thesis

Performance Enhancement of Ultra Wideband WPAN using Narrowband Interference Mitigation Techniques

Abstract

A new promising technique adopted by 4G community is ultra-wideband technology, which offers a solution for high bandwidth, high data rate, low cost, low power consumption, position location capability etc. A conventional type of UWB communication is impulse radio, where very short transient pulses are transmitted rather than a modulated carrier. Consequently, the spectrum is spread over several GHz, complying with the definition of UWB. Currently, the Rake receiver used for spread spectrum is considered a very promising candidate for UWB reception, due to its capability of collecting multipath components. Since UWB signals occupy such a large bandwidth, they operate as an overlay system with other existing narrowband (NB) radio systems overlapping with their bands. In order to ensure a robust communication link, the issue of coexistence and interference of UWB systems with current indoor wireless systems must be considered. Ultra Wideband technology with its application, advantages and disadvantages are discussed in detail. Design of UWB short pulse and a detail study IEEE 802.15.3a UWB channel models statistical characteristics have been analyzed through simulation. Simulation studies are performed and improved techniques are suggested for interference reduction in both Impulse Radio based UWB and Transmitted Reference type of UWB system. Modified TR-UWB receiver with UWB pulse design at transmitter end and notch filtering at receiver’s front end proved to be more efficient in single NBI, multiple NBI and WBI suppression. Extensive simulation studies to support the efficacy of the proposed schemes are carried out in the MATLAB. Bit error rate (BER) performance study for different data rates over different UWB channel models are also analyzed using proposed receiver models. Performance improvement of TR-UWB system is noticed using the proposed techniques

    Similar works