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Abstract 

In this paper we present a method for automatically 
constructing a CAD model of an unknown object from 
range images. The method is an incremental one that inter- 
leaves a sensing operation that acquires and merges infor- 
mation into the model with a plunning p h u e  to determine 
the riext sensor position or “view”. This is accomplished 
by integrating a system for  3-0 model acquisition with a 
sensor plannel: The model acquisition system provides 
facilities for  range image acquisition, solid model con- 
struction and model merging: both mesh surface and solid 
representations are used to build a model of the range data 
from each view, which is then merged with the model built 
from previous sensing operations. The planning system uti- 
lizes the resulting incomplete model to plan the next sens- 
ing operation by finding a sensor viewpoint that will 
improve the fidelity of the model. Experimental results are 
presented for  a complex part that includes polygonal faces, 
curved su faces, and large self-occlusions. 

1. Introduction 
Automatically constructing 3-D computer models of an 

object or a scene from range images has recently received 
increased attention due to the availability of inexpensive, 
accurate rangefinders and to improvements in 
reconstruction algorithms. Termed modeling from 
observation [8], this task’s inherent difficulty is due to the 
large scope of the shapes of 3-D objects and the resource- 
intensive data sets that are acquired. Typically, systems that 
perform this task model a range image using a surface, 
volumetric, or parametric model. Because the information 
from a single range image will not completely describe an 
object, range images from other viewpoints must be 
acquired, modeled, and integrated with previously acquired 
information. The task therefore includes acquisition, 
modeling and planning components, which make it 
necessary to address integration issues. Most importantly 
the modeling process must support incremental integration 
of new range data, be able to recognize model surfaces that 
need additional sensing, and must not put restrictions on the 
topological type of the object to be acquired. The capability 
of incremental integration in particular is an important one 
because it allows the reconstruction to progress with each 

newly acquired range image and therefore permits the use 
of a sensor planner to determine the next sensing 
orientation. Other desirable properties are that the system be 
robust with respect to errors in the range images and that the 
final model does not have “holes” in its surface, i.e. it is 2- 
manifold [5] .  

This paper describes a system that incrementally builds 
solid models from multiple range images and that exhibits 
the above-mentioned capabilities. The algorithm consists of 
two phases that are interleaved during the acquisition 
process. The first phase acquires a range image, models it as 
a solid, and merges the solid with any previously acquired 
information. This phase motivates the generation of a 
topologically-correct 3-D solid model at each stage of the 
modeling process, which allows the use of well-defined 
geometric algorithms to perform the merging task and 
additionally supports the view planning process. The 
second phase plans the next sensor orientation so that each 
additional sensing operation recovers object surface that has 
not yet been modeled. Using this planning component 
makes it possible to reduce the number of sensing 
operations to recover a model: systems without planning 
typically utilize as many as 70 range images, with 
significant overlap between them. This concept of reducing 
the number of scans is important for tasks such as 3-D FAX 
where the sensing process may add considerable time. In 
addition, the algorithm presented here avoids the problems 
associated with discretizing sensor positions by 
determining sensor visibility for a specific target, and is able 
to handle object self-occlusion properly. The result is a 3-D 
CAD model of the object. 

2. Background 
Recent research on the acquisition, modeling and 

merging process includes Thompson et al.’s REFAB 
system, which allows a user to specify approximate 
locations of machining features on a range image of a part; 
the system then produces a best fit to the data using 
previously-identified features and domain-specific 
knowledge as constraints [17]. The IVIS system of Tarbox 
and Gottshlich uses an octree to represent the “seen” and 
“unseen” parts of each of a set of range images and set- 
theoretic operators to merge the octrees into a final model 
1161. Methods that use a mesh surface to model and 
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integrate each of a set of range images, such as work by 
Turk and Levoy [21] or by Rutishauser et al. [14], or to 
model a complete point sampling as by Hoppe [7] or Fua [6]  
have also proven useful in this task. Both Connolly and 
Stenstrom [4] and Martin and Aggarwal [ 111 perform edge 
detection and projection from intensity images, a concept 
thal is revisited by Laurentini in [lo]. Curless and Levoy [5] 
present a system that uses a mesh in a ray-casting operation 
to weight voxels in an octree, which is then used as input to 
an isosurface extraction algorithm. This method has 
achieved excellent results at a cost of numerous (50 to 70) 
overlapping sensing operations. In contrast, our method 
utilizes a planner with the goal of reducing the number of 
imaging and integration operations. 

The planning process presented in this paper operates by 
reasoning about occlusion, which has been strongly 
asslociated with viewpoint planning in the research literature 
for some time. Kutulakos [9] utilizes changes in the 
boundary between sensed surface andl occlusion with 
respect to sensor position to recover shape. In Connolly’s 
octree-based work [3],  “unseen” space is explicitly 
represented and used to plan the next view either by ray- 
casting or by analyzing a histogram of the normals of 
surfaces of “unseen” space. A similar histogram-based 
technique is used by Maver and Bajcsy [12] to find the 
viewing vector that will illuminate the most edge features 
derived from occluded regions. More closely resembling 
the work presented in this paper is that of Whaite and Ferrie 
[23], which uses a sensor model to evaluate the efficacy of 
the imaging process over a set of discrete orientations by 
ray-casting: the sensor orientation that would 
hypothetically best improve the model is selected for the 
next view. Recent work by Pito [13] rernoves the need to 
ray-cast from every possible sensor location by determining 
a subset of positions that would improve the current model. 

3. Model acquisition and merging 
The first phase of this system acquires and models range 

data, and integrates the resulting model into a composite 
model that represents all known information about the 
ob.ject or scene. This is done by representing the data with a 
mesh surface, which is then extruded in the imaging 
direction to form a solid. Each model created by our method 
includes information about the space occluded from the 
sensor, an important difference from systems that only 
model sensed surfaces. This occlusion volume is a key 
component of our sensor planning process because it allows 
the system to reason about what has inot been properly 
sensed. In this section we discuss how a range image from 
a specific viewpoint is modeled, and how this model is 
merged into the composite model in an incremental fashion 
that allows new information to be integrated as it is 
acquired. 

3.1 Acquiring and representing a range image 

The acquisition of range data is performed by a robotic 
system comprised of a Servo-Robot laser rangefinder 
attached to an IBM SCARA robot, with the object to be 
imaged being placed on a motorized rotation stage (see 
Figure 1). The rangefinder acquires a single scan line of 
data at a time in a plane perpendicular to the robot’s z axis. 
After each scan line has been acquired, the robot steps the 
rangefinder a small distance in along its z axis. The result of 
the scanning process is a rectangular range image of the 
object from a particular viewpoint, the direction of which is 
controlled by rotating the turntable. A narrow filter is 
applied to the range image to remove spike noise, after 
which the point data are used as vertices in a mesh. 

FIGURE 1 .  Experimental setup showing robot with attached 
laser rangefinder (to right) and turntable (to left). 

A mesh is a piecewise linear surface composed of 
elements that meet along their edges, which in turn meet at 
vertices. Meshes are frequently chosen to represent a 
sampled surface due to their efficiency, their 
representational flexibility, and the simplicity of mesh 
algorithms. They find particular application in range 
imaging where objects are highly oversampled during the 
sensing process. Mesh surfaces built from these range 
images may then be efficiently processed to reduce their 
size [2], fit with more complex surface types [7], or 
registered to each other [14]. However, since the mesh 
determined by a single range image is in essence a surface 
model, it does not contain information that permits spatial 
addressability (the ability to classify points as inside, on, or 
outside the model) which is necessary for many tasks and is 
inherent in solid models. Although a mesh that completely 
covers an object may be used to determine a solid model, in 
most incremental modeling techniques the mesh can not be 
closed until the end of the scanning process. This precludes 
the use of a planning method or any other procedure that 
requires a solid model. 

A solution to this problem is to build a solid model from 
each scanning operation that incorporates both the 
information about the model’s sensed surfaces and the 
occlusion information in the form of the occlusion volume. 
When building the mesh that will be used to represent a 
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surface from a range image, it is necessary to determine 
what the mesh connectivity will be. In this regard our work 
differs from other mesh-based methods such as mesh 
zippering [21] and other similar re-meshing techniques [ 141 
which retain only elements that lie directly on an imaged 
surface by removing elements that contain occlusion edges. f 
These edges are discernible in the mesh because their 
lengths exceed some threshold (Figure 2). Our system 

rangefinder 

FIGURE 2. Example of edges between sampled vertices on a surface. 

retains these elements, since they denote parts of the surface 
that are occluded from the sensor and need further imaging, 
and therefore are useful in the planning process. In addition, 
retaining these elements prevents holes from appearing in 
the model after the surface is extruded. 

As an example of this process, consider the hypothetical 
object shown at the top of Figure3. A range image is 
sampled from the CAD model using the shown sensing 
direction. The surface model shown in the middle of 
Figure 3 is typical of mesh-based methods; no occlusion 
edges are represented, and although it is possible to attach a 
low “confidence” values to the edges of the two surfaces it 
is not possible to determine occupancy information in the 
space between them. In contrast, the mesh shown at the 
bottom of Figure 3 represents both the imaged surfaces of 
the object and the occluded regions between the imaged 
surfaces. 

3.2 Sweeping the mesh into a solid 
This mesh surface is “swept” to form a solid model S of 

both the imaged object surfaces and the occluded volume. 
The algorithm may be stated concisely as: 

S = u e x t r u d e ( M i )  
Vi 

An extrusion operator is applied to each triangular mesh 
element Mi, orthographically along the vector of the 
rangefinder’s sensing axis, until it comes in contact with a 
far bounding plane. The result is the 5-sided solid of a 
triangular prism (Figure 4). A union operation is applied to 
the set of prisms, which produces a polyhedral solid 
consisting of three sets of surfaces: a mesh-like surface 
from the acquired range data, a number of lateral faces 
equal to the number of vertices on the boundary of the mesh 

FIGURE 3. Top: Rendering of CAD model of a typical 2-112 D part. 
shown with a sensing direction. Middle: Surface mesh from 
synthetic range data of CAD part. This mesh does not include anj 
elements that contain occlusion edges. Bottom: Surface mesh 
generated from synthetic range data, including elements composed 
of occlusion edges. 

derived from the sweeping operation, and a bounding 
surface that caps one end. 

FIGURE 4. Example of a mesh sweep operation. (left to right) Mesh 
surface, mesh surface with one element swept, and mesh surface 
with all elements swept and unioned. The sensing direction is from 
the left. 

Due to the large number (> 20k) and small size of the 
mesh elements involved, this algorithm has some 
implementation issues that merit discussion. Most 
importantly, the triangular elements to be swept and 
unioned are selected using the mesh’s connected 
components and scan-line ordering. This is important 
because in practice union operations are faster and more 
robust when there is only one surface of intersection 
between the two unioned solids: selecting mesh elements at 
random results in many unnecessary multiple-surface 
intersections as the solids created from nearby mesh 
elements are “joined” by the solid from a mesh element 
between them. We maintain a list of those elements not yet 
swept from which we choose an element that is adjacent to 
one already swept and unioned, or at random if there are 
none that satisfy that condition. In addition, because the 
number of surfaces on an object directly affects the amount 
of time spent in  the union operation, we perform the union 
operation in a tree-like fashion. The leaves of the tree are the 
solids derived from each mesh element, the first level is 
composed of the nodes representing the union of a few 
hundred solids each, the second level represents the union 
of tens of solids from the first level, up to the root which is 
the complete solid. 
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It is important to be able to differentiate between these the many long and thin lateral surfaces, and most 
importantly the fact that many of these models will have 
overlapping surfaces that are extremely close to each other. 
Finally, because the single-view and merged models should 
be 2-manifold, it is necessary to use set operations that are 
able to handle regularized intersection. 

surfaces during later model analysis and sensor planning. 
To do this we attach tags to each surface in the model based 
on which of the above sets the surface belongs to. All 
surface elements in the model that were present in the mesh 
before sweeping and that are composed of edges shorter 
than a threshold distance should be tagged as “imaged 
surface”. These elements describe surfaces of the object that 
wjere imaged properly and do not need to be imaged again. 
All the remaining surfaces should be tagged as “occluded 
surface” so that they may be used to drive a later planning 
process. It should be noted that this tagging procedure must 
be done to a model from a single sensor position: large faces 
often get split into smaller ones during the merging process, 
and will not be differentiable by their edge lengths alone. 
After the tagging process the solid may be merged with 
models from other sensor positions, or it may first be used 
as input to a mesh optimization routine to reduce the 
number of elements. 

As an example of the sweeping process, consider again 
the hypothetical part shown at the top of Figure 3. Sweeping 
its, mesh (shown at the bottom of Figuire 3) results in the 
solid shown in Figure 5, its surfaces tagged according to the 
process described above. 

Tagged “occluded surface” 

Tagged P- imaged surface” 

FIGURE 5. Solid formed by sweeping the mesh shown at bottom of 
Figure 3 in the sensing direction. Tags for hidden surfaces are 
shown with dotted arcs. 

3.3 Merging single-view models 
Each successive sensing operation will result in new 

information that must be merged with the current model 
being built, called the composite model. Merging of mesh- 
based surface models has been done using clipping and re- 
triangulation methods [21] [14]. These methods are 
necessary because these meshes are: not closed, so 
specialized techniques to operate on non-manifold surfaces 
of approximately continuous vertex density are needed. In 
our method we generate a solid from each viewpoint which 
allows us to use a merging method based on set intersection. 
Many CAD systems include highly robust algorithms for 
set operations on solids, and our algorithm takes advantage 
of this. This is of critical importance in this application for 
the following reasons: the high density of the range images 
(and therefore the small size of many of the mesh elements), 

- 
The merging process itself starts by initializing the 

composite model to be the entire bounded space of our 
modeling system. The information determined by a newly 
acquired model from a single viewpoint is incorporated into 
the composite model by performing a regularized set 
intersection operation between the two. The intersection 
operation must be able to correctly propagate the surface- 
type tags from surfaces in the models through to the 
composite model. Because a surface element on the 
boundary of the result of a volumetric intersection will be 
present on the boundary of either one or both of the 
intersected volumes, there are two cases to consider. In the 
case that the surface on the boundary of the result is found 
in only one of the two intersected volumes, the surface-type 
tag may be directly copied from the original volume to 
which the surface belonged. In the case where the two 
volumes have overlapping surfaces, we employ a heuristic 
to decide what the tag for the surface on the result volume 
will be: if the tags for the two overlapping surfaces are the 
same, then that tag is copied to the result surface. If they are 
different then the tag ‘imaged surface’ is given priority, 
since it must be true that the surface was imaged in one of 
the two volumes. 

4. The planning process 
As described above, occlusion is an important scene 

attribute useful to the planning process. More specifically, 
the occlusion volume has previously been used in one of 
two ways, both of which assume that occlusions are 
explicitly represented in the model. In the first, ray casting 
is applied to the model to find how much occluded volume 
will be imaged for every sensor position: the sensor position 
that images the most occlusions is selected [3] [23]. This 
requires tessellating a viewing sphere to discretize the 
sensing positions and computing a ray-cast image from 
each of them, with the disadvantage of high computational 
cost and the fact that some solutions will be missed. The 
second method collects a histogram of normals of the 
surfaces that comprise the occlusions, scaled by surface 
area [3] [12]. The peak in the histogram denotes the normal 
of the most area of occluded surface, and an anti-parallel 
vector is then selected for the sensing direction. This 
technique is not sufficient because it does not take into 
account known self-occlusion of the model’s surfaces, and 
therefore may result in a sensor position that acquires no 
new information. What is desired is a method that takes 
known self-occlusions into account, and yet does not need 
to discretize the sensing positions and compute an image for 
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each of them. In the experiments that follow we show that 
by selecting a specific target to be imaged, and from this 
target and the associated model planning the appropriate 
sensing direction, that the above problems are avoided. 

The planning component presented here is based on 
previous work on the sensor planning problem in our 
laboratory [ 1][ 191. The sensor planning problem is that of 
computing a set of sensor locations for viewing a target 
given a model of an object or scene, a sensor model, and a 
set of sensing constraints 1201. The planner used in this 
work is able to reason about occlusion to compute valid, 
occlusion-free viewpoints given a specific surface on the 
model. Once an unoccluded sensor position for the specified 
surface has been determined, it may then be sensed, 
modeled, and integrated with the composite model. Thus, 
the method presented here is target-driven and performed in 
continuous space. As the incremental modeling process 
proceeds, regions that require additional sensing can be 
guaranteed of having an occlusion free view from the sensor 
if one exists. Other viewing constraints may also be 
included in the sensor planning such as sensor field of view, 
resolution, and standoff distance, as will be shown below. 

The planning process relies on the construction of a 
visibility volume Vtarget for the target that specifies the set of 
all sensor positions that have an unoccluded view of the 
target for a specified model. This can computed by 
determining Vunoccluded, the visibility volume for the case 
where there are no occlusions, and subtracting 0,, the 
volume containing the set of sensor positions occluded from 
the target by model surface i, for each surface of the model: 

- 
- ‘unoccluded- Oi Vtargct i # t  

The volume described by Vunoccluded is a half-space whose 
defining plane is coincident with the target’s face, with the 
half-space’s interior being in the direction of the target’s 
surface normal. Oi, the volume of the set of sensor positions 
that model surface i occludes from the target, is similar in 
concept and construction to the occlusion volume discussed 
earlier, and is generated via a geometric algorithm based on 
space decomposition that determines the space that the 
element blocks from viewing the entire target [18]. We 
illustrate by computing Vtarget for a 2-D target in Figure 6, in 
which we have also incorporated a resolution constraint so 
that the sensor must be within a fixed distance from the 
target’s center, and thus in 2-D Vunoccluded is a half-circle. 
Once the visibility volume is computed, viewing 
parameters that are specific to the real sensor are included to 
further constrain the visibility volume. Finally, a transform 
is applied to bring the sensor into the visibility volume for 
the target, and the model acquisition process repeats. 

5. Experimental results 

A A 

FIGURE 6. Planning for model consisting of three surfaces A (the 
target), B, and C. Top: the model with Vunoccluded for A shown in grey. 
Middle: the occlusion due to 0, (left) and OB (right). Bottom: the 
final visibility volume V determined by Vunoccluded - (0, U OB)  , 
i.e. with occlusions taken into account: a point in the grey area has an 
unobstructed view of the target A. 

The capabilities of this system are demonstrated by 
building a CAD model from distinct views of the object 
shown in Figure 7, which is a strut-like part. The planning 
for the sensor orientation is done by the algorithm above 
during the acquisition process, with the goal of determining 
a small number of views that will accurately reconstruct the 
object. This part has both curved and polygonal surfaces, 
and includes holes that are very difficult to image. The first 
two images are automatically acquired with a turntable 
rotation of 90 degrees between them. These two range 
images, the models acquired from them, and their 
respective composite model are shown in Figure 8 and 
Figure 9. The current composite model is shown in the third 
column of these rows; the shape of the part is already quite 
evident in the composite model of the second row. A target 
is designated on this composite model by user interaction 
from one of the surfaces tagged “occluded surface”, and the 
planning algorithm constructs the plan shown in Figure 10. 
This plan is executed by rotating the turntable to place the 
sensor within the grey visibility volume, in this case and 
additional 83 degrees, which produces the image and model 
shown in Figure 11. Again, a target is designated and a plan 
produced, which is shown in Figure 12. The turntable is 
rotated 134 degrees to move the sensor into this visibility 
volume, and the image and model lfrom Figure 13 results. 
This final model is shown rendered and as a mesh in 
Figure 14. As can be seen, there are “boundaries” where the 
intersection of the solids from two overlapping sensing 
operations causes an increase in the density of mesh 
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elements. At this level of resolution the model would be a 
prime candidate for a decimation algorithm such as the one 
presented in [2]. We now have a very reasonable 3-D solid 
in a CAD format that may be used for rapid prototyping, 
robotics tasks or analysis. Refinement of this part may be 
accomplished using standard CAD primitives. For example, 
the holes on the sides of the part which were not completely 
imaged could be introduced by using a through-hole 
operator present in most CAD packages. Because this is an 
incremental method, additional scans may be also taken to 
improve the quality of the model. 

61. Conclusions and future work 
We have described a system that builds a 3-D CAD 

model of an unknown object incrementally from multiple 
range images. The method relies on the specification of 
targets on the incomplete model of the object to drive the 
planning process. This permits a static sensor planner to be 
used to compute occlusion-free viewpoints of the target and 
thereby allow each sensing operation to improve the 
accuracy of the model. The advantages of this technique are 
that, unlike prior methods, it both avoids discretization of 
sensor positions and is able to take object or scene self- 
occlusions into account, with the potential for more 
accurate sensor positioning. In addition, we presented an 
algorithm that constructs a solid model from a mesh 
surface, and allows identification of the occluded and 
imaged surfaces, using modeling techniques from both 
mesh surface and solid representations. By combining these 
two we retain the benefits of mesh surfaces, such as 
representational flexibility and conceptual simplicity, while 
still allowing the use of well-defined set-theoretic merging 
operations inherent to solid modelers. Experimental results 
of the reconstruction of a complex object using the planner 
integrated with the model acquisition system were shown. 

One area that requires future work is the target selection 
problem. A solution that may be effective is to select a 
target based on a density function that determines how 
much model surface tagged “occluded surface” is nearby 
the target. This would take advantage of the fact that nearby 
surfaces are often imaged during the same sensing 
operation, while avoiding the computational complexity 
necessary for a optimal solution. 
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FIGURE 7. Photograph of strut-like part. 
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- 
FIGURE 8. The first range image, the solid model constructed by sweeping its mesh surface, and the composite model after one view (left to 
right). As this is the first view, the composite model is identical to the model constructed from this range image, 

FIGURE 9. The second range image, acquired after a rotation of 90 degrees, the solid model derived from the range image, and the 
composite mode after two views (left to right). Note that the composite mode now has the overall shape of the object. 

FIGURE 10. Occlusion computation for a 
target on the composite model: The entire black 
and grey volume represents Vunoeclu~e~ for a 
target from the composite model’s “occlusion 
surface”. The black region is U O ,  the union of 
sensor positions occluded from the target by 
model surface i. The grey re ion is the visibility 
volume Vtarget = VunocclYded - &, Oi, i.e. the valid 
positions for a sensor viewing the target. 

gsg 
FIGURE 11. The third range image (acquired by use of the plan above), its solid representation, and the composite model after three views. 
The composite model is now very similar to the object, but there are still some occlusion surfaces between the strut’s arms. 
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FIGURE 12. Result of sensor planning for a 
target specified on the “occlusion surface” of 
the composite model in Figure 11. Again, black 
volume specifies points that are occluded from 
seeing the target, grey volume describes the 
valid sensor positions. 

FIGURE 13. Fourth range image of object acquired according to plan in Figure 12, its solid, and the composite model after integration. 

FIGURE 14. Final model, shown rendered (left) and as a mesh surface (right). Note the through-hole acquired in the rendered model. 
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