37,997 research outputs found

    Shape-driven segmentation of the arterial wall in intravascular ultrasound images

    Get PDF
    Segmentation of arterial wall boundaries from intravascular images is an important problem for many applications in the study of plaque characteristics, mechanical properties of the arterial wall, its 3D reconstruction, and its measurements such as lumen size, lumen radius, and wall radius. We present a shape-driven approach to segmentation of the arterial wall from intravascular ultrasound images in the rectangular domain. In a properly built shape space using training data, we constrain the lumen and media-adventitia contours to a smooth, closed geometry, which increases the segmentation quality without any tradeoff with a regularizer term. In addition to a shape prior, we utilize an intensity prior through a non-parametric probability density based image energy, with global image measurements rather than pointwise measurements used in previous methods. Furthermore, a detection step is included to address the challenges introduced to the segmentation process by side branches and calcifications. All these features greatly enhance our segmentation method. The tests of our algorithm on a large dataset demonstrate the effectiveness of our approach

    Automating Carotid Intima-Media Thickness Video Interpretation with Convolutional Neural Networks

    Full text link
    Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but the key to prevention is to identify at-risk individuals before adverse events. For predicting individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound method, has proven to be valuable, offering several advantages over CT coronary artery calcium score. However, each CIMT examination includes several ultrasound videos, and interpreting each of these CIMT videos involves three operations: (1) select three end-diastolic ultrasound frames (EUF) in the video, (2) localize a region of interest (ROI) in each selected frame, and (3) trace the lumen-intima interface and the media-adventitia interface in each ROI to measure CIMT. These operations are tedious, laborious, and time consuming, a serious limitation that hinders the widespread utilization of CIMT in clinical practice. To overcome this limitation, this paper presents a new system to automate CIMT video interpretation. Our extensive experiments demonstrate that the suggested system significantly outperforms the state-of-the-art methods. The superior performance is attributable to our unified framework based on convolutional neural networks (CNNs) coupled with our informative image representation and effective post-processing of the CNN outputs, which are uniquely designed for each of the above three operations.Comment: J. Y. Shin, N. Tajbakhsh, R. T. Hurst, C. B. Kendall, and J. Liang. Automating carotid intima-media thickness video interpretation with convolutional neural networks. CVPR 2016, pp 2526-2535; N. Tajbakhsh, J. Y. Shin, R. T. Hurst, C. B. Kendall, and J. Liang. Automatic interpretation of CIMT videos using convolutional neural networks. Deep Learning for Medical Image Analysis, Academic Press, 201

    Hierarchical morphological segmentation for image sequence coding

    Get PDF
    This paper deals with a hierarchical morphological segmentation algorithm for image sequence coding. Mathematical morphology is very attractive for this purpose because it efficiently deals with geometrical features such as size, shape, contrast, or connectivity that can be considered as segmentation-oriented features. The algorithm follows a top-down procedure. It first takes into account the global information and produces a coarse segmentation, that is, with a small number of regions. Then, the segmentation quality is improved by introducing regions corresponding to more local information. The algorithm, considering sequences as being functions on a 3-D space, directly segments 3-D regions. A 3-D approach is used to get a segmentation that is stable in time and to directly solve the region correspondence problem. Each segmentation stage relies on four basic steps: simplification, marker extraction, decision, and quality estimation. The simplification removes information from the sequence to make it easier to segment. Morphological filters based on partial reconstruction are proven to be very efficient for this purpose, especially in the case of sequences. The marker extraction identifies the presence of homogeneous 3-D regions. It is based on constrained flat region labeling and morphological contrast extraction. The goal of the decision is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a modified watershed algorithm. Finally, the quality estimation concentrates on the coding residue, all the information about the 3-D regions that have not been properly segmented and therefore coded. The procedure allows the introduction of the texture and contour coding schemes within the segmentation algorithm. The coding residue is transmitted to the next segmentation stage to improve the segmentation and coding quality. Finally, segmentation and coding examples are presented to show the validity and interest of the coding approach.Peer ReviewedPostprint (published version

    Determining the physical conditions of extremely young Class 0 circumbinary disk around VLA1623A

    Full text link
    We present detailed analysis of high-resolution C18O (2-1), SO (88-77), CO (3-2) and DCO+ (3-2) data obtained by the Atacama Large Millimeter/sub-millimeter Array (ALMA) towards a Class 0 Keplerian circumbinary disk around VLA1623A, which represents one of the most complete analysis towards a Class 0 source. From the dendrogram analysis, we identified several accretion flows feeding the circumbinary disk in a highly anisotropic manner. Stream-like SO emission around the circumbinary disk reveals the complicated shocks caused by the interactions between the disk, accretion flows and outflows. A wall-like structure is discovered south of VLA1623B. The discovery of two outflow cavity walls at the same position traveling at different velocities suggests the two outflows from both VLA1623A and VLA1623B overlays on top of each other in the plane of sky. Our detailed flat and flared disk modeling shows that Cycle 2 C18O J = 2-1 data is inconsistent with the combined binary mass of 0.2 Msun as suggested by early Cycle 0 studies. The combined binary mass for VLA1623A should be modified to 0.3 ~ 0.5 Msun.Comment: 26 pages, 20 figures, accepted by ApJ 2020.2.2

    Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model

    Get PDF
    Modern medical imaging modalities provide large amounts of information in both the spatial and temporal domains and the incorporation of this information in a coherent algorithmic framework is a significant challenge. In this paper, we present a novel and intuitive approach to combine 3-D spatial and temporal (3-D + time) magnetic resonance imaging (MRI) data in an integrated segmentation algorithm to extract the myocardium of the left ventricle. A novel level-set segmentation process is developed that simultaneously delineates and tracks the boundaries of the left ventricle muscle. By encoding prior knowledge about cardiac temporal evolution in a parametric framework, an expectation-maximization algorithm optimally tracks the myocardial deformation over the cardiac cycle. The expectation step deforms the level-set function while the maximization step updates the prior temporal model parameters to perform the segmentation in a nonrigid sense

    Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    Get PDF
    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described

    Interactive modeling, design and analysis of large spacecraft

    Get PDF
    An efficient computer aided design and analysis capability applicable to large space structures was developed to relieve the engineer of much of the effort required in the past. The automated capabilities can be used to rapidly synthesize, evaluate, and determine performance characteristics and costs for future large spacecraft concepts. The interactive design and evaluation of advanced spacecraft program (IDEAS) is used to illustrate the power, efficiency, and versatility of the approach. The coupling of space environment modeling algorithms with simplified analysis and design modules in the IDEAS program permits rapid evaluation of completing spacecraft and mission designs. The approach is particularly useful in the conceptual design phase of advanced space missions when a multiplicity of concepts must be considered before a limited set can be selected or more detailed analysis. Integrated spacecraft systems level data and data files are generated or subsystems and mission reexamination and/or refinement and for more rigorous analyses
    • 

    corecore