39 research outputs found

    Embedded Voxel Colouring

    Get PDF
    The reconstruction of a complex scene from multiple images is a fundamental problem in the field of computer vision. Volumetric methods have proven to be a strong alternative to traditional correspondence-based methods due to their flexible visibility models. In this paper we analyse existing methods for volumetric reconstruction and identify three key properties of voxel colouring algorithms: a water-tight surface model, a monotonic carving order, and causality. We present a new Voxel Colouring algorithm which embeds all reconstructions of a scene into a single output. While modelling exact visibility for arbitrary camera locations, Embedded Voxel Colouring removes the need for a priori threshold selection present in previous work. An efficient implementation is given along with results demonstrating the advantages of posteriori threshold selection

    Automated model acquisition from range images with view planning

    Get PDF
    We present an incremental system that builds accurate CAD models of objects from multiple range images. Using a hybrid of surface mesh and volumetric representations, the system creates a "water-tight" 3D model at each step of the modeling process, allowing reasonable models to be built from a small number of views. We also present a method that can be used to plan the next view and reduce the number of scans needed to recover the object. Results are presented for the creation of 3D models of a computer game controller, a hip joint prosthesis, and a mechanical strut

    Space Carving MVD Sequences for Modeling Natural 3D Scenes

    No full text
    International audienceThis paper presents a 3D modeling system designed for Multi-view Video plus Depth (MVD) sequences. The aim is to remove redundancy in both texture and depth information present in the MVD data. To this end, a volumetric framework is employed in order to merge the input depth maps. Hereby a variant of the Space Carving algorithm is proposed. Voxels are iteratively carved by ray-casting from each view, until the 3D model be geometrically consistent with every input depth map. A surface mesh is then extracted from this volumetric representation thanks to the Marching Cubes algorithm. Subsequently, to address the issue of texture modeling, a new algorithm for multi-texturing the resulting surface is presented. This algorithm selects from the set of input images the best texture candidate to map a given mesh triangle. The best texture is chosen according to a photoconsistency metric. Tests and results are provided using still images from usual MVD test-sequences

    3-D modeling from range imagery: an incremental method with a planning component

    Get PDF
    In this paper we present a method for automatically constructing a CAD model of an unknown object from range images. The method is an incremental one that interleaves a sensing operation that acquires and merges information into the model with a planning phase to determine the next sensor position or "view". This is accomplished by integrating a system for 3-D model acquisition with a sensor planner. The model acquisition system provides facilities for range image acquisition, solid model construction and model merging: both mesh surface and solid representations are used to build a model of the range data from each view, which is then merged with the model built from previous sensing operations. The planning system utilizes the resulting incomplete model to plan the next sensing operation by finding a sensor viewpoint that will improve the fidelity of the model. Experimental results are presented for a complex part that includes polygonal faces, curved surfaces, and large self-occlusions

    Structure and motion estimation from apparent contours under circular motion

    Get PDF
    In this paper, we address the problem of recovering structure and motion from the apparent contours of a smooth surface. Fixed image features under circular motion and their relationships with the intrinsic parameters of the camera are exploited to provide a simple parameterization of the fundamental matrix relating any pair of views in the sequence. Such a parameterization allows a trivial initialization of the motion parameters, which all bear physical meaning. It also greatly reduces the dimension of the search space for the optimization problem, which can now be solved using only two epipolar tangents. In contrast to previous methods, the motion estimation algorithm introduced here can cope with incomplete circular motion and more widely spaced images. Existing techniques for model reconstruction from apparent contours are then reviewed and compared. Experiment on real data has been carried out and the 3D model reconstructed from the estimated motion is presented. © 2002 Elsevier Science B.V. All rights reserved.postprin

    RHYTHM: An Open Source Imaging Toolkit for Cardiac Panoramic Optical Mapping

    Get PDF
    Fluorescence optical imaging techniques have revolutionized the field of cardiac electrophysiology and advanced our understanding of complex electrical activities such as arrhythmias. However, traditional monocular optical mapping systems, despite having high spatial resolution, are restricted to a two-dimensional (2D) field of view. Consequently, tracking complex three-dimensional (3D) electrical waves such as during ventricular fibrillation is challenging as the waves rapidly move in and out of the field of view. This problem has been solved by panoramic imaging which uses multiple cameras to measure the electrical activity from the entire epicardial surface. However, the diverse engineering skill set and substantial resource cost required to design and implement this solution have made it largely inaccessible to the biomedical research community at large. To address this barrier to entry, we present an open source toolkit for building panoramic optical mapping systems which includes the 3D printing of perfusion and imaging hardware, as well as software for data processing and analysis. In this paper, we describe the toolkit and demonstrate it on different mammalian hearts: mouse, rat, and rabbit

    TECHNIKI ROZPOZNAWANIA TWARZY

    Get PDF
    The problem of face recognition is discussed. The main methods of recognition are considered. The calibrated stereo pair for the face and calculating the depth map by the correlation algorithm are used. As a result, a 3D mask of the face is obtained. Using three anthropomorphic points, then constructed a coordinate system that ensures a possibility of superposition of the tested mask.Omawiany jest problem rozpoznawania twarzy. Rozważane są główne metody rozpoznawania. Użyta zostaje skalibrowana para stereo dla twarzy oraz obliczanie mapy głębokości poprzez algorytm korelacji. W wyniku takiego, uzyskiwana jest maska twarzy w wymiarze 3D. Użycie trzech antropomorficznych punktów, a następnie skonstruowany systemu współrzędnych zapewnia możliwość nakładania się przetestowanej maski

    Reconstruction of Sculpture From Its Profiles With Unknown Camera Positions

    Full text link

    Robust recovery of shapes with unknown topology from the dual space

    Get PDF
    In this paper, we address the problem of reconstructing an object surface from silhouettes. Previous works by other authors have shown that, based on the principle of duality, surface points can be recovered, theoretically, as the dual to the tangent plane space of the object. In practice, however, the identification of tangent basis in the tangent plane space is not trivial given a set of discretely sampled data. This problem is further complicated by the existence of bi-tangents to the object surface. The key contribution of this paper is the introduction of epipolar parameterization in identifying a well-defined local tangent basis. This extends the applicability of existing dual space reconstruction methods to fairly complicated shapes, without making any explicit assumption on the object topology. We verify our approach with both synthetic and real-world data, and compare it both qualitatively and quantitatively with other popular reconstruction algorithms. Experimental results demonstrate that our proposed approach produces more accurate estimation, whilst maintaining reasonable robustness towards shapes with complex topologies. © 2007 IEEE.published_or_final_versio

    Image-based rendering and synthesis

    Get PDF
    Multiview imaging (MVI) is currently the focus of some research as it has a wide range of applications and opens up research in other topics and applications, including virtual view synthesis for three-dimensional (3D) television (3DTV) and entertainment. However, a large amount of storage is needed by multiview systems and are difficult to construct. The concept behind allowing 3D scenes and objects to be visualized in a realistic way without full 3D model reconstruction is image-based rendering (IBR). Using images as the primary substrate, IBR has many potential applications including for video games, virtual travel and others. The technique creates new views of scenes which are reconstructed from a collection of densely sampled images or videos. The IBR concept has different classification such as knowing 3D models and the lighting conditions and be rendered using conventional graphic techniques. Another is lightfield or lumigraph rendering which depends on dense sampling with no or very little geometry for rendering without recovering the exact 3D-models.published_or_final_versio
    corecore