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Towards Ryser’s Conjecture: Bounds on the Cardinality of

Partitioned Intersecting Hypergraphs

Anna Dodson

June 12, 2020

Abstract

This work is motivated by the open conjecture concerning the size of a minimum vertex cover in a
partitioned hypergraph. In an r-uniform r-partite hypergraph, the size of the minimum vertex cover C
is conjectured to be related to the size of its maximum matching M by the relation (|C| ≤ (r − 1)|M |).
In fact it is not known whether this conjecture holds when |M | = 1. We consider r-partite hypergraphs
with maximal matching size |M | = 1, and pose a novel algorithmic approach to finding a vertex cover
of size (r − 1) in this case. We define a reactive hypergraph to be a back-and-forth algorithm for a
hypergraph which chooses new edges in response to a choice of vertex cover, and prove that this algorithm
terminates for all hypergraphs of orders r = 3 and 4. We introduce the idea of optimizing the size of the
reactive hypergraph and find that the reactive hypergraph terminates for r = 5...20. We then consider
the case where the intersection of any two edges is exactly 1. We prove bounds on the size of this
1-intersecting hypergraph and relate the 1-intersecting hypergraph maximization problem to mutually
orthogonal Latin squares. We propose a generative algorithm for 1-intersecting hypergraphs of maximal
size for prime powers r− 1 = pd under the constraint pd+ 1 is also a prime power of the same form, and
therefore pose a new generating algorithm for MOLS based upon intersecting hypergraphs. We prove
this algorithm generates a valid set of mutually orthogonal Latin squares and prove the construction
guarantees certain symmetric properties. We conclude that a conjecture by Lovász [1], that the inequality
in Ryser’s Conjecture cannot be improved when (r− 1) is a prime power, is correct for the 1-intersecting
hypergraph of prime power orders.

1 Introduction

A r-uniform hypergraph G = (V,E) consists of a collection of vertices v ∈ V and a collection of edges e ∈ E
where an edge corresponds to a r element subset of V . A vertex cover of G is a subset of vertices where each
edge contains at least one vertex in the cover. A minimum vertex cover is a cover with the minimum number
of possible vertices. Finding the minimum vertex cover in a hypergraph is a known NP-complete problem.
A matching is a selection of hyperedges such that no two have any vertex in common, and a maximum
matching is a matching such that the cardinality is maximized.

Let the maximum matching be denoted by M and the minimum vertex cover be denoted by C. König’s
Theorem [2] states that for a bipartite graph, the maximum matching has the same cardinality as its min-
imum vertex cover; that is, |C| = |M |. An r-partite hypergraph is one where the vertices may be divided
into groups such that all edges in the hypergraph contain at most one vertex from each group. Ryser’s
Conjecture follows from here: that for any hypergraph of order r which can be partitioned into r parts such
that all edges contain at most one vertex in each part, the cardinality of the minimum vertex cover C is less
than or equal to (r − 1) times the cardinality of its maximum matching M . To summarize, the bound on
the size of the minimum vertex cover in the r-partite hypergraph is posed by Ryser:
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Conjecture 2. Ryser’s conjecture. For any r-partite hypergraph,

|C| ≤ (r − 1)|M | [3].

For any order of hypergraph, it is known that finding a maximal matching or a minimum vertex cover is
NP-hard. There has been no polynomial time algorithm for finding the maximal matching or the minimal
vertex cover in any hypergraph of order larger than three. Approximation of minimum vertex cover has
been shown to be NP-hard, with NP-hardness of obtaining an approximation factor of ( r4 − ε) for even r and
( r4 −

1
4r − ε) for odd r [4].

In the bipartite graph, Hall’s Theorem proves the conjecture, and using the Ford-Fulkerson algorithm for
maximum flow, we may find a maximum matching which we use to build a maximum alternating forest
starting from non-matched vertices in M and from there define the cover [5]. In the hypergraph case, no
polynomial time algorithm for vertex cover is known. Ron Aharoni [6] proves the conjecture for tripartite
graphs using a topological proof. Thus he is able to show |C| ≤ 2|M |, but does not pose an algorithm for
the vertex cover.

Our posed algorithm follows from a modification of an approximation algorithm for general hypergraphs.
We outline the proposed vertex cover algorithm for |M | = 1:

• Initialize the solution C = {}.

• Put all edges in E in a set Eremaining.

• Add the vertex with the maximum degree in Eremaining to the set C. Let the edges incident be
Eincident. Eremaining ← Eremaining − Eincident.

• Repeat until (r − 1) vertices have been chosen.

The nonpartitioned hypergraph approximation algorithm adds both vertices in each edge e and continues
until Eremaining is empty, and has been shown to always find a vertex cover whose size is more than twice
the size of minimum possible vertex cover. Our partitioned hypergraph algorithm terminates after (r − 1)
vertices are selected, and throws an error if the (r − 1) vertices do not cover the hypergraph in its entirety.
While we do not guarantee that this algorithm finds the minimum vertex cover, if it succeeds, we conclude
we can always select a cover which contains (r − 1) vertices, showing tightness in Ryser: |C| = (r − 1).

To verify the validity of a vertex cover algorithm, we introduce the notion of a reactive hypergraph. This kind
of hypergraph can be thought of as a back-and-forth game between two players, Alice and Bob. At each time
step, Alice poses a candidate vertex cover. Bob then must react to add an edge to the hypergraph which
intersects all other edges in the hypergraph, satisfying |M | = 1, but escapes this candidate vertex cover. The
two players continue like this until no further play is possible. In the case that Alice loses, i.e., the posed
vertex cover is not a valid vertex cover and does not cover all edges, we invalidate her candidate vertex cover
algorithm. If Bob cannot add any more edges, then her vertex cover algorithm is still a candidate. This is
an empirical approach to verifying a polynomial-time vertex cover algorithm.

For small r, we explore all of Bob’s possible plays and thus generate all possible reactive hypergraphs. Bob’s
possible plays include all valid edges which may or may not include newly created vertices, but we limit the
enumerations of new vertices at any given time step. We prove in this document that Alice’s vertex cover
algorithm terminates for r = 3. We prove using brute-force methods that Alice’s vertex cover algorithm
terminates for any hypergraph of order r = 4. When r ≥ 5, the number of possible reactive hypergraphs ex-
ceeds a hundred thousand, and it is not computationally feasible to brute-force all possible games. Therefore
we pose another kind of hypergraph, the optimal reactive hypergraph. In an optimal reactive hypergraph,
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edges are added in such a way to attempt to maximize the size of the resulting hypergraph. Bob would
like to evade Alice for as long as possible, thereby adding as many edges as possible. Using a ‘greedy’ ap-
proach based on Alice’s algorithm for the vertex cover, we find that the algorithm terminates in the optimal
reactive hypergraph for r = 5...20. It is difficult to quantify how to play optimally; we find that the key
to optimal play in the r = 4 case is introducing an edge which plays the vertex of second-highest degree,
rather than maximum degree, at the midway point in the hypergraph. This may inform further algorithmic
work in deepening the size of the optimal reactive hypergraph. In summary of the empirical findings, we
create a novel framework for verifying a vertex cover algorithm and find empirically that a novel vertex cover
algorithm may find an (r − 1)-sized vertex cover in O(r(V + E)) time.

The question of maximizing the size of an intersecting hypergraph is further explored in the 1-intersecting
hypergraph. We define a k-intersecting hypergraph as a hypergraph where all edges intersect all other edges
k times. In the 1-intersecting hypergraph, we limit k = 1, and prove bounds on the hypergraph under this
constraint. All edges intersect all other edges exactly once in this class of hypergraph. We show:

Theorem 4. In a k-intersecting hypergraph with |M | = 1, k = 1, |C| ≥ 2, the maximum degree of any
vertex is (r − 1).

Theorem 4.1. In a k-intersecting hypergraph with |M | = 1, k = 1, |C| ≥ 2, the maximum number of edges
is (r − 1)2.

The question remains as to how to generate a maximally sized hypergraph, and in what cases we may gen-
erate these hypergraphs. We find that tightness holds for prime powers of the form r − 1 = pd.

Theorem 6.1. If m gives the maximum number of edges in an r-partite 1-intersecting hypergraph, m =
(r − 1)2 if and only if r is a prime power of the form pd.

We find an equivalence between maximizing the 1-intersecting hypergraphs and maximizing a set of mutually
orthogonal Latin squares [7]. A Latin square is an n× n matrix in which n distinct symbols from a symbol
set S are arranged, such that each symbol occurs exactly once in each row and in each column. A reduced
Latin square is a Latin square in which the first row is in the natural order of the symbol set we choose. In
this paper, let the ordered symbols of an order (r− 1) Latin square be {1, 2, . . . , (r− 1)}. Two Latin squares
L1 and L2 are said to be orthogonal if ∃ for each ordered pair (i, j) ∈ {1, 2, . . . , (r − 1)} × {1, 2, . . . , (r − 1)}
exactly one choice of row k and column l such that L1(k, l) = i and L2(k, l) = j. A set of Latin squares
L1, L2, . . . , Lk is mutually orthogonal if Li and Lj are orthogonal for all pairs.

The following definitions and theorems on MOLS and 1-intersecting hypergraphs allow us to characterize
when construction of maximally sized 1-intersecting hypergraphs is possibly and implicate one of many pos-
sible constructions.

We introduce the terminology of a bundle in a 1-intersecting hypergraph. A bundle in a 1-intersecting hy-
pergraph is a set of (r − 1) edges incident on some vertex of maximum degree in V1. WLOG, we assign the
edges in the first bundle as the symbols [ 1 1 1 . . . 1 ][ 2 2 2 . . . 2 ]. . . [ (r− 1) (r− 1) (r− 1) . . . (r− 1) ]. For
all 1-intersecting bundles besides the first, each edge may be represented as a permutation of the numbers
1...(r − 1). Therefore, all bundles besides the first take the form of Latin squares. Two bundles v1i and v1i′

are said to be 1-intersecting bundles if ∀ rows in v1i indexed by k and ∀ row ∈ v1i′ indexed by l, ∃ some j
st v1i(k, j) = v1i′(l, j). We conjecture and prove the following equivalence.

Theorem 6. The problem of maximizing the number of 1-intersecting bundles is equivalent to that of finding
(r-2) mutually orthogonal Latin squares.
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We show this by way of the below theorems and the corollaries which follow. We prove equivalence between
the problem of finding mutually orthogonal Latin squares and 1-intersecting bundles defining a bijective
transformation T on a Latin square M from a set of mutually orthogonal Latin squares to another Latin
square A which we consider as a bundle.

T : M → A := {Akj = i|Mij = k} [7]

Theorem 7 If M and N are two reduced mutually orthogonal Latin squares, then A = T (M) and B = T (N)
are two 1-intersecting bundles.

Theorem 8 If M and N are two reduced mutually orthogonal Latin squares, then A = T (M) and B = T (N)
are two 1-intersecting bundles with intersections defined by the 1’s on their diagonals.

Theorem 8.1. The maximum number of MOLS of order q is q − 1. [8]

Theorem 9. Finding a set of (q − 1) MOLS is possible iff (q − 1) is a prime power of the form q = pd. [8]

Generating (q − 1)MOLS is typically achieved using three different constructions. The general form for
generating (q − 1) MOLS is a finite field construction. Others of note are the Bose construction and the
direct product construction [9]. We pose a novel construction for prime powers of the form q = pd such that
pd+ 1 is a prime power and the set of permutations {I, Cp, C−1p } is strictly transitive, where Cp is a cyclic
permutation on the symbols 1..p. We call this approach the cyclic permutation approach. We provide an
algorithm which generates an ordered set of permutations Π and a permutation σ that have the following
properties.

• For two πi, πj ∈ Π, πi(k) 6= πj(k)∀ k.

• The element k takes on the index j in the ith row given by the ith element in the kth column; that is,
πi(j) = k|Aik = j.

• The diagonal elements are σ2.

• All πi can be generated by some combination of other πjs.

• All πi = π−1i

Our algorithm generates up to (r−2) 1-intersecting bundles which are given by the setA = {Π,Πσ,Πσ2. . .Πσ(r−2)}.
If a permutation σ has one fixed element and one (r − 2) sized orbital, then for every (a, b) ∈ (2...(r − 1))2,
∃ a unique σi for which σi(a) = b. We proceed under the assumption that the properties above hold, and
we use this to prove the following:

Corollary 7.2 If the cyclic permutation approach generates a set of permutations Π such that π−1i = πi and
πiπi = I; and for two πi, πj ∈ Π, pii(k) 6= pij(k)∀ k; and a permutation σ such that the element 1 is fixed and
the subsequent r−2 elements form an (r−2) orbital, then the bundles defined as A = {Π,Πσ,Πσ2. . .Πσ(r−2)}
will be (r − 2) valid 1-intersecting bundles.

We prove this via a series of bijective transformations to create a set of (r − 2) mutually orthogonal Latin
squares, first casting the bundles to MOLS and then casting MOLS to reduced MOLS. We guarantee (r− 2)
1-intersecting bundles under these conditions. Furthermore, we may generate (r−2) symmetric 1-intersecting
bundles using the cyclic permutation approach and a set of bijective transformations we define. A Latin
square L of order n is symmetric if L(i, j) = L(j, i) for all 0 ≤ i, j ≤ n − 1. Casting the original (r − 2)
1-intersecting bundles to MOLS, placing the resulting identity MOLS in reduced form, and finally trans-
forming reduced form MOLS back to bundles, we show that it is possible to generate a set of (r− 2) MOLS
and (r − 1) symmetric 1-intersecting bundles using the cyclic permutation approach. We make use of the
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important property that for a set of MOLS, a random permutation on the alphabet of the Latin squares
does not affect the orthogonality of those Latin squares. [10].

We show that the construction guarantees certain properties for the different sets:

1. Theorem 10. The first row of all M is the permutation σ−1.

2. Theorem 11. M1, the transform T−1Π, is symmetric.

3. Corollary 11.1. M1’s first column is σ−1.

4. Lemma 12. M1 has 1’s along its diagonal.

5. Theorem 14.The first element of Mreduced, M
1
reduced, is a symmetric reduced Latin square.

6. Theorem 15. The ith row in MN
reduced is given by πj where j = σ−N (i).

7. Theorem 18.1. For any MN
reduced the first element in a row i (which is equivalent to the column)

gives the positions of the element 1 in the row i; that is, MN
reduced(i, 1) = k =⇒ MN

reduced(i, k) = 1.

8. Theorem 19.If M1
reduced is a reduced form Latin square, A1

reduced = T (M1
reduced) = M1

reduced.

9. Theorem 19.1. ANreduced = T (MN
reduced) for any MN

reduced ∈Mreduced =⇒ AN (i, i) = 1.

The combination of Theorems For a complete set of symmetric bundles, we transformA1. . .Ar−2 toM1. . .Mr−2,
then normalize the MOLS symbols in M1, and then cast back to bundles, the bundles are symmetric with
first row and column both given by a power of σ.

We show the cyclic permutation succeeds for certain prime powers. We are left with the open question of
defining for all prime powers when the cyclic permutation approach applies, and conjecture that it is so when
a prime power pd has pd+ 1 is a prime power which also takes the same form.

Conjecture 22. If (r−1) is a power of a prime p, expressed (r−1) = pd, such that pd+ 1 is prime and has
the same property, then the result returned by the cyclic permutation algorithm Π and σ have the property
that all πpi = I, and the element 1 is fixed in σ with the subsequent r− 2 elements forming an (r− 2) orbital.

Further work is needed to show this result, but in fact if possible this could have implications for generating
large order MOLS in much smaller time and space than required of the construction using GF (r − 1) [11]
or the direct product construction using Latin sub-squares [12].

2 Background

We begin with some general motivation on vertex cover in graphs and hypergraphs, and the inspiration for
our polynomial-time approach. We then pose the question of hypergraphs which are intersecting; that is,
the maximal matching size is 1.

For orders of hypergraph larger than three, it is known that the questions of finding a maximal matching
or a minimum vertex cover are NP-hard. Thus there is thought to be no polynomial time algorithm for
finding the maximal matching or the minimal vertex cover. A hypergraph that is not r-parite is said to
be unpartitioned. In an unpartitioned hypergraph, Bansal and Khot show that it is impossible to find an
approximation algorithm for vertex cover that executes in polynomial time even when the hypergraph is
close to r-partite [13]. In the r-partite r-regular case, Guruswami, Venkatesan and Sachdeva [4] show NP-
hardness of obtaining an approximation factor of ( r4−ε) for even r and ( r4−

1
4r −ε) for odd r, NP-hardness of

obtaining a nearly optimal approximation factor of ( r2 − 1 + 1
2r − ε), and an optimal unique games-hardness
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for approximation within factor ( r2 − ε), thereby showing the optimality of Lovász’s algorithm if one assumes
the Unique Games conjecture. Ron Aharoni showed in 2001 [6] that in any tripartite hypergraph, |C| ≤ 2|M |
using a topological proof, but does Aharoni does not pose an algorithm for the vertex cover. Therefore, the
question of finding a polynomial time vertex cover algorithm in the general r-partite r-uniform hypergraph
is not conceivable and we must further constrain the setting.

In the case where the maximal matching of the hypergraph is 1, the hypergraph is said to be intersecting. A
famous theorem by Erdös-Ko-Rado bounds the size of the intersecting hypergraph for a uniform intersection
of size k; that is, all edges intersect all other edges exactly k times.

Theorem 1. (Erdös-Ko-Rado). Let k ≤ n/2 and G be a k-uniform, k-intersecting hypergraph on vertex set

V . Then |G| ≤
(|V |−1
k−1

)
. Furthermore, |G| =

(|V |−1
k−1

)
⇐⇒ ∃v ∈ V st G = {e ∈

(|V |
k

)
: v ∈ e}. [14].

The size of an intersecting hypergraph is bounded. Bohman and Martin bound the size of sparse hypergraphs
using the idea of clique number [15]. They use the clique number w to show a bound on the k-intersecting
hypergraph of |G| ≤

(
n
k

)
−
(
n−w
k

)
. In addition, they show that if G is a k-intersecting family of maximum

cardinality then there exists a maximum clique K in G such that G contains all k-sets that intersect K [15].
In fact it is not known if there exists any polynomial time algorithm for vertex cover in the intersecting hyper-
graph, and in fact even in the intersection 1 case it has been shown that intersecting Set Cover problem cannot
be approximated within a o(logn) factor in random polynomial time unless NP ∈ ZTIME(nO(log log(n)))
[16].

Approximation algorithms for an r-partite hypergraph have been proposed by Halperin in [17], who finds that
for a partitioned hypergraph, there is an almost trivial r-approximation by finding a maximal matching, and
the best algorithms achieve only a slight improvement of r(1−o(1)) over this approximation. In a hypergraph
which is close to r-partite, finding vertex cover is inapproximable in less than NP time. They conclude that
for every r ≥ 2, the problem is inapproximable within r−ε even when the hypergraph is almost r-partite [17].

A related conjecture to Ryser’s Conjecture is Tuza’s Conjecture, which concerns a 3-uniform unpartitioned
graph. If G is a graph, and H is the 3-uniform hypergraph whose vertices are the edges of G and whose
edges are the sets of three edges in G that form 3−cycles, then the conjecture states that if G has at most
r edge-disjoint triangles, deleting some set of 2r edges breaks all triangles [18]. Although these hypergraphs
are 3-uniform, they are not 3-partite, so this requests the same bound as in Ryser’s and Jones’ Conjectures,
but for a different family of hypergraphs. The conjecture has been proved when G is planar [18], has been
exhaustively proved for order ≤ 7 by Puleo [19], and proved when it is tripartite [20]. Krivelevich also proved
that the inequality holds when either parameter is replaced with its fractional version [21]. We next briefly
touch on the fractional hypergraph.

Other interesting work poses the idea of fractional covers and matchings. A fractional cover of G = (V,E) is
a weighting a : V → R+ so that

∑
x∈S a(x) ≥ 1 for every S ∈ E, and the weight of this cover is

∑
x∈V a(x).

By a fractional matching is an edge-weighting b : E → R+ so that
∑
S3x b(S) ≤ 1 for every x ∈ V , and the

weight of this matching is
∑
S∈E b(S). We define ν∗ as the minimum of the fractional cover and τ∗ as the

maximum of the fractional matching. By LP-duality, ν∗ = τ∗ is satisfied for every hypergraph. For r-regular
r-partite hypergraphs, τ∗ ≤ (r − 1)ν and τ ≤ 1

2rν
∗ [2].

The denominating factor across all of these domains is that the question of finding a polynomial time
minimum vertex cover algorithm in polynomial time for the general r-partite r-uniform hypergraph is not
conceivable. We must further constrain the setting and possibly turn to approximation to achieve results.
The intersecting hypergraph is one way we can limit the hypergraph size.

In the case where the maximal matching of the hypergraph is 1, the hypergraph is said to be intersecting. A
famous theorem by Erdös-Ko-Rado bounds the size of the intersecting hypergraph for a uniform intersection
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of size k; that is, all edges intersect all other edges exactly k times.

Theorem 1 (Erdos-Ko-Rado). Let k ≤ n/2 and G be a k-uniform, k-intersecting hypergraph on vertex set

V . Then |G| ≤
(|V |−1
k−1

)
. Furthermore, |G| =

(|V |−1
k−1

)
⇐⇒ ∃v ∈ V st G = {e ∈

(|V |
k

)
: v ∈ e} [14].

The size of an intersecting hypergraph is bounded. As explored above, Bohman and Martin bound the
size of sparse hypergraphs using the idea of clique number [?], using a clique number w to bound on the
k-intersecting hypergraph of |G| ≤

(
n
k

)
−
(
n−w
k

)
[?].

In fact work concerning intersecting hypergraphs may hold the key to general hypergraphs. We consider a
subgraph G′ to be a general hypergraph’s intersection graph: Given a system G of n sets, their intersection
graph is a graph GS whose vertices are the elements of G and vertices v1, v2 being connected by an edge
if and only if v1 ∩ v2 6= ∅ [22].The work of Barry Guiduli and Zoltan Kiraly concerns finding the ‘best’
points for a paritioned intersecting hypergraph, and in particular quantifying how good the best selection
of a single point or two points may be. Erdos and Gyhrfils (1990) considered k-intersecting problem for
the best t points [14], and their work extends this with more concrete bounds. Weighting functions were
used to quantify and prove the best choice of point(s) in these settings. In general, it was found that

L(k, n) := min( 2
k−1 ,

k(2n−k−1)
n(n−1) ), and tightness was only possible when ∃ a projective plane of order q [?].

We use the intuition of these approximations and findings to optimize the choice of edges and vertex cover
in the reactive hypergraph.

The applications and relevant literature to this field is quite extensive, so we provide only a small window
into algorithmic approaches to these different constrained problems. We now present the conjecture and
domain of interest for the remainder of this paper.

3 Ryser’s Conjecture for r-Partite Hypergraphs

3.1 Definitions

In mathematics, a graph (or hypergraph) G = (V,E) is a set of vertices, V , and hyperedges, E. A vertex
v ∈ V is a node in the graph (or hypergraph), and an edge e ∈ E can be considered a subset of vertices.

Let a hypergraph be designated G = (V,E). We use the following definitions and notation for the remainder
of the document.

Uniform. G is said to be uniform if ∀e ∈ E, |e| = k for some constant k.

Partition. A partition is a grouping of all vertices v ∈ V may be partitioned into groups {V1, V2...Vr} such
that V = V1 ∪ V2 ∪ ... ∪ Vr}, Vi ∪ Vj = 0 if i 6= j.

R-partite. An r-partite hypergraph is a uniform hypergraph with r parts such that every edge e ∈ E
contains exactly one element from every part Vi, that is, |e ∩ Vi| = 1, ∀ Vi.

Let a r-partite hypegraph be G = (V,E). Each edge e ∈ E may be represented as [v1j1 , v2j2 , ..., viji , ...vrjr ].
By r-partiteness, no edge contains more than one vertex in the same partition Vi, i = 1...r. Note that this
is the same as saying one vertex from each partition i must be included in every edge.

Uniform r-partite hypergraphs have that ∀e ∈ E, |e| = r. In this document, G is assumed to be a uniform
r-partite hypergraph unless otherwise specified. An edge refers to an r-edge in an r-uniform r-partite hy-
pergraph. For example, for a tripartite hypergraph, r = 3, each 3-edge would be represented by 3 vertices
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[vi1j1 , vi2j2 , vi3j3 ].

In this document, we enumerate parts Vi st ∪Vi = V and Vi ∩ V ′i = ∅, ∀i 6= i′. We use the notation vij for
a vertex which belongs to a part i with enumeration j.

Incident. A vertex v ∈ V and an edge e ∈ E of any hypergraph are said to be incident if v ∈ e. Then e
contains v: e = [v1j1 , ..., v, ..., vrjr ].

Degree. The degree of any vertex, v is dv is size of its incident edge set. Then dv = |{e ∈ E |v ∈ e}|.

Maximum degree. The maximum degree dmax is max(dv) for all v ∈ V .

Regular. A regular graph (or hypergraph) is one where all vertices have the same degree dv. Then
|dv| = k∀v ∈ V , for some constant k. A regular graph (or hypergraph) has maximum degree dmax = k.

Matching. A matching M is a selection of r-edges M = { {ei} | ei = [v1j1 , ..., v, ..., vrjr ]} such that no two
edges {e1, e2....e|M |} share a vertex.

Maximum matching. A maximum matching of an r-partite hypergraph is any matching with the maximal
cardinality. That is, the size of the set of r-edges is the largest possible subset of E such that no two edges
share a vertex.

There may be more than one maximum matching. We denote the cardinality of a maximum matching M?

as |M |. |M | is the same for all maximum matchings.

Vertex cover. A vertex cover C of a graph (or hypergraph) is a selection of vertices {v} st all edges in the
graph (or hypergraph) include at least one vertex v ∈ C. That is, ∀e ∈ E, ∃ vi ∈ C st vi ∈ e .

Minimum vertex cover. A minimum vertex cover is any vertex cover with the minimal cardinality. We
denote such a vertex cover as C? and the cardinality of its matching |C|. |C| is the same for all minimum
vertex covers of an r-partite hypergraph.

Intersecting. Two edges e and f are said to be intersecting if |e ∩ f | ≥ 1.

Linear. A hypergraph is said to be linear if any two vertices exist in at most one edge. For edges e and
f ∈ E, e 6= f , |e ∩ f | ≤ 1.

k-intersecting. Two edges e and f are said to be k-intersecting if |e ∩ f | = k for some constant k.

k-intersecting hypergraph. A hypergraph is called a k-intersecting hypergraph if all its edges are k-
intersecting; that is, all edges intersect all other edges at exactly k points; ∀ edges e and f ∈ E, e 6= f ,
|e ∩ f | = k.

1-intersecting hypergraph A 1-intersecting hypergraph is the class of hypergraph which is both linear
and intersecting. ∀ edges e and f ∈ E, e 6= f , |e ∩ f | = 1.

An illustration of an r-partite r-uniform hypergraph follows. Each edge takes the form [v1j1 , ..., viji , ..., vrjr ]
and each vertex is said to be in a part Vi.
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Figure 1: Generalized r-partite hypergraph [23]

3.2 Ryser’s Conjecture

Let G = (V,E) be an r-partite r-uniform hypergraph. Let the maximum matching of G be M with |M |
edges. Let the minimum vertex cover of G be C with |C| vertices.

Conjecture 2. Ryser’s Conjecture. For an r-partite r-uniform hypergraph,

| C |≤ (r − 1) |M | [3].

Ryser’s Conjecture is an open question for intersecting hypergraphs, and in fact it is open even for linear
intersecting hypergraphs. The following sections first consider the intersecting case and then the linear
intersecting hypergraph.

4 Properties of an Intersecting Hypergraph

The class of hypergraphs for which |M | = 1 is the class of hypergraphs which are intersecting. This is the
set of hypergraphs for which every edge shares at least one vertex with every other edge; any two edges
intersect at least once.

When applying Ryser’s conjecture to this type of hypergraph we have that |C| ≤ (r−1)|M |, |M | = 1 implies

|C| ≤ (r − 1).

Thus it should always be possible to find a vertex cover for any r-partite hypergraph using only (r − 1)
vertices. We pose a candidate algorithm and framework to verify this conjecture.

4.1 Empirical findings

We take an algorithmic approach to the |M | = 1 case for the r-partite hypergraph. It is centered around the
key observation that if there exists ahypergraph with |M | = 1 for which no choice of (r−1) vertices specifies
a valid vertex cover, Ryser would be debunked. If, however, no suchhypergraph exists, then the conjecture
is still valid. For small r, we empirically show that all possible graphs have vertex covers of cardinality at
most (r − 1).

The choice of a vertex cover is not trivial; in fact, finding a vertex cover in a hypergraph is NP-hard. However,
in the |M | = 1 case, we pose a vertex cover algorithm for an (r− 1) sized cover which achieves O(r(V +E))
amortized time.

We propose an approach to the minimum-vertex-cover/ maximum-matching problem which generates an
(r − 1)-sized vertex cover for anyhypergraph with a maximal matching of size 1. Our algorithm succeeds
empirically on all possible hypergraphs with r ≤ 5. To handler larger order graphs, we define an optimal re-
active hypergraph, a reactive hypergraph framework which attempts to maximize hypergraph size in response
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to a vertex cover algorithm. Our vertex cover algorithm succeeds in response to optimal hypergraphs with
r up to 20. The reactive hypergraph back-and-forth framework and the results on our candidate algorithm
are elaborated below.

4.2 Reactive hypergraph approach

To establish a baseline for this algorithmic approach, consider a game consisting of two players, Alice and
Bob. One of the players, Alice, is convinced that as long as the size of the maximal matching of the hyper-
graph is 1, she can generate a (r − 1) sized vertex cover. Bob is convinced that he can play an edge such
that Alice’s choice of (r − 1) vertices is not a valid vertex cover.

If Alice wins, her algorithm is a valid candidate vertex cover algorithm. If Bob wins, her algorithm is
debunked. The play-by-play of the game proceeds as follows.

• Begin with an empty r-partite hypergraph. Since no vertices exist in the hypergraph, it is easy to see
that C = ∅.

• WLOG, add an arbitrary edge to the hypergraph.

• Alice generates a vertex cover as per her vertex cover algorithm.

• Bob adds an edge to the hypergraph as per his edge choice algorithm (brute force or greedy).

• Continue until no more possible edges may be added.

Figure 2: Outline of the Alice/Bob reactive hypergraph game

If the above back-and-forth play does not terminate, then we have found a hypergraph configuration for
which the vertex cover algorithm does not find an appropriate (r−1) sized vertex cover for some hypergraph
with a maximum matching size 1.

We must define two algorithms to play the game: 1) Alice’s choice of vertex cover and 2) Bob’s choice of
edge. The sections below explore these two algorithms.
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4.3 Vertex cover algorithm

As outlined, Alice is convinced that as long as the size of the maximal matching of the hypergraph is 1, she
can generate a (r−1) sized vertex cover. Notice that a brute-force approach to an algorithm for vertex cover
would be to consider all (r − 1) sized subsets of vertices, then check every edge to see if all edges are hit.

However, this is a combinatorial approach and thus highly inefficient, executing in
(

O((n
(r−1)))=O(n!)

)
time. We

propose an algorithm which chooses a candidate vertex cover according to edge participation in a hypergraph.

Alice constructs a vertex cover as follows.

• Initialize the solution, Cop = {}

• Initialize the set Eremaining = E to be all current edges in the hypergraph.

• Recurse until |Cop| = (r − 1) or Eremaining = ∅:

– Consider the edges Eremaining which have yet to be hit by the current vertex cover.

– Select the vertex v with maximum participation in Eremaining; i.e. the vertex with
the maximum number of incident edges in Eremaining. Break ties by part and vertex
number; i.e. V1 > V2 > V3... and v11 > v12 > v13....

– Add v to the cover and remove all incident from the set Eremaining. Let the func-
tion incident(v,Eremaining) return the set of edges in Eremaining incident on v.
Eremaining = Eremaining − incident(v,Eremaining).

• If |Cop| ≤ (r − 1), fill in the remaining vertices in their natural ordering; V1 > V2 > V3...
and v11 > v12 > v13....

• Return Cop, a vertex cover of size (r − 1).

Assuming hashmaps of vertices to incident edges, this algorithm proceeds in O((r− 1)(V +E)) time. There
are (r − 1) vertices to be selected, (r assumed a small constant). It takes O(V ) time to select the optimal
vertex and it takes O(E) time to fix up the vertex mapping after selecting said vertex, in the worst case.
Each edge may only contribute r, a small constant, time in fixing up the vertex mapping after it has been
determined to be incident. Therefore, the algorithm executes in O(r(V + E)) time and uses O(rV E) space
to store the mappings.

4.4 Edge choice algorithms

To prove to effectiveness of the algorithm on any r-partite hypergraph, we pose the reactive hypergraph
framework, which responds to a choice of vertex cover with a new edge which escapes it at each given time.
We start with an arbitrary edge and add edges to the hypergraph one at a time. Edges are chosen in
reaction to the current choice of vertex cover and all the existing previous edges. We take 2 approaches to
characterizing the choice of edge in reactive hypergraphs:

• Brute-force approach. Given a hypergraph and a choice of vertex cover, explore all possible additions
of edges (WLOG), starting off a new ‘game’ for each possible edge choice.

• Optimal approach. Given a hypergraph and a choice of vertex cover at a given time step, attempt to
play a new edge ‘optimally’ in reaction; that is, play an edge which will allow the maximum number
of edges to be played.

The two options are explored and characterized in Sections 4.4.1 and 4.4.2.
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4.4.1 Brute-force edge choices

The brute-force approach to building out a hypergraph is defined as recursively exploring every possible edge
to add at every given time step with the same vertex cover algorithm applied to the hypergraph at each
timestep to drive the choices.

The brute-force algorithmic approach considers all possible choices of new edges, recursively building all
possible hypergraphs. At each time step, it generates the set of possible edges given the posed vertex cover
and the state of the hypergraph. All possible edges must escape the vertex cover, but still fall within the
constraints |M | = 1 and r-partiteness. It then tries out each of Bob’s possible edge choices in a depth-first
manner. A branch of the recursive algorithm terminates when there are no more edges to play. When a
game terminates, the algorithm traverses back up the tree, removing edges until there are other options and
recursively exploring those.

If any hypergraph built by this algorithm does not terminate, then the vertex cover algorithm can be
considered debunked. However, the number of possible hypergraphs increases exponentially in r, and the
program may not terminate empirically for this reason. As long as each game terminates within reasonable
time, we cannot invalidate a posed vertex cover algorithm.

The choice of edges at each time step may be thought of as a tree. As a toy example, consider the r = 3
case. We now prove that |C| ≤ 2 for an intersecting hypergraph where r = 3.

Theorem 3. If G = (V,E) be a tripartite hypergraph with |M | = 1, then | C |≤ 2. That is, for some
(x, y) ∈ V , every 3-edge contains either x, or y, or both.

Proof. We know that the hypergraph necessarily contains some edge, since M=1. WLOG, call this first
edge (v11, v21, v31), as per the convention. All 3-edges ∈ E must be of the form (v1i, v2j , v3k. Otherwise
they would not be valid edges in the tripartite hypergraph. Then we know that any edge introduced in the
hypergraph (v1i, v2j , v3k must necessarily share some vertex with every other edge already in the hypergraph.
Otherwise, a matching M could be selected with cardinality 2. WLOG, let this vertex be v11. Then edges
include [v11, v21, v31] and [v11, v22, v32]. Now we must add some edge which intersects both these edges. We
may either play v11 and then either play an existing vertex or generate a new one for the remaining slots,
or play v21 and v32 and fill the remaining slot, or play v22 and v31 and fill the remaining slot. Regardless of
the path we choose, if we do not play v11, in the next edge we will not be able to generate any new vertices.
If we play v11, we might play v11 infinitely; but then we would still have |C| ≤ 2.

To help with this ambiguity, consider negating the above. The claim is equal to the statement “For any
selection of (x, y) ∈ V , ∃ some 3-edge ∈ E containing neither x nor y.” That is, given any pair of vertices, we
can find an edge escaping it. This is where the reactive hypergraph comes into play. We proceed by build-
ing up the hypergraph gradually given selections of vertices ∈ V which have been included in some edge ∈ E.

Because of the lengthiness of the proof above, the reactive hypergraph narrows down cases where the choices
may be infinite (i.e. where we play infinitely on a single vertex and play randomly for the remaining vertices).
The tripartite case is deterministic. We prove that the algorithm performs correctly in Lemma 3.1

Lemma 3.1. The tripartite reactive hypergraph with |M | = 1 deterministically terminates under the posed
vertex cover algorithm.

Proof. At the beginning of the back-and-forth, the edge [v11, v21, v31] is initialized. There must be at least
one edge in the hypergraph, since M=1. The counts are now {v11 = 1, v21 = 1, v31 = 1}. Alice chooses
her vertex cover as per the algorithm: (v11, v21). Bob now must play [v12, v22, v31], because he must have
at least one edge in common with all previous edges. As he cannot choose v11 or v21, he must choose v31.
Then he must create two new vertices in V1 and V2: v12 and v22, respectively. The vertex counts are now
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{v31 = 2, v11 = 1, v12 = 1, v21 = 1, v22 = 1}. Alice now chooses (v31, v11). As she has selected two vertices
from the first edge, the new edge must necessarily include v21. Then, as it cannot include v31, the only
remaining option to be included from 2) is v12. As v31 cannot be included, we generate a new v32. So Bob
must necessarily play the edge [v12, v21, v32]. Counts are now {v12 = 2, v21 = 2, v31 = 2, v11 = 1, v22 = 1,
v32 = 1}. Alice selects (v12, v11). Bob now must play a vertex in V1 but cannot play v11 or v12; he therefore
plays v13. He then might choose v21 or v22 for his vertex in V2, but if he chooses v22 he hsa no chance of
hitting both [v11, v21, v31] and [v12, v21, v32] in his choice of vertex in V3. Therefore he must play [v13, v21, v32].
Finally Alice chooses (v21, v12) at which point Bob has no possible play and the hypergraph terminates.

Given Alice’s vertex cover algorithm these are the only sequence of plays that Bob can make, which is why
we are able to provide the complete proof in-line. For higher orders of r, Bob has many choices at any given
step. We show for r = 4 that there are 260 possible hypergraphs, all of which terminate. Transcripts for
some maximum sized hypergraphs are shown in Figure 5 and 7.
We brute-force all possible hypergraphs for r = 3 and r = 4 in Java to verify the result. However, the
number of possible reactive hypergraphs grows quickly. In Table 1, the number of possible hypergraphs (i.e.
the number of terminated ‘games’ using the back-and-forth algorithm) is outlined. The recursion becomes
astronomically large even for low orders of r. Even in the r = 5 case, the number of hypergraphs generated
is over 123000. Thus, other algorithmic options must be considered. In the table below, ‘maximum size’
refers to maximum observed number of edges for one of the hypergraphs.

r # of reactive hypergraphs maximum size
3 1 4
4 260 13
5 > 123000 ≥ 34

Table 1: Number of possible brute-force hypergraphs and maximum achieved size

For r = 5, the algorithm was run continuously over four days. 123000 possible hypergraphs were explored.
All hypergraphs terminated within between .59 seconds and 48 seconds, with the maximum time dependent
on the number of edges. Memory bloat also likely contributed to running time. However, considering that
the rate was consistently bounded, we cannot conclude that Bob was ever able to escape Alice, even though
the depth-first-search did not terminate. For this reason, we anticipate that all hypergraphs would terminate,
though we are unable to show so using brute-force. We turn to other methods for validation.

4.4.2 Greedy edge choice

A greedy edge choice attempts to maximize its intersection with the edges which already exist in the hy-
pergraph. This choice is added to the hypergraph in direct response to the choice of vertex cover and the
current state of the hypergraph. The intuition is that a hypergraph can achieve maximal number of edges
by adhering to a play-style which favors using previously played edges in the new edge selection.

Consider Gr to be a reactive greedy hypergraph; that is, edges may only be added by considering the greedy
vertex cover and all the existing edges and in accordance to r-partiteness. The greedy edge choice is defined
as follows: For each vertex cover at each time step, explore all maximally participating vertices which escape
the cover. The edge choice is similar to Alice’s choice of vertices, but an edge may not choose more than
one vertex in the same part, may not choose a vertex which is in the current cover, and in fact must select
r vertices, not (r − 1). The algorithm is as follows, given a cover C and a hypergraph G = (V,E).
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• Initialize an empty edge, given by an r-sized array which will be filled with vertices from
V1...Vr for each i = 1...rth element in the array. e = [ ]

• Initialize the mapping Vremaining which maps part number i to possible remaining vertices
to indicate the parts which have yet to be set in the edge and the possible choices of vertex
in these parts. Add all V to Vremaining, then remove the vertices in C.

• Initialize the set Eremaining = E to be all current edges in the hypergraph.

• Recurse until e full, any part Vi has Vremaining(i) = ∅, or Eremaining = ∅:

– Consider the edges Eremaining which have yet to be hit by the current vertex cover.

– Select the vertex v in the entries of Vremaining with maximum participation in
Eremaining; i.e. the vertex with the maximum number of incident edges in Eremaining.
Break ties by part and vertex number; i.e. V1 > V2 > V3... and v11 > v12 > v13....

– Add v to the edge and remove the part from parts which must be hit; Vremaining ←
Vremaining − Vremaining(i).

– Also remove all incident edges from the set Eremaining. Let the function
incident(v,Eremaining) return the set of edges in Eremaining incident on v.
Eremaining = Eremaining − incident(v,Eremaining).

• If Eremaining is non-empty, Bob loses.

• If Vremaining is non-empty, fill the edges using V1 > V2 > V3... and v11 > v12 > v13....

• Return e.

For one choice of greedy edge, we rely on an ordering V1 > V2 > V3... and enumeration 1 > 2 > 3.... However,
we really would like to to consider all possible greedy edges (choosing, at a given time, the vertices for the
edge which have maximal participation in all the other previously played edges, ignoring the edges already
hit by vertices chosen). This can also be done by removing the clause of the tie-breaking and recursing for all
possible hypergraph greedy edge choices. While a slower-growing exponential than the brute-force approach
which explores all hypergraphs, this is still quite slow.

We find that in the greedy reactive hypergraph for r = 3..20:

r 3 4 5 6 7 8 9 10
# edges in hypergraph 4 11 17 23 64 165 308 1181
r 11 12 13 14 15 16 17 18

2288 1906 8638 421 926 1717 2270 3128
r 19 20

3392 6252

Table 2: Size of greedy reactive hypergraph for r=3..20

Bob always loses for all r = 3...20 when he chooses edges per the greedy edge algorithm. Thus Alice is always
able to find an (r− 1) sized vertex cover using her algorithm. The number of edges he is able to play in this
case is show in Table 2. No known mathematical sequences are represented by these numbers. Therefore,
we leave quantifying this play as an open route of exploration.

4.5 Maximizing depth

We can see above that the maximum brute-force depth for r = 4, 5 was not achieved by the greedy algorithm.
Therefore, we pose the question of what the true optimal algorithm should be, to allow Bob to play for as
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long as possible without hitting a vertex cover and a set of previously chosen edges such that he cannot pick
any valid new edges.

To do this, we characterize the reactive hypergraph for r = 4. The maximum observed size of for this
hypergraph was thirteen, whereas the greedy algorithm produced a hypergraph with 11 edges. In the brute-
force reactive hypergraph, r = 4, 260 possible hypergraphs were explored. 3 of these hypergraphs achieve
minimum depth and 32 achieve maximum depth. This section aims to explore what characteristics led to
larger sized hypergraphs.

# edges # occurrences
7 3
8 14
9 6
10 63
11 116
12 26
13 32
total 260

Table 3: Categorizing hypergraph size for the brute-force hypergraph

Transcripts of all 260 games were generated and analyzed using Python, Jupyter+Pandas. We can visualize
the choices of edges Bob plays, in order to better understand what characterizes optimal play. Let m be
the size of the hypergraph generated; m ∈ {7...13}. We characterize the ‘score’ of a game as the number of
edges a choice of edge hits at a given point. Then the edge choices are enumerated by their scores below for
m = 7...13.

There are several key observations to be made here.

• Bob does not play greedily in any of the 32 cases where he generates the max-size hypergraph.

• Any max-size hypergraph (size 13) always ends with the vertex cover [v21, v22, v13. This is interesting
because the vertex cover does not consist of vertices of all the same part.

• The max-depth hypergraphs’ second-to-last choice of vertex cover always begin with v41. They then
either select another vertex in V4 or a vertex in V1. The third step is always a vertex in V1 (this makes
sense because it employs Alice’s tie-breaking trait).

The transcripts of all maximum hypergraphs are included in the GitHub repo in the file “MaxDepthTran-
scriptsR=4.”

16



Figure 3: Visualizing edge hits for hypergraph sizes m = 6...13.

(a) m=7 (b) m=8 (c) m=9

(d) m=10 (e) m=11 (f) m=12

(g) m=13

Figure 4: Visualizing greediness for hypergraph sizes m = 6...13.

(a) m=7 (b) m=8 (c) m=9

(d) m=10 (e) m=11 (f) m=12

(g) m=13
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In Figure 3(a)-(g) above, at each time step t = 0...m− 1, the ‘score’ is calculated as the sum of the number
of existing edges which each choice of vertex in the new edge choice hits. In Figure 4(a)-(g), at each time
step t = 0...m− 1, a ‘non-greedy’ play is represented as a flat line. Thus for all games in 4(a) Bob’s moves
were considered greedy, and for all games in 4(g) one of Bob’s moves was considered non-greedy, occurring
at time step t = 7.

In Figure 4(g), despite 32 games having the max-size property, just one ordering of greediness choices works
to generate the maximum size hypergraph.

In the cases where the depth is minimized, with 7 edges, we can assume Bob has played poorly. Observations
on these hypergraphs reveals that Bob puts all his eggs in one basket; he tends to play heavily around a
single vertex.

In the max-sized hypergraph with 13 edges, Bob’s distribution of edges is more even. This necessitates him
playing non-greedily at a key turning point, choosing a vertex which does not hit the maximum number
possible remaining vertices. In all the sized 13 hypergraphs, Bob makes a single choice of a non-greedy edge:
v13 or v22, which participate in just 4 edges, instead of choosing one of the 5-sized edges, v31 or v41. He then
proceeds to play greedily for the rest of the game. Two example transcripts of max-sized games is shown
below in Table 5 and Table 7, and a transcript of all maximum sized games for r = 4 is posted on the GitHub
repository.

Alice Bob Greedy Vertex Participation Counts
0 [] (v1 1, v2 1, v3 1, v4 1) Greedy {v1 1: 1,

v2 1: 1,
v3 1: 1,
v4 1: 1}

1 [v1 1, v2 1, v3 1] (v1 2, v2 2, v3 2, v4 1) Greedy {v1 1: 1, v1 2: 1,
v2 1: 1, v2 2: 1,
v3 1: 1, v3 2: 1,
v4 1: 2}

2 [v4 1, v1 1, v1 2] (v1 3, v2 2, v3 1, v4 2) Greedy {v1 1: 1, v1 2: 1, v1 3: 1,
v2 1: 1, v2 2: 2,
v3 1: 2, v3 2: 1,
v4 1: 2, v4 2: 1}

3 [v2 2, v1 1, v1 2] (v1 3, v2 1, v3 1, v4 1) Greedy {v1 1: 1, v1 2: 1, v1 3: 2,
v2 1: 2, v2 2: 2,
v3 1: 3, v3 2: 1,
v4 1: 3, v4 2: 1,

4 [v3 1, v1 2, v1 1] (v1 3, v2 2, v3 2, v4 1) Greedy {v1 1: 1, v1 2: 1, v1 3: 3,
v2 1: 2, v2 2: 3,
v3 1: 3, v3 2: 2,
v4 1: 4, v4 2: 1}

5 [v4 1, v1 3, v1 1] (v1 2, v2 2, v3 1, v4 2) Greedy {v1 1: 1, v1 2: 2, v1 3: 3,
v2 1: 2, v2 2: 4,
v3 1: 4, v3 2: 2,
v4 1: 4, v4 2: 2,

6 [v2 2, v2 1, v1 1] (v1 3, v2 3, v3 1, v4 1) Greedy {v1 1: 1, v1 2: 2, v1 3: 4,
v2 1: 2, v2 2: 4, v2 3: 1,
v3 1: 5, v3 2: 2,
v4 1: 5, v4 2: 2,

7 [v3 1, v2 2, v1 1] (v1 3, v2 1, v3 2, v4 2) Not greedy {v1 1: 1, v1 2: 2, v1 3: 5,
v2 1: 3, v2 2: 4, v2 3: 1,
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v3 1: 5, v3 2: 3,
v4 1: 5, v4 2: 3,

8 [v1 3, v1 2, v1 1] (v1 4, v2 2, v3 2, v4 1) Greedy {v1 1: 1, v1 2: 2, v1 3: 5, v1 4: 1,
v2 1: 3, v2 2: 5, v2 3: 1,
v3 1: 5, v3 2: 4,
v4 1: 6, v4 2: 3}

9 [v4 1, v4 2, v1 1] (v1 3, v2 2, v3 1, v4 3) Greedy {v1 1: 1, v1 2: 2, v1 3: 6, v1 4: 1,
v2 1: 3, v2 2: 6, v2 3: 1,
v3 1: 6, v3 2: 4,
v4 1: 6, v4 2: 3, v4 3: 1}

10 [v1 3, v2 2, v1 1] (v1 4, v2 1, v3 1, v4 1) Greedy {v1 1: 1, v1 2: 2, v1 3: 6, v1 4: 2,
v2 1: 4, v2 2: 6, v2 3: 1,
v3 1: 7, v3 2: 4,
v4 1: 7, v4 2: 3, v4 3: 1}

11 [v3 1, v3 2, v1 1] (v1 3, v2 2, v3 3, v4 1) Greedy {v1 1: 1, v1 2: 2, v1 3: 7, v1 4: 2,
v2 1: 4, v2 2: 7, v2 3: 1,
v3 1: 7, v3 2: 4, v3 3: 1,
v4 1: 8, v4 2: 3, v4 3: 1}

12 [v4 1, v1 3, v1 2] (v1 1, v2 2, v3 1, v4 2) Greedy {v1 1: 2, v1 2: 2, v1 3: 7, v1 4: 2,
v2 1: 4, v2 2: 8, v2 3: 1,
v3 1: 8, v3 2: 4, v3 3: 1,
v4 1: 8, v4 2: 4, v4 3: 1}

13 [v2 2, v2 1, v1 3] No possible move.

Table 5: Sample maximally sized hypergraph

Alice Bob Greedy Vertex Participation Counts
0 [] (v1 1, v2 1, v3 1, v4 1) Greedy {v1 1: 1,

v2 1: 1,
v3 1: 1,
v4 1: 1}

1 [v1 1, v2 1, v3 1] (v1 2, v2 2, v3 2, v4 1) Greedy {v1 1: 1, v1 2: 1,
v2 1: 1, v2 2: 1,
v3 1: 1, v3 2: 1,
v4 1: 2}

2 [v4 1, v1 1, v1 2] (v1 3, v2 2, v3 1, v4 2) Greedy {v1 1: 1, v1 2: 1, v1 3: 1,
v2 1: 1, v2 2: 2,
v3 1: 2, v3 2: 1,
v4 1: 2, v4 2: 1}

3 [v2 2, v1 1, v1 2] (v1 3, v2 1, v3 1, v4 1) Greedy {v1 1: 1, v1 2: 1, v1 3: 2,
v2 1: 2, v2 2: 2,
v3 1: 3, v3 2: 1,
v4 1: 3, v4 2: 1}

4 [v3 1, v1 2, v1 1] (v1 3, v2 2, v3 2, v4 1) Greedy {v1 1: 1, v1 2: 1, v1 3: 3,
v2 1: 2, v2 2: 3,
v3 1: 3, v3 2: 2,
v4 1: 4, v4 2: 1}

5 [v4 1, v1 3, v1 1] (v1 2, v2 2, v3 1, v4 2) Greedy {v1 1: 1, v1 2: 2, v1 3: 3,
v2 1: 2, v2 2: 4,
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v3 1: 4, v3 2: 2,
v4 1: 4, v4 2: 2}

6 [v2 2, v2 1, v1 1] (v1 2, v2 3, v3 1, v4 1) Greedy {v1 1: 1, v1 2: 3, v1 3: 3,
v2 1: 2, v2 2: 4, v2 3: 1,
v3 1: 5, v3 2: 2,
v4 1: 5, v4 2: 2}

7 [v3 1, v2 2, v1 1] (v1 2, v2 1, v3 2, v4 2) Not greedy {v1 1: 1, v1 2: 4, v1 3: 3,
v2 1: 3, v2 2: 4, v2 3: 1,
v3 1: 5, v3 2: 3,
v4 1: 5, v4 2: 3}

8 [v3 1, v3 2, v1 1] (v1 2, v2 2, v3 3, v4 1) Greedy {v1 1: 1, v1 2: 5, v1 3: 3,
v2 1: 3, v2 2: 5, v2 3: 1,
v3 1: 5, v3 2: 3, v3 3: 1,
v4 1: 6, v4 2: 3}

9 [v4 1, v4 2, v1 1] (v1 2, v2 2, v3 1, v4 3) Greedy {v1 1: 1, v1 2: 6, v1 3: 3,
v2 1: 3, v2 2: 6, v2 3: 1,
v3 1: 6, v3 2: 3, v3 3: 1,
v4 1: 6, v4 2: 3, v4 3: 1}

10 [v1 2, v1 3, v1 1] (v1 4, v2 1, v3 1, v4 1) Greedy {v1 1: 1, v1 2: 6, v1 3: 3, v1 4: 1,
v2 1: 4, v2 2: 6, v2 3: 1,
v3 1: 7, v3 2: 3, v3 3: 1,
v4 1: 7, v4 2: 3, v4 3: 1}

11 [v3 1, v1 2, v1 3] (v1 1, v2 2, v3 2, v4 1) Greedy {v1 1: 2, v1 2: 6, v1 3: 3, v1 4: 1,
v2 1: 4, v2 2: 7, v2 3: 1,
v3 1: 7, v3 2: 4, v3 3: 1,
v4 1: 8, v4 2: 3, v4 3: 1}

12 [v4 1, v1 2, v1 3] (v1 4, v2 2, v3 1, v4 2) Greedy {v1 1: 2, v1 2: 6, v1 3: 3, v1 4: 2,
v2 1: 4, v2 2: 8, v2 3: 1,
v3 1: 8, v3 2: 4, v3 3: 1,
v4 1: 8, v4 2: 4, v4 3: 1}

13 [v2 2, v2 1, v1 2] No possible move.

Table 7: Another sample maximally sized hypergraph

In both example transcripts (and all maximum sized hypergraphs for r = 4), the single non-greedy play of
the 7th edge enabled Bob to build groupings of edges in parts v2...v4 which eventually reach size 8, 4, and 1
respectively. The vertices which reached size 8 were v22, v31,and v41, the vertices which reached size 4 were
v21, v32, and v42, and the vertices which only reached size 1 were v23, v33, and v43.

The edges in V1 follow a slightly different pattern, and differ among the 2 games. However, notice that both
spread out among 4 vertices, and the minimum degree is 2. In Game 1, v13= size 7, v11, v12, v14 = size 2.
In Game 2, v12= size 6, v11, v14 = size 2, v13 = size 3. This spread, essentially building groups evenly but
from the bottom up and spreading remaining vertices out over V1, is shown to be the optimal strategy for
generating a large hypergraph.

We conclude these findings with the suggestion of learning how to generate edges to optimize play. It may
be possible to use transcripts of max-depth games in the brute-force r = 4 and r = 5 case to train a learning
algorithm to play optimally. Alternatively, we may come up with some local metric or weighting at each
step which can inform the edge choice such that the max-size hypergraph is generated.

20



4.6 Future algorithmic work

In light of these findings, we conclude that the Alice algorithm is a candidate for efficiently generating a
vertex cover with (r − 1) elements given any r-partite hypergraph. We have proved it works empirically for
r = 3 and r = 4. We have also proved that using a greedy response algorithm for r = 3...20, Alice can always
choose a vertex cover for a greedy reactive hypergraph. We now pose the question of whether it is possible
to generate an alternate optimal reactive choice of edge which produces the max-size reactive hypergraph to
the greedy vertex cover every time, and whether the back-and-forth game would always terminate in this case.

Another open question is that of what a vertex cover algorithm for |M | ≥ 2 might look like. We pose that
it may be possible to take the same approach in choosing vertices; however, generating new edges would be
very different, because it would not require that all edges intersect all other edges once.

Additionally, we posit the question of choosing a vertex cover for a hypergraph which is not reactive in
nature; that is, any vertices may be chosen at a given time, but the edges must still share the property that
the maximum matching is |M | = 1. The following section concerns work in this vein.

5 Families of k-Intersecting Hypergraphs and Their Size

We are now concerned about the specific case where all edges intersect all other edges at exactly k points,
and specifically, when all edges intersect all edges at exactly 1 point.

Let k = 1. Then by the definition of k-intersecting, the intersection of every pair of edges contains exactly
one vertex, we have |e ∩ f | = 1, ∀ e, f ∈ E, e 6= f .

5.1 Properties of an r-Partite 1-intersecting hypergraph with |M | = 1

Consider an r-partite hypergraph G which has the additional constraint |e ∩ f | = 1, ∀(e, f) ∈ E. This
additional constraint means that every edge shares one and exactly one vertex with every other edge. This
hypergraph is said to be linearly intersecting.

We want to make a statement about the cardinality of the hypergraph that is possible under these constraints.
Notice that, with no bound on the maximum degree of a vertex or the minimum size of a vertex cover, it
would be possible to have an infinite number of unique edges: WLOG, choose v11 as the vertex which all
edges have in common; then the hypergraph is given by the edge set E = {[v11, v21..., vr1], [v11, v22, ..., vr2],
[v11, v23, ..., vr3], ... , [v11, v2∞, ... , vr∞]}.

Imposing the additional constraint |C| ≥ 2 bounds the size of the hypergraph to a finite domain. To show
this, we first consider a lemma.

Lemma 3.2. In a 1-intersecting r-partite hypergraph with |C| ≥ 2, let the r different parts be sets of vertices
V1...Vr. Then ∀ i = 1...r, |Vi| ≥ 2.

Proof. Suppose not. Then ∃ some part i such that vi1 is the only vertex in that part. Then all edges must
contain vi1. That is, we could select a minimum vertex cover c∗ = vi1, with |C| = 1. This contradicts the
assumption that |C| ≥ 2.

Thus, we may proceed with the additional assumption that all parts have at least two vertices. Notice that
the set of hypergraphs that satisfy |e ∩ f | = 1, |C| ≥ 2, |M | = 1 is the empty set for r = 2. It is impossible
to find a graph which has a vertex cover size of at least 2 in the bipartite graph case when the constraint is
imposed that all edges must share an edge with at least one other edge.
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This holds with proven theory. By Hall’s Theorem, that the size of a minimum vertex cover is equal to the
size of maximum matching, |C| = |M |, in the bipartite case.

5.2 Bounds on size in a 1-intersecting r-partite hypergraph

When considering what the size of the hypergraph is, one can define several areas of concern:

• The number of edges in the hypergraph

• The number of vertices in the hypergraph

• The maximum degree of any vertex in the hypergraph

• The number of overlaps (that is, the number of vertices where degree is at least 2).

Let the number of edges in the hypergraph be denoted m. The number of vertices in the hypergraph is
denoted n.The number of parts is r and the degree of a vertex v is dv.

Theorem 4. In a 1-intersecting hypergraph with |M | = 1, |C| ≥ 2, the maximum degree of any vertex is
(r − 1).

Proof. Let u be a vertex with maximum degree dmax. Then suppose WLOG u is in part V1. Let D be the
set of all edges incident on u; |D| = dmax. Every edge e ∈ D intersects every other edge f ∈ D at exactly
one point, and this point of intersection is u; thus ∀j 6= i, |Vj | ≥ dmax and every pair of modified edges
|e− u| ∪ |f − u| = ∅, (e, f) ∈ (D). By Lemma 3.2 ∃ another vertex u′ ∈ Vi. u′ 6= u, and u′ nust participate
in some edge e′. e′ must intersect every edge d ∈ D. There are exactly (r − 1) ways to intersect each edge,
and exactly (r − 1) choices of vertices left to fill in e′ (excluding u′), for the parts V2...Vr. We proceed to
prove by contradiction. Suppose there are r edges in D. Then WLOG, proceed through each part Vi for
each i = 2...(r) in the following way: choose an edge from D and fix its vertex in Vi in the edge e′. No
edges in D intersect each other, and only (r − 1) vertices may be fixed. Thus the rth edge will not be hit
by e′, which leads to a contradiction. The maximum number of edges in D is given by (r − 1), and dmax is
therefore bounded above by (r − 1).

With the maximum degree shown to be (r − 1), we can now bound the number of possible edges in the
hypergraph. This is shown below to be equal to (r − 1)2.

Lemma 4.1. The number of edges m in an r-partite hypergraph is bounded above by m ≤ (r − 1)2.

Proof. We use the idea of double counting. Every intersection will be counted twice going over all the
vertices, and twice going over all the edges. By the Handshake Lemma,

∑
v dv = rm. Then

∑
v

(
dv
2

)
=(

m
2

)
=⇒

∑
v
dv(dv−1)

2 = m(m−1)
2 follows from the fact that the hypergraph is linear and intersecting (all

edges intersect all other edges exactly once). Simplifying,∑
v

dv(dv − 1) = m(m− 1)

∑
v

d2v −
∑
v

dv = m(m− 1)

∑
v

d2v = m(m− 1) + rm = m(m+ r − 1)

By Lemma 4.1, max(dv) = (r − 1). Then the absolute bound on these two quantities is∑
v

d2v ≤
∑
v

(r − 1)2
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∑
v

dv ≤
∑
v

(r − 1)

Since each dv ≤ dmax, it follows that
∑
v d

2
v ≤ dmax

∑
v dv, which implies m(m + r − 1) ≤ (r − 1)rm.

m+ r − 1 ≤ r(r − 1), and thus m ≤ (r − 1)2.

We now pose the question of the maximum number of vertices possible in such a hypergraph, n. Certainly,
the number of vertices is bounded above by n ≤ (r − 1)3. To see this, simply consider that since the
hypergraph is r-uniform, every edge contains r vertices. m ≤ (r− 1)2, and so it follows that n ≤ r ∗ (r− 1)2.
Since the size of the maximum matching is 1 and the size of the minimum vertex cover is 2, all edges must
contain one of the two vertices in the vertex cover; thus every edge has (r−1) free vertices and we can easily
state n ≤ (r − 1)3.

Theorem 5. If n ≤ r2, then Ryser’s conjecture holds.

Proof. Ryser’s conjecture states that the size of the minimum vertex cover is at most (r− 1) in this case. If
n ≤ r2, then there exists some part Vi st |Vi| ≤ (r − 1). Suppose not. Then all Vi would have ≥ r vertices.
There must be some edge incident on all of the vertices in all of the parts; dv ≥ 1. Furthermore, all edges
must intersect all other edges. Then for an edge incident on the rth vertex in some part, it must intersect
all other edges exactly once. There are at least r edges in the graph in this case; if not, there could not be
≥ r vertices in each part. Choose some vertex vi in Vi. There are at least r− 1 edges in the graph which do
not include that vi, since there are r − 1 other vertices in the part. If vi’s incident edge intersects all those
edges, then there is some vj in another Vj which has the same dilemma, and vi avoids this edge, so we only
have (r − 1) choices of intersection in Vi for vj . Repeating for all parts 6= Vi, at the rth part, vr will have
no choices of vi to be incident upon. Therefore we have a contradiction and some part |Vi| ≤ (r − 1). We
choose those (r − 1) vertices as our cover.

We do not know if n ≤ r2 in the 1-intersecting graph. In fact we believe it to be false; however, as of writing
we are unable to come up with any counterexample where n ≥ r2. Thus we conjecture that n ≤ r2, which,
if shown to be true, proves Ryser. This is left as an open question.

5.3 Tightness on 1-intersecting hypergraph size

From henceforth on, we define the size of a hypergraph to be the size of its edge set, m. We have shown in
the above that an interesting property of a 1-intersecting r-partite hypergraph is that the number of edges
is bounded above by m ≤ (r − 1)2.

Another avenue of exploration concerns whether or not m ≤ (r − 1)2 is tight, and under which conditions.
To proceed, consider r = 3, the smallest possible hypergraph with |M | = 1, |C| ≥ 2.

Example. r = 3, so (r − 1)2 = 4. Consider a hypergraph with six unique vertices, two in each part. The
edges [v11 v21 v31], [v11 v22 v32], [v12 v21v32], [v12 v22 v31] follow the constraints posed. See Figure 5; in the
diagram below, each 3-edge is represented by a different shape.

Figure 5: m = 4 in a maximally sized 1-intersecting hypergraph for r = 3
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Thus, it is possible, in some cases, to achieve tightness on m, chooing (r − 1)2 edges for an r-partite hyper-
graph.

Finding the conditions which generate a hypergraph with (r − 1)2 edges poses an interesting question.
Additionally, exploring methods of generating a maximally sized hypergraph may provide some light into
the algorithmic approach to a general optimal vertex cover. The following sections pose the 1-intersecting
maximization problem, explore an analogous problem, prove equivalence, and propose a novel generating
algorithm.

5.4 Maximizing size in a 1-intersecting hypergraph

We now consider how we might generate any set of edges larger than (r− 1). It is trivial to generate (r− 1)
edges, all incident on a single vertex v11 - a single bundle. All of these edges have the property that they do
not overlap at any of the (r − 1) remaining vertices. Now we want to introduce a new edge incident on v12.
This edge must intersect all of the edges incident in v11 exactly once.

Therefore, consider the bundle on v11 as an ((r− 1)× (r− 1) grid. All of the edges (rows) in the bundles on
v1i for i = 2..(r − 1) must contain exactly one element from each row of the grid. Thus, if the grid is:

Figure 6: Textual and visual representation of a bundle on v11.

The figure at left represents the construction of the grid, and at right shows the enumeration of vertices in
each part 2...(r − 1). A row in the grid represents part of an edge which also includes v11. Therefore, all
edges in the v11 bundle contain exactly one intersection. We also know that all edges incident on any other
vertex in v1 must contain All edges incident on v12...v1k must be permutations of 1...(r − 1).

5.4.1 Definitions

Bundle. Define a bundle to be a group of (r − 1) edges incident on some vertex v1i ∈ V1. For all edges in
the bundle, the first element is v1i. Then the remaining edges may be arranged in an (r − 1)× (r − 1) grid.

For i = 1, the bundle is defined as in Table 6 above. For i = 2...(r−1), every row in the grid is a permutation
of 1...(r − 1). We use the shorthand of the vertex which all edges in a bundle are incident on to denote the
bundle (v1i).

1-intersecting bundles Two bundles v1i and v1i′ are said to be 1-intersecting if ∀ rows in v1i indexed by
k and ∀ row ∈ v1i′ indexed by l, ∃ some j st v1i(k, j) = v1i′(l, j).

We would like to find a set of (r − 2) bundles such that:

• All rows within a bundle do not share any elements.
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• All rows share exactly one element with all rows of other bundles.

The first statement is equivalent to saying all columns in the bundle must also share no elements, and
therefore are permutations themselves.

5.5 Analogous problem: mutually orthogonal Latin squares

Mutually orthogonal Latin squares are a well-studied topic. In particular, conjectures about their size have
been posed and disproved throughout centuries. Euler famously conjectured that it is impossible to construct
2 Graeco-Latin squares of order 6 and any of the form n 6= 2 mod 4, but his conjecture was disproved by
Bose and Shrikhande in 1959 [24] who determined that the only order of Latin square which did not have
an orthogonal mate was that of order 2 and 6. Permutations, group theory, and balanced-incomplete-block-
designs (BIBDs) have been often used to find maximal sets of mutually orthogonal Latin squares, and have
many applications to other fields of combinatorics as well [25].

There are three typical constructions of mutually orthogonal Latin squares, which are well-characterized.
The first is the Finite Field construction [12], which is based on an irreducible polynomial root for the
finite field GF . We explore this in depth in section 5.5.3. We also make use of a key to the proof of the
Generalized Bose Construction [11] to show our reduced-form MOLS are indeed reduced MOLS. First, we
pose the problem by providing useful definitions.

5.5.1 Definitions

We first provide some useful notations and definitions.

Latin square. A nth order Latin square is an array of n×n numbers 1...n. Specifically, it consists of n sets
of the numbers 1...n arranged in such a way that no orthogonal (row or column) contains the same number
twice.

Reduced Latin square. A reduced Latin square of order n is a Latin square with first row and first column
given by [1, 2, ..., n].

Orthogonal Latin squares. A pair of Latin squares is said to be orthogonal if the n2 pairs formed by
juxtaposing the two arrays are all distinct.

Reduced orthogonal Latin squares. We say a set of k different MOLS of order n is reduced if one of the
Latin squares is reduced and if the first row in every other Latin square in this set is given by [1, 2, ..., n].

Figure 7: 2 MOLS of order 4, juxtaposed, produce all possible pairs

Remark. A bundle is an example of a Latin square, and vice versa. However, two mutually orthogonal Latin
squares are not necessarily two 1-intersecting bundles. To create a bundle v1i from a Latin square A, assign
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edges such that each row in A given by Ak is attached to the vertex v1i. Then we could define the bundle:
v1i : [[v1i] [Ak]].

We now show that the problem of finding (r − 2) bundles with the property above is analogous to finding a
complete set of mutually orthogonal Latin squares (MOLS).

Theorem 6. The question of finding r − 2 1-intersecting bundles is equivalent to finding r − 2 mutually
orthogonal Latin Squares of order (r − 1).

Corollary 6.1. If m gives the maximum number of edges in an r-partite 1-intersecting hypergraph, m =
(r − 1)2 if and only if r is a prime power of the form pd.

To guide this chapter, we first state Theorem 6 and then prove it through a series of smaller proofs in Sections
5.5.2 - 5.5.3.

5.5.2 Transforming MOLS to 1-intersecting bundles

We define an operation T on a Latin square M :

T : M → A := {Akj = i|Mij = k}

Lemma 6.1. If M is a Latin square, then A = T (M) is a Latin square.

Proof. If M is a Latin square, fix j. Then every value of i produces a unique k, Mij = k. A column in A
therefore has the same property that any k produces a unique i. Now fix k. For all pairs (i, j) and (i′, j′) in
which Mij = k, i 6= i′ =⇒ j 6= j′. A row in A is given by Ak, and therefore every element i must be unique
and appear at index j. Thus every row in A is a permutation, and every column in A is a permutation; no
row or column contains two of the same elements. Therefore A is a Latin square.

Theorem 7. If M and N are two reduced mutually orthogonal Latin squares, then A = T (M) and B = T (N)
are two 1-intersecting bundles with 1’s on their diagonals.

Proof. Let M and N be two reduced Latin squares of order (r − 1). Let an entry in M be Mij = k. Let an
entry in N be Ni′j = l. l = j if i 6= i′ by the definition of mutually orthogonal. Two reduced Latin squares
have unique row and column elements for all rows and columns except the first; that is, M1j = N1j = j;
Mij 6= Nij 6= j,∀ i = 2...n, j = 1...n. Consider an arbitrary row in A indexed by k and an arbitrary row in B
indexed by l. NTS exactly one element is shared between the two; that is, ∃ some j st Akj = Blj for any two
(k, l) ∈ (r−1)2. By Lemma 6.1 above, A and B are Latin squares. Since k ∈ {1...(r−1)}, l ∈ {1...(r−1)}, k
appears somewhere in every column of M and l appears somewhere in every column of N . Since M and N
are mutually orthogonal, ∃ only one choice of indices (a, b) st Mab = k and Nab = l. We then have Akb = a
and Blb = a. Thus ∃ exactly one choice of j = b st Akj = Blj .

It follows from here that the exercise of maximizing the number of orthogonal Latin squares is equivalent to
maximizing the number of playable 1-intersecting bundles.

Theorem 8. For all Ai generated from reduced form MOLS, the intersecting element between two bundles
Ai and A′i in a row r is given by the rth element in the row, which is 1: Ai(r, r) = 1 = Ai′(r, r).

Proof. If M is in reduced form, then M1j = j∀j = 1...(r−1). This transforms to T (Mi) = Ai =⇒ Ai(j, j) =
1. Since all Mi are reduced form, all Ai(j, j) = 1. All Ai will be Latin squares with 1’s on the diagonal.
Therefore 1 must be the intersecting element between the element in row j with the element in row j of
some other Ai′ .
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5.5.3 Maximal set of mutually orthogonal latin squares

Definition. A maximal set of mutually orthogonal Latin squares (MOLS) is a set of k n-order MOLS such
that it is impossible to extend the set to a set of (k + 1) MOLS of order n.

The maximal number of mutually orthogonal Latin squares of an order (r − 1) is given by

N(r − 1) = max(k : ∃(k)MOLS(r − 1))

Hicks, Mullen, Storme, and Vanpoucke (2018) explore extensively the number of mutually orthogonal Latin
squares for different factorizations of primes in [8]. This begins with the simple proof that N(n) ≤ (n− 1),
and then delves into complicated constructions to show N(r − 1) = r − 2 if and only if r − 1 is a prime or
a prime power. Interestingly, all proofs we find of this relies on different constructions of MOLS to show
tightness in conjunction with an upper bound, rather than a numerical approach. This is one additional way
our construction (posed in Section 5.6 may be of use.

Lemma 8.1. For every r ≥ 2, N(r − 1) ≤ (r − 2). [10]

Proof. WLOG consider 2 MOLS L and M in reduced form. We can place any MOLS into reduced form
without affecting the orthogonality of them by performing a permutation on the alphabet by [10]. We then
consider the element L(2, 1) = a and M(2, 1) = b. Because the element L(1, 1) = 1 and M(1, 1) = 1, and
a 6= b by the definition of orthogonal, we have a 6= b 6= 1. This means that a may only take on n− 1 values,
and since a group of MOLS cannot have the same symbol at the position (2, 1) (WLOG), the number of
MOLS is bounded above by (n− 1).

Theorem 9. If q = pd is a prime power, then N(q) = (q − 1). [8]

Proof. Any prime power q = pd may be expressed as a finite field of elements GF (pn). Any prime may be
represented as GF (p) = 0, 1, 2, ..., p− 1. This is equivalent to our choice of a above. GF (pn) is the field of
equivalence classes of polynomials whose coefficients belong to GF (p); that is, the elements of GF (pn) can
be written as a polynomial using elements only in GF (p). GF (q) = 0, 1, 2, f(x), ...q − 1. We can take the
modulus of any of the polynomials for a given row index, f(x) = xdp

d−1 + xd−1p
d−2 + ...x1p + x0. Then

construct the Latin squares as follows: Ma(x, y) = ax + y mod f(x). The function f(x) maps all values
of x, the row index, to a unique composition of the prime raised to powers lower than d. We can follow a
similar reasoning as in Lemma 9.1 to conclude these (q − 1) Latin squares are mutually orthogonal. [8]

We next show that tightness is possible in the case where the order r − 1 of the Latin square of interest is
a prime, r − 1 = p using the modulo operator, and in fact that it is possible when r − 1 is a prime power
using a finite field construction and a primitive polynomial function such that every element at every (i, j)
coordinate in every square differs from all others aside from the first row.

Lemma 9.1. If the Latin square order of interest r − 1 is some prime r − 1 = p, then it is possible to
construct a set of (p− 1) MOLS. [10]

Proof. Consider the case where p is a prime number (d = 1). Then let a = 0...p−1. We can construct exactly
p− 1 mutually orthogonal Latin squares as follows, using the fact that p is a prime. Let Ma(x, y) = ax+ y
mod p. Then consider two arbitrary elements in the same column y indexed by x and x′. Ma(x, y) =
Ma(x′, y) ⇐⇒ ax + y = ax′ + y. Since a ∈ [1, p − 1], ax + y = ax′ + y generates a unique value for every
x. Then ax + y = ax′ + y ⇐⇒ x = x′; that every column y has every element different from every other.
Similarly, consider two elements in the same row x. Ma(x, y) = Ma(x, y′) ⇐⇒ ax+y = ax′+y ⇐⇒ y = y
by similar logic; all elements in the same row differ. Now for two squares Ma and Mb, NTS every choice of
indices (x, y) generates a different pairing. Suppose the same ordered pair appears in slots (x, y) and (x′, y′)
after superimposition. Then ax + y = ax′ + y′ and bx + y = bx′ + y′. Subtracting one equation from the
other, ax− bx = ax′ − bx′ =⇒ (a− b)x = (a− b)x′. As a 6= b, this holds only when x = x′ and y = y′.
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Remark. As an addendum, all MOLS generated in this way will have the property M1y = y; the first row
will be [12....p− 1] and therefore all MOLS constructed in this way will be reduced Latin squares.

We apply the approach in Lemma 9.1 to the case where the order of the Latin square of interest is a prime
power, q = pd, and use the finite field construction to prove tightness in this case. Note that GF (q) is cyclic,
and there exists an element α, such that the q − 1 non-zero elements of GF (q) are 1, α, α2, ..., αq−2. Then
αq−1 = 1. This means we can always find a valid (q − 1) cycle for any q prime power. To illustrate this
construction, we show an example construction for q = 16 below.

Example. Construction of 15 MOLS(16).
In this case, p = 2, d = 5. We construct: GF (p) = {0, 1} and thus all elements in GF (16) may be expressed
as x0 + x1α+ x2α

2 + x3α
3,where α4 = α+ 1 is an irreducible polynomial.

It follows that the operations + and × in GF (16) are:

(a+ bα+ cα2 + dα3) + (e+ fα+ gα2 + hα3) = (a+ e) + (b+ f)α+ (c+ g)α2 + (d+ h)α3

(a+ bα+ cα2 + dα3)(e+ fα+ gα2 + hα3) =(ae+ bh+ cg + df)

+(af + be+ bh+ cg + df + ch+ dg)α

+(ag + bf + ce+ ch+ dg + dh)α2

+(ah+ bg + cf + de+ dh)α3.

[26]
Next, define Ma(x, y) = ax+ y mod f(x) for every a = 0, ..., q − 1.

We define the values of a as per their binary codes in polynomial form (since we are basing on GF (2):

Decimal value Binary value Polynomial
0 0000 0
1 0001 1
2 0010 x
3 0011 x + 1
4 0100 x2

5 0101 x2 + 1
6 0110 x2 + x
7 0111 x2 + x+ 1
8 1000 x3

9 1001 x3 + 1
10 1010 x3 + x
11 1011 x3 + x+ 1
12 1100 x3 + x2

13 1101 x3 + x2 + 1
14 1110 x3 + x2 + x
15 1111 x3 + x2 + x+ 1

Table 8: GF (16) in polynomial form

We use these polynomials along with the defined operations to generate multiplication tables for every 2
polynomial representations of 0...q − 1. These are shown below.
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Figure 8: Addition and Multiplication under GF (16)

Finally, we use the construction to generate the 15 mutually orthogonal Latin squares and corresponding
1-intersecting bundles.

Ma(x, y) = ax+ y mod f(x)

Where f(x) is a primitive polynomial. The root of this polynomial, α, is a root of the finite field GF (q).
Any primitive polynomial of order d may be used as the modulo function f(x). In the example below, the
primitive polynomial used was x4 + x+ 1.
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Figure 9: 15 mutually orthogonal Latin squares of order 16

We apply the transformation T to generate the final 1-intersecting bundles.
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Figure 10: 15 1-intersecting bundles of order 16

Note that all the 1-intersecting bundles have the property that 1’s occur along their diagonal and in fact for
the primitive polynomial seed chosen, all 1-intersecting bundles are perfectly symmetric.
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5.6 An alternative approach to generating (r − 2) 1-intersecting bundles

For an edge in a bundle, we number the vertices according to the integers 1...(r − 1). This is equivalent to
Zr−1 = {1, 2, ..., (r − 1)}, so each edge may be thought of as a permutation.

Permutation. A permutation of size n is a one-to-one mapping of elements in Zn to themselves. We denote
such a permutation as π = {π(1), π(2), ..., π(n)}.

Permutation cycle. A permutation cycle or orbit of a permutation πi is some subset of elements in π
such that elements map onto each other. Let an arbitrary cycle of size k be denoted (a1, a2, ...ak) such that
πi(aj) = aj+1 for all j = 1...(k − 1) and πi(ak) = (a1).

A permutation with a single fixed element may arbitrarily assign that element to the first index, 1. Then
1 will be in the first position and it is possible to generate a maximum of (r − 2) permutations such that
no permutation intersects any other permutation at any index besides the first. Permutations must take
advantage of cyclic breakdown to achieve this; that is, every element must necessarily be in every position
exactly once.

Consider the construction below. We wish to generate (r − 2) 1-intersecting bundles such that:

• No two rows in the same bundle share any elements.

• Every row in any bundle intersects every row in every other bundle exactly once.

WLOG, fix the intersection of the first row of every bundle with every other bundle to be the number 1 in
the first position. We now define two objects: σ, the transformation from the first row of one bundle to the
first row of the next, and Π, the set of permutations within a bundle transforming its first element to each
subsequent row.

Figure 11: Example Π and σ for r − 1 = 8

Let the transformation within a bundle be given by Π and each row defined by πi, i.e., row 1 = π1 = I, row
2 = π2, ... row (r − 1) = πr−1. Let the permutation which fixes the first element and assigns every element
to every other element be denoted σ. Then we have the relationship that σ = Π(1), the ordering of the first
elements of permutations π1(1)...π8(1) in a given bundle.

Then we want the permutations to have the property: For every i-indexed row in M, i′-indexed row in M’,
Mij = M ′i′j for exactly one j.

We construct and verify the (r − 2) bundles as follows.
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Figure 12: The process of generating and verifying (r-2) 1-intersecting bundles

We outline the process of each step in sections 5.6.1 - 5.6.4 below.

5.6.1 Novel construction of permutation seed for 1-intersecting bundle

Let Cp be some cyclic permutation on the symbols 1..p and the set of permutations {I, Cp, C−1p } is strictly

transitive. For prime powers q = pd of the form such that pd+ 1 is a prime power, construct σ and Π in the
following way.

Transitive permutation set. Given a set of permutations 1, 2, ..., k on a set S, we say that the set of
permutations {π1, π2, ..., πi, ..., πk} is transitive on S if for every ordered pair of elements (a, b) ∈ S, there
exists at least one πi for which πi(a) = b.

Sharply transitive. A permutation set for which there is exactly one πi which maps a to b is called sharply
transitive.

We generate the permutations Π = πi and σ according to the following algorithm:

• Generate Cp, a cyclic permutation on the elements of 1...(p) given in standard form: [(p) 1 2 ... (p−1)]..

• Generate a sequence which has elements given by the powers of p from p0 to p(d−1). Let the powers of
p be a set p∗ in increasing order, p∗ = {1, p, p2, ...}

Create the sequence seq of size (r − 1).

For i = 0...(r − 1):

For each pow ∈ p∗, if (i mod pow == 0) set seq[i] = pow.

• Let the first row of Π be given by I. For each row subsequent:

Let the divisor for a permutation πi be given by seq[i].

Traverse the previous permutation πi−1 and apply a local permutation at the level given by seq[i].

• Set the permutation σ = πi(1).

We are able to apply this to powers of 2 or 3, since these powers have strictly transitive cycles {2, 1} and
{3, 1, 2}. However, we limit the problem to powers of 2 for simplicity.

Example. r = 8. Π is generated in the following way for the (r − 1) = 8 case. Then p = 2, d = 3.
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Figure 13: Example of construction of Π for r − 1 = 8

Colors above indicate the local swapping of elements. The resulting permutation gives both the ordering of
Π and the value of a transformation σ. σ is given by the first column,

σ = [ 1 5 7 3 4 8 6 2 ]

In the p = 2 case, the resulting σ is the in-order traversal of a binary tree for p = 2. To see this, create a
tree with d levels (d = 3 in the (r − 1) = 8 = 23 case). At each node, assign the value 2l−1, with l = 1 at
the root. On each edge, assign an operator + to each leftward edge and − to each rightward edge. Then,
perform an in-order traversal of the tree.

Figure 14: Example permutation construction for r = 8

This transformation σ has the property that Σ = {σ, σ2, σ3, σ4, σ5, σ6, I} has one fixed element, σ1 = 1,
and otherwise the elements are sharply transitive with a 7-cycle. Generally, under this construction,
{σ, σ2, ...σr−3, I} has one fixed element and one (r − 2) sized orbital. That is, for every (a, b) ∈ (2...r − 1)2,
∃ a unique σi for which σi(a) = b.

We create the (r−2) 1-intersecting bundles applying Π to each of the elements of Σ = {σ, σ2, σ3, σ4, σ5, σ6, I}.
Any power of sigma can be expressed as the sum of any other powers mod (r − 2). For example,
σ6(σ) = σ7 = σ0 = I. Similarly, σ3(σ4)) = I, σ3(σ2) = σ5, and σ3(σ5) = σ8 = σ1. The resulting
squares are {Π(I),Π(σ),Π(σ2),Π(σ3),Π(σ4),Π(σ5),Π(σ6)}.

We continue the sample illustration below.
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Figure 15: Generating (r-2) 1-intersecting bundles

We pose in Conjecture 22 that our construction yields the following property: For any πi ∈ Π, πi(j) =
k ⇐⇒ πi(k) = j. Thus π−1i = πi and (πi)(πi) = I, the identity.

Assuming this conjecture to be true, we prove the following corollaries about applying Π, Corollary 9.1 and
9.2.

Corollary 9.1. For any permutation p, if applying Π to p forms a matrix with each row given by πip, then
πip(j) = k ⇐⇒ πip

−1(k) = p(j).

Proof. Let πip(j) = k. By the definition of an inverse, if τ [j] = k, then τ−1(k) = j. Consider τ = πip.
The inverse of the permutation composition πip. Then (πip)

−1 = (p−1π); to see this, πipp
−1πi = πiπi = I

by Conjecture 22. We then have that if πip(j) = k, p−1πi(k) = j. Then consider πi(a) = b for some a, b.
(πip)(a) = c, and (πip)(b) = d. Then have that p(b) = c and p(a) = d, p−1(d) = a, p−1(c) = b. Let a = p(j);
k = c. Then p−1(k) = b. πi(b) = a = p(j).

Corollary 9.2. For any row in any A, which is the result of applying Π to some power of σ given as σx,
πi(σ

x)(σ(i)) = 1.

Proof. Let σx be a permutation p. There exists a bijective mapping f : p → I by the definition of a
permutation. Thus taking the elements of p to be the natural elements of I, by Conjecture 22, we have
πi(j) = p(j) iff p(j) = j (or in other words, if p = I). By the construction, σx has the first element fixed as
σx(1) = 1 and all other elements j = 2..n are guaranteed σx(j) 6= j if σx 6= I, by property of the orbital. So
p(j) = j is only true for σx(1) = 1. Thus for a row πiσ

x, (πiσ
x)(j) = πi(j) when j = σ(i) and πi(j) = 1.

Corollary 9.3. For any ith row in any A = Πσx, which is the result of applying Π to some power of σ given
as σx, and any other row i′ in some A′ = Πσy, which is which is the result of applying Π to some power σy,
let σy = σx+N . Then two rows at the same row index i intersect only at their element k at index j given by
j = σ(i): (πiσ

x)(σ(i)) = k = 1 = (πiσ
y)(σ(i)).

Proof. Let σy = σx+N . Then the transformation σx  σy is defined as p = σN . πiσ
x = πi′σ

y if πiσ
N = πi;

we can project the transformation back to take σx = I WLOG. Then take p = σN . We have that πi′σ
N = πi

in two cases. If i = i′, by Corollary 9.1, πip(j) = k ⇐⇒ πip
−1(k) = p(j). Since σN = p, we know

p−1(k) = p(j) iff σN (i) = σr−1−N (i). These are inversely related and since r − 1 must be odd since r is a
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power of 2, σN and σr−1−N are two powers ∈ Σ that are not the same. Thus they share only the element 1
by the construction, and the statement holds only when σ(i) = 1.

Corollary 9.4. For any ith row in any A = Πσx, which is the result of applying Π to some power of σ given
as σx, and any other row i′ in some A′ = Πσy, which is which is the result of applying Π to some power σy,
let σy = σx+N . Then (πiσ

x)(σ(i)) = (πi′σ
y)(σ(i′)) iff i = σN (i′).

Proof. Again, take σy = σx+N . Then the transformation σx  σy is defined as p = σN . As in 9.3, we know
πiσ

x = πi′σ
y if πiσ

N = πi and take p = σN . We now consider the case where i 6= i′.

To summarize the above:

• Setting σ = πi(1) means ∀πi, πi(σ(i)) = 1.

• Additionally, for all elements in any bundle A = Π(σx(i)), πi(σ(i)) = 1 and πi(j 6= σ(i)) = (πiσ
x)(j).

• For x 6= y, σx(j) = σy(j) ⇐⇒ j = 1 and (πiσ
x)(j) = (πiσ

y)(j) ⇐⇒ σ(i) = 1. The ith row of any
A intersects with the ith row of any other A′ iff A(i, j) = 1 = A′(i, j), so any two rows in any two
bundles intersect only at the element 1. Thus all rows given by the same index overlap.

• For all rows i and i′ in two different bundles, i 6= i′, the bundles overlap at some unique k given by the
transformation between the two bundles, σN , applied to

Let the mapping from σi to σj be fij . Then, since σi, σj are both powers of σ, the mapping is also some
power of σ and is also given by some inverse power of σ.

5.6.2 Transforming 1-intersecting bundles to mutually orthogonal Latin squares

We now show that for the bundle construction above, the Latin squares produced in transforming the bundles
to squares will be mutually orthogonal.

Recall that the transform

T : M → A := {Akj = i|Mij = k}

Is a bijective mapping from a Latin square M to a 1-intersecting bundle A which is also a Latin square.
Then we can take

T−1 : A→M := {Mkj = i|Aij = k}

Applying this on the bundles Π(Σ), we have the following. In the lemmas and theorems 10 - 11.1, we refer
to the set of MOLS as M = {M1,M2, ...M (r−2)} and denote M1 = T−1Π, M2 = T−1σΠ, and so forth. We
show:

• Theorem 10. The first row of all M is the permutation σ−1.

• Theorem 11. M1, the transform T−1Π, is symmetric.

• Corollary 11.1. M1’s first column is σ−1.

• Theorem 12. M1 has 1’s along its diagonal.

Theorem 10. The first row of all M is the permutation σ−1. M1j = σ−1(j) for all j,M .

Proof. Recall that each A may be represented Π(σx). For each row πiσ
x in any A which is indexed by i, by

9.2, πiσ
x(σ(i)) = 1. Then we can write Aiσ(i) = 1. In M , M1σ(i) = i. Therefore, M1j = σ−1(j) for all j.
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Theorem 11. The first MOLS, M1, is symmetric by the construction M1 = T−1(Π); M1
ij = M1

ji ∀ (i, j)
coordinates.

Proof. For all πi ∈ Π, πi(a) = b ⇐⇒ πi(b) = a. Let πi(j) = Aij = k. Then Aik = j. This means Mkj = i
and Mjk = i. Thus M1 is symmetric.

Corollary 11.1. In M1, M1
i1 = σ−1(i) for all i.

Proof. This follows from Theorem 11. Πij = 1 when j = σ(i). Thus M1
1 j = i when j = σ(i), and when

j = 1, σ(i) = 1 =⇒ σ−1(j) = i.

Theorem 12. M1 has 1’s along its diagonal, Mii = 1.

Proof. By T−1, any element A1j = k will map to Mkj = 1. This means that for A1j = I, Mjj = 1.

We continue for our example, (r − 2) = 8, taking the elements of ΠΣ to M :

Figure 16: Example transform from ΠΣ to M
.

5.6.3 Transforming MOLS to reduced MOLS

To show that these MOLS are indeed mutually orthogonal, we now would like to define another transform-
ation which is a bijective mapping from the MOLS of M to another set Mreduced. We make use of an
important theorem of Vanpoucke (Theorem 13) on the orthogonality of MOLS and their transforms.

Theorem 13. For a set of MOLS, a random permutation on the alphabet of the Latin squares does not
affect the orthogonality of those Latin squares. [8]
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Applying a permutation on an orthogonal set of Latin squares does not affect the orthogonality. We therefore
define the mapping of the first row of all M , which by Theorem 10 above is the permutation σ−1, to map to
σ. We may permute the alphabet of M with the permutation σ as per the following transform.

T2 : M →Mreduced := {Mreduced(i, j) = k|Mij = σ−1(k)} (1)

It can easily be seen that T2 simply finds the elements in Mij = m given by σ−1(k) = m and replaces them
with their index k. This is akin to the transformation directly on some M(k, j) : Mreduced(k, j) = σ(M(k, j)).
We now show the important properties of these reduced Latin squares which allow us to draw the conclusion
that these squares are orthogonal, thus proving the 1-intersecting property of the bundles in A.

Theorem 14. The first element of Mreduced, M1
reduced, is a symmetric reduced Latin square.

Proof. By Theorem 11, M1 is symmetric, with M1
ij = M1

ji ∀ (i, j). Then T2(M1) = M1
reduced where

Mreduced(i, j) = k|Mij = σ−1(k). If M1
ij = σ−1(k), then M1

ji = σ−1(k), and Mreduced(j, i) = k =

Mreduced(i, j). Furthermore, by Lemma 11.1 we have that all column elements in M1
i1 were given by

σ(i). Thus all column elements in M1
reduced are now M1

reduced(i, 1) = i. Thus M1
reduced is a reduced Latin

square.

Theorem 15. The kth row in MN
reduced is given by πi where i = σ−N (k).

Proof. Let the original 1-intersecting bundles be defined A(i, j) = k. Then consider the corresponding
reduced MOLS by the two transforms we have defined. First, let Mreduced(k, j) = l = σ(M(k, j)). Then
recall by T , M(k, j) = i. So Mreduced(k, j) = σ(i) is the compounded expression Mreduced = T2(T−1(A)).
The value of k for a given bundle AN is (πiσ

N )(j). The value of index Mreduced((πiσ
N )(j), j) = σ(i). We

know πi(j) = k ⇐⇒ πi(k) = j since πi = π−1i ∀ πi. We would like to show Mreduced(k, j) = πσ−N (k)(j).

So we must show σ(i) = πσ−N (k)(j). The inverse of σN is σr−1−N , which is σ−N . Then σ = σ1−NσN . We

can express the first element in any row which is the result of applying πi on σN as πiσ
N (j) = σN+1(i).

Applying the inverse property, πiσ
N+1(i) = σN (j), and πiσ(i) = j for the first group. Now we consider

the index i = σ−N (k). πσ−N (k)σ(σ−N (k)) = j and we can apply the inverse property yet again to yield

πσ−N (k)(j) = σ(σ−N (k)). Finally, σ(σ−N (k)) = σ(1−N)(k) and k = σN (i). Distributing through, we have
πσ−N (k)(j) = σ(i). Thus proven.

Each row in a square in M is given by π(σ−N (i))(σ
−1). Since we simply replace σ−1(j) with j, each row for

the Nth Latin square MN
reduced is given by π(σ−N (i)). These conjectures are demonstrated in our example

case for (r − 1) = 8:
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Figure 17: Example transform from M to Mreduced

.

Theorem 16. Let τi and τj be two automorphisms. Two reduced squares Mireduced and Mjreduced will be
orthogonal provided that the automorphisms τi and τj have the property that u(τi) 6= u(τj) for any element
u other than the identity in {I, U2, U3, ..., U(r− 2)}, some group of (r− 2) permutations keeping one symbol
fixed. [12]

Corollary 16.1. All pairs MN
reduced, MN ′

reduced are mutually orthogonal.

Proof. We must show each row of each square in MN
reduced is given by a τi st MN (τi) 6= MN (τj). Let

MN = u and πi = τi. In fact no row i in MN
reduced given by π(σ−N (i)) will have any elements in common

with any other row j in MN
reduced besides the identity. Thus every MN

reduced is a valid Latin square. For some

other MN ′

reduced, r = (σ−N (i) 6= σ−N
′
(i) = r′. Since each MN

reduced is a permutation on Π, the row πr must

appear at some j 6= i in MN ′

reduced. No πi share any elements with any other πi, so u(τi) 6= u(τj) for any

MN
reduced. Then MN ′

reduced share one row in common, I, and for all other (i, j), i = 2...(r − 1), j = 1...(r − 1),

MN
reduced(i, j) 6= MN ′

reduced(i, j).

Theorem 17. For any MN
reduced the first element in a row i (which is equivalent to the column) gives the

positions of the element 1 in the row i; that is, MN
reduced(i, 1) = k =⇒ MN

reduced(i, k) = 1.

Proof. This simply follows from the fact that each row is a permutation πi. As per the assumption in
Conjecture 22, all πi have the property that πi(j) = k ⇐⇒ πi(k) = j.

We put the MOLS in reduced form by applying T2(MN ) = MN
reduced, and we show these reduced form

Latin squares are indeed mutually orthogonal. Since we have shown that we constructed a set of mutually
orthogonal Latin squares Mreduced, M is also a set of (r − 2) MOLS and the original 1-intersecting bundles
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are valid 1-intersecting bundles. However, we can still perform one more step to generate another set of
1-intersecting bundles, which have the symmetric property.

5.6.4 Casing reduced MOLS to 1-intersecting bundles

We re-apply the transform T to the set Mreduced to yield a new set of 1-intersecting bundles. We show
several key properties of this new set:

Theorem 18. For the first square in the set,M1
reduced, M1

reduced(i, j) = k ⇐⇒ M1
reduced(k, i) = j.

Proof. M1
reduced has M1

reduced(j, j) = 1; M1
reduced(1, j) = j and M1

reduced(i, 1) = i. In general, the location
j of the elements k in the ith row is given by the element M1

reduced(k, i). That is, M1
reduced(i, j) = k ⇐⇒

M1
reduced(k, i) = j.

Corollary 18.1. If M1
reduced is a reduced form Latin square, A1

reduced = T (M1
reduced) = M1

reduced.

Proof. By the symmetry of M1
reduced,M

1
reduced(k, i) = M1

reduced(i, k) = j Translating to a, A1
reduced(k, j) =

i ⇐⇒ A1
reduced(j, i) = k = A1

reduced(i, j). M1
reduced(i, j) = M1

reduced(j, i) = k. Then A1
reduced(i, j) =

A1
reduced(j, i) and A1

reduced(j, j) = 1.

Theorem 19. ANreduced = T (MN
reduced) for any MN

reduced ∈Mreduced =⇒ AN (i, i) = 1.

Proof. Because all MN
reduced ∈ Mreduced have a first row given by I, by definition of reduced, we can write

the elements MN
reduced(1, j) = j. Then by the transform, ANreduced(j, j) = 1.

Corollary 19.1. ANreduced = T (MN
reduced) for any MN

reduced ∈ Mreduced =⇒ the first row (and column) of
ANreduced is given by σN−2.

In the example in Figure 18, the final 1-intersecting bundles which correspond to the reduced-form MOLS
are permutations on the original σi values under the normalized symbol set. Generally, the theorems above
can be summarized in the following observations:

• Since πi(i) = 1 ∀i, σi(1) = 1 ∀σ, and σ(1) = 1, the diagonal of every bundle is 1. This holds for a
bundle of any MOLS in reduced form.

• Similarly, πi(1) = σ(i), meaning the first row is mirrored as the first column; this also holds for any
MOLS in reduced form.

• Finally, πi(j) = k ∀(j, k) 6= i, so Aij = Aji = k and A is in fact a symmetric Latin square with A = AT .

The final normalized MOLS and corresponding 1-intersecting bundles under our example are:
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Figure 18: Reduced-form MOLS and corresponding bundles from novel construction, (r − 1) = 8

5.7 Vertex cover in the maximally sized 1-intersecting graph

We now return to the original problem. In the maximally sized set of 1-intersecting bundles, every edge
intersects every other edge in every other bundle exactly once. Thus the vertices contained in any one edge
are a valid cover (with r edges), and in fact the vertices contained in any one part are a valid cover. Since we
have shown there are r − 1 vertices in every part, taking any part to be the cover gives a valid (r − 1)-sized
vertex cover.

Theorem 20. In the maximally sized 1-intersecting hypergraph, every vertex has degree r − 1.

Proof. We have two cases here: either a vertex is in some 1-intersecting bundle, or it is the vertex in which
the 1-intersecting bundle is incident upon. If the latter, then the (r − 1) edges in the 1-intersecting bundle
are the only edges incident upon that vertex by definition, and the vertex has degree (r − 1). Now consider
any vertex in a 1-intersecting bundle. We know any edge in a bundle necessarily intersects the (r− 1) edges
in (r − 2) other bundles. Additionally it may not intersect any of these other edges more than once. There
are (r− 1) possible places to intersect, and (r− 1)(r− 2) edges to intersect. Thus exactly (r− 2) edges must
intersect the first at at each vertex, and therefore the degree of that vertex is (r − 1).
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In fact in the maximally sized 1-intersecting hypergraph, all edges have degree dv = (r − 1). We next show
that if all edges have dv = (r − 1), the part size must be (r − 1).

Theorem 21. If a hypergraph is (r − 1)-regular and r-partite, then the size of every Vi ∈ V is (r − 1).

Proof. This is a simple proof by counting over the edges and over the parts. Summing over the vertex degrees
in the edges,

∑
v dv =

(
r−1
2

)
= rm. Since m = (r − 1)2 in the prime power case, the sum over degrees is

r(r − 1)2. In another way of counting, we have r parts, x vertices per part, and dv degree of each vertex.
There are r parts and r−1 is the degree of the vertex. Therefore r(r−1)(x) = r(r−1)2 =⇒ x = r−1.

We conclude that we may select (r−1) vertices from the same part which yield a valid vertex cover, therefore
proving Ryser in this very limited setting.

5.8 Other areas of note

5.8.1 Maximizing 1-intersecting hypergraph for non prime-power orders

Extensive research has gone into the construction of MOLS for non-prime powers. MOLS for non-primes have
different constructions from primes and prime powers. Perhaps the most useful is the Kronecker Product of
two Latin Squares of order m and n respectively. This will yield an mn×mn square whose symbols given as
ordered pairs of the smaller array can be assigned to the natural ordering of symbols to yield a Latin square.
Then we have

N(mn) ≥ min(N(m), N(n))

[27].

In fact no pair of orthogonal Latin squares exists for the order n = 6 [24]. Does this mean for a 7-partite
hypergraph it is impossible to achieve even 3(r − 1) edges? The case seems improbable, but is certainly an
open question for more exploration.

5.8.2 Applications of MOLS

One interesting application of MOLS is the problem of creating error-correcting codes, used to control errors
in noisy data over telecommunication channels. Tang [27] shows via construction the equivalence between
the existence of a number of MOLS and the existence of error-correcting codes of a q-ary q2 code.

The construction we pose seems to be related to the primitive root construction for applications in other
signal processing domains. For example, the Fast Fourier transform generates its pairings using reverse-order
readings of the binary digits of 1...N samples, hence applying a similar operation in a binary pairing but
lacking the additional level of negation.

Another important application is in cryptography; Latin squares, and MOLS, can be used in the creation of
codes. A message of length m can be encoded via MOLS. In particular, only 2 MOLS of order m are needed
to encrypt a message of length m. The only impossible message lengths are therefore m = 2 and m = 6 [?].

5.8.3 Cyclic permutation algorithm for other prime powers

It was conjectured in Section 5.6.1 that this process may be replicated for other prime powers. In fact we
empirically find that the process does work for powers of 3, and include some of the constructions here for
interest. The major difference in the choice of the powers of 3 is that the strictly transitive permutation on
3 is (3 1 2) instead of (2 1) and therefore the construction of the permutation matrix Π depends on a local
3-cycle instead of πi(j) = k ⇐⇒ πi(k) = j. The permutations πi are therefore no longer their own inverse,
but their own cyclic multiples, πi(πi(πi) = π3

i = I.
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Sub-groups therefore follow the pattern in the r − 1 = 9 case: (1 2 3), (3 1 2), (2 3 1). When the elements
switch locally, they follow the same pattern. In Figure 19, following the triplet (1 2 3) shows it first in triple
position 1, then 2, then 3; then the elements permute locally to (3 1 2) and follow the pattern in the triple
positions (3 1 2); and so forth for the final 3 positions, (2 3 1).

Figure 19: Example of construction of Π for r − 1 = 9

We include the reduced MOLS and symmetric 1-intersecting bundles for r − 1 = 9 in the interest of illus-
trating the differences between the strictly transitive permutations on 3 and 2. For p = 3, if seq[i] = 3 and
Cp is (312), C−1p = (231) then π1, the identity [1 2 3 4 5 6 7 8 9 ] would be permuted to  [ 7 8 9 1 2 3 4 5
6 ]. Applying the same permutation to the next row yields  [ 4 5 6 7 8 9 1 2 3 ]. Then, as seq(3) = 1, we
now apply the permutation at the local level, [ 4 5 6 7 8 9 1 2 3 ]  [ 6 4 5 9 7 8 3 1 2 ]. This is equivalent
to applying C−1p to I at the 3 level and then Cp at the 1-level.

Doing so yields σ = [ 1 7 4 6 3 9 8 6 2 ]. We then may construct (r − 2) = 8 mutually orthogonal Latin
squares from the cyclic permutation approach.
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Figure 20: Reduced-form MOLS and corresponding bundles from novel construction, (r − 1) = 8

We conjecture the following.

Conjecture 22. If (r− 1) is a prime power, expressed (r− 1) = pd, such that pd+ 1 is also a prime power
with pd + 1 = p′d

′
such that p′d′ + 1 is a prime power, and recursively so forth, then the result returned by

the cyclic permutation algorithm Π and σ have the property that all πpi = I, and the element 1 is fixed in σ
with the subsequent r − 2 elements forming an (r − 2) orbital.

As of writing, we have no concrete proof of Conjecture 22. However, we observe the following patterns
empirically. Note that some powers of 3 work because they have a sharply transitive permutation as well.
We verify empirically using Java that the construction works for certain prime powers, as shown in Table 9.
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r − 1 prime power succeeds
3 3 Y
4 22 Y
5 5 N
8 23 Y
9 32 Y
16 24 N
25 52 N
27 33 N
32 25 Y
64 26 Y
81 34 N
128 27 N
243 35 Y
256 28 N
512 29 N
1024 210 Y

Table 9: Prime powers for which the cyclic permutation construction empirically succeeds

5.8.4 Implications for Ryser

Lovász conjectures that the inequality in Ryser’s Conjecture cannot be improved when (r − 1) is a prime
power [1]. This conjecture poses an interesting overlap between the condititions under which maximally sized
1-intersecting hypergraphs are possible and the conditions under which the maximally sized hypergraphs in
general arise.

Our findings confirm this conjecture since we are able to show that a maximally sized hypergraph is possible
if (r − 1) is a prime power, |M | = 1, and k = 1. theorize this could be due to an optimal distribution of
vertices which is possible under these conditions, maximizing the size of the 1-intersecting hypergraph, and
thereby making it quite difficult to find a good candidate vertex cover even for general hypergraphs. In the
k-intersecting hypergraph the problem is even less constrained; and when the intersection size is not defined,
this is |M | = 1. There may be some application of the intuition of optimally spreading out edges which leads
to more difficult vertex covers.

6 Code

Code related to this effort has been published on GitHub at
https://github.com/annadodson787/Honors-Thesis---Ryser-for-Intersecting-Hypergraphs.

In the repo, four main-method files comprise the algorithmic approach:

• PartitionedGraphDriver.java

• PermutationCycle.java

• MOLSGenerator.java

• Edge Score Visualizer.iypnb

The code related to this the |M | = 1 reactive hypergraph and the 1-intersecting reactive hypergraph (em-
pirical findings) is available in the file PartitionedGraphDriver.java. The generative algorithm for the 1-
intersecting bundles is found in PermutationCycle.java. The generative algorithm which uses the traditional
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finite field generative algorithm and casts the resulting MOLS to a 1-intersecting bundle is found in MOLS-
Generator.java. The metrics and visualizations are found in Edge Score Visualizer.ipynb.

6.0.1 PartitionedGraphDriver.java

PartitionedGraphDriver.java is the main file for the reactive hypergraph and is structured in several classes
and objects. It must represent a hypergraph, generate vertex covers and edges as per the algorithms outlined
above, and drive the game between Alice and Bob.

The hypergraph is represented as Vertex and Edge objects. When creating a partitioned hypergraph, the
number of parts is specified (N in the code), and the size of the maximal matching is specified (M in the
code). Each Edge therefore has degree N . It is represented as an array of Vertex objects. Each Vertex
object has a PartName and an integer value. The PartName is an enumeration of parts v11....v1N , where
N is the number of parts in the hypergraph. The value i is the ith vertex in a given part. Edges also have
associated metric counters for visualizations that must be set on them by the driving methods.

The hypergraph itself has several properties as well. It has a order (set by N), a set of Edges, and several
mappings. The vertexToEdgeMap is a mapping of all vertices in the hypergraph to edges they participate
in; that is, edges they are incident on. The partToV ertexMap is a map of a given part to all vertices in that
part. The stringToV ertexMap is a quick way to lookup vertices for the CLI feature. A hypergraph also
has associated strings for building out the game. Since the games are generated recursively in many cases,
we manage the string objects to print out the games when they terminate.

The driving methods are four in number:

1. playGreedyGame - back-and-forth between Alice and Bob, playing with the vertex cover algorithm
and greedy reactive edges.

2. playBruteForceGameRecursive - recursively explores every possible move that Bob could generate at
a given step, with options to recurse on all edges, all greedy edges or all 1-overlap edges.

playBruteForceGameRecursiveHelper

playBruteForceGameOverlapRecursiveHelper

recursiveGreedyCandidateHelper

3. playCLIGame - allows user to specify the edge they wish to play. The game verifies that the edge is
valid and reacts accordingly, adding the edge to the hypergraph and playing a new vertex cover.

4. (deprecated) playBruteForceGame - uses a FIFO queue to create a new hypergraph object for every
game; extremely computationally costly, but works the same as the recursive method without needing
to store the game strings.

The algorithms for the vertex cover include 2 different approaches, one which removes all edges already hit
and the other which uses just those vertices of maximum participates.

1. aliceAlgorithm - the algorithm for choosing a vertex cover which does not update the priority queue,
choosing the (r − 1) vertices with top maximal degree in the hypergraph.

2. greedyAlice - the same, but removing the edges incident on each vertex chosen and updating a set
edgesLeftToHit

The PartitionedGraphRestructured keeps track of the current state of a hypergraph with the following prop-
erties: order, depth, and several scoring metrics. It maintains a set of edges in the hypergraph, and the
mappings of vertices to incident edges, parts to vertices in the part, and strings to vertices (for easy lookup).
It also builds out a string that represents a transcript of a given hypergraph which terminates when there
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are no possible edges to play in reaction to a vertex cover choice. PartitionedGraphRestructured objects can
be initialized from scratch by specifying order, or from an existing hypergraph, in which case all objects in
the old hypergraph are cloned into new parts in memory to avoid issues with pointer modification.

The algorithms for generating the reactive hypergraph include several: one for generating a single greedy
edge as per the algorithm, one which generates all greedy edges, one which generates all edges, and one
which generates all edges that satisfy the 1-overlapping property.

The methods available within the PartitionedGraphRestructured as are follows:

1. addEdge - adds a new edge to the PartitionedGraphRestructured.

2. removeEdge - removes an existing edge from the PartitionedGraphRestructured.

3. generateAllMoves - generate all possible moves in response to a VC choice and the current state of the
hypergraph.

addAllPossibleEdges - helper method to recursively get the set of possible edges.

4. generateAllGreedyMoves - generate all possible moves which are considered ‘greedy’ (i.e. maximize
edge participation in the vertex choices) in response to a VC choice and the current state of the
hypergraph.

addAllGreedyEdges - helper method to recursively get the set of greedy edges.

5. generateOverlapMoves - generate all moves which overlap every other edge just once in response to a
VC choice and the current state of the hypergraph

addAllOverlapEdges - helper method to recursively get the set of overlap edges.

6. generateMove - generates a single move as per the greedy algorithm in response to a vertex cover.

7. stringRepresentation - represent the hypergraph as a string; this gives the ‘game transcript’ which can
be found in this document and in its supporting files.

8. generateCountString - helper method to represent the degrees of vertices in the hypergraph at a given
time step.

9. scoreCandidateEdge - explore ways of scoring edges as per greediness or other metrics.

scoreCandidateHelper - helper for the score method.

10. candidateEdgeIsGreedy - returns whether a candidate edge choice is greedy, taking any possible order-
ing of the vertices in it.

recursiveGreedyCandidateHelper - helper method for greediness evaluation.

The class also includes a number of methods for formatting, scoring, and generating metrics (.csv files) for
further parsing.

6.0.2 PermutationCycle.java

The class PermutationCycle.java generates maximal sets of 1-intersecting bundles for prime power r-partite
hypergraphs which take the form r−1 = pd st pd+1 is a prime power using the cyclic permutation algorithm.
It illustrates the construction of the (r− 1) bundles, verifies them, casts them to MOLS, reduces the MOLS,
and casts them back to 1-intersecting bundles with the property that all bundles intersect with all other
bundles on the diagonal.
Important methods include:

1. generateDivisorSequence - generate the divisor sequence as per the cyclic permutation algorithm.
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2. generatePermutations - generate the matrix Π based upon the cyclic permutation algorithm.

3. generatePermutationSet(deprecated) - places all the permutations into a set for lookup, then creates
a matrix based on a seed order

4. generateBundle - generate a 1-intersecting bundle given a seed (akin to σ) and a permutation matrix
Π.

5. applyPermutation - helper method for applying a permutation.

6. getCol1 - returns the first column of a (r− 1)× (r− 1) matrix, which may be used as the seed for the
following matrix.

7. getDiag (deprecated) - returns the diagonal of a (r − 1) × (r − 1) matrix, which may be used as the
seed for the following matrix.

8. addAllRows - adds all rows to a set for lookup

9. checkRowIsFirstRow - quickly checks whether this bundle has been seen before; i.e., if we have reached
a cycle before (r − 2) iterations and thus the cyclic decomposition of σ is less than (r − 2).

10. checkRow - checks a row against all previous rows and ensures it 1-intersects all previous rows.

11. isSameAsPreviousRow - returns whether or not a new row is identical to a previous row

12. MOLSto1Intersecting - Applies the transform T .

MOLSto1Intersecting - Applies the transform, in the other direction.

13. rearrangeSymbols - helper method to reassign the symbols of a matrix according to the natural elements
1...(r − 1) given a seed array and replacing all instances of the ith element in the array with i.

14. inverse - helper method to compute the inverse of a permutation.

The output of running PermutationCycle.java with an input prime power q = pd is as follows:

• If q = pd is not of the form such that pd + 1 is a prime power, then the program will terminate early
and will first print the generator sequence, followed by the length of the cycle in the permutation that
is generated by the sequence.

• If q = pd is of the form pd+ 1 a prime power, the program will generate a set of (q − 1) MOLS and 1-
intersecting bundle pairs. It will first print the generator sequence. It will then print the (r-1) bundles,
followed by the (r-1) the MOLS in non-reduced form, convert them, and print them in reduced form
with the corresponding 1-intersecting bundles with 1 on the diagonal.

6.0.3 MOLSGenerator.java

The MOLSGenerator uses the finite field approach to MOLS construction for prime powers of the form q = pd,
casts MOLS to reduced MOLS to 1-intersecting bundles, and checks the validity of those 1-intersecting
bundles. It currently uses a hard-coded bit representation of the primitive polynomial where each bit
represents whether the term xb is present, for b = 0 is the LSB and b = d− 1 is the MSB. As such, several
methods are overlapping with PermutationCycle.java.

1. GFAdd - generates the Galois Field addition table for a given primitive polynomial and prime power.

2. GFMult - generates the Galois Field multiplication table for a given primitive polynomial and prime
power.

3. getDegree - helper to get the degree of the primitive polynomial that was chosen as the seed.
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4. MOLSto1Intersecting - as above.

5. addAllRows - as above.

6. checkRow - as above.

7. isSameAsPreviousRow - as above.

The output of running MOLSGenerator.java with an input prime power of 2 q is a set of (q− 1) MOLS and
1-intersecting bundle pairs.

6.0.4 Edge Score Visualizer.iypnb

The Python file Edge Score Visualizer.iypnb is a visualization tool which allows breakdown of hypergraphs
in logfiles by their size. The program hypergraphs for each game the metric of choosing for each of Bob’s
plays and juxtaposes them on top of each other based on the size of the hypergraph.

The program relies on the Anaconda3+Jupyter+Python environment and uses Pandas to read .csvs into a
dataframe for further handling.

6.0.5 Supporting Documents

Several logfiles are generated by the PartitionedGraphDriver to empirically view the greediness and recursions
of the generative algorithms in the reactive hypergraph. These files are included in the GitHub repo, which
can be found here: https://github.com/annadodson787/Honors-Thesis---Ryser-for-Intersecting-Hypergraphs.

The Jupyter notebook and corresponding python code in EdgeScoreVisualizer.iypnb uses these metrics to
generate the figures above, among others, using Pandas dataframes along with the matplotlib library. In-
complete CSV data are read in and nonetypes removed to generate dataframes for each object.

Each line in the supporting data files represents a game. Each step represents a metric associated with one
of Bob’s edge choices. The supporting data files (for the r = 4 case, in the repo):

• depths.csv: represents the number of playable edges at each depth in the hypergraph.

• gamescores.csv: uses a scoring metric which determines how many prior edges are hit by one of Bob’s
edge choices at each step in the brute-force hypergraph.

• greedy.csv: represents whether or not Bob’s edge choice was greedy at a given step.

• moves.csv: string representations of all of Bob’s moves.

• options.csv: string representations of all of Bob’s possible moves.

These files are used in the script EdgeScoreVisualizer.iypnb.

Also included in the GitHub repo: the slide deck from the Computer Science honors presentation, and a
supplementary PDF of the game script for all of the greedy games in the r = 4 case, for further interest.
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