49 research outputs found

    Hybrid Method For Image Watermarking Using 2 Level LWT-Walsh Transform-SVD in YCbCr Color Space

    Get PDF
    Due to tremendous development in technology in recent time and availability of abundant tool, it is very easy for an unauthorized person to imitate crucial information which is present on internet. Therefore to shield valuable information present on internet there are various advanced techniques for example watermarking technique, cryptography technique, steganography and many more. With pace of time analog techniques replaced by digital techniques due to various advantages and in current scenario every country moving towards digitalization. Digital watermarking is a technique through which digital information is embedded into an image and secret digital data can be extracted at receiver side with authentication otherwise impossible to fetch. Spatial domain and frequency are the two techniques through which secret digital information can be embedded. In this paper two level lifting wavelet transform (LWT), Walsh Hadamard transform and singular value decomposition (SVD) technique has been proposed in YCbCr color space. First of all cover image and watermark image converted into YCbCr color space from RGB color space after that one of channel is selected for embedded purpose. Now perform first level LWT on the Y channel of cover and watermark image so that image split into four groups. Now apply second level LWT on any one of four bands. Further Walsh hadamard transform technique applied with singular value decomposition (SVD) technique to get enhanced output. In base paper DWT-DFT-SVD used but in this paper DWT-DFT replaced by LWT-WHT due to various advantages. One disadvantage of DWT is that the use of larger DWT basis functions or wavelet filters produces blurring and also ringing noise near edges in images. This disadvantage of DWT is overcome in LWT. Other advantages of LWT are that it significantly reduces the computation time and speed up the computation process. This method provides better results in terms of enhanced PSNR values and is able to withstand a variety of image processing attacks and besides this processing time also reduced

    WAVELET BASED DATA HIDING OF DEM IN THE CONTEXT OF REALTIME 3D VISUALIZATION (Visualisation 3D Temps-Réel à Distance de MNT par Insertion de Données Cachées Basée Ondelettes)

    No full text
    The use of aerial photographs, satellite images, scanned maps and digital elevation models necessitates the setting up of strategies for the storage and visualization of these data. In order to obtain a three dimensional visualization it is necessary to drape the images, called textures, onto the terrain geometry, called Digital Elevation Model (DEM). Practically, all these information are stored in three different files: DEM, texture and position/projection of the data in a geo-referential system. In this paper we propose to stock all these information in a single file for the purpose of synchronization. For this we have developed a wavelet-based embedding method for hiding the data in a colored image. The texture images containing hidden DEM data can then be sent from the server to a client in order to effect 3D visualization of terrains. The embedding method is integrable with the JPEG2000 coder to accommodate compression and multi-resolution visualization. Résumé L'utilisation de photographies aériennes, d'images satellites, de cartes scannées et de modèles numériques de terrains amène à mettre en place des stratégies de stockage et de visualisation de ces données. Afin d'obtenir une visualisation en trois dimensions, il est nécessaire de lier ces images appelées textures avec la géométrie du terrain nommée Modèle Numérique de Terrain (MNT). Ces informations sont en pratiques stockées dans trois fichiers différents : MNT, texture, position et projection des données dans un système géo-référencé. Dans cet article, nous proposons de stocker toutes ces informations dans un seul fichier afin de les synchroniser. Nous avons développé pour cela une méthode d'insertion de données cachées basée ondelettes dans une image couleur. Les images de texture contenant les données MNT cachées peuvent ensuite être envoyées du serveur au client afin d'effectuer une visualisation 3D de terrains. Afin de combiner une visualisation en multirésolution et une compression, l'insertion des données cachées est intégrable dans le codeur JPEG 2000

    Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding

    Get PDF
    Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties

    Non Oblivious Watermarking Technique for JPEG2000 Compressed Images Using Arnold Scrambling of Unequal Size Watermark Blocks

    Full text link
    In this paper, a watermarking technique for JPEG2000 compressed image is proposed. Scrambling of secret message is performed block-wise using Arnold Transform. Secret message is divided into non-overlapping blocks of unequal size and then Arnold transform is applied on each block and secret key is generated based on the periodicity of each block. Scrambled secret message is embedded into qualified significant wavelet coefficients of a cover image. After embedding the secret message into wavelet coefficients, the remaining processes of JPEG2000 standard are executed to compress the watermarked image at different compression rates. Scaling Factor (SF) is used to embed watermark into wavelet coefficients and the value of SF is stored into COM box of the code stream of JPEG2000 compressed image and this SF value and secret key are used to extract the embedded watermark on the receiver side. The performance of the proposed technique is robust to a variety of attacks like image cropping, salt and pepper noise, and rotation. Proposed technique is compared with the existing watermarking techniques for JPEG2000 compressed images to show its effectiveness

    Digital image forensics

    Get PDF
    Digital image forensics is a relatively new research field that aims to expose the origin and composition of, and the history of processing applied to digital images. Hence, the digital image forensics is expected to be of significant importance to our modern society in which the digital media are getting more and more popular. In this thesis, image tampering detection and classification of double JPEG compression are the two major subjects studied. Since any manipulation applied to digital images changes image statistics, identifying statistical artifacts becomes critically important in image forensics. In this thesis, a few typical forensic techniques have been studied. Finally, it is foreseen that the investigations on endless confliction between forensics and anti-forensics are to deepen our understanding on image statistics and advance civilization of our society

    Robust light field watermarking with high spatial and angular fidelity

    Get PDF
    El término ocultación de información se refiere típicamente a la inserción secreta de datos en una señal anfitriona. La señal anfitriona puede ser una imagen, un archivo de audio, un video,... Las técnicas de ocultación de información se dividen generalmente en marca de agua digital, esteganografía y criptografía. Si la propia existencia del mensaje secreto incrustado debe permanecer en secreto, entonces el método de ocultación de información se conoce como esteganografía. Por el contrario, en la marca de agua digital, el usuario es consciente de la existencia del mensaje secreto. A diferencia de la esteganografía y la marca de agua, existe otra categoría de ocultación de información que cifra el mensaje secreto sin insertarlo en una señal anfitriona. Estos métodos se conocen como criptografía en la literatura técnica especializada. Los métodos de ocultación de información se han utilizado durante milenios. A modo de ejemplo, es conocido que Heródoto (485-525 a.c.) ya cita que Histiaeus, el gobernante de Mileto por designación del rey de reyes persa Darío El Grande estaba conspirando para derrocar el imperio persa. Sin embargo, nunca quiso levantar ninguna sospecha entre los que eran leales al rey de reyes ni perder la confianza que el rey Darío había depositado en él. Por ello, para instigar la revuelta Histiaeus afeitó la cabeza de uno de sus esclavos y tatuó un mensaje secreto sobre su cuero cabelludo. Tras dejar crecer el pelo del sirviente, éste viajó sin despertar sospechas hasta el destinatario del mensaje. En la era reciente, la esteganografía se usa ampliamente para la comunicación encubierta. En la esteganografía, la señal anfitriona se usa simplemente para transmitir un mensaje secreto importante. La señal anfitriona no importa por sí misma, pero es de suma importancia no llamar la atención de los expertos en seguridad. La señal anfitriona generalmente se elige entre los medios típicos que no causan sospechas. Es por eso que el mensaje transmitido no está encriptado en esteganografía. En otras palabras, un mensaje cifrado hace sonar inmediatamente las alarmas, pero es menos probable que un mensaje sin cifrar llame la atención. Como ejemplo, se cuenta que en 1966, el comandante en jefe estadounidense Jeremiah Denton se vio obligado a participar en una entrevista televisiva que se transmitió en Estados Unidos. Fingiendo sentirse incómodo con las luces cegadoras de la televisión, parpadeó en código Morse deletreando la palabra "T-O-R-T-U-R-E". Al igual que la marca de agua, el rápido crecimiento de la comunicación por Internet ha proporcionado un medio perfecto para que los sistemas de esteganografía transmitan los datos ocultos sin causar sospechas graves. A diferencia de la esteganografía, los métodos de marca de agua digitales pueden no tener ningún deseo de ocultar la existencia del mensaje incrustado. La marca de agua se define como la inserción imperceptible del mensaje secreto en la señal anfitriona. Esto es exactamente lo contrario de lo que ocurre en la esteganografía, en la que la señal anfitriona no tiene importancia real y se usa simplemente como cobertura. La marca de agua digital se usa ampliamente para la protección de derechos de autor, autenticación, detección/corrección de errores, comunicación encubierta y monitoreo de transmisiones. Se espera que cada plataforma de marca de agua: • Incruste tanta información como sea posible. El envío de información secreta es el principal motivo de explotación de las técnicas de marca de agua. Esto es especialmente importante en la comunicación encubierta. • Genere una marca de agua lo más imperceptible posible sobre la señal anfitriona. La diferencia detectable entre la propia anfitriona y la anfitriona tras el marcado anula el propósito de la marca de agua. • Sea lo más robusto posible contra ataques sobre la señal anfitriona. En el contexto de las marcas de agua, el ataque se refiere a cualquier alteración intencionada o no de los valores de la señal marcada. Obviamente, la realización perfecta de estas tres características sigue siendo un desafío y, dependiendo de la aplicación, se puede priorizar una o dos de estas características. El rápido crecimiento de la demanda de marcas de agua puede contribuir razonablemente a la creciente preocupación por la protección de los derechos de autor en las últimas décadas. A pesar de las enormes oportunidades que ofrece Internet para compartir la información a gran escala, la duplicación ilegal, la manipulación y el intercambio de información ha aumentado sin descanso. Esto impone serias preocupaciones a los autores y editores que dedican mucho tiempo y esfuerzo a la creación de contenidos. El rápido desarrollo de los métodos de marca de agua fue una respuesta prevista a la implacable tendencia al alza de la piratería. La marca de agua ha desempeñado un papel activo en la protección de los derechos de autor, la detección de manipulaciones, la autenticación y la comunicación encubierta. El número de artículos de investigación publicados sobre marcas de agua muestra la importancia absoluta de las marcas de agua en nuestra era. Otra categoría de ocultación de información es la criptografía, que se define básicamente como un método para proteger la información y las comunicaciones mediante el uso de códigos, de modo que solo los lectores autorizados pueden decodificar y leer el mensaje. Así, en criptografía el mensaje secreto se implementa sin usar señal de cobertura. La mayoría de los sistemas criptográficos utilizan conceptos matemáticos y un conjunto de cálculos basados en reglas. El contenido se cifra y se proporciona una clave de descifrado solo a los receptores autorizados. El contenido cifrado se transmite a través de Internet, pero los receptores no autorizados difícilmente pueden descifrar el contenido codificado. A diferencia de la marca de agua, el cifrado no tiene ningún control sobre la redistribución del contenido descifrado por parte del usuario autorizado. Puede ser que un cliente compre una clave de descifrado válida y, después del descifrado, redistribuya el contenido de forma masiva. Por lo tanto, la criptografía puede proteger el contenido antes del descifrado, pero una vez descifrado, el contenido no tiene más protección. Cabe mencionar que los sistemas de cifrado cifran el mensaje secreto y la existencia del mensaje secreto es clara. Por el contrario, los sistemas esteganográficos están optimizados específicamente para ocultar la existencia del mensaje secreto. Dependiendo de la aplicación, los sistemas de marca de agua pueden ocultar la existencia de la marca de agua o en algunos casos hacer pública la existencia de la marca de agua. Como el ámbito de esta tesis pertenece a la marca de agua, la esteganografía y la criptografía no se tratan más a fondo. Además, centraremos el contenido en el uso de señales anfitrionas tipo imagen. Según el dominio en el que se realiza la marca de agua, los métodos de marca de agua se dividen en métodos de dominio espacial y métodos de dominio de transformación. Los métodos de dominio espacial alteran los valores de los píxeles en el dominio espacial y, en comparación con el dominio de transformación, normalmente implican una complejidad computacional mucho menor. Por el contrario, el dominio de transformación primero convierte los píxeles de la imagen en el dominio de transformación. Los píxeles transformados a menudo se denominan coeficientes en la literatura. Aparentemente, dicha transformación puede ser costosa desde el punto de vista computacional, pero el compromiso es que la robustez suele ser mayor que la de los métodos de dominio espacial. Normalmente, se aplica una transformación directa en la imagen y, después de la inserción de la marca de agua, se aplica una transformación inversa para recuperar la imagen con marca de agua en el dominio espacial. Algunas transformaciones comunes en la literatura de marcas de agua son (pero no se limitan a) la transformada de coseno discreta (DCT), transformada de ondícula (wavelet) discreta (DWT), Contourlet, Curvelet, Ridgelet, análisis de componentes principales (PCA), transformada de Karhunen-Loeve (KLT) y descomposición en valor singulares (SVD). Algunos otros métodos utilizan tanto el dominio espacial como el dominio de transformación para implementar la marca de agua. Estos enfoques a menudo se denominan métodos híbridos en la bibliografía. Si no se requiere información previa de la imagen anfitriona para la extracción de la marca de agua, entonces el método de marca de agua se conoce como ciego; de lo contrario, se denomina no ciego. Si se utiliza alguna información secundaria (no la imagen anfitriona) para la extracción de la marca de agua, el método de marca de agua se denomina semi-ciego. Si la imagen anfitriona se puede recuperar después de la extracción de la marca de agua, el método se denomina de marcado reversible; de lo contrario, se conoce como método de marca de agua irreversible. En los últimos años, el campo luminoso (lightfield, LF) se ha utilizado cada vez más para la representación de imágenes 3D. Básicamente, el LF es una función vectorial que describe la cantidad de luz que fluye en todas direcciones a través de cada punto del espacio. Michael Faraday fue el primero en proponer (en una conferencia de 1846 titulada "Pensamientos sobre las vibraciones de los rayos") que la luz debería interpretarse como un campo, muy parecido a los campos magnéticos en los que había estado trabajando durante varios años. La denominación “campo luminoso” fue acuñada por Andrey Gershun en un artículo clásico de 1936 sobre las propiedades radiométricas de la luz en el espacio tridimensional. Desde un punto de vista óptico-geométrico, todo lo que percibimos visualmente, está iluminado por los rayos provenientes de fuentes de luz que se propagan a través del espacio hasta llegar a nuestro ojo. Básicamente, el LF describe la intensidad de cada rayo de luz en la escena en función del ángulo visual, la longitud de onda, el tiempo y la posición de visualización. Así, registra todo lo que potencialmente puede ser visto por un dispositivo óptico omnidireccional que es (supuestamente) capaz de capturar cada rayo del espacio. Levoy y Hanrahan definieron el LF como la función que describe la totalidad de los rayos de luz que atraviesan un volumen 3D dado. En otras palabras, el LF puede entenderse como la descripción de un conjunto denso de rayos de luz, cada uno de los cuales se origina en el vértice de un cono. Cada punto de un volumen 3D se considera como el vértice de un cono que transmite un número infinito de rayos con diferentes inclinaciones. Así, aparte del tiempo y la longitud de onda, el LF se representa típicamente usando cinco parámetros: posición del punto considerado (3 coordenadas espaciales) y dirección del rayo (2 ángulos directores). En realidad, la invariancia en propagación de los rayos (de acuerdo con la Óptica Geométrica), permite reducir su dimensional a 4D. Convencionalmente, a los valores obtenidos para un punto fijo del espacio en función de las 2 coordenadas angulares se le denomina imagen elemental (EI). Si (idealmente) se proporciona el LF de una escena, entonces es posible reconstruir la misma escena 3D sin pérdida de información. En la práctica, lo que realmente se captura en el mundo real es una submuestra del LF, no el conjunto completo de todos los rayos de la escena. Los dispositivos usados en esta captura se denominan de modo genérico cámaras LF. La principal diferencia entre una cámara LF y una convencional es que la primera captura los rayos individuales que inciden en un punto determinado del sensor de captura, mientras que la segunda registra la suma de todos los rayos que inciden en un punto específico del sensor. Esto facilita la reconstrucción 3D precisa de la escena recuperando los rayos individuales. El LF se puede adquirir de varias formas. En la configuración multicámara, se usa una matriz de cámaras 2D. En este caso, las dimensiones espaciales del LF están determinadas por las características intrínsecas de las cámaras, mientras que las dimensiones angulares están determinadas por el número y la disposición de las cámaras. Las cámaras pueden estar distribuidas en superficie plana, circular, rectangular o esférica. Esta configuración suele ser costosa y voluminosa. Además, la calibración de las cámaras puede llevar bastante tiempo. Otra alternativa es capturar el LF deslizando una sola cámara horizontal y verticalmente. A diferencia del sistema multicámara, la configuración de una sola cámara es mucho más barata y puede grabar el LF con mayor densidad. Sin embargo, la adquisición de LF por una sola cámara lleva mucho más tiempo que la de varias cámaras, lo que prácticamente hace que sea imposible grabar escenas dinámicas. Las cámaras LF estáticas también se pueden utilizar para capturar el LF. En ellas se emplea un único sensor estático y alguna distribución espacial de lentes (típicamente, una matriz de microlentes) para muestrear el LF. A pesar de los numerosos métodos propuestos para la marca de agua sobre el LF, ninguno de ellos está adaptado para proteger la enorme cantidad de información angular incorporada en el LF. Se trata en todos los casos de aplicar los algoritmos ya desarrollados sobre imágenes 2D al LF con sus 4 dimensiones. El principal objetivo de esta tesis es lograr métodos de marca de agua LF maximizando la protección de la información espacial y angular al mismo tiempo. Según el conocimiento del autor, hay muy pocos trabajos que aborden los métodos de marca de agua personalizados para LF. Algunos artículos también han discutido la marca de agua de objetos 3D y el video de visualización libre, que, aunque con similitudes, es bastante diferente de la marca de agua sobre el LF. Cualquier método propuesto para la marca de agua del LF deberá tener sumo cuidado de no arruinar ni la información espacial ni angular del LF. A través de esta tesis se han propuesto dos métodos de marca de agua. El primer método propuesto se basa en la DCT y la SVD, y trata de aprovechar el hecho de que los datos de LF generalmente tienen una correlación muy alta en las dimensiones espaciales y espectrales. Se supone que cualquier transformada como la DCT compacta la información en unos pocos coeficientes al proporcionar una descorrelación máxima. La transformada DCT es una aproximación de la KLT que descorrelaciona perfectamente los coeficientes. A diferencia de la base de funciones de la KLT, que dependen de la señal de entrada, las funciones base de la DCT están fijadas. Aunque la descorrelación de la DCT puede ser ligeramente menor que la de KLT y la descorrelación alcanzada es marginalmente menor, su costo computacional es menor debido a la eliminación del tedioso cálculo de las funciones básicas de la KLT. Además, en comparación con otras transformadas como la transformada de Fourier, los coeficientes transformados no tienen parte imaginaria y, por lo tanto, requieren menos datos para procesar. El hecho de que la DCT compacta la energía de la señal en pocos coeficientes lo hace muy interesante para la compresión y la marca de agua. En este primer método propuesto, se parte del LF anfitrión y de una clave secreta como entrada. Según la clave secreta, para cada píxel de la marca de agua se seleccionan bloques de píxeles del LF original, a los que se aplica la DCT. Los coeficientes de los bloques transformados se ordenan en zigzag y se eligen los primeros coeficientes para incrustar la marca de agua. La razón de no incrustar la marca de agua en todos los coeficientes DCT es aumentar la robustez del método propuesto. Es bien sabido en la literatura que los coeficientes de baja frecuencia mejoran la robustez del método de marca de agua y los coeficientes de alta frecuencia son extremadamente propensos al ruido y otros ataques. Después de elegir los coeficientes DCT seleccionados, se factorizan utilizando la SVD. El valor singular correspondiente se utiliza para incrustar la marca de agua (el valor la marca de agua en el píxel considerado en la clave secreta). Cada bloque lleva un bit de la marca de agua. Según el bit de marca de agua, el valor singular aumenta o disminuye. El incremento o decremento del valor singular se determina mediante el factor de ganancia. Se requerirá el valor singular en el procedimiento de extracción para que se guarde en la imagen de referencia. Luego, se realiza la SVD inversa para obtener los coeficientes DCT del LF con marca de agua. Para generar el LF con marca de agua en el dominio espacial, se lleva a cabo la DCT inversa. Este proceso se repite hasta que todos los bits de marca de agua se incrustan en el LF del host. Para extraer la marca de agua incrustada, se necesitan el LF con marca de agua, la imagen de referencia y la clave secreta. La clave secreta utilizada para la extracción de la marca de agua tiene que ser idéntica a la del procedimiento de incrustación, de lo contrario, la extracción de la marca de agua incrustada fallará. Si se introduce la clave secreta correcta en el sistema de extracción, los bloques correspondientes se ordenan a partir de los píxeles del LF marcado. La DCT y la SVD se realizan exactamente de la misma manera que para el procedimiento de inclusión. A continuación, el valor singular se compara con el valor correspondiente de la imagen de referencia. Si el valor singular es mayor que el valor correspondiente de la imagen de referencia, el bit de marca de agua extraído se considera uno; de lo contrario, se asume que es cero. La lógica detrás de este argumento es que si el bit de marca de agua incrustado es cero, entonces el valor singular ha disminuido por el factor de ganancia. Por el contrario, si el bit de marca de agua incrustado es uno, entonces el valor singular se ha incrementado en el factor de ganancia. Por tanto, el bit de marca de agua incrustado se puede extraer comparando el valor singular y el píxel correspondiente de la imagen de referencia. Después de extraer la marca de agua incrustada, los coeficientes DCT del bloque con marca de agua se obtienen mediante la SVD inversa. Antes de aplicar la SVD inversa, el valor singular del bloque con marca de agua se reemplaza con el píxel correspondiente de la imagen de referencia. Posteriormente, se aplica la DCT inversa a los coeficientes DCT para obtener el LF del anfitrión recuperado. Este proceso se repite hasta que se extraen todos los bits de la marca de agua. La transparencia del LF con marca de agua se ha verificado objetiva y subjetivamente. Subjetivamente, el LF con marca de agua y el anfitrión parecían idénticos y no se detectó ninguna diferencia visual entre los dos campos de luz. Para garantizar la transparencia absoluta del LF con marca de agua, las partes de alta frecuencia del LF se han ampliado y no se encontraron diferencias visuales. Desde una perspectiva objetiva, la relación señal pico-ruido PSNR de la imagen con marca de agua fue mucho más que suficiente para permitir la detección de cualquier diferencia por el sistema visual humano (HVS) de acuerdo con los criterios objetivos establecidos en la literatura especializada. A diferencia de la mayoría de los métodos de marca de agua, la tasa de error de bits (BER) sobre la marca de agua recuperada permanece en cero independientemente de la intensidad del marcado y la marca de agua incrustada se puede extraer sin errores. Otra métrica que se utiliza para evaluar el rendimiento del método propuesto de manera objetiva es la similitud estructural media (MSSIM). La premisa básica de la MSSIM es que la percepción por el HVS de la calidad de la imagen se ve muy afectada por la similitud estructural del contenido de la imagen en lugar de los valores absolutos de los píxeles. También incorpora la intensidad media y el contraste de la imagen, que desempeñan un papel clave en la percepción de la calidad de la imagen por parte del HVS. La MSSIM siempre se mantiene por encima del 99% 99 \% en los experimentos realizados. La robustez del método propuesto se ha medido frente al ruido gaussiano, la compresión JPEG y el filtrado de mediana. El método propuesto muestra una buena robustez frente a los ataques antes mencionados. Las simulaciones realizadas confirman la absoluta necesidad de utilizar pocos coeficientes DCT. Aunque el LF con marca de agua puede degradarse predominantemente por el ruido, la marca de agua se puede extraer. Como la mayor parte de la energía de la señal se concentra en coeficientes de baja frecuencia de la DCT, proporcionan más robustez frente al ruido gaussiano. Esta hipótesis se confirma completamente con las simulaciones. Las simulaciones también mostraron la importancia absoluta de la explotación de la DCT. La exclusión de la DCT conduce a resultados catastróficos. El método propuesto también exhibe una buena robustez contra el filtrado de mediana y la compresión JPEG, específicamente para el factor de calidad más común de % 100 \% $. Para la justificación de la propuesta del segundo método de marcado, es interesante seguir el siguiente razonamiento. Aunque la DCT se usa ampliamente en la compresión de imágenes/video y marcas de agua, el supuesto subyacente es la independencia de los bloques adyacentes, ya que se comprime cada bloque por separado. Esto provoca artefactos notables, especialmente en velocidades de refresco bajas. Por el contrario, la DWT se aplica globalmente y no introduce artefactos de bloque. Como era de esperar, existe una similitud visual sustancial entre las EI vecinas en las direcciones horizontal, vertical y diagonal. En otras palabras, cada EI tiene una correlación mucho más alta con las EIs vecinas que con las demás. Nos referimos a la correlación de los píxeles de la misma EI como intracorrelación, mientras que la correlación entre las IE se denomina

    A Coding-Based Steganography Using Multiple Frequency Domains

    Get PDF
    Abstract:In this paper, a new technique for hiding text in a bitmap images will be present. The technique based on using an index of the dictionary representing the characters of the secret messages instead of the characters themselves. The technique uses multiple frequency domains for embedding these indexes in an arbitrary chosen bitmap image. By using discrete cosine transform DCT, discrete wavelet transform DWT, and a combination of both of them. ِA software package for implementing this technique are built and we got very good results in terms of capacity of hiding, imperceptibility which are the most two important properties of steganography, the time of hiding the text, and the security issues

    Reversible data hiding in digital images

    Get PDF
    Nowadays the role of data hiding has become more eminent. The data safety on the Internet is known to be a challenge due to frequent hacker attacks and data tampering during transmission. In addition to encryption schemes, data hiding has an important role in secret message transmission, authentication, and copyright protection. This thesis presents in-depth state-of-the-art data hiding schemes evaluation, and based on the conducted analysis describes the proposed method, which seek the maximum improvement. We utilize a causal predictor and a local activity indicator with two embedding possibilities based on difference expansion and histogram shifting. Moreover, the secret data from Galois field GF(q),q ≤ 2 in order to embed more than one bit per pixel in a single run of the algorithm is considered. We extend our data hiding technique to the transform domain complaint with JPEG coding. In the experimental part, the proposed method is compared with state-of-the-art reversible data hiding schemes on a vast set of test images, where our approach produces better embedding capacity versus image quality performance. We conclude that proposed scheme achieves efficiency in terms of redundancy, which is decreased due to the derived conditions for location map free data embedding, invariability to the choice of predictor, and high payload capacity of more than 1 bit per pixel in a single run of the algorithm
    corecore