77,717 research outputs found

    Complexity plots

    Get PDF
    In this paper, we present a novel visualization technique for assisting in observation and analysis of algorithmic\ud complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of\ud measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and blackbox software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application

    USEM: A ubiquitous smart energy management system for residential homes

    Get PDF
    With the ever-increasing worldwide demand for energy, and the limited available energy resources, there is a growing need to reduce our energy consumption whenever possible. Therefore, over the past few decades a range of technologies have been proposed to assist consumers with reducing their energy use. Most of these have focused on decreasing energy consumption in the industry, transport, and services sectors. In more recent years, however, growing attention has been given to energy use in the residential sector, which accounts for nearly 30% of total energy consumption in the developed countries. Here we present one such system, which aims to assist residential users with monitoring their energy usage and provides mechanisms for setting up and controlling their home appliances to conserve energy. We also describe a user study we have conducted to evaluate the effectiveness of this system in supporting its users with a range of tools and visualizations developed for ubiquitous devices such as mobile phones and tablets. The findings of this study have shown the potential benefits of our system, and have identified areas of improvement that need to be addressed in the future

    Coverage and Deployment Analysis of Narrowband Internet of Things in the Wild

    Full text link
    Narrowband Internet of Things (NB-IoT) is gaining momentum as a promising technology for massive Machine Type Communication (mMTC). Given that its deployment is rapidly progressing worldwide, measurement campaigns and performance analyses are needed to better understand the system and move toward its enhancement. With this aim, this paper presents a large scale measurement campaign and empirical analysis of NB-IoT on operational networks, and discloses valuable insights in terms of deployment strategies and radio coverage performance. The reported results also serve as examples showing the potential usage of the collected dataset, which we make open-source along with a lightweight data visualization platform.Comment: Accepted for publication in IEEE Communications Magazine (Internet of Things and Sensor Networks Series

    Energy Efficiency Prediction using Artificial Neural Network

    Get PDF
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a dataset for building energy performance. The main factors for input variables are: relative compactness, roof area, overall height, surface area, glazing are a, wall area, glazing area distribution of a building, orientation, and the output variables: heating and cooling loads of the building. The dataset used for training are the data published in the literature for various 768 residential buildings. The model was trained and validated, most important factors affecting heating load and cooling load are identified, and the accuracy for the validation was 99.60%

    GIS-3D Platform to Help Decision Making for Energy Rehabilitation in Urban Environments

    Get PDF
    One of the main current challenges of European cities is to become energy self-sufficient entities. One of the vectors for this challenge is to improve the energy efficiency of the buildings and to promote the generation of renewable energies in the urban environment. The article describes a tool based on GIS-3D technologies to support the identification of the energy rehabilitation potential of neighbourhoods based on the introduction of renewable energies. The platform is based on a urban 3D model that collects the geometry of buildings, together with relevant information for the identification of rehabilitation opportunities (e.g. surfaces, heights, orientations and slopes). The project includes the generation of a cloud-based repository, which incorporates active and passive innovative solutions with metrics that allow the comparison of the solutions and the applicability of them to the real environment. The identification of rehabilitation opportunities combines information resulting from the diagnosis of the current energy performance of the district's buildings with the potential for renewable generation in the area. A multicriteria analysis process facilitates the identification of the most appropriate rehabilitation solutions for the analysed environment based on different criteria as energy, cost or applicability. The result can be visualized through a web tool that combines 2D and 3D information, with comparative information in a quantitative and geo-referenced manner. The flexibility of the architecture allows the application of the same approach to different urban challenges as the application of energy conservation measures to protected historic urban areas.The work of this paper has been done as part of the projects RE3D “Energy Rehabilitation in 3D” and RE2H “Energy Retrofitting of Historic Districts”, both partially funded by Basque Government, with references ZL-2017/00998 and ZL-2017/00981 respectively

    Modelling and visualizing sustainability assessment in urban environments

    Get PDF
    Major urban development projects extend over prolonged timescales (up to 25 years in the case of major regeneration projects), involve a large number of stakeholders, and necessitate complex decision making. Comprehensive assessment of critical information will involve a number of domains, such as social, economic and environmental, and input from a wide a range of stakeholders. This makes rigorous and holistic decision making, with respect to sustainability, exceptionally difficult without access to appropriate decision support tools. Assessing and communicating the key aspects of sustainability and often conflicting information remains a major hurdle to be overcome if sustainable development is to be achieved. We investigate the use of an integrated simulation and visualization engine and will test if it is effective in: 1) presenting a physical representation of the urban environment, 2) modelling sustainability of the urban development using a subset of indicators, here the modelling and the visualization need to be integrated seamlessly in order to achieve real time updates of the sustainability models in the 3D urban representation, 3) conveying the sustainability information to a range of stakeholders making the assessment of sustainability more accessible. In this paper we explore the first two objectives. The prototype interactive simulation and visualization platform (S-City VT) integrates and communicates complex multivariate information to diverse stakeholder groups. This platform uses the latest 3D graphical rendering techniques to generate a realistic urban development and novel visualization techniques to present sustainability data that emerge from the underlying computational model. The underlying computational model consists of two parts: traditional multicriteria evaluation methods and indicator models that represent the temporal changes of indicators. These models are informed from collected data and/or existing literature. The platform is interactive and allows real time movements of buildings and/or material properties and the sustainability assessment is updated immediately. This allows relative comparisons of contrasting planning and urban layouts. Preliminary usability results show that the tool provides a realistic representation of a real development and is effective at conveying the sustainability assessment information to a range of stakeholders. S-City VT is a novel tool for calculating and communicating sustainability assessment. It therefore begins to open up the decision making process to more stakeholders, reducing the reliance on expert decision makers
    corecore