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On the Need for Bump Event Correction in Vibration Test Profiles
 Representing Road Excitations in Automobiles  *
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Abstract: This paper presents an approach to the synthesis of compressed vibration test profiles
representing much longer time histories obtained in road testing of ground vehicles. Vibration test
profiles are defined as those related directly to operational testing on specific road surfaces and
which summarise the input to the vehicle in the given conditions. The method extends classical
Fourier transform technique by means of bump event correction in the background Fourier signal
where the bump event term implies a high-amplitude transient event of the shock type. The
orthogonal wavelet decomposition was used as a specific filtering tool facilitating bump event
identification. Examples of seat guide vertical acceleration have been considered. Calculated
probability density functions suggest the ability of the bump correction method to improve the
statistical accuracy of the final vibration test profile with respect to the original road data. Test
profiles obtained by means of Fourier transform synthesis with subsequent reinsertion of bump
events from separated frequency bands were more accurate than those obtained by Fourier synthesis
alone. Further developments led to advanced bump reinsertion with synchronisation of events
occurring in different frequency bands at the same moment of time. Test profiles generated in this
way have provided better accuracy compared to the non-synchronised algorithm.
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NOTATION:

a dilation (scale parameter)

ai (i = 1, 2, …) wavelet coeff icient amplitude

ao dilation step

b translation (time parameter)

bo translation step

ck coeff icients of the non-recursive part of the IIR digital filter

dk coeff icients of the recursive part of the IIR digital filter

f frequency

i 1-
j, k, m, m1, n, n1 integer numbers

L number of time points in road data time history

t time

D t time step when converting signals to digital form

Wu/ wavelet transform

X (f) frequency domain signal

x (t) time domain signal

y (t) output signal from the IIR digital filter

yj discrete time point of the output signal

z (t) input signal to the IIR digital filter

zj discrete time point of the input signal

s r.m.s value of time domain signal

u/ wavelet function

u/ a,b dilated and translated wavelet function

* complex conjugate
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1.  INTRODUCTION

Vibration test signals are important tools for both automotive durability and automotive comfort
development programs. Such activities make extensive use of road measurements, numerical
simulations, and laboratory testing. Both numerical simulation and experimental testing require
reference input excitation signals which represent real operating conditions and which contain the
features necessary to evidence any problematic behaviour of the system under consideration.

Since several operating conditions are typically of interest, and since the complexity and cost
of the laboratory tests can be great, restrictions are usually placed on the allowable time duration of
the vibration test signals used. A particular scenario is the comfort testing of vehicle components
involving human subjects. Vibration test simulators are often used to test subjective reaction to the
vibration of seats, steering, or other vehicle components. Human short term memory can typically
hold ambient stimuli for durations of not more than 10-20 seconds [1]. Therefore, a direct time
waveform reproduction of road recordings is not appropriate and shorter test profiles are required
which should be representative of the principal vibrational features encountered by the vehicle in
much longer road measurements.

To properly describe vibration data acquired during vehicle operation, a random process
model is necessary in most cases. A traditional approach to the numerical or experimental
simulation of random data of variable length is to implement the power spectral density (PSD),
which is supposed to completely represent the vibration process under consideration. The
advantages of the PSD presentation are convincing because one has an immediate view of
frequency decomposition of the vibration.

Test methodologies based on PSD analysis rely on the fact that a time history for shaker
testing  or Monte Carlo numerical simulation  can be  reconstructed  from  the prescribed PSD by
the inverse Fourier transform. This is the basic procedure [2,3,4] used in random controllers for
shakers and similar test benches. The procedure permits the reproduction of any stationary random
excitation matching precisely the PSD of road data prescribed. The phase shifts between harmonics
of the Fourier series are chosen in a random manner as stochastic variables uniformly distributed in
the [0,2p]  interval. This makes the obtained signal random and provides an opportunity of
generating any number of different time history samples of arbitrary length with the same PSD.

Theory of random processes states that the time histories of the same random process are
always different (not repeatable) for each new sample. The process itself is not identified by means
of the time history but by means of specific characteristics like probability density functions,
moments, auto- and cross-correlation functions and, of course, the PSD. That is why, if the PSD is
matched, the synthetic signal obtained can be considered equivalent to the road excitation, even
though the initial road data record will never be repeated. This is commonly used as a justification
of the inverse PSD approach. The authors support this point of view only in the case if the vibration
under consideration is completely described by the PSD. This is not always the case and, in
response to this fact, some modifications of the inverse Fourier transform shaker simulation method
have been suggested [5,6,7,8].

The applicability of the PSD-based approach should always be checked in each particular
case because exceptions to the PSD rule might be quite impressive and surprisingly more frequent
than one would expect. The top plot in Fig. 1,a is a time history of vertical acceleration measured at
the rear mounting bolt of the driver seat in a Renault automobile on a country road test track
(concrete with very damaged surface). This vibration record consisted of several repetitive runs on
the same track. The measurements were transferred to digital form with a sampling rate of 409.6 Hz
and a PSD characteristic was computed.
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The obtained PSD function (shown by solid curve in Fig. 2*) was taken as a source material
for time history simulation by the inverse Fourier procedure. The resulting time history is presented
in Fig. 1,b and its PSD is shown by the dotted curve in Fig. 2. While the power spectral densities of
the road data and the synthetic signal (solid and dotted curves in Fig. 2) are so close that are not
distinguishable for most of frequencies, the time histories presented in Fig. 1 show how erroneous is
the PSD simulation of these road data. Due to the essential differences in signal peak amplitudes (as
much as 50% for positive peaks), the impact of these two excitations on the structural fatigue of
automobile components and on human comfort in the car would be expected to be quite different.

The presence of numerous bump events (high-amplitude transient events of the shock type)
is common in time histories of ground vehicle vibration. The effect had been noticed first for heavy
wheeled and tracked vehicles [9,10] on rough roads and then for automobiles [5,11] as well . When
a car or truck is moving over a considerable separate irregularity of the road, a high peak, well
above the average level, occurs in the vibration record. A pothole is an extreme situation of this
kind, however even those roads which are smooth at first glance normally have rougher points that
produce bump impacts. When this happens the time history of excitation acting on the passengers
and the vehicle structure includes occasional high spikes of random intensity. That is what is visible
in Fig. 1,a with the road data and is absent in Fig. 1,b with the synthetic signal. The latter is,
therefore, a reproduction of road frequency content in terms of PSD (see Fig. 2) but not a simulation
of the road data as a real excitation.

It should be pointed out that in many cases the situation with bump event presence in road
data might not be as clear as in Fig. 1. It is typical that a PSD of operational vibration of the type
shown in Fig. 2 consists of a series of resonances due to the vibrational behaviour of different
subsystems of the vehicle.  The first resonance  with its slopes  stretched in the region from 0 to 5
Hz is common in any road data and relates to the rigid body motion of the car chassis on the main
suspensions. The second broader resonance (covering frequencies from 5 to 13 Hz) can be
associated with the behaviour of suspension units separately or with the rigid body motion of the
engine/gearbox.  The  third  resonance  distributed  between  13  and 22 Hz  may  reflect  the low-
frequency flexible body modes of the chassis. Finally, the fourth broadest region (including
frequencies from 22 to 60 Hz) is probably defined by higher-frequency modes of the chassis and by
tire resonances.

Each of the above (or similar in other vehicles) frequency bands may generate its own bump
events which are different in number and sharpness. However, these events related to the behaviour
of one subsystem may be mixed with, and even fully covered by, a vibration signal component from
another frequency band. Thus smaller bump events which are specific and essential for behaviour of
a certain subsystem can be missed, if analysing and simulating the measured vibration as a whole.
Since any bump inputs to the vehicle can potentially be important, the main objectives of the
research described in this paper were to
 - preserve bump events inherent to each of the vehicle subsystem frequency bands contributing to

the entire road vibration
 - properly reflect every type of bump event when generating shaker test profiles (also called

“vibration missions” in [11,12]).

This was achieved by implementation of the wavelet analysis tool that is explained in the
next section.
______________________________________________
*  The first peak of the PSD curve at 1.6 Hz appeared to be so much higher than others that it was

impossible to present all peaks on the same plot. Thus, in Fig. 2 the vertical axis scale is chosen
in such a way that the vertex of the first peak in the PSD is clipped for the sake of making other
peaks visible. The whole view of the first peak is presented below in Fig. 6,h.
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2.  WAVELET ANALYSIS

The wavelet transform is a linear transformation that decomposes a given function into a
superposition of elementary functions.  Wavelets represent a natural extension of the classic Fourier
analysis.  The classical Fourier transform defined as
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��ò=                                                                        (1)

decomposes a signal into linear combination of an infinite sum of elementary sine and cosine
functions (Fig. 3,a).  This transformation leads from the time domain, where the vibration signal is
originally defined, to a new spectral representation in the frequency domain.  Fourier analysis is
used in many engineering applications from modelling to prediction.  However, it is not well suited
to nonstationary data.  Many attempts have been made to overtake this drawback.  The analysis in
both time and frequency domains using the so-called windowed Fourier transform is the first
important development.  In contrast to the Fourier transform, the windowed Fourier transform
decomposes a signal partially using finite sine and cosine waves.  These finite elementary functions
represent the window function.  The size of this window is fixed, however, the number of
oscillations of sine and cosine waves within the window varies (Fig. 3,b).

Wavelets represent a natural extension of this approach.  Similarly to the Fourier transform,
the basic elementary functions used in wavelet analysis oscillate and thus resemble waves.  Also,
following the windowed Fourier transform, these waves decay to zero.  However, in contrast to the
windowed  Fourier  transform  the number  of oscillations  for each  decaying wave  is constant
(Fig. 3,c).  The continuous wavelet transform can be defined as
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where  b  is  a  translation  indicating  the  locality,  a  is  a dilation  or  scale  parameter,  u/ (t)  is an
analysing or elementary wavelet andu/ * ( )�  is the complex conjugate ofu/ ( )� .  Each value of the

wavelet transform Wu/ (a, b) in Equation (2) is normalised by the factor a/1 .  This normalisation
ensures the integral energy given by each wavelet u/ a,b(t) is independent of the dilation a.
Mathematically wavelet analysis is a linear transformation which uses wavelets for decomposition
of a function.  By compression and stretching of wavelets which are scaling operations one adapts
them to the analysed function.  Compressed wavelets (small window) can see better short-lived high
frequency components and stretched wavelets (large window) can analyse better long-lived low
frequency parts of the signal.

In the continuous wavelet transform a one-dimensional signal is transformed into a two-
dimensional continuous time-scale (time-frequency) grid.  Clearly, this imposes redundancy in the
analysis and the question is whether it is possible to limit the transform to a subset of wavelet
coefficients on this grid and still recover the original signal.  The discretisation of the time b and
scale a in Equation (2) leads to the discrete wavelet transform.  A natural way of discretising the
continuous time-scale wavelet grid (a,b) is to set,

,0
maa =        00 banb n=            (3)

where m, n are integers and b0 0�  is the translation step.  This implies that the continuous wavelets
u/ a,b(t) in Equation (2) become discrete wavelets given by,
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It follows that the discrete wavelet transform can now be defined as,
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The higher the subsampling on this grid, the smaller the redundancy of the wavelet transform.
When the wavelets u/ m,n (t) form a set of orthonormal functions, there is no redundancy in the
analysis and the discrete wavelet transform given by Equation (5) becomes the orthogonal wavelet

transform.  Here the orthonormality means that the inner product 11 ,,, nmnm uu // satisfies,
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and the wavelets are normalised.

Any arbitrary signal x(t) can be then represented as a weighted sum of orthogonal wavelets,
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A number of different bases have been proposed to construct orthogonal wavelets.  The simpliest
basis can be given by the well known Haar function .  Much more effective analysis and synthesis
can be obtained with the wavelets of Daubechies [13], used in this paper.

The orthogonal wavelet  transform  gives  the span  of the analysed data  in a form  of the
so-called wavelet levels, at different resolutions according to wavelet scales.  In order to explain
wavelet levels  it is convenient  to limit  the analysis  of any arbitrary  function  x(t)  to  the interval
0 < t < 1 and introduce the circular wavelet transform.  This can be done similarly to the discrete
Fourier transform [14], where x(t), 0 < t < 1, is regarded as one period of the signal so that x(t) can
be repeated in the adjacent unit intervals.  In the same way wavelets can be wrapped around the
analysed interval.  Also, it can be shown that the sum of all contributions in Equation (7) for m < -1
is constant [14].  Under all these assumptions, the wavelet decomposition of x(t) in the analysed
interval 0 < t < 1 takes the form of a matrix series [14],
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where the coefficients a0 a1, a2, a3, . . . give the amplitude of all contributing wavelets.  This clearly
shows that the analysed signal x(t) can be represented as a sum of so called wavelet levels given by,
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All levels are in fact reconstructed time-domain signals from the wavelet decomposition.
Each xm(t) level displays a different frequency band and gives a contribution to the whole signal
energy.  Since the scale (frequency) partitioning leads to a partitioning in the time domain that is
finer in the higher frequency bands, lower levels correspond to low frequencies whereas higher
levels exhibit high frequencies of the signal.

The sum of all levels recreates the original signal, i.e.

( ) ( )txtx m
m
å=                  (10)

Although the wavelet levels are in the time domain, this orthogonal decomposition allows
one not only for time domain localisation of different events in the signal but also for frequency
decomposition of different signal components.  The wavelet analysis has found several applications
to automobile vibration experimental data, e.g. Ref. [11,15,16].

3. IMPLEMENTATION OF ORTHOGONAL WAVELETS FOR PRESERVING
    BUMP EVENTS WHEN SEPARATING VIBRATION COMPONENTS

Along with vibration data compression and denoising [17,18], the orthogonal wavelet transform is
suitable for selection of different signal components. The choice of specific wavelet coefficients
corresponding to one or several adjacent wavelet levels, while all other coefficients are set to zero,
can remove lower and higher frequency components and leave only that particular frequency band
which is of interest. In what follows, the filtering based on wavelets is discussed and a comparison
between the classical filtering procedure and wavelet-based procedure is presented.

As discussed in the Introduction, the behaviour of each of the vehicle subsystems contributing
to the road vibration has its own frequency range and, therefore, can be distinguished by analyzing
the power spectral density. However, it is not so easy to actually separate one particular subsystem
behaviour and to obtain an individual time history. Separation is often performed by means of
digital filters [19], particularly in the Infinite Impulse Response (IIR) form given by
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According to the above equation each time point in the filtered output yj=y(jDt) is computed
not only via the corresponding input value zj, but several preceding points of the input zj-k and
output yj-k are also involved. Employing Equation (11) for the next time history point yj+1, one can
see that, if a bump peak occurred at the time moment jDt, then the difference between output peak
value yj and the next point yj+1 (i.e. sharpness of the peak)
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depends not only on this difference for input )( 1�- jj zz  at the same moment of time but on other

time history points zj-k nk ,1=  as well. This is a source of additional error in peak reproduction and
might make bump events in the filtered signal component different from those in the road data when
this component is mixed with other ones.

The thin curve in Fig. 4 presents a short and magnified section of the road data described in
Fig. 1,a. For these data, four frequency bands chosen from the PSD of Fig. 2 (and related to
behaviour of different subsystems of a vehicle) have been separated and, for each of them, two
competing time histories were obtained by means of two numerical procedures: orthogonal wavelet
decomposition (Daubechies 12-th order wavelets) and a 50-th order band-pass digital filter
corresponding to a Butterworth analog filter.

Results for the highest frequency band (from 22 to 60 Hz) are presented in Figs. 5,a by the
thin curve for wavelet decomposition and the thick curve for Butterworth digital filtering.
Differences between the curves are evident and it is clear that the bump behaviour has been affected
by the band-pass filter. This error of smoothing time history peaks is present to a greater or lesser
extent when extracting other frequency bands as seen in Figs. 5,b,c,d. In this example the time
histories obtained by wavelet decomposition always had sharper peaks than those obtained by
Butterworth filtering*. This is due to the fact that classical filters based on Fourier analysis assume
the convergence of nonstationary functions which do not converge in practice [20].

The separation of frequency bands is used below when identifying bump events and when
introducing them into the corresponding signal components of the vibration test profile being
constructed. Then, the test profile components are summed to form an entire vibration test signal. It
is desirable that an error introduced by this two-stage procedure of decomposing and summing back
is minimal.  However, when the same input process was passed  through a number of different
band-pass filters and, then, the obtained outputs with erroneous smooth peaks presented by the thick
curves in Figs. 5,a,b,c,d were summed back, the result (thick curve in Fig. 4,a) was far from the
same time history, which was subjected to filtering (thin curve in Fig. 4,a).

The above means that apart from actual error in preserving bump events when moving them
from road data to the vibration test profile, there is an additional error in Butterworth filter
decomposing which is absent however in orthogonal wavelet decomposing because the latter is a
numerical procedure that is reverted precisely. In accordance with the orthogonal wavelet theory, if
all time histories of all wavelet levels are summed, the result is exactly the initial entire time history
shown by the thin curve in Figs. 4,b **. That is why, to facilitate analysis of bump behaviour, not
band-pass filtering but the wavelet decomposition has been chosen as a tool for separation of road
vibration time history into signal components related to different vehicle subsystems.

____________________________________________________

* - Note  that time scales  on the horizontal axes  are different in Fig. 5,a, Fig. 5,b, Fig. 5,c, and
Fig. 5,d, i.e. although these four plots seem to have similar periodicity, they nevertheless
correspond to different frequency bands indicated in the figure captions

** - In practice, those wavelet levels with very small vibration amplitude are not taken into
consideration and, hence, the result of summation shown by the thick curve in Fig. 4,b is a bit
different from the initial data presented by the thin curve
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4. VIBRATION TEST PROFILE SYNTHESIS METHOD

4.1. Wavelet grouping

To obtain for each vehicle subsystem frequency band its own time history one should first calculate
PSDs of all wavelet levels and present them on the same scale simultaneously with an initial PSD of
the entire signal. Each of the wavelet levels corresponds to certain frequency range and retains all
time domain features related to the bump events in the entire road data. The wavelet levels should
then be grouped in such a way that each group corresponds to one of the frequency-bands of the
whole PSD as those shown in Fig. 2. Some groups will combine several wavelet levels while others
will consist of only one wavelet level. The grouping procedure has been discussed in [11] in more
detail and a typical example is presented in Figs. 6,b,d,f,h, how an entire PSD has been decomposed
into four groups. These results were obtained for the aforementioned Renault road data which
included 327,660 time points. This means existence of 20 wavelet levels that were counted in the
direction from high to low frequencies.

The 1st wavelet level with highest frequencies  felt to the right  of the last PSD section in
Fig. 2 and, therefore, has not been taken into further consideration. The 2nd and 3rd wavelet levels
were taken together to make up Wavelet Group 1, whose PSD (Fig. 6,b) coincides with the fourth
frequency band (from 22 to 60 Hz) of the entire road data PSD presented in Fig. 2. The 4th wavelet
level alone covered the third (from 13 to 22 Hz) frequency band of the road data PSD and, thus, was
designated as Wavelet Group 2 (Fig. 6,d). How the subsequent wavelet levels up to 9th were
grouped and Wavelet Groups 3 and 4 were formed is shown in Table 1. All further wavelet levels
starting from the 10th were omitted because their frequency regions were located lower than the
lowest present frequency in the road data PSD.

The same wavelet grouping was performed for the synthetic data file (Fig. 1,b) generated by
the inverse Fourier transform of the road PSD. The power spectral density of Wavelet Group 1
constructed for this synthetic signal is presented in Fig. 6,b by the dotted curve and can be
compared with the corresponding solid curve of the PSD of Wavelet Group 1 for the road data. It is
clear from this comparison and from similar results for other wavelet groups that the synthetic
background signal has precisely acquired all frequency features of the road data not only for the
PSD of the entire signal (as was shown in Fig. 2) but also separately for each of the four PSDs of
the wavelet groups obtained after wavelet decomposition of the entire signal. However, the situation
changes if one compares the road data and the synthetic background signal not in the frequency
domain but in terms of time history.

4.2. Identification of bump events in road data

To obtain statistically representative material about rare bump events, the time duration of the
experimentally acquired road vibration signals should be much longer than in the case of ordinary
PSD analysis. As an illustrative example for this paper, twenty repetitions of the aforementioned 40
second recordings, made for the Renault vehicle on the same track of a country road with the
damaged surface were considered and placed one by one into a joint data record. Figures 7,a,c,e,g
present time histories of all four wavelet groups obtained for these road data.

When the corresponding wavelet groups of the synthetic Fourier signal were obtained (Figs.
7,b,d,f,h) and compared with the road data, it became clear that, for Wavelet Group 4 with lowest
frequencies, the road data regularly exhibit bump peaks (especially in positive direction) of such a
height and regularity of appearance which are not inherent in the Fourier signal of the same group.
Results for the other groups are similar, however the difference between bump behaviour in the
road and synthetic Fourier data is smaller.
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Evaluation of the above time history graphs is somewhat subjective and requires operation
with very long time history files. Therefore, another view into the problem under consideration is
recommended making use of probability density function (PDF). Particularly, tail behaviour of the
PDF should be considered as this describes probability of large instantaneous values, i.e. how often
large peaks due to bump events appear in the time history. A logarithmic scale is often used for
vertical axis of PDF graphs [5,10] to represent low probability values better. Right PDF tail for all
four wavelet groups of the road data (thick solid curves) and of synthetic Fourier signal (dotted
curves) are presented in Figs. 6,a,c,e,g along with PSD sketches (Figs. 6,b,d,f,h) showing frequency
content of every wavelet group*. There is always some overlap of frequencies between the wavelet
levels and, hence, between the wavelet groups as well. That is why, when shown separately as in
Figs. 6,b,d,f,h, the wavelet group spectra look wider than the corresponding frequency bands
specified in Table 1 according to Fig. 2 and, then, presented in the captions to Figs. 5 and 7.

Table 1. Results of wavelet level grouping for seat guide vertical vibration of a Renault automobile

Wavelet Group Wavelet levels included Frequency band PSD plot Time history plot
No 1 2nd and 3rd from 22 to 60 Hz Figure 6,b Figure 7,a
No 2 4th from 13 to 22 Hz Figure 6,d Figure 7,c
No 3 5th from  5 to 13 Hz Figure 6,f Figure 7,e
No 4 6th, 7th, 8th, and 9th from 0.5 to 5 Hz Figure 6,h Figure 7,g

It can be seen from Figs. 6,a,c,e,g that the PDF tails of the synthetic Fourier signal (dotted
curves) always lie lower than those of the road data whose PDF tails (thick solid curves) are wider
and longer. This means that a peak with height of 2 r.m.s (s) values or more has several times less
probability of occurrence in the synthetic Fourier signal than in the road data. This difference
between the road data and the synthetic signal is largest for Wavelet Group 4, and this fact will be
of prime importance in later considerations.

For example, in Fig. 6,g, acceleration value of 4.5 m/s2 (that is about 3.5s) has a probability
of occurrence 100 times higher for the road data than for the Fourier signal. Since the data record
length is restricted in numerical analysis, one cannot actually obtain probabilities less than L-1

where L is a number of data points in the time history under consideration. That is why we do not
know what would be the probability of occurrence of 5.7 m/s2 acceleration value (that is 4.6s) in
the synthetic Fourier signal and how many times it is less than the 0.0001 probability observed for
the same acceleration value in the road data. Instead, one should compare not probabilities but peak
acceleration values corresponding to the same 0.0001 probability of occurrence in the road and in
the Fourier data. In this instance, these peak acceleration values were 4.5 m/s2 and 5.7 m/s2 making
up a substantial difference.

4.3. Extraction of bump events from the road data and superimposition unto the time
        histories of the wavelet groups of the Fourier-generated signal

Comparison of the road and synthetic Fourier data discussed in the previous section reveals
differences in behaviour related to bump events. This suggests that a specific action for the purpose
of bump modeling should be undertaken for certain wavelet level group signals in addition to
conventional PSD simulation. These somehow corrected wavelet groups can then be summed along
with other wavelet groups (if any) which contained no essential bumps in the road data and for
which no corrections to the Fourier synthetic signal were made. This summation will reconstruct the
entire vibration test profile.

______________________________________________________
*  Note that the vertical axis scale in Fig. 6,h is different from that in Figs. 6,b,d,f.
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Each of the wavelet groups defined by the grouping procedure established in Section 4.1 is
considered separately. It was shown in [11] by numerical examples that this makes a bump event
much more distinguishable than in the time history of the entire road data because contributions
from other wavelet levels (i.e. signals corresponding to other vehicle subsystem frequency bands)
are not superimposed on the bump event under consideration and, thus, do not cover it. Here it is
supposed that a bump event is occurring in only one of the wavelet groups whereas nothing causing
bumps happened in other wavelet groups at the same moment of time. A more complicated case is
considered in the next section of the paper, when a bump event is related for two or more wavelet
groups simultaneously and, therefore, some synchronization of what is taken from different groups
is necessary.

In the case of no synchronization between the wavelet groups, a point is considered a bump
event if the wavelet group time history has a maximum or minimum exceeding a certain boundary
value which is prescribed such that it can only be reached by essentially high peaks. Experience
suggests that this boundary value may be taken equal to 1.5-2.5 times the r.m.s value s.

Assuming that any bump event takes some time to be developed from background vibration
and, then, must be accompanied by a monotonic decay process depending on the level of system
damping, the main peak found in road data and taken to the vibration test profile should be
accompanied by a few preceding and subsequent waves. A number of these waves is defined by
going forward and backward of the main peak and comparing heights of maxima and minima with
the preceding ones. The process is stopped when the next maximum is higher (or minimum is
lower) than the former one. This is considered as an indication of the fact that the decay process is
finished and a new increase in the oscillation amplitude started to develop.

When a bump event is identified in the wavelet group of the road data, it should be placed in
the same wavelet group of the synthetic Fourier signal in such a way as to cause the least possible
disturbance to the latter. For this purpose, the time history section of the bump is moved along the
whole time history of the synthetic signal and compared with it in terms of root-mean-square
difference in each of the possible positions. Then, at the point where this difference is smallest, the
bump section substitutes the similar and equal in length section found in the background synthetic
signal.

If a high compression value (ratio between the initial length of road data prescribed and the
required length of the vibration test profile) is specified, then there might be no room to
accommodate into the background Fourier time history all the bump events extracted from the road
data  (especially for wavelet groups  with lower frequencies).  To cope  with such a situation  and to
ensure  that the most influential bumps  are included,  the bump events found in a particular wavelet
group are ranked in descending order before being put one by one into the corresponding wavelet
group of the test profile signal.

When all wavelet groups (i.e. frequency bands) requiring correction have been considered
and all bump events for each of the groups have been identified and put unto the Fourier synthetic
wavelet group signals, this is followed by summation of the wavelet groups. As a result, a
background test signal constructed by inverse Fourier transform of the road PSD upgrades into the
vibration test profile representative of bump behaviour as well as of the prescribed PSD shape. The
entire method  described above  was called Mildly Nonstationary Mission Synthesis (MNMS) in
Ref [21] and a flow-chart of the procedure can be found in this former paper of the authors.
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4.4. Analysis of vibration test profile PDFs and synchronisation of bump events.

When investigating bump event differences between corresponding wavelet groups of the road data
and Fourier-generated background signals, probability density functions and, particularly, their tail
behaviour were used in Section 4.2. This approach was proved effective and, here, it is employed
for vibration test profile signals to evaluate performance of the developed algorithm.

First, PDFs of vibration test profiles were computed at the intermediate stage of considering
the wavelet groups  separately.  The results  obtained  are presented  by the thin solid curves  in
Figs. 6,a,c,e,g. These vibration test profile PDF tails are so close to the PDF tails for the road data
(thick curves on the same plots) that the thin curve is covered by the thick one almost everywhere.
This means that introduction of bump events into the Fourier-generated synthetic signals of the
wavelet groups has changed their PDF tails dramatically moving them from the initial
unsatisfactory dotted curves in Figs 6,a,c,e,g towards perfect coincidence with the thick curves of
the PDF tails for the road data prescribed.

However, the comparison of the PDF tails of the test signal and the road data was less
satisfactory after summation of the wavelet group signal components into an entire vibration test
profile. As seen from Fig. 8,a for the vibration test profile as a whole, the probability density
function produced by the new synthesis algorithm took an intermediate position between those of
the road data and that produced by the traditional technique based on PSD considerations only.
Since the results for each of the wavelet groups were perfect, this subsequent decrease in precision
for a summation signal can only be attributed to the fact that something was missing in correlation
of different wavelet groups.

As explained in Section 4.3, in the base procedure bump events were extracted from a
certain wavelet group signal independently of what occurred at the same moment of time on other
wavelet groups. Then, a bump event from the particular wavelet group was placed to the most
appropriate position at the background Fourier-generated signal of the same wavelet group and,
again, no consideration has been given to what was happening with the other wavelet groups. In so
doing, if any relation existed in the road data between two bumps on different wavelet group
signals, this relation would be broken.

The time positions where the first and second bumps are placed on the first and second
wavelet groups were dictated by corresponding wavelet groups in the Fourier signal which are
absolutely independent. Hence, there is no relationship between the two bumps under consideration
after they were moved from the road data to the vibration test profile constructed. This had to be
dealt with by some action of synchronisation. Bump events that occurred in the road data on
different wavelet groups at the same (or very close) moments of time should be kept together when
introduced into vibration test profile wavelet groups.

One possible synchronisation algorithms was established as follows. Experience of wavelet
grouping and bump events identification in various road data has suggested that in most cases a
main wavelet group can be nominated, which is indicative of an intensive bump behaviour
exceeding that of all other groups. In the Renault country road data under consideration this was
Wavelet Group 4. One can see this from Fig. 7 where the difference between the road data and the
Fourier-generated synthetic time histories is higher for Group 4 than for the other groups.

This main wavelet group was subjected to bump event extraction procedure, ahead of other
groups. The bumps were not only extracted from the road data but their position, i.e. time moments
of the bump transient wave beginning and the end, was memorised by the algorithm for future
reference. Then, when considering other groups (not main) each of the bump events extracted from
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them was compared in terms of its position with the positions of all bump events in the main group
one by one.

If a bump event in a non-main group has fallen within, or has covered, the time interval of
some bump event in the main group (or, at least, the end/beginning of one of these two bumps
occurred between the beginning and the end of the second bump event), then the bump extracted
from the non-main group should be placed on the background Fourier-generated signal differently
than it was explained above for the algorithm with no synchronisation. Its position should not be
chosen based on root-mean-square difference, but the observed relation between the two bump
events in the main and non-main group must be respected by directing the non-main group bump to
such a position in the non-main group time history where it would have exactly the same (as was in
the road data) shift in time compared to the position of the relevant bump in the main group time
history.

5. RESULTS OF CONSTRUCTING VIBRATION TEST PROFILES BY DIFFERENT
    SYNTHESIS PROCEDURES AND FOR VARIOUS COMPRESSION RATIOS

The synchronisation procedure for locating bump events in subsequent wavelet groups verifying
their position against corresponding bump events in the main group has been implemented for the
same Renault automobile data which was used in the example of non-synchronised algorithm
presented in Fig. 8,a. The synchronisation algorithm has produced a vibration test profile with the
PDF tail (see Fig. 8,b) much closer to that of the road data.

The further improvement,  provided  by the synchronisation algorithm  compared  to the
non-synchronisation   case,    was   similar   to   the   improvement   already   provided   by  the
non-synchronised algorithm compared to PSD simulation with no consideration of bump events.
Table 2 presents the acceleration values of time history peaks corresponding to various probabilities
of occurrence for all four PDFs under consideration: obtained by PSD simulation, by the new
algorithm with no synchronisation, by the new algorithm enhanced with synchronisation, and for
the road data PDF prescribed.

Table 2. Peak heights corresponding to different probabilities of peak occurrence

PSD simulation No synchronisation Synchronisation Road dataProbability of
peak occurrence m/s2 % m/s2 % m/s2 % m/s2 %
      0.001 5.5 81 6.5 96   6.8 100   6.8 100
      0.0001 6.6 73 7.9 87   8.7   96   9.1 100
      0.00001 7.5 71 8.7 83 10.0   95 10.5 100

It is seen from these results that for 0.001 probability of peak occurrence the synchronisation
algorithm provided  perfect simulation matching the peak height observed in the road data. The
non-synchronisation algorithm was good as well losing just 4% of the peak height, whereas peaks
in the time history of PSD simulation were restricted to 81% of those occurring in the road data. For
10 times lower probability (0.0001), results by the synchronisation algorithm are 96% of the road
peak value whereas the PSD simulation dropped to 73% and non-synchronisation appeared to be
87%, i.e. slightly more than the half-way between the PSD simulation and the enhanced version of
new algorithm. For the lowest probability value (0.00001) results by the synchronisation procedure
are still acceptable (95% of road data) whereas the PSD simulation and the non-synchronisation
algorithm degraded furthermore to 71% and 83% correspondingly.
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Thus, there is an obvious need to maintain the relation between bump events occurring on
different wavelet groups at close moments of time by introducing them jointly into the vibration test
profile. This synchronisation procedure was used for the further plots in Fig. 8 and in all following
computations. Figure 9,a presents time history of one run of the Renault automobile on the same
country road test track which was considered earlier, when several runs were joined into one data
file. There are three apparent bump events at 6.2 sec, 8.4 sec, and 34.2 sec moments of time marked
as B1, B2 and B3 at the top of the plot frame in Fig. 9,a. Of course, many other bumps, which
cannot be observed in this entire signal record, have been detected by the algorithm at particular
wavelet groups.

The aforementioned three bump events are distinguishable in the vibration test profile
constructed, now at 8.5 sec, 29 sec, and 18.1 sec moments of time (see Fig. 9,b). Each of the events
has undergone certain transformation because some of the wavelet groups (where a bump has been
detected) contribute with their time history section taken from the road data, whereas others (where
there were no bumps at this time) contribute with a section of synthetic Fourier-generated signal.
Hence, bump events in the vibration test profile do not look exactly the same as in the road data,
however their heights and essential features, like number of waves in the bump event, were
simulated.

For example, the bump event B1 in the road data at 6.2 sec had a height of 9.6 m/sec2 and
consisted of just one extreme wave. The former was retained in the vibration test profile at 8.5 sec
position with height of 7.8 m/sec2. Another bump event (B3) at 34.2 sec of the road data was
completely different with three subsequent extreme waves with heights 6.2 m/sec2, 8.2 m/sec2, and
8.95 m/sec2. One can see that these three wave event has been simulated in the vibration test profile
at 18.1 sec moment with heights 6.3 m/sec2, 8.2 m/sec2, and 8.8 m/sec2.

As was mentioned in Introduction section, the main objective of this research was to find
ways of producing vibration test profiles several times shorter then the road data record prescribed.
Figures 9,c,e show vibration test profiles with increasing compression value, i.e., two and three
times shorter than the road record. These were compared with Fourier synthetic signals of the same
length (Figs. 9,d,f). In so doing, one can see the distinguishable peaks that have been moved from
the road to the vibration test profile but were missed in the Fourier signals presented at the right.

As discussed in Section 4.3, the shorter vibration test profile is required, the more difficult is
to properly simulate bump behaviour because not all bump events found in the road data can be
accommodated into the vibration test profile with the space available for bump placement
decreasing. For instance, one of the aforementioned three bump events, particularly B2 (occurred at
8.4 sec in the road data), was absent in the vibration test profile with the compression value of 3
(see Fig.9,e). Thus, some degradation of the vibration test profile quality is an inevitable payment
for the requirement to have a test profile several times shorter then the road measurements.
However, consideration of probability density functions of these shorter test profiles in comparison
with PDFs of the road data and the Fourier simulation (see Fig. 8,c,d) justifies that the method
developed still provides satisfactory closeness to the road data and is much better than the
traditional PSD simulation would be.

6. CONCLUSIONS

The research described in this paper can be summarized as follows:

1. The orthogonal transform performed by means of Daubechies wavelets was used as a filtering
tool for analysing bump (shock transient) events in automobile vibration time histories. This
approach facilitates the task of bump event identification because vibration signals of individual
frequency bands related to different vehicle subsystem behaviour were separated.



15

2. A wavelet grouping procedure has been introduced where summation is carried out of time
history signals of all those wavelet levels whose PSDs are covered by the particular frequency
band.

3. An unsynchronised and a synchronised algorithms for generating vibration test profiles have been
developed. An example have been presented of the application of the method to car passenger
seat guide acceleration data, and compression ratios of up to 3 have been achieved. The
synchronisation algorithm has been tried for various data and research is continuing towards
establishing few other synchronisation algorithms.

4. The techniques described in this paper permit the definition of vibration test profiles which
maintain probabili ty of occurrence of high-amplitude bump events to within few percent
difference from the probabili ty of their occurrence in the original road data.

The paper results should find numerous automotive applications including laboratory testing
and numerical simulations. Further research is under way to develop algorithms for long-time black
box recorders for summarising the vehicle vibration environment.
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a) Acceleration time history measured in a Renault automobile on a country road test track
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Fig. 1  Simulation of car body vertical vibration based only on power spectral density characteristic
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Fig. 2  Power spectral densities of the experimental road data (solid curve) and
                             the synthetic Fourier signal (dotted curve).
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a) Fourier analysis – trigonometric functions

            
b) Windowed Fourier transform – decaying trigonometric functions

            
c) Wavelet analysis – wavelets

Fig. 3  Elementary basic functions for signal decompositions.
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a) Decomposition by digital band-pass filter of the Butterworth type
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b) Decomposition by means of wavelet analysis

Fig. 4. Initial road data (thin curve) and results of reconstruction (thick curves) by summation of
           vibration components of different subsystem frequency bands separated by two
           decomposition methods.
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d) Time histories extracted for the frequency range between 0.5 and 5 Hz

Fig. 5 Smoothing peaks of shock events by digital filtering (thick time history curves)
                     compared to those preserved by wavelet decomposition (thin curves)



21

0.00001

0.0001

0.001

0.01

0.1

1 3 5 m/s2
0

0.04

0.08

0 10 20 30 40 50 Hz

m/s

                    a) PDF right tail for Wavelet Group 1                         b) PSD for Wavelet Group 1

0.00001

0.0001

0.001

0.01

0.1

1 3 5 m/s2
0

0.04

0.08

0 10 20 30 40 50 Hz

m/s

                    c) PDF right tail for Wavelet Group 2                         d) PSD for Wavelet Group 2

0.00001

0.0001

0.001

0.01

0.1

1 3 5

m

m/s2
0

0.04

0.08

0 10 20 30 40 50 Hz

m/s

                    e) PDF right tail for Wavelet Group 3                         f) PSD for Wavelet Group 3

0.00001

0.0001

0.001

0.01

0.1

1 3 5 m/s2
0

1

2

0 10 20 30 40 50 Hz

m/s

                    g) PDF right tail for Wavelet Group 4                         h) PSD for Wavelet Group 4

Fig. 6 Tails of probability density functions of road data (thick solid curves) and of synthetic
                 Fourier signal (dotted curves) after decomposing into four wavelet groups with power
                 spectral densities shown to the right.
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          a) Group 1 road data (from 22 to 60 Hz)         b) Group 1 Fourier signal (from 22 to 60 Hz)
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          c) Group 2 road data (from 13 to 22 Hz)          d) Group 2 Fourier signal (from 13 to 22 Hz)

-7

-5

-3

-1

1

3

5

7

0 3 6 9 12

m/s2

min
-7

-5

-3

-1

1

3

5

7

0 3 6 9 12

m/s2

min

          e) Group 3 road data (from 5 to 13 Hz)            f) Group 3 Fourier signal (from 5 to 13 Hz
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          g) Group 4 road data (from 0.5 to 5 Hz)           h) Group 4 Fourier signal (from 0.5 to 5 Hz)

Fig. 7 Time histories of road data (left) and synthetic Fourier signal (right)
                               after decomposing into four wavelet groups.
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Fig. 8  Tails of probability density functions of road data (thick solid curves), synthetic Fourier
                signal (dotted curves) and vibration test profile constructed (thin solid curves).
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          c) Test profile with 2 times compression           d) Fourier signal with 2 times compression
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          e) Test profile with 3 times compression           f) Fourier signal with 3 times compression

Fig. 9 Results of simulation for a Renault automobile on a country road test track.


