1,576 research outputs found

    Road terrain detection for Advanced Driver Assistance Systems

    Get PDF
    Kühnl T. Road terrain detection for Advanced Driver Assistance Systems. Bielefeld: Bielefeld University; 2013

    VMA: Divide-and-Conquer Vectorized Map Annotation System for Large-Scale Driving Scene

    Full text link
    High-definition (HD) map serves as the essential infrastructure of autonomous driving. In this work, we build up a systematic vectorized map annotation framework (termed VMA) for efficiently generating HD map of large-scale driving scene. We design a divide-and-conquer annotation scheme to solve the spatial extensibility problem of HD map generation, and abstract map elements with a variety of geometric patterns as unified point sequence representation, which can be extended to most map elements in the driving scene. VMA is highly efficient and extensible, requiring negligible human effort, and flexible in terms of spatial scale and element type. We quantitatively and qualitatively validate the annotation performance on real-world urban and highway scenes, as well as NYC Planimetric Database. VMA can significantly improve map generation efficiency and require little human effort. On average VMA takes 160min for annotating a scene with a range of hundreds of meters, and reduces 52.3% of the human cost, showing great application value

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Percepção do ambiente urbano e navegação usando visão robótica : concepção e implementação aplicado à veículo autônomo

    Get PDF
    Orientadores: Janito Vaqueiro Ferreira, Alessandro Corrêa VictorinoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia MecânicaResumo: O desenvolvimento de veículos autônomos capazes de se locomover em ruas urbanas pode proporcionar importantes benefícios na redução de acidentes, no aumentando da qualidade de vida e também na redução de custos. Veículos inteligentes, por exemplo, frequentemente baseiam suas decisões em observações obtidas a partir de vários sensores tais como LIDAR, GPS e câmeras. Atualmente, sensores de câmera têm recebido grande atenção pelo motivo de que eles são de baixo custo, fáceis de utilizar e fornecem dados com rica informação. Ambientes urbanos representam um interessante mas também desafiador cenário neste contexto, onde o traçado das ruas podem ser muito complexos, a presença de objetos tais como árvores, bicicletas, veículos podem gerar observações parciais e também estas observações são muitas vezes ruidosas ou ainda perdidas devido a completas oclusões. Portanto, o processo de percepção por natureza precisa ser capaz de lidar com a incerteza no conhecimento do mundo em torno do veículo. Nesta tese, este problema de percepção é analisado para a condução nos ambientes urbanos associado com a capacidade de realizar um deslocamento seguro baseado no processo de tomada de decisão em navegação autônoma. Projeta-se um sistema de percepção que permita veículos robóticos a trafegar autonomamente nas ruas, sem a necessidade de adaptar a infraestrutura, sem o conhecimento prévio do ambiente e considerando a presença de objetos dinâmicos tais como veículos. Propõe-se um novo método baseado em aprendizado de máquina para extrair o contexto semântico usando um par de imagens estéreo, a qual é vinculada a uma grade de ocupação evidencial que modela as incertezas de um ambiente urbano desconhecido, aplicando a teoria de Dempster-Shafer. Para a tomada de decisão no planejamento do caminho, aplica-se a abordagem dos tentáculos virtuais para gerar possíveis caminhos a partir do centro de referencia do veículo e com base nisto, duas novas estratégias são propostas. Em primeiro, uma nova estratégia para escolher o caminho correto para melhor evitar obstáculos e seguir a tarefa local no contexto da navegação hibrida e, em segundo, um novo controle de malha fechada baseado na odometria visual e o tentáculo virtual é modelado para execução do seguimento de caminho. Finalmente, um completo sistema automotivo integrando os modelos de percepção, planejamento e controle são implementados e validados experimentalmente em condições reais usando um veículo autônomo experimental, onde os resultados mostram que a abordagem desenvolvida realiza com sucesso uma segura navegação local com base em sensores de câmeraAbstract: The development of autonomous vehicles capable of getting around on urban roads can provide important benefits in reducing accidents, in increasing life comfort and also in providing cost savings. Intelligent vehicles for example often base their decisions on observations obtained from various sensors such as LIDAR, GPS and Cameras. Actually, camera sensors have been receiving large attention due to they are cheap, easy to employ and provide rich data information. Inner-city environments represent an interesting but also very challenging scenario in this context, where the road layout may be very complex, the presence of objects such as trees, bicycles, cars might generate partial observations and also these observations are often noisy or even missing due to heavy occlusions. Thus, perception process by nature needs to be able to deal with uncertainties in the knowledge of the world around the car. While highway navigation and autonomous driving using a prior knowledge of the environment have been demonstrating successfully, understanding and navigating general inner-city scenarios with little prior knowledge remains an unsolved problem. In this thesis, this perception problem is analyzed for driving in the inner-city environments associated with the capacity to perform a safe displacement based on decision-making process in autonomous navigation. It is designed a perception system that allows robotic-cars to drive autonomously on roads, without the need to adapt the infrastructure, without requiring previous knowledge of the environment and considering the presence of dynamic objects such as cars. It is proposed a novel method based on machine learning to extract the semantic context using a pair of stereo images, which is merged in an evidential grid to model the uncertainties of an unknown urban environment, applying the Dempster-Shafer theory. To make decisions in path-planning, it is applied the virtual tentacle approach to generate possible paths starting from ego-referenced car and based on it, two news strategies are proposed. First one, a new strategy to select the correct path to better avoid obstacles and to follow the local task in the context of hybrid navigation, and second, a new closed loop control based on visual odometry and virtual tentacle is modeled to path-following execution. Finally, a complete automotive system integrating the perception, path-planning and control modules are implemented and experimentally validated in real situations using an experimental autonomous car, where the results show that the developed approach successfully performs a safe local navigation based on camera sensorsDoutoradoMecanica dos Sólidos e Projeto MecanicoDoutor em Engenharia Mecânic

    Street Surfaces and Boundaries from Depth Image Sequences Using Probabilistic Models

    Get PDF
    This thesis presents an approach for the detection and reconstruction of street surfaces and boundaries from depth image sequences. Active driver assistance systems which monitor and interpret the environment based on vehicle mounted sensors to support the driver embody a current research focus of the automotive industry. An essential task of these systems is the modeling of the vehicle's static environment. This comprises the determination of the vertical slope and curvature characteristics of the street surface as well as the robust detection of obstacles and, thus, the free drivable space (alias free-space). In this regard, obstacles of low height, e.g. curbs, are of special interest since they often embody the first geometric delimiter of the free-space. The usage of depth images acquired from stereo camera systems becomes more important in this context due to the high data rate and affordable price of the sensor. However, recent approaches for object detection are often limited to the detection of objects which are distinctive in height, such as cars and guardrails, or explicitly address the detection of particular object classes. These approaches are usually based on extremely restrictive assumptions, such as planar street surfaces, in order to deal with the high measurement noise. The main contribution of this thesis is the development, analysis and evaluation of an approach which detects the free-space in the immediate maneuvering area in front of the vehicle and explicitly models the free-space boundary by means of a spline curve. The approach considers in particular obstacles of low height (higher than 10 cm) without limitation on particular object classes. Furthermore, the approach has the ability to cope with various slope and curvature characteristics of the observed street surface and is able to reconstruct this surface by means of a flexible spline model. In order to allow for robust results despite the flexibility of the model and the high measurement noise, the approach employs probabilistic models for the preprocessing of the depth map data as well as for the detection of the drivable free-space. An elevation model is computed from the depth map considering the paths of the optical rays and the uncertainty of the depth measurements. Based on this elevation model, an iterative two step approach is performed which determines the drivable free-space by means of a Markov Random Field and estimates the spline parameters of the free-space boundary curve and the street surface. Outliers in the elevation data are explicitly modeled. The performance of the overall approach and the influence of key components are systematically evaluated within experiments on synthetic and real world test scenarios. The results demonstrate the ability of the approach to accurately model the boundary of the drivable free-space as well as the street surface even in complex scenarios with multiple obstacles or strong curvature of the street surface. The experiments further reveal the limitations of the approach, which are discussed in detail.Schätzung von Straßenoberflächen und -begrenzungen aus Sequenzen von Tiefenkarten unter Verwendung probabilistischer Modelle Diese Arbeit präsentiert ein Verfahren zur Detektion und Rekonstruktion von Straßenoberflächen und -begrenzungen auf der Basis von Tiefenkarten. Aktive Fahrerassistenzsysteme, welche mit der im Fahrzeug verbauten Sensorik die Umgebung erfassen, interpretieren und den Fahrer unterstützen, sind ein aktueller Forschungsschwerpunkt der Fahrzeugindustrie. Eine wesentliche Aufgabe dieser Systeme ist die Modellierung der statischen Fahrzeugumgebung. Dies beinhaltet die Bestimmung der vertikalen Neigungs- und Krümmungseigenschaften der Fahrbahn, sowie die robuste Detektion von Hindernissen und somit des befahrbaren Freiraumes. Hindernisse von geringer Höhe, wie z.B. Bordsteine, sind in diesem Zusammenhang von besonderem Interesse, da sie häufig die erste geometrische Begrenzung des Fahrbahnbereiches darstellen. In diesem Kontext gewinnt die Verwendung von Tiefenkarten aus Stereo-Kamera-Systemen wegen der hohen Datenrate und relativ geringen Kosten des Sensors zunehmend an Bedeutung. Aufgrund des starken Messrauschens beschränken sich herkömmliche Verfahren zur Hinderniserkennung jedoch meist auf erhabene Objekte wie Fahrzeuge oder Leitplanken, oder aber adressieren einzelne Objektklassen wie Bordsteine explizit. Dazu werden häufig extrem restriktive Annahmen verwendet wie z.B. planare Straßenoberflächen. Der Hauptbeitrag dieser Arbeit besteht in der Entwicklung, Analyse und Evaluation eines Verfahrens, welches den befahrbaren Freiraum im Nahbereich des Fahrzeugs detektiert und dessen Begrenzung mit Hilfe einer Spline-Kurve explizit modelliert. Das Verfahren berücksichtigt insbesondere Hindernisse geringer Höhe (größer als 10 cm) ohne Beschränkung auf bestimmte Objektklassen. Weiterhin ist das Verfahren in der Lage, mit verschiedenartigen Neigungs- und Krümmungseigenschaften der vor dem Fahrzeug liegenden Fahrbahnoberfläche umzugehen und diese durch Verwendung eines flexiblen Spline-Modells zu rekonstruieren. Um trotz der hohen Flexibilität des Modells und des hohen Messrauschens robuste Ergebnisse zu erzielen, verwendet das Verfahren probabilistische Modelle zur Vorverarbeitung der Eingabedaten und zur Detektion des befahrbaren Freiraumes. Aus den Tiefenkarten wird unter Berücksichtigung der Strahlengänge und Unsicherheiten der Tiefenmessungen ein Höhenmodell berechnet. In einem iterativen Zwei-Schritt-Verfahren werden anhand dieses Höhenmodells der befahrbare Freiraum mit Hilfe eines Markov-Zufallsfeldes bestimmt sowie die Parameter der begrenzenden Spline-Kurve und Straßenoberfläche geschätzt. Ausreißer in den Höhendaten werden dabei explizit modelliert. Die Leistungsfähigkeit des Gesamtverfahrens sowie der Einfluss zentraler Komponenten, wird im Rahmen von Experimenten auf synthetischen und realen Testszenen systematisch analysiert. Die Ergebnisse demonstrieren die Fähigkeit des Verfahrens, die Begrenzung des befahrbaren Freiraumes sowie die Fahrbahnoberfläche selbst in komplexen Szenarien mit multiplen Hindernissen oder starker Fahrbahnkrümmung akkurat zu modellieren. Weiterhin werden die Grenzen des Verfahrens aufgezeigt und detailliert untersucht
    corecore