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ABSTRACT
An algorithm is proposed for denoising the signal induced bycosmic strings in the cosmic
microwave background (CMB). A Bayesian approach is taken, based on modeling the string
signal in the wavelet domain with generalized Gaussian distributions. Good performance of
the algorithm is demonstrated by simulated experiments at arcminute resolution under noise
conditions including primary and secondary CMB anisotropies, as well as instrumental noise.

Key words: methods: data analysis – techniques: image processing – cosmic microwave
background.

1 INTRODUCTION

Observations of the cosmic microwave background (CMB) and of
the Large Scale Structure of the Universe (LSS) have led to the
definition of a concordance cosmological model. Recently, analy-
sis of the temperature data of the CMB over the whole celestial
sphere from the Wilkinson Microwave Anisotropy Probe (WMAP)
satellite experiment has played a dominant role in designing this
precise picture of the Universe (Bennett et al. 2003; Spergel et al.
2003; Hinshaw et al. 2007; Spergel et al. 2007; Hinshaw et al.
2009; Komatsu et al. 2009). Experiments dedicated to the obser-
vation of small portions of the celestial sphere have also provided
their contribution, including the Arcminute Cosmology Bolometer
Array Receiver (ACBAR) experiment (Reichardt et al. 2009),the
Boomerang experiment (Jones et al. 2006), and the Cosmic Back-
ground Imager (CBI) experiment (Readhead et al. 2004).

According to the concordance cosmological model, the cos-
mic structures and the CMB originate from Gaussian adiabatic
perturbations seeded in the early phase of inflation of the Uni-
verse. However, cosmological scenarios motivated by theories for
the unification of the fundamental interactions predict theexis-
tence of topological defects resulting from phase transitions at
the end of inflation (Vilenkin & Shellard 1994; Hindmarsh 1995a;
Hindmarsh & Kibble 1995b; Turok & Spergel 1990). These de-
fects would have participated to the formation of the cosmicstruc-
tures, also imprinting the CMB. In particular, cosmic strings are a
line-like version of such defects which are also predicted in the
framework of fundamental string theory (Davis & Kibble 2005).
As a consequence, the issue of their existence is a central question
in cosmology today.
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‡ E-mail: pierre.vandergheynst@epfl.ch

Cosmic strings are parametrized by a string tensionµ, i.e. a
mass per unit length of string, which sets the overall amplitude of
the contribution of a string network. Their main signature in the
CMB is characterized by temperature steps along the string po-
sitions. This localized effect, known as the Kaiser-Stebbins (KS)
effect (Kaiser & Stebbins 1984; Gott 1985), hence implies a non-
Gaussian imprint of the string network in the CMB. The most nu-
merous strings appear at an angular size around1 degree on the ce-
lestial sphere. CMB experiments with an angular resolutionmuch
below 1 degree are thus required in order to resolve the width of
cosmic strings.

Experimental constraints have been obtained on a possible
string contribution in terms of upper bounds on the string tension
µ (Perivolaropoulos 1993; Bevis et al. 2004; Wyman et al. 2005,
2006; Bevis et al. 2007; Fraisse et al. 2007). In this context, even
though observations largely fit with an origin of the cosmic struc-
tures in terms adiabatic perturbations, room is still available for the
existence of cosmic strings.

The purpose of the present work is to develop an effective
method for mapping the string network potentially imprinted at
high angular resolution in CMB temperature data, in the perspec-
tive of forthcoming arcminute resolution experiments. Theob-
served CMB signal can be modeled as a linear superposition of
a statistically isotropic but non-Gaussian string signal proportional
to an unknown string tension, with statistically isotropicGaussian
noise comprising the standard component of the CMB induced by
adiabatic perturbations as well as instrumental noise.

We take a Bayesian approach to this denoising problem, based
on statistical models for both the string signal and noise. Our de-
noising is done in the wavelet domain, using a steerable wavelet
transform well adapted for representing the strongly oriented fea-
tures present in the string signal. We show that the string signal co-
efficients are well described by generalized Gaussian distributions
(GGD’s), which are fit at each wavelet scale using a training simu-
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2 Hammond et al.

lation borrowed from the set of realistic string simulations recently
produced by Fraisse et al. (2008).

We develop a Bayesian least squares method for the denoising,
where each coefficient of the wavelet decomposition is estimated as
the expectation value of its posterior probability distribution given
the observed value. This estimation is split into two parts.Assum-
ing the string tension is known, we use the GGD model to com-
pute an estimate of the string signal. However, the true string ten-
sion is unknown. We deal with this by using a preliminary power
spectral model (PSM) to calculate a posterior probability for the
string tension. We then construct our overall estimator by weight-
ing the GGD based estimators using this posterior probability dis-
tribution for the string tension. Finally, the string network itself can
be mapped by taking the magnitude of the gradient of the denoised
signal (Fraisse et al. 2008).

The denoising algorithm that we present may be considered
as a modular component of a larger data analysis. Firstly notice
that the PSM might be replaced by any other model allowing com-
putation of the posterior probability distribution of the string ten-
sion, notably those which rely on the best experimental bounds
on the string tension. Secondly, as our method produces a tem-
perature map of the same size as the input, it may also find use
as a pre-processing step for other methods for cosmic stringde-
tection based on explicit edge detection (Jeong & Smoot 2005;
Lo & Wright 2005; Amsel et al. 2007).

The performance of our denoising algorithm is evaluated un-
der different conditions, with astrophysical noise components in-
cluding various contributions to the standard component ofthe
CMB (i.e. primary and secondary CMB anisotropies), as well as
instrumental noise. Three quantitative measures of performance
are considered, namely the signal-to-noise ratio, correlation coeffi-
cient, and kurtosis of the magnitude of gradient of the string signal.
Our analyses rely on100 test simulations of a string signal buried
in the noise. For each string tension and noise condition consid-
ered, the test simulations are produced by linear superposition of a
unique test string simulation, also from (Fraisse et al. 2008), with
independent noise realizations.

In each noise condition, we find that the lowest values for the
string tension down to which our quantitative measures showeffec-
tive denoising are very close to the lowest value where strings begin
to be visible by eye. Moreover, we acknowledge that this value is
slightly larger than a detectability threshold set on the basis of the
PSM.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the string signal and the noise at arcminute res-
olution, and we describe our numerical simulations. In Section 3,
we describe the steerable wavelet formalism on the plane andstudy
the sparsity of the string signal in terms of the wavelet decomposi-
tion. In Section 4, we define in detail our wavelet domain Bayesian
denoising (WDBD) algorithm. In Section 5, we evaluate the per-
formance of the algorithm. We finally conclude in Section 6.

2 STRING SIGNAL AND NOISE

In this section, we describe the string signal, discuss current and ex-
pected future experimental constraints, and detail the various noise
components at arcminute resolution. We also describe the numeri-
cal simulations used for our developments.

2.1 String signal

In an inflationary cosmological model, the phase transitions re-
sponsible for the formation of a cosmic string network occuraf-
ter the end of inflation, so as to produce observable defects.From
the epoch of last scattering until today, the cosmic string net-
work continuously imprints the CMB. The so-called scaling solu-
tion for the string network implies that the most numerous strings
are imprinted just after last scattering and have a typical angu-
lar size around1 degree, of the order of the horizon size at that
time (Vachaspati & Vilenkin 1984; Kibble 1985; Albrecht & Turok
1985; Bennet 1986; Bennet & Bouchet 1989; Albrecht & Turok
1989; Bennet & Bouchet 1990; Allen & Shellard 1990). Longer
strings are also imprinted in the later stages of the Universe evo-
lution, but in smaller number, according to the number of corre-
sponding horizon volumes required to fill the sky.

The main signature of a cosmic string in the CMB is described
by the KS effect according to which a temperature step is induced
in the CMB along the string position. The relative amplitudeof this
step reads as

δT

T
= (8πγβ) ρ, (1)

whereβ = v/c, γ = (1−β2)−1/2 is the relativistic gamma factor,
andρ is a dimensionless parameter uniquely associated with the
string tensionµ through

ρ =
Gµ

c2
, (2)

whereG stands for the gravitational constant andc for the speed of
light. In the following we callρ the string tension.

Analytical models relying on the KS effect and the scaling
property were defined to simulate the string signal imprinted in the
CMB. However, in order to produce precise CMB maps account-
ing for the full non-linear evolution of the string network,one needs
to resort to numerical simulations. On small angular scales, realis-
tic simulations can be produced by stacking CMB maps inducedin
different redshift ranges between last scattering and today. The sim-
ulations we use in this work have been produced by this technique
(Bouchet et al. 1988; Fraisse et al. 2008).

The string signal is understood as a realization of a statisti-
cally isotropic but non-Gaussian process on the celestial sphere
with an overall amplitude rescaled by the string tensionρ, and char-
acterized by a nearly scale-free angular power spectrum:Cs

l (ρ) =
ρ2Cs

l , where the positive integer indexl stands for the angular fre-
quency index on the sphere. An analytical expression of thisspec-
trum was provided forl larger than a few hundreds by Fraisse et al.
(2008), on the basis of their simulations. We consider CMB ex-
periments with a small field of view corresponding to an angular
openingτ ∈ [0, 2π) on the celestial sphere. In this context, the
small portion of the celestial sphere accessible is identified to a
planar patch of sizeτ × τ , and we may consider planar signals in
terms of Cartesian coordinatesx = (x, y). The spatial frequen-
cies may be denoted ask = (kx, ky) with a radial component
k = (k2

x + k2
y)1/2. In this Euclidean limit, the radial component

identifies with the angular frequency on the celestial sphere, be-
low some band limit set by the resolution of the experiment under
consideration:l = k < B. Analogously, the planar power spec-
trum, depending only on the radial componentk for a statistically
isotropic signal, identifies with the angular power spectrum of the
original signal on the sphere. In particular, fork larger than a few
hundreds, the nearly scale-free planar power spectrum of the string
signals(x) reads as

c© 2009 RAS, MNRAS000, 1–16



String signal denoising 3

P s (k, ρ) = ρ2P s (k) , (3)

with P s(k) = Cs
l for l = k.

In this context, the observed CMB signal can be understood as
a linear superposition of the string signal and statistically isotropic
noise of astrophysical and instrumental origin. As will be discussed
in detail below, this noise is modeled as Gaussian with some an-
gular power spectrumCn

l . In the Euclidean limit, the correspond-
ing planar power spectrum for the noisen(x) may be written as
P n(k) = Cn

l for l = k. The observed noisy signalf(x) is given
by:

f (x) = s (x) + n (x) . (4)

Let us notice that we consider zero mean signals, identifying per-
turbations around statistical means.

2.2 Experimental constraints

Current CMB experiments achieve an angular resolution on the ce-
lestial sphere of the order of10 arcminutes, corresponding to a limit
angular frequency not far aboveB ≃ 103. At such resolutions, the
standard component of the CMB primarily contains the Gaussian
perturbations induced by adiabatic perturbations at last scattering,
i.e. when the Universe became essentially transparent to radiation.
These Gaussian anisotropies are referred to as the primary CMB
anisotropies. In this context, any possible string signal is confined
to amplitudes largely dominated by these primary anisotropies. The
constraints mainly come from a best fit analysis of the angular
power spectrum of the overall CMB signal in the WMAP temper-
ature data (Perivolaropoulos 1993; Bevis et al. 2004; Wymanet al.
2005, 2006; Bevis et al. 2007; Fraisse et al. 2007). The tightest of
these constraints (Fraisse et al. 2007) gives the followingupper
bound at68 per cent confidence level:

ρ 6 ρexp = 2.1×10−7. (5)

Algorithms have also been designed for the explicit identifica-
tion of cosmic strings through the observation of the KS effect on
CMB temperature data. The results of the analysis of the full-sky
WMAP data typically provide constraints on the string tension two
orders of magnitude wider than the best fit analysis of the CMB
angular power spectrum, i.e. roughlyρ < 10−5 (Jeong & Smoot
2005; Lo & Wright 2005). The limited angular resolution of the
WMAP data relative to a typical string width is actually moreharm-
ful for the explicit local detection of cosmic strings than for the es-
timation of a global parameter such as the string tension through
the analysis of an angular power spectrum. Corresponding bounds
have also been studied in the perspective of experiments providing
higher resolution observation of the CMB on small portions of the
sky (Amsel et al. 2007).

2.3 Noise at arcminute resolution

Forthcoming experiments will provide access to higher angular
resolution. The Planck Surveyor satellite experiment willpro-
vide full-sky CMB data at a resolution of5 arcminutes, i.e. with
B ≃ 2× 103 (Bouchet 2004)1. The Atacama Cosmology Tele-
scope (ACT) (Kosowsky 2006), or the South Pole Telescope (SPT)
(Ruhl et al. 2004) will map the CMB on small portions of the celes-
tial sphere at a resolution around1 arcminute, i.e. withB ≃ 104.

1 See also Planck Bluebook at http://www.rssd.esa.int/Planck.
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Figure 1. Angular power spectra of string signal and noise (borrowed
from Fraisse et al. (2008)) as a function of angular frequency in the range
l ∈ [102, 2× 104] in log10 − log10 axes scaling. The spectrum of the
string signal is represented for a string tensionρ = 2× 10−7 in terms
of its analytical expression valid at high angular frequencies (red straight
line). The noise spectra (ordered by decreasing amplitude at low angular
frequencies) are: the primary CMB anisotropies (black solid line) and the
gravitational lensing correction (black dashed line), thethermal SZ effect in
the Rayleigh-Jeans limit (blue solid line), the non-linearkinetic SZ effect
(green solid line), and the Ostriker-Vishniac effect (magenta solid line).

A slightly higher resolution might be reached by the radio interfer-
ometer Arcminute Microkelvin Imager (AMI) (Jones et al. 2002;
Barker et al. 2006; Zwart et al. 2008). We consider the issue of the
explicit mapping of the string network in the context of suchhigh
angular resolution experiments. At these resolutions, theso-called
secondary CMB anisotropies, induced by interaction of CMB pho-
tons with the evolving universe after last scattering, willdominate
the primary anisotropies and must be accounted for in the standard
component of the CMB.

For the sake of our analyses, we consider that the standard cos-
mological parameters (i.e. excluding the string tension) are fixed at
their values in the context of the concordance cosmologicalmodel,
while the string tension remains undetermined. This approxima-
tion is supported by the already tight experimental bounds (5) on
the string tension. In other words, we assume that even if thetrue
string tension is non-zero it is to be small, and the true values of the
standard cosmological parameters are close to their present concor-
dance values. In this context, the angular power spectrum ofboth
the primary and secondary anisotropies may be computed on the
basis of the assumed concordance values for the standard cosmo-
logical parameters.

The statistically isotropic Gaussian primary anisotropies ex-
hibit exponential damping at high angular frequencies. This con-
trasts with the slow decay of the nearly scale-free angular power
spectrum of the string signal, which thus dominates over thepri-
mary anisotropies at high enough angular frequencies.

The secondary anisotropies include gravitational effects
such as the Integrated Sachs-Wolfe (ISW) effect, the Rees-
Sciama (RS) effect, and gravitational lensing, as well as
re-scattering effects such as the thermal and kinetic Sunyaev-
Zel’dovich (SZ) effects. The SZ effects dominate these secondary
anisotropies (Sunyaev & Zel’dovich 1980; Komatsu & Seljak
2002; Fraisse et al. 2008). The ISW and RS effects associated
with the time evolution of the standard gravitational potentials can
be neglected at these angular frequencies. One may thus restrict
the secondary anisotropies considered in the noise to the linear

c© 2009 RAS, MNRAS000, 1–16
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(Ostriker-Vishniac) and non-linear kinetic SZ effects, aswell as
thermal SZ effect. The SZ effects are actually non-Gaussian, spa-
tially dependent, and the kinetic and thermal effects are correlated.
As a simplifying assumption, we treat these two effects as two
independent statistically isotropic Gaussian noise components.
The effect of gravitational lensing is very small relative to the
SZ effects, but we still take it into account as a correction to the
angular power spectrum of the primary anisotropies.

At arcminute resolution, the thermal and kinetic SZ effects
have standard deviations around10µK and5µK respectively. They
also have a slow decay at high angular frequencies and will dom-
inate the string signal for string tension values below the current
experimental bound. Arcminute CMB experiments are in fact pri-
marily dedicated to the detection of these secondary anisotropies.
Unlike the other effects considered, which have the same black
body spectrum as the primary anisotropies, the thermal SZ effect
on the CMB temperature depends on the frequency of observa-
tion. Its amplitude decreases from the Rayleigh-Jeans limit (null
frequency) and around217 GHz where it is expected to vanish,
before increasing again at higher frequencies. Figure 1 represents
the angular power spectra as a function of the angular frequency l,
for a string signal with string tensionρ = 2×10−7, the primary
CMB anisotropies and the correction due to gravitational lensing,
the Ostriker-Vishniac and non-linear kinetic SZ effect, and the ther-
mal SZ effect in the Rayleigh-Jeans limit. These spectra areexplic-
itly borrowed from Fraisse et al. (2008), again assuming concor-
dance values for the standard cosmological parameters.

Instrumental noise also obviously affects signal acquisition.
Corresponding expected amplitudes for future experimentsshould
be lower than the amplitude of secondary anisotropies, but still with
a standard deviation very roughly around1µK per pixel (Kosowsky
2006). We will model instrumental noise as Gaussian white noise,
i.e. with a flat power spectrum.

In this context, the performance of the denoising algorithm
to be defined will be studied in the following limits. As a first
approach, we consider the secondary anisotropies as a statisti-
cally isotropic Gaussian noise with power spectrum given bythe
Rayleigh-Jeans limit, that is added to the primary anisotropies. One
can also assume an observation frequency around217 GHz tak-
ing advantage of the frequency dependence of the thermal SZ ef-
fect, and include in the noise secondary anisotropies in absence of
this effect. This is equivalent to including only the kinetic SZ ef-
fect and gravitational lensing in the secondary anisotropies. Notice
that the future ACT will have one of its acquisition frequencies
at 215 GHz (Kosowsky 2006). In these two cases, instrumental
noise is considered to be negligible and simply discarded. These
two different noise conditions are respectively denoted asSA+tSZ
(secondary anisotropies with thermal SZ effect) and SA−tSZ (sec-
ondary anisotropies without thermal SZ effect) in the following.
Analyzing these limits can reveal to what extent the kineticand
thermal SZ effect hamper the denoising of the string signal,as a
function of the string tension.

Notice that component separation techniques relying on
the non-Gaussianity of the thermal SZ effect have been de-
signed for its extraction from the CMB temperature data, on
the basis of multi-frequency observations (Hobson et al. 1998;
Delabrouille et al. 2003; Maisinger et al. 1999; Pires et al.2006;
Bobin et al. 2008). Other component separation techniques relying
on the non-Gaussianity of the kinetic SZ effect and on its correla-
tion with the thermal SZ effect have also been proposed for its ex-
traction from the CMB temperature data (Forni & Aghanim 2004).
In that regard, a global component separation technique might be

envisaged in order to simultaneously extract all non-Gaussian com-
ponents of the CMB temperature data, including the string signal.

In the context of our string signal denoising approach, the per-
formance of a denoising algorithm can also be examined in the
limit where the noise only includes primary anisotropies and in-
strumental noise, assuming secondary anisotropies have been cor-
rectly separated. The case without instrumental noise is denoted
as PA−IN (primary anisotropies without instrumental noise) and
will be studied in order to understand the behaviour of the denois-
ing algorithm in ideal noise conditions. The case with instrumental
noise with a standard deviation of1µK, denoted as PA+IN (pri-
mary anisotropies with instrumental noise), is also considered.

For the sake of our analyses, foreground emissions such as
Galactic dust or point sources (Kosowsky 2006) are disregarded.

2.4 Numerical simulations

Our denoising approach is based on explicitly describing the sta-
tistical properties of the string signal on small angular scales. We
need precise simulations of the string signal on planar patches for
both training and validation of our method. We use2 simulations
of the string signal borrowed from the full set of84 simulations
produced by (Fraisse et al. 2008). The first simulation of thestring
signal is used as training data for fitting the prior probability dis-
tributions for the coefficients of the wavelet decomposition of the
signals, while the second is reserved for testing the algorithm. In
the four noise conditions considered (PA−IN, PA+IN, SA−tSZ, or
SA+tSZ), this test string signal simulations is combined with100
independent realizations of the noise in order to produce multiple
test simulations.

The simulations are defined on planar patches of sizeτ ×τ for
a field of view defined by an angular openingτ = 7.2◦. The finite
size of the patch induces a discretization of the spatial frequencies
below the band limitB: k = (2π/τ )p = 50p with p = (px, py)
and for integer valuespx andpy with −L 6 px, py < L with L =
τB/2π = B/50. The original maps are sampled on grids with
2L × 2L uniformly sampled pointsxi with 1 6 i 6 4L2 for L =
512. The corresponding pixels thus have an angular size around
0.42′. The corresponding band limit onkx andky thus readsB ≃
2.5×104.

The astrophysical and instrumental components of the noise
are modeled as statistically isotropic Gaussian noise on a planar
patch with the appropriate power spectra. We consider instrumen-
tal noise with a standard deviation of1µK. For each noise com-
ponent, a simulation may easily be produced by taking the Fourier
transform of Gaussian white noise, renormalizing each Fourier fre-
quency value by the square root of the corresponding power spec-
trum, and inverting the Fourier transform (Rocha et al. 2005). In
each noise condition considered, an overall noise simulation is ob-
tained by simple superposition of the required independentcom-
ponents simulated. The power spectrum of the noiseP n(k) is the
sum of the individual spectra.

We also include the effect of the experimental beam of a typi-
cal arcminute experiment in the training string signal simulation,
as well as in all test simulations for each noise condition con-
sidered. We simply model this effect by convolution of the string
signal and astrophysical noise components with a Gaussian kernel
with a full width at half maximum (FWHM) of1 arcminute. This
corresponds to a Gaussian tapering of angular frequencies with a
FWHM of 2×104, which effectively limits the angular frequencies
not far aboveB ≃ 104. Hence the power spectrumP s(k, ρ) of
the string signal in relation (3) and the power spectrum of the astro-
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Figure 2. Simulated maps of the string signal with noise at1 arcminute resolution, on a field of view ofτ ′ = 1.4◦. The top left panel represents the test
simulation of the string signal. The top middle and top rightpanels represent the combinations of this string signal simulation for a string tensionρ = 2×10−7

in the noise conditions PA−IN and SA−tSZ respectively. The bottom panels represent corresponding maps of the magnitude of gradient.

physical noise components are multiplied by the square modulus of
the Fourier transform of the experimental beam. The corresponding
power spectra of the string signal and of the noise in each noise con-
dition considered are respectively denoted asP̃ s(k, ρ) andP̃ n(k).

For illustration, Figure 2 represents simulated maps of the
string signal and noise at the resolution considered, as well as cor-
responding maps of the magnitude of gradient. For visualization
purposes, we show only one fifth of the total field of view, cor-
responding to an angular openingτ ′ = 1.4◦. At a tensionρ =
2×10−7, with noise only including the primary CMB anisotropies,
the strings are not visible by eye in the original map itself,while
part of the network appears in the map of the magnitude of gra-
dient. This illustrates the natural enhancement of high frequency
features such as temperature steps by the gradient operator. At the
same string tension, the presence of the secondary anisotropies
adds noise at the highest angular frequencies and the strings are
not visible by eye anymore in either the original map or the map
of the magnitude of gradient, already when the thermal SZ effect is
discarded.

3 WAVELETS AND SIGNAL SPARSITY

In this section, we firstly describe the steerable wavelet transform
and reformulate the denoising problem in the wavelet domain. We
then detail the probability distributions that we use to describe the

Figure 3. Steerable Pyramid wavelets withN = 6 basis orientations, cen-
tered at the origin of the plane. From top left to bottom right, the highpass
filter γh, the waveletsγq,j with orientationχN = π (i.e. q = N ) for the
spatial scalesj = 1 to j = 4, and the lowpass filterγl.

marginal statistics of the wavelet coefficients of string signal and
the noise.

3.1 Steerable wavelets

Wavelet transforms have become widely used in data analysisand
image processing in recent years, and have found numerous ap-

c© 2009 RAS, MNRAS000, 1–16



6 Hammond et al.

plications in astrophysics (Hobson et al. 1999; Barreiro & Hobson
2001; Starck et al. 2006a). In general, a particular transform will be
useful for signal modeling and denoising if the properties of the sig-
nal of interest are easier to describe, or more distinct fromthe noise
process, in the transform domain than in the original domain. The
cosmic string signal is characterized by localized, oriented edge-
like discontinuities. This motivates the use of a transformthat is
well adapted for representing localized oriented features.

Standard orthogonal wavelets are well localized, but are not
well suited for arbitrarily oriented features as they have strong bias
for horizontal and vertical orientations due to their tensor product
construction. Instead, in this paper we use a steerable wavelet trans-
form. The transform is parametrized by a number of orientations
N and spatial scalesJ . The output of the transform is given by the
convolution of the original signalf with a set of filters at differ-
ent scales. These filters are formed by scaling and rotating asingle,
“mother” waveletγ(x). For the discrete numerical transform, the
rotation is sampled atN equally spaced anglesχq = qπ/N for
integerq with 1 6 q 6 N . The scalings are sampled dyadically,
i.e. as2−j for integerj with 1 6 j 6 J . The transform output at
spatial scalej and orientationq is given byf ⋆ γq,j whereγq,j(x)
is given by rotatingγ by χq and scaling by2−j .

In order to ensure the invertibility of the transform, it is also
necessary to include residual highpass and lowpass bands, gener-
ated by filtersγh andγl respectively. The output of the complete
steerable wavelet transform then includes a highpass band,J sets
of N oriented bandpass bands, and the lowpass band. Invertibility
of the transform is important for our work, as we are interested in
reconstructing the string map which resides in the image domain.

We adopt the notationWf to denote the full vector of wavelet
coefficients for a given input signalf , where we have implicitly
vectorized and concatenated the subbands corresponding todiffer-
ent scales and orientations. We will writeW f

I to specify individual
coefficients, whereI is a multi-index specifying the scale, orienta-
tion and spatial location of the coefficient. We will denote by R the
inverse wavelet transform operator, so that

f(x) =
h

RWf
i

(x) (6)

In this work, we use a particular implementation known as the
Steerable Pyramid2 (Simoncelli et al. 1992). We use the transform
with N = 6 orientations andJ = 4 spatial scales. The correspond-
ing wavelet filters are shown in Figure 3 for orientationχN = π. In
particular, the filters that we employ have odd symmetry, which is
especially appropriate for representing the edge-like discontinuities
present in the string signal.

3.2 Problem reformulation in wavelet domain

By linearity of the wavelet transform, the coefficients of the ob-
served signal in relation (4) are a sum of the wavelet coefficients
for the string signal and the Gaussian CMB noise, i.e.

W f
I = W s

I + W n
I . (7)

The overall denoising algorithm will proceed by computing the
wavelet decomposition of the observed signal, estimating the coef-
ficients corresponding to the string signal, and finally inverting the
wavelet transform. Our Bayesian estimator requires knowledge of
probability distributions describing the behaviour of both the string

2 See also steerable pyramid implementation available for download at
http://www.cns.nyu.edu/∼eero/STEERPYR/.

signal and the noise. As we shall see later, part of our denoising pro-
cedure will assume independence of the coefficients for differentI ,
allowing it to use a model for the marginal probability distribution
of the coefficients.

Notice that by statistical isotropy of both the signal and noise
processes, the probability distributions of the wavelet coefficients
for different spatial scalesj do not depend on position or orienta-
tion. For notational convenience we introduce a generalized spatial
scaleb ∈ {l, j, h} for 1 6 j 6 J . The above comment implies that
the signal and noise distributions depend only onb. The distribu-
tion for the string coefficients will depend on the string tensionρ.
We write this as the conditional probabilityπb(W

s
I |ρ). The noise

coefficient distribution will be denotedgb(W
n
I ).

3.3 String signal distribution

The morphology of the string signal should give rise to sparse dis-
tribution of its wavelet coefficients, i.e. many coefficients are close
to zero with a small number of large magnitude coefficients near the
temperature steps. We observe this behaviour in our training simu-
lation. The sparse wavelet coefficients can be successfullymodeled
by a class of probability distributions known as the Generalized
Gaussian Distributions (GGD).

We thus use a GGD to model the prior distributionsπb:

πb (x|ρ) =
vb

2 (ρub) Γ
`

v−1
b

´ exp

»

−
˛

˛

˛

˛

x

ρub

˛

˛

˛

˛

vb
–

, (8)

whereΓ is the Gamma function, and wherevb andρub are respec-
tively called shape parameters and scale parameters. Thesedistri-
butions all have zero statistical means as the signal itselfis defined
in relation (4) as a zero mean perturbation.

Let us acknowledge that GGD’s have been used previ-
ously to model wavelet coefficients for various image process-
ing applications including denoising (Simoncelli & Adelson 1996;
Moulin & Liu 1999), deconvolution (Belge et al. 2000), and coding
(Antonini et al. 1992; Mallat 1998).

The shape parametersvb can be considered as a continu-
ous measure of the sparsity of the underlying distribution.Setting
vb = 2 recovers the Gaussian distribution, which is non-sparse.
Letting vb approach0 yields very peaked probability distributions
with heavy tails relative to Gaussian distributions, i.e. very sparse
distributions. These parameters determine the kurtosesκs

b , i.e. the
ratio of the fourth central moment to the square of the variance
(second central moment), by

κs
b =

Γ
`

5v−1
b

´

Γ
`

v−1
b

´

ˆ

Γ
`

3v−1
b

´˜2
. (9)

The scale parametersρub are linearly proportional to the stan-
dard deviationsσs

b of the distributions. The corresponding vari-
ances reflect the power spectrum (3) of the string signal in the range
of spatial frequenciesk probed by the filter at scaleb, and thus also
scale asρ2:

(σs
b)

2 = ρ2 Γ
`

3v−1
b

´

Γ
`

v−1
b

´ u2
b . (10)

The parametersvb andub are estimated by a moment method
from the wavelet decomposition of the training simulation of the
string signal for a given string tensionρ. For each spatial scale, the
sample variance and kurtosis are calculated, then equations (9) and
(10) are solved numerically to obtainvb andub.
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Figure 4. Logarithm of the modeled prior GGD’sπb for the wavelet coefficientsW s
I of a string signal (red solid curves), computed usingN = 6 orientations

andJ = 4 spatial scales, superimposed on the histograms of the corresponding coefficients from the training simulation (black dashed curves) forb = {h, j, l}
and1 6 j 6 J = 4. From top left to bottom right, the coefficients associated with the highpass filterγh, with the waveletsγq,j for the spatial scalesj = 1
to j = 4, and with the lowpass filterγl.

b ub vb σs
b (ρ = 1) κs

b σn
b (PA−IN) σn

b (SA−tSZ) σn
b (SA+tSZ)

h 3.8×103 0.41 1.2×105 47 4.7×10−4 8.6×10−2 0.16

j = 1 1.6×104 0.42 4.1×105 42 4.5×10−3 0.26 0.56

j = 2 3.8×105 0.49 4.5×106 26 0.55 2.3 5.4

j = 3 7.2×106 0.63 3.1×107 14 32 35 44

j = 4 9.9×107 0.88 1.8×108 7.3 4.9×102 4.9×102 5.1×102

l 9.8×109 1.5 8.3×109 3.7 2.5×104 2.5×104 2.5×104

Table 1. Parameters for the modeled prior GGD’sπb and noise Gaussian distributionsgb for the spatial scalesb = {h, j, l} and1 6 j 6 J = 4. The
first column identifies the spatial scaleb. The next four columns identify the parametersub andvb, and the corresponding standard deviationsσs

b at ρ = 1
and kurtosesκs

b for the prior GGD’s. The last three columns identify the standard deviationsσn
b for the noise distributions in the noise conditions PA−IN,

SA−tSZ, and SA+tSZ. All values are given with two significant figures.

Figure 4 shows the modeled prior GGD’sπb for the coeffi-
cients of the string signal with the steerable waveletγ with N = 6
orientations andJ = 4 spatial scales (see Figure 3). The GGD’s are
superimposed on the histograms of the corresponding coefficients
from the training simulation. As the distributions for coefficients of
different orientations at the same spatial scale will be identical by
statistical isotropy, the corresponding histograms are produced by
aggregating the coefficients over all6 orientations. Qualitatively,
we see that the prior distributionsπb are well modeled by GGD’s,
which justifies our choice of parametersN andJ .

The estimated values of the parametersub andvb, and cor-
responding standard deviationsσs

b and kurtosesκs
b are reported in

the columns two to five of Table 1. Notice that the shape parameters
measured for the highpass band (b = h) and for the four bandpass
bands (j = 1 to j = 4) are significantly lower than2, correspond-
ing to very sparse distributions. The larger value for the shape pa-
rameter for the lowpass band justifies our choice ofJ = 4 for the
maximal spatial scale. At the scales accounted for by the lowpass
filter, the signal coefficients are not significantly non-Gaussian and
will not be very sparsely distributed. The reconstruction of temper-
ature steps therefore does not strongly rely on those scales.

3.4 Noise distribution

The Gaussian probability distributionsgb for the noise coefficients
W n

I are defined as:

gb (x) =
1

σn
b

√
2π

exp

"

−1

2

„

x

σn
b

«2
#

. (11)

These distributions are all zero mean, as the noise itself isde-
fined in relation (4) as a zero mean perturbation. For each of the
noise conditions PA−IN, PA+IN, SA−tSZ, or SA+tSZ, the vari-
ances(σn

b )2 can be inferred from the power spectrum̃P n(k) of the
noise at1 arcminute resolution in the range of spatial frequencies
k probed by the wavelets at the different spatial scales:

(σn
b )2 =

1

τ 2

L−1
X

{px,py}=−L

|bγG (k) |2P̃ n (k) . (12)

In this relation, the multi-index valueG reads asG = (q, j) with
1 6 q 6 N and1 6 j 6 J for the oriented wavelet coefficients,
G = l for the lowpass coefficients, andG = h for the highpass
coefficients. Notice that due to the rotational invariance of the noise
power spectrum, the variances calculated in equation (12) do not
depend on the orientationq. The values of the standard deviations
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σn
b for the noise conditions PA−IN, SA−tSZ, and SA+tSZ are

listed in the last three columns of Table 1.

4 BAYESIAN DENOISING

In this section, we define in detail our wavelet domain Bayesian
denoising (WDBD) algorithm. We define an overall Bayesian least
squares estimator as an average of estimation functions evaluated
at each value of the unknown string tension, weighted by the poste-
rior probability distribution for the string tension. We then discuss
Wiener filtering as a standard alternative to our WDBD algorithm.

4.1 Bayesian least squares

In a Bayesian approach the signal coefficientsWs are estimated
from their posterior probability distribution given the coefficients
of the observed signalWf : p(Ws|Wf ). Under our general assump-
tion that the standard cosmological parameters are fixed at their
concordance values while the string tension remains undetermined
this posterior probability distribution reads as

p
“

Ws|Wf
”

=

Z

dρ p
“

ρ|Wf
”

p
“

Ws|Wf , ρ
”

, (13)

wherep(ρ|Wf ) is the posterior probability distribution function for
ρ givenWf andp

`

Ws|Wf , ρ
´

is the posterior probability distribu-
tion function forWs givenWf andρ.

Several possible methods for selecting an appropriate estimate
given the posterior probability distribution are possible. Maximiz-
ing this distribution leads to the maximuma posteriori(MAP) esti-
mate. Other approaches may consist of minimizing some expected
cost function. We employ the well known Bayesian least squares
estimate which minimizes a quadratic cost function. This estimate
is given by the expectation value of the posterior probability dis-
tribution. Using relation (13) and the linearity of the expectation
value, our estimator may be written as

Ws = E
h

Ws|Wf
i

=

Z

dρ p
“

ρ|Wf
”

Ws (ρ) , (14)

with

Ws (ρ) = E
h

Ws|Wf , ρ
i

=

Z

dWs Ws p
“

Ws|Wf , ρ
”

. (15)

This estimation of the signal coefficients is thus given by the mean
of the estimations for different string tensions, weightedby poste-
rior probability distribution forρ given the observed signal.

4.2 Estimation functions

We concentrate firstly on computation ofWs (ρ) from equation
(15). Notice that the coefficients of the wavelet decomposition of
the signal and noise are correlated at different orientations, spatial
scales and positions. Formally one should construct probability dis-
tributions accounting for these correlations. However, this would
require computing expectations in a space with dimension equal
to the number of coefficients of the wavelet decomposition. In this
perspective, approaches accounting for correlations of the string
signal developed in the framework of maximum entropy meth-
ods (MEM) (Gull & Skilling 1999; Maisinger et al. 1999) mightbe
considered. However such methods assume entropic prior models
and are therefore not directly compatible with our prior model in
terms of GGD’s for the coefficients of the string signal.

0 5 10
0

5

10

|W f |

|F
(W

f
,
ρ
)|

Figure 5. Bayesian least squares estimation functionsF (·, ρ) depending
on observed coefficientW f

I at a non-specified spatial scale and for various
string tensionsρ. We consider a shape parameterv = 0.5 and various scale
parametersρu identifying various standard deviationsσs of the coefficients
of the string signal, all for a unit standard deviation of thenoiseσn = 1.
The black dashed curve shows the limitρ → ∞, where the estimation
function is the identity function. The upper solid curve (magenta) relates to
ρu = 0.1, i.e. σs ≃ 1.1, the middle solid curve (blue) relates toρu =
1.5× 10−2, i.e. σs = 0.16, while the lower solid curve (red) relates to
ρu = 5×10−3, i.e.σs = 5.5×10−2.

Accordingly, we employ the simplifying assumption that the
wavelet coefficients for both the signal and noise for different val-
ues ofI are independent, after conditioning on the string tensionρ.
Under this assumption, the integral in expression (15) may be fac-
torized, and each coefficientW s

I of the estimate depends only on
the corresponding observed valueW f

I . To simplify the notation in
the following, we writex = W s

I andy = W f
I to refer to the indi-

vidual pure string coefficients and observed signal coefficients. We
shall see that the resulting estimator will also depend on the spatial
scaleb.

Each coefficientx may then be estimated as a function of the
corresponding observed valuey. By Bayes’ theorem we have that
p(x|y, ρ) ∝ p(y|x, ρ)p(x|ρ). The probabilityp(x|ρ) is exactly the
marginal probability for each coefficient, which we have modeled
as the GGDπb. Conditioned on the signalx, the probability of
observingy is equal to the probability of the noise coefficient being
equal to exactlyy − x. Thusp(y|x, ρ) is equal togb(y − x). We
thus have the posterior probability distribution

p(x|y, ρ) = C−1 gb(y − x)πb(x|ρ) (16)

and our Bayesian estimator at spatial scaleb is

E[x|y, ρ] = C−1

Z

xgb(y − x)πb(x|ρ)dx (17)

with normalizationC =
R

gb(y − x)πb(x|ρ)dx. This expression
depends only on the observed coefficienty, the tensionρ and the
scaleb. This defines the estimation functionFb(y, ρ) = E[x|y, ρ].
Returning to our original notation, the estimated string coefficients
are given by evaluation of the estimation function at each scale, i.e.

W s
I (ρ) = Fb

“

W f
I , ρ

”

. (18)

In practice, these estimation functions are computed by nu-
merical integration and tabulated for the different spatial scalesb
and the required range of string tensions. Figure 5 shows generic
shapes of estimation functionsF (·, ρ) at a non-specified spatial
scale and for various string tensionsρ. For the sake of illustration,
we consider a shape parameterv = 0.5 and various scale param-
etersρu identifying various standard deviationsσs of the coeffi-
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cients of the string signal, all for a unit standard deviation of the
noiseσn = 1. Notice that the estimation functions are odd, and al-
ways shrink the magnitude of their input, i.e.|F (W f

I , ρ)| < |W f
I |.

Qualitatively, they behave as a smooth thresholding operation on
the observed coefficient|W f

I |, sending small magnitude coeffi-
cients closer to zero while preserving large magnitude coefficients.
For small string tensions, the noise dominates the signal and the ef-
fective thresholding is more severe, while for large stringtensions
the noise becomes negligible andFb(·, ρ) reduces to the identity.

In the particular case of Gaussian signal coefficients (v =
2), the Bayesian least squares estimation is equivalent to simple
Wiener filtering of the coefficients. Also notice that in the case of
Laplacian signal coefficients (v = 1), the estimation function for
MAP estimation would reduce to the well known soft-thresholding
operation (Moulin & Liu 1999). By definition, this specific instance
of thresholding operation sends to zero coefficients with anabso-
lute value below some threshold, and reduces the absolute value of
coefficients above the threshold by the value of the threshold itself.

4.3 Posterior string tension distribution

By Bayes’ theorem, the posterior probability distributionfunction
for ρ given the observed signalp(ρ|Wf ) is simply obtained from
the likelihoodL(Wf |ρ) and the prior probability distribution func-
tion p(ρ) on ρ. For complete consistency, the likelihood should
be calculated using the framework of the model established for
the coefficients, based on relation (7) and on the prior GGD’sπb.
However, while this model by construction accounts for the non-
Gaussianity, i.e. sparsity, of the string signal, it ignores the correla-
tion between coefficients.

We have observed that a likelihood yielding a more precise
localization of the string tension value can actually be obtained us-
ing a power spectral model. Such a model assumes both the string
signal and the noise arise from statistically isotropic Gaussian ran-
dom processes, such that their Fourier coefficients are indepen-
dent Gaussian variables. This assumption relies on the ideathat the
characteristic temperature steps of the string signal are smoothed
by projection on the non-local imaginary exponentials defining the
Fourier basis. Under this model, as the string signal and noise are
independent, the observed signalf has a power spectrum

P̃ (k, ρ) = P̃ n (k) + P̃ s (k, ρ) , (19)

In this setting the likelihood can be computed most easily in
terms of the Fourier transformbf of the observed signal. Accounting
for the complex value of the Fourier coefficients as well as for the
symmetry bf(−k) = bf∗(k) that holds for real signalsf(x), this
likelihood reads as:

L
“

bf |ρ
”

=

L−1
Y

{px,py}=−L

1
q

πP̃ (k, ρ)
exp

"

−1

2

| bf (k) |2

P̃ (k, ρ)

#

, (20)

where| · | stands for the modulus of a complex variable. The poste-
rior probability distribution function forρ given the observed signal
thus reads as

p
“

ρ| bf
”

= D−1 p (ρ)L
“

bf |ρ
”

(21)

with normalizationD =
R

p(ρ)L(f̂ |ρ)dρ. We take the priorp(ρ)
to be flat in an intervalρ ∈ [0, ρmax], with an upper boundρmax large
enough relative to the upper bound associated with the best exper-
imental constraints (5):ρmax > ρexp. In practice,L( bf |ρ) decays so
rapidly for largeρ that the resulting posterior is not sensitive to the

valueρmax provided that it is greater than the effective support of
L( bf |ρ).

We use this PSM posteriorp(ρ|bf) in the place ofp(ρ|Wf ) in
equation (14). Each component of the string coefficientWs is thus
estimated as

W s
I =

Z

p(ρ| bf)Fb(W
f
I , ρ)dρ. (22)

In practice, this integral is computed numerically by sampling 20
values ofρ chosen to cover the effective support ofp(ρ|bf).

The estimated string signal in the original image domain is
then given by inverting the wavelet transform, i.e.

s(x) =
ˆ

RW
s˜

(x) (23)

4.4 Alternative Wiener filtering

In order to obtain a more precise estimation of the posteriorprob-
ability distribution function forρ, we have explicitly set up a PSM
assuming that the string signal arises from a statisticallyisotropic
Gaussian random process, such that its Fourier coefficientsare in-
dependent Gaussian variables, just as for the noise.

At each string tension allowed byp(ρ| bf), one may now con-
sider estimating the string signals from the observed signalf sim-
ply using this Gaussianity assumption. In this case the Bayesian
least squares estimate for a string tensionρ reduces to Wiener fil-
tering in the Fourier domain, so that:

bs (k, ρ) =
P̃ s (k, ρ)

P̃ n (k) + P̃ s (k, ρ)
bf (k) . (24)

Analogously to relation (22), the estimate of the string signal
in the Fourier domain is

bs(k) =

Z

p(ρ|bf)bs(k, ρ)dρ, (25)

and the estimate in the image domain is recovered by inverting the
Fourier transform.

Let us acknowledge the fact that this alternative Wiener fil-
tering based procedure relies only on the knowledge of the power
spectra of both the signal and noise, while our WDBD approach
relies on a training simulation for an explicit modeling of the
prior GGD’s for the coefficients of a wavelet decomposition of
the string signal. However, from the theoretical point of view it is
clear that the Wiener filtering approach, which disregards the non-
Gaussianity of the signal to be recovered, will be less effective at
identifying this signal than our WDBD procedure, which explicitly
accounts for the corresponding sparsity. While the Gaussianity as-
sumption is useful for estimating a single global parametersuch as
the string tension on the basis of a PSM, it is not optimal for the
explicit reconstruction of the sparse features of the string network
itself. This fact is illustrated in our analysis the algorithm perfor-
mance in the next section.

5 ALGORITHM PERFORMANCE

In this section, we firstly define the WDBD performance criteria
to be the signal-to-noise ratio, correlation coefficient, and kurtosis
of the map of the magnitude of gradient of the string signal. We
then study the algorithm performance in each noise condition, in
comparison with Wiener filtering. We also examine a detectability
threshold on the string tension based on on the PSM, and compare
it with an eye visibility threshold for the WDBD algorithm.
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5.1 WDBD performance criteria

As already emphasized, denoising may be used as a pre-processing
step for other methods for cosmic string detection based on ex-
plicit edge detection (Jeong & Smoot 2005; Lo & Wright 2005;
Amsel et al. 2007). The relative performance of such methodsbe-
fore and after denoising might be an effective criterion forevaluat-
ing the denoising performance itself. Here we evaluate the perfor-
mance of WDBD independently of any further processing.

The overall denoising is effective for string mapping if the
magnitude of gradient of the denoised signal closely resembles the
magnitude of gradient of the true string signal. A simple qualita-
tive measure of the denoising performance is given by whether the
string network is visible in the magnitude of gradient of thede-
noised signal. We define the eye visibility threshold as the mini-
mum string tension around which the overall denoising and map-
ping by the magnitude of the gradient begins to exhibit string
features visible by eye. We will augment this qualitative assess-
ment of the denoising performance with three quantitative mea-
sures, namely the signal-to-noise ratio, the correlation coefficient
and the kurtosis of the magnitude of the gradient of the denoised
string signal. The first two of these are computed with respect to
the original known signal, while the kurtosis is computed only us-
ing the denoised signal. The kurtosis is known to be a good statistic
for discriminating between models with and without cosmic strings
(Moessner et al. 1994).

The signal-to-noise ratio is defined in terms of the magnitude
of gradient|∇s|(x) of the original string signals(x) in relation (4),
and of the magnitude of gradient|∇s|(x) of the denoised signal
s(x) in relation (23) as

SNR(|∇s|,|∇s|) = −20 log10

σ(|∇s|−|∇s|)

σ|∇s|
, (26)

whereσ(|∇s|−|∇s|) andσ|∇s| respectively stand for the standard
deviations of the discrepancy signal|∇s| − |∇s| and of the orig-
inal signal |∇s|. The standard deviations are estimated from the
sample variances on the basis of the signal realizations concerned.
With this definition, the SNR(|∇s|,|∇s|) ∈ R is measured in deci-
bels (dB). Large negative and positive values are respectively asso-
ciated with large and small discrepancy signals relative tothe orig-
inal signal. An exact recovery of the string network would provide
an infinite signal-to-noise ratio. We will consider that thedenois-
ing is effective in terms of signal-to-noise ratio for the values ofρ
where this statistic is larger after denoising than before,and posi-
tive.

The correlation coefficient is defined in terms of the magni-
tude of gradient of the original and denoised string signalsas

r(|∇s|,|∇s|) =
cov(|∇s|,|∇s|)

σ|∇s|σ|∇s|
, (27)

where cov(|∇s|,|∇s|) stands for the covariance between|∇s| and
|∇s|. This signal covariance is also estimated from the sample co-
variance on the basis of the signal realizations concerned.An exact
recovery of the string network would provide a unit correlation co-
efficient. The null value corresponds to a reconstruction completely
decorrelated from the original signal. We will consider that the de-
noising is effective in terms of correlation coefficient forthe values
of ρ where this statistic is larger after denoising than before,and
positive.

Analogously, kurtoses are estimated from the sample kurtoses
on the basis of the signal realizations concerned. The estimated kur-
tosis of the magnitude of gradient of pure Gaussian noise is dis-

tributed around a mean value across all test simulationsκ|∇n| ≃ 3,
even though the magnitude of gradient itself is not Gaussian. At the
arcminute resolution considered, the estimated kurtosis of the mag-
nitude of gradient of a pure string signal is much higher thanthe
value associated with pure noise, with a value aroundκ|∇s| ≃ 32 in
the training simulation. The estimated kurtosis of the magnitude of
gradient of a string signal with noise before denoising naturally lies
in the interval[κ|∇n|, κ|∇s|], for any value of the string tensionρ.
Its mean valueκ|∇f |(ρ) obviously increases fromκ|∇n| for ρ = 0
to κ|∇s| for ρ → ∞. An ideal denoising procedure should recover
exactly the original string signal. The mean value of the estimated
kurtosis would then be raised toκ|∇s| after denoising. In practice,
the estimated kurtosis of the magnitude of gradient after denois-
ing is distributed around some mean valueκ|∇s|(ρ) as a function
the string tensionρ. The comparisonκ|∇s|(ρ) after denoising with
κ|∇f |(ρ) before denoising measures the denoising performance as
a function of the string tension. We will simply consider that the
denoising is effective in terms of kurtosis for the values ofρ where
this statistic is significantly larger after denoising thanbefore.

Our denoising experiments for each noise condition consid-
ered are performed for string tensions equi-spaced in logarithmic
scaling in the rangelog10 ρ ∈ [−10,−05], corresponding to ratio
values forρ of 1.0, 1.6, 2.5, 4.0, and6.3 in each order of mag-
nitude. For each noise condition and string tension considered, we
perform100 denoising simulations at 1 arcminute resolution. We
consider that the quantitative measures described above indicate ef-
fective denoising performance for a given string tension when they
show effective performance significant over the entire ensemble of
denoising simulations.

5.2 Noise conditions PA−IN and PA+IN

For the PA−IN condition, the magnitude of gradient of the string
signal before and after WDBD and Wiener filtering is represented
in Figure 6 for various string tensions from a single simulation.
Only one fifth of the total field of view of the simulations is shown,
corresponding to an angular openingτ ′ = 1.4◦.

The visibility of the individual strings of the network is clearly
enhanced by the denoising. For a value of the string tension around
the experimental upper boundρ = 2.5×10−7, part of the network
is visible by eye before denoising. At tensionρ = 6.3×10−8 , a
very reduced number of strings is visible by eye before denoising.
For both of these string tensions, part of the network is visible by
eye through WDBD and Wiener filtering, but the resulting map is
clearly more noisy in the second case. The valueρ = 6.3×10−10

is the lower bound on the string tension where a very reduced num-
ber of strings is visible by eye through WDBD, while no strings
are visible by eye before denoising. In this limit, only string loops
are actually recovered, together with some spurious point sources.
Wiener filtering only provides noise at that level.

The posterior probability distributions for the string tension
are reported in Figure 7 as computed from the signals observed at
the three string tensions of interest in Figure 6. The graphshighlight
the high precision of the localization ofρ by the PSM described in
Section 4. The slight offset observed is not related to a biasof the
procedure itself but is simply due to an effective difference between
the power spectrum of the test string simulation and the analytical
expression of the power spectrumP s(k) used in relations (20) and
(21). This difference may be associated with a cosmic variance in-
cluding the contribution of a string signal.

The signal-to-noise ratio, correlation coefficient, and kurtosis
of the magnitude of gradient of the string before and after WDBD
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Figure 6. Magnitude of the gradient of the string signal before denoising (left panels), after Wiener filtering (middle panels) and WDBD (right panels), in the
noise conditions PA−IN and for various string tensions at1 arcminute resolution on a field of view ofτ ′ = 1.4◦. From top to bottom, the string tensions
considered areρ = 2.5×10−7, ρ = 6.3×10−8, andρ = 6.3×10−10.

and Wiener filtering are represented in Figure 8 as functionsof
the string tension. In the range of string tensions where thede-
noising procedure provides visibility of strings by eye, itappears
clearly that WDBD and Wiener filtering both significantly increase
the signal-to-noise ratio and correlation coefficient to strictly posi-
tive values. At low string tensions the correlation coefficient is also
significantly higher for WDBD than for Wiener filtering. Thisrep-
resents a first quantitative measure of the superiority of our ap-
proach. The kurtosis of the magnitude of gradient is also signif-
icantly increased from its value before denoising towards higher
values through WDBD. The peak obtained at low string tensions,
with kurtosis values above the expected value aroundκ|∇s| ≃ 32,

reflects the fact that the denoising recovers a thresholded version
of the string signal in that range, only keeping localized loops in
the limit identified by the visibility by eye (see Figure 6). At low
string tensions, Wiener filtering essentially fails to increase the kur-
tosis values towards the expected value. We interpret this failure as
a quantitative measure of the fact that Wiener filtering fails to re-
move a substantial part of the noise, in contrast with WDBD. This
represents a second quantitative measure of the superiority of our
approach. Let us emphasize that the lowest string tensions where
each of our quantitative measures begin to show effective denois-
ing performance for the WDBD algorithm are very close to the eye
visibility threshold.
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Figure 7. Posterior probability distributions (red solid curves) for the string tension as computed from simulated signals observed forρ = 2.5×10−7 (left
panel),ρ = 6.3×10−8 (middle panel), andρ = 6.3×10−10 (right panel), in the noise conditions PA−IN at 1 arcminute resolution. The black dashed
vertical lines represent the exact values of the string tension relative to the test string simulation.
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Figure 8. Signal-to-noise ratio (left panel) in decibels (dB), correlation coefficient (middle panel), and kurtosis (right panel) of the magnitude of gradient
as functions of the string tension in logarithmic scaling inthe rangelog10 ρ ∈ [−10,−05] in the noise conditions PA−IN and at1 arcminute resolution.
The black dashed curves represent values before denoising,while the red solid curves and green dot-dashed curves represent values after WDBD and Wiener
filtering respectively. The vertical lines on the curves represent the variability at one standard deviation of the estimated statistic across the100 test simulations
considered (these lines are not visible where smaller than the width of the curves). The blue dotted vertical lines represent the eye visibility threshold
ρ = 6.3×10−10 . The blue dotted horizontal lines identify either the limitof zero signal-to-ratio, zero correlation coefficient, or the kurtosis of the magnitude
of gradient of a pure string signal:κ|∇s| ≃ 32.

The degradation of the denoising performance due to instru-
mental noise is probed in the noise condition PA+IN, with an in-
strumental noise level of1µK. For this case we omit a complete
analysis of all our quantitative measures. We simply noticethat
such a small level of instrumental noise already significantly affects
the denoising performance by raising the eye visibility threshold
by more than one order of magnitude. The only reason why an ef-
fective reconstruction of strings may be achieved down to sosmall
string tensions in the noise conditions PA−IN is simply that, at high
spatial frequencies, the string signal with a nearly scale-free power
spectrum largely dominates the primary anisotropies with an expo-
nentially damped power spectrum. This advantage is lost as soon
as high frequency noise is added, in particular instrumental noise.

5.3 Noise conditions SA−tSZ and SA+tSZ

The magnitude of gradient of the string signal before and after
WDBD and Wiener filtering is represented in Figure 9 for various
string tensions, from a single simulation. In the noise conditions
SA−tSZ and for a value of the string tension around the experimen-
tal upper boundρ = 4.0×10−7, a very reduced number of strings is
visible by eye before denoising. Part of the network is visible by eye
after WDBD and Wiener filtering, but the resulting map is clearly
more noisy in the second case. The valueρ = 1.0×10−7 is the
lower bound on the string tension where a very reduced numberof
strings is visible by eye through WDBD, while no string is visible

by eye before denoising. Wiener filtering only provides noise at that
level. In the noise conditions SA+tSZ, the valueρ = 2.5×10−7 is
the lower bound on the string tension where a very reduced num-
ber of strings is visible by eye through WDBD, while no stringis
visible by eye before denoising. Again, Wiener filtering only pro-
vides noise at that level. At the lower bounds for the string tensions
in both noise conditions only string loops are recovered, still with
some spurious point sources.

The posterior probability distributions for the string tension
are reported in Figure 10 as computed from the signals observed in
the three cases of interest in Figure 9. The graphs still highlight the
high precision of the localization ofρ by the PSM.

The signal-to-noise ratio, correlation coefficient, and kurtosis
of the magnitude of gradient of the string signal before and after
WDBD and Wiener filtering are represented in Figure 11 as func-
tions of the string tension. As for the PA−IN and PA+IN cases,
both WDBD and Wiener filtering increase the signal-to-noisera-
tio and correlation coefficient to strictly positive valuesfor ten-
sions above the eye visibility threshold. The correlation coefficient
is significantly higher for WDBD than for Wiener filtering in the
whole range of string tensions of interest. As before, the kurtosis
of the magnitude of gradient is also significantly increasedfrom
its value before denoising towards higher values through WDBD,
with a peak at low string tensions due to the fact that the denoising
recovers a thresholded version of the string signal. Wienerfiltering
essentially fails to increase the kurtosis values towards the expected
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Figure 9. Magnitude of the gradient of the string signal before denoising (left panels), after Wiener filtering (middle panels) and WDBD (right panels), for
various string tensions at1 arcminute resolution on a field of view ofτ ′ = 1.4◦. The two top panel rows relate to the noise conditions SA−tSZ for string
tensionsρ = 4.0×10−7 andρ = 1.0×10−7 respectively. The bottom panel row relates to the noise conditions SA+tSZ for a string tensionρ = 2.5×10−7 .

value in the whole range of string tensions of interest, oncemore
reflecting its poorer denoising performance. As before, we see that
for both SA−tSZ and SA+tSZ, the eye visibility thresholds are
very close to the lowest string tensions where each of our quantita-
tive measures begin to show effective denoising performance.

Let us acknowledge the fact that, in the noise conditions
SA−tSZ and SA+tSZ, the lowest string tensions where denois-
ing is effective are greatly increased relative to the noisecondition
PA−IN. For SA−tSZ, the eye visibility threshold is slightly be-
low the best experimental bound, while for SA+tSZ it is slightly
above. These results are absolutely in the line of those obtained in

the noise condition PA+IN, as the secondary anisotropies represent
even stronger higher frequency noise.

5.4 Comparison to PSM detectability threshold

As our WDBD algorithm uses the PSM for preliminary localiza-
tion of the string tension, it is a natural question to ask whether the
overall denoising performance at low string tensions is limited by
this preliminary PSM localization. We address this by defining and
studying the detectability threshold for the PSM, which provides a
measure of the minimum string tension where the PSM alone pro-
vides robust detection of strings.
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Figure 10.Posterior probability distributions (red solid curves) for the string tension as computed from a simulated signal observed at1 arcminute resolution.
The left and middle panels relate to the noise conditions SA−tSZ for string tensionsρ = 4.0×10−7 andρ = 1.0×10−7 respectively. The right panel relates
to the noise conditions SA+tSZ for a string tensionρ = 2.5×10−7 . The black dashed vertical lines represent the exact valuesof the string tension relative to
the test string simulation.
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Figure 11.Signal-to-noise ratio (left panels) in decibels (dB), correlation coefficient (middle panels), and kurtosis (right panels) of the magnitude of gradient
as functions of the string tension in logarithmic scaling inthe rangelog10 ρ ∈ [−10,−05] and at1 arcminute resolution. The top panels relate to the noise
conditions SA−tSZ, while the bottom panels relate to the noise conditions SA+tSZ. The black dashed curves represent values before denoising, while the
red solid curves and green dot-dashed curves represent values after WDBD and Wiener filtering respectively. The vertical lines on the curves represent the
variability at one standard deviation of the estimated statistic across the100 test simulations considered (these lines are not visible byeye where smaller than
the width of the curves). The blue dotted vertical lines represent the eye visibility thresholdsρ = 1.0×10−7 for the top panels andρ = 2.5×10−7 for the
bottom panels. The blue dotted horizontal lines identify either the limit of zero signal-to-ratio, zero correlation coefficient, or the kurtosis of the magnitude of
gradient of a pure string signal:κ|∇s| ≃ 32.

We firstly describe how the PSM detection threshold is com-
puted, based on a hypothesis test for string detection. We may de-
fine an estimationbρ of the string tension from the observed signal
f as the expectation value of the posterior probability distribution
(21) computed on the basis of the PSM:

bρ = E
h

p
“

ρ| bf
”i

. (28)

For any possible string tension, the probability distribution function
for bρ may consequently be obtained from simulations.

We identify the critical valueρ0 such that, for null string ten-
sion, one hasp(bρ > ρ0) = α, for some suitable positive valueα

much smaller than unity. The test for the hypothesis of null string
tension is then defined as follows. For estimated valuesbρ > ρ0,
the hypothesis of null string tension may be rejected with a signif-
icance levelα. On the contrary for estimated valuesbρ < ρ0, the
hypothesis of null string tension may not be rejected.

We define the detectability thresholdρ⋆ such that, for a string
tensionρ⋆, one hasp(bρ > ρ0) = 1 − β, for some other suitable
positive valueβ much smaller than unity. Consequently, for string
tensions larger thanρ⋆, the probability of rejecting a null string ten-
sion on the basis of the hypothesis test defined is larger than1− β.
The valueρ⋆ is the smallest string tension that can be discrimi-
nated from the hypothesis of null string tension for given values of
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Noise condition PSM detectability Eye visibility

PA−IN 2.2×10−10 6.3×10−10

PA+IN 1.7×10−8 2.5×10−8

SA−tSZ 6.1×10−8 1.0×10−7

SA+tSZ 1.9×10−7 2.5×10−7

Table 2. PSM detectability and eye visibility thresholds on the string ten-
sion determined on the basis of the PSM for each of the noise conditions
considered. All values are given with two significant figures.

α andβ. It may thus be understood as a detectability threshold de-
termined on the basis of the PSM. As our overall denoising method
is using the PSM as a preliminary estimation of the string tension,
ρ⋆ identifies an effective lower bound on the string tension range
where denoising could reasonably be expected to be effective.

The PSM detectability thresholds in the various noise condi-
tions considered are reported in Table 2 forα ≃ β ≃ 0.01. In
all cases except SA+tSZ the PSM detectability thresholds are be-
low the best experimental bound, while for SA+tSZ the PSM de-
tectability threshold is around the best experimental bound.

Secondly, we compare these thresholds with the eye visibility
thresholds, which as noted previously also indicate the lower limit
of string tensions where our quantitative measures show effective
performance for the WDBD algorithm. For each of the noise condi-
tions with significant high frequency content, i.e. PA+IN, SA−tSZ
and SA+tSZ, the PSM detectability thresholdρ∗ is slightly below
the eye visibility threshold. For the PA−IN case, this difference
is larger, the PSM detectability threshold being about one third of
the eye visibility threshold. This indicates that the PSM isable to
more effectively exploit the high spatial frequency rangeswhere
the string signal dominates the primary anisotropies.

The discrepancy between these two thresholds shows that the
detection problem alone can be solved with the PSM at slightly
lower string tensions than the more difficult denoising problem. In-
deed for values of the string tension between the two thresholds,
denoising does not produce visible strings even though the PSM
posterior probability distributions forρ are distinctly peaked away
from zero. It is one thing to estimate a single global parameter such
as the string tension on the basis of a PSM, but quite another to
explicitly reconstruct the string network itself.

5.5 Algorithm robustness

We comment here on the robustness of the WDBD algorithm rela-
tive to both additional noise from foreground point sourcesand to
the possible improvements in the definition of the denoisingproce-
dure itself.

We have explicitly disregarded the problem of foreground
emissions such as radio and infrared point sources. The discrim-
ination of point sources from string loops imprinted in the CMB
may appear to be a difficult task. However, the dipolar structure
of the string loops represents an essential difference withpoint
sources (Fraisse et al. 2008). In that context, the odd symmetry
of the wavelets used in the WDBD algorithm (see Figure 3) to
match the string imprints is adequate both for long strings and
string loops, and might help to discriminate between stringloops
and point sources. The algorithm was shown to be effective atde-
tecting string loops, even at low tensions where long strings are
not reconstructed anymore. However spurious point sourceswere
also reconstructed at very small string tensions in the noise condi-

tions PA−IN, in the absence of foreground point sources. A thor-
ough analysis should be conducted in order to assess the realro-
bustness of the algorithm to discriminate between string loops and
point sources, and to discuss necessary enhancements.

Our approach explicitly assumes the statistical independence
of coefficients of the wavelet decomposition, when conditioned
on the string tension. However, significant correlations are present
in the wavelet coefficients, and exploiting them should leadto
improved denoising performance. Gaussian scale mixture (GSM)
models may be considered which allow one to explicitly account
for local correlations of the wavelet coefficients in the denoising
process (Andrews & Mallows 1974; Portilla et al. 2003). An en-
hanced version of this model called the orientation-adapted Gaus-
sian scale mixture (OAGSM) model relies on steerable wavelets
in order to integrate directionality information in the local correla-
tions (Hammond & Simoncelli 2008). A preliminary implementa-
tion of the OAGSM model suggests that an enhancement relative to
the WDBD algorithm may indeed be expected, albeit at significant
computational cost.

An improvement of the similarity of the shape of the filters
to better match the typical string imprints may also be envisaged.
Even though steerable wavelets can be very directional, their spatial
support is not especially narrow. Filters with a more elongated sup-
port such as curvelets (Candès & Donoho 1999; Starck et al. 2002)
might be expected to provide better performance for the detection
of long strings. Let us notice however that such filters wouldnot be
adequate anymore for string loops. Moreover a preliminary imple-
mentation of this evolution provides no improvement relative to the
WDBD algorithm for the detection of long strings.

Finally, a discretization of the wavelet scales finer than the
dyadic discretization used might provide an improved statistical
model of the coefficients of the string signal at each spatialscale
b. We did not consider this evolution here.

6 CONCLUSION

We have described a Bayesian framework for mapping the CMB
signal induced by cosmic strings, based on a generalized Gaussian
model capturing the sparse behaviour of the string signal inthe
steerable wavelet domain. This signal is buried in the standard pri-
mary and secondary CMB anisotropies, which we model as Gaus-
sian noise. For a fixed string tension we compute the Bayesianleast
squares estimator for each wavelet coefficient of the stringsignal.
Our overall estimator is then formed as an average of these esti-
mates for different string tensions, weighted by the posterior prob-
ability of the string tension under a power spectral model.

We have demonstrated the performance of our denoising al-
gorithm through a series of numerical analyses at1 arcminute res-
olution consistent with upcoming experiments. The maps of the
magnitude of the gradient of the denoised string signal produced
by our algorithm were evaluated on the basis of three quantita-
tive measures: the signal-to-noise ratio and correlation coefficient
computed with respect to the known original string signal, and the
kurtosis. In the idealized case of primary anisotropies without in-
strumental noise, the strings can be identified for tensionsdown to
ρ = 6.3×10−10 , more than two orders of magnitude below the
current experimental upper bound. With instrumental noisearound
1µK per pixel this lower bound is increased by more than one
order of magnitude. The inclusion of secondary anisotropies fur-
ther raises this bound toρ = 1.0×10−7 disregarding the thermal
Sunyaev-Zel’dovich effect and toρ = 2.5×10−7 including this
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effect in the Rayleigh-Jeans limit. These values nonetheless remain
slightly below or near the current experimental upper boundon the
string tension, demonstrating that the proposed algorithmwill be
useful for analysis of upcoming high resolution data.
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