@ https://ntrs.nasa.gov/search.jsp?R=19910011926 2020-03-19T19:07:47+00:00Z

- CR- VAT

FINAL REPORT

on

SOLID ROCKET BOOSTER INTERNAL FLOW
ANALYSIS BY HIGHLY ACCURATE ADAPTIVE

COMPUTATIONAL METHODS

Contract Number NAS8-37682

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Marshall Space Flight Center
Huntsville, Alabama
TR-91-05

March 1991

C. Y. Huang, W. Tworzydloe, J. T. Oden
J. M. Bass, C. Cullen, S. Vadaketh

The Computational Mechanics Company, Inc.
7701 North Lamar, Suite 200

Austin, Texas 78752
(512) 467-0618

(NASA-L2-186161) STOLTIU ROC¥eT POT5TER NFL-c2127y
INTERMNAL FLW AMALYSIS 7Y HIGHLY ACLCURATC
ATAPTIVE COMPUTATIONAL METHODS Final Report

{Computtional Mccnanics Co.) 126 nCSCL 21 uncl zs

53/:00 00011

FINAL REPORT

on

SOLID ROCKET BOOSTER INTERNAL FLOW
ANALYSIS BY HIGHLY ACCURATE ADAPTIVE

COMPUTATIONAL METHODS

Contract Number NAS8-37682

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Marshall Space Flight Center
Huntsville, Alabama
TR-91-05

March 1991

C. Y. Huang, W. Tworzydlo, J. T. Oden
J. M. Bass, C. Cullen, S. Vadaketh

The Computational Mechanics Company, Inc.
7701 North Lamar, Suite 200

Austin, Texas 78752

(512) 467-0618

Contents

1 Introduction 1
2 Governing Equations 2
3 Boundary Conditions 9
4 Numerical Methods 11
4.1 A General Family of Implicit Taylor-Galerkin Methods 11
4.2 Implicit/Explicit Procedureso 20
4.3 Artificial Dissipationo 27
4.4 Implementation of Boundary Conditions 29
5 Moving Grid/Eroding Boundary Algorithms 36
6 Adaptive Mesh Strategies and Data Management Schemes 38
7 Turbulence Modeling 43
8 Numerical Examples 54
8.1 Supersonic Nozzle With Small Throat Radius of Curvature 54
8.2 Viscous Flow Over a Sphere oo 58
8.3 Simulation of Vortex Shedding Due to Motor Inhibitor 61
84 Internal Flow in the Turnaround Duct of Space Shuttle Main Engine 6l
8.5 Porous Cylinder with Nozzle (Planar Case) 65
8.6 Porous Cylinder with Nozzle (Axisymmetric Case) 79
8.7 Slotted Chamber with Nozzle (Axisymmetric Case) 90
8.8 Moving Grid Algorithm 90
9 Future Extensions 104
A Jacobians Due to Source Terms 108

B Methods for Treating Constrained or Hanging Nodes 112

C Projection of Surface Nodes 114

D Interface With GAMMA2D 118

E Summary of the Postprocessing Capabilities 118

1

1 Introduction

Over the past three years, the Computational Mechanics Co., Inc. has designed and produced
a new computational tool for modeling internal flows in solid rocket motors as part of the
project “Internal Flow Analysis by Highly-Accurate Adaptive Computational Methods”
(NAS8-37682). During the course of this effort several new algorithms for studying the
effects of moving boundaries on flow characteristics within solid propellant rocket motors have
been developed and tested on both two—dimensional planar and axisymmetric computational
domains. Of particular interest has been the development of a receding boundary algorithm
which successfully models the changing flow domain during the erosion of the propellant
within a solid rocket motor. This method relies on adaptive finite element methods that
combine node relocation techniques (r-methods), mesh refinement techniques (h-methods),
and moving boundaries to form a very powerful analysis package.

In addition to the research and development efforts in the area of moving boundaries,
considerable effort has also been focused on the following topics:

¢ Implementation of a fully adaptive implicit/explicit finite element methodology to op-
timize the computational effort required to advance the solution forward in time.

e Formulation and implementation of a generalized algebraic turbulence model and data
structure compatible with adaptive methodologies and applicable to completely un-

structured grids.

e Testing and validation of the computational algorithms for several benchmark prob-

lems.

The success of the two—dimensional and axisymmetric analysis package in modeling the
benchmark problems suggests that extensions to realistic three—dimensional flows in cavities
with eroding boundaries is both feasible and a natural extension of the project currently
underway. The final section of this report describes some possible extensions of this project
in terms of enhancements of the two-dimensional code and the development of a fully three-
dimensional code for use in the design and analysis of solid rocket motors.

The remainder of this report presents a detailed description of the theoretical formulation,
numerical methods, and representative examples of the analysis of complex flow phenomena
occurring in solid rocket motors. The equations that model flow phenomena for this class
of problems are derived in Section 2. The associated boundary conditions are then briefly
discussed in Section 3. An implicit/explicit flow algorithm is presented next in Section 4,
while the moving boundary and remeshing algorithms are highlighted in Section 5. Section
6 introduces adaptive strategies and the related data structures. The implementation of a

simple algebraic turbulence model is presented in Section 7 along with a discussion of the
data structure and storage requirements. Following the discussion of the algebraic turbulence
model are several numerical examples which demonstrate some of the modeling capabilities

available in the code.

2 Governing Equations

For the class of the fluid dynamic problems we are going to solve, the computational domain
may be continuously changed due to boundary motion. It is well known that for fluid
dynamic problems involving grid motion, the original Navier-Stokes equations derived from
the Eulerian approach need to be modified by using the Arbitrary Lagrangian-Eulerian
(ALE) formulation, see reference [1] for detailed derivation. It should be noted that the
ALE formulation derived in [1] is expressed in the form of Cartesian tensor notations. To
derive its axisymmetric counterpart, we first convert the Cartesian tensor notations to vector
operator forms. These vector operators can be readily transformed into axisymmetric form

using orthogonal curvilinear transformations.

Two-Dimensional Formulation of the Navier-Stokes Equations

The time-dependent Navier-Stokes equations, including grid motion, can be expressed in

tensor notations as

dp | dp(u; — uf)

-é?-l'——gz—‘f‘(’/?:o (2.1)
dpu; 4 G -
-5 T 3z, pui(uj —uj) — Tz‘j] +opu; =0 (2:2)
ge 0O :
FTs + 3z [E(u,‘ —uf) —um; + q.'] +oe=0 (2.3)

where p denotes the density of the fluids, u, is the i-th component of flow velocity, uf is the
i-th component of grid velocity, and ¢ represents the total energy per unit mass. The shear
stress tensor 7;; can be expressed as

Ouy Ou; Ou;
o= —pbi; — _— . 22
7ii P J+/\6J8:ck+#(3x_,-+3m,->

and the heat flux g; 1s
oT

- L
1 83:;

Here x and A represent the molecular and secondary viscosity, respectively. The source terms

in equations (2.1)-(2.3) are due to the grid volumetric dilatation, o = V -u®. For simplicity

and clarity, we will omit these terms in subsequent discussions.

2

Axisymmetric Formulation of the Navier-Stokes Equations
In vector operator form, equations (2.1-2.3) can be expressed as
dp

797+'v.p(V—VG)=0 (2.4)

QE-‘—/- + V(V-VH@pV+Vp-V(2u+A)V -V
ot
(2.5)
+ Uxpu(VxV)=0
% @ V. V-V 4V pV -V (AVV.V)
ot (2.6)

- VuV(V-V)+V - (pyVxVxV)+V-g=0

Here V is the velocity vector and VC represents grid motion.

In orthogonal curvilinear coordinate systems (e, ez, es), these vector operators can be
expressed as:

1 0
v = ————p-
h; amie,
1 o 8 5
V.V = o KA o
hyhyhs 53:,-(h2havl) + amz(hlhsvz) + 813(h1h2V3)

hie; hsey hies

1 0 0 0
VxV = hihohs | 071 Ozy Ozs

hiVi haVa hsVa

where h; are metric scale factors.

For a cylindrical coordinate system,

By expanding these vector operators in equations (2.4-2.6), and neglecting all terms
related to 8, the axisymmetric form of Navier-Stokes equations is obtained:

3

Equation of Continuity

op d(pur) | O(puz) pur _ 2.7
ot or + 0z r =0 27)

Multiplying equation (2.7) by r and rearranging terms, we have

d(pr) | Olpru,) O(pru;) _ 2.8
o T T (22)

Equation of motion (r-component)

Opuy (ur —uy’) Opur(u. —uf) = Opur(u; —u7) +
ot or 0z
pu(ur —uf) 8p Ory 0T,
r + or Or 0z (29)
_2p (0w) 0
r \ Or r]
where
Ju, Ou, Ou, U,
r = 2 AV .-V, -V = —
i Hor + vV 0 + 0z + r
T, - _ai + auz
= = H\5; or
A = —=2u/3, if Stokes’ hypothesis is applied

4

Multiplying equation (2.9) by r and rearranging terms, we obtain

dpru,) Opru,(u, —uf) = Op,u(u, — u®) d(rp)
ot + or + 0z + or
(2.10)
Arre) O(rte:) _
or 0z Pt o0 =0
where +9
=+ AV V.
and 5 5
Uy U, Us
vV -V= —_
or 0z r
Equation of motion (z-component)
(pue) , Bpuslu =8) |, Dpualus = 1)
ot or 0z
(2.11)
+pu,(u, — uf) -83 3 % 3 0Tz Tor 0
T 0z Or 0z ro
where
Ty = 2#6'&2 + AV -V
0z

T — %-{-aul
o T 0z or

Multiplying by r and rearranging terms, we have

O(pru;) | Opyus(u, — uf) | Oprus(u, — u) , 9(rp)
ot + or + 0z + 0z
_O(rmer) O(re:) 0
or 9z

Energy Equation

Oe Ole(ur —uf) +pur] Ole(u: —uf) + pus]

ot or 0z t
e(u, —uf) + puy O(sTrr + usTrs) O(UsTer + UrTr)
r or 0z
UrTrr UsTre O k@- _ 9 ka—T _koT _
T r or \ Or 0z \ 0z ror

Multiplying by r and rearranging terms, we have

L9 (3T 2 (2T _
8rr8r —8zr62 -

d(re) 4 O[re(u, —u8) + ru,p] + Ore(u, — uf) + ru,p]
at or 0z
_O(rurTyy +TUsTrs) O(TUsTer + TUTy:)
or 0z

(2.12)

(2.13)

(2.14)

To make these equations consistent with the two-dimensional planar counterpart, the
notation is changed from z to z and r to y. Depending upon the arrangement of the terms

6

in the governing equations, two different forms may be obtained. The first form is concluded

from equations (2.7), (2.9), (2.11), and (2.13) as

u+ Fy; —F}"i-l-(Sc -5 =0 (2.15)
where
u = [p pu1 pus e)” (2.16)
[» (Ua - U,G) -
puy (Ui - U.G) + pb
Fe = (2.17)

pu2 (ui - uG) + pbai

| € (u,- —u?) 4+ u;p

F' = ' (2.18)

P (uQ ~ ug;)]
puy (u2 - u?)
s (s —)
Le(ug—-uf) + pu; |

N e

5¢ (2.19)

r 0 -

T12

=1, (um B %> (2.20)

L UmTm2 + kr?

SU

@ |-

and the viscous shear stresses are
Tii = HPRU11 + AUz (2.21)

7

T2 = HRU22 + ’\ul,l (222)
T = Tiz = HU (’U.l'z + 'U.g'l) (2.23)

pr = (2u+) = longitudinal viscosity (2.24)

It is observed that in this version, both convective and viscous fluxes are identical to
the two-dimensional planar counterpart and the additional source terms include the grid
velocity. The advantage of applying these equations in the code development is that only
the source terms need to be incorporated into the code and, therefore, the code integrity
and efficiency may be maintained. Unfortunately, it can be shown that this form 1s not
conservative, and thus unacceptable for the numerical implementation.

The second form is derived from equations (2.8), (2.10), (2.12), and (2.14) as

u+F,-F,;+5-5=0 (2.25)
where
a=yu=ylppu pus €]’ (2.26)
- p (Ui _ u?) -
— Uy (ui - U,G) + pby;
F,=yFi=y (2.27)
pu (Ui - U.G) + pby;
c(w-uf) tup
o
—v T1i
F,=yF!=y (2.28)
T2
L Um Tmi — G i
s = —[popo)T (2.29)
T
S = —100EE2 4 Aty O (2.30)

and the viscous shear stresses are

/\’U,2

T = HRU + Az + o (2.31)
/\’Ug

Ty = MRUz2 + Auin + —y— (2.32)

™ = T2 =p (w2 +uz1) (2.33)

pr = (2p+ A) = longitudinal viscosity (2.34)

This form has the advantage that the grid velocity makes no contribution to the source
terms and there is no formal difference between the axisymmetric and planar formulations
due to the grid velocity. Although this form is conservative and will be employed for the
code development, the finite element interpolation based on @ = y (p pus puz S)T will cause
severe numerical problems near the axis of singularity, y = 0, since the conservation variables
u = (p puy pus e)T for all nodes that lie on this axis can not be recovered directly from u.
We have resolved this problem by interpolating u and y separately, see Section 4.1 for a
detailed description.

3 Boundary Conditions

It is well known that the well-posedness of fluid dynamic problems can not be established
by solely considering the governing equations without investigating the associated boundary
conditions [2,3,4,5]. Moreover, the accuracy and the rate of convergence of a numerical
algorithm are also affected by the proper treatment of the numerical boundary conditions
[6-10]. On the other hand, the ability of a CFD code to simulate fluid dynamic problems
is strongly dependent on the flexibility of treating various types of boundary conditions. In
this report, instead of presenting a detailed mathematical background about these boundary
conditions, we will rather point out various types of boundary conditions that are most
often encountered in fluid dynamic problems and discuss how these boundary conditions are
implemented within the context of finite element methods.

The following boundary conditions are common to most fluid dynamic problems:

1. Open boundaries or inflow/outflow boundaries.
2. No-flow or no—penetration boundary.
3. No-slip isothermal/adiabatic boundary.

4. Porous wall boundary with mass injection.

9

5. Moving boundary with prescribed velocity.

Boundary condition type 1 is usually encountered when artificial boundaries are intro-
duced to a problem in order to reduce the computational domain. In this case, boundary
conditions have to be treated carefully to handle wave reflection and disturbance propagation
for both accuracy and rate of convergence considerations [6-10].

Boundary condition type 2 is popular for inviscid flow problems and for problems involv-
ing symmetric geometry. On this type of boundary, flow is prohibited from penetrating the
boundary and is allowed only in the direction tangent to the boundary. This condition is

quite natural for solid boundaries immersed in an inviscid flow.

Boundary condition type 3 is a typical boundary condition for viscous flow problems.
The isothermal boundary simply implies that the temperature of the wall is a constant,
while adiabatic boundary means that the heat flux across the wall is zero.

Boundary conditions 4 and 5 are special features associated with the numerical simulation
of eroding or moving boundaries. Generally speaking, the eroding surface of a solid propellant
may be regarded as a porous wall with boundary motion. The burning rate and the mass
flow rate across the surface are, theoretically, dependent on the local flow conditions such as
pressure and temperature and the composition of the solid propellant. A notable empirical
formula known as Saint-Robert’s law which correlates the burning rate and chamber pressure
is given by [11]. In cases where chemical reactions and combustion phenomena are not
considered, the surface of the solid propellant is usually treated as a porous wall with mass
injection. the mass injection rate being obtained from experimental data.

To avoid ambiguity in identifying the type of boundary condition at a node where two
different types of boundaries intersect, a hierarchical procedure is set up as follows based on

their relative priority:

1. porous wall boundary with boundary motion,
2. no-slip boundary condition,
3. no-flow or no-penetration boundary condition, and

4. open boundary condition.

A detailed discussion of the theoretical formulation and implementation of most of these
boundary conditions can be found in reference [20]. In this work we will discuss boundary
conditions specific to the solid rocket booster applications, namely porous/burning wall
conditions (Section 4.4).

10

4 Numerical Methods

Over the past few years, significant progress has been made in the development of new
computational methods for solving compressible Navier-Stokes equations. The approaches
described in the literature vary from fully explicit algorithms, which are computationally
inexpensive but often severely limited by stability restrictions, to fully implicit algorithms,
which are unconditionally stable but are much more expensive per time step. The selection
of which type of algorithms is optimal for a given application is generally not known a prior:
and may in fact change as the features of the flowfield develop. As a result, a domain
decomposition approach is gaining popularity in the CFD community which employs an
explicit formulation in one region of the mesh and a fully implicit formulation in another,

see references [12-15,20].

In this section, a family of implicit/explicit finite element algorithms developed by
Tworzydlo, Oden, and Thornton [20] will be generalized for the solution of axisymmetric
problems with moving meshes and porous/burning wall boundary conditions. Within this
family, a fully explicit method or various versions of implicit algorithms can be obtained by
appropriate selection of implicitness parameters. This general finite element algorithm is
combined with adaptive mesh refinement (as presented in references [18,19]) and adaptive
selection of implicit/explicit zones within the computational domain. Several approaches to

the selection of implicit and explicit zones are presented.

Following the description of implicit/explicit schemes, the artificial dissipation added to
the system to suppress possible spurious solutions (due to shocks) will be outlined. The final
solution describes the implementation of the porous wall boundary condition and pressure
outflow boundary condition.

4.1 A General Family of Implicit Taylor-Galerkin Methods

In this section a general family of implicit Taylor-Galerkin methods will be derived. This
family is based on a combination of second-order Taylor series expansions in time with a
Galerkin approximation in space (one-, two—, or three-dimensional). Several implicitness
parameters are introduced, so that, depending on the particular choice, a fully explicit scheme
or a variety of implicit schemes can be recovered. The family of algorithms presented here
is a generalization to axisymmetric problems of the algorithms developed previously.

Second—Order Taylor Expansion in Time

Assume that the solution 4" is given at the time moment ™ and the solution at time t"tlis to
be calculated. Formally, the values of the solution at moments ¢" and t"*t1 can be expressed

11

by the second-order Taylor expansion around an arbitrary moment t"te (see Fig. 4.1), where

a is the implicitness parameter with values between zero and one:

~ inta At? xn4a
a™t! = 4" 4 (1 — a)Atu Ty (1- 0)2—2—‘“ i o(At%)

(4.1)

Anta At2 »ndo
u" = ﬁn+a — aAtu + + az—-Q—u + + O(Ats)

By subtracting these two formulas one obtains a formula for the increment of the solution

between steps n and n + 1:

2 nta
+(1- 2a)-A—2t—-ﬁ oL 0(aP) (4.2)

Now it is easy to observe that:
3 =2 1 0((a - B)AY)

so that—still preserving second-order accuracy—a second implicitness parameter B can be
introduced into equation (4.2):

bR 5 of o] t2 nn
A=A+ (1 - 2a)ATa o) (4.3)

The next step of the derivation is to express the quantities evaluated at time moments A
and t"*? by quantities evaluated at the basic steps t" and t"*t1. It is easy to show, using a

Taylor series expansion, that:
Antoa

47 =4+ adu+ O(AL?)
PP 2 & 4 paR + 0(A)

Substituting these formulas into equation (4.2) yields a two-parameter expansion:

At = At (46" +edn) +(1- 2a)92t—2 (" + BAg) + 0(Ar%) (4.4)

12

At

Figure 4.1: General Taylor series expansion in time

13

Now, following the original idea of Lax and Wendroff, the original equation (4.1) will be sub-
stituted to equation (4.4) to replace time derivatives by space derivatives. This substitution

yields a formula for the first derivatives:

w=F, -F, ,+8 -5 (4.5)

At = AF;,—AF;; +AS® - AS°
(’ﬁ,-jAﬁ,j)‘i + (P:a) = (4:aw) . (4.6)
+ Q,Au;+TAT - BAw

and for the second derivatives:
i P
— (ot + i), - (A),)
+ (Qu,; + T4) + Bu
where the relevant Jacobians are defined as:

oF, = oF.

R, = o, P = &
—_ oF. —~ oS®
Ai = A' b 3 = -~
ou e o0u
- 98* = 3s°
T = —_
55 ° D 5%

It can be shown that the multiplier, y, will not affect the linearization of nonlinear invis-
cid fluxes. Moreover, Jacobians R;; will remain the same as its two—dimensional planar

counterpart. This implies that
R;=R;, A=A

where R;; and A; are the planar counterpart and can be found in reference [23,24]. The
Jacobians P; can be expressed as the sum of two components as

P,=P;+ P!

14

where P; is the two-dimensional planar counterpart and the additional term P# is due to
the axisymmetric formulation. Details of P,, QJ, T, and B are given in Appendix A.

After further substitutions, the second order time derivative can be expressed as
i = [Rﬁ (Fox —Fip+ 5" - 5°) :].f
- [B:(F k—Fkk-i-S"—S)

(4.8)

~ [B(Fip—Frn+5" - 5]
Since bilinear elements are used in the finite element code, any spatial derivatives higher

than order 3 will be neglected in equation (4.8). This results in the following approximation
for the second order time derivatives.

——

i = (AFH) + (4:;5°, + BF,, + BS +0(k)

) — — e (4.9)
i = (A4, + (ABw) + BAd, + BBa+0(pk)
and the incremental form of the second order time derivative can be expressed as
At = (AiAATy), + (ABAR) + BALG,
' ! (4.10)

+ BBAu@+ O(At) +o(p, k)

Substituting (4.5)-(4.6) and (4.9)-(4.10) into (4.2) and regrouping explicit and implicit
terms, we get

Al + ot (AAR); + aAtBAT — yAL (Ri;A)
— 74t (PiAw) - YALQ, Al ; — 1 ATAG

(1= 2a) AL

PP [(aaidag), + (aBow)

5

(4.11)
+BAAG, + BBAG = At (Fy, - F; + 5" - 59)

+ (__5@__ [(A,Fk‘k)'i +(AS°), + BF,, + BS"]

+ (1 = 22)0(u, k)AL + (@ — 7)O0(p, k) At + O(AL)

15

Notice that a third implicit parameter, v, was introduced in (4.11) to control the implicitness
of the viscous terms without affecting the order of accuracy in time.

Variational Formulation

Neglecting higher order terms and multiplying by an arbitrary test function v through (4.11)
and integrating over the domain we get

/Q (AT - v + aAt[(—AA)v; + (BAG)]

+yA(R; A v, + (PiAR)v, — (Q;A%,)v

~ (1 - 2a)BAL?

- (TA'TL)U] + 5 [(A,-AkAﬁ,k)v,,-

+ (A BAG)v, — (BA,;A)v — (BBAR)v]}dD

+ /m {aAt(n; A;AR)v — YA (n: Rij A ;) v (4.12)

(1 = 2a)BA¢

: [(ni A, BAR)v + (n; AiA; A0 ;)v] }ds

+ (n, P;Aw)v] —

= [{AU(F; - By~ (5° - 5"

1 — 20)At? . DA =
+ (—-—2)—-—[—(A,-Aju'j)v,,- - (A,'SC)’U‘,‘ + (BAJ"U,J‘)’U
(1 —2a)At?

> [(n;A;Ajﬁ,,-)v + (n,-AiSC)v]} ds

+ (BS)v]}dO + /an {Atm(’ff ~F)v+

In the variational formulation (4.12), the unknowns selected for finite element interpolation
is & = yu, or in discrete form

w(z) =) urgi(z) (4.13)

The choice of @ for the finite interpolation leads to the following computational problems:
4 becomes zero as y — 0. This implies that the conservation variable u becomes singular,

u = lim - = lim — (4.14)
y—=0y y—0 y

16

To avoid this singularity problem, we will interpolate y and u separately for & so that
u becomes the actual vector of unknowns in the problem. The resulting variational form

becomes

/Q{yAu v+ aAtly(—ATAu)v ;i + y(BAu)v]
+ 'yAt[y(R;jAu‘j)'v_,- + (R;,-y.jAu)v',' + y(ﬁ;Au)'v,;

—¥(Q,0u;)v — (Q;v,;0u)v — y(TAu)v]

+ (1 —2a)BAtE

5 [y(A;AjAu’j)v',- + (A,-Ajy_jAu)v',-

+ y(A;BAu)v; — y(BA;Auj)v — (BA,y;Au)v — y(EEAu)v]}dQ

/ém{aAty(niAiAu)v — yAt[y(n; Ri;;Au;)v + (n Ry ;Au)v + y(n; P;Au)v) (4.15)

1 —2a)BAt? —_— —_
- (—7)——[y(n,~A,-AJ-Au,J-)v + (niAiAjy;Au) - v + y(n; A BAu)v|ds

(1 —2a)At?

5 [y(A: 4 u;)v+ (AiA;y,;u)v,

=/Qm[y(’ﬁf-’ff)v,i—(S°—S")v]—

+ A;S°v; — y(ﬁAju'j)v —(BA,yu)v ~ (BS°)v)d

(1 —2a)At?

+ [(aun(F - Fojo+ =5 ly(nidid;u,)v

+ niA,-Ajy,ju) ‘v + (niAiSc)) v]}ds

Since matrices B, T, @, and P contain multiplier i— and/or ;’7 (see Appendix A) and y,, = 0,
y2 = 1, the integrals containing these terms in equation (4.15) can be regrouped as:

17

1. Left hand side interior integrals

Au-v

df

_/Q [6(B? + BA) +¢(Q, + T2)]
+/n(aB—ch)Au-de—}-/I(yAu-v)dQ

+‘/‘;(-—-aA.-+cP.~) (yAu -v;)dS

+ /ﬂ [(cl?.;2+bA,~Az)+(bA,-B)+cP{‘] (Au - v,;)dQ (4.16)
- /Q (cQ; + bBA;) (Au; - v) R

+/Q(CR,‘j'*‘bAiAj)(yAu.jvvi)dQ

(1 - 2a)BAL

5 , ¢ =yAt

where a = aAt, b=

2. Left hand side boundary integrals

Aﬂ (an.-Ag —_ cn,-P.-) (yAu . v)ds
- /an [(Cn.'R.'z + bn;A;Az) +bn; A;B - cn.-Pf] (Au - v)ds (4.17)

- /30 (CTL,'R,,'J' + bn.-A,'AJ-) (yAu'j'v) ds

18

3. Right hand side interior integrals

/Qm(s; — 5 - vdQ

: L (1 —2a)At? c a1
+ _/Q{Atszv+)2 [(BAy)u- v+ BS o] 0 d0

¢ _ F) . p.]1dQ
+ [Atly(Fs - F) -0,

, (4.18)
- / {At (F* v)+ (1 - 20)At [A; (Ayu + S°) - v,,-]} s
Q ’ 2
1 — 2a)At?
+ /s;(——-éc—l)——BAJ (‘U.’J' -v) dQ
1 - 2a)At?
- / (—_Tz—AiAj ('u.,j . 'U’,')de
where S? = —[0 0 Augx 0]F
(4.19)

S, = —[00 prug 07

F¢ is the Cartesian counterpart of viscous fluxes and F4 is the additional viscous
fluxes associated with the multiplier, %, where

F4 = [0 2w 0 Jw)

(4.20)
FA =10 0 X 2
4. Right hand side boundary integrals
[Atlyni(Fy =~ F9)-ulds+ [APy vds
a0 o
1 —2a)At?

/39 '('—?)_’ (niAiAz) (u-v)ds

(4.21)

_ 2
./Zm(i-—i-ciét—n,-A;(Sc-v)ds

1 —2a)At?
</89 (———?'—)_n,'A,‘AJ' (yud- : v)ds

19

4.2 Implicit/Explicit Procedures

The basic idea of implicit/explicit algorithms is simple: combine the two methods to take
advantage of the superior features of each. The major advantage of the explicit method
is that element computations are relatively inexpensive and simple. Unfortunately this
method suffers from stability limitations of the time step, which in some problems leads to
prohibitively large numbers of time steps.

The implicit algorithm allows for an application of larger time steps than the explicit
method. Moreover, due to the existence of implicit boundary terms, it offers easy and
straightforward control of natural boundary conditions, particularly those involving the vis-
cous fluxes. An additional advantage is that with larger time steps no explicit artificial
dissipation is necessary, which is very important in the calculation of boundary fluxes, par-
ticularly by wall heating rates. The major disadvantage of implicit methods is a much higher
cost of element operations and a more complex and expensive solution of the resulting system
of equations.

In this section, the formulation and numerical implementation of an adaptive implicit/
explicit algorithm for compressible flows is presented. The algorithm will be based on the
general family of Taylor-Galerkin methods discussed in the previous sections.

Formulation of Implicit /Explicit Schemes

The algorithms for determining the partition must be designed so as to preserve stability, the
conservative properties, and the required order of approximation. We begin by partitioning
the domain ! into subdomains Q&) and Q) where explicit and implicit schemes are to be
applied, respectively.

Some of the possible procedures are examined below.

Procedure I

The first possible approach, applied for example by Hassan, Morgan, and Peraire [25], is
based on the following two steps:

1. Perform the explicit step computations on all nodes in the mesh (QUE) = Q).

2. Perform the implicit computations in the subregions, where the stability criterion for
the explicit scheme: C <1 is violated. The solution in remaining nodes is “frozen” at

this step.

20

This simple procedure has one basic disadvantage: it appears to be nonconservative and
this disturbs the regularity of the solution in the transition zone. This is caused by the
fact that during Step 2 the “frozen” explicit nodes impose the actual Dirichlet boundary
condition on the edge of the implicit zone. Prescribing the Dirichlet boundary condition
for the Navier-Stokes equation means that there must exist an (external) source of fluxes
to support the prescribed state of the solution. Since no such external source exists within
the computational domain, the solution will not be conservative across the implicit/explicit
line. Due to enforcement of the Dirichlet boundary conditions, the solution may exhibit a

“ramp” or “kink” along this line.

Procedure 11

Again Q is considered to be the union of two subregions QW and QF (see Fig. 4.2), such
that:
NE N = Tgr, QE oW =0

It is convenient to assume that the interface between the two regions coincides with the

element boundaries.

It can easily be observed that the differential equations to be solved on the two subregions
are different due to different implicitness parameters applied in each zone: oD gt (D i
the implicit zone and a'B) BE) 4(E) = 0 in the explicit zone. Therefore, the variational
formulation (4.15), based on the assumption of constant implicitness parameters, cannot
be applied to the domain Q. Instead, it can be applied separately to each subdomain with
additional continuation conditions across the interface. These conditions represent continuity
of the solution and satisfaction of the conservation laws across the interface and are of the

form:
2B = wl)
FEC _ pho
’ o T 4.22
4B 4 on l'g; (4.22)
FEV - pOv
where index n refers to the outward normal for the corresonding region (n!E) = —n("). The
continuity requirement also pertains to the test function, so that v(E) = pl) = v. Note

that for general weak solutions of Euler equations the solution u need not be continuous
across the interface. However, for regularized problems and finite element interpolation, the
continuity of u is actually satisfied.

If the variational statement is formulated for this problem, then in addition to interior
integrals for each subdomain and regular boundary integrals, jump integrals across the in-

21

Qg

(B
0 i

Figure 4.2: Implicit/explicit zones in a computational domain.

22

terface appear in the formulation. Note that in the practical implementation of this scheme
we set all the interface components to zero. This procedure preserves the continuity of fluxes

and time accuracy across the interface up to the first order.

Procedure II1

The last procedure considered here is based on a generalization of the weak formulation,
according to which the implicitness parameters are not constant, but are continuous functions
of the position . For the finite element computations, it is convenient to limit the choice of
these parameters to the finite element subspace, so that:

N
a(z) = 12; arV¥i(x)

and the same holds for the other implicitness parameters 3,7 and ¢. With this assumption
additional terms show up in the variational formulation. Note that there are no additional
boundary terms resulting from the variable implicitness.

The above approach seems to be the most general and clear, with no ambiguities con-
cerning the interface conditions. To make the practical application cheaper, the implicitness
coefficients are held constant in most of the elements, and the additional terms are actually
evaluated only in the transition zones.

Selection of Implicit and Explicit Zones

The basic criterion for selection of implicit and explicit zones is simple: for a given time step
all nodes which violate the stability criterion for an explicit scheme should be treated with
the implicit scheme. According to this criterion, several options for an automatic adaptive
selection of implicit/explicit zones were implemented:

1. User-prescribed time step DT

Within this option, the user prescribes the time step. All nodes satisfying stability
criterion for the explicit scheme (with s certain safety factor) are explicit. This means
that all the elements connected to these nodes are treated with the explicit scheme.
On all other elements the implicit scheme is applied.

9. Prescribed maximum CFL number:

In this option, the user prescribes the maximum CFL number that can occur for
elements in . The time step is automatically selected as the maximum step satisfying
this condition. The choice of a maximum CFL number may be suggested by the time

23

accuracy arguments or the quality of results (it is known that, for a Taylor-Galerkin
scheme, too large a CFL number tends to smear shocks).

. A prescribed percentage of the domain is implicit.

In this version, the user specifies the fraction of the domain which is to be treated im-
plicitly. The elements with the strongest stability limitation (usually the smallest ones)
are treated implicitly, the others are explicit. The time step is selected to guarantee

stability of the explicit zone.

. Minimization of the cost of computations.

In this option, the time step and the implicit/explicit subzones are selected to minimize
the cost of advancing the solution in time (say one time unit). The algorithm is based
on the fact that, for an increased time step, an increasing number of elements must be
analyzed with the (expensive) implicit algorithm. The typical situation is presented in
Fig. 4.3, which shows for different time steps the relative number of nodes that must
be treated with the implicit scheme (to preserve stability). On the abscissa, the Atpg
denotes the longest time step allowable for the fully explicit scheme (with certain safety
factors). Atr; denotes the shortest time step requiring a fully implicit procedure. The
relative number of implicit nodes increases as a step function from zero for At < Atrg
to one for At > tpy. Now assume that the ratio r of the computational cost of
processing one implicit node to the cost of processing one explicit node is given. This
ratio can be estimated relatively well by comparing the calculation time of element
matrices and adding, for implicit nodes, a correction for the solution of the system
of equations. Then the reduction of the cost of advancing the solution in time with
the implicit/explicit scheme, as compared to the fully explicit scheme, is given by the
formula:

R(At) = %%E (n(E) + rn([))

Typical plots of the function R(At) are presented in Fig. 4.4. Shown here are the two
cases:

(a) the case of a small difference between fully explicit and fully implicit time steps—
an almost uniform mesh
(b) the case of a large difference between fully explicit and fully implicit time steps
Note that in either case, restrictions on the length of the time step should be applied,

for example, from the maximum CFL condition. Otherwise the cheapest procedure
would always be to reach the final time with one implicit step.

From the plots in Fig. 4.4, the following observation can be made: for an essentially
uniform mesh, the mixed implicit/explicit procedure does not provide savings of the

24

AT— fully explicit time step
AT, - fully implicit time step

A nz% N, = number of implicit nodes
N - total number of nodes
1 -t
0 t % > At
Aty AT At,
(fully explicit) (fully implicit)

Figure 4.3: Relative number of implicit elements for increasing time step.

25

— et — e = -
N

>

(CFLpax!

Figure 4.4: Reduction of the cost of computations due to implicit /explicit procedure.

26

computational cost—either a fully implicit or fully explicit scheme is the cheapest de-
pending on the time step restriction. On the other hand, for very diverse mesh sizes the
mixed procedure provides considerable savings. This means that the effectiveness of
the mixed implicit/explicit scheme will be the best for large-scale computations with
both very large and very small elements present in the domain. In the practical imple-
mentation of this method, the approximation of the function R(At) is automatically
estimated for a given mesh. Then, the time step corresponding to the smallest R(At)
is selected automatically (subject to additional constraints, in particular the CFLmay

constraint).

In addition to the above criteria, based purely on a stability analysis, some other criteria
for application of implicit schemes can be applied. For example, within boundary layers the
implicit scheme may be preferred, because it provides faster convergence of the boundary
fluxes and offers direct control of the natural boundary conditions. Many of these issues are
yet to be studied.

4.3 Artificial Dissipation

In order to suppress spurious oscillations of the solution, a variety of models of artificial
dissipation are used. In this work, we assume that the artificial dissipation can be introduced
as the additional flux in the Navier-Stokes equations in the form:

w+ FC, = F/;+ F},
where the artificial dissipation flux is the function of the solution vector and its derivatives:

with corresponding Jacobians defined as

dF4

A _ 1
pPe o= ou
RA = oF#
BT B,

The advantage of this approach is that the artificial dissipation can be treated using:
exactly the same formulation and procedures as for the natural viscosity. In the implicit
algorithm, for the sake of generality, a fourth implicitness parameter 6 is introduced for the
terms associated with the artificial dissipation. In the calculation of the stiffness matrices,
right~hand sides and boundary terms, the same formulas are used as for the natural viscosity.

27

~ Within the above framework, various models of artificial dissipation can be formulated
relatively easily. For example, a straightforward extension of the original Lapidus dissipation
[26] to multidimensional cases yields artificial fluxes defined as

FA = kiiu,j (423)

1

with

k' = CkAe |'U,',,‘|
where ¢ is a coefficient (usually between zero and one), A, is the element area, and v; are
the components of velocity vector (no summation on i). The Jacobians P and R can be
defined by a straightforward differentiation of formula (4.23).

Another generalization of the Lapidus concept was proposed by Lohner, Morgan, and
Peraire [27]. Within the framework proposed here, the fluxes corresponding to their model

are of the form:

Ou
A — —
F? =1k T,
or
FIA = kl,-lj'u,j (424)

where 1 is the normalized gradient of the magnitude of velocity,

_ grad|v|
|grad|v|]

and the coefficient k is calculated from the formula
k=cxA(l-grad(v-1))

The Jacobians P and R can be defined by differentiation of formula (4.23). If, for simplicity,
dependence of k and I on the solution is disregarded, then:

P,’ = 0
(4.25)
R, = kLI

where I is the identity matrix of dimension M. In the incremental equation (4.11), the above
approach leads to an additional term of the form

ou
At [l,-k-aT] ',-

28

which differs slightly from the original formula proposed by Lohner and Morgan (equation
(9) in [27]). These two versions are equivalent only for I constant throughout the domain.
It can be verified, however, that the directional derivative used in [27] is not in divergence
form and thus cannot be directly used in the variational formulation for arbitrary .

4.4 Implementation of Boundary Conditions

Before discussion of boundary conditions for the implicit Taylor-Galerkin method, it is use-
ful to quote the general result of Strikwerda [3], which specifies the number of boundary
conditions necessary for well-posedness of the linearized Euler and Navier-Stokes equations.
These results are summarized for two-dimensional problems in the table below.

Type of Euler
Boundary (not regularized) Navier-Stokes
supersonic inflow 4 ess 4 ess
subsonic inflow 3 ess 3 ess + 1 nat
subsonic outflow 1 ess 1 ess + 2 nat
supersonic outflow 0 0 ess + 3 nat
no-flow 1 ess 1 ess + 2 nat
solid wall

—isothermal — 3 ess

—heat flux — 2 ess + 1 nat

In this table “ess” denotes the essential boundary conditions and “nat” denotes natural
boundary conditions. The essential conditions are to be imposed on the characteristic vari-
ables rather than the conservation variables. It is of importance to note that the numbers
presented in the table are true for problems that are not regularized. If—as is the cae of
virtually all computational techniques—some artificial diffusion is built into the algorithm
or added explicitly, natural boundary conditions should be imosed on these terms even for
Euler problems. Moreover, since artificial diffusion (in contrast to the natural viscosity)
affects all the conservation variables, the number of natural boundary conditions for these
terms should actually be one more than for the (nonregularized) Navier-Stokes equations.

In the jargon of finite difference methods, essential boundary conditions are equivalent to
the boundary conditions to be specified, and the natural boundary conditions are equivalent
to the boundary conditions to be extrapolated from the interior of the computational domain.

29

Within the finite element context, the basic idea of implementing these boundary conditions
is based on the concept of constrained minimization. The essential boundary conditions
are treated as constraint functions associated with the variational formulation. Penalty
methods are usually applied to enforce these conditions in the original system and result in
additional stiffness matrices and right hand load vectors. This method has been applied for
implementing the open (inflow/outflow) boundary conditions, no-flow boundary conditions,

and no-slip boundary conditions.

In this section, the numerical implementation of pressure outflow boundary conditions
and porous wall boundary conditions are presented.

Enforcement of Prescribed Pressure

For the case of subsonic outflow with a specified pressure there is one essential boundary
condition to be specified, namely the prescribed pressure. The procedure currently being
applied in this case is the following:

(a) Apply a supersonic outflow procedure to account for corresponding boundary
integrals (continuation from the interior condition).

(b) Impose the one essential boundary condition (pressure) by the penalty method.

The supersonic outflow procedure is described elsewhere and it amounts to rigorous calcu-
lation of boundary integrals resulting from variational formulation.

Beginning with the constitutive relation for the pressure

p=(y=1)(E - E) =7 (E — Ex) (4.26)

the condition for a prescribed pressure 7 is (in incremental form)

Ap=p-p" (4.27)

30

The corresponding penalty term (in energy form) is

1
2-[8p - (P -) (4.28)
and in variational formulation is
1
“(ap - (- 7)) 6(20) (429

where the test function for pressure is its own variation.

Now observe that Ap can be expressed in terms of conservation variables as:

Ap = -68% Au=d- - Au (4.30)

T
where d = ’y‘{%&, vl,vz,l} (in the two-dimensional case). Therefore the penalty term
(4.29) becomes

S Au- (-l (d) (31)

where w is a test function. Using the standard requirement that the variational equation be
satisfied for every v leads to the vector equation:

é d-Au~(F-p"))d=0 (4.32)

31

and after regrouping

1 1
-[d@d] Au = -d(p-p")
penalty stiffness matrix right hand side

Note: The first component of d has density in the denominator, so that this approach will
blow up if the density is close to zero. To stabilize this procedure, one can multiply (4.33)

by p?, to get

1~ = N
- = —d(p— " 4.34
“[dodlau = CdF-7") (4.34)

where d = pd = {Ek,ml,mg,p}.

Porous Wall Boundary Conditions

Generally speaking, the burning surface of a solid propellant may be regarded as a porous wall
with boundary motion. The burning rate and the mass flow rate across the burning surface
are, theoretically, dependent on the local flow conditions such as pressure and temperature
and the composition of the solid propellant. In order to implement the porous wall boundary
condition with possible boundary motion simultaneously and consistently, a total number
of four quantities are prescribed (see Fig. 4.5). These quantities are the tangential and
normal velocities of the wall (Tzw and Tyw), the mass flux across the wall (Mn), and the
temperature of the wall (Tw). The requirement that these prescribed quantities have to
be satisfied at all times on the burning surface results in three boundary conditions to be
imposed.

(a) The tangential velocity of the fluid is equal to the tangential velocity of the wall,
ur = Urw
(b) The balance of the net mass flux,

pluy —Unw) = TN = normal momentum

32

Figure 4.5: Prescribed quantities on a burning boundary.

(c) The temperature of the fluid is equal to the temperature of the wall,
T=Tw

It is important to note that the normal velocity of the fluid is not equal to the normal
velocity of the wall due to the prescribed mass flux. The difference of these two quantities
contributes to the net mass flux across the wall.

The numerical implementation of these boundary conditions results in the modifications
of the stiffness matrices and global right hand side associated with boundary integrals. For
condition (a), the incremental form consistent with the incremental time stepping algorithm
can be expressed as

Aur = Urw — u% (4.35)

The constraint function associated with this condition is defined by
g = Aur — (UTW - 'U.'TL-) (436)

The variational form of the penalty term resulting from the constraint function g (tested
with its own variation ég = 6Aur) is

- [Bur — (@rw - u3) - §(AU7) (437)

33

The function g tested with the variation of the incremental tangential velocity, (4.35), will
result in penalty terms affecting both the continuity and momentum equations. To avoid
this unphysical situation, the constraint function, g, may be tested with the variation of the

tangential momentum, that is

1

E [AHT — (UTW - u})] -6Amy (4.38)

where my denotes the tangential component of momentum. Note that

Aur = 68—({} Au = dAu
5 (4.39)
Amp = _87_71[77“_ Au = dAu
where
d = %u_T = [—'U—T, Zl'a 'Iia 0]
u
pp P (4.40)
- om
d = _5'u—T = [Oa Tla T27 O]

and (T, T) represent the z,y components of the unit tangential vector. Substituting (4.39)
into (4.38), the penalty term becomes

l[d.Au-—(uTW —u})]:i-v (441)

Since the global variational formulation of the problem (not shown here) has to be satisfied
for any test function v, the corresponding kernel of the penalty term in the stiffness matrix

can be found from (4.41) as
1~

k= gd ®d (4.42)
and the corresponding right hand side is
1 s 3
T = E (UTW - uT) d (443)

34

The condition (b) to be imposed on the porous wall states that
p{un —Tnw) =N

or
my — punw = My . (4.44)

The incremental form of this condition can be written as
Ampy — Apiyw = My — (my — o TNw) (4.45)
This results in a constraint function L, given by
L = (Amy — Oplnw) — [y = (my = p"anw)} = 0 (4.46)

By applying a typical penalty procedure as described for imposing condition (a), we obtain
(L is tested with émy) the corresponding kernel, k, and the right hand side, r, as
1

E = Ea ®d (4.47)

ro= [(ko)) d (4.48)

where

aL
d = 6_17= [—'ﬁ}vw, Ny, Ny, 0]
(4.49)

~ om
d = FU£=[0, Ny, Ny, 0]

and (N;, N;) denote the z,y components of the outward unit normal vector.

For condition (c), we apply the same penalty procedure to enforce the prescribed tem-
perature. The resulting penalty term is (tested with the variation of total energy)

1

- (AT - (Tw -)] - §(E.) (4.50)

35

The temperature can be expressed in terms of total energy, E;, and kinetic energy, Ey, as

pp
or E
oy 1) [2 T 4.51
r=at-y (2 -5 (@51
where m; represents the momentum components. The standard vector d = T can be
derived from (4.51) as
oT E, E;
d = e—_—=F|—-— —_—
b op 7(7 pz)
d_aT_ﬁud_aT__it_i
2T m p 0 ma g
or ¥
d = —_— -, = —1
4 3 =5 y(y—1)

The corresponding kernel and right hand side result from this condition 1s

E = ~d®d

™|

(Tw-1T")d

-
It
™| —

where

E E. —u —v 1
d = 7[——2"*"_2‘5’ T T —]
P P p p P

d = [0,0,0,1]

5 Moving Grid/Eroding Boundary Algorithms

As mentioned earlier, the surface of the solid propellant is treated as a porous wall charac-
terized by mass injection and boundary motion. The mass injection rate and the speed of
the boundary motion are dependent on the local flow conditions and the composition of the
solid propellant. If combustion phenomena are not considered, these quantities are usually
determined according to empirical data.

36

As combustion phenomena has not been included as part of this project, and empirical
approach has been implemented whereby the motion/erosion of the solid propellant boundary
is prescribed. The moving grid algorithm that incorporates the motions into the deformations
of the domain can be stated as follows:

For a given computational domain,), but 89, represent a part of the boundary which
is subjected to a prescribed boundary motion and 90, represent the stationary component,

such that 89, = 99, U 0Q; (see Fig. 5.1).

Figure 5.1: Computational domain with a moving boundary.

In order to prevent unacceptable mesh distortions near the moving boundary, we have
implemented an algorithm whereby the whole computational mesh is stretched. The grid
velocities u* for the stretching are calculated by solving a boundary-value problem defined
by the Laplace operator (which has certain smoothing properties):

V% =0 inQ, k=12
Up = UN on 0f1,
uy =0 on 0%,

where u* represents the k-th component of grid velocity and Ty is a prescribed normal
velocity. Note that only the normal component of velocity is prescribed on the moving
and stationary boundaries. This allows the grid to stretch along the boundary and better
adjust to the erosion process. However, corner nodes belonging to two different boundary
sections have two linearly independent normal vectors and thus two components of velocity
are automatically prescribed. Note that the two equations are coupled due to the specified
normal boundary velocity, Ty .

A preconditioned block Jacobi-CG iterative method was employed to solve the final
system of linear equations for grid velocity. Once the grid velocities for each node point
are determined, the new nodal positions are updated by using the time step size and the

calculated grid velocity.
X* = X* + Dt x u*

37

Presently, two options for determining the time step size were implemented in:

(a) In the first option, the time step size D? is calculated from from the fluid stability
criteria. Although an accurate transient solution may be obtained, the boundary
motion may be extremely slow due to the small time step size and the relatively
slow motion of the moving boundary. Thus, this version may require extremely
long solution times and high computational costs to move the boundary large

distances.

(b) In the second option, we specify a certain amount of time to advance the moving
boundary without solving the fluid problem. During the boundary motion, the
grid velocities are recalculated periodically to account for changes of the normal
vector n and to prevent mesh distortion. Currently, the criterion for the corre-
sponding time interval Dt is that the mesh can move only a prescribed distance
before recalculation of the grid velocities. This distance is usually taken as a

fraction of the averaged element size.

6 Adaptive Mesh Strategies and Data Management
Schemes

Adaptive methods are an efficient means for improving the accuracy of a computational
solution. In the implementation of such methods, the relative accuracy of a solution is de-
termined by calculating an error indicator for each element in some appropriate norm. Once
an error is determined, adaptive methods are used to change the structure of the approxima-
tion of the problem to reduce the error below a preassigned limit. Changing the structure of
the approximation may involve increasing or decreasing the number of elements (h-methods),
shifting the grid points (r-methods), altering the order of the local finite element approxi-
mation (p-methods), or any of several other techniques.

The h-adaptive scheme incorporated into the solid rocket booster code uses a normalized
error indicator to estimate the relative magnitude of the local element error. This type of
error indicator has proven to have the capability of capturing shock waves with variable
strengths and shock wave interactions. This normalized error indicator is defined as

1
0, =h.—su
U i=1?2

U
e (6.1)

38

where h. is the measure of the element size and U is the independent variable such as density,

pressure, etc., in the error calculations.

Based on this local error indicator, the h-refinement and unrefinement strategy can be

summarized by the following steps:

An h-Refinement/Unrefinement Method

The h-procedure involves the following steps:

1.

For a given domain {2, such as that shown in Fig. 6.1, a coarse finite element mesh
is constructed which contains only a number of elements sufficient to model basic
geometrical features of the flow domain.

As the adaptive process is designed to handle groups of four elements at a time, a finer
starting grid is generated by by a bisection process, indicated in Fig. 6.1b, to obtain

an initial set of element groups.

The numerical solution is calculated on this initial coarse grid, and the error indicators

8, are computed over all M elements in the grid. Let

0 = max 0
MAX 1<e<M e

Next, the groups of elements are scanned and the group errors are computed

P
k —
HGROUP - Z ock
k=1

where e, is an element number in group k and P = 4.

Error tolerances are defined by two real numbers, 0 < o, f < 1. If
95 Z ﬂoMAX

element e is refined. This is done by bisecting element e into four new subelements.
If
O&roup < afmax

group k is unrefined by replacing this group with a single new element with nodes
coincident with the corner nodes of the group.

This general process can be followed for any choice of an error indicator. Moreover, it

can also be implemented with any prescribed frequency.

39

REFINE
UN’REFIN

(a)

(v)

Figure 6.1: (a) Refinement and unrefinement of a four-element group, and (b) a coarse initial
mesh consisting of a four—element group.

40

Data Structures

An important consideration in all adaptive schemes is the data structure and associated
algorithms needed to handle the changing number of elements, their node locations and

numbers, and the element labels.

As noted in the preceding paragraphs, the algorithm is designed to process (refine or
unrefine) in groups of four elements at each local refinement /unrefinement step. Consider,
for example, the case of an initial mesh of 20 square elements shown in Fig. 6.2. We assign
to each element in this mesh an element number, NEL = 1,2,... NELEM and to each global
node a lable NODE. This array, NODES(J,NEL) relates the local number J(J = 1,2,3,4) of
element NEL to the global node number NODES. In addition, the coordinates X;,Y; of
each node are also provided relative to a fixed global coordinate system. These numbers are
filed in two arrays:

NODES(J,NEL) = the array of global node numbers assigned to node J of
element NEL

XCO(JCO,NODE) the array of JCO — coordinates of global node NODE(JCO

=1 or 2)

Suppose that an error indicator is computed that signals that an element should be
refined, say element 11, in the example. We must have some system for assigning appropriate
labels to the new elements and nodes. Toward this end, a convention has been established
that defines the connectivity of the specified element with its neighbors in the mesh. This
information is provided by a third connectivity array.

Thus, the bookkeeping of element and node numbers evolving in a refinement process is
monitored by the arrays NODES(. ,.) , XCO(.,.) , NELCON(. ,.), and an array
LEVEL(NEL) which assigns a level number to element NEL. Initially, the same level can
be assigned to all elements, and this level is an arbitrary parameter prescribed in advance
by the user. Thus, provisions are now in hand for an arbitrary dynamic renumbering of
elements and nodes. If, for example, for the mesh in Fig. 6.2 (element 11) is to be refined,
we proceed through the following steps:

1. Loop over the neighbors of element 11 (which is made possible with the NELCON
array), checking the level of the neighboring elements relative to the level of element
11;

2. If any neighboring element has a level lower than element 11, then element 11 cannot
be refined at this stage;

3. If element 11 can be refined (as is the case in Fig. 6.2), generate new element numbers
(thus changing NELEM and new node numbers for unconstrained nodes);

41

X

5 6 15 16 25
4 5 12 13 20
4 7 14 17 24
3 6 11 14 19
YA H
3 8 13 18 23
2 7 10 15 18
2 9 12 19 22
1 8 9 16 17
1 10 11 20 21
L a—X1=X
; 3
I | —4—
4 —» 6
— * ——
8 — 2
1 7 t-
1 5

Figure 6.2: Mesh, node, and connectivity numbering in a model problem.

42

26

27

28

29

30

4. Compute the connectivity matrix NELCON for the new elements;

5. Adapt the connectivity matrices for the neighboring elements (since the refinement of
element 11 has now changed this connectivity); and

6. Interpolate the solution for the new nodes.

Consider, as an example, the uniform grid of four elements shown in Fig. 6.3a and
suppose that the error estimators dictate that element A is to be refined. Thus, A is divided
into four elements, I, I, III, IV, as shown, and the solution values at the junction nodes,
shown circled in the figure, are constrained to coincide with the averaged values between
those marked X. Note that the connectivities change in the process, e.g., the connectivities

4 and 8 of element B are different.

Next, assume that an additional refinement is required, and that we must next refine
element I1I. We impose the restriction that each element side can have no more than two
elements connected to it. Thus, before III can be refined, element B must first be refined, as
indicated in Fig. 6.3b. The constrained node Bl in Fig. 6.3a now becomes active, while node
C1 remains a constrained node. With B bisected, we proceed to refine III into subelements
a, 8,7, 6, and new constrained nodes, again circled in Fig. 6.3c, are produced. In this case,
only element B had to be refined first in order to refine 111, but, in general, the number of
elements that must be refined in order to refine a particular element cannot be specified.

7 Turbulence Modeling

Reynolds—Averaged Navier-Stokes Equations

For most engineering analyses, only the mean motion of a turbulent flow is of interest. The
governing equations of the mean motion of a turbulent flow are usually derived by applying
the Reynolds decomposition technique and an averaging procedure to the Navier-Stokes

equations.

The time-dependent, mass-averaged, full Navier-Stokes equations can be expressed as

r@ . ap(ui-u?)zﬂ

6t Bz,-

Ipu;
o oo (s) = =
kg—i + a—?p:[e(u,—ui)—u,-‘r,-j-i-q;]:O

v

I11

II

18%

IT1

VIII

II

(a)

Iv

III

VIII| VII

II

v JgﬁVI

a 2

(b)

VIII

(o)

Figure 6.3: Sequence of refinements of uniform mesh.

44

where

2 auk aui 8UJ'
mo= ophy g (nt) bugy itk (5‘ + 'a")
(B Oy .
& = (pr + Prc) 57, h is the specific enthalpy

and p. is the turbulent eddy viscity, Pr and Pr, are the laminar and turbulent Prandtl
numbers, respectively. These equations are exactly the same as for the laminar case except
as an additional eddy viscosity has been added to the molecular viscosity. The eddy viscosity
may be calculated using a wide range of turbulence models which vary from algebraic models
to k-¢ models. We have selected a simple algebraic model [29] to implement within the
context of the implicit/explicit flow solver described in Section 4.

Algebraic turbulence models, although simple in formulation, are very difficult to imple-
ment if complicated geometries are to be handled. The following sections present details
of the numerical implementation of Prandtl-van Driest inner layer turbulence model in the
context of adaptive unstructured grids.

Prandtl-van Driest Turbulence Model

In the Prandtl-van Driest turbulence model, the turbulent eddy viscosity is calculated ac-

cording to:

pi=prfwl £
where
p = local fluid density
lw| = local magnitude of vorticity
¢ = Prandtl mixing length
and
= kyD

= 0.4, von Karman constant

distance normal to a solid (no-slip) wall

N S
I

= van-Driest damping function
= 1.0 —exp(—y*/A)

45

and

A = 26.0, van-Driest constant
yt = wall function = py * Vu Y/ b
pn = density on the wall
iy = laminar viscosity on the wall
v, = viscous wall velocity

= (Tw/Pw)
r, = shear stress on the wall

It can be shown that if all flow variables are normalized by some reference quantities, for
instance, aco for velocity, peo for density, Lc for length, and peo for the viscosity, the formula
for calculating g, and v, will be modified as follows:

pi = Ree plw] £
Vw = \/Reoo"rw/pw

For the case where a node has multiple length scales, say ML, the Prandtl mixing length
will be calculated by taking the harmonic mean value of these length scales

i-E(g) f=tmM
It should be mentioned that for structured grids used in finite difference methods, the data
structures applied for indicating a wall are essentially built up by the grid indices with
appropriate flags, for instance, I =1, or, I=IMAX;J =10t J = JMAX. This simple
data structure, together with an ad hoc assumption that the grid system is orthogonal,
allows the calculation of the length scales associated with a grid point (or node) to be made

relatively easy.

In finite element methods, the calculations of p and |w]| is straightforward within an
element. However, the calculation of Prandtl mixing length is very difficult, especially for
adaptive unstructured grids, due to its strong dependence on the boundaries. This geometry
depenence makes the calculation of length scales for a node very expensive. One reasonable
method to reduce this dependence and to increase the computational efficiency is to build
up a data structure that can be readily used to calculate the length scales for a given point.
By having the data structure built up, the calculation of the Prandtl mixing length can be
performed in a manner that is consistent with p and |w| in an efficient manner.

Requirements in Designing a Data Structure for Implementing an
Inner Layer Turbulence Model

In designing a data structure there are several requirements which should be kept in mind:

46

. Efficient (ready to use)

Once the data structure is built up, the length scales for a given point (nodal points
or integration points) should be readily decoded from the data structure.

. Economic (minimum storage)

The storage should be kept at a minimum and be flexible (dynamic allocation).

. Geometry independent (complex geometry)

The data structure should be designed such that it is independent of the complexity
of the geometry.

. Modularized (easy to couple with various flow algorithms)

The data structure should be designed such that it could be easily coupled with any
flow algorithms.

. Extendable, reusable (ready to be used with a two-equation model)

The data structure should be designed such that it can be used with other turbulence
models in which length scale is one of the key parameters for calculating turbulent
eddy viscosity.

. General (multiple length scales)

The data structure should be designed so that it allows for variable length scales for
each node.

. Grid-structure dependent

The data structure should be dependent on the global grid structure only. This implies
that the data structure should be rebuilt only when the global grid structure has been
changed, for instance, after a grid adaptation.

. Readable

The arrays used in the data structure should be easy to read for engineers and the

designer.

. Integrity, compactness, etc.

47

Criteria in Building Up the Data Structure

It is important to set up geometrical criterion in building up the data structure for imple-
menting the inner layer turbulence model. Without using these criteria, erroneous length
scales and eddy viscosities may be determined. Presently, the following criteria are used.

o A length scale for a node is a valid projection and/or the minimum distance to the

viscous boundary (Fig. 7.1).

A valid length scale should not break the boundary of the computational domain (Fig.
7.2).

The maximum allowable number of length scales per node is limited to four (4).

o Each node has at least one length scale associated with a viscous boundary (Fig. 7.3).

If no valid projection can be found, the minimum distance to a wall will be taken as
the length scale associated with a viscous boundary.

Length scales for each node are selected from all potential length scales that satisfy

the above criteria starting from the minimum value.

Design of a Data Structure for Implementing an Inner Layer

Model

With the above functional specifications and criteria in mind, we have designed a data
structure for efficiently implementing an inner layer turbulence model.

The first set of data is utilized to store information about the no-slip boundaries and the
solutions on these boundaries. All the viscous boundaries are stored in a discrete form, that
is, a boundary is composed by many line segments (this is true because bilinear elements are
used in our finite element code). Each line segment will be referred to as a viscous panel.
Each viscous panel can be identified by four integers, the element number it belongs to, the
side number, and the node numbers (with respect to total number of viscous nodes) of its
two end points. The reason for storing the node numbers of the end points for each viscous
panel is that they could be readily used for calculating the wall function (y*) for each interior

node by using interpolation.

The second set of data is utilized to store information that can be readily used to cal-
culate the Prandtl mixing length for each node during the solution procedure. This set of
data consists of a pointer, the number of length scales, and the values of the length scales

48

g interior node

0 £s<1.0

viscous panel

Figure 7.1: A valid projection of an interior node with respect to a viscous boundary.

/////////////////////////////

4

L ////////////////////

PP I) PP

7777777777777

Figure 7.2: A valid projection breaks the boundary.

Figure 7.3: The minimum distance is selected as the length scale.

49

associated with a node. For each length scale, the associated viscous panel number and the
local coordinate of the projection are also stored. A pointer array was designed to take care
of variable length scales, to efficiently allocate the storage and to direct access to the data

to be used to calculate the length scale.

Details of the data structure are described as follows:

COMMON /TURBZR/ RHOWALL (2%#MXBCD) , TAUWALL (2%MXBCD) ,
CMUWALL (2%MXBCD) ,RTZDAT (2, 2*MAXND) ,
TLENX (MAXND)

COMMON /TURBZI/ NVISPAN,NVISNOD,NODVPAN (4,2%MXBCD),
NMVISP(MAXND) , ITZDAT(2*MAXND),
ITZPTR(MAXND)

DEFINITIONS OF ARRAYS

New Flow Property:

TLENX : TURBULENT LENGTH SCALE FOR EACH NODE

Wall Variables:

RHOWALL : DENSITY FOR EACH NODE ON VISCOUS BOUNDARY
TAUWALL : WALL SHEAR STRESS FOR EACH NODE ON VISCOUS BOUNDARY
CMUWALL : LAMINAR VISCOSITY FOR EACH NODE ON VISCOUS BOUNDARY

Global Arrays:

NMVISP : NUMBER OF VISCOUS PANELS ASSOCIATED WITH A NODE
(NUMBER OF LENGTH SCALES FOR A NODE) ,
ITZPTR : THE POINTER FOR EACH NODE (IN ARRAYS RTZDAT AND ITZDAT)
RTZDAT : VALUE OF Y-NORMAL AND LOCAL PARAMETRIC COORDINATES
ON A VISCOUS PANEL FOR EACH NODE,
ITZDAT : LIST OF VISCOUS PANELS ASSOCIATED WITH A NODE

50

Information About the Viscous Panel:

NVISPAN : TOTAL NUMBER OF VISCOUS PANELS = NUMELD+NUMELE
NVISNOD : TOTAL NUMBER OF VISCOUS NODES = NUMBCD+NUMBCE
NODVPAN : INFORMATION TO BE DECODED TO IDENTIFY THE NODES ON

EACH VISCOUS PANEL,

1 : ELEMENT NUMBER, 2 : SIDE NUMBER

3 : FIRST NODE NUMBER, 4 : SECOND NODE NUMBER

Summary of Storage:

1. A number of 7*MAXND words are required for storing information associated with
the length scales for each node (assume averaged two length scales for each node).

2. A number of 3*MXVISP words are required for storing solutions on the solid (no-slip)
walls for efficiently interpolating solutions.

Technical Comments

For a grid system with MAXND=2500, it requires 140 kbytes of storage (assuming an average
of two length scales for each node). This storage requirement is comparable to the storage
required by the data structure designed by P. Rostand [30]: 90 kbytes for the same grid
size and a “single” length scale for each node. However, it must be noted that Rostand’s
data structure was designed for implementing both an inner layer and outer layer turbulence
model and for simple geometries only (convex geometry was assumed). In addition, after a
closer examination, one finds that there are some hidden storage requirements in Rostand’s
calculations (for instance, solutions on the normals to be used for interpolation) not taken
into account. This needed data requires additional storage and extra computational time if
Rostand’s data structure were to be generalized to handle more complicated geometries. We
estimate that an additional 140 kbytes of storage may be required for our data structures if
the outer layer turbulence model is to be implemented.

Numerical Implementation

The major tasks involved in the numerical implementation of the inner layer turbulence
model are basically composed of two parts: 1) how to build up the data structure, and
2) how to use the data structure to calculate the eddy viscosity. Flowchart 1 (Fig. 7.4)
shows how the data structure is constructed in a step-by-step fashion. Flowchart 2 (Fig.
7.5) presents a global view of how the inner layer turbulence model can be coupled with
other flow algorithms with just a few extra subroutine calls. Once the data structure is built

51

l from Pre-Processor

Build up data structures
for storing viscous wall
information

Y

Do through (B) for
INOD=1NNODE

!

Do through (A) for
NVP=1,NVISPAN

|
+ no Update minimum
Check for a valid distance
projection between % and viscous panel
INOD and NVP number
¢yes
Check if the yes Y
projection breaks
the boundary

e

Load up the pointer, length
scale, local projection coord.
and panel number

Figure 7.4: Flowchart for constructing the data structures for inner layer turbulence model.

52

Flow Chart for Implementing Inner Layer Turbulence Model

l from Pre-Processor

Build up data structure

‘ for turbulence model

Update bw, Tw
and Hw

Y

Update 'mix'mg
length for each node

v

Flow so'lver and
adaptive package

!

Check if'solution
converged or max. | St
time step reached op

yes

b o
no

~%— Check if grid is adapted

l yes

A

Figure 7.5: Flowchart for implementing inner layer turbulence model.

53

up, the calculation of the eddy viscosity for a given point (usually the integration point) is
straightforward within the flow solver.

8 Numerical Examples

8.1 Supersonic Nozzle With Small Throat Radius of Curvature

A 45°-15° convergent/divergent conical nozzle was used in this test case (see reference {31]
for detailed nozzle specifications). This geometry is characterized by its rapid contraction in
the convergent part, sharp wall curvature at the nozzle throat and near parallel at the nozzle
exit. The experimental work for this type of nozzle flow has been performed by Cuffel, et al.
[32) and numerical results have been reported by Serra [31].

An initial grid of 61 x 21 nodes was used to solve this problem. Flow was initialized by
using the analytic solution concluded from a quasi-one-dimensional isentropic flow [33]. The
nozzle was assumed to connect to a reservoir such that the flow condition at the nozzle inlet
could be treated as a uniform subsonic inflow. This inlet flow condition remained constant
during the solution process. At the nozzle exit, a supersonic outflow condition was specified.
After 400 time steps (with a minimum cost option and CFLBOUND = 5.0), the flow pattern
was well developed in the nozzle. The adaptive package was then switched on and the grid
was adapted (every ten steps to the first level) for another 200 time steps with a = 0.50,
B = 0.70. For the next 100 time steps, the grid was adapted every 10 time steps to the
second level with o = 0.40, 8 = 0.60. Finally, the grid was adapted to the third level for
another 100 time steps. The final adapted grid consists of 3930 elements and 3750 nodes.

As evidenced by the adapted grid shown in Fig. 8.1a, the grid is automatically refined
and is well aligned with the shock pattern in the divergent part of the nozzle. This pattern is
best illustrated by the Mach number contours, as shown in Fig. 8.2c. An oblique shock was
triggered by a junction between the circular circular-arc throat and the divergent section.
This oblique shock hit the nozzle centerline and reflected back into the flow domain. The
streamline distribution over the entire nozzle passage is shown in Fig. 8.1b. The rapid
expansion of the flow in the region close to the nozzle throat can be seen from a closeup view
of the Mach contours in Fig. 8.2d. The comparisons of experimental data [32], numerical
results from Serra [31], and our prediction for the Mach number distribution along the nozzle
centerline and the nozzle wall are presented in Fig. 8.3.

54

i
L
N o
Al

1
IR
P rig

;g

[B I B Y

'
-
e
[A T B I B -1
! i r s s s e !Illy,lg
3 5
—
o
=)
o
~
-
[%
-4
o
a
o~
[
0
©
m
o
o
1
-
a
>
3
ad
-
z
=
Q
o
*>
o
-]
-
o
"
»
-4
x
~N
~
]
« N Q
~
o
n
z
=
x
w
[- 4
2
]
-
F4
[
i
zl
I]Illllllll & w
17/ 1 —
277711} ;g
777777711 w 4
27771111 et >
77771711111 a w .
P S A5 A S M S SN SR BN (=] o
ll]TlllllIl]
M WO A U GV G S S 1 xr N
22 - o -
= w o
z 2 -4
5 O (0 A 0V SO0 N GNNN SOS S 4 1D - -0
(598 51 5 4 05 50 0N 6 Uk W B WD § e wa
o
[=]
a

55

Figure 8.1: (a) Adapted grid, (b) streamlines, (c) velocity vector plot, and (d) closeup view

of velocity vectors in the nozzle throat.

dnasop (p) pue ‘sinojuod e (@

|%

‘ye01Y} 9[ZZOU Y} Ul SINOJUCD IR JO MIIA
) ‘siojuod aImssald (q) ‘smmojuod Kyisua((%) :¢'8 aingi g

00+ 00!°0 =ANIINI

10e 0S1°0 = Xud 00~ 005°0 = nlW SUNGiNE]

00+ §51°0 =TUANILNI 10+ PEE'D

XuW 00+ L12°0

- 3140 0ZlLJu0d
HIBWNN HIUKW
- 3140 *021dv0d
10- 0ZE'O =THA¥ILN| 00+ $89°0 = XYW 10- S¥H°0 = NIKW SYNBINGD JdNSS53Yd
e
- 3140 *0zZlduoy - 3140 *0ZidU0Y
NIH SHNBINAD ¥IEWNN HIUW 10- EEH°0 =TBANILNI 00+ 6S6°0 = XtMW 10- 916°0 = NIN SH¥NALINGD ALISN3O
-

S =]

56

CENTERLINE AND WALL LEGEND

MACH NUMBER OISTRIBUTI®N ALBNG NBZZLE o CL. JPL
DRTR FRBM JPL RND R.A. SERRA [u] CL..SERRA
MACH NUMBER DISTRIBUTRTI@N A CL.ADRPTZ20
© WALL. JPL
v WALL. SERRR
. ° WALL.RDAPT20
. 1-D ISENTRBPI
<
o
“_;-..-
o
wl
m
=
o | o
zZ T
I
[@]
a
=
[en]
o
o : } + } t 4 } {
1.00 2.00 3.00 4,00 5.00 6.00 7.00 8.00
AXIAL DISTANCE

Figure 8.3: Comparison of Mach number distribution for a 45°-15° conical nozzle.

57

8.2 Viscous Flow Over a Sphere

Flow over a sphere has been a popular benchmark problem for validating CFD codes due
to the facts that the fluid physics for this problem is well understood [34] and that many
numerical results are available for comparison [34,35]. The flow conditions selected for this
case are M = 0.1 and Re = 100.0. The computational domain was first discretized by using
a mixed structured /unstructured grid. After the flowfield developed to a certain stage, the
grid was then adapted to the first level in the region close to the solid boundary and in
the separation region. The surface of the sphere was treated as a no-slip isothermal wall.
The axis of symmetry was treated as a no—flow or no-penetration boundary. Characteristic
boundary conditions were imposed on the rest of the artificial boundaries. No artificial

dissipation was added for this test case.

Figure 8.4a shows the adapted grid which consists of 2457 elements and 2535 nodes.
The recirculation region on the lee-side of the sphere can be seen clearly from the velocity
vector plot, as shown in Fig. 8.4d. From the streamline plot shown in Fig. 8.4c, it can
be observed that the flow separates at an approximate angle of 123° (measured from the
leading edge stagnation point) and that the dividing streamline extends into the wake region
with the distance s/D = 0.8. The vorticity distribution and pressure distribution along
the surface of the sphere (as shown in Fig. 8.5) agree extremely well with the data from
(34,35]. It should be mentioned that, in the solid rocket booster code, the reference velocity
used to nondimensionalize the Navier-Stokes equations is the speed of sound at farfield. The
characteristic length is based on the diameter of the sphere. Therefore, the vorticity and
the pressure coefficient calculated by the code must be rescaled according to the following

formulae:

1. for the vorticity
wa

- oM,

where w, is obtained from the code and w is the normalized vorticity using freestream

W

velocity.

2. for the pressure coefficient

_p—poo_2 1
= 422 - ()

s

where P, is obtained from the ADAPT2D™ code.

58

‘uoige1 uorjeredss ut jod 103094 £y00[34 Jo mata dn-asod
(p) ‘ojqqnq uotyeredas smoys 101d auiureanys (9) ‘pud pajdepe Jo mala dn-asop (q) ‘pud
paInjonijsun/painjonrs pajdepy () 000l =94 ‘T0O=W ‘axoyds ® 1910 mo[] V'8 aIn31 j

(P) (°)

- .60 ‘0214000
10- L9€°0 =TUANIINI 00+ 18@°0 = XUN €0- 552°- = NIN SNNAINGS NE11INNJ WY3¥LS

- 3160 -021d¥0Y 5

59

(@) (®)

- 3140 °0Z14HOY

- 3160 ‘0Zidudy

YBRTICITY DISTRIBUTIEN RLONG THE SPHERE SURFACE.RE=100
DATR FREN RDRPT20. RINON/CHEN AND weR
VERTICITY DISTRIBUTRTIGN

2 LEGEND
o RADAPT2D
o RIMBN/CHEN
Q a wee
ot
a
et

VARTICITY
4

0.20 0.40 0.60 0.80 1300 1.20 1. .80 2.00

THETR X 10=x-2

a

PRESSURE OISTRIBUTIEN ALBNG THE SPMERE SURFRCE.RE=100
DRTR FRE® ADAPT2D AND WBO
PRESSURE CISTRIBUTRTISN

LEGEND
o ADAPT2D

] Wed

PRESSURE

THETR X 10=m-2

b

Figure 8.5: Flow over a sphere, M = 0.1, Re = 100. (a) vorticity distribution on the sphere
surface, and (b) pressure distribution on the sphere surface.

60

8.3 Simulation of Vortex Shedding Due to Motor Inhibitor

The purpose of this test case is to verify the axisymmetric capability of the code. The
problem of vortex shedding due to a motor inhibitor protruding from the wall to the port
flowfield studied by Majumdar, et al. [36] will be utilized as the benchmark problem.

Due to the nature of axisymmetry, an axial/radial section of the SRM was taken as the
computational domain. For the sake of fair comparison, the initial mesh size used for solving
this problem is exactly the same as it was used in [36]. The flow conditions employed in the
simulation are M = 0.09897, Re = 10°. No artificial dissipation was added for this case.
Flow was initialized by using one-seventh power law velocity distribution. This type of
velocity distribution was also used to specify the inflow condition. At the outflow, a pressure

boundary condition was imposed.

The grid was adapted to the first level during the solution process. The final grid consists
of 722 elements and 772 nodes. As seen in Fig. 8.6a, grids were automatically refined along
the no-slip boundary to resolve the viscous boundary layer. Strong circulation due to the
inhibitor can be seen clearly from the velocity vector plot shown in Fig. 8.6b. The streamline
plot indicates a large separation region formed in the lee-side of the inhibitor. The pressure
distribution is displayed in Fig. 8.7a. These results qualitatively agree well with the results
obtained by Majumdar, et al. [36] as exhibited in Fig. 8.8.

8.4 Internal Flow in the Turnaround Duct of Space Shuttle Main
Engine

Due to the highly restricted space, the most important design specifications for the Space
Shuttle Main Engine (SSME) are minimal weight and size. This requirement results in
the complicated design of engine components which are usually combined with structural
and geometrical complexities. A typical example is the 180° bend turnaround duct (TAD).
The strong curvature of flow passage in the TAD will cause high levels of turbulence, flow
unsteadiness and flow separation, etc. The ability to model turbulent flows is therefore 1m-
portant for any CFD code in order to predict internal flow in the turnaround duct. However,
as pointed out by Monson, et al. [29], turbulence closure models have been developed and
optimized for external flows. The type of model needed and its importance for internal flows
with strong curvature still remains to be established. The purpose of this test case is to
verify the accuracy of the simple algebraic turbulence model that has been implemented
within the code.

Specification of the computational domain is given in {29]. Two test cases with Re = 10°
and Re = 10° have been performed. The initial grids for both cases are shown in Fig. 8.9.
Flow was initialized by using the one-seventh power law velocity distribution [37). The

61

SRR AR
ERmEERRAI i isY
IR
|
LT

RRHI

ADAPT2D, DATE - 2/11/1991 TIME 15.56. 2

b

Figure 8.6: Simulation of vortex shedding due to motor inhibitor. (a) adapted grid, and (b)

velocity distribution.

62

A\

PRESSURE CONTEURS MIN = 0.632E+00 MAX = 0.672E+00 [NTERVAL:= 0.199E-02
RDAPT2D, DATE - 2/11/1981 TIME 15.58.13

STREAM FUNCTIBN CBNTBURS MIN = 0.368E-22 MAX = 0.146E+B1 INTERVAL= 0.72BE-O1
ADRPT20. DATE - 2/11/1991 TIME 15.59.186

b

Figure 8.7: Simulation of vortex shedding due to motor inhibitor. (a) pressure contours, and

(b) streamlines.

63

Inhibitor

1 inhibitor
.4

Figure 8.8: Simulation of vortex shedding to to motor inhibitor [36]. (a) velocity distribution,

and (b) pressure contours.

64

maximum Mach number in this velocity profile is M = 0.1. This amounts to an averaged
uniform flow at the inlet with M = 0.0875. This velocity is used to normalize the longitudinal
velocity distribution. At the inlet of the TAD, the boundary condition was specified by using
the one-seventh power law velocity distribution. The pressure outflow boundary condition
was imposed at the exit of TAD. A fully implicit scheme was used to solve this problem. To
let the flow develop smoothly, the CFL number was gradually increased from 1.0 to 50.0.
After 400 time steps, the grid was adapted to the first level in the regions where active
flow events are likely to occur, see Figs. 8.10, 8.11. The specified convergence tolerance
was aligned within 600 time steps (the convergence tolerance is in the order of 107°%). The
pressure contours, vorticity contours, velocity distribution and streamlines are shown in Figs.
8.12, 8.13. The results shown here agree qualitatively very well with the numerical results
predicted by Chen by using an extended k-¢ model as shown in Fig. 8.14. It is interesting to
note that in the case of Re = 10°, a small secondary separation bubble was predicted by our
code, which is consistent with the observation in the experiment performed by Sandborn (as
shown in Fig. 8.15). The comparisons with the data predicted by other CFD codes [29] for
the longitudinal velocity distributions at several axial locations are shown in Figs. 8.16-8.21.
Good agreement can be observed for those locations far away from the separation bubble
while some discrepancy can be seen in the regions close to the separation bubble. Further
numerical studies are required to investigate this difference.

8.5 Porous Cylinder with Nozzle (Planar Case)

The internal flow in a nozzle is usually driven by the mass injection from the surface of
the solid propellant and the positive pressure gradient between the rocket chamber and the
environment. The purpose of this test case is to apply the porous wall boundary condi-
tion and the pressure outflow boundary condition for simulating the internal flowfield in a
cylindrical-port cold-flow model. This cylindrical-port model is connected to a nozzle which
was constructed using piecewise analytic functions. This type of problem has been studied
by Sabnis, et al. [38] and will be resolved here.

The initial grid consists of 50 x 20 elements in the cylindrical part and 30 x 20 elements
in the nozzle section. The flow conditions employed for this case are the mass injection
rate = 0.0018 and Reynolds number = 8.0 x 10°. No artificial dissipation was added and
laminar flow was assumed. Flow was initialized as a quiescent condition over the entire
computational domain. The head end of the cylinder and nozzle wall were treated as a
no-slip isothermal boundary. The axis of the cylinder was treated as a no-flow boundary. In
order to drive the flow in the nozzle smoothly, the pressure at the outflow boundary was first
set to a value slightly below its corresponding quasi-one-dimensional isentropic pressure.
During the solution process, this value was gradually decreased until supersonic flow was

65

i

GRID FBR A 180 DEGREE TURN-ARBUND BUCT, ATAR 89-0275

66

Figure 8.9: Initial grids used for simulating internal flow in the TAD. (a) Re = 10, (b)

Re = 108.

GRID FOR A 180 DEGREE TURN-ARGUND DUCT. RIAR 89-0275

Figure 8.10: Adapted grid, Re = 10°.

67

Figure 8.11: Adapted grid, Re = 10°.

68

———— o ——
il i soui. S S
—_— —— — —
— — — — —
——— e — T—
_ = =

I
i
i

Il
IR

s

iy

(I
11w

A\

PRESSURE CONTRURS NIN = 0.708 +00 MAX = D.718 +00 [INTERVAL= 0,671 -03

v
0

STREAM FUNCTIBN CONTBURS MIN = -.113 -03 MNAX = D.902 -01 INTERYAL= 0.903 -02 YBRTICTY CONTBURS MIN = 0.381 +00 WAX ¢ D.484 +01 INVERVAL= 0.318 +00

b d

Figure 8.12: Internal flow in the TAD, Re = 10%. (a) velocity distribution, (b) streamlines,
(c) pressure contours, and (d) vorticity contours.

69

PRESSURE CONTOURS NIN = D.708 00 WRX = 0.718 +00 IMTERVAL= 0.852 -03

AOAPT20. OATE -

ADRPT20., OATE -

4 MIN = -.861 -0) HAX = 0.40: -02 INTERVAL= 0.84) -02 VORTICTY CONTOURY WIN = -.1B3 <02 MAX = 0.161 +02 INTERVAL: D.135 «0%
ADAPT20. DATE -

STRERN FUNCTISN CONTHLR
ADAPT20. DATE -

b d

Figure 8.13: Internal flow in the TAD, Re = 108. a) velocity distribution, (b) streamlines,
(c) pressure contours, and (d) vorticity contours.

70

- = et e e e

AT TTTY

—_ e = e = e

[RLLTHTT
I,
fun

witin
fin

n

From Y. 5. Chew ‘g7

[) RQ_Z (05

¢ Bikended k-¢ Mool

8 8L X 24 Gprd

10°%, k-¢ model. (a) velocity

Figure 8.14: Internal flow in the TAD (Y. S. Chen), Re
distribution, (b) streamlines, (c) pressure contours, and (d) vorticity contours.

71

u/ue
IO.S |

. 1 r I8
£
Q
i I T i ; Flow
= @ |® lobcm ‘@ (‘9; L\ Reversal
14 cm 5iem : . % -
= 18cm 27 = ;
®: @! o “ Large Flow
|

Reversai

5

MEAN VELOCITY PROFILES AT STATAIONS
AROUND THE FACILITY, RE = 86,000

Figure 8.15: Internal flow in the TAD (Sandborn), Re = 86,000.0, mean velocity profiles at

different axial locations.

72

U(THETA) /U (REF)

4 0.6

0.

2

0.0 0.2

LEGEND

Q RE=10xx$§
a RE=10==b
s ADRPT.RE=ES
° AQAPT.RE=E5

1 .
i 3 ! { 1 +

0.10 0.20 0.30 0.40 0.50 550 0.70 0.80 0.90 .00

~ - (R-R(INJ/(RZ-R(I))

LOGITUDINAL VELOCITY DISTRIBUTION
AT THETA = 0.0

Figure 8.16: Normalized longitudinal velocity distribution at § = 0.0 deg.

73

UCTHETA) /U (REF)

LEGEND
RE=10=xS

RE=10x==6
AORPT,RE=ES
AQAPT.RE=EB

o> 0O

1 i 1 I Il i

50 0,20 0.20 0.40 0.50 0.60 0.70 0.80 0.90 {.00
(R-R(I))/(RZ-R(I))

- m——

LOGITUDINAL VELOCITY DISTRIBUTION
AT THETA = 90.0

Figure 8.17: Normalized longitudinal velocity distribution at § = 90.0 deg.

74

LEGEND
RE=10xx$5

RE=10x=6
AROARPT.RE=ES
ARORPT,RE=EB

o > 0O0O0

UITHETA) ZU(REF)
0

!)l 1

0/ 570 0.30 0.40 0.s0 0.s0 0.70 0.80 0.80 1.00

(R-R(11)/(RZ-R(1))

LOGITUDINAL VELOCITY DISTRIBUTION
AT THETA = 180.0

Figure 8.18: Normalized longitudinal velocity distribution at § = 180.0 deg.

75

LEGEND .
RE=|{0nxS

RE=10xxg
AORPT.RE=E3
AORPT.RE=ED

op OO

U/UREF

0.5

0.0 0.2

1] 1
T

\/6.'10 570 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Y/H

T d =

oo

2

LOGITUDINAL VELOCITY DISTRIBUTION
AT X/H = 2.0

Figure 8.19: Normalized longitudinal velocity distribution at z/H =2.0.

76

U/UREF

LEGEND

o RE=10=xS
G RE=10=x5
a RDAPT.RE=LS
° AQDAPT.RE=ES

070 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Y/H

LOGITUDINAL VELOCITY DISTRIBUTION
AT X/H = 4.0

Figure 8.20: Normalized longitudinal velocity distribution at z/H = 4.0.

17

U/UREF

o b OO

LEGEND
RE=10xx5

RE=10nx8
ADRPT.RE=ES
ADAPT.RE=EBS

0.10 0.20 0.30 0.4 0.50 0.80

LOGITUDINAL VELOCI.TY DISTRIBUTION

AT X/H = 12.0

Figure 8.21: Normalized longitudinal velocity distribution at z JH =12.0.

78

developed at the outflow. Once the flow becomes supersonic at the nozzle exit, the pressure
outflow boundary condition was turned off. A method that is similar to the extrapolation
boundary condition procedure used by the finite difference community is then imposed on the
supersonic outflow boundary. Due to the nature of the subsonic flow within the cylindrical
port field, the pressure disturbance will be propagated from the nozzle section upstream
toward the head end and reflected back and forth within the chamber. After 1000 fully
implicit time steps, this type of disturbance still can be observed in the numerical solution.
The numerical solutions presented here were obtained after 2000 time steps.

Figure 8.22 shows the grid and a plot of the streamlines. It can be seen clearly that
the internal flow was driven by the mass injection from the surface of the cylinder. The
comparisons of the normalized axial velocity distribution at several axial locations are shown
in Figs. 8.23-8.26. Very good agreement between our code, MINT and experimental data

are evident.

The adaptive package was activated after 200 time steps and the grid was refined to the
first level. The resulting mesh contained 2560 elements and 2594 nodes as shown in Fig.
8.27. As can be seen from Fig. 8.27a, refinement is clustered in the near wall region in the
divergent section of the nozzle to resolve the viscous boundary layer. The viscous boundary
layer grows rapidly and significantly reduces the effective cross section area in the divergent
part as shown in Fig. 8.27b.

8.6 Porous Cylinder with Nozzle (Axisymmetric Case)

To test the axisymmetric option in conjunction with a porous boundary condition, the
previous test case was resolved with the grid size and all low conditions, boundary conditions,
and time stepping procedures exactly the same as those used in test case 8.5.

Very similar numerical results were obtained as compared with the previous test case.
Figure 8.28 shows the initial grid and the streamline. It can clearly be seen that the internal
flow was driven by the mass injection from the surface of the cylinder. The pressure contours
shown in Fig. 8.29 indicates that in the nozzle chamber the pressure is nearly constant and
the pressure changes rapidly in the vicinity of the nozzle throat due to a fast flow expansion.
Figure 8.30 shows the velocity distribution in the nozzle section. A relatively thin boundary
layer extended from the nozzle wall can be observed. After the internal flow was developed to
a certain stage, we turned on the adaptive options with the maximum level of grid refinement
limited to the first level. The grid was adapted in the region close to the viscous boundary
to resolve the rapid change of flow velocity as shown in Fig. 8.31.

79

80

jial

\\;\\‘\;\“‘

0.144 -0l

INTERVAL

= 0.202 -23 MAX

MIN

CBONTQAURS

STREAM FUNCTI®GN

= 0.144 +00

DATE -

ADARPT20D.,

b

POROUS CYCLINDER WITH A NOZZLE

MASS FLOW RATE = 0.0018

RE = 8.0E+5,

Figure 8.22: Porous cylinder with a nozzle. (a) grid, (b) streamlines.

R/RW

LEGEND
o RORPT20

o MINT
a EXPERIMENT

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
UsucL

o ;

NORMALIZED AXIAL VELOCITY DISTRIBUTION
AT z/D = 4.22

Figure 8.23: Normalized axial velocity distribution at Z/D = 4.22.

81

R/RW

LEGEND
Q RORPT

o] MINT

a EXPERIMENT

-

i
Nt

c.

00

510 0.20 0.30 0.40 0.50 0.50 0.70
y/ucL

0.80 0.90 1

.00

NORMALIZED AXIAL VELOCITY DISTRIBUTION
AT Z2/D = 6.64

Figure 8.24: Normalized axial velocity distribution at Z/D = 6.64..

82

LEGEND
© RORPT

o} MINT
a EXPERIMENT

R/RHW

50 0.20 0.30 0.40 550 0.60 0.70 0.80 0.90 1.00
uU/UCL

NORMALIZED AXIAL VELOCITY DISTRIBUTION
AT 2/D = 9.06

Figure 8.25: Normalized axial velocity distribution at Z/D = 9.06.

83

R/RHW

LEGEND
Q ADRPT

u] MINT
a EXPERIMENT

[==]

1 1 1

=700 0.10 0.20 0.30 0,40 0.s0 0.s0 0.70 0.80 0.80 1.00
U/ucL

NORMALIZED AXIAL VELOCITY DISTRIBUTION
AT 2/D = 12.72

Figure 8.26: Normalized axial velocity distribution at Z|D = 12.72.

84

sl

/

ORTE

ADRPTZD.

L]

r—

__;%E / ﬂ

AUURPERET I T U NS B B B
AIPETET R T T R N B S B
AUUIFIFEFE I T T N T N SR B B | |

1
ZUPIUREE IS I T R A S B B |
i
i

Wl
. ._;

il
11111111
b 111111111
Gt 1111111°1
2:\:\\\~\- 11 1
Loernrri 111111 111

TR R
fvernarrr b1 111

ORTE

ADARPT20,

Figure 8.27: Closeup view of (a) adapted grid, and (b) velocity profiles in the nozzle section.

85

ADARPTZD.,

INTERVAL= 0.379 -02

0.176 -23 MAX = 0.530 -0t

MIN

CBNTBURS

STREAM FUNCTI@N

ADARPTZ2D.,

AXISYMMETRIC CARSE

EXPLICIT-IMPLICIT ALGBRITHM

PPROUS CYLINDER WITH A NBZZLE,

STRUCTURED GRID.,

Figure 8.28: Initial grid and the stream function contours.

-5IN0U0D 2INssald ‘6g'8 2INTL]

WHLIINEOY LIJINdWI-11311dX3 *d1d9 a3dnlangdls
JSYD NBIG3LYHD “37ZZBN B HLIIM 43ONITAD SMNBALd

‘dclduly
10- BEE'0 =THA¥IINI 00+ SIL'0 = XgW 10- 1Lb°0 = NIW S¥NBLNGD JYNSSIdd

[D™)

87

"UO1}09S 3[ZZOU Y} Ul UOIINQLIISIP A}DO[RA :(g'g 2InJ1]

WHLTH098 LIDITdWI-LIJI7dX3 <01y¥9 034N13INGLS
3647 NHISILHHD “31ZZBN B HLIIM ¥30ONITAT SNBY6d

‘dZ2idd0y

88

WL

\

|
M

W

,
,
,

il

|

\\\\\\\::
]

|

J

\\\\\\\\\::
]

ADRPT2D.,

gt L

b
%

ATTR RN A2 T IR T R R R N
..... FI R T R N T R B S B B |
I A N L 1

T T S T S T T

L

h

N

AGAPTZ20.

Figure 8.31: Adapted grid and velocity distribution in the nozzle section.
89

8.7 Slotted Chamber with Nozzle (Axisymmetric Case)

The purpose of this test case is to validate the axisymmetric modeling capability for simu-
lating internal nozzle flows with mass injection. In addition, an algebraic turbulence model
was applied. The nozzle geometry was constructed using piecewise analytic functions. The
inhibitor was treated as a radial slot and attached to the cylinder (see [39] for detailed
geometry specifications).

The initial grid consists of 70 x 20 elements in the combustion chamber region and 30 x 20
elements in the nozzle section. The flow conditions employed includes the normalized mass
injection rate = 0.0027 and Reynolds number = 8.0 x 10°. The mass injection rate is
held constant for all porous boundaries. The initial condition and the rest of the boundary
conditions are exactly the same as the previous test case. The surfaces of the inhibitor are
treated as porous boundaries. The numerical solutions presented here were obtained after
4000 time steps. Figure 8.32 shows the grid an streamline plots. It can be seen that
the internal flow was driven by the mass injection from the surface of the cylinder. A global
velocity vector plot and details of the fiowfield around the aft—-end of the slot are displayed in
Fig. 8.33a. The high speed flow injected from the slot to the chamber caused a reversed flow
in the vicinity of the joint of the slot and the cylinder, see Fig. 8.33b. Chamber pressure
is nearly constant and varies rapidly in the nozzle section as shown in Fig. 8.33c. The
closed-up view of the velocity vector plots in the nozzle section and Mach number contours
are shown in Fig. 8.34. These figures confirm that the large contraction of the convergent
part leads to a rapid flow expansion.

The comparisons of the normalized axial velocity distribution at several axial locations are
shown in Figs. 8.35-8.43. Generally speaking, the velocity boundary layers at all locations
predicted by our code are much thinner. This discrepancy may be caused by many reasons
such as the grid resolution, distribution of the mass injection rate, the use of appropriate
turbulence models, and flow unsteadiness, etc. Further numerical studies are necessary to
explain these differences.

After 4000 time steps, the grid was adapted to the first level. The final grid consists
of 2315 elements and 2437 nodes. As expected, most of the adaptation occurred along the
solid wall of the divergent part of the nozzle as shown in Fig. 8.44a. A very thin velocity
boundary layer can be observed in Fig. 8.44b.

8.8 Moving Grid Algorithm

To test the moving grid algorithm, a 45°-15° convergent-divergent nozzle [31], with an
extended cylindrical part for modeling the solid propellant section, was used. As mentioned
in Section 5, if the grid motion is coupled with the fluids problem, the boundary motion could

90

‘sourquea1}s (q) pue ‘pus (&) -[zzou ' Yjim Iaqureyd pajjofg :7e'8 2andi]
q

¢0- ¢ELD

=JHAY3ILNI 00+ 9b1°0 =

- 31y0 *0cidudd
= XYW €2- €8H°0 = NIW GSYNBLNBI NBILINNS WHIHLS

———

T ——7 | I I T I T T 1 T LY h g) IR S SR W W U S B WAL LTNA NSNS
! A — I 1 1 L 1 b g X X T X Y 1) — S T T T 0 8§ A 31T

I—1— T 4 I T 1 'e ¢ ' X X X L8) AR S W W W i L t o=

 — 1 T 1 1 T T L4 X Y 18 1 X b W WY WS W W i S R R 6§) 1117

11 1 1 1 T 1 1 X . ¢ x X X A Wm— S . T . ' 8 o o o =

—F—T 1 1 ' 4 1 T ' & Y Y X X X h S WA I T S W T - 113

T—1—% T T T X) Y X X X h W p— e S — - * o o o —

i T 1 1 I T i T X X X X a Lt 1—1

91

MR REREREE

ROAPT2D. DRTE -

ADAPT20, DRTE -

e

PRESSURE CONTBURS MIN = 0.965 -01 MAX = 0.713 +00 INTERVAL= 0.308 -01
ADAPT2D. OATE -

c

Figure 8.33: Slotted chamber with a nozzle. (a) velocity vectors, (b) velocity vectors in the
vicinity of the slot, and (c) pressure contours.

92

ren

T R

'
f
[
I R A

1
!

ADAPT2D. DRATE -

FTTTE TV

ROAPT20. ORTE -

|

MACH NUMBER CONTBURS MIN = 0.113 «00 WAX = 0.214 «01 INTERYAL= 0.101 +0O
RAOAPT20. DORTE -

C

Figure 8.34: Slotted chamber with a nozzle. (a) velocity vectors in the nozzle section, (b)
velocity vectors in the divergent section, and (c) Mach contours.

93

SLOTTED CHAMBER WITH R NEZILE.NERMALIZED AXIAL VELOCITY
ORTA FREN AFRPL-TR-86-104
NSRWAL[ZED AXIAL VELSCITY. 2/D=0.4d

LEGEND
EXP. ORTAR

Q MINT
a ROAPT2D

R/RH

0.20 0.40 0.60 0.80 1.00 1.20
N@GRMALIZED RXIAL VELBCITY

Figure 8.35: Normalized axial velocity distribution at Z/D = 0.49.

94

SLleED CHAMBER WITH A NSZILE.MORNALIZED AXIAL YELBCITY
ORTR FREM AFRPL-TR-86-104
NSANALIZED RXIAL VELOCITY. 1/0=0.9%

LEGEND
© EXP. DRTA
=] WINT
A ADAPT2D
o
[+«)
ot
w
ot
x
o
~
o
<
ot
o~
c‘d»
o
o + + + + + t+ + + } b
0.i0 0.20 0.30 O0.40 D.50 0.60 0©.70 0.80 D0.80 1.00 1.10
NBRMALIZED AXIAL VEL@CITY

Figure 8.36: Normalized axial velocity distribution at Z|D = 0.89.

95

(‘t"}“’ﬁ":-, B e
P TR R T "

CF POOR

N

OMIALLTY

SN 2 %

{

SLETTED CHAMRER WITH A NEZZLE.NSRMALIZEQ AXIAL VELOCITY
DATR FREM RFRPL-TR-86-104
MNORNALIZED RXIAL YELSCITY. 2/0=1.1675

R/RHW

1 3 I 3 1 $

o
o
a

I

LEGEND
E

XP. DATA
MINT
ADAPT20

i

0.20

0.30 D.40 0.50 0.60 0.70 0.80 D.SO
NBRMALIZED AXIAL VELBACITY

1.

00

T
1.10

1.20

[

Figure 8.37: Normalized axial velocity distribution at Z|/D = 1.1875.

,“- E '»,"7

R

RSN B Y TRE

96

SLUTTED CHAMBER WITH A WEZZLE.NBRMALIZED AXIAL VELSCITY
DATA FAON RAFRFL-TR-88-104
MBRMALIZED AXIAL VELSCITY. 2/0=1.54

LEGEND
-] EXP. DATA
o MINT
& ADAPT2D
o
[+
‘3'--
w
ot
=
[+
~
[+ 4
<
oT
~N
ot
o
1) + + + + + 1
0.20 0.40 0.60 0.80 1.00 1.20 1.40

NBRMALIZED AXIAL VELBCITY

Figure 8.38: Normalized axial velocity distribution at Z/D = 1.54.

97

CRIGIIAL vt 1

SLETTEQ CHAMBER WITH A NBZILE.NERNALIZED AXIAL VELBCITY

DRTR FRE® AFRPL-TR-B6-104
NSRWALIZED RXIAL VELBCITY,

21/D=1.89

R/RNW

" n

LEGEND
° EXP. DRTA

a RINT
A ADAPT20

o t u
0.20 0.40

NBRMALIZED RXIAL

0.80 1.00 1.

VELBCITY

0.80

Figure 8.39: Normalized axial velocity distribution at Z/D = 1.89.

98

SLETTED CHAMBER KITH A MSZILE.NSRMALIZEC AXIAL VELBCITY
ORTA FROW RFRFL-TR-88-104
NORMALIZED RXIRL YELSCITY. 2/0=2.€1

LEGENG
(-] EXP. ORTA
o MINT
a AORPT2D
o
@
d--
[3e]
ot
=4
[+ 4
~
a
<
ot
o~
ot
[=]
o + + + + 4
0.20 0.40 0.60 0.80 1.00 1.20
N@RMALIZED AXIAL VELBCITY

Figure 8.40: Normalized axial velocity distribution at Z/D =2091.

99

Gl o

GF PO0OR QALY

SLOTTED CHAMBER WITH R NBZZLE.MERMALIZED AXIAL VELECITY
ORTA FREX AFRP(-TR-86-104
NORWALIZED AXIAL VELBCITY. 1/0=4.D8

LEGEND
EXP. DATA

o MINT
a RDRPT20

R/RH

0.20 0.40 0.60 0.80 1.00 1.20
NBRMALIZED AXIAL VEL@CITY

Figure 8.41: Normalized axial velocity distribution at Z/D = 4.09.
100

CRICINAL PAGT i8S
;¥ POOR QUALITY

SLOTTED CHAMBER NITH @ MOZZLE.NBRNRLIZED AXIAL VELEC]TY
ORTR FREM AFRPL-TR-86-104
NERNALIZED RXIRL YELBCITY, 7/0=5.33

LEGEND
-] EXP. DATR
D MINY
Py ROAPT2D
Q
w
o+
[{e]
ot
x 4
o
~
a
o
ot
~N
ot
[=]
o + + + + } —
0.20 D.40 0.860 0.80 1.00 1.20

NBRMALIZED AXIAL VELBCITY

Figure 8.42: Normalized axial velocity distribution at Z/D = 5.33.

101

ORIGIMNAL #7102
OF POOR QAL S

SLOTTED CHANBER HITH A NOZZLE.NSRMALIZED AXIAL VELBCITY
DATR FREW RERPFL-TR-86-104
NORMALIZED AXIAL VELSCITY. 1/026.51

LEGEND
o EXP. DATA
a MINT
a ACAPT2D

R/RH

o0 0.20 0.30 0.40 0.50 060 0.70 0.80 0.90 1.00
NBRMALIZED AXIAL VELBCITY

Figure 8.43: Normalized axial velocity distribution at Z|D = 6.51.

102

QRIGILL 407 o
OF poom ™ern

I

| REERE

1

|

ysssaaan

ORTE -

RDAPT20.

\\\\\:N
Grrgr b1 111111

7

—r7

DRTE -

ABAPT20.

b

Figure 8.44: Closeup view of (a) adapted grid, and (b) velocity profiles in the nozzle section.

103

be extremely slow and is not suitable for large boundary motions. Therefore, the moving
grid algorithm, Option 2, was used. The initial grid is shown in Fig. 8.45. After 1.5 time
units of advancement, the grid distribution is shown in Fig. 8.46. It should be noted that
the Laplacian operator that governs the grid motion is a smoothing operator and, therefore,
the grid motion does not affect the quality of the initial grid as can be seen from Fig. 8.46.

9 Future Extensions

The success of the two-dimensional and axisymmetric analysis package in modeling various
benchmark problems as demonstrated in Section 8 suggests that extensions of current sim-
ulation capability to realistic three-dimensional flows in cavities with eroding boundaries is
feasible. In this section, we will briefly describe some possible extensions of this project with
respect to the enhancement of the two—dimensional code and for the development of a fully
three—dimensional capability for use in the design and analysis of solid rocket motors.

Two—Dimensional Enhancements

The two—dimensional code has numerous special capabilities for modeling subsonic to super-
sonic flow regions. To enhance these current capabilities the following options are proposed.

1. Develop a menu driven, z-window-based interactive preprocessor and postprocessor.

2. Develop a user—friendly two-dimensional structured /unstructured mesh generation
package.

3. Optimize (vectorize/parallelize) the implicit/explicit solution module to provide peak
performance on the MSFC Convex and/or Cray computers.

4. Enhance the moving boundary algorithm to include a physically based regression ve-
locity which is a function of the flow characteristics such as pressure and temperature.

5. Implementation of higher-order turbulence models such as a &-£ or k-e model.

Three—Dimensional Code

Many of the configurations used in solid rocket motors are three-dimensional in nature due
to the shape of the combustion chamber. Thus a three-dimensional analysis capability which
extends the two-dimensional /axisymmetric capabilities would clearly be of great interest and
benefit. The following steps outline the development of a three-dimensional Navier-Stokes
solid rocket motor code:

104

Figure 8.45: Initial grid used for simulating moving grid /eroding boundary algorithm.

105

111
| IIL\L
1 ===
— -
= s
A : ///'/
Rk -t //_/.//
1| 1 -
| O T I S -
ADARPT2D. DARTE - 3/ 7/1991 TIME 20.20.40

Figure 8.46: Grid distribution after 1.5 time units of advancement.

106

. Develop three-dimensional discrete models of the Navier-Stokes equations for com-
pressible flow in domains with boundaries unergoing arbitrary motions, particularly
with burning or receding surfaces where the burning rate is determined by local flow

physics.

. Develop a three-dimensional mesh generation package for moving boundary simula-

tions.
. Develop a grid visualization package for viewing moving grids in three dimensions.

. Develop a complete three-dimensional anisotropic h-adaptive package including the
data structure, refinement/unrefinement package, and directional error estimates.

 Extend the current two-dimensional burning boundary algorithm to three dimensions.

. Assemble the functional packages developed in Tasks 1 to 5 into user—friendly three-
dimensional analysis and design package for modeling solid rocket motors.

. Develop a set of code validation problems to be supported by experimental results

supplied by MSFC (if available).

. Develop complete user documentation.

107

Appendices

A Jacobians Due to Source Terms
Four groups of additional Jacobian matrices are required in the axisymmetric formulation.

1. Jacobian matrix due to inviscid source term, B, is defined as

= aS°
B = %
- B
y_ -
0 00 O
0 0 0 0
B =%
—-¢%/2 u v -1
0 00 0

where
F=9-1, ¢¢=u"+¢’

and v is the ratio of specific heats.

2. Jacobian matrix due to viscous source terms, T, is defined as

~ os® 1 1 1
T == =-T=—(T1+—T2)
ou y Y y
where
0 0 0 0]
0 0 0 0

=
I
A
[
Q@
8]
©
w
Q@
3]

108

T,

!

o 0 O

o 0 0 O
ngv 0 —2u 0

P p

0 0 0 O

3. Jacobian matrices due to viscous source terms, @, are defined as

~ 95" 1
1—6'&'1—3/1
0 0 0 0]
0 0 00
BT 2,
PP
0 0 00
Q% = 5@
0 0 0 0]
0 0 0 0
R ECP
P
| 0 0 0 0

109

4. The viscous Jacobians, P' =

o~y
1

ou

, are defined as

r -

0 0 0 O

p! af’l’ P:»l1 P212 P213 0

Gu | Py PY Ph 0

1 1 1 1
.P4l P42 P43 P44..

where the matrix components of P! are given by

1
P21

1
P2‘2

1
P23

1
P31

1
P32

1
P33

1
P4l

1
P42

1
Py

1
P44

1 m m
? (‘PRmm — Amg + 2uR 1pP,1 +2A 2P,2>

p

_ER
p2 p,l

A Op
p? By

m
(—mZ,l —-my2+ 2m1!£ + szp—'l- + —l-)
p Py

1
“P211 = UP211 + ”P:sl1 - ? (mamy + mMaTa1)

e, [—(pe)a + 2urmy s + 2usmay + (2e - 343

T k
_;l + “lez + ngz + p—gg‘ (—my1 + 2w1p,)

v

712
7 + UP213 + 'UP;a + pzcv (—mg'] + 2U2p|1)

110

- 3“%) P,l]

Setting ¢ = 2 in the definition above for the viscous Jacobians gives:

0 0 0 0]

p? af: P221 P222 P223 0
du | Py P, P30

2 2 2 2
P4l P42 P43 P44_

where the matrix components are defined by

2
P21
2
Py
2
P23
2
Py
2
P32
2
P33

2
P41

Py
Ps,
P
] m
= (—unm,z + 2pRu2p2 + 2u>
P y

A
_;E?-p'l

KR 2p
——z P2 —

p PY

m m
___51.7-12 - ——2T22 + ‘U]Pgl + U2P3?1

p p

k 2 - 3ul
p%c, {_(Pe).z + 2uymy o + 2usmaz + (26 —dup - 3u2) p,z}
1 k
> = (oo = put =)
T k m
= +u Pl + wPh + —5— (—mm +2mpat _l)

picy y

T k m
2 + u1P23 + u2P33 + = 5 (‘—mz,z =+ 2‘U2P,2 + —‘2')
P PCy Y

k 1
Py

k
p

111

B Methods for Treating Constrained or Hanging

Nodes

Suppose that one is interested in performing element calculations for the element NEL shown

shaded in Fig. B.1. The solution within this element can be expressed as

4

u® = Y unopes(/,NEL)¥I
I=1

= ul\I’l + ’U«Q\Ilg + ‘LL3‘I’3 + u4\1’4

(B.1)

where U] is the local shape function associated with node I, and u; is the solution vector at
node I. However, notice that nodes 1 and 3 are hanging nodes and the numerical solution

at these two nodes are constrained by

uq + Ug
w = 2

ug + Ug
Uz = 2

Substituting (B.2) into (B.1), we have

ut = <U4 ; ug) \I’l + ’U2q’2 + (u4 .; us) \1}3 + 'U,4‘I}4

Rearranging terms, we obtain

R ¥ ¥, U
u =UQ-2—1'+U,2‘I’2+'U«8-2—3+'U4('71+—23+\I’4>

112

(B.2)

(B.3)

(B.4)

Figure B.1: Elements consisting of constrained nodes.

By defining new shape functions, ¥;, as

' q’l W
v o=
\IJI2 = \112 L
B.5
L (B.5)
8 2
, ¥, U
e (Bl

and defining (ug, s, us, u4) as the physical degrees of freedom associated with this element,
then the solution vector within NEL can be interpreted as

4
u® = Y unopes(,NEL) Y] (B.6)
I=1

where

NODES(1,NEL) =9 , NODES(2,NEL) =2

NODES(3,NEL) =8 , NODES(4,NEL) =4
and ¥4 are the modified shape function defined by (B.5). The method being applied to
handle the constraint nodes for the Cartesian problems is based on equations (B.5) and
(B.6). That is, one modifies the data structure such that element NEL was defined by the

113

physical degrees of freedom (nodes 9, 2, 8, 4) rather than its original geometrical degrees of
freedom (nodes 1, 2, 3, 4). The local shape functions for these physical degrees of freedom
have to be consistently modified according to equation (B.5).

In the axisymmetric case, the conservation variable & = yu was interpolated separately
for y and u. It is important to note that y is a purely geometrical quantity. The use of the
modified shape functions to interpolate y within an element will cause a severe inconsistency
for the conservation variable &. Therefore, y should be interpolated by using the original

element shape function, that is
4
ye=> uV; (B.7)
=1

Thus, equations (B.5), (B.6), and (B.7) completely define the method for treating the con-
strained nodes for the axisymmetric problem.

C Projection of Surface Nodes

The basic idea behind an adaptive methodology is that during the solution process, the grid
is automatically refined and/or unrefined according to certain error criteria. These criteria
are developed such that when the solution process is repeated using an updated grid the
accuracy of the solution is improved.

Due to the refinement and unrefinement of the grid, many new nodes and elements
are generated and some existing nodes are eliminated. This in general does not cause any
difficulties if the new nodes are generated interior to the domain but may lead to problems if
the nodes are adjacent to a prescribed boundary and no precautions are taken to ensure that
the new grid points lie on the given surface. Obviously, it is necessary that as the refinement
continues the resolution of the profile of the object must be improved as well as the accuracy
of the solution. Without a precise interpolation or projection, these new nodes generated on
the prescribed boundaries during the adaptive procedures can destroy the accuracy of the
original geometrical representeation of a two—dimensional object and thus the solution.

If the surface of a two-dimensional object can be expressed by a few simple algebraic
equations, an accurate interpolation or projection is easy to perform. Unfortunately, for
most realistic problems the surfaces of a two-dimensional object are usually defined by a
finite number of discrete points rather than a set of continuous algebraic functions. Thus
we are faced with the problem, how does one accurately and efficiently project nodal points
onto the surface of the two-dimensional object defined by a finite number of discrete points.
One popular method used by the CAD/CAM industry [40] which we will also employ is
described below.

114

The Parametric Cubic (PC) Curve in Space

The algebraic form of a PC space curve can be expressed as

r(u) = a;u'

1=0

(C.1)

where 7 = (z,y,2)7, u is the parameter that characterizes the curve and we assume it varies

from 0 to 1, and a; are the constant coeflicients.
Suppose that the end conditions 7 are given, that is
a
=a,+a; +az+as

=aq
!].)=3(13+2(12+G.1

or in matrix notation

1‘(0) 00 01 as
#(1) | _|1 111 as
»0) | (0010 a
r'(1) 3210 ao
Solving (C.3) for a; yields
as T(O)
Ao _ 7‘(1)
a; - (M) rl(o)
ag 1"(1)
where
2 -2 1 1
-3 3 -2 -1
M= 0o 0 1 0
1 0 0 O

Substituting (C.4) into (C.1) and rearranging, we obtain the geometric form of =

r(u) = 7(0)by(u) + r(1)ba(u) + r'(0)ba(u) + r'(1)ba(u)

115

(C.4)

(C.6)

where

by(u) = 2u® — 3u® +1

by(u) = —2u® + 3u?

ba(u) = ud — 2u’ +u (C.7)
ba(u) = u® — u?

are the so—called blending functions. In matrix notation, equation (C.6) can be written as
r(u) = [u® v u 1] (M) (C.8)

Replacing r by z, y, and z in (C.8), the full representation of a PC space curve becomes

2
= |’ u?u z(1) yll) =z .
{ZEZ%]‘[01 20y vie) 20 (€9
(1) ¥(1) #(0)

Note that the PC plane curve is the special case of (C.9) by neglecting the z-coordinate.

Segmenting a PC Curve

In most practical engineering applications, PC curves are usually defined in a piecewise
manner. Assuming that the end values of a segmented PC curve are given by u, and us,
then the geometric coefficients of the segmented curve in terms of the given curve are modified

= [

1 T{U2

RO) | = | Aur'(w) (C.10)
R(1) Aur'(uy)

where Au = u; —u; and R denotes the z, y, and z coordinates for the segmented PC curve.

Projection of Surface Nodes

Usually, the arc length coordinate 1s commonly used as the parameter that characterizes a
PC curve. This implies that those points to be supplied to construct a PC curve have been
pre-sorted in certain order such that every point on the curve can be assigned a unique arc
length coordinate. The element connectivity array as explained in Section 6 can be used to

116

identify if a node lies on the prescribed surface. For a point to be projected onto a PC curve,
the method we applied is first to find the closest segment in the PC curve to the point. Once
this segment was identified, the projection of the surface node is equivalent to the following
statement:

For a given point with Cartesian coordinate © = (z,y), find its arc length coordinate, s,
and associated Cartesian coordinate r(s) such that

d=|r(s) =l (€.1)
is a minimum, where
r(sl)
r(s) = [53 sts 1] M TA(;fzsl) (C.12)
Asr(s2)
As =82 -5l (C.13)

and M is given by equation (C.5).
Obviously, to minimize d is equivalent to find the zero-root of a fifth order polynomial
f(s) defined as
fls)=[r(s) = 7]-7'(s) (C.14)

Newton-Ralphson’s iterative method may be applied to determine its zero-root as follows:

1. Use s = 0.5(s1 + s2) as an initial guess.
9. Calculate f(s) and f'(s), where f'(s) = [r(s) — 7] cr"(s) + v'(s) - '(s)

3. Calculate 6 = _%

4. Update s=s+§6

5. Check if |§] < tolerance,
if yes, root = s and stop
if no, go to step 2.

By knowing the arc length coordinate of an arbitrary point on the PC curve, its corre-
sponding Cartesian coordinate can be easily determined by using equation (C.12).

117

D Interface With GAMMA?2D

Presently, the interface with the SRB2D code is through a user supplied grid file which con-
tains node definition, element definition, element connectivity and, possibly, some geometric
data for defining user prescribed profiles such as a nozzle contour or the profile of an eroding
pocket. These profiles are treated as parametric cubic splines so that ruled curves may be
readily established to perform surface nodal projections (for grid refinement) and surface
node redistribution (for remeshing), see Appendix C for details. COMCO has developed
an in-house grid generator, GAMMAZ2D, to automatically generate this grid file which can
be readily interfaced with SRB2D. For details see the GAMMAZ2D user’s manual and the

SRB2D user’s manual.

E Summary of the Postprocessing Capabilities

For the sake of completeness of the final report, we summarize the current postprocessing

capabilities of the code.

1. Pointwise or nodewise aerodynamic data extraction.

For the purpose of engineering analysis, it is highly desirable that the CFD codes can
provide quantitative information about the flowfield. Nodewise data extraction allows
a user to extract desired flow prooperties from the computed solution for a given point
or a given boundary in the computational domain. These aerodynamic data include
all conservation variables, all primitive variables, pressure coefficient, Mach number,
shear stresses, entropy change, total enthalpy change, total energy loss, etc.

2. Image of the initial grid and adapted grid with an option to show a section of the
computational domain..

3. Contour plots.

Contour plotting of flow variables is a very popular method to show the distribution of
flow properties throughout the computational domain. The code is capable of plotting
the contours for the following flow properties: all conservation variables, all primitive
variables, Mach number, vorticity, entropy change, total enthalpy change, total energy
loss, molecular viscosity, eddy viscosity, turbulent length scale, etc.

4. Velocity vector plot and streamline plot.

These plots are very useful to resolve complicated flow topologies such as vortex shed-
ding, flow separation, flow reattachment, etc.

118

5.

Total mass flux, total force, total heat transfer, total moment calculations.

To activate these postprocessing capabilities in the code, the user provides key words in
semantic form in the input deck. These key words are usually accompanied with some user
specified options. See the SRB2D user’s manual for details.

References

1.

10.

11.

Donea, J., Giuliani, S., and Halleux, J. P., “An Arbitrary Lagrangian-Eulerian Fi-
nite Element Method for Transient Dynamic Fluid-Structure Interactions,” Computer
Methods in Applied Mechanics and Engineering, 33, pp. 689-723, 1982.

Kreiss, H. O., “Stability Theory for Difference Approximations of Mixed Initial Bound-
ary Value Problems, Part I,” Mathematics of Computation, Vol. 22, pp. 703-714, 1968.

Strikwerda, J. C., “Initial Boundary Value Problems for Incompletely Parabolic Sys-
tems,” Ph.D. Thesis, Mathematics Department, Stanford University, 1976.

Gustafsson, B., and Sudstrom, A., “Incompletely Parabolic Problems in Fluid Dynam-
ics,” SIAM J. Appl. Math., Vol. 35, No. 2, pp. 343-357, September 1978.

Dutt, P., “Stable Boundary Conditions and Difference Schemes for Navier-Stokes Equa-
tions,” SIAM J. Numer. Anal., Vol. 25, No. 2, April 1988.

Rudy, D. H., and Strikwerda, J. C., “A Nonreflecting Outflow Boundary Condition
for Subsonic Navier-Stokes Calculations,” Journal of Computational Physics, 36, pp.
55-70, 1980.

Chu, C. K., and Sereny, A., “Boundary Conditions in Finite Difference Fluid Dynamics
Codes,” Journal of Computational Physics, 15, pp. 476-491, 1974.

Gustafsson, B., and Kreiss, H. O., “Boundary Conditions for Time-Dependent Prob-
lems With an Artificial Boundary,” Journal of Comutational Physics, 30, pp. 333-351,
1979.

Numerical Boundary Condition Procedures, NASA-CP-2201, 1981.

Yee, H. C., “Numerical Approximation of Boundary Conditions with Applications to
Inviscid Equations of Gasdynamics,” NASA-TM-81265.

Hesse, W. J., and Nicholas V. S. Mumford, Jet Propulsion for Aerospace Appli-
cations, 2nd ed., 1964.

119

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Tezduyar, T. E., and Liu, J., Domain Decomposition Methods for Partial Dif-
ferential Equations, R. Glowinski, et al. (eds.), SIAM, 1988.

Tezduyar, T. E., and Liu, J., Recent Developments in Computational Fluid
Dynamics, T. E. Tezduyar and T. J. R. Hughes (eds.), ASME, 1988.

Tezduyar, T. E., Liu, J., Nguyen, T., and Poole, S., Domain Decomposition Meth-
ods, T. F. Chan, et al. (eds.), STAM, 1989.

Tezduyar, T. E., and Liu, J., Finite Element Analysis in Fluids, T. J. Chung and
G. R. Karr (eds.), University of Alabama, Huntsville Press, 1989.

Lerat, A., “Implicit Methods of Second-Order Accuracy for the Euler Equations,”
AIAA J., 23, pp. 33-40, 1985.

Hollander, H., Lerat, A., and Peyret, R., “Three-Dimensional Calculation of Transonic
Viscous Flows by an Implicit Method,” AIAA J., 23, pp. 1670-1678, 1985.

Oden, J. T., Strouboulis, T., and Devloo, P., Computer Meth. in Appl. Mech. and
Engrg., Vol 59 (3), 1986.

Oden, J. T., Strouboulis, T., and Devloo, P., Intl. J. of Numer. Meth. in Fluids, Vol.
7 (11), Nov. 1987.

Tworzydlo, W., Oden, J. T., and Thornton, E. A., “Adaptive Implicit/Explicit Finite
Element Method for Compressible Viscous Flows,” submitted for publication to Comp.
Meths. Appl. Mech. Engrg.

Oden, J. T., and Bass, J. M., Ninth Annual Conference on Computing Methods
in Applied Sciences and Engineering, Paris, France, Jan. 1990.

Oden, J. T., and Bass, J. M., “New Developments in Adaptive Methods for Com-
putational Fluid Dynamics,” in Computing Methods in Applied Sciences and
Engineering, ed. by R. Glowinski and A. Lichnewsky, SIAM, Philadelphia, 1991.

Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., Computational Fluid Me-
chanics and Heat Transfer, McGraw-Hill Book Co., New York, 1984.

Dembkowicz, L., Oden, J. T., and Rachowicz, W., “A New Finite Element Method for
Solving Compressible Navier-Stokes Equations Based on an Operator Splitting Method
and h-p Adaptivity,” Comp. Meths. Appl. Mech. and Eng., to appear.

120

25.

26.

27.

28.

29.

30.

31.
32.
33.

34.

35.

36.

37.
38.

39.
40.

Hassan, O., Morgan, K., and Peraire, J., “An Adaptive Implicit/Explicit Finite El-
ement Scheme for Compressible Viscous High Speed Flows,” AIAA 27th Aerospace
Sciences Meeting, Reno, Nevada, Jan. 9-12, 1989.

Lapidus, A., “A Detached Shock Calculation by Second-Order Finite Differences,” J.
Comp. Physics, 2 pp. 154-177, 1967.

Lohner, R., Morgan, K., and Peraire, J., “A Simple Extension to Multidimensional
Problems of the Artificial Viscosity Due to Lapidus,” Com. Appl. Num. Meths., 1,
pp. 141-147, 1985.

Lo, S. H., “A New Mesh Generation Scheme for Arbitrary Planar Domains,” Int. J.
Num. Meths. in Eng., Vol. 21, pp. 1403-1426, 1985.

Monson, D. J., Seegmiller, H. L., and McConnaughey, P. K., AJAA Paper 89-0275.

Rostand, P., “Algebraic Turbulence Models for the Computation of Two-Dimensional
High-Speed Flows Using Unstructured Grids,” International Journal for Numerical
Methods in Fluids, Vol. 9, pp. 1121-1143, 1989.

Serra, R. A., AIAA J., pp. 603-611, May 1972.
Cuffel, R. F., Back, L. H., and Massier, P. F., AIAA J., Vol. 7, No. 7, 1969.

Ames Research Staff, “Equations, Tables, and Charts for Compressible Flow,” NACA
Report 1135, Moffett Field, CA, 1953.

Clift, R., Grace, J. R., and Weber, M. E., “Bubbles, Drops and Particles,” Academic
Press, New York, 1978.

Rimon, Y., and Chen, S. 1., “Numerical Solution of a Uniform Flow Over a Sphere at
Intermediate Reynolds Numbers,” The Physics of Fluids, Vol. 12, No. 5, pp. 949-959.

Majumdar, A. K., Whitesides, R. H., and Jenkins, S. L., J. Propulsion, Vol. 6, No. 1,
Jan-Feb., 1990.

Pao, R. H. F., Fluid Dynamics, Charles E. Merrill Books, Inc., 1967.

Sabnis, J. S., Gibeling, H. J., and McDonald, H., J. of Propulsion, Vol. 5, No. 6,
Nov.-Dec., 1989.

Dunlap, R., et al., “Internal Flowfield Investigation,” AFRPL-TR-86-104.

Peters, G. J., “Parametric Bi-Cubic Surface, in Computer Aided Geometric De-
sign, Barnhill/Riesenfeld, eds., 1974.

121

m&%&m Report Documentation Page

Space Administration

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
TR-91-05
4. Title and Subtitle 5. Report Date
March 15,1991
Final Report

6. Performing Organization Code

. Author(s) 8. Performing Organization Report No.

C.Y. Huang, W. Tworzydlo,].T. Oden, J.M. Bass, C.Cullen, S. Vadaketh

10. Work Unit No.

9. Performing Organization Name and Address
11. Contract or Grant No.

Computational Mechanics Co., Inc.
7701 N. Lamar, Suite 200 NAS8-37682

Austin, Texas 78752 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Eg:]clﬁe]%%l(’)t

NASA Marshall Space Flight Center

Huntsville, Alabama 35812 14. Sponsoring Agency Code

15. Supplementary Notes

None

16. Abstract

This is the final report for a research project entitled "Solid Rocket Booster Internal Flow Analysis by Highly Accurate
Adaptive Computational Methods” conducted for the NASA MSFC under Contract NAS8-37682. The primary objective
of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket
booster. This report describes a unique flow-simulator code for analyzing highly complex flow phenomena in the SRB.
New methodologies and features incorporated in this analysis tool are:
1) An adaptive implicit/explicit finite element method for solving both two-dimensional and axisymmetric Navier-
Stokes equations..
2) Adaptive algorithms and the data management systems for h-adaptive methods.
3) Moving boundary and remeshing algorithms for simulating the erosive burning of a solid propellant.
4) Inclusion of an algebraic turbulence model.
5) Both two-dimensional and axisymmetric versions of finite element flow solvers, all operational and tested on
representative flow problems. All of these topics are discussed in detail in this report.

17. key Words (Suggested by Author(s)) 18. Distribution Statement
solid rocket booster, adaptive finite element methods,
implicit/explicit schemes, moving boundary algorithms, Undassified-Unlimited

| porous wall with mass injection, turbulence model,

© adapted structured-unstructured grids.

19. Security Classif. (of this report) 20. Security Classif. (of this page) | 21. No. of pages 22. Price
! None None N/A

