98 research outputs found

    Wavelet Based Semi-blind Channel Estimation For Multiband OFDM

    Full text link
    This paper introduces an expectation-maximization (EM) algorithm within a wavelet domain Bayesian framework for semi-blind channel estimation of multiband OFDM based UWB communications. A prior distribution is chosen for the wavelet coefficients of the unknown channel impulse response in order to model a sparseness property of the wavelet representation. This prior yields, in maximum a posteriori estimation, a thresholding rule within the EM algorithm. We particularly focus on reducing the number of estimated parameters by iteratively discarding ``unsignificant'' wavelet coefficients from the estimation process. Simulation results using UWB channels issued from both models and measurements show that under sparsity conditions, the proposed algorithm outperforms pilot based channel estimation in terms of mean square error and bit error rate and enhances the estimation accuracy with less computational complexity than traditional semi-blind methods

    Time-Scale Domain Characterization of Time-Varying Ultrawideband Infostation Channel

    Get PDF
    The time-scale domain geometrical-based method for the characterization of the time varying ultrawideband (UWB) channel typical of an infostation channel is presented. Compared to methods that use Doppler shift as a measure of time-variation in the channel this model provides a more reliable measure of frequency dispersion caused by terminal mobility in the UWB infostation channel. Particularly, it offers carrier frequency independent method of computing wideband channel responses and parameters which are important for ultrawideband systems. Results show that the frequency dispersion of the channel depends on the frequency and not on the choice of bandwidth. And time dispersion depends on bandwidth and not on the frequency. It is also shown that for time-varying UWB, frame length defined over the coherence time obtained with reference to the carrier frequency results in an error margin which can be reduced by using the coherence time defined with respect to the maximum frequency in a given frequency band. And the estimation of the frequency offset using the time-scale domain (wideband) model presented here (especially in the case of multiband UWB frequency synchronization) is more accurate than using frequency offset estimate obtained from narrowband models

    Study: The Performance FFT and Wavelet Packet of OFDM Systems from through Demonstrated Numerical Examples

    Get PDF
    A major goal of the next-generation wireless communication systems is the development of a reliable highspeed wireless communication system that supports high user mobility. Multi-Carrier Modulation (MCM) technique is an attractive approach for high-speed digital radio communication systems in order to achieve a high spectral efficiency and to combat the frequency selectivity of the channel. Orthogonal frequency division multiplexing (OFDM) is a kind of MCM techniques. As proven by the success of OFDM, multicarrier modulation has been recognized as an efficient solution for wireless communications. Waveform bases other than sine functions could similarly be used for multicarrier systems in order to provide an alternative to OFDM. Wavelet Packet Modulation (WPM) was proposed as one of the multicarrier transmission methods like OFDM. Since it is a multicarrier transmission method. In this paper, we study the performance of FFT-OFDM and wavelet Packet (WP)- OFDM from through demonstrated numerical examples, and evaluation of FFT-OFDM and DWPT-OFDM in AWGN channel , Flat fading channel and Selective Fading Channel

    Multiple antenna system and channel estimation for multiband orthogonal frequency division multiplexing in ultra-wideband systems

    Get PDF
    Multiband Orthogonal Frequency Division Multiplexing (OFDM) has been deployed for practical implementation of low cost and low power Ultra-Wideband (UWB) devices due to its ability to mitigate the narrowband interference and multipath fading effects. In order to achieve high data rates, the deployment of multiple antenna techniques into a UWB system has gained considerable research interest. In a UWB system, both the spatial and multipath diversities exist in UWB system can be exploited via the use of Multiple-Input Multiple-Output (MIMO) antenna system and Space-Time Codes (STC) by leveraging Alamouti scheme. This work shows that MIMO system outperforms Alamouti technique in providing a power combining gain in the receiver. Given that channel estimation for timefrequency multiplexed such as a multiband OFDM system is unexplored largely, this thesis also addresses this issue. In literature, most of the conventional Channel Frequency Response (CFR) estimations require either pre-storing a large matrix or performing real-time matrix inversion. In general, these requirements are prohibitive for practical implementation of UWB devices. In this thesis, the implementation issues of STC-based on Alamouti scheme are investigated for the multiband OFDM system. The research quantifies and analyses existing channel estimation in frequency domain such as Least-Square (LS) and Minimum Mean Square Error (MMSE) techniques. Consequently, low-complexity channel estimation based on Singular Value Decomposition (SVD) technique is developed for multiband OFDM system evaluates under modified Saleh-Valuenzela (S-V) channel modelling represents the realistic wireless indoor environment. This work implies that the SVD technique gives an improvement of 3-5 dB compared to LS technique. Even though SVD performs similarly to MMSE, it managed to reduce significantly the complexity by or to 57.8%

    Interference mitigation and awareness for improved reliability

    Get PDF
    Wireless systems are commonly affected by interference from various sources. For example, a number of users that operate in the same wireless network can result in multiple-access interference (MAI). In addition, for ultrawideband (UWB) systems, which operate at very low power spectral densities, strong narrowband interference (NBI) can have significant effects on the communications reliability. Therefore, interference mitigation and awareness are crucial in order to realize reliable communications systems. In this chapter, pulse-based UWB systems are considered, and the mitigation of MAI is investigated first. Then, NBI avoidance and cancelation are studied for UWB systems. Finally, interference awareness is discussed for short-rate communications, next-generation wireless networks, and cognitive radios.Mitigation of multiple-access interference (MAI)In an impulse radio ultrawideband (IR-UWB) communications system, pulses with very short durations, commonly less than one nanosecond, are transmitted with a low-duty cycle, and information is carried by the positions or the polarities of pulses [1-5]. Each pulse resides in an interval called frame, and the positions of pulses within frames are determined according to time-hopping (TH) sequences specific to each user. The low-duty cycle structure together with TH sequences provide a multiple-access capability for IR-UWB systems [6].Although IR-UWB systems can theoretically accommodate a large number of users in a multiple-access environment [2, 4], advanced signal processing techniques are necessary in practice in order to mitigate the effects of interfering users on the detection of information symbols efficiently [6]. © Cambridge University Press 2011

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Design of Complex Wavelet Pulses Enabling PSK Modulation for UWB Impulse Radio Communications

    Full text link
    In this paper, we present the design of complex Ultra-wideband (UWB) pulses which enables the phase-shift keying (PSK) modulation for UWB Impulse Radio (IR) Communications. Two classes of complex UWB pulses are proposed based on complex Gaussian wavelets and complex rational orthogonal wavelets respectively. Formulas in closed form are derived for a full control of the time and frequency properties of the designed UWB pulses. The system characterisation of the complex UWB pulse-based PSK modulation and demodulation is presented.A novel PSK demodulator based on complex wavelet signalling is adopted for its unique robustness against timing jitter. Besides the inherent advantages of PSK modulation which lead to high power efficiency and high data rate, the proposed PSK scheme in the UWB communication context provides a more flexible way to construct new UWB modulation schemes by combining PSK with other basic modulation options such as the pulse amplitude modulation (PAM) and the pulse position modulation (PPM). In addition, based on the derived formulas, the proposed UWB pulse design method also provides a solution to the construction of multiband UWB systems

    Performance Enhancement of Ultra Wideband WPAN using Narrowband Interference Mitigation Techniques

    Get PDF
    A new promising technique adopted by 4G community is ultra-wideband technology, which offers a solution for high bandwidth, high data rate, low cost, low power consumption, position location capability etc. A conventional type of UWB communication is impulse radio, where very short transient pulses are transmitted rather than a modulated carrier. Consequently, the spectrum is spread over several GHz, complying with the definition of UWB. Currently, the Rake receiver used for spread spectrum is considered a very promising candidate for UWB reception, due to its capability of collecting multipath components. Since UWB signals occupy such a large bandwidth, they operate as an overlay system with other existing narrowband (NB) radio systems overlapping with their bands. In order to ensure a robust communication link, the issue of coexistence and interference of UWB systems with current indoor wireless systems must be considered. Ultra Wideband technology with its application, advantages and disadvantages are discussed in detail. Design of UWB short pulse and a detail study IEEE 802.15.3a UWB channel models statistical characteristics have been analyzed through simulation. Simulation studies are performed and improved techniques are suggested for interference reduction in both Impulse Radio based UWB and Transmitted Reference type of UWB system. Modified TR-UWB receiver with UWB pulse design at transmitter end and notch filtering at receiver’s front end proved to be more efficient in single NBI, multiple NBI and WBI suppression. Extensive simulation studies to support the efficacy of the proposed schemes are carried out in the MATLAB. Bit error rate (BER) performance study for different data rates over different UWB channel models are also analyzed using proposed receiver models. Performance improvement of TR-UWB system is noticed using the proposed techniques
    corecore