210 research outputs found

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201

    Block Crossings in Storyline Visualizations

    Full text link
    Storyline visualizations help visualize encounters of the characters in a story over time. Each character is represented by an x-monotone curve that goes from left to right. A meeting is represented by having the characters that participate in the meeting run close together for some time. In order to keep the visual complexity low, rather than just minimizing pairwise crossings of curves, we propose to count block crossings, that is, pairs of intersecting bundles of lines. Our main results are as follows. We show that minimizing the number of block crossings is NP-hard, and we develop, for meetings of bounded size, a constant-factor approximation. We also present two fixed-parameter algorithms and, for meetings of size 2, a greedy heuristic that we evaluate experimentally.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    The State-of-the-Art of Set Visualization

    Get PDF
    Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of state-of-the-art techniques for visualizing different kinds of set relations. We classify these techniques into six main categories according to the visual representations they use and the tasks they support. We compare the categories to provide guidance for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area that need further research and propose possible directions to address these challenges. Further resources on set visualization are available at http://www.setviz.net

    MetroSets: Visualizing Sets as Metro Maps

    Full text link
    We propose MetroSets, a new, flexible online tool for visualizing set systems using the metro map metaphor. We model a given set system as a hypergraph H=(V,S)\mathcal{H} = (V, \mathcal{S}), consisting of a set VV of vertices and a set S\mathcal{S}, which contains subsets of VV called hyperedges. Our system then computes a metro map representation of H\mathcal{H}, where each hyperedge EE in S\mathcal{S} corresponds to a metro line and each vertex corresponds to a metro station. Vertices that appear in two or more hyperedges are drawn as interchanges in the metro map, connecting the different sets. MetroSets is based on a modular 4-step pipeline which constructs and optimizes a path-based hypergraph support, which is then drawn and schematized using metro map layout algorithms. We propose and implement multiple algorithms for each step of the MetroSet pipeline and provide a functional prototype with \new{easy-to-use preset configurations.} % many real-world datasets. Furthermore, \new{using several real-world datasets}, we perform an extensive quantitative evaluation of the impact of different pipeline stages on desirable properties of the generated maps, such as octolinearity, monotonicity, and edge uniformity.Comment: 19 pages; accepted for IEEE INFOVIS 2020; for associated live system, see http://metrosets.ac.tuwien.ac.a

    Mixed coordinate Node link Visualization for Co_authorship Hypergraph Networks

    Full text link
    We present an algorithmic technique for visualizing the co-authorship networks and other networks modeled with hypergraphs (set systems). As more than two researchers can co-author a paper, a direct representation of the interaction of researchers through their joint works cannot be adequately modeled with direct links between the author-nodes. A hypergraph representation of a co-authorship network treats researchers/authors as nodes and papers as hyperedges (sets of authors). The visualization algorithm that we propose is based on one of the well-studied approaches representing both authors and papers as nodes of different classes. Our approach resembles some known ones like anchored maps but introduces some special techniques for optimizing the vertex positioning. The algorithm involves both continuous (force-directed) optimization and discrete optimization for determining the node coordinates. Moreover, one of the novelties of this work is classifying nodes and links using different colors. This usage has a meaningful purpose that helps the viewer to obtain valuable information from the visualization and increases the readability of the layout. The algorithm is tuned to enable the viewer to answer questions specific to co-authorship network studies.Comment: 10 pages, 3 figures, 1 tabl

    05191 Abstracts Collection -- Graph Drawing

    Get PDF
    From 08.05.05 to 13.05.05, the Dagstuhl Seminar 05191 ``Graph Drawing\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Towards Ryser\u27s Conjecture: Bounds on the Cardinality of Partitioned Intersecting Hypergraphs

    Get PDF
    This work is motivated by the open conjecture concerning the size of a minimum vertex cover in a partitioned hypergraph. In an r-uniform r-partite hypergraph, the size of the minimum vertex cover C is conjectured to be related to the size of its maximum matching M by the relation (|C|\u3c= (r-1)|M|). In fact it is not known whether this conjecture holds when |M| = 1. We consider r-partite hypergraphs with maximal matching size |M| = 1, and pose a novel algorithmic approach to finding a vertex cover of size (r - 1) in this case. We define a reactive hypergraph to be a back-and-forth algorithm for a hypergraph which chooses new edges in response to a choice of vertex cover, and prove that this algorithm terminates for all hypergraphs of orders r = 3 and 4. We introduce the idea of optimizing the size of the reactive hypergraph and find that the reactive hypergraph terminates for r = 5...20. We then consider the case where the intersection of any two edges is exactly 1. We prove bounds on the size of this 1-intersecting hypergraph and relate the 1-intersecting hypergraph maximization problem to mutually orthogonal Latin squares. We propose a generative algorithm for 1-intersecting hypergraphs of maximal size for prime powers r-1 = pd under the constraint pd+1 is also a prime power of the same form, and therefore pose a new generating algorithm for MOLS based upon intersecting hypergraphs. We prove this algorithm generates a valid set of mutually orthogonal Latin squares and prove the construction guarantees certain symmetric properties. We conclude that a conjecture by Lovasz, that the inequality in Ryser\u27s Conjecture cannot be improved when (r-1) is a prime power, is correct for the 1-intersecting hypergraph of prime power orders
    corecore