2,100 research outputs found

    Wavelet transforms and their applications to MHD and plasma turbulence: a review

    Full text link
    Wavelet analysis and compression tools are reviewed and different applications to study MHD and plasma turbulence are presented. We introduce the continuous and the orthogonal wavelet transform and detail several statistical diagnostics based on the wavelet coefficients. We then show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising. Finally some multiscale numerical simulation schemes using wavelets are described. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented.Comment: Journal of Plasma Physics, 201

    Wavelet-based density estimation for noise reduction in plasma simulations using particles

    Full text link
    For given computational resources, the accuracy of plasma simulations using particles is mainly held back by the noise due to limited statistical sampling in the reconstruction of the particle distribution function. A method based on wavelet analysis is proposed and tested to reduce this noise. The method, known as wavelet based density estimation (WBDE), was previously introduced in the statistical literature to estimate probability densities given a finite number of independent measurements. Its novel application to plasma simulations can be viewed as a natural extension of the finite size particles (FSP) approach, with the advantage of estimating more accurately distribution functions that have localized sharp features. The proposed method preserves the moments of the particle distribution function to a good level of accuracy, has no constraints on the dimensionality of the system, does not require an a priori selection of a global smoothing scale, and its able to adapt locally to the smoothness of the density based on the given discrete particle data. Most importantly, the computational cost of the denoising stage is of the same order as one time step of a FSP simulation. The method is compared with a recently proposed proper orthogonal decomposition based method, and it is tested with three particle data sets that involve different levels of collisionality and interaction with external and self-consistent fields

    Wavelet domain Bayesian denoising of string signal in the cosmic microwave background

    Get PDF
    An algorithm is proposed for denoising the signal induced by cosmic strings in the cosmic microwave background (CMB). A Bayesian approach is taken, based on modeling the string signal in the wavelet domain with generalized Gaussian distributions. Good performance of the algorithm is demonstrated by simulated experiments at arcminute resolution under noise conditions including primary and secondary CMB anisotropies, as well as instrumental noise.Comment: 16 pages, 11 figures. Version 2 matches version accepted for publication in MNRAS. Changes include substantial clarifications on our approach and a significant reduction of manuscript lengt

    Wavelets Applied to CMB Maps: a Multiresolution Analysis for Denoising

    Get PDF
    Analysis and denoising of Cosmic Microwave Background (CMB) maps are performed using wavelet multiresolution techniques. The method is tested on 12∘.8×12∘.812^{\circ}.8\times 12^{\circ}.8 maps with resolution resembling the experimental one expected for future high resolution space observations. Semianalytic formulae of the variance of wavelet coefficients are given for the Haar and Mexican Hat wavelet bases. Results are presented for the standard Cold Dark Matter (CDM) model. Denoising of simulated maps is carried out by removal of wavelet coefficients dominated by instrumental noise. CMB maps with a signal-to-noise, S/N∼1S/N \sim 1, are denoised with an error improvement factor between 3 and 5. Moreover we have also tested how well the CMB temperature power spectrum is recovered after denoising. We are able to reconstruct the CℓC_{\ell}'s up to l∼1500l\sim 1500 with errors always below 2020% in cases with S/N≥1S/N \ge 1.Comment: latex file 9 pages + 5 postscript figures + 1 gif figure (figure 6), to be published in MNRA

    Polarized wavelets and curvelets on the sphere

    Full text link
    The statistics of the temperature anisotropies in the primordial cosmic microwave background radiation field provide a wealth of information for cosmology and for estimating cosmological parameters. An even more acute inference should stem from the study of maps of the polarization state of the CMB radiation. Measuring the extremely weak CMB polarization signal requires very sensitive instruments. The full-sky maps of both temperature and polarization anisotropies of the CMB to be delivered by the upcoming Planck Surveyor satellite experiment are hence being awaited with excitement. Multiscale methods, such as isotropic wavelets, steerable wavelets, or curvelets, have been proposed in the past to analyze the CMB temperature map. In this paper, we contribute to enlarging the set of available transforms for polarized data on the sphere. We describe a set of new multiscale decompositions for polarized data on the sphere, including decimated and undecimated Q-U or E-B wavelet transforms and Q-U or E-B curvelets. The proposed transforms are invertible and so allow for applications in data restoration and denoising.Comment: Accepted. Full paper will figures available at http://jstarck.free.fr/aa08_pola.pd
    • …
    corecore