WDT-ANFIS can therefore be seen as having the best network architecture, since it 800 

outperformed ANFIS. The findings indicate that WDT-ANFIS not only offered a means to 801 

improve accuracy but it also features the ability to capture temporal patterns in water 802 

quality. This enables it to provide meaningful improvements in the generation of forecasts. 803 

Consequently, the ANFIS model appears more capable at capturing the more complex and 804 

dynamic processes that are hidden within the data for WQP, following enhancement with 805 

WDT. In comparisons between Scenarios 1 and 2, Scenario 2 achieved higher accuracy in 806 

terms of simulating the patterns and magnitudes for every water-quality parameter, at every 807 

station. The suggested WDT-ANFIS model in Scenario 2 gave predictions for water-quality 808 

parameters that ably mimicked patterns (dynamics) in recorded values, aside from extreme 809 

outliers observed within this period. Furthermore, validation of WDT-ANFIS, according to 810 

measurements collected from 2009 to 2010, demonstrated that WDT-ANFIS performed well 811 

in predicting both pH and SS concentrations (with R
2
 values of at least 0.9) for every station 812 

but for AN, wherein models still showed decent performances (with R
2
 values lower than 813 

0.9) for Station 3. Since forecasts of water quality are readily influenced by external 814 

environments, the acquired model would at times generate findings that deviated much from 815 

the observed values. In general, the methodology of the proposed models development for 816 

water quality has proved its effectiveness. However, it should be highlighted that there are no 817 

structured methods today to identify which network structure that can best in predicting 818 

water quality parameters. Moreover, the optimal selection of the hyper parameters still 819 
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requires to be achieved by augmenting the AI model with other advanced meta-heuristic 820 

optimization algorithms. Overall, this study integrates several analytical and modelling 821 

techniques that could become useful to institutions that are committed to river basin 822 

management within Malaysia. Furthermore, the approach utilised in this research could lay 823 

ground for better decision-making that assists policy makers in maintaining and improving 824 

river basin management. 825 
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Figures 945 
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 947 

Figure 1. A map showing the geographical setting of the survey area with four field 948 

monitoring stations on the main stream 949 
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 951 

Figure 2. A multi-layer perceptron neural network architecture. 952 
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 959 

 960 

Figure 3. (a) A two-input first-order Sugeno fuzzy model with two rules; (b) An 961 

equivalent ANFIS structure. 962 
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 970 

Figure 4. A schematic representation of the pyramid structure representing the 971 

WMRA. 972 
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 974 

 975 

 976 

Figure 5. Schematic representation of the proposed networks for Scenario 2. 977 
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Figure 6. Performance of the MLP-ANN model: A comparison between the 981 

predicted and observed values. 982 

 983 



  

42 

 

 984 

 985 

 986 

 987 

. 988 

Figure 7. Relative importance of each input parameter. 989 
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Figure 8. Performance of the ANFIS model: A comparison between the predicted 1001 

and observed values. 1002 
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Figure 9. Performance of the WDT-ANFIS model: A comparison between the 1006 

predicted and observed values. 1007 
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Figure 10. Comparison between the predicted SS versus the observed SS utilizing 1013 

different techniques. 1014 
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Figure 11. Comparison between the predicted pH versus the observed pH utilising 1019 

different techniques. 1020 
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 1029 

Figure 12. WDT-ANFIS model verification for each water quality parameter at 1030 

each station. 1031 
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Tables 1047 

 1048 

Table 1. Input parameters used in previous studies for the ANN model. 1049 

Author(s) and year Input variable Location(s) 

   

Rabia (Koklu, 2006) BOD, Temp, Water 

discharge, NO2-N, 

NO3-N 

N/A 

Kuo et al. (Kuo et al., 2007) 

 

pH, Chl-a, NH4N, 

No3N, temp, month 

Te-Chi Reservoir, Taiwan 

Ying et al. (Zhao et al., 2007) Turbidity, Temp, pH, 

Hardness, Alkalinity, 

Chloride, NH4-N, 

NO2-N 

Yuqiao reservoir, China 

Palani et al. (Palani et al., 2008) DO, Chl-a, temp Singapore coastal, Singapore 

Zaqoot et al. (Zaqoot et al., 2009) Conductivity, 

Turbidity, Temp, PH, 

Wind speed 

Mediterranean Sea along Gaza, 

Palestine 

Singh et al. (Singh et al., 2009) 

 

pH, TS, T-AlK, 

T-Hard, CL, PO4, K, 

Na, NH4N, No3N, 

COD   

Gomti, India 

 1050 
 1051 

 1052 

Table 2. Basic statistical analysis for input parameters. 1053 

 Unit Mean Minimum Maximum SD CV 

SN01 

TEMP o C 27.03 24.08 30.33 0.83 3.08 

COND μS 55.42 32.00 92.00 13.82 24.93 

SAL ppt 0.64 0.01 2.93 0.36 56.00 

TUR NTU 0.03 0.01 0.20 0.05 152.38 

NO3 mg/l 163.50 15.50 775.00 130.61 79.88 

CL mg/l 5.27 1.00 18.00 2.49 47.16 

PO4 mg/l 0.04 0.01 1.08 0.12 283.32 

FE mg/l 4.61 1.00 10.30 1.74 37.63 

K mg/l 0.87 0.10 2.40 0.44 50.59 

MG mg/l 3.13 1.22 11.54 1.42 45.18 

NA mg/l 0.87 0.08 2.32 0.44 51.20 

E-COLI cfu/100ml 3844.98 40.00 48000.00 6377.64 165.87 

SN02 

TEMP o C 27.16 24.08 29.82 1.11 4.10 

COND μS 62.64 28.00 300.00 38.78 61.91 

SAL ppt 0.02 0.01 0.07 0.01 54.16 
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TUR NTU 127.79 30.70 370.00 77.64 60.76 

NO3 mg/l 0.73 0.12 5.55 0.69 93.53 

CL mg/l 5.66 1.00 24.00 3.28 57.89 

PO4 mg/l 0.07 0.01 0.66 0.12 159.91 

FE mg/l 0.82 0.09 2.02 0.48 58.85 

K mg/l 4.63 0.90 7.80 1.56 33.76 

MG mg/l 0.80 0.10 1.40 0.33 40.69 

NA mg/l 3.27 1.40 26.70 3.33 101.77 

E-COLI cfu/100ml 2564.82 20.00 22000.00 3802.25 148.25 

SN03 

TEMP o C 26.14 23 31.93 1.38 5.07 

COND μS 54.16 26.07 373.00 45.62 84.24 

SAL ppt 9.56 0.01 61.00 20.43 213.64 

TUR NTU 113.33 0.01 820.00 139.73 123.29 

NO3 mg/l 11.55 0.00 133.00 27.26 236.03 

CL mg/l 5.43 0.06 20.00 2.78 51.13 

PO4 mg/l 0.09 0.00 1.02 0.22 233.34 

FE mg/l 1.21 0.15 5.60 1.35 111.53 

K mg/l 3.87 0.40 7.00 1.66 42.84 

MG mg/l 1.03 0.20 5.20 0.82 79.40 

NA mg/l 3.23 1.00 20.80 2.69 83.17 

E-COLI cfu/100ml 3498.07 0.00 86000.00 11402.45 325.96 

SN04 

TEMP o C 27.43 24.58 29.78 1.10 4.02 

COND μS 64.54 37.80 186.00 28.93 44.82 

SAL ppt 0.02 0.01 0.07 0.01 64.09 

TUR NTU 104.31 2.00 343.00 77.09 73.90 

NO3 mg/l 0.66 0.06 3.22 0.40 61.13 

CL mg/l 7.32 2.00 28.00 5.60 76.50 

PO4 mg/l 0.08 0.01 0.99 0.21 249.18 

FE mg/l 0.68 0.03 2.02 0.48 71.03 

K mg/l 4.03 0.40 6.40 1.22 30.30 

MG mg/l 0.94 0.20 2.90 0.54 57.05 

NA mg/l 4.15 1.60 24.00 3.79 91.28 

E-COLI cfu/100ml 4950.04 0.00 41000.00 7419.36 149.88 
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 1061 

Table 3. Basic statistical analysis for three water quality parameters. 1062 

 Unit Mean Minimum Maximum SD CV 

SN01 

PH - 6.39 5.49 7.83 0.45 7.07 

SS mg/l 91.01 11.00 372.00 56.26 61.81 

NH3-NL mg/l 0.14 0.01 1.07 0.18 129.30 

SN02       

PH - 6.22 5.43 7.28 0.36 5.77 

SS mg/l 73.44 7.00 274.00 50.16 68.30 

NH3-NL mg/l 0.10 0.01 0.45 0.11 103.81 

SN03 

PH - 6.36 5.67 8.41 0.48 7.59 

SS mg/l 72.61 1.00 574.00 83.44 114.91 

NH3-NL mg/l 0.15 0.01 2.46 0.38 254.94 

SN04 

PH - 6.29 5.59 8.09 0.41 6.56 

SS mg/l 47.98 1.00 146.00 32.05 66.80 

NH3-NL mg/l 0.15 0.01 0.83 0.20 131.79 

 1063 

 1064 

 1065 

 1066 

Table 4. Correlation coefficient between WQP and the input parameters. 1067 

 PH SS NH3-NL PH SS NH3-NL PH SS NH3-NL PH SS NH3-NL 

 
SN01 SN02 SN03 SN04 

TEMP 0.316 -0.171 -0.137 -0.425 0.361 0.014 -0.022 0.090 0.083 -0.295 0.154 -0.076 

COND -0.029 0.301 0.208 -0.113 0.061 0.144 0.216 0.002 -0.069 -0.290 0.083 0.094 

NO3 0.228 0.131 0.383 -0.364 -0.101 0.067 -0.183 -0.279 0.201 -0.264 -0.196 0.054 

SAL 0.202 -0.043 0.393 0.835 -0.118 -0.115 0.844 -0.071 -0.028 0.757 -0.147 -0.073 

TURB -0.167 0.766 0.137 0.071 0.061 0.000 -0.079 -0.200 0.191 -0.008 0.131 0.221 

Cl -0.114 0.354 0.411 -0.063 0.287 0.084 0.146 -0.076 -0.316 -0.302 0.067 0.245 

PO4 0.181 -0.148 0.065 0.025 0.121 -0.083 0.077 -0.114 0.454 0.088 0.052 0.569 

K -0.306 0.184 0.253 -0.005 0.014 -0.108 -0.012 0.039 0.018 0.325 0.013 -0.248 

MG 0.038 0.191 0.376 0.247 -0.023 0.152 0.115 -0.104 -0.192 0.020 -0.074 0.142 

NA 0.127 0.088 0.400 0.106 0.283 0.077 -0.027 0.104 0.269 -0.268 0.176 0.025 

FE 0.023 -0.080 -0.038 -0.165 0.143 -0.001 0.152 -0.045 0.017 -0.345 -0.024 0.106 

E-coli -0.085 0.315 0.007 0.142 0.024 0.014 0.223 -0.095 0.036 -0.042 0.143 0.367 
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 1072 

Table 5. ANN architecture for each parameter. 1073 

Parameter No. of neuron RMSE Maximum error (%) TFHL TFOL TA 

pH 18 0.15 3.22 TS PL LMA 

SS 17 0.30 3.46 LS PL LMA 

AN 17 0.26 3.12 TS PL LMA 

TFHL: Transfer function between input layer and hidden layer; TFOL: Transfer function between hidden layer 1074 
and output layer; TA: Training algorithm; LS: Log sigmoid; TS: Tan sigmoid; PL: Pure-line; LMA: 1075 
Levenberg–Marquardt algorithm. 1076 

 1077 

Table 6. The number and types of MFs for each module. 1078 

Parameter 
AFNIS Module 

MFs (Type) MFs (Number) 

PH gbellmf 3   4   

SS gbellmf 4 

NH3-NL gbellmf 3   4   4 

 1079 

Table 7. The running time (seconds) of training process for each model 1080 

Model MLP RBF ANFIS WDT-ANFIS 

pH 51 44 67 78 

SS 53 46 71 81 

AN 49 43 64 75 

 1081 

Table 8. A summary of correlation coefficients for Scenario 1, Scenario 2 and the AI %. 1082 

Model SNO2 SNO3 SNO4 AI (%) 

 Scen1 Scen2 Scen1 Scen2 Scen1 Scen2 SNO2 SNO3 SNO4 

pH 0.95 0.98 0.94 0.98 0.93 0.98 3.1 4.1 5.1 

SS 0.96 0.97 0.97 0.98 0.97 0.98 1.1 1 1 

AN 0.96 0.97 0.96 0.97 0.95 0.97 0.5 0.5 2 
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