27,318 research outputs found

    Scalable attack modelling in support of security information and event management

    Get PDF
    Includes bibliographical referencesWhile assessing security on single devices can be performed using vulnerability assessment tools, modelling of more intricate attacks, which incorporate multiple steps on different machines, requires more advanced techniques. Attack graphs are a promising technique, however they face a number of challenges. An attack graph is an abstract description of what attacks are possible against a specific network. Nodes in an attack graph represent the state of a network at a point in time while arcs between nodes indicate the transformation of a network from one state to another, via the exploit of a vulnerability. Using attack graphs allows system and network configuration information to be correlated and analysed to indicate imminent threats. This approach is limited by several serious issues including the state-space explosion, due to the exponential nature of the problem, and the difficulty in visualising an exhaustive graph of all potential attacks. Furthermore, the lack of availability of information regarding exploits, in a standardised format, makes it difficult to model atomic attacks in terms of exploit requirements and effects. This thesis has as its objective to address these issues and to present a proof of concept solution. It describes a proof of concept implementation of an automated attack graph based tool, to assist in evaluation of network security, assessing whether a sequence of actions could lead to an attacker gaining access to critical network resources. Key objectives are the investigation of attacks that can be modelled, discovery of attack paths, development of techniques to strengthen networks based on attack paths, and testing scalability for larger networks. The proof of concept framework, Network Vulnerability Analyser (NVA), sources vulnerability information from National Vulnerability Database (NVD), a comprehensive, publicly available vulnerability database, transforming it into atomic exploit actions. NVA combines these with a topological network model, using an automated planner to identify potential attacks on network devices. Automated planning is an area of Artificial Intelligence (AI) which focuses on the computational deliberation process of action sequences, by measuring their expected outcomes and this technique is applied to support discovery of a best possible solution to an attack graph that is created. Through the use of heuristics developed for this study, unpromising regions of an attack graph are avoided. Effectively, this prevents the state-space explosion problem associated with modelling large scale networks, only enumerating critical paths rather than an exhaustive graph. SGPlan5 was selected as the most suitable automated planner for this study and was integrated into the system, employing network and exploit models to construct critical attack paths. A critical attack path indicates the most likely attack vector to be used in compromising a targeted device. Critical attack paths are identifed by SGPlan5 by using a heuristic to search through the state-space the attack which yields the highest aggregated severity score. CVSS severity scores were selected as a means of guiding state-space exploration since they are currently the only publicly available metric which can measure the impact of an exploited vulnerability. Two analysis techniques have been implemented to further support the user in making an informed decision as to how to prevent identified attacks. Evaluation of NVA was broken down into a demonstration of its effectiveness in two case studies, and analysis of its scalability potential. Results demonstrate that NVA can successfully enumerate the expected critical attack paths and also this information to establish a solution to identified attacks. Additionally, performance and scalability testing illustrate NVA's success in application to realistically sized larger networks

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Toward optimal multi-objective models of network security: Survey

    Get PDF
    Information security is an important aspect of a successful business today. However, financial difficulties and budget cuts create a problem of selecting appropriate security measures and keeping networked systems up and running. Economic models proposed in the literature do not address the challenging problem of security countermeasure selection. We have made a classification of security models, which can be used to harden a system in a cost effective manner based on the methodologies used. In addition, we have specified the challenges of the simplified risk assessment approaches used in the economic models and have made recommendations how the challenges can be addressed in order to support decision makers

    An Evolutionary Approach for Learning Attack Specifications in Network Graphs

    Get PDF
    This paper presents an evolutionary algorithm that learns attack scenarios, called attack specifications, from a network graph. This learning process aims to find attack specifications that minimise cost and maximise the value that an attacker gets from a successful attack. The attack specifications that the algorithm learns are represented using an approach based on Hoare's CSP (Communicating Sequential Processes). This new approach is able to represent several elements found in attacks, for example synchronisation. These attack specifications can be used by network administrators to find vulnerable scenarios, composed from the basic constructs Sequence, Parallel and Choice, that lead to valuable assets in the network

    An Analytical Evaluation of Network Security Modelling Techniques Applied to Manage Threats

    Get PDF
    The current ubiquity of information coupled with the reliance on such data by businesses has led to a great deal of resources being deployed to ensure the security of this information. Threats can come from a number of sources and the dangers from those insiders closest to the source have increased significantly recently. This paper focuses on techniques used to identify and manage threats as well as the measures that every organisation should consider to put into action. A novel game-based onion skin model has been proposed, combining techniques used in theory-based and hardware-based hardening strategies

    Towards optimal multi-objective models of network security: survey

    Get PDF
    Information security is an important aspect of a successful business today. However, financial difficulties and budget cuts create a problem of selecting appropriate security measures and keeping networked systems up and running. Economic models proposed in the literature do not address the challenging problem of security countermeasure selection. We have made a classification of security models, which can be used to harden a system in a cost effective manner based on the methodologies used. In addition, we have specified the challenges of the simplified risk assessment approaches used in the economic models and have made recommendations how the challenges can be addressed in order to support decision makers

    A Mobile Ambients-based Approach for Network Attack Modelling and Simulation

    Get PDF
    Attack Graphs are an important support for assessment and subsequent improvement of network security. They reveal possible paths an attacker can take to break through security perimeters and traverse a network to reach valuable assets deep inside the network. Although scalability is no longer the main issue, Attack Graphs still have some problems that make them less useful in practice. First, Attack Graphs remain difficult to relate to the network topology. Second, Attack Graphs traditionally only consider the exploitation of vulnerable hosts. Third, Attack Graphs do not rely on automatic identification of potential attack targets. We address these gaps in our MsAMS (Multi-step Attack Modelling and Simulation) tool, based on Mobile Ambients. The tool not only allows the modelling of more static aspects of the network, such as the network topology, but also the dynamics of network attacks. In addition to Mobile Ambients, we use the PageRank algorithm to determine targets and hub scores produced by the HITS (Hypertext Induced Topic Search) algorithm to guide the simulation of an attacker searching for targets
    corecore