41,430 research outputs found

    PAD: A New Interactive Knowledge-Based Analog Design Approach

    Get PDF
    This paper presents a new Procedural Analog Design tool called PAD. It is a chart-based design environment dedicated to the design of analog circuits aiming to optimize design and quality by finding good tradeoffs. This interactive tool allows step-by-step design of analog cells by using guidelines for each analog topology. Its interactive interface enables instantaneous visualization of design tradeoffs. At each step, the user modifies interactively one subset of design parameters and observes the effect on other circuit parameters. At the end, an optimized design is ready for simulation (verification and fine-tuning). The present version of PAD covers the design of basic analog structures (one transistor or groups of transistors) and the procedural design of transconductance amplifiers (OTAs) and different operational amplifier topologies. The basic analog structures' calculator embedded in PAD uses the complete set of equations of the EKV MOS model, which links the equations for weak and strong inversion in a continuous way [1, 2]. Furthermore, PAD provides a layout generator for matched substructures such as current mirrors, cascode stages and differential pair

    MOLNs: A cloud platform for interactive, reproducible and scalable spatial stochastic computational experiments in systems biology using PyURDME

    Full text link
    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools, a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments

    One-dimensional collision carts computer model and its design ideas for productive experiential learning

    Full text link
    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In the field of designing computer simulations, we discuss briefly three pedagogical considerations such as 1) consistent simulation world view with pen paper representation, 2) data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and 3) game for simple concept testing that can further support learning. We also suggest using physical world setup to be augmented complimentary with simulation while highlighting three advantages of real collision carts equipment like tacit 3D experience, random errors in measurement and conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes. 2015 Resources added: http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3), 301 (2012); ISSN 0031-912

    Facilitating insight into a simulation model using visualization and dynamic model previews

    Get PDF
    This paper shows how model simplification, by replacing iterative steps with unitary predictive equations, can enable dynamic interaction with a complex simulation process. Model previews extend the techniques of dynamic querying and query previews into the context of ad hoc simulation model exploration. A case study is presented within the domain of counter-current chromatography. The relatively novel method of insight evaluation was applied, given the exploratory nature of the task. The evaluation data show that the trade-off in accuracy is far outweighed by benefits of dynamic interaction. The number of insights gained using the enhanced interactive version of the computer model was more than six times higher than the number of insights gained using the basic version of the model. There was also a trend for dynamic interaction to facilitate insights of greater domain importance

    Simulation and Visualization of Thermal Metaphor in a Virtual Environment for Thermal Building Assessment

    Get PDF
    La référence est présente sur HAL mais est incomplète (il manque les co-auteurs et le fichier pdf).The current application of the design process through energy efficiency in virtual reality (VR) systems is limited mostly to building performance predictions, as the issue of the data formats and the workflow used for 3D modeling, thermal calculation and VR visualization. The importance of energy efficiency and integration of advances in building design and VR technology have lead this research to focus on thermal simulation results visualized in a virtual environment to optimize building design, particularly concerning heritage buildings. The emphasis is on the representation of thermal data of a room simulated in a virtual environment (VE) in order to improve the ways in which thermal analysis data are presented to the building stakeholder, with the aim of increasing accuracy and efficiency. The approach is to present more immersive thermal simulation and to project the calculation results in projective displays particularly in Immersion room (CAVE-like). The main idea concerning the experiment is to provide an instrument of visualization and interaction concerning the thermal conditions in a virtual building. Thus the user can immerge, interact, and perceive the impact of the modifications generated by the system, regarding the thermal simulation results. The research has demonstrated it is possible to improve the representation and interpretation of building performance data, particularly for thermal results using visualization techniques.Direktorat Riset dan Pengabdian Masyarakat (DRPM) Universitas Indonesia Research Grant No. 2191/H2.R12/HKP.05.00/201

    Improving Shape Depiction under Arbitrary Rendering

    Get PDF
    International audienceBased on the observation that shading conveys shape information through intensity gradients, we present a new technique called Radiance Scaling that modifies the classical shading equations to offer versatile shape depiction functionalities. It works by scaling reflected light intensities depending on both surface curvature and material characteristics. As a result, diffuse shading or highlight variations become correlated to surface feature variations, enhancing concavities and convexities. The first advantage of such an approach is that it produces satisfying results with any kind of material for direct and global illumination: we demonstrate results obtained with Phong and Ashikmin-Shirley BRDFs, Cartoon shading, sub-Lambertian materials, perfectly reflective or refractive objects. Another advantage is that there is no restriction to the choice of lighting environment: it works with a single light, area lights, and inter-reflections. Third, it may be adapted to enhance surface shape through the use of precomputed radiance data such as Ambient Occlusion, Prefiltered Environment Maps or Lit Spheres. Finally, our approach works in real-time on modern graphics hardware making it suitable for any interactive 3D visualization

    Man-in-the-control-loop simulation of manipulators

    Get PDF
    A method to achieve man-in-the-control-loop simulation is presented. Emerging real-time dynamics simulation suggests a potential for creating an interactive design workstation with a human operator in the control loop. The recursive formulation for multibody dynamics simulation is studied to determine requirements for man-in-the-control-loop simulation. High speed computer graphics techniques provides realistic visual cues for the simulator. Backhoe and robot arm simulations are implemented to demonstrate the capability of man-in-the-control-loop simulation
    • …
    corecore