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Abstract 

The purpose of this paper is to explore ways that computational advancements have 

enabled the complete automation of agriculture from start to finish. With a major need for 

agricultural advancements because of food and water shortages, some farmers have 

begun creating their own solutions to these problems. Primarily explored in this paper, 

however, are current research topics in the automation of agriculture. Digital agriculture 

is surveyed, focusing on ways that data collection can be beneficial. Additionally, self-

driving technology is explored with emphasis on farming applications. Machine vision 

technology is also detailed, with specific application to weed management and harvesting 

of crops. Finally, the effects of automating agriculture are briefly considered, including 

labor, the environment, and direct effects on farmers. 
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Computational Contributions to the Automation of Agriculture 

Robotic, and other computer-based advancements could prove to be vital for the 

future of agriculture. Currently, the rate of crop production is not rising at the same rate 

as population growth (Belton, 2016). According to the United Nations Food and 

Agriculture Organization, food production must be boosted by 70% or more in order to 

meet the needs of the growing population (Rejcek, 2017). This prediction of need has led 

to increasing interest in the field of agricultural development. Traditionally, research and 

development efforts have focused on increased crop breeding and genetic modifications 

for increased productivity (Ball et al., 2016). In more recent years, however, experts in 

robotic and computer fields have considered this problem as well. Agricultural robotics 

seems to be a promising field for producing more food at a sustainable rate and at a lower 

cost (Belton, 2016). 

 While robotic and computer technologies can be applied to virtually every aspect 

of agriculture, “systematic, repetitive, and time-dependent tasks seem to represent the 

best fields of application for robots” (Ampatzidis, De Bellis, & Luvisi, 2017, p. 1). These 

operations are often the most expensive without automation because of manual labor 

requirements and lend themselves to less expensive automation. For example, controlling 

weeds within a crop field is not only time consuming, but also relies on fallible human 

discernment of weeds. Similarly, the management of water for crops is a key part of the 

agricultural growth process and can be hard to do precisely without advanced technology. 

While underwatering can cause drying out of crops, overwatering can be just as 

damaging with respect to excess water and pathogens (Ampatzidis et al., 2017). These 
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represent just a small sample of the many problems within the agricultural space that 

computer technologies are currently solving or are expected to solve in the future. 

Advancements such as machine vision, machine learning, image analysis, GPS, and 

wireless networking all contribute to the current and future success of agricultural 

technology. This paper will examine the various ways in which these and similar 

technologies affect agriculture, and ways to increase technological impact in the future. 

Current Automation Solutions 

 Currently, there are few commercial robotic agriculture systems on the market. 

Most of the current work is research and experimentation, with some products reaching 

limited markets. This slow adoption of technology in agriculture has not stopped some 

farmers from adopting their own homemade solutions to agricultural issues. Many 

farmers have modified their farming machinery to perform various tasks remotely and, in 

some cases, automatically. One example is Kyler Laird, a farming “hacker” with a 

master’s degree in agriculture engineering (Bedford, 2017). By adding computer 

controllers to machinery, Laird employs machines performing autonomous drilling, 

planting, and harvesting of his crops. Being the owner of a small farm, Laird does not 

necessarily have the money to hire and pay continuous expenses for labor, but making 

smarter machinery is within his ability and resource constraints. Other farmers in 

conjunction with Purdue University started the agBot Challenge, a technology 

competition for various specific agricultural issues. Recently, the agBot Challenge 

featured a competition to make a robot capable of planting corn in a field. While in some 

cases these solutions may seem cobbled together and unprofessional, it is important to 
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note that agricultural technology is not simply theoretical or stuck in experimental labs 

but is used daily by farmers around the world. 

Ongoing Automation Research 

 Professional research and experimentation currently being completed on 

agricultural applications of technology typically can be considered in two separate 

categories. Digital agriculture refers to the use of data and computational techniques in 

order to make informed decisions about managing crops (Young, 2018). One example of 

this involves using weather patterns, soil conditions, and other factors to decide on the 

optimal crop for an area. The second field of agricultural technology is precision 

agriculture, which involves executing an agricultural plan precisely including specific 

steps in managing field tasks. This often requires specialized, technology-driven, 

equipment and the information gained from digital agriculture (Young, 2018). An 

excellent example of precision agriculture is the Hands Free Hectare project. This project 

involves the use of drones and automated machinery to grow an entire cereal crop 

without humans ever setting foot in the field (Belton, 2016). The precision of this 

technology allows for such a feat of agriculture, completely remote farming without 

direct human interaction, to be possible. Future advancements in both digital and 

precision agriculture, as well as developing relationships between the two are the keys to 

further advancing agriculture and solving the issues facing agriculture in general. 

Digital Agriculture 

 Digital agriculture can take on many forms, but almost all digital agriculture-

related systems involve a variation of data collection followed by computer processing to 
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bring new information or services to farmers. Technologies such as drones, satellites, and 

wireless sensor networks are often used in the data collection phase of digital agriculture. 

Computer processing of this data can take many forms including simple visual portrayal 

of data, comparisons with norms for crops, and even advanced image processing. The 

benefit for a farmer from digital agriculture is additional analysis of their crops and 

information that may have previously been unavailable to him. 

 Services provided through agricultural data. As previously mentioned, the 

major benefit of digital agriculture is the provision of digital and internet-based services 

to assist farmers. Digital agriculture services often follow either a predictive approach or 

a reactive approach. A predictive approach will attempt to use historical data based on the 

farmer's specific situation to predict crop performance, whereas a reactive approach is 

based on real-time monitoring (Gebbers & Adamchuk, 2010). Both approaches allow 

farmers to track the health of crops, predict yields of their fields, and analyze the 

performance of different crop types through monitoring of weather, drone data, planting 

machinery data, and soil (Young, 2018). Yield prediction and other services can be 

especially beneficial when used by multiple farmers in a single area (Srininvasulu, 

Sarath, & Venkat, 2016). Having a larger data set for algorithms to operate on allows 

farmers more accurate predictions for their region. Yield maps sourced from multiple 

data types can help a farmer to understand the overall impact of both natural conditions 

and their own management activity (Gebbers & Adamchuk, 2010). With this information, 

farmers can make more informed decisions on fertilizers, crop types, and even estimate 

profits before a crop season begins.  
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 Wireless sensor networks. One of the key needs in digital agriculture is having 

enough data for computational analysis and provision to services. According to 

Srbinovska, Gavrovski, Dimcev, Krkoleva, and Borozan (2015), “wireless sensor 

network (WSN) technologies are the major driver of the development of precision 

agriculture” (p. 297). Wireless sensor units are a relatively new technology that provide 

monitoring of specific parameters digitally for a minimal cost. The specific parameters 

monitored could include light, moisture, temperature, and any number of other values 

essential to the growth of a specific crop. Typically, sensor units are composed of a radio 

frequency transceiver, a microcontroller, a power source, and a specific sensor. Each 

small, low-range sensor unit transmits data to a more formidable wireless information 

unit, where data can be transferred to the internet or processed directly on the unit 

(Gutierrez, Villa-Medina, Nieto-Garibay, & Porta-Gandara, 2014). This form of 

networking provides widespread monitoring of crops, without the need to invest in 

hundreds of internet-enabled or long-range sensor units. While current applications of the 

technology are being used primarily in greenhouses, the technology has been tested on 

and could be adopted in outdoor situations.  

Data collection by drones and satellites. In addition to WSN technology, drone 

technology has matured to the point where it is relatively inexpensive and reasonable to 

use for farm data collection. The most common method for drones to provide data 

through is imagery. An ideal future for many farmers would be the ability to mount a 

camera onto a drone and have it examine their fields every morning, reporting back on 

any issues discovered within the field. The drone would be able to pinpoint an unhealthy 
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spot in a field and even potentially reveal the cause of issues (such as pests or irrigation 

issues). In many ways, this is already possible through RGB cameras (capturing visible 

red, green, and blue light), multispectral cameras, and computer analysis (King, 2017). 

Optical sensors that capture the visible and near-infrared spectra (Vis-NIR spectra) of a 

field can help to estimate a plant’s biomass, chlorophyll content, and stress (Gebbers & 

Adamchuk, 2010). Invisible wavelengths of light, specifically ultraviolet or infrared, can 

be indicative of health characteristics in both crops and soil. Dead or unhealthy portions 

of crops will typically reflect more red light, while a healthy crop will absorb most red 

light and reflect near-infrared light. The Normalized Difference Vegetation Index, or 

NDVI, is an analysis of the photosynthetic activity of plants determined by examining the 

ratios of reflectance of red and near-infrared wavelengths (Corrigan, 2018). Following 

drone collection of imagery, computer software can be used to determine the NDVI and 

identify areas of crop fields. A high reflectance of visible light often results from the 

pigment in leaves for example, while water absorbs near-infrared wavelengths. Stagnant 

water with a high algae concentration will reflect more visible light in addition to 

absorbing near-infrared (Corrigan, 2018). With these specific characteristics built into 

software, farmers can view digital maps of their fields and identify potential problem 

spots where crops are dying or there are large accumulations of standing water. Satellites 

can be used in the same way and in past tests have been able to forecast the yield of a 

field with 99% accuracy based upon the current health and these other parameters 

(Rejcek, 2017). While satellite use in agriculture is mostly limited to data collection and 

analysis, drones have additional applications within precision agriculture. 
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Precision Agriculture 

 While digital agriculture is primarily focused on the collection of additional 

agricultural data and computer analysis, precision agriculture makes use of advanced 

technology and machinery to fully automate various processes within a farm. One of the 

biggest robotic advancements with application to agriculture is self-driving technology. 

Machinery that can move throughout fields autonomously is critical to the complete 

automation of farming tasks. Beyond navigation, methods for automating weed control 

(through both physical weeding as well as herbicide application) are extremely beneficial 

and even vital to the health of plants. Similarly, a method of watering crops 

autonomously and precisely is essential to the growth of a crop. Some research has also 

been done on fully automating the harvesting process, although harvesting can vary 

wildly between crop types. Automation research and experimentation has been completed 

in each of these areas, in anticipation of fully automating a farm. 

 Self-driving technology. Automating machinery movements through a field is in 

many ways the most critical portion of automating farming from plowing to harvest. 

Virtually every piece of equipment used on a farm requires precise movement through a 

field to accomplish its task without damaging the crop. There have been various 

approaches to accomplishing automation of navigation for machinery, but the most 

precise and revolutionary approaches have begun to utilize machine vision. Perfecting 

this technology will be critical to the success of complete automation attempts on farms. 

 Key considerations. When approaching the task of automated navigation within a 

farm there are several critical considerations. Machinery must be small, with the ability to 
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hold cameras or any required sensors, but without damaging the surrounding environment 

and crops. In addition, a lightweight vehicle is essential to not damage the soil through 

excess compaction. Finally, obstacle avoidance is crucial. When a machine encounters an 

obstacle between rows of crops it must be able to avoid the obstacle without getting off 

track drastically and causing damage to surrounding crops (Kaivosoja, Jackenkroll, 

Linkolehto, Weis, & Gerhards, 2014). The primary goal is a reliable, precise, and small 

machine capable of driving itself between crop rows without damaging plant life and 

health.  

Approaches to automation. With these considerations in mind, there are 

numerous approaches to automated or semi-automated navigation within fields. Older 

technology provided visual feedback for machinery to look for, using illuminated objects 

to assist in steering. This methodology was rather rudimentary and gave way to GPS 

(Global Positioning System) guidance, in which machinery moves based on satellite 

positional data (Gebbers & Adamchuk, 2010). These types of vehicles are classified as 

automated guided vehicles (AGVs), which incorporate a computer system and are 

capable of certain autonomous actions without outside input. Aside from GPS, AGVs can 

incorporate cameras, wheel odometry, and control scripting. Control scripting allows 

regions to be defined beforehand for a robot with the AGV deciding on motion actions 

needed to approach the regions (Kaivosoja et al., 2014). Each of these methods have 

varied success rates but utilizing multiple approaches together could be the future of 

agricultural navigation technology. 
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 Machine vision assisted navigation. Machine vision has proven to be one of the 

key drivers in automated navigation technology. Ball et al. (2016) researched ways to 

incorporate machine vision with GPS and wheel odometry to navigate a test vehicle 

through a field and avoid obstacles along the way. Their test vehicle incorporated two 

forward facing cameras, quadrature encoders to measure speed and direction, an inertial 

measurement unit, a GPS module, 3G internet connectivity, a strobe light for nighttime 

running, and two computers. Through computations on the sensor inputs, researchers 

accomplished precise automation of the vehicle through a field, avoiding all obstacles 

and maintaining a navigation error less than 0.1 meter. 

 The primary computer focuses on direct navigational and vehicle control tasks. 

While GPS is a common technology for precise navigation, the outages in signal from 

satellites mean that expensive, precise sensors are needed (Ball et al., 2016). For the 

average farmer, this is not very practical, especially when multiple machines are likely 

needed. Instead, by fusing the inputs of multiple low-cost sensors, sensor outage 

catastrophes can be prevented, and the overall cost can be minimized. To enhance the 

precision of GPS sensors on vehicles, real-time kinematic (RTK) positioning data can be 

obtained from the 3G internet connection. RTK data allows GPS signals to be better 

adjusted to the exact sensor location. In the case of the unit in farming technology, this 

allows an accuracy of tens of centimeters to the exact location.  

 Beyond GPS technology, machine vision is used to track crop rows visually. 

Images taken from the two forward facing cameras are initially converted into grayscale 

and then down sampled to a lower quality to increase processing speed. Using data from 
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the inertial measurement unit, a projection of the overhead view can then be generated, 

correcting for the tilt of the cameras mounted on the vehicle. The computer system then 

detects parallel textures, which are crucial to identifying rows within the image, as seen 

in Figure 1 (Ball et al., 2016). Additionally, by setting a tolerance for acceptable parallel 

texture strength, the machine can detect when it has reached a dead spot, the end of a 

row, or numerous other anomalies. With a proper map of the crop rows, the vehicle can 

follow the parallel textures to maintain a proper course through the field. 

  Before actual movement takes place, however, the various data inputs must be 

fused. With velocity being measured via sensors in the wheels and rotation of the vehicle 

determined by the visual tracking of crop rows, the error in GPS signal can be estimated. 

With this data and calculation, the vehicle’s precise location can be determined, and the 

vehicle controller can set the throttle, steering angle, and brake as necessary (Ball et al., 

2016). Reliance on a multitude of sensing technologies provides extreme reliability by 

allowing for outages in the sensors to be accommodated without disastrous effects. 

Difficulties do arise, however, when obstacles are present, resulting in the need for a 

more advanced obstacle detection system.  
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Figure 1. Image processing flow for crop row detection. Reprinted from “Vision-based 

Obstacle Detection and Navigation for an Agricultural Robot,” by D. Ball, B. Upcroft, G. 

Wyeth, P. Corke, A. English, P. Ross, . . .  A. Bate, 2016, Journal of Field Robotics, 

33(8), 1115. Reprinted with permission. 

Obstacle detection methods are still being explored, but current models focus on 

the assumption that certain crops produce distinct uniform environmental appearances 

(Ball et al., 2016). Through machine learning, a vehicle can adapt and learn the 

characteristics of the specific crop environment in which it is placed. Under this 

assumption, potential novel regions of the field can be detected by cameras. The use of 

multiple cameras allows for stereo matching of images, producing a 3D mapping of the 
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potential obstacle. The algorithm for obstacle avoidance then expands this 3D mapping to 

account for error, flattens it into a 2D overhead view, and determines the closest route to 

return to the original path (Ball et al., 2016). The cameras continually search for 

obstacles, protecting from the possibility of multiple close together obstacles disrupting 

navigation or damaging machinery.  

The end results of the test vehicle operating with machine vision assisted 

navigation and obstacle detection system are impressive. In a whole field test, 99.54% of 

the field was covered, with an 8.77% overlap or regions due to obstacles introduced in 

the test. All obstacles placed in the field were avoided, but in some cases, the algorithm 

expanded the boundary of the obstacle wider than needed. Finally, in simulated GPS 

outages for 300 seconds (with a travel distance of around 400 meters each time), the 

vehicle sustained navigation with a less than 0.1-meter error because of the visual crop 

row tracking (Ball et al., 2016). Such small margins of error represent a significant 

accomplishment and advancement beyond somewhat rudimentary GPS-based navigation. 

These results also present a promising future for automation and navigation and the 

ability to utilize this technology within a multitude of farming tasks. 

Automated weeding and herbicide application. One of the key factors affecting 

crop growth failure is the presence of weeds. As a result, a critical point of agricultural 

automation for reliable crop growth is automating the process of weed removal. There are 

two main classifications of weeds within row crops, inter-row weeds and intra-row 

weeds. Inter-row weeds are unwanted plant growth in between rows of crops, which can 

be easily removed with standard machinery attached to a self-navigating tractor (Nan, 
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Chunlong, Ziwen, Zenghong, & Zhe, 2015). Accordingly, very little additional research 

time has been devoted to further advanced automation methods on inter-row weeding. 

Intra-row weeds are weeds growing within crop rows, in between and around the 

individual crops (Nan et al., 2015). These weeds present a greater problem for farmers 

and require more care and attention for removal. In organic agriculture, intra-row weeds 

must be removed by hand, while conventional agriculture relies on herbicidal chemical 

treatments (Nan et al., 2015). Most automated weeding research is therefore dedicated to 

the problem of intra-row weeds. Automation advancements have been made for use in 

both conventional and organic crop farming, with methods to identify and remove weeds 

as well as precisely distribute herbicides. 

 Key considerations. In order to automate the weeding process, there are several 

key considerations to ensure proper weed removal without crop damage. Due to varying 

weed shapes and sizes, it is hard for machine vision to perform exact matching on weeds 

and crops (Ampatzidis et al., 2017). Machinery must have a built-in tolerance for this 

variation in order to prevent crop damage, while still maximizing the amount of weed 

removal. One additional consideration is the major role of light. When identifying crops 

and weeds, objects and key identifiers can be obscured or appear differently due to 

reflections (Ampatzidis et al., 2017). Machinery must be able to accommodate for light’s 

role, or farmers must implement strategies to minimize the impact. 

 Further considerations in the space are the actual requirements to implement a 

fully autonomous weeding system. Currently, there is a disconnect between the robotic 

and weeding elements implemented in so-called automated weeding system (Merfield, 
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2016). As previously mentioned, inter-row weeds are typically handled with standard 

weeding machinery attached to a self-navigating tractor. Researchers have taken a similar 

approach with handling of intra-row weeding, resulting in significant amounts of human 

setup and oversight of machinery for successful operation (Merfield, 2016). A true 

automated weeding system would not only perform weeding tasks but also handle these 

other difficult operations. A system should be able to monitor crop growth, soil 

conditions, and weed growth at all times in order to make a decision on when to weed. In 

the case of herbicidal methods, the weeding machine should also be able to choose a 

proper herbicide based upon the crop being grown (Merfield, 2016). Research in each of 

these fields will be crucial to the complete automation of the weeding process in 

agriculture. 

 Machine vision-based weed detection. One of the most significant advancements 

in weeding technology is the use of machine vision for weed detection and removal. By 

mounting a color camera and industrial control computer to a weeding platform with 

three rotating blades, researchers have been able to successfully accomplish automated 

weeding in this way (Nan et al., 2015). Crop and weed identification can be achieved 

through advanced image processing upon the resultant photographs from this machinery. 

Initially, an algorithm known as the excess green index is used to transform color images 

into monochrome, as displayed in Equation 1 (Nan et al., 2015). R, G, and B represent 

the intensities of the red, green, and blue color channels, with M being the resultant 

grayscale intensity for the pixel. 

                               𝑀 = {
255 × min(𝑔 − 𝑟, 𝑔 − 𝑏), (𝐺 ≥ 𝑅 and 𝐺 ≥ 𝐵)

0, otherwise
                                 (1) 
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 This algorithm creates a grayscale image designed to enhance vision of crops by 

converting stronger green shades into blacks while reducing soil color to white coloring. 

The result is extremely beneficial, for plant life detection, but does suffer from image 

noise as a result of soil color discrepancy and color distortion. In order to eliminate this 

noise, a pixel histogram is constructed based upon black pixel positioning. Smoothing the 

curves of the histogram and converting the pixels in significantly lower regions into 

white pixels effectively removes any remaining noise. Finally, based on this image, crop 

locations can be determined, and a safe region set around them to prevent crop and root 

damage (Nan et al., 2015). The attached rotating blades can revolve around this safe area 

under the soil, cutting the roots of any weeds in between crops.  

 This method of weed detection is detecting green plant life within the expected 

crop growth regions, and not directly identifying the weeds. Areas outside of the 

identified crop regions can then be weeded safely without damage to crops. While a more 

accurate method could be constructed by training a machine to identify weeds, such a 

method would be significantly more costly and computationally intensive. Accordingly, 

using a low-cost method (such as the one described) is preferred for most agricultural 

applications, provided it is accurate and reliable. 

The results of using this method for weed detection and removal are quite 

astounding. Crop area detection had an error margin of ±15mm, primarily due to 

distortion of lenses and the variations in the setup of different crop rows. The recognition 

rates of crops, however, were all over 95% after testing on cauliflower, maize, and lettuce 

crops. One key influencer of this recognition rate was the use of a fixed area threshold, 
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which could have missed underdeveloped plants and identified them as weeds (Nan et al., 

2015). While delaying weeding to allow crop development could potentially solve this 

issue, timing would need to be precise to prevent weeds from leaching nutrients from 

crops. The use of the pixel histogram to reduce noise, while beneficial, could be aided by 

an adaptive threshold to prevent erroneous weed detection. Similarly, unhealthy plants 

were not always perfectly detected, since the excess green index struggles with 

discolored crops. Additionally, when large weeds were present near a crop they were 

sometimes masked into the safe area, resulting in weeds not being detected for removal 

(Nan et al., 2015). All these areas are important for further research to advance progress 

in automated weed technology. This system is already capable of an efficiency of 34.3 

times that of a standard human laborer manually weeding, with the ability to cover 2.4 

square hectometers of crop in an eight-hour work day as compared to a human’s 0.07 

square hectometers in the same time (Nan et al., 2015). Improving the accuracy of 

detection will enable the use of this technology in farms on a wider scale. 

 Automating herbicide application. Conventional agriculture relies on the 

distribution of herbicides for weed prevention and removal rather than manual removal of 

weeds by laborers. Precision agriculture aims to improve on this method by targeted 

herbicidal application, reducing quantities of herbicide needed, and reducing 

environmental impact. Blue River Technology, a John Deere company, has attempted to 

accomplish this through their “see-and-spray” technology in development. Using 

machine vision-based methods like the ones previously mentioned, machinery is able to 

spray weeds with herbicides, and additionally spray crops with fertilizer. This technology 
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eliminates up to 90% of chemical use as compared to a standard herbicidal spraying 

method (Rejcek, 2017). While still struggling from some of the same accuracy concerns 

as previous machine vision examples, this is promising for herbicide application. 

 Researchers have also begun to test similar methods using drones. A camera 

mounted drone with enough computational power should be able to utilize the same 

algorithms for weed and crop identification. The locations of weeds can then be relayed 

to farmers through a graphical representation for removal. The true benefit of using 

drones, however, is the ability to mount herbicide sprayers to the drone itself for 

immediate application upon identification (King, 2017). Primary issues with this method 

are the cost and weight of equipment, which are interrelated. In order to accomplish 

computations required for weed identification, a reliable computing unit must be mounted 

on the drone along with the camera, herbicide reservoir, and spraying technology. Drones 

that are able to lift this amount of weight typically cost significantly more than a drone 

just being used for aerial imagery. One possibility to reduce costs would be using a 

centralized computing unit on the ground, with drones transmitting data, but the latency 

in transmission has not been studied extensively. Furthermore, studies have not been 

done on whether the cost savings of the reduced herbicide use would balance out drone 

cost, but this is an important area of consideration for future research. Overall, the future 

of automated weeding technology seems promising. 

Automated crop irrigation. Beyond weed growth, a significant factor in plant 

health is water provision and intake. Studies reveal that around 85% of the available 

freshwater on earth is being used in agricultural applications (Gutierrez et al., 2014). 
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Strategies are certainly needed to optimize the use of these resources, especially 

considering growing food source needs. While primarily tested in greenhouse settings, 

wireless sensor networks are one way that water usage can be optimized without 

affecting crop growth. WSNs are composed of both wireless sensor units and wireless 

information units. Sensor units contain soil moisture and temperature sensors, combined 

with a ZigBEE radio connection. The ZigBEE protocol enables low power transmission 

of data with a reliable range. Wireless information units in the setup collect data from 

multiple sensors and determine whether to water crops. An attached pump allows the 

information unit to irrigate the crop through standard drip holes, controlling the water 

output and timing based upon sensor data. Additionally, a GPRS (General Packet Radio 

Service) module allows the information unit to broadcast data to a private internet portal 

where a farmer can perform real-time monitoring of the system. The farmer can also 

override the system to directly water fields if desired (Gutierrez et al., 2014). Using this 

method for automated irrigation is certainly promising for farmers looking to automate 

agricultural processes. As compared to a standard irrigation technique, WSN-based 

irrigation provides 90% savings of water with relatively low investment costs due to 

inexpensive sensors being used (Gutierrez et al., 2014). Crops grown in this way showed 

no evidence of health defects due to water shortage. Automated irrigation presents a 

strong example of the power of automated agriculture, with incredible savings and 

reduced labor needs. 

 Automated harvesting. Automating the harvesting process is one of the most 

difficult obstacles to conquer in precision agriculture. The massive amount of variation in 
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plant types and harvesting methods means that it is difficult to develop one single 

solution for the problem. Additionally, the modeling and analyzing of 3D plant and tree 

structures is extremely computationally intensive and time-consuming (Ampatzidis et al., 

2017). Crop harvesting automation can effectively be split into two categories: crops that 

can be harvested whole, such as alfalfa, barley, and sudan, and those that require partial 

plant harvesting, such as apples, sugar snap peas, and cherries. Most fruits and vegetables 

fall under the partial harvesting category, with each having a unique harvest method. 

While automation of whole crop harvesting has been successfully completed, harvesting 

methods for crops in the other category still need significant research. 

 Whole crop harvesting. Certain crops are harvested entirely, without the need to 

carefully separate specific parts of the plant. In these cases, automated harvesting can be 

accomplished through a self-navigating tractor with a harvesting cutter attached behind. 

This method has been effectively used on crops like alfalfa and sudan, with an efficiency 

equal to or exceeding that of a human (Pilarski et al., 2002). The aforementioned Hands 

Free Hectare Project made use of this method in harvesting of a barley cereal crop 

(Belton, 2016). While seemingly a simple process to automate, automation of whole crop 

harvesting is built on the extensive research of self-navigating techniques. 

 Machine vision-based harvesting. The more difficult challenge in automating 

harvesting is that of partial plant harvesting, which requires specific harvesting 

requirements. While different automation methods would be needed for each crop, one 

interesting case study in machine vision-based harvesting is automation of sugar snap pea 

harvesting. Few crops are more challenging than sugar snap peas, which are incredibly 
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labor intensive to harvest. While presenting farmers with a high value on the market, 

there are few mechanized harvesting solutions available. The need for high precision to 

not damage individual pea pods is challenging, especially with a large variance in the 

size, color, and even shape of the pods (Tejada, Stoelen, Kusnierek, Heiberg, & Korsaeth, 

2017).  

 Solving this specific problem has been a continual area of research, but 

breakthroughs in spectral reflectance analysis provide hope for the future of harvesting 

pea pods. Clear differences in the spectral signatures (the effectiveness of reflecting 

different wavelengths of light) between pea pods and surrounding leaves are the key to 

improving upon existing color-based imaging techniques. In order to test the 

effectiveness of this concept, researchers constructed a small robotic arm, with a 

grayscale camera attached. In addition, IR LED (Infrared Light Emitting Diode) modules 

were attached to the arm with a shade covering the entire system to reduce the effects of 

differing lighting (Tejada et al., 2017). The whole platform was built to be a relatively 

cost-effective proof of concept, and definite improvements could be made on the 

individual components used in the system. 

 The first step in pea pod identification involved illumination of plants with 

alternating wavelengths of IR light from the mounted LED systems. Since one level of IR 

light was assumed to reflect better with leaves and stem material, the camera was 

programmed to take multiple images, overlaying the two and subtracting the stem 

material. Additionally, adjusting the exposure of the image using a fixed threshold can 

provide a clearer division of the plant material from pods (Tejada et al., 2017). The 
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resultant index image represents a rough approximation of pea pod location, with pea 

pods in white and surrounding material in black. A form of ellipse discrimination is then 

used to approximate the total area of pea pods (Tejada et al., 2017). Pods are assumed to 

be of a relatively uniform elliptical shape, with varying sizes. White spaces on the image 

are mapped into elliptical regions, with certain size variance accounted for. Following 

this processing, the robotic arm can move above identified ellipses and cut the pods from 

the stems (Tejada et al., 2017). 

 The effectiveness of this method is impressive but does need improvement before 

commercial implementation. The camera detection method was 93% accurate in 

identifying pods, with some issues when leaves obstructed the IR LED light from 

reaching pods. The cutting accuracy was only 54%, but researchers believe this primarily 

resulted from the robotic arm’s precision, size, and motion constraints. One of the major 

issues that this method does not entirely solve is overlapping pea pods, sometimes 

identifying multiple pea pods as a single large pod (Tejada et al., 2017). While 

improvements on the robotic arm could be essential for improving cutting technology, a 

more advanced method of pod identification could be useful as well. Implementing 3D 

imagery using multiple cameras could resolve some issues with overlap and the blockage 

of IR light. Other crops requiring similar care in harvesting could benefit from this 

research, and assist in further automating harvesting for all crops.  

Effects of Automation 

 One of the key considerations when approaching the automation of agriculture 

and the adoption of digital and precision agriculture techniques is the effect an automated 
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system may have. Human labor, repair of machinery, individual farming style, security, 

and the environment are all impacted by the increased role of automation in the 

agricultural sector. While the effects of precision and digital agriculture have not been 

fully studied, many of them can be predicted or deduced based upon similar automation 

attempts and the general trends of society. 

Role of Labor 

 Studies on farming in the US have revealed that the use of both land and labor has 

been decreasing over time as technology is adopted. Farmers increasingly turn to 

precision and digital agriculture to reduce labor and production costs (Iglehart & Zsofka, 

2013). It is important to note that this trend has been consistent, with no sharp declines 

directly connected to technological developments. The increased efficiency of automated 

machinery reduces resource constraints on farmers (Bedford, 2018). Farm labor jobs are 

expected to decrease with the decline of manual labor and increase of automation. The 

result is increased productivity at the same cost to farmers, resulting in increased stability 

of food prices.  

 Beyond direct effects to manual labor on farms, growing automation typically 

results in a decline of rural life. In many countries with a lack of urban population and job 

opportunities, reduced manual farming jobs could undermine existing poverty reduction 

efforts (Fraser & Charlebois, 2016). Since building up urban populations is not an 

efficient solution to this issue, researching ways to reduce the impact on rural populations 

is important in these situations.  
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 One interesting solution to this problem has been effectively enacted in the lettuce 

farming industry in California involving a combination of manual labor with automated 

machinery. A specialized lettuce harvester makes use of high-pressure water beams in 

order to cut lettuce heads, at which point lettuce is transported to workers via a conveyor 

belt. The farm workers are then responsible for tearing off dead leaves and preparing the 

lettuce for shipment. With many California farms facing labor shortages of 20%, 

automated technology working in tandem with farm laborers can allow farms to continue 

to operate with the same output (Simon, 2017). Introducing automation in this way 

presents major opportunities by sustaining the farming industry in light of a declining 

workforce. Additional automation could further affect farm labor, but initial introduction 

in this way would prove extremely beneficial. 

Machinery Repairs 

 One of the major concerns of farmers with regards to the adoption of 

technologically advanced machinery is how repairs of machinery will change. New 

machinery and the included computer systems are often proprietary, with self-repair 

being both difficult and introducing legal liability (Wiens, 2015). As a result, repair costs 

for a farmer are rarely as simple as buying a part and replacing it by themselves. Instead, 

farmers are required to hire experienced, often expensive repair technicians. These effects 

have already been witnessed in many farms with current technology and can be expected 

to continue with the rise of fully automated machinery. 
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Farming Style 

 One additional way that automation affects farming is in the style of individual 

farmers. Typically, different farmers have different ways they accomplish certain farming 

tasks and many fear that automation would remove any of these unique differences in 

style. Similarly, many farmers rely on intuition to determine the time of farming tasks 

and do not believe that machine learning and data gathering can replace this. Even those 

farmers who are open to automation see planting as one task that is reserved for them and 

are reluctant to turn this step over to machinery (Bedford, 2017). Beyond farmers’ 

feelings about automation, many fear the safety of automated machinery roaming on their 

farms (Gebbers & Adamchuk, 2010). It is important for manufacturers to consider these 

concerns and find ways to alleviate them. 

Security Dangers 

 Some of the farmers’ concerns about the safety of advanced machinery are well 

founded. Current automated driving technology benefits from complex machine-learning 

algorithms. A multitude of companies that are developing this technology do not fully 

understand how it works and as a result have neglected security concerns. Security flaws 

in software and authentication could lead to disastrous effects if a malicious actor were 

able to gain control of a vehicle (Garfinkel, 2017). Research must be done on the best 

ways to secure the computer systems incorporated in machinery including authentication 

and networking between machines. As this is an area of high impact and currently little 

development, it is critical that advancements be made before mass production of 

automated technology. 
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Environmental Impact 

 A major benefit of many of the precision agriculture advancements is reduced 

environmental impact in farming. The utilization of automated herbicide spraying 

techniques reduces the use of many harmful chemicals on soil (Pringle, 2017). Beyond 

the immediate effects to soil, water pollution is significantly reduced by automation 

advancements. Beyond pollution reduction, automated machinery typically weighs less, 

resulting in reduced soil compaction (Pringle, 2017). Soil that has not been compacted by 

heavy machinery benefits wildlife populations and also makes it easier for farmers to 

accomplish plowing and planting tasks. Overall, automated machinery is extremely 

beneficial for the environment. 

Conclusions 

 Many significant advancements in agricultural automation have been based on 

emerging computational technology. The ability to collect and analyze large quantities of 

data on farmland and crops is a major benefit to farmers. Machine vision-based systems 

are beneficial across multiple stages in agriculture including navigation in fields, 

weeding, and harvesting. Other farming tasks such as herbicide application and irrigation 

also show promise for automation with the assistance of computer-based systems. Since a 

majority of agricultural automation machinery is not commercial or publicly available 

yet, it is hard to know the exact effects that such technology will have on the industry. On 

the whole, however, automating the farming process appears to be a net positive for 

farmers and consumers, and could be the key to feeding a growing population. 
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