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Biomedical Image Volumes  
Denoising via the Wavelet Transform 

Eva Jerhotová, Jan Švihlík and Aleš Procházka 
Institute of Chemical Technology, Prague 

The Czech Republic  

1. Introduction  

Image denoising represents a crucial initial step in biomedical image processing and 
analysis. Denoising belongs to the family of image enhancement methods (Bovik, 2009) 
which comprise also blur reduction, resolution enhancement, artefacts suppression, and 
edge enhancement. The motivation for enhancing the biomedical image quality is twofold. 
First, improving the visual quality may yield more accurate medical diagnostics, and 
second, analytical methods, such as segmentation and content recognition, require image 
preprocessing on the input. 
Gradually, noise reduction methods developed in other research fields find their usage in 
biomedical applications. However, biomedical images, such as images obtained from 
computed tomography (CT) scanners, are quite specific. Modelling noise based on the first 
principles of image acquisition and transmission is a too complex task (Borsdorf et al., 2009), 
and moreover, the noise component characteristics depend on the measurement conditions 
(Bovik, 2009).  
Additionally, noise reduction must be carried out with extreme care to avoid suppression of 
the important image content. For this reason, the results of biomedical image denoising 
should be consulted with medical experts. 
 

       
        (a)      (b)            (c) 

Fig. 1. A CT image of the brain (a), a subset of CT images (b) from the same examination, 
and the Shepp-Logan phantom image (c) 

There is a range of noise reduction techniques applied to images either in the spatial domain 
or in a selected transform domain (Motwani et al., 2004). The former include linear or 
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nonlinear low-pass filters, such as moving average filters, the Wiener filter or a variety of 
median filters. Left alone some recent developments of weighted median, the space domain 
techniques generally remove the majority of noise, but on the other hand, also blur sharp 
image edges. To overcome these problems, it is advantageous to use other domains for 
image representation and processing. 
An optimal representation should capture key features of the signal in a relatively small 
number of large transform coefficients while the majority of the coefficients should be very 
small or zero. In other words, the representation should be sparse (Mallat, 2009). In this 
respect, the wavelet domain is a good choice. Both for signals with spatial transients and 
narrow-band frequency content, the wavelet transform represents a good compromise 
between the frequency and the spatial domain representations. Furthermore, for real-world 
images comprising both spatial transients such as edges and narrow-band components such 
as regular texture regions, the wavelet transform with the space-scale (or space-frequency) 
representation outperforms the other two  (Percival & Walden, 2006). 
Aiming at reducing noise in CT images, researchers focus on optimizing the filtered back-
projection (FBP) algorithm used in CT-scanners for image reconstruction. For instance, You 
& Zeng (2007) propose an improved FBP algorithm, which incorporates the Hilbert 
transform, and Zhu & StarLack (2007) propose a method for predicting the noise variance 
and subsequently adapting weights and kernels of the FBP algorithm. Similar to other 
researches, they exploit a simple Shepp-Logan phantom image (Shepp & Logan, 1974) 
which is depicted in Fig. 1c. In their experiments, noise with various statistical properties is 
introduced into the projection data, and then the result reconstructed by the reconstruction 
algorithm is evaluated. 
Some researchers study the possibilities of the wavelet transform in biomedical image 
denoising and compression. They most commonly use the critically sampled discrete 
wavelet transform (DWT). Khare & Shanker Tiwary (2005) utilise the dual-tree complex 
wavelet transform (DTCWT) for adaptive shrinkage. Bosdorf et al. (2008) propose a wavelet-
based correlation analysis method applied to pairs of disjoint projections  in dual-source CT-
scanners in oder to extract and eliminate uncorrelated noise.  The authors use both  the 
DWT and undecimated DWT (UDWT) and in conclusion, indicate their preference for the 
computation efficiency of the DWT over  the slightly better results quality produced by the 
UDWT. Wang & Huang (1996) and Wu & Qiu (2005) study the use of volumetric processing 
of biomedical image slices and its advantages in comparison with slice-by-slice processing. 
In this chapter, we shall focus on wavelet-based techniques for noise reduction in image 
volumes produced by a standard CT-scanner (see Fig. 1). First, we shall describe the wavelet 
transform focusing on the DWT, the UDWT, the DTCWT, and their one-dimensional and 
multi-dimensional implementations. Second, we shall carry out the noise analysis on 
selected CT data sets. Final, we shall deal with wavelet-based denoising methods 
comprising wavelet coefficient thresholding methods (VisuShrink, SureShrink, and 
BayesShrink) and statistical modelling methods (the hidden Markov trees, the Gaussian 
mixture model, and the generalized Laplacian model) utilizing the Bayesian estimator.   

2. Wavelet transform 

The wavelet transform analyzes signals at multiple scales by changing the width of the 
analysis window, and produces their scale-space representation (Mallat, 2009). In contrast to 
the short-time Fourier transform, the wavelet transform deals with the limitations of 
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uncertainty principle in a way that is more convenient for most real-world signals. This 
principle defines the trade-off between the length of the sliding window (i.e. the spatial 
resolution) and the distance between adjacent spectral lines (i.e. the frequency resolution). 
The wavelet transform exploits longer windows (i.e. better frequency resolution) for low 
frequency components of the signal, which are, nonetheless, usually of long duration, and 
shorter windows (i.e. better spatial resolution) for high  frequency components of short 
duration. An important aspect of wavelet-based denoising is transform selection. In the 
following subsections, we shall discus the critically sampled DWT and two examples of a 
redundant wavelet transform with improved properties. 

2.1 Discrete wavelet transform 

The DWT is probably the most popular type of the wavelet transform in the signal and 
image processing field. This transform has become successful primarily in compression, as it 
became part of the JPEG2000 standard. This transform is computed via the subband coding 
algorithm designed by (Mallat, 2009). As displayed in Fig. 2, at each decomposition stage, 
the transform produces detail coefficients and approximation coefficients corresponding 
respectively to the upper half and the lower half of the input signal spectrum. The 
approximations then become an input of the next level.   
 

 
Fig. 2. The subband coding algorithm for computing the 1-dimensional DWT 

The detail coefficients ࢉுሺ௝ሻat stage j are produced through convolution of the approximations ࢉ௅ሺ௝ିଵሻ from the previous level (or the original signal when j=1) with the band-pass filter ࢎଵ 
(derived from the wavelet function) and subsequent down-sampling by a factor of 2. The 
convolution is given as  

 ܿுሺ௝ሻሺ݇ሻ = ∑ ℎଵሺ݊ − ʹ݇ሻ ∙ ܿ௅ሺ௝ିଵሻஶ௞ୀିஶ ሺ݊ሻ. (1) 

Similarly, the low frequency approximations ܿ௅ሺ௝ሻ at level j are produced by the convolution 
with the low-pass filter ℎ଴ (derived from the scaling function).  

 ܿ௅ሺ௝ሻሺ݇ሻ = ∑ ℎ଴ሺ݊ − ʹ݇ሻ ∙ ܿ௅ሺ௝ିଵሻஶ௞ୀିஶ ሺ݊ሻ. (2) 
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Due to down-sampling, the approximation vector is rescaled prior to entering the next 
decomposition level, while the filter taps are preserved unchanged.  
We may also synthesize the original input signal from the decomposition coefficients. The 
inverse DWT is given as 

 ܿ௅ሺ௝ିଵሻሺ݇ሻ = ∑ ݃଴ሺ݇ − ʹ݊ሻ ∙ ܿ௅ሺ௝ሻஶ௡ୀିஶ ሺ݊ሻ + ∑ ݃ଵሺ݇ − ʹ݊ሻ ∙ ܿுሺ௝ሻஶ௡ୀିஶ ሺ݊ሻ, (3) 

where ࢍ଴ and ࢍଵ are respectively the low-pass and the band-pass reconstruction filters. 
Before computing the convolution, the subband coefficients are up-sampled by 2 by 
inserting zero-valued samples. 
The decomposition and reconstruction filter banks are designed as orthogonal or bi-
orthogonal (or dual) bases (Mallat, 2009). The limitation of the orthogonal solution is that 
the associated real-valued wavelet function cannot have compact support and be 
symmetrical at the same time, except the Haar wavelet. However, the Haar wavelet is not 
smooth. Bi-orthogonal solutions provide more construction freedom and allow for 
smoothness and symmetry. Symmetrical filters have a linear phase response, and hence do 
not cause phase distortion to which the human eye is particularly sensitive. Consequently, 
bi-orthogonal wavelets are nowadays probably the most widely used. 
The DWT is the most computationally efficient of all wavelet transforms. However, critical 
sampling causes significant drawbacks. This transform lacks shift-invariance, zero-crossings 
often appear at the locations of signal singularities, and altering wavelet coefficients (for 
instance, during denoising) causes artefacts in reconstructed images. To overcome these 
problems, we may use a redundant wavelet representation. 

2.2 Redundant wavelet transforms 
In this section, we describe two redundant wavelet transforms: the undecimated discrete 
wavelet transform (UDWT) and the dual-tree complex wavelet transform (DTCWT) 
designed by Kingsbury & Selesnick (Selesnick et al., 2005). The former is calculated through 
the subband coding algorithm exploiting the same filters as the DWT. The distinction lies in 
omitting the down-sampling step in decomposition. Instead, the decomposition filters are 
up-sampled at each stage (Starck et al., 2007).  As a result, the UDWT is shift invariant which 
means that a shift in the input signal corresponds to a shift in the transform output and does 
not cause any other changes in the coefficient values.  On the other hand, leaving out the 
down-sampling step yields a significant computation burden. The redundancy of this 
transform depends on the number of decomposition levels ܮ and is given as  [ሺʹௗ − ͳሻ	ܮ + ͳ]: ͳ, where d denotes the number of dimensions. As a result, for  
2-dimensional decomposition, the redundancy of this transform with respect to the DWT is 
4:1 at stage 1, increases to 7:1 at stage 2, further increases to 10:1 at stage 3, etc. 
In comparison with the UDWT, the DTCWT exhibits relatively moderate redundancy, 
which is 2d:1 with respect to the DWT. In contrast to the UDWT, this ratio does not increase 
with the number of stages. To illustrate the redundancy, the DTCWT produces twice as 
many coefficient values than the DWT in 1-dimensional space (i.e. 2 subbands of complex 
coefficients composed of the real and the imaginary parts). 
The DTCWT is realized with FIR (finite impulse response) filters forming a tight frame, and 
is thus easily revertible (unlike, for instance, the Gabor transform). As displayed in Fig. 3, 
this transform employs two DWT-like trees a and b producing respectively the real parts cୟ 
and the imaginary parts  cୠ of the complex wavelet coefficients c=cୟ + j ∙ cୠ, where 	j = ඥሺ−ͳሻ	.  
www.intechopen.com
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Fig. 3. The 1-dimensional DTCWT decomposition scheme 

It may seem surprising that a real signal is converted into the complex wavelet 
representation by using real-valued filters. This is possible thanks to the Hilbert transform 
built into each transform stage.  Ideally, the complex scaling function ߶ሺݐሻ = ߶௔ሺݐሻ + ݆ ∙߶௕ሺݐሻ and the wavelet function ߰ሺݐሻ = ߰௔ሺݐሻ + ݆ ∙ ߰௕ሺݐሻ should be analytic, which means 
that their respective real and imaginary parts constitute Hilbert transform pairs, so as ߶௕ሺݐሻ = ℋ{߶௔ሺݐሻ} and ߰௕ሺݐሻ = ℋ{߰௔ሺݐሻ}. In the Fourier domain, this is equivalent to 

 Ψ௕ሺ߱ሻ = −j ∙ signሺωሻ ∙ Ψ௔ሺ߱ሻ, (4) 

where sign denotes the sign function and ω the angular frequency. (The same relation 
applies also to the scaling function). As a consequence, the spectrum of the analytic wavelet 
is single-sided with zero magnitudes for negative frequencies. This property directly implies 
shift invariance, no aliasing, and the ability to isolate singularities of positive and negative 
directions in higher dimensions.  
As the scaling and the wavelet function should be analytic, the filters associated with the 
real and the imaginary part of these functions must be delayed from each other by half a 
sample period 

 ℎ଴௕ሺ݊ሻ = ℎ଴௔ሺ݊ − Ͳ.ͷሻ, (5) 

where ࢎ଴௔ and ࢎ଴௕ are the low-pass filters of tree a and tree b, respectively. However, exact 
analycity cannot be achieved by functions with compact support. In other words, the Hilbert 
transformer is of infinite length and may not be exactly implemented with an FIR filter. 
Consequently, the wavelet and the scaling filters used in the DTCWT are only 
approximately analytic and shift-independent, and approximately fulfil condition (5).  
In this chapter, we use the q-shift filter solution for the DTCWT by (Kingsbury, 2003). To 
achieve a higher degree of analycity at lower decomposition levels, this solution exploits 
different filters at level 1 than at higher levels. For level 1, it is possible to use the same filter 
set for both trees as long as it provides perfect reconstruction (for instance, one of the 
biorthogonal filter sets designed for the DWT). The only difference is that the filters in one 
tree are translated by one sample from the corresponding filters in the other tree  
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 ℎ଴௕௢ ሺ݊ሻ = ℎ଴௔௢ ሺ݊ − ͳሻ, (6) 

and also each to the other within the same tree (as indicated by the value in brackets in  
Fig. 3). Beyond level 1, we employ the approximately analytic q-shift filters, for which the 
low-pass (and also the high-pass) filters from opposite trees are time-reversed versions of 
each other 

 ℎ଴௕ሺ݊ሻ = ℎ଴௔ሺܰ − ͳ − ݊ሻ. (7) 

A similar relation applies also to the analysis and synthesis filters. These filters are of even 
length and approximately symmetrical, as their point of symmetry is ¼-sample away  
(i.e. q-shifted) from the centre. Hence, the filters exhibit a q-sample group delay and their 
individual phase response is not exactly linear. On the other hand, the assymmetry makes 
the orthonormal perfect reconstruction feasible. For the overall complex wavelet and also 
the scaling function, the conjugate phase response is exactly linear and the magnitude is 
approximately shift-invariant. In addition to the shift-invariance property, the DTCWT 
provides better directional selectivity than both the DWT and UDWT in multiple 
dimensions. 

2.3 Multidimensional wavelet transform 

Computing the multidimensional wavelet transform is straightforward due to its 
separability. This property implies that the n-dimensional (nD) transform may be 
implemented as n consecutive 1D transform in different directions as illustrated in Fig. 4 for 
the DWT. For n=3, we may proceed for instance in the following order. First, each slice of 
the image volume is processed in the row direction resulting into the low frequency 
coefficients (i.e. the approximations cL) and the high frequency coefficients (i.e. the details 
cH). The resulting 1D decomposed slices are then processed in the column direction yielding 
the 2D transform of 4 coefficients subbands (cLL, cLH, cHL, and cHH) for each mage slice. 
Finally, the set of the 2D transform coefficients matrices is processed in the between-slice 
direction producing 8 subbands (cLLL, cLLH, cHLL, …, and cHHH). The coefficients cLLL constitute 
an input to the next level of the 3D transform (Hošťálková, Vyšata, & Procházka, 2007). 
 

 
Fig. 4. The 3-dimensional DWT computation steps for a single decomposition level 

Please note that for the UDWT, the procedure is identical except that the size of the 3-
dimensional cube depicted in Fig. 4 doubles its size in the respective direction at each step. 
For the DTCWT, the multidimensional decomposition procedure is similar except 
producing a different number of subbands. For instance, the 2D DTCWT produces 
8 subbands of complex-valued coefficients which correspond to 4:1 redundancy w.r.t. the 2D 
DWT of 4 subbands of real-valued coefficients. Despite being separable, the 2D DTCWT is 
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truly directional. Its 6 directional subbands separate positive and negative singularity 
orientations (-75°, -45°, -15°,  +15°, +45°, +75°). In contrast, the separable DWT mixes the 
negative and positive orientations together in its 3 subbands (0°, ±45°, ±90°). The improved 
directional selectivity in higher dimensions represents another advantage over both the 
critically sampled DWT and UDWT. 
 

 
Fig. 5. The 2-diomensional DWT (left) and DTCWT (right) decomposition up to level 2 for a 
cropped biomedical image 

The volumetric wavelet transform does not necessarily need be uniform in all three directions. 
We may for instance use longer filters within the slices and shorter filters in the direction 
between slices (Wang & Huang, 1996). The rationale behind this lies in the variance of the 
spatial resolution in different directions. In the between-slice direction, the resolution is coarser 
than in the intra-slice directions (depending on the slice thickness and spacing). 

3. Wavelet-based denoising methods 

As proved in a range of signal processing research areas, the wavelet transform is a suitable 
representation for estimating noise free images from their noisy observations owing to  
its sparsity and multiscale nature. As outlined in Fig. 6, denoising is based on image  
 

 
Fig. 6. The wavelet shrinkage procedure demonstrated on a cropped biomedical image 
decomposed by the DWT to the second level 
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transformation into the wavelet domain and subsequent reconstruction from the altered 
detail coefficients and unchanged approximation coefficients from the last decomposition 
level. This procedure is called wavelet shrinkage and is associated with two main-stream 
approaches, which are discussed in this section: coefficient thresholding and probabilistic 
coefficient modelling.  

3.1 Noise analysis 

The quality of CT images depends directly on the radiation dose from an examination. The 
dose is influenced by the following quantities (McNitt-Gray, 2006): X-ray tube current, 
exposure time, beam energy, slice thickness, table speed, type of the reconstruction 
algorithm, focal-spot-to-isocenter distance, detector efficiency, etc. Overall, CT image 
acquisition is a complex process affected many factors, such as the post-processing 
algorithm and nonlinearities of several parts of the device. By minimizing the radiation 
exposure of the patient, the amount of noise and artefacts increases. 
Noise analysis represents a fundamental initial step of advanced noise suppression algorithms. 
In common devices, such as cameras with CCD (charged coupled device) or CMOS 
(complementary metal-oxide-semiconductor) sensors, noise analysis is based on acquisition of 
a testing pattern, which contains several patches with constant greyscale levels ranging from 
black to white (Gonzalez & Woods, 2002). However, CT image volumes are a specific case and 
more realizations of the same acquisition process cannot be obtained so simply. One option 
would be to use phantoms (for instance water phantoms), which mimic the consistence of the 
human body (basically - bone, tissue, water, and air). It is then possible to analyze the noise 
component by using several images generated by scanning the phantom. Another option of 
obtaining the data for noise analysis would be to acquire the same volumetric slice twice 
during a regular examination. However, this would increase the radiation dose for the patient 
and the noise would be still impacted by motion-generated artefacts (e.g. from breathing). To 
prevent from any motion, the patient head would have to be tightly fixed which is not 
applicable. 
 

 
(a)             (b) 

Fig. 7. The intensity profile of a typical CT slice (a) and examples of selected background 
patches (marked by the three rectangles at the top of the image) (b) 

New interesting possibilities arise with introduction of multi-detector scanners. Bosdorf et 
al. (2008) analyse noise in images from the latest generation dual-source CT-scanners, which 
produce two images of the same slice (one from each detector). The authors propose to 
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extract the uncorrelated noise component via wavelet-based correlation analysis of the 
corresponding images. According to their findings, the noise in CT images is non-white, 
usually of an unknown distribution, and not stationary. 
In our experiments, we analyzed images from a standard CT-scanner and without 
possessing the corresponding phantom images for noise analysis. In order to analyze noise 
characteristics, we selected patches of the background, i.e. the part of the image capturing 
no part of the patient’s head or the bed as apparent from Fig. 7b with an altered histogram. 
Nevertheless, this type of analysis does not reveal whether the noise is signal-dependent or 
not.  
Even though we are aware that the noise is not strictly additive, we assume the additive 
noise model 

ݕ  = ݔ	 + ݊ (8) 

for the sake of simplicity (y denotes the observed signal, x the noise-free signal, and n 
independent noise). We analyze the noise for each image of the volume individually, since 
the noise variance changes considerably from slice to slice. Fig. 7a shows a typical intensity 
profile of a CT image.   
As we demonstrate below, the noise obtained from the background patches as well as the 
observed signal may be modelled using the GLM (generalized Laplacian model) or the 
GMM (Gaussian mixture model) in the spatial domain. The parameters of these models may 
be estimated exploiting the method of moments. This method is based on comparing the 
sample moments with the theoretical moments (Simoncelli & Adelson, 1996). Let us 
consider samples {ݕ௜}௜ୀଵூ  of the observed signal and define the ݇th sample moment  

௞ܯ  = ଵூ ∑ ௜௞ூ௜ୀଵݕ , ͳ ൑ ݇ (9) 

and the theoretical moment  

 ݉௞ = ׬ ௞ஶିஶݕ ;ݕሺ݌ ,ଵߠ ,ଶߠ . . . ,  (10) ,ݕ௠ሻ݀ߠ

where p(y) denotes the probability density function of y. The parameters ߠଵ, ,ଶߠ . . . ,  ௠ of theߠ
probability distribution are estimated through the following system of equations  

௞ܯ  = ݉௞, ͳ ൑ ݇ ൑ ݉. (11) 

3.1.1 Generalized Laplacian model of the noise 

Every background patch is analyzed in the following way. We compute an optimized 
histogram to obtain the PDF (probability density function) of the noise, which is then tested 
for normality. The quality of the histogram shape depends greatly on the bin width ܤௐ. 
There is a range of approaches for bin width optimization, such as those described in (Scott, 
1979) and (Izenman, 1991). The bin width originally proposed by Freedman & Diaconis can 
be written as  

ௐܤ  = ʹሺ݊଴.଻ହ − ݊଴.ଶହሻିܫభయ, (12) 

where the term in the parentheses denotes a so-called interquartile range between the 75th 
percentile n_(0.75) and the 25th percentile n_(0.25). In our experiments, the Kolmogorov-
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Smirnov test rejected the null hypothesis that the samples come from the Gaussian 
distribution at the significance level ߙ = Ͳ.Ͳͷ in most of the tested images.  
Hence, it is necessary to employ a more general model. We choose a model with heavy tails 
given by  

;௡ሺ݊݌  ,ߤ ,ݏ ሻߥ = ௘షቚ೙షഋೞ ቚഌ௓ሺ௦,ఔሻ   , ݊ ∈ ሺ−∞; ∞ሻ, (13) 

where μ denotes the mean value, the parameter ߥ presents generalization in the sense of the 

PDF shape, and the parameter ݏ controls the PDF width. The function ܼሺݏ, ሻߥ = ଶ௦ఔ Γ ቀଵఔቁ, 

where Γሺrሻ = ׬ t୰ିଵஶ଴ eି୲dt is the gamma function, normalizes the exponential to a unit 
area. The PDF parameters may be estimated by using the system of moment equations. For 
simplicity we consider noise n with μ	=	Ͳ. The second and the fourth moment of the noise n 
are given as  

 ݉ଶሺ݊ሻ = ௦మ௰ቀయഌቁ௰ቀభഌቁ   , 		݉ସሺ݊ሻ = ௦ర௰ቀఱഌቁ௰ቀభഌቁ , (14) 

As proposed by Simoncelli & Adelson (1996), parameters estimation may be simplified 
using the kurtosis  

௡ߢ  = ௠రሺ௡ሻ௠మమሺ௡ሻ = ௰ቀఱഌቁ௰ቀభഌቁ௰మቀయഌቁ . (15) 

The above described model is widely known as the generalized Laplacian model (GLM). 
This model is commonly used to model filtered images, such as the wavelet coefficients of 
high frequency bands. The histogram and the modelled PDF for a selected background 
patch are depicted in Fig. 8a using the logarithmic scale, which clearly illustrates the quality 
of the fit. 
 

 
(a)      (b) 

Fig. 8. The normalized histogram of the analyzed noise fitted with the GLM (υ	=	ͳ.ͺͻ,  
s = 3.02, μ = -0.34) (a) and the GMM (σ1n = 2.10, σ2n = 2.77, α = 0.89) (b) 

For denoising, we transform images into the wavelet domain. In case of the Gaussian-
distributed noise, the noise parameters are preserved unaffected by the transformation. In 
contrast, for the non-Gaussian noise, the parameters change and thus need be re-estimated. 
We may either estimate the parameters directly in the wavelet domain (e.g. via the method 
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of moments), or alternatively, transform the moments into the wavelet domain (Davenport, 
1970).  

3.1.2 Gaussian mixture model of the noise 

Another possibility of modelling noise in the selected background patches is the Gaussian 
mixture model (GMM). This model is generally given by a mixture of a certain number of 
Gaussians with the variances σkn and the mean values μkn (Samé & al., 2007) 

ሺ݊ሻ݌  = ∑ ௞௡௄௞ୀଵߙ ࣨሺ݊; ௞௡ߤ , ௞௡ଶߪ ሻ, (16) 

where αkn are the proportions of the mixture satisfying the constraint ∑ ௞௡௄௞ୀଵߙ = ͳ. As a 
compromise between solvability of the moment equations system and quality of the fit, we 
set K = 2. The GMM is than given by  

ሺ݊ሻ݌  = ;௡ࣨሺ݊ߙ ,ଵ௡ߤ ଵ௡ଶߪ ሻ + ሺͳ − ;௡ሻࣨሺ݊ߙ ଶ௡ߤ , ଶ௡ଶߪ ሻ, (17) 

where the mean values μkn are assumed to equal zero.  
To estimate the model parameters in the wavelet domain, we may use the system of 
moment equations employing the second and the fourth central moment derived in (Švihlík, 
2009). The noise parameters (the variances ߪଵே, ߪଶே and the mixture proportion ߙே) may be 
directly estimated from the wavelet coefficients ܰ = WT{n} as follows. First, the variance ߪଵே 
is estimated as ߪଵே = ଴ܰ.ଽଽଽ/͵, where ଴ܰ.ଽଽଽ denotes the ͻͻ.ͻth percentile. Second, the 
proportion ߙே is estimated from kurtosis  

ேߢ  = ௠రሺேሻ௠మమሺேሻ ≈ ଷఈಿ , ேߙ	ݎ݋݂ − ͳ → Ͳ, (18) 

where ݉ସሺܰሻ and ݉ଶሺܰሻ are the central moments of ܰ. And final, the remaining model 
parameter ߪଶே is then given as (Švihlík, 2009) 

ଶேଶߪ  = ௠మሺேሻିఈಿఙభమಿଵିఈಿ . (19) 

Using the logarithmic scale, Fig. 8b displays the result of fitting the model to the histogram 
of the selected background patch. 

3.2 Wavelet coefficient thresholding 

The method of wavelet coefficients thresholding is based on suppressing low-energy detail 
coefficients which are presumed to noise-dominated. To do this, we may choose different 
thresholding functions. The basic two thresholding function types are the hard thresholding 
and the soft thresholding function. For the former, the coefficients generated by altering the 
observed real-valued coefficients { ௜ܻ}௜ୀଵூ  are given by 

 ௜ܻሺ௧௛௥ሻ = పܺ෡ = ቄ ௜ܻͲ 							for	| ௜ܻ| > ሺ௛ሻotherwiseߜ  (20) 

where ߜሺ௛ሻ ∈ ℝ ൒ Ͳ stands for the hard threshold limit and పܺ෡  denotes the estimated coefficients 
of the noise-free signal. For soft thresholding, the thresholded coefficients are given as 

 ௜ܻሺ௧௛௥ሻ = పܺ෡ = ൜݊݃݅ݏሺ ௜ܻሻ ∙ ሺ| ௜ܻ| − ሺ௦ሻሻͲߜ 							for	| ௜ܻ| > ሺ௦ሻotherwiseߜ  (21) 
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where ߜሺ௦ሻ ∈ ℝ ൒ Ͳ stands for the soft threshold limit. In case of complex-valued coefficients, 
we threshold the magnitudes and keep the phase ∠ ௜ܻ unchanged. For instance, the soft 
thresholding formula remains almost the same except that the magnitude  | ௜ܻ| = ට ௜ܻ௔ଶ + ௜ܻ௕ଶreplaces	 ௜ܻ and as a result, the sign function may be omitted. We then use 

the thresholded magnitudes to obtain the complex thresholded coefficient  

 ௜ܻሺ௧௛௥ሻ = పܺ෡ = | ௜ܻ| ∙ ݁௝⋅∠௒೔  (22) 

Hard thresholding preserves the coefficient with the values greater than the threshold. This 
may, however, introduce discontinuities in the coefficients values, which may result in 
artefacts. In contrast, the soft thresholding function does not introduce artefacts owing to 
being continuous. This function complies with the assumption that noise is distributed 
evenly in all coefficients. However, when this is not the case, this technique reduces also the 
values of the coefficients corresponding to the underlying noise-free signal, which results in 
edge blurring (Percival & Walden, 2006). 

3.2.1 Threshold estimation methods for the Gaussian noise 

Threshold estimation methods vary in the assumption of the noise variance uniformity for 
different scales and subbands and in the threshold value estimation methods which they 
employ(Percival & Walden, 2006). In general, orthonormal transforms preserve the statistics 
of the i.i.d. (independent identically distributed) Gaussian noise. That is the reason why the 
most widely used methods are derived with this assumption. 
The VisuShrink method (Donoho & Johnstone, 1994) assumes the noise variance the same 
for all thresholded subbands. The noise variance is estimated using the median absolute 
deviation (MAD) of the coefficients from the highest-frequency subband which is presumed 
to be noise-dominated.  

ොெ஺஽ߪ  = ௠௘ௗ௜௔௡ሺ|௖೓೓భ|ሻ଴.଺଻ସହ , (23) 

where the constant in the denominator corresponds to the Gaussian distribution. The 
primary advantage of this variance estimation method is its robustness to outliers. The 
estimated noise variance is than exploited for computing the universal threshold with the 
same value for all levels and subbands 

ߜ  = ʹ௡ඥߪ ∙ log  (24) ,ܮ

where ߪ௡ is the noise standard deviation, L is the number of signal samples and log is the natural 
logarithm. This threshold computation formula is derived by minimizing the probability that 
any noise sample will exceed the threshold limit. The resulting threshold is applied to the 
wavelet coefficients via the soft thresholding technique defined in (21). VisuShrink removes the 
vast majority of noise from the image, but also tends to over-smooth the image since common 
signals are not sparse enough to comply with the minmax theory. In response to these findings, 
Donoho & Johnstone proposed another method called SureShrink (Stein’s Unbiased Risk 
Estimate Shrinkage), which produces subband-adaptive thresholds and is optimal in the mean-
squared error sense. They further proposed a hybrid scheme combining the above approaches, 
since SureShrink does not perform well for  situations of extreme sparsity. 
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In literature, SureShrink is often compared with BayesShrink (Chang, Yu, & Vetterli, 2000) 
for different types of data and the two methods. BayesShrink derives the threshold within 
the Bayesian framework assuming a generalized Gaussian distribution of the wavelet 
coefficients (Percival & Walden, 2006) and the additive noise model of the observed 
coefficients 

 ܻ = ܺ + ܰ, (25) 

where N = WT{n} denotes the noise coefficients and X = WT{x} the noise-free signal 
coefficients. Hence for the corresponding variances we may write 

௒ଶߪ  = ௑ଶߪ + 	 ேଶߪ . (26) 

The mean square error in a subband may be approximated by the corresponding Bayesian 
squared error risk with the generalized Gaussian as the prior. The threshold which 
minimizes the Bayesian risk (is nearly optimal) is produced as 

ߜ  = ఙమಿఙ೉, (27) 

These parameters are estimated from the data for each subband. The noise variance σ୒  is 
estimated via (23), and by exploiting (26), the variance of the noise-free signal σଡ଼	is estimated as 

 σෝଡ଼ଶ = ඥmaxሺσෝଢ଼ଶ − σෝ୒ଶ , Ͳሻ , (28) 

where the estimate of the observed coefficients variance is computed from each subband given as 

ො௒ଶߪ  = ଵூ 	∑ ௜ܻଶூ௜ୀଵ , (29) 

while assuming the zero mean. 

3.2.2 Wavelet coefficients thresholding for the non-Gaussian noise 
In case that the noise analysis identifies noise to be non-Gaussian and the moment equation 
systems for GMM and GLM models are not well satisfied, the thresholding method must be 
modified. The threshold value is usually derived for the noise with the Gaussian distribution.  
In accordance with the outcomes of the noise analysis we proposed a simple equation for the 
evaluation of the threshold value of the GLM. For the universal threshold from (24), the 
threshold value ߜ is given by the weighted standard deviation of a given distribution  
(e.g. parameter ߪ for the Gaussian distribution). When considering the GLM  from (13) with ߤ = Ͳ in the wavelet domain, the thresholding value is given by the square root of second 
central moment  

ߜ  = ,ݏඥ݉ଶሺݓ ሻߥ = ඨ௦మ௰ቀయഌቁ௰ቀభഌቁݓ = ටଵூݓ ∑ ௜ܰଶூ௜ୀଵ  (30) 

where ௜ܰ denotes the wavelet coefficients of noise ݊, ݓ denotes the weight, which can  
be approximately in the range between 1 to 6 and it should be optimized for the acquired 
data.   
Now let us consider the DTCWT. In case of complex-valued coefficients, we threshold the 
magnitudes while keeping the phase unchanged as described in (22). It is evident that the 
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PDF of the wavelet coefficients magnitudes is asymmetric, and its mean is not zero. We 
consider the real and imaginary components of the complex coefficients to be i.i.d. Gaussian. 
Hence, the magnitude is Rayleigh-distributed. The Rayleigh PDF is given by  

;ேሺܰ݌  ሻߪ = ேఙమ ݁షಿమమ഑మ , ܰ ൒ Ͳ (31) 
 

 
(a)    (b) 

 
(c)    (d) 

Fig. 9. A selection of the intensity profile of a selected CT slice presenting the noisy image 
(D(n) = 14.42) (a), the result of denoising using the UDWT (D(n) = 0.69; Daubechies 6) (b),  
using the DWT (D(n) = 1.11; Le Gall biorthogonal filters) (c), and  using the DTCWT  
(D(n) = 0.94; Le Gall biorthogonal filters at level 1 and qshift filters beyond level 1) (d) 

where ߪ > Ͳ. Similarly as in (30), we define the threshold value as the weighted square root 
of second raw moment  

ߜ  = ሻߪඥ݉ଶሺݓ =  ଶΓሺʹሻ, (32)ߪʹඥݓ

where parameter ߪ can be estimated using maximum likelihood as follows  

ොߪ  = ට ଵଶூ ∑ |ܰ|௜ଶூ௜ୀଵ , (33) 

where ܰ are the complex wavelet coefficients of noise ݊. It is worthwhile to mention that  
we use the second raw moment ݉ଶሺߪሻ = ሻߪଶΓሺʹሻ instead of second central moment  ݉ଶሺߪʹ = ସିగଶ  ߜ ଶ for the threshold value evaluation. The reason is that the optimal value ofߪ
is found by changing the weight ݓ and the mentioned two moments are both a function of 
parameter ߪ. The example of the estimated PDFs computed from the magnitudes of the 
complex wavelet coefficients at decomposition level 1 are depicted in  Fig. 10. The threshold  
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value evaluated for this case is ߜ = ͵.Ͷ. Hence, only a negligible part of PDF of ܻ are 
thresholded.   
 

 
(a)     (b) 

Fig. 10. The PDFs of the complex wavelet coefficients magnitudes for the noisy observation 
(a) and the noise (b) including the noise histogram 
 

 
(a)    (b) 

 
(c)    (d) 

Fig. 11. Denoising using soft thresholding of a selected CT slice presenting the noisy image 
slice (D(n) = 14.42) (a), the result of denoising using the UDWT (D(n) = 0.69; Daubechies 6) 
(b),  using the DWT (D(n) = 1.11; Le Gall biorthogonal filters) (c), and  using the DTCWT 
(D(n) = 0.94; Le Gall biorthogonal filters and qshift filters) (d) 
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A selected CT slice from our image database thresholded assuming a non-Gaussian noise by 
using various wavelet transforms is depicted in Fig. 11. The results appear similar, except 
that in case of the DWT, the image is slightly over-smoothed. Fig. 9 shows the same image 

using the intensity profiles, whose sample variances ܦሺ݊ሻ = ଵூିଵ ∑ ሺூ௜ୀଵ ݊௜ −  ሺ݊ሻሻଶܧ

considerably decreased for all three implemented wavelet transforms.  
Additionally, we produced another set of denoising results using the BayesShrink method 
described in subsection 3.2.1. As depicted in Fig. 12, we performed BayesShrink using the 
DTCWT and the DWT. In case of the DTCWT, we used equation (33) for computing the 
parameter σ of the Rayleigh distribution and also the second central moment for both the 
observed signal and the noise extracted from the background patches.  Similarly for the 
DWT, we assumed the GLM and evaluated its parameters both for the noise model and the 
observation in the wavelet doman. In this experiment, the BayesShrink method produced a 
too small threshold for the DWT. For the DTCWT, the threshold seems appropriate, since 
the difference image appears to contain primarily noise. 
 

 
(a)   (b)   (c) 

 
(d)   (e) 

Fig. 12. The results of the BayesShrink method using the non-Gaussian noise models and 
soft thresholding presenting the noisy image (a), the result of using the DTCWT (b) and the 
DWT (c) and the corresponding difference images of D(n) = 2.87 (d) and D(n) = 0.6 (e) of the 
normalized intensities between [-10; 10] 

3.3 Statistical modelling of the wavelet coefficients  

The other broad family of wavelet-based noise reduction methods is based on statistical 

modelling of the wavelet coefficients. As demonstrated in numerous publications 
(Romber et al., 2001), these methods usually outperform the thresholding techniques with 
respect to the result quality. On the other hand, they also yield greater computational 
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complexity. In this subsection, we discuss two different methods: the hidden Markov 
trees (HMT) and two types of the marginal probabilistic models discussed above - the 
GMM and the GLM.  

3.3.1 Bayesian estimator 

The probabilistic methods utilize the Bayesian estimator (Hammond & Simoncelli, 2008) to 
estimate the underlying signal from its noisy observation based on the a priori information. 
There are two basic variants of this estimator, depending on whether the estimator is 
designed to optimize the minimum mean square error (MMSE) or the maximum a posterior 
(MAP) risk function.  
Once again, we assume the additive noise model of the noisy wavelet coefficients 
observations in (25). The conditional mean of the posterior PDF ݌௑|௒ሺݕ|ݔሻ produces the least 
square estimation of X. The MMSE estimator (Simoncelli & Adelson, 1996) (Izenman, 1991)is 
given as  

 ෠ܺሺܻሻ = ׬ ௑|௒ାஶିஶ݌ ሺݕ|ݔሻݔ݀ݔ = 	 ׬ ௣ೊ|೉శಮషಮ ሺ௬|௫ሻ௣೉ሺ௫ሻ௫ௗ௫׬ ௣ೊ|೉శಮషಮ ሺ௬|௫ሻ௣೉ሺ௫ሻௗ௫ = ׬ ௣ಿశಮషಮ ሺ௬ି௫ሻ௣೉ሺ௫ሻ௫ௗ௫׬ ௣ಿశಮషಮ ሺ௬ି௫ሻ௣೉ሺ௫ሻௗ௫ , (34) 

where ݌௒|௑ሺݔ|ݕሻ denotes a likelihood function, ݌௑ሺݔሻ represents the a priori model, and ݌ேሺݔሻ stands for the noise model.  
The MAP estimator is given by the following formula ෠ܺሺܻሻ = arg min୶ ሻݕ|ݔ௑|௒ሺ݌ = 	 arg min୶ ሻݔ௑ሺ݌ሻݔ|ݕ௒|௑ሺ݌ 	 = arg min୶ ݕேሺ݌ −  ሻ. (35)ݔ௑ሺ݌ሻݔ

Bayesian statistics represent a powerful signal estimation tool (Rowe, 2003). In contrast to 
the classical Fisher approach, which exploits only the observed data, the Bayesian approach 
allows subsuming the prior information into the solution and thus produces useful results 
even for small datasets. 

3.3.2 Wavelet-based a priori models  

The above described marginal models (the GMM and the GLM) are suitable for modelling 
noise in tBayesian estimators, as discussed in subsections 3.1.2 and 3.1.1, and also as the a 
priori model of the noise-free signal. Assuming additive noise in the wavelet domain from 
(25), the observed coefficients Y are given as a summation of two GMM distributions. 
Hence, its second and fourth theoretical central moments are given by 

 ݉ଶሺܻሻ = ݉ଶሺܺሻ + ݉ଶሺܰሻ, (36) 

 ݉ସሺܻሻ = ݉ସሺܺሻ + ͸	݉ଶሺܺሻ	݉ଶሺܰሻ + ݉ସሺܰሻ, (37) 

where the moments of Y and N are evaluated using the sample moments. The kth central 
sample moments of a random variable R is given by  

௞ሺܴሻܯ  = ଵூ ∑ ሺூ௜ୀଵ ܴ௜ −  ሺܴሻሻ௞. (38)ܧ

From (36) and (37), it is possible to compute the moments ݉ଶሺܺሻ and ݉ସሺܺሻ of the useful 
signal X. Finally, the signal parameters may be estimated using the same equations as for 
the noise N (i.e. (18) and (19)). The parameters estimation results highly depend on the 
estimation quality of the sample moments.  
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For the wavelet-based GLM, equations (36) and (37) are also valid. The GLM of the noise-
free signal is given as 

;௑ሺܺ݌  ,ߝ ሻߣ = ௘షቚ೉ഊቚ಍௓ሺఒ,ఌሻ , ܺ ∈ ሺ−∞; ∞ሻ (39) 

where ߝ denotes the shape parameter and ߣ is the variance parameter. Similarly to noise 
estimation in (15), the parameters of the signal may be easily estimated through the kurtosis 

௑ߢ  = ௠రሺ௑ሻ௠మమሺ௑ሻ = ௰ቀఱഄቁ௰ቀభഄቁ௰మቀయഄቁ . (40) 

Using equations (36) and (37), we obtain  

௑ߢ  = ௠రሺ௒ሻି௠రሺேሻି଺௠మሺேሻሺ௠మሺ௒ሻି௠మሺேሻሻሺ௠మሺ௒ሻି௠మሺேሻሻమ . (41) 

And from the second central moment we derive  

ߣ  = ඨሺ݉ଶሺܻሻ − ݉ଶሺܰሻሻ ௰ቀభഄቁ௰ቀయഄቁ. (42) 

Again, the values of the moments for Y and N may be estimated from the data using the 
sample moments exploiting (38). 
Noise suppression methods based on Bayesian estimation are generally more efficient than 
the thresholding methods, mainly in case of considerable noise contamination. Fig. 13 shows 
the Shepp-Logan phantom contaminated by generalized Laplacian noise (ݏ = ͵Ͳ.Ͳ, ߥ = ͳ.͹ͺ, ߤ = Ͳ) and subsequently denoised by the MMSE estimator. The quality improvement after 
denoising was assessed using Root Mean Square Error (RMSE) 

ܧܵܯܴ  = ටଵூ ∑ ሺூ௜ୀଵ ௜ݔ − పෝݔ ሻଶ, (43) 

which was computed for the original image ݔ and the denoised image ݔො and also for the the 
original image ݔ and the noisy image ݕ. The generalized Laplacian noise was generated by 
high-pass convolution filtering of a real-world image.   
The described Bayesian estimation represents a powerful tool for image denoising. 
However, we presume that one of the following factors is in conflict with solvability of the 
denoising task: the analyzed noise is not strictly Additive and/or signal-independent, or the 
derived equation systems for the GMM and the GLM (originally derived for astronomical 
data (Švihlík &  Páta, 2008)) are not well satisfied.  

3.3.3 Wavelet-based hidden Markov trees 

Wavelet coefficients thresholding methods assume the wavelet transform to de-correlate 
the signal thoroughly. However, this is not a correct assumption. The wavelet coefficients 
are interrelated and exhibit persistence across scale and clustering within scale. Both these 
properties are captured by the hidden Markov tree (HMT) models (Baraniuk, 1999). 
Acording to the persistency property, the coefficient values propagate across scale from 
parent to child within the tree. This means that a large parent coefficient corresponding to 
a signal singularity should have large children coefficients, while a parent coefficient 
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associated with a noise-related singularities should not. Clustering within scale signifies 
that a large (small) coefficient value is expected in the vicinity of a large (small) 
coefficient. 
 

 
(a)   (b) 

 
(c)     (d) 

Fig. 13. The Shepp-Logan phantom with added noise (RMSE = 22.7) (a) and the denoised 
image using the UDWT with the Daubechies 6 wavelet (RMSE = 5.5) (b) and the respective 
intensity profiles (c) and (d) 
 

 
Fig. 14. The wavelet-based HMT hierarchy for 2-dimensional DWT, where each parent node 
p(i) has four children i 
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As depicted in Fig. 14, the HMT connects the hidden states of a child node Si and a parent 
node Sp(i) and not the actual coefficients values Yi, Yp(i) associated with these states.  
For modelling the inter-scale dependencies, the HMT uses an M-component mixture  
of conditional Gaussian distributions ܰሺߤ௜,௠, ௜,௠ଶߪ ሻ associated with hidden states ௜ܵ = ݉, 
since the PDF of the wavelet coefficients is peaky and heavy-tailed. The overall PDF is 
given by 

 ݂ሺ ௜ܻሻ = ሺ݌ ௜ܵ = ݉ሻ݂ሺ ௜ܻ| ௜ܵ = ݉ሻ (44) 

where ݌ሺ ௜ܵ = ݉ሻ is the probability mass function (PMF) of the hidden state Si of the node i 
satisfying ∑ ሺ݌ ௜ܵ = ݉ሻ = ͳெ௠ୀଵ  and	݂ሺ ௜ܻ| ௜ܵ = ݉ሻ	is the conditional probability that the 
observed coefficients value ݕ௜ given the state ௜ܵ corresponds to ܩሺߤ௜,௠, ௜,௠ଶߪ ሻ. For simplicity, 
we use the mixture of two Gaussians (M = 2).  
The intra-scale dependencies are captured by the transition probabilities. For M=2, the 
transition probability matrix connecting the children hidden states ௜ܵ given the parent state ܵ௣ሺ௜ሻ is given as 

 ݂൫ ௜ܵ = ݉|ܵ௣ሺ௜ሻ = ݊൯ = ቆ݂൫ ௜ܵ = ͳ|ܵ௣ሺ௜ሻ = ͳ൯ ݂൫ ௜ܵ = ͳ|ܵ௣ሺ௜ሻ = ʹ൯݂൫ ௜ܵ = ʹ|ܵ௣ሺ௜ሻ = ͳ൯ ݂൫ ௜ܵ = ʹ|ܵ௣ሺ௜ሻ = ʹ൯ቇ. (45) 

The persistence property implies that ଵ݂,ଵ ≫ 	 ଶ݂,ଵ, ଶ݂,ଶ ≫ 	 ଵ݂,ଶ.  
The HMT are used for denoising in the following fashion (Crouse et al., 1998). First, the 
model is fitted to the noise observation coefficients using the expectation maximization (EM) 
algorithm. This training algorithm comprises the E-step, in which the state information 
propagates upwards and downwards through the tree, and the M-step, in which the model 
parameters ࣂ are recalculated and then input into the next iteration. We do not have 
multiple realizations of the same process. Hence, to prevent over-fitting of the model to the 
data, we tie the tries within subbands so as to obtain 3 independent HMT models for the 
3 subbands of the 2-dimensional DWT. The results of model fitting for the first 
decomposition level of the DWT are shown in Fig. 15. 
 
 

 
Fig. 15. The results of the HMT training for the CT image in Fig. 16 presenting histograms of 
the detail coefficients subbands from level 1 LH1 (a), HL1 (b), and HH1 (c), respectively and 
the GMM of conditional probabilities 

Second, the trained model is exploited as the a priori signal PDF in order to compute the 
conditional mean estimates of the noisy observations given the noise-free signal 
coefficients.  
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Again, we assume the additive nose model in (25), where N is the independent identically 
distributed Gaussian noise. The conditional mean estimate of ௜ܺ, given the observed 
coefficients ࢅ and the HMT model parameters ࣂ is given by 

]ܧ  ௜ܺ|ࢅ, [ࣂ = ∑ ሺ݌ ௜ܵ = ݉ሻ ∙ ఙ೔,೘మఙ೙మାఙ೔,೘మெ௠ୀଵ ∙ ௜ܻ  (46) 

where ݌ሺ ௜ܵ = ݉ሻ and ߪ௜,௠ are obtained from the HMT model and ߪ௡ is the noise standard 
deviation which may be estimated from the background patch or using the MAD in (23). 
As example of HMT-based image denoising is displayed in Fig. 16. The wavelet-based 
HMTs (Romberg et al., 2001) capture dependencies between the wavelet coefficients across 
scales, since image singularities, such as edges, persist across scales, while the noise-
dominated coefficients lack such intra-scale consistence. This approach yields very good 
denoising results, however requires a computationally expensive training. 
 

 
(a)   (b)   (c) 

Fig. 16. 2 Denoising a selected CT image using the 2-level DWT with the LeGall 
biorthogonal filters depicting the observed image (a), its denoised equivalent, and the 
difference image (c) of the intensity range [-10,10]  

4. Conclusion 

In this chapter, we described different types of the wavelet transform including both non-
redundant (the DWT) and redundant representations (the DTCWT and the UDWT). In 
general, the DTCWT and the UDWT outperform the DWT due to their shift-invariance; 
however, at the expense of redundancy. The DTCWT is less redundant than the UDWT and 
provides better directional selectivity. 
We carried out preliminary noise analysis on 2 CT-datasets. The noise component in CT 
images is very complex and, presumably, also non-stationary. However, for simplicity, we 
assumed that the noise is stationary within the image and used the additive noise model. In 
order to model the noise, we selected a few background patches and modelled their 
distributions using the generalized Laplacian model or the Gaussian mixture model. The noise 
models were then exploited for wavelet coefficients thresholding. This required deriving 
threshold estimation equations corresponding to these models and also for the assumed 
Rayleigh distribution of the DTCWT coefficients magnitudes. The denoising results by using 
each of  the three described wavelet transform were demonstrated on the CT-image data.  
Since the threshold-based methods tend to blur edges and cause artefacts (the extent of this 
problem depends based on the used wavelet transform and thresholding method), we 
decided to implement the probabilistic methods. In general, these methods outperform the 
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thresholding methods in the resulting image quality (mainly in case of considerable noise 
contamination); however, at the expense of greater computation cost. The described 
Bayesian estimation represents a powerful tool for image denoising. However, we presume 
that one of the following factors is in conflict with solvability of the denoising task: the 
analyzed noise is not strictly additive and/or signal-independent, or the derived equation 
systems for the GMM and the GLM are not well satisfied. In this perspective, the 
thresholding methods due to their relative simplicity revealed greater robustness towards 
non-fulfilment of the assumptions of the noise characteristics. On the other hand, the hidden 
Markov trees (HMT) of wavelet coefficients performed well and produced good quality 
image results with reduced noise and unblurred edges.  
In future work, we shall focus on experiments in a larger scale. We shall carry out a 
thorough noise analysis on more datasets (on different CT-scanners if applicable) and also 
compare different denoising methods both by interviewing medical experts and by 
designing and evaluating appropriate quality metrics. Regarding methods development, we 
will further focus on the probabilistic methods experimenting with the use of more than two 
components in the Gaussian mixture model, the DTCWT instead of the DWT, and possibly 
also volumetric denoising techniques. 
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