790 research outputs found

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Real-time Management of groundwater resource based on wireless sensor networks

    Get PDF
    Groundwater plays a vital role in the arid inland river basins, in which the groundwater management is critical to the sustainable development of area economy and ecology. Traditional sustainable management approaches are to analyze different scenarios subject to assumptions or to construct simulation–optimization models to obtain optimal strategy. However, groundwater system is time-varying due to exogenous inputs. In this sense, the groundwater management based on static data is relatively outdated. As part of the Heihe River Basin (HRB), which is a typical arid river basin in Northwestern China, the Daman irrigation district was selected as the study area in this paper. First, a simulation–optimization model was constructed to optimize the pumping rates of the study area according to the groundwater level constraints. Three different groundwater level constraints were assigned to explore sustainable strategies for groundwater resources. The results indicated that the simulation–optimization model was capable of identifying the optimal pumping yields and satisfy the given constraints. Second, the simulation–optimization model was integrated with wireless sensors network (WSN) technology to provide real-time features for the management. The results showed time-varying feature for the groundwater management, which was capable of updating observations, constraints, and decision variables in real time. Furthermore, a web-based platform was developed to facilitate the decision-making process. This study combined simulation and optimization model with WSN techniques and meanwhile attempted to real-time monitor and manage the scarce groundwater resource, which could be used to support the decision-making related to sustainable management

    Precision Irrigation: Sensor Network Based Irrigation

    Get PDF

    Cloud based Smart Irrigation for Agricultural Area of Pakistan

    Get PDF
    A beneficial product of Smart Irrigation for Agricultural Area of Pakistan has been presented in this paper. Pakistan stands in need of a participatory solution that is efficiently workable, sustainable, and profitable, to develop the way for the agricultural sector by improving crop productivity with minimum water loss. The goal of this project is to introduce Cloud support to the Smart Irrigation System for Agricultural Area of Pakistan. To achieve this objective Wireless Sensor Network (WSN) is used to determine how much water to apply and when to irrigate. The system is divided into four main modules, i.e. Sensor node, Coordinator node, Server Module and Web Application. On the basis of acquired parameters from the WSN, the software application is programmed to take intelligent decisions increase the efficiency of the agricultural system

    Edge IoT Driven Framework for Experimental Investigation and Computational Modeling of Integrated Food, Energy, and Water System

    Get PDF
    As the global population soars from today’s 7.3 billion to an estimated 10 billion by 2050, the demand for Food, Energy, and Water (FEW) resources is expected to more than double. Such a sharp increase in demand for FEW resources will undoubtedly be one of the biggest global challenges. The management of food, energy, water for smart, sustainable cities involves a multi-scale problem. The interactions of these three dynamic infrastructures require a robust mathematical framework for analysis. Two critical solutions for this challenge are focused on technology innovation on systems that integrate food-energy-water and computational models that can quantify the FEW nexus. Information Communication Technology (ICT) and the Internet of Things (IoT) technologies are innovations that will play critical roles in addressing the FEW nexus stress in an integrated way. The use of sensors and IoT devices will be essential in moving us to a path of more productivity and sustainability. Recent advancements in IoT, Wireless Sensor Networks (WSN), and ICT are one lever that can address some of the environmental, economic, and technical challenges and opportunities in this sector. This dissertation focuses on quantifying and modeling the nexus by proposing a Leontief input-output model unique to food-energy-water interacting systems. It investigates linkage and interdependency as demand for resource changes based on quantifiable data. The interdependence of FEW components was measured by their direct and indirect linkage magnitude for each interaction. This work contributes to the critical domain required to develop a unique integrated interdependency model of a FEW system shying away from the piece-meal approach. The physical prototype for the integrated FEW system is a smart urban farm that is optimized and built for the experimental portion of this dissertation. The prototype is equipped with an automated smart irrigation system that uses real-time data from wireless sensor networks to schedule irrigation. These wireless sensor nodes are allocated for monitoring soil moisture, temperature, solar radiation, humidity utilizing sensors embedded in the root area of the crops and around the testbed. The system consistently collected data from the three critical sources; energy, water, and food. From this physical model, the data collected was structured into three categories. Food data consists of: physical plant growth, yield productivity, and leaf measurement. Soil and environment parameters include; soil moisture and temperature, ambient temperature, solar radiation. Weather data consists of rainfall, wind direction, and speed. Energy data include voltage, current, watts from both generation and consumption end. Water data include flow rate. The system provides off-grid clean PV energy for all energy demands of farming purposes, such as irrigation and devices in the wireless sensor networks. Future reliability of the off-grid power system is addressed by investigating the state of charge, state of health, and aging mechanism of the backup battery units. The reliability assessment of the lead-acid battery is evaluated using Weibull parametric distribution analysis model to estimate the service life of the battery under different operating parameters and temperatures. Machine learning algorithms are implemented on sensor data acquired from the experimental and physical models to predict crop yield. Further correlation analysis and variable interaction effects on crop yield are investigated

    Computational Contributions to the Automation of Agriculture

    Get PDF
    The purpose of this paper is to explore ways that computational advancements have enabled the complete automation of agriculture from start to finish. With a major need for agricultural advancements because of food and water shortages, some farmers have begun creating their own solutions to these problems. Primarily explored in this paper, however, are current research topics in the automation of agriculture. Digital agriculture is surveyed, focusing on ways that data collection can be beneficial. Additionally, self-driving technology is explored with emphasis on farming applications. Machine vision technology is also detailed, with specific application to weed management and harvesting of crops. Finally, the effects of automating agriculture are briefly considered, including labor, the environment, and direct effects on farmers

    Utilization of Internet of Things and wireless sensor networks for sustainable smallholder agriculture

    Get PDF
    Agriculture is the economy’s backbone for most developing countries. Most of these countries suffer from insufficient agricultural production. The availability of real-time, reliable and farm-specific information may significantly contribute to more sufficient and sustained production. Typically, such information is usually fragmented and often does fit one-on-one with the farm or farm plot. Automated, precise and affordable data collection and dissemination tools are vital to bring such information to these levels. The tools must address details of spatial and temporal variability. The Internet of Things (IoT) and wireless sensor networks (WSNs) are useful technology in this respect. This paper investigates the usability of IoT and WSN for smallholder agriculture applications. An in-depth qualitative and quantitative analysis of relevant work over the past decade was conducted. We explore the type and purpose of agricultural parameters, study and describe available resources, needed skills and technological requirements that allow sustained deployment of IoT and WSN technology. Our findings reveal significant gaps in utilization of the technology in the context of smallholder farm practices caused by social, economic, infrastructural and technological barriers. We also identify a significant future opportunity to design and implement affordable and reliable data acquisition tools and frameworks, with a possible integration of citizen science

    Sustainable irrigation system for farming supported by machine learning and real-time sensor data

    Get PDF
    Presently, saving natural resources is increasingly a concern, and water scarcity is a fact that has been occurring in more areas of the globe. One of the main strategies used to counter this trend is the use of new technologies. On this topic, the Internet of Things has been highlighted, with these solutions being characterized by offering robustness and simplicity, while being low cost. This paper presents the study and development of an automatic irrigation control system for agricultural fields. The developed solution had a wireless sensors and actuators network, a mobile application that offers the user the capability of consulting not only the data collected in real time but also their history and also act in accordance with the data it analyses. To adapt the water management, Machine Learning algorithms were studied to predict the best time of day for water administration. Of the studied algorithms (Decision Trees, Random Forest, Neural Networks, and Support Vectors Machines) the one that obtained the best results was Random Forest, presenting an accuracy of 84.6%. Besides the ML solution, a method was also developed to calculate the amount of water needed to manage the fields under analysis. Through the implementation of the system it was possible to realize that the developed solution is effective and can achieve up to 60% of water savings.info:eu-repo/semantics/publishedVersio

    Decision support for optimised irrigation scheduling

    Get PDF
    The system, developed under the FLOW-AID (an FP6 project), is a farm level water management system of special value in situations where the water availability and quality is limited. This market-ready precision irrigation management system features new models, hardware and software. The hardware platform delivers a maintenance-free low cost dielectric tensiometer and several low-end irrigation or fertigation controllers for serving different situations. The software includes a complete, web based, Decision Support System (DSS) that consists of an expert planner for farm zoning (MOPECO) and a universal irrigation scheduler, based on crop-water stress models (UNIPI) and water and nutrient uptake calculations. The system, designed also to service greenhouse fertigation and hydroponics, is scalable from one to many zones. It consists of 1) a data gathering tool which uploads agronomic data, from monitored crops around the world, to a central web Data Base (DB), and 2) a web based Decision Support System (DSS). The DSS processes intelligently the data of the crop using Crop Response Models, Nutrient Uptake Models and Water Uptake Models. The central system returns over Internet to the low-end controller a command file containing water scheduling and nutrient supply guideline
    • 

    corecore