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Foreword 
 
 
 
 
Ashton has been working in the i-CAVE project, which is a large NWO project, focused on automated and coop-
erative vehicles. One of the key challenges in achieving successful vehicle automation is environmental percep-
tion. In practice this means that a vehicle is equipped with various sensors such as RADAR, camera and LIDAR. 
In addition to fusion of these sensors to create a coherent image and navigate safely, cooperative driving requires 
contextual knowledge of the vehicles around it. The most important objective in cooperative driving is following 
the car in front of you, which in this case is a Renault Twizy. The main objective of Ashton’s research was to 
develop a system that is able to identify this particular car. In addition to that, having knowledge of the location 
and orientation of the Twizy is of the utmost importance to achieve successful cooperative automated driving.  
 
To that end, Ashton has created a framework for a set of cameras that he implemented on the research vehicle. He 
managed to create a detector that estimates the relative position of the Twizy and that also gives the heading angle 
with respect to that. Additionally, multiple modules, such as lane detection and free-space detection have also 
been implemented. 
 
With the work of Ashton, another step has been set to achieve fully automated and cooperative driving vehicles. 
Together with the work of fellow PDEng researcher Varun Khattar, the environmental perception of the Renault 
Twizy has taken another step in the right direction.  
  
 
Dr. Tom van der Sande 
September 2020 
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Preface 
 
 
 
 
 
This technical report describes my final assignment for the Professional Doctorate in Engineering (PDEng) pro-
gram in Automotive Systems Design (ASD) at the Eindhoven University of Technology (TU/e). During this pro-
gram the trainees work on several multidisciplinary projects with different automotive companies, where state-
of-the-art system’s engineering approach is followed. The program is divided into two phases, each having a one-
year duration. During the first phase, the focus is on professional and personal development where the trainees 
work in teams by taking up different leadership roles while working with TU/e industrial partners. The second 
phase of the program consist of a twelve-month design experiment carried out at a company or the university. 
 
In accordance with this, I carried out my final design assignment with the integrated cooperative automated ve-
hicles (i-CAVE) project team at TU/e with the goal to design and implement a Surround Vision System (SVS) 
using the Nvidia Drive PX 2. The main task of the system is to provide coherent information of the environment 
around the ego-vehicle to enhance the sensor fusion and decision-making capabilities. The intent of this report is 
to enable a technical reader (engineers and researchers) to either understand, replicate or continue this project.  
 
 
 
 
Ashton Menezes 
September, 2020 
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Executive Summary 
 
 
 
 
 
Self-driving cars have the potential to change the landscape of urban mobility. However, the biggest roadblock 
for the success of such concepts is to robustly perceive the environment in real-time. Stereo Vision Camera sensors 
are widely used for extracting semantic information and estimating depth. However, they have a limited field of 
view, a high processing time and are economically not scalable. 
 
The goal of this design experiment is to take a step forward in vehicle automation by investigating the possibilities 
of using monocular cameras to obtain a coherent image of the surrounding. To this purpose, a prototype of a 
Surround Vision System is designed and deployed on automotive-grade embedded platform, the NVidia Drive 
PX 2, to evaluate its real-time capabilities. The system is then demonstrated on a test vehicle, a Renault Twizy, 
for autonomous and cooperative applications. 
 
The project will try to accomplish this goal by breaking it into three main parts: system architecture, design and 
implementation, and validation. 
 
The first objective is to identify the problems in the existing stereo vision system, which is used for fusion with 
Radar measurements and address the key concerns of the stakeholders (Chapter 2). Using a system’s engineering 
approach, different driving scenarios were analysed to determine the expected functionality and derive require-
ments. The Software Architecture was then derived by decomposing the system into functional modules and iden-
tifying the interfaces (Chapter 3 and 4). 
 
The design and implementation (Chapter 5 and 6) involved evaluation of different design choices considering the 
concerns of stakeholders, project management constraints and the compatibility limitations with the NVidia Drive 
PX 2. The main challenge here was to robustly and efficiently detect the position of objects and the pose of 
potential platooning target vehicles using monocular vision. 
 
To test and demonstrate the functionality in real-time, the designed system was deployed on a test vehicle, a 
Renault Twizy using the NVidia Drive PX 2. The system is capable of receiving information synchronously from 
multiple cameras mounted on the roof of the test vehicle. The system robustly detects and identifies the position 
of objects, pose of targets, the drivable free space and lanes around the vehicle. Each functionality is evaluated 
through visual verification, offline measurements and external sensors described in Chapter 7. The computed 
information is then provided to the vehicle control system at a desirable rate suitable for sensor fusion.     
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1.Introduction 
 
This introduction chapter briefly describes the motivation, project context, the main stakeholders involved in the 
project, the high-level goals, and interaction with other projects. The purpose of designing a surround vision sys-
tem is also discussed. A set of high-level goals for the project are also formulated, which will be explained in 
detail in the analysis of Chapter 2. 

1.1    Motivation 
In the ’50s and ’60s visions came up reaching from automated road traffic to “Flying Cars”. Some of these visions 
were inspired by the progress made in electronics and computer technology. Not all of these dreams have come 
true, but yes, we have indeed made tremendous progress in relation to self-driving cars, thanks to the explosion 
in Artificial Intelligence, especially when it comes to perception systems. The benefits are manifold from safety 
to convenience; self-driving vehicles have the potential to completely transform the transport infrastructure, which 
could lead to mobility as well as economic and sustainability gains. 
 
Statistics from the National Highway Traffic Safety Administration (NHTSA) show that driver error is by far the 
most significant cause of road traffic accidents, due to factors like miscalculations, errors of judgment, speeding, 
drink-driving, and phone use. In fact, an alarming 94 percent of serious crashes are due to human error. [1]   
 
Concerning the economic benefits, an NHTSA study proves that motor vehicle crashes in 2010 accounted for 
$242 billion in economic activity, including $57.6 billion in lost workplace productivity, and $594 billion due to 
loss of life and decreased quality of life due to injuries [1].  
 
Fully autonomous vehicles would take human error out of the equation, thereby making our roads safer not just 
for drivers, but also passengers, cyclists, and pedestrians. Fully autonomous vehicles do not depend on commu-
nication with other traffic but rely on multiple onboard sensors to move and navigate independently. However, 
sensor failure or any other technical error may lead to disastrous consequences. Cooperative automated vehicles, 
on the other hand, can share system information with other vehicles making a significant contribution towards 
increasing road safety and improve mobility worldwide. Constructive information sharing will provide endless 
possibilities for safe driving, and multiple vehicles can collaborate to compensate for information scarcity. An 
example of such cooperative behaviour is platooning, where multiple vehicles drive together in formation. In a 
platooning scenario, the front target vehicle is controlled by the driver, while the ego vehicles autonomously 
follow the vehicle in front of it, is as shown in Figure 1. 
 

 
Figure 1: Platooning scenario. 
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In a platooning, the ego vehicle needs reliable and accurate perception capabilities to follow the target vehicle 
autonomously. Various perception algorithms are rapidly evolving, but the practical bottleneck is the amount of 
computational power available in these vehicles. Embedded platforms normally deployed in a car are simply not 
able to cope with the massive amount of data generated by different sensors such as cameras. NVidia Drive-PX 
2, Intel-GO and NXP BlueBox are examples of such programmable platforms. 
 
Inspired by the benefits and challenges mentioned above the i-Cave (integrated cooperative automated vehicles) 
Research Program [2] funded by the Netherlands Organization for Scientific Research (NWO) was started in the 
Netherlands to investigate the throughput and safety in relation to automated and cooperative driving with an 
ultimate goal towards SAE Level 5 Automation. This program is broken down into several work packages based 
on different disciplines, sensing, cooperative vehicle control, communication & human factors, to name a few as 
shown in Figure 2.a below.  
 

            
Figure 2: a) i-CAVE work packages b) A Renault Twizy fitted with Sensors  

 
The primary motivation of this project is to make a step forward in vehicle automation by improving the sensing 
capabilities of the vehicle and evaluating the performance on a prototype vehicle. To that effect, demonstrator 
vehicles which are Renault Twizys (see Figure 2b) are equipped with various sensors, communication devices 
and controllers. This assignment mainly focused on the design and realization of the surround vision system using 
the NVidia Drive PX 2 embedded platform.  

1.2    Need for Surround Vision System 
An autonomous vehicle needs to accurately identify and localize dynamics objects in the surrounding environment 
of the vehicle. Having a full scan of the surrounding is crucial for many tasks, such as obstacle avoidance, path 
planning, and intent recognition. Figure 3, for example, shows some highways scenarios where a car accident is 
likely to occur due to the limited detection field of view of the vehicle. In these cases, the perception system would 
not trigger an alert since there is no vehicle in the system’s field of view. If this happens in a highway situation, 
it is too late for the autonomous system to react due to high speeds. Therefore, comprehensive environment per-
ception that detects, classifies and estimates the motion states of surrounding vehicles would have an enormous 
potential to enhance road safety by proactively reacting to traffic conditions or hazardous situations.  
 

 
Figure 3: Some highway scenarios of autonomous vehicle crashes 
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In relation to the sensing capabilities, different types of sensors are used to provide external and immediate infor-
mation of the vehicles surrounding. (see Figure 4) 

• Radar – Small, inexpensive and good range, work in dark conditions and able to sense.  
• Ultrasonic - Suitable only for near range 3D mapping. 
• Lidar – Have excellent range and mapping capabilities but are too expensive for broad deployment. 
• Vision-based sensors, i.e. Cameras, have become affordable, miniaturized, and with increasing resolution 

in recent years. Their colour, contrast, and optical character recognition capabilities give these sensors 
an edge compared to other sensors. 
 

 
Figure 4: Sensors comparison in autonomous driving [3] 

 
Stereo vision sensors are also used for tracking objects. However, the performance is limited by the quality of 
disparity estimates, longer execution time and the field of view (FoV) of the stereo pair. Furthermore, it is not 
economically viable to have multiple stereo cameras to cover the surrounding of the vehicle. Thus in this project, 
we investigate the possibility of a surround vision system using a set of monocular cameras to detect and estimate 
the position of objects, pose of potential platooning targets, lanes and the free space around the ego-vehicle as 
shown in Figure 5. 
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Figure 5: Proposed Surround Vision System 

1.3    Project Context 
This project was performed in collaboration with the Mobile Perception Systems (MPS) group and the Dynamics 
& Control (D&C) group of the TU/e. The MPS group specializes in building sensor perception and prediction 
algorithms. The end goal of this department is more involved in improving the perception capabilities of the 
vehicle. They focus on methods that can sense the ever-changing environment around the car and perceive ob-
jects/obstacles around the vehicle. 
The D&C group, on the other hand, is responsible for research into various control algorithms required for coop-
erative and self-driving applications. Their goal is to make sure that the vehicle can plan a path and make decisions 
in order to drive safely in the environment. 
In relation to the i-CAVE program, the MPS group is responsible for the development of perception algorithms 
and D&C group is responsible for the development of controllers for vehicle platooning. These algorithms and 
controllers are then tested by deploying them in a demonstrator vehicle.  

1.4    Project Goals 
The primary customer of this project is the D&C group since all the information captured by the perception sensors 
will be utilized for sensor fusion and path planning. The customer wants to drive cooperatively in a platoon by 
tracking a target vehicle and drive autonomously in general driving conditions. The MPS team will play a role of 
a TIER1 supplier, responsible for providing all necessary software, hardware and technical support required for 
implementing this project. The primary purpose of this project is to design the surround vision software involved 
in the system, deploy it on an embedded device and demonstrate the functionality on a demonstrator vehicle. 
The main project goals are as follows: 

• Capture and analyze requirements from discussions with relevant stakeholders. 
• Design the system so that it fulfils the requirements and accounts for design constraints caused by soft-

ware APIs and embedded devices. 
• Implement the system functionality using DriveWorks API’s since they are optimized for implementa-

tion on Nvidia Drive PX 2.  
• Verify and validate the final implemented system using the appropriate techniques. 

 
Implementation in a prototype vehicle requires the installation of additional hardware, such as: 

• GMSL Cameras - Mounted and calibrated in the desired positions. 
• NVidia Drive PX 2 - An embedded device that realizes the designed functionality. 
• HMI – Displaying the outputs of implemented functionality for testing and verification. 

 
On the software side, the practical realization of the system requires:   

• Implementation of an Object Detector to detect objects belonging to different class types. 
• Training of a neural network that can detect and classify a Target Vehicle (Twizy) 
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• Setting up a software pipelines from capturing information from cameras to performing detections.  
• Designing of a target vehicle pose estimator.  
• Implementation of a Free space detector to estimate free space around the ego vehicle. 
• Implementation of a Lane detector to estimate different lane boundaries. Providing Lane coefficients in 

vehicle world coordinates from the detected lanes in an image.   
• Design of software pipelines to display outputs of what the vehicle perceives real-time to an HMI for 

testing and demonstration purposes. 
• Unit Testing and validating the performance of each software module. 
• Sending information of all detected objects and their positions in CAN format to vehicle controller. 

 
Out of Scope: 

• It was jointly agreed with all stakeholders that the task related to deciding the number of cameras and 
their optimal positions to prevent blind spots around the ego vehicle was kept out of scope.  

 

1.5    Interaction with other Projects 
The ego vehicle is fitted with different types of sensors like Radar, IMU, GPS, V2V and wheel-speed sensors 
besides the surround cameras. The information from these sensors is fused to get a robust estimate of the position 
of the ego vehicle and its surround objects. Since the camera information is also an input for this fusion, it involves 
working closely with the team involved with Radar and sensor fusion. Also, the lane information perceived by the 
system are inputs to the path planning algorithms. In the end, the surround vision system should couple well with 
the existing ongoing projects to be successful.  

1.6    Unique Contributions 
In this project, given the information obtained from multiple cameras mounted on the roof of a vehicle, a percep-
tion system is developed in order to get a meaningful representation of the environment. A systems engineering 
approach is used for identifying and decomposing the desired behaviour into modular functions. Although parts 
related to the implementation of these functions have been done before it does not appear that anyone has ever 
brought it all together into one single project and implemented it on a real-time system. 
 
The first contribution of this project is the design of a novel framework that includes several functions: Object, 
Lane & Free space detection, Tracking, Target classification, Position estimation of vehicles and Pose estimation 
of targets. Each sub-function is addressed by using Deep-Neural networks and novel algorithms. 
 
The second contribution is the implementation and evaluation of a vehicle-agnostic algorithm for accurately esti-
mating the position of vehicles in real-time using monocular vision. 
 
The third contribution is the implementation and evaluation of a pose estimation algorithm for evaluating the pose 
of a known target vehicle for vehicle platooning applications. 

1.7    Overview of the Thesis 
The following is a brief account of the contents of this thesis. Chapter 2 addresses the problem with the existing 
setup and the concerns of the stakeholders involved in this project. Chapter 3 describes the requirements elicitation 
process. Different driving scenarios are evaluated to identify the functional requirements and the system context. 
Chapter 4 follows the white-box modelling of the system by defining the architecture and subsystems. Chapter 5 
considers different design choices and algorithms that fulfil the requirements and concerns. Chapter 7 and 8 ex-
plain how these algorithms are implemented and evaluated in conformance with the driving scenarios and require-
ments. Chapter 9 concludes with the conclusion and recommendations for future work. 
 
 
■■■ 
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2. Analysis 
 
 
In this chapter, the main goal of the project is decomposed by analyzing the task required. First, a problem analysis 
is carried out to explain the existing hardware setup, identify the issues related to such a configuration and define 
a problem statement. A stakeholder analysis is carried out to explore the concerns and to identify the key drivers 
for this project. In the last section, the CAFCR methodology is explained to initiate the architecting process. 

2.1    Problem Analysis 
In a platooning scenario, cooperative automated vehicles need a robust and reliable perception system to per-
ceive the environment accurately in real-time. 

2.1.1.  Project Background 
Before this project, the demonstrator vehicle, i.e. a Renault Twizy, consisted of the following components, as 
shown in figure 6 below. 
1) Front-facing stereo vision camera 
2) NVidia Drive PX 2 
3) Vehicle Control System: Simulink Real-time PC 
4) Front-facing Radar 
 

 
Figure 6: Existing Setup 

The sensory information captured by the stereo vision camera was processed on the Drive PX 2 to detect and 
compute the position of objects in front of the vehicle. The computed information was provided to the vehicle 
control system for fusion with radar measurements.  
 
The issues with such a configuration were as follows: 
1) Since platooning is the main objective of the i-CAVE project it was required that the target vehicle, (another 
Renault Twizy) be placed in front of the ego-vehicle from the beginning of any test. The nearest vehicle was 
assumed as the target to be followed. In scenarios where multiple vehicles are in front of the ego vehicle, the 
control system would follow the nearest vehicle which may not be a target leading to undesired behavior. 

 
2) For platooning, it was also necessary to have information related to the pose of the targets. This information 
was obtained only through V2V communication between the targets and the ego vehicle, which was unreliable. 
Hence, there was a need to measure the pose of the targets using extrinsic sensors, for.eg the vision system. 



Eindhoven University of Technology 
 

8 
 

 
3) For safe autonomous driving, tracking of surrounding vehicles is essential for many tasks crucial to autono-
mous driving, such as obstacle avoidance, path planning, and intent recognition. The generated tracks should be 
accurate, long and robust to sensor noise to have good high-level spatial reasoning. In the existing setup, the de-
tection and tracking of objects were limited to only the FOV of the front radar and the stereo camera pair, mak-
ing it difficult for the ego-vehicle to pre-emptively take collision avoidance measures based on the knowledge of 
spatial positions of all objects around its surroundings. 

 
4) In order to have better fusion, ideally, the radar and vision inputs must be synchronized. Due to the long exe-
cution time required for stereo depth calculation, the frequency at which vision measurements were provided, 
(7Hz) was lower compared to the radar measurements (14Hz) resulting in poor fusion.    

2.1.2.  Problem Statement 
To address the problems cited above, a decision was made by the stakeholders to design a vision system that can 
have the following functions:  

1) Identify a potential target vehicle (a specific type or brand, in this case, a Renault Twizy) among other 
vehicles 

2) Investigate the possibility of estimating the position of objects using monocular vision with lesser exe-
cution time. 

3) Estimate the pose of target vehicles using monocular vision. 
4) Design a scalable system constituting of a variable number of monocular cameras and radars to capture 

the 360 degrees surrounding of the ego-vehicle. 
5) Have additional functionalities to detect the free space boundary around the ego-vehicle and lanes in 

front and rear of the vehicle. 

2.2    Stakeholder Analysis  
In this section, a thorough analysis of different stakeholders, directly or indirectly involved in this project, is 
presented. This analysis was initially carried out during the project initiation phase and regularly revised to ensure 
that each stakeholder is constructively involved in contributing to the envisioned future.  
 
The objective of this analysis was to identify concerns related to what are the financial and emotional interests 
each stakeholder has in the outcome of this doctorate assignment, What are various concerns and challenges that 
project stakeholders hope to solve, what expectations they have from the outcome of this project and how would 
it affect them in the long run. Another major objective of stakeholder analysis is to build consensus, between 
different parties, for project priorities and deliverables. Fortunately, there were no disagreements, and therefore 
no additional effort was required for alignment of the stakeholders. From a reader’s viewpoint, it is imperative to 
get an insight into the circumstances and conditions guiding the strategic objectives and goals of this assignment. 
This insight will enable the reader to understand the various reasons behind the design choices made. The analysis 
is split into three different groups which are discussed in the following sections. The first group is the I-Cave 
program partners which address organizational and business-level objectives and interests. The second group, 
designers and developers, address their interests and concerns on a more personal level. Here, current developers 
and designers were considered, but also those who will be responsible for the continuation of the project. The 
final group is the PDEng Management, where the trainee needs to fulfil the requirements of the program. 

2.2.1.  I-Cave Program Partners (Eindhoven University of Technology) 
Eindhoven University of Technology (TU/e) is committed to building solutions related to ‘Smart Mobility’. TU/e 
holds a great deal of expertise in the fields of Intelligent Transport Systems, Automotive Technology, and ICT/ 
Embedded Systems.  
 
The Mobile Perception group headed by assistant professor Dr. Dubbelman is involved in building perception 
algorithms related to autonomous applications. The main questions that Dr Dubbelman is trying to answer from 
this assignment are as follows: 
 

1) Can we have a real-time implementation of an algorithm that can estimate the pose of a vehicle with 
prior knowledge of its shape? 

2) Can we design a system that can efficiently, robustly detect & estimate the position of objects in real-
time?  
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When referring to efficiency, it means the computational cost (i.e. Execution time and memory) is at or below 
some acceptable level.   

 
From the Dynamics & Control group, Dr. Tom van der Sande is responsible for leading a team in the development 
of cooperative and automated driving controllers. The key research goals he is trying to solve are as follows: 
 

1) Can we accurately identify and localize dynamic objects in the surrounding of the ego-vehicle? 
2) Can we have a coherent image of the surrounding by having a wider FOV e.g.(surround vision) thus 

increasing the time to collision? This will lead to an improvement in the margin of safety and smoother 
controller action. 

3) Can we have a robust estimate of surrounding objects by fusion of all sensor measurements? 
4) Can we have a reliable pose estimate of target vehicles (Renault Twizys) to be followed in platooning, 

by fusion of measurements from multiple external sensors i.e. V2V Communication and cameras?   

2.2.2.  Designers and Developers 
The group of designers and developers consists of people who are presently working on the project and those who 
will be working in the future. Dr. Narsimlu Kemsaram, a Post.Doc candidate at TU/e, is responsible for the im-
plementation of different algorithms developed by the MPS group on the Drive PX 2. His main concerns are 
related to the non-functional aspects of the system. The developed software architecture should be easy to under-
stand and maintainable. The code should be modifiable and extendable for the use of better algorithms in the 
future.   

2.2.3.  PDEng Management (ASD Program) 
Supervised by Dr.ir. Peter Heuberger (Program Manager, PDEng MSD/ASD), the PDEng program is concerned 
with successful completion of the PDEng final assignment. 

2.3    CAFCR Analysis 
System design is a creative process and does not follow hard and fast rules, however, there are various guidelines 
and tools from system engineering are used to assist the process. One such tool is the CAFCR methodology which 
is an architectural reasoning framework that helps in making the design choices.  
 

 
Figure 7: CAFCR a Multi-view method for System Architecting [4] 

 
CAFCR provides various views depicted in Figure 7 in order to evaluate various design choices and analyze a 
design. These views enable the designer to consider the product from multiple perspectives.  
 
The customer view provides answers to the ‘Why’ question from the customer. “Why is the customer interested 
in carrying out this design experiment?”. This is established in the 1st chapter. The customer’s view also includes 
defining the stakeholders and their concerns. An overview of the CAFCR Framework applied to this project is 
shown in Figure 8.  
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The application view focusses on the interaction of the system with the environment. The system must function 
robustly in different weather and driving conditions. An in-detail study is carried out in Chapter 3, considering 
the needs of the end-user in different possible driving scenarios.  
 
The functional view addresses the question of “what the system offers”. This is described in detail in Chapter 1 
and 3, highlighting the functional and non-functional requirements. Chapter 4 and 5 illustrate the conceptual view, 
describing the architecture and the possible concepts needed to build the functionality. Finally, the realization 
view is described in Chapter 6, emphasizing on how the system is implemented on the Drive PX 2. 
 

Customer Objective Application Functional Conceptual Realization

Detect & track 
objects and estimate 

their positions 
around the ego-
vehicle real-time

Detect & Localize 
static and dynamic 
objects around the 

surrounding’s of the 
ego-vehicle 

Use Deep Learning 
to robustly detect 

objects and Targets

With prior 
information of the 

shape of Target 
(Twizy) estimate 
pose of vehicle

Set cameras to get a 
360 degree coverage 
of the surroundings 

of ego vehicle

Estimate the 3D 
Pose of the Target 

vehicle (Twizy)
 real-time

Estimate the free-
space around the 

ego-vehicle realtime

Use existing NVIDIA 
detectors for Free-

space and Lane 
detection

Nvidia DriveWorks APIs 
for implementation on 

Drive PX2 

Nvidia Digits/Caffe/
Tensorflow to visualize 
and iteratively design 
deep neural networks

opencv to estimate 3D 
Pose

WHY HOW

Use Nvidia object 
Tracker

Estimate the Lanes 
around the ego- 
vehicle realtime

C++ Implementation on 
Linux x86-64

Demonstrate 
Autonomous and 

Cooperative driving 
functionalities

GMSL cameras

Identify a target 
vehicle to follow for 

platooning

Get a reliable 
estimate of the Pose 
of the Target vehicle 

Drive in Urban and 
Highway

Drive in varying 
weather 

Drive on paved as 
well as cobbled 

roads

Perform robust path 
Planning

Detect a target 
(Twizy) among 

all vehicles

 
Figure 8: CAFCR Framework Application 

 
 
 
■■■ 
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3. Requirements Elicitation 
 
This chapter describes the requirement elicitation process used for this project. As part of the Application and 
Functional views of the CAFCR methodology, different driving scenarios are analysed to derive the require-
ments and key performance indicators. Based on the actors identified and the expected behaviour system func-
tions and requirements are determined for the system. 

3.1    Elicitation process 
To come up with a set of functional requirements for the system, the System Engineering Methodology for Auto-
mated systems (SEMAS) [5] described by Valeo was applied. SEMAS is a System Engineering Methodology that 
combines model-based system engineering with traditional requirements engineering. SEMAS is a layered ap-
proach where the analysis is performed at different levels of abstraction. The first and the highest layer is the Real-
world Layer, where we analyze the needs of the end-user by specifying the expected behaviour of the ego-vehicle 
in interaction with its environment. In the second layer, we analyze the expected behaviour of the system under 
design (i.e. Surround Vision System) and the interaction with other interior systems in the vehicle. Finally, func-
tional requirements are generated from the identified functions of the system.    
 

3.2    Real World Layer 
In this section, considering the ego-vehicle as a black-box, the behaviour and interactions with the environment 
are analyzed, as shown in Figure 9. Since the project focuses only on the perception aspect, the ego-vehicle's 
behaviour is scoped to only examining this aspect. For better analysis, it is assumed that the perception system 
consists of only the proposed system (i.e. SVS) and no other external sensors. 
 

 
Figure 9: Real-World Layer: Context of the Ego-vehicle 

 
Several scenarios were analyzed in varying levels of complexity, road and weather conditions, as described in 
appendix 1, for e.g. vehicle approaching and departing from the ego-vehicle, driving in a parking lot, preceding 
vehicle driving up a gradient, etc. One such scenario which describes CACC is described in Table 1 below.  
By describing the driving scenarios, it is identified which external actors trigger activities. For instance, in the 
below scenario target & other vehicles, free space & Lane markings, need to be detected and their positions need 
to be estimated by the ego-vehicle. Secondly, which influences exist in the environment are also identified. For 
e.g. the road surface conditions influence vehicle physics (pitch, roll motion); similarly, the lighting conditions 
influences is the detection accuracy.  
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Table 1: Driving Scenario - CACC 

DS 1 - CACC 

 
Context 
Ego-vehicle driving beside a platoon of target vehicles on a highway. 
Actors 
Target vehicles (Twizy’s), other vehicles, Lane markings, Lighting conditions, Road conditions 
Preconditions 

1) The target vehicles are driving in a platoon 
2) There are other vehicles around the ego-vehicle 
3) The visibility is clear, and the weather is sunny 
4) The SVS system is inactive 

Trigger 
1) SVS system is activated. 

Expected ego-vehicle behaviour 
1) The ego-vehicle detects and classifies the vehicles which are clearly or partially visible to the cameras 

as a "Target"(Twizy) or "other vehicle"(cars) around its surrounding 
2) The ego-vehicle calculates the pose of the detected target vehicle (Twizy) with respect to itself. 
3) The ego-vehicle calculates the position of other detected vehicles. 
4) The ego-vehicle computes the curvature and position of the left and right lane markings belonging to 

the ego vehicle if present 
5) The ego-vehicle detects the free-space around the vehicle 
6) The ego-vehicle displays all perceived information to the operator 

Postconditions 
1) Detections are provided until the system is deactivated 

Key Performance Indicators (KPIs) 
1) The number of false negatives detected. (objects incorrectly classified have a higher risk) 
2) The detection range of the system. (How far can an object be accurately detected?) 
3) The accuracy at which the position of objects are estimated 
4) The number of target vehicles the system can handle (detect as well as provide pose). 
5) The time required to detect and estimate the position of vehicles/objects 
6) The accuracy of the vehicle position estimate with respect to the ground truth 
7) The execution time required to compute the pose of the target vehicle when detected 
8) The accuracy of the computed pose of the target vehicle when detected 
9) The rate at which the system updates the position of the targets and other vehicles on the CAN bus  
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3.3    Vehicle Level 
In this level, the system under design, i.e. the surround vision system (SVS) is considered as a black box, and the 
interactions between vehicle internal components and functions are analyzed. Then system functions are derived 
which describe the primary functions of the system. After this, detailed functional requirements are derived. Non-
functional requirements are also added based on the concerns of the stakeholders.  

3.3.1.  System Context: 
The system under design, along with the actors directly interacting with the system, are shown in the below Figure 
10. 
 

 
Figure 10: Vehicle Level Layer: Context of the Surround Vision System 

The surround vision system is a software application running on an embedded device (NVidia Drive PX 2) 
mounted on the ego vehicle. An operator interacts with the system for activation and deactivation. The presence 
of actors in the scene, identified in the Real-world level, i.e. target & other vehicles, bicycles, pedestrians, road 
sign, traffic sign, lane markings, and free space, are captured by the cameras mounted on the ego vehicle. The 
quality of the information captured by these cameras may be influenced by the environmental conditions like 
weather conditions (rainy/sunny), lighting conditions (day/night) or even glare from sunlight or shiny reflective 
surfaces.  There is no upper bound on the number of actors present in the scene. There may be up to twelve 
cameras attached. Cameras having a different FOVs may be used and mounted on the ego-vehicle chassis at 
various locations/orientations. Vehicle motion may affect theses orientations. The cameras provide the infor-
mation captured to the SVS system asynchronously. The SVS is responsible for performing various detections by 
analyzing the video feed received by the cameras. The results obtained are processed and communicated to the 
Vehicle control system via the controller area network (CAN). The format and type of information transferred is 
explained in Section 3.5 in detail. Besides this, for testing purposes, the results obtained are also rendered on a 
human-machine interface (HMI), which is realized as a display screen installed inside the ego vehicle.  

3.3.2.  System Functions 
System functions are building blocks of end-user functions extracted from concrete scenarios. System functions 
are modelled in IBM Rational Rhapsody as operations and are represented in the system function diagram in 
figure 11. After analyzing each driving scenario, it was concluded that the behaviour of the SVS system does not 
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change. It has the behaviour of a sensor (like a surround-view camera) having the same behaviour irrespective of 
the driving conditions. Thus, only one of the driving scenario, i.e. cooperative adaptive cruise control (CACC) 
having the most generalized behaviour was chosen for deriving the system functions and the requirements. 
 

Freespace 
Boundary

Other 
Objects Vehicle StatesOther 

Vehicles

Lane 
Markings

Target 
Vehicles

Cameras SVS Display Vehicle 
Control 
System

Environment
Environment

Environment
Environment

Environment
Environment

Process Camera Info

Detect Target & other Vehicles

Detect Other Objects

Estimate Position of Other Vehicles

Estimate the Pose of Target Vehicles

Detect Lanes

Compute Lane Info

Detect Freespace

Compute Freespace Info

Compute CAN Info

Render to HMI

Provide info to Vehicle Contorl System

Operator

Activate

Estimate Position of Other Objects

 
Figure 11: System Functions derived from the driving scenario 

    
The system functions required for surround vision are as follows: 

• FUNC01: System Activation/Deactivation 
• FUNC02: Receive camera info 
• FUNC03: Process camera info 
• FUNC04: Detect vehicles 
• FUNC05: Detect other objects 
• FUNC06: Estimate target vehicle pose 
• FUNC07: Estimate Position of Other Vehicles & objects 
• FUNC08: Detect lanes 
• FUNC09: Compute lane info 
• FUNC10: Detect free Space 
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• FUNC11: Compute free space Info 
• FUNC12: Compute CAN info 
• FUNC13: Render to HMI 
• FUNC14: Provide Info to Vehicle Control System 

3.3.3.  Functional Requirements 
Detailed requirements are derived for each system function from the description of the Driving Scenario. Each 
system function should satisfy the corresponding requirements. Requirements are further categorized based on 
priority as low & high. 
 
FUNC01: System Activation/Deactivation  

REQ # REQ 
Priority 

REQ Title REQ Description 

REQ001  Low Operator Activation/Deactivation  The system shall be activated or deactivated by the operator.   

FUNC02: Receive camera info  
REQ # REQ 

Priority 
REQ Title REQ Description 

REQ002 High Camera Info  The system shall receive the following properties of the cam-
eras mounted on the ego vehicle: 
Model: Pinhole resolution, distortion coefficients, camera  
location & orientation relative to vehicle rear axle  
(z=0, ground Plane). 
The camera type shall be “AR0231” camera with supported 
`RCCB` sensor. 

FUNC03: Process camera info  
REQ # REQ 

Priority 
REQ Title REQ Description 

REQ003  Low Number of cameras  The system shall receive images from up to 12 cameras  
simultaneously. 

REQ004  Low Supported image properties The system shall receive images from the cameras with the fol-
lowing properties: 

1) Format: RCCB 
2) Resolution: 1920X1208 
3) Frames Per Second: 30 FPS 

FUNC04: Detect vehicles  
REQ # REQ 

Priority 
REQ Title REQ Description 

REQ005 High Types of object classes The system shall detect vehicles in the image and classify as a 
target vehicle or other vehicle. 

REQ006 Low Provide class confidence The system shall provide a float value from 0 to 1 indicating 
how confident is the estimated class 

REQ007 Low Provide Timestamp The system shall record and provide the timestamp for every 
vehicle detection. 

FUNC05: Detect other objects  

REQ # REQ 
Priority 

REQ Title REQ Description 

REQ008 Low Other Class Types The system shall detect other objects like pedestrians, road 
signs, traffic signs and bicycles. 

REQ009 Low Provide class confidence The system shall provide a float value from 0 to 1 indicating 
how confident is the estimated class  

REQ010 Low Timestamp The system shall record and provide the timestamp for every 
other object detected  
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FUNC06: Estimate target vehicle pose  

REQ # REQ 
Priority 

REQ Title REQ Description 

REQ011 High Target Position Information  The system shall provide the x, y coordinates for detected 
targets with respect to ego vehicle in meters. 

REQ012 High Heading Angle Information  The system shall provide the heading angle (yaw) of the tar-
get with respect to ego vehicle in deg. 

REQ013 High Timestamp The system shall provide the Timestamp for every detected 
target object. 

REQ014 High Provide Instance & Camera ID The system shall provide the camera id for each target de-
tected along with a unique instance ID. 

REQ015 High Target Orientation Angle The system shall provide the targets orientation angle. 
FUNC07: Estimate the position of other vehicles & objects 

REQ # REQ 
Priority 

REQ Title REQ Description 

REQ016 High Position of other objects The system shall provide the X, Y position of other vehicles 
with respect to ego vehicle in meters. 

REQ017 High Provide Instance & Camera ID The system shall provide the camera ID for each vehicle de-
tected along with a unique instance ID. 

FUNC08: Detect lanes 
REQ # REQ 

Priority 
REQ Title REQ Description 

REQ018 High Perceive Lane Markings The system shall perceive the visible lane markings in front 
and rear of the ego vehicle. 

REQ019 High Lane Positions The system shall detect the following lane lines types-        
Ego-lane left line, Ego-lane right line, Left adjacent lane line, 
Right adjacent lane line 

REQ020 High Lane Types The system shall detect lanes of the following type--            Solid 
lanes, Dashed lanes, Road Boundary, undefined. 

REQ021 High Camera ID and Timestamp The system shall provide the timestamp and camera id from 
which camera the lanes are detected. 

FUNC09: Compute Lane Info 

REQ # REQ 
Priority 

REQ Title REQ Description 

REQ022 High Calculate polyline  The system shall calculate the coefficients of a polyline fit over 
the lane markings. 

REQ023 High Format for Lane Info The system shall provide the offset (c0), gradient (c1), curva-
ture (c2) of the polyline, where polyline function is given as 
y=c0+c1x+c2x2+c3x3 

FUNC10: Detect Free Space   

REQ # REQ 
Priority 

REQ Title REQ Description 

 REQ024 High Free Space Boundary The system shall identify and display the drivable free space 
from all the cameras.  

REQ025 High Free Space Boundary Labels The boundary will be associated with four semantic labels: 
Vehicle, Pedestrian, Curb, Other 
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FUNC11: Compute Free Space   

REQ # REQ 
Priority 

REQ Title REQ Description 

REQ026 High Free Space Boundary Format The system shall compute free space boundary point loca-
tions in car domain (meters).  
  

FUNC12: Compute CAN Info   

REQ # REQ 
Priority 

REQ Title REQ Description 

REQ027 High Compute CAN messages of  
detected objects 

The system shall compute CAN messages of the following -
1) Detected Vehicles 2) Detected other Objects 3) Detected 
Lanes 4) Free space. 

FUNC13: Render to HMI 
REQ # REQ 

Priority 
REQ Title REQ Description 

REQ028 High Display Bounding Boxes The system shall display bounding boxes over each object de-
tected along with its label 

 REQ029 Low Label Target vehicle Bounding 
Boxes 

The system shall label detected target vehicles as “Target” and 
other vehicles as “Other vehicle” 

 REQ030 High Camera feed and No. of Display 
Windows 

The system shall display the video feed from each camera in a 
separate window along with its label. 

REQ031 High Display position and heading for 
targets, Other Vehicles & Objects 

The system shall display the position X, Y for all vehicles. 
Also, additionally the heading & orientation values for target 
vehicles 

REQ032 High Display Lanes The system shall display detected lanes on the HMI in the fol-
lowing semantic colours: 
- Red: Ego-lane left 
- Green: Ego-lane right 
- Cyan: Left adjacent lane 
- Blue: Right adjacent lane 
- Dark yellow: Undefined position 
 

REQ033 High Display Free Space The system shall display the Free-space boundary on the HMI 
in the following semantic colours: 
Red: Vehicle, Green: Curb, Blue: Pedestrian, Yellow: Others 

FUNC14: Provide info to Vehicle Control System 

REQ # REQ 
Priority 

REQ Title REQ Description 

REQ034 High Information Format The system shall provide the information to Vehicle Control 
system in CAN format 

REQ035 Low Information Update Rate The system shall update the information on the CAN bus at a 
baud rate of 500 kbps 

REQ036 High Transmitted data information Prop-
erties 

The system shall transmit the following information: 
Struct Twizy: 
{Position: x,y meters 
Instance ID: val 
Heading: xx deg 
Orientation: xx deg 
Confidence: Value 
Timestamp: Value secs. 
Camera id: val 
} 

REQ037 High Transmitted Other Vehicle Infor-
mation Properties 

Struct Car: 
{Position: x, y meters 
Instance ID: val 
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Camera id: val (camera that detected the object) 
Confidence: Value 
Timestamp: Value secs 
} 

REQ038 High Transmitted Lane Information Prop-
erties 

Struct Lane_Boundary: 
{Poly Coef: c1,c2,c3,c4     (where y= c1+c2x+c3*x2+c4x4) 
Where x, y are in world coordinates 
Camera id: val (camera that detected the object) 
Timestamp: Value secs 
} 

REQ039 High Transmitted Free Space Boundary 
Information Properties 

Struct Free Space Boundary 
{ 
Curb: (Boundary World Points: x,y,z) 
Vehicle: (Boundary World Points: x,y,z) 
Person: (Boundary World Points: x,y,z)  
(ego vehicle Coordinates) 
Camera id: Val (camera that detected the object) 
Timestamp: Value secs 
} 

 

3.3.4.  Non-Functional Requirements 
Each module used for building the SVS system must execute at different stages of the program. These modules 
must be written in an object-oriented form so that their interfaces are clearly identifiable. Having an object-ori-
ented design also helps in maintainability and testability of each module. The following are the requirements from 
the software design perspective.   
 

REQ # REQ Title REQ Description 
REQ040 Object-Oriented design The software design must be hierarchical and completely object-ori-

ented. 

REQ041 Single entry, single exit Software functions must have only one entry and exit point. 

REQ042 Modular code The individual class design must follow the principle of single responsi-
bility and the principle of least knowledge from software engineering. 
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3.4    System External Interfaces 
Based on the context diagram in Section 3.3.1 and the interface requirements described above in Section 3.3.3, a 
diagram highlighting the external interfaces of the system is shown below Figure 12. The diagram explains the 
direction of flow and the type of information flowing from the system.  
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Figure 12: System External Interfaces 

 
Information of the environment captured by the cameras is sent in the form of RAW camera frames to the system 
via the GMSL interface. The rate at which these frames are sent to the system depends on the FPS of the cameras. 
When the system is available, it picks the latest frames sent and processes it. The processed frames are converted 
into GL format, which are render ready. These frames are then sent via the HDMI interface to the display unit for 
rendering. Similarly, the CAN messages written by the system after performing all detections and computations 
are sent to the Vehicle Control system. In the architecture level described in the next chapter, only the interfaces 
of the SVS will be used for expressing any communication with the system’s environment.  
 
 
 

■■■ 
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4. System Architecture 
 
In the previous chapter, the system was considered as a black box, and its interfaces and functions were defined. 
In this chapter, the system is considered as the white box, the identified system functions are assigned to individual 
functional components. Furthermore, different architectural views are used to express when does each functional 
component process information, what are the interfaces of these components and what information is exchanged 
between these components. 
 
Different viewpoints can be used to describe the architecture of the system. Each viewpoint tries to address spe-
cific concerns of the stakeholders. The Functional, Concurrency and Logical viewpoints are used to emphasize on 
the behaviour of the system. Furthermore, to explain how the software is developed, SysML structural diagrams 
are used to explain the software classes and their interfaces.  

4.1    Functional Viewpoint  
The functional view of a system defines the architectural elements that deliver the functionality of the system. 
This view describes the system’s runtime functional elements, responsibilities and their primary interactions. It is 
a viewpoint which is understood by all stakeholders and hence explained first.   
 
Figure 13 shows the interaction between various functional elements, and Figure 14 describes the list of func-
tions provided by each functional element. 
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Figure 13: Functional Viewpoint - Functional Elements & their interactions 

 

 



Eindhoven University of Technology 
 

22 
 

 
Figure 14: Functional Viewpoint - Each Functional Element & its decomposition 

 
The cameras asynchronously provide image frames in RAW format to the system. Image processing operations 
are performed on these images to render and provide for other detectors.  
 
The object detector performs the task of detecting objects in the image. It detects objects of desired classes and 
identifies the location of these objects in the image space by computing a bounding a box over each detection. 
Each object detected, has a label describing the class and bounding box coordinates with respect to the image 
plane. 
 
While driving in traffic, there may be multiple objects present of different classes and thus in the image frames. 
To be conscious of how many objects are present in the scene, each object needs to be tracked and labelled by a 
unique instance identification number (instance ID). Moreover, it is also necessary to measure the lifetime of these 
objects around the ego-vehicle. Objects that have a longer lifetime are considered stable detections, worthy of 
communication to the vehicle control system. The object tracker is responsible for tracking these detected objects 
and providing stable tracks. The object tracker element accepts bounding boxes from the object detector and val-
idates that each object detected, is present continuously in sequential frames. If the above condition is true, an 
object track is created having the following properties: a class label, box coordinates, an instance ID and Track-
age. The tracker provides these object tracks to the pose/position estimator functional element. 
 
The pose/position estimator accepts the object tracks and computes the positions of all tracked objects with respect 
to the ego vehicle. Furthermore, this element also estimates the pose (position+heading) for target vehicles. For 
further information on position estimation, refer to chapter 5. The pose/position information is then communicated 
to the vehicle control system via CAN-bus. 
 
Besides object detection, lane detection and free-space detection functional elements are responsible for identify-
ing the lane markings and the drivable collision-free space in the provided images respectively. The lane infor-
mation and free space boundaries are communicated via the CAN-bus. 

4.2    Concurrency Viewpoint 
Concurrency view of a system is used to describe the system’s concurrency state-related structure, and constraints. 
This involves defining the modules of the system that can run at the same time and how they can be controlled.  
 
The system needs to accept inputs from multiple cameras and perform all inferencing operations simultaneously. 
As per the stakeholder’s concerns described in Chapter 2, the total processing time for the system is critical and 
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hence requires parallelization of those functions so that they can work independently. Another aspect that needs 
to be addressed in the architecture is the scalability of the system. The number of cameras that can be used is not 
predetermined, and hence the system must be scalable to work with an undefined number of cameras. 
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Figure 15: Concurrency View- SVS 

During runtime, the Camera Image Acquisition element is capable of handling multiple inputs from different 
cameras simultaneously. Once it reads from all cameras, it outputs an array of images. The object detector can 
accept this image array and perform inferencing on all the images simultaneously. However, the Lane and Free-
space detector cannot handle an image array as input. Thus, each element of the array is fed to an instance of these 
detectors, as shown in Figure 15. These detectors work on independent threads and finally synchronize to the main 
thread after object detection. 
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Figure 16: Concurrency View - Object Detection 

The concurrency view related to object detection is described in figure 16. The object detector outputs bounding 
boxes belonging to five object classes per camera which are inputs to the tracker module. The Tracker module 
can handle only bounding boxes related to a single class per camera. Ideally, if it is necessary to track objects of 
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all five classes belonging to 6 cameras, 5x6=30 Trackers are required. This may have a significant load on the 
hardware/CPU. Since the main concern application in this project is in highway driving conditions, the scope is 
reduced to only tracking vehicles. The vehicle tracks outputted by these trackers will be fed to position/pose 
estimator of each camera and will finally synchronize with the main thread. While the worker threads perform the 
above operations, the main thread estimates the position for other objects using the clustered bounding from the 
object detector. The process of position estimation is different for the vehicle class and other classes. This is 
further elaborated in detail in Chapter 5. 
 

4.3    Logical Viewpoint 
 
For addressing the concern related to execution speed, it is necessary to separate activities which have high and 
low latency. Operations involving memory allocation & setting up inference pipelines are classified high latency 
operations and need to be performed only once during system initialization. In contrast, operations that execute 
iteratively on every image frame should be of low latency to achieve an overall reasonable execution rate.  The 
functioning of the system at an abstract level is designed as a state machine having the following states: Standby, 
Initialization, Ready, Process & Release. Figure 17 shows the State-machine Diagram of the system. 
 

 
Figure 17: State Machine Diagram 

   
The system is initially in the Standby state waiting for operator input. When the operator starts the system, it 
triggers a transition to the Initialization state where the main program execution starts. 
During initialization the following functions are performed: 

• Instantiation of functional components (depending on the number of cameras connected). 
• Memory allocation of all data variables. 
• Importing Deep Neural Network models and their memory allocation in the GPU. 
• Creating Image Pipelines for processing images from raw input to a suitable format for each component. 
• Setting the software handles of all sensors, detectors, trackers. 

  
Once all the components have been successfully instantiated and initialized, the system is ready to accept inputs 
from the cameras and process the information iteratively. In the Ready state, the system waits for information 
from all the cameras. Once image frames are received, the system transitions to the process state. 
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The process state is where the low-latency critical operations of the system take place, as discussed in the concur-
rency view. 
The following are the operations performed in the process state: 

• Receive information from the cameras and process into a suitable format for detection & rendering 
• Perform Lane, Object and Free space detections 
• Tracking & pose estimation of vehicles. 
• Render the image, detected Lanes, Free space Boundary, bounding boxes of detected objects and position 

of objects. 
• Processing and sending the perceived obstacle information to the CAN-bus. 
• Transition to the Ready state after successful completion of all computations. 
 

The system transitions to the Release state in case of initialization and processing failures or when the operator 
terminates the system. In this state, the system releases all the variables and memory allocated during initializa-
tion. This state also is classified as high-latency.  

4.4    Structural Views 
 
The structural views of the system describe how the overall software is decomposed into classes. Based on the 
single responsibility principle, every module or class should have responsibility for a single part of the function-
ality provided by the software, and the class should entirely encapsulate that responsibility.  As highlighted earlier 
in Section 4.1, each functional component is converted to modules such as Camera Image Acquisition, Lane 
Perception, Free space Perception and Object Perception.  
Figure 18 describes that the SVS is composed of a single instance of Camera Image Acquisition Module, one to 
two instances of Lane Module for front and rear cameras, one or more instances of Free space Module depending 
on the number of cameras connected and a single Object Perception Subsystem. The Object Perception module 
encapsulates a single object detector, one or many vehicle trackers and Tracked object managers for each camera. 
 

 
Figure 18: Block Definition Diagram (BDD) representing the composition of SVS 
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In Section 3.5, the external interfaces of the system were described. In this section, the interfaces of each module 
are identified, along with the type of information exchanged. The following views will form a base for the design 
of these modules.     
Figure 19 describes the internal block diagram of the SVS. 
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Figure 19: Internal Block Diagram (IBD) of Surround Vision System. 

The camera image acquisition module accepts RAW images, performs image processing and provides the infor-
mation for the Lane, Free space & Object Perception modules. It also processes the images for rendering, in GL 
format (image format specific for rendering) and provides it at the HDMI interface. Every module renders its 
computed information and provides computed CAN messages to the CAN interface. 

Figure 20 shows the IBD of Object Perception system along with its interactions.  
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Figure 20: Internal Block Diagram (IBD) of Object Perception Module 
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Each module has access to the image interface for its performing computations. The Object Detector communi-
cates with the Tracker and the position Estimator by providing bounding box information of vehicles and other 
objects respectively. The Tracker provides the vehicle track information to the Tracked Object Manager to esti-
mates the positions (other objects non-targets) & pose (for targets).  

■■■ 
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5. Module Design 
In the previous chapter, the Surround Vision System (SVS) was decomposed into individual functional elements 
based on the functions desired in Chapter 3. In this chapter, the focus is laid on the detailed design of individual 
modules, i.e. How are the outputs computed based on the given inputs and what are the algorithms used to perform 
these functions? This chapter emphasizes the theory and working principles related to Deep Neural Networks and 
Computer Vision Techniques. 
 
As discussed in the previous chapter, raw images from the cameras are processed and fed to different perception 
modules for perceiving the information of the surrounding. Section 5.1 elaborates on the image acquisition process 
and processing of these raw images. Section 5.2 is related to object perception where objects belonging to different 
classes are perceived and their positions computed. Similarly, Section 5.3 & 5.4 discusses on detecting lanes and 
free space, respectively.    
 

5.1    Camera Image Acquisition (CIA) 
The CIA module as derived from Section 4.1 is responsible for communicating with all the cameras connected to 
the system, processing and providing the processed images to other detector modules. As per the user, the number 
of cameras to be connected and their locations are not predefined. The user expects the system should be flexible 
such that the number of cameras connected and their positions be changed. Based on this requirement, a rig-
configuration file is defined that describes the number of cameras connected along with the intrinsic and extrinsic 
parameters representing the six degrees of freedom (6 DoF) pose of each camera with respect to the vehicle. More 
information on the rig & camera coordinate systems is described in appendix B. 
 

 
Figure 21: Camera Image Acquisition Flow-chart 

Figure 21 describes the workflow of the CIA module. During initialization, the module loads the camera param-
eters from the rig configuration file. Based on the number of cameras connected, image pipelines are created for 
processing RAW image data to RGB & RGBA formats. Once the module is successfully initialized, images from 
all cameras are captured synchronously and converted to the above formats. Each image is then rectified to correct 
the lens distortion effects. The RGB format is compatible with all deep neural networks, while the RGBA format 
is suitable for rendering the output images. This module iteratively processes and provides the images for other 
modules. In case the initialization fails, all previously initialized variables are released, errors are displayed, and 
the system stops. 
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5.2    Object Perception 
The object perception module is responsible for providing semantic information of the ego vehicle's surroundings.  
This section will focus on analyzing possible design solutions that can meet the customer's desired objectives 
within the given constraints. 
 
The main objective of the customer is to operate the ego vehicle in autonomous as well as cooperative driving 
modes. Driving in the autonomous mode requires perceiving surrounding objects, while in the cooperative mode, 
in addition to perceiving, the ego vehicle also needs to identify potential target vehicles to be followed and estimate 
the pose of these target vehicles. These all functions need to be carried out with low latency and be robust to 
environmental conditions. Moreover, the solution needs to be universal so that it performs well in different pos-
sible scenarios. On the constraints side, the design choices need to be compatible with the existing hardware and 
are limited by the amount of hardware computational memory. From the project management point of view, the 
constraints are limited project time and human resources.  
Based on the above requirements and constraints, the following possible design solutions were analyzed 
 
Design Choice 1: Training a Custom Object Detector. 
 

 
Figure 22: Object Perception: Design Choice 1 

The first choice, as shown in Figure 22, involves training a custom object detector that can detect objects of all 
classes, including target vehicles in one single step given the input image frames from the CIA. The outputs from 
this step are bounding boxes for each object class. Tracking is performed only for vehicle objects due to memory 
limitations. The tracker accepts these bounding boxes and is responsible for providing a unique instance ID for 
each object in the real world. It performs this task by clustering bounding boxes over the next set of consecutive 
frames. Thus, in this way, only objects that are stable throughout their lifetime are processed further. 
 
The Tracked Object Manager consists of additional submodules which estimate the pose of the target vehicles and 
position of other vehicles using the tracked bounding boxes. For other objects, the position is estimated only using 
the bounding boxes provided by the object Detector. The information computed by the Tracked Object Manager 
is finally provided to the CAN Interface.    
 
Although this solution looks simple and straight forward, the task related to training a new object detector is quite 
cumbersome. Training involves capturing a large number (7000-10000 instances) of images for all object classes 
in different scenarios. Labelling an object detector involves a cumbersome process of drawing a bounding box 
over the object in the image as well as labelling its class. This activity requires additional human resources, train-
ing and installing the necessary software packages.  
 
Another aspect is the object detector's network architecture. A deep neural network (DNN) is composed of several 
layers which perform different mathematical operations. For deployment, these layers are optimized to have low 
inferencing time using a tool called TensorRT specifically provided by NVidia for DriveWorks. These layers must 
be compatible with the provided TensorRT tool to integrate with the DriveWork's APIs. This constraint limits the 
number of possible network choices. A detailed study was performed to evaluate which networks are compatible 
with the Tensor RT 4.0 tool provided for DriveWorks 1.2 (Refer Appendix B for compatibility chart).  
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Design Choice 2: Existing Object Detector with a Target Vehicle Classifier 
 

 
Figure 23: Object Perception - Design Choice 2 

Design choice 2 as shown in Figure 23, involves using an existing trained detector "DriveNet" provided by NVidia 
for detecting vehicles and a classifier for classifying the vehicle detections as targets or non-targets. 
Classifier training is only a binary problem related to labelling only two classes (Target Vehicle & non-Target 
Vehicle) as compared to training an Object detector. Moreover, the performance of DriveNet is quite robust and 
used commercially. It provides detections for five object classes without much effort, i.e.(Cars, Pedestrians, Bi-
cycles, Traffic-signs, Traffic-lights). It is quite challenging to reach the performance of DriveNet by training a 
new object detector.  
In relation to execution speed, it is observed that during high traffic scenarios due to multiple detections in an 
image the entire pipeline is significantly slower than design choice 1 due to looping over each detected vehicle in 
every frame. 
Scaling the number of classifiers (3-4 instances) to execute in parallel is one possibility. However, since the com-
putational resources available on the GPU are limited, it is observed that each classifier does not execute inde-
pendently, although they are implemented to run independently on separate threads and CUDA streams. Not all 
operations (kernels) belonging to each network run in parallel and independently.  
 
Design Choice 3: Exiting Object Detector with a Tracked Target Vehicle Classifier 
   

 
Figure 24: Object Perception - Design Choice 3 

In this choice, as shown in Figure 24, the classifier is placed after the tracker. The objective is to perform classi-
fication on only tracked vehicle objects based on the distance or the age of the vehicle track. Thus, this design 
drastically reduces the number of classification operations required, especially in scenarios involving platooning 
where vehicles have a longer lifetime around the ego vehicle.  
 
The sequence diagram shown below in Figure 25 describes the interactions between the modules for the object 
perception module for the front camera. 
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Figure 25: Object Perception for Front Camera 

Object Detection is performed on each image to get bounding boxes for each object. The boxes are tracked for 
consecutive images, and vehicle tracks are provided to the Tracked Object Manager. The Tracked Object Manager 
first estimates the position for all vehicle tracks. All new vehicle tracks are first classified for targets and then 
pose estimation is carried out for only target vehicles. Similar behaviour is implemented for all cameras. 

5.2.1.  Object Detector 
Object Detection involves the following steps: 

• Creating regions of interest by dividing the input image into various regions. 
• Passing all regions into a Convolutional Neural Network to obtain confidence values for each class and 

bounding box proposals for each region. 
• Combining overlapping bounding box proposals from all regions to get a single bounding box describing 

the location of that object in the image.    
 

The object detector module workflow is shown in Figure 26, the module accepts an array/batch of images, syn-
chronously from the CIA, to infer and output detection lists of bounding boxes per camera per object class. Inputs 
and outputs to the system are represented in red and dark green colours, respectively. Inorder to separate high & 
low latency operations, the detector is broken into two phases, module initialization(in orange) and module exe-
cution(shown in light green).  
 
The module loads the optimized TensorRT Model of the DNN in GPU memory. Data conditioning involves cre-
ating a software pipeline to resize the images to the input size of the network size. In this step, memory is also 
allocated for all bounding box lists. On successful initialization, the module accepts images from the CIA and 
executes iteratively. In case of failure, an error is displayed on the console describing the reason for failure, all 
initialized variables are released, and the program terminates. 
During execution, the module iteratively accepts an RGB image array of size N(belonging to N-cameras) and 
performs inferencing in batch mode to output a list of bounding boxes belonging to "M" classes and "N" camera.  
As per the requirements in this project, five classes were decided, which were the following: i) vehicles, ii) pe-
destrians, iii) Bicycles, iv) Traffic Signs v) Traffic Lights.  
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Figure 26: Object Detector Flow Chart 

5.2.2.  Vehicle Tracker 
The need for a vehicle tracker is to filter out false detections provided by the object detector. The concept of 
Multiple Object Tracking is used wherein the goal is to maintain the identities of individual objects across several 
video frames, yielding their individual trajectories. Feng Liu, [6] proposed an algorithm that uses the bounding 
box information and the features within the bounding box. By checking for the presence of the vehicle bounding 
boxes in consecutive frames, the system is more confident that the detection is an actual vehicle of interest.  
 
The process involves two steps, as shown in Figure 27: 

• Track Creation and Merging 
• Track maintenance 

 

 
Figure 27: Vehicle Tracking Algorithm 

5.2.2.1 Track Creation and Merging 
In this step, bounding box detections from the previous frame and current frame are merged so that a final list of 
detections (vehicle tracks) for the current frame are obtained. The merging takes place in such a way that if a new 
detection (bounding box) refers to an object that has been tracked from the previous frame, this new detection is 
merged into that object, and the object is then assumed to be "detected again". If a new detection refers to an 
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entirely new object, it is added to a tracklist for future checks. Two criteria are followed for performing the merg-
ing to decide whether a new detection refers to the same object as one of the tracked objects:  

• Intersection over Union Threshold: If the Intersection over Union (IOU) is higher than a threshold, the 
two bounding boxes (Tracked bounding box from previous frame and present detected box) belong to 
the same object. 

• Maximum Match Distance Threshold: Maximum Match Distance is defined as 1-IOU. Within this 
threshold, the box with the most extended track history is preferred and is selected. 

Track Maintenance 
This step involves estimating the certainty or confidence value of the tracks. This is performed by detecting fea-
tures (edges or corners of the tracked object in the image) present in bounding boxes of consecutive frames. A 
confidence decay rate is calculated based on the number of tracked features present for a track. A tracked feature 
is defined as an edge or corner of an object present in consecutive images. As the number of tracked features drop, 
the confidence decay rate increases. If the confidence of a track falls below a threshold, the track is discarded.  
 

 
Figure 28: Vehicle Tracker (Front) Workflow  

The workflow of the front camera tracker is described in Figure 28 for illustration. During initialization, memory 
is allocated for storing the tracks and features. On successful initialization, bounding boxlist of the vehicle class 
and an RGB image belonging to the front camera is accepted. The boxes are merged with the existing tracks, and 
track maintenance is done by detecting and calculating the tracked features as explained in the algorithm. This 
process is repeated for every new frame. 

5.2.3.  Tracked Object Manager 
As analyzed in requirements Section 3.4, the goal is to estimate the pose of target vehicles (Twizy), position of 
non-target vehicles and position of objects belonging to other classes (Pedestrians and Bicycles). For target vehi-
cles, additional information about the dimensions of the vehicle and the shape are known, thus making it feasible 
to estimate its pose.  
 
The Tracked Object Manager Module performs four functions which are as follows: 

• Estimate the position of other classes (Pedestrian, Bicycles) 
• Estimate the 2D position of all vehicles (Targets as well non-Target Vehicles)  
• Classify whether a vehicle is a target vehicle or not. 
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• Estimate the pose of all target vehicles. 
 

Figure 29 shows the flow-chart of the Tracked Object Manager Module, consisting of the functions in grey, the 
inputs described in red and outputs in green colours.  
 

 
Figure 29: Tracked Object manager workflow 

The module receives a list of bounding boxes belonging to other classes (bicycle, pedestrian) and vehicle tracks 
from the vehicle tracker. For other objects, the position is estimated in a single step, while for the vehicle tracks, 
the module creates, updates and stores the information as ‘Active vehicle objects’. Active vehicle objects signify 
vehicles currently present in the real world around the ego-vehicle. Based on the Track ID, these objects are 
created and updated in the active vehicle objects list.  
 
If the objects are not updated for n-consecutive frames, then the detected vehicle is assumed to have left the scene, 
and thus the vehicle object is destroyed. For each vehicle object, position estimation is carried out in every frame. 
Target classification need not be done frequently and may be based on specific rules for e.g. how much the position 
of the vehicle has changed based on the previous classification. Pose estimation is performed only for those vehicle 
objects that are classified as a target vehicle. 

5.2.3.1 Position Estimation 
Model-based estimation techniques and deep learning-based techniques are generally used for estimating the po-
sition of objects in images. In this project, the scope is limited to model-based techniques due to limited access to 
training data necessary for deep-learning and a tight project schedule. 
Most of the literature related to model-based techniques use two standard algorithms: 

• The width-based algorithm [7] 
• The position-based algorithm [8] 

The width-based method [7] estimates the absolute distance of a vehicle given the actual width (or height) of the 
vehicle, the width (or height) in the image plane and the focal length of the camera lens. As shown in Figure 30 
(a), the inter-vehicle distance is inversely proportional to the height of the bounding box in the image. In practice, 
this method is useful if the size (height or width) for a specific vehicle is known beforehand. However, it is not 
suitable for estimating distances for different vehicles (having different heights or widths). For instance, a Truck 
will have a wider width and height compared to a car. 
 
Lee, Jaemyoung [9] used another approach of the width-based method by assuming a specific scenario of vehicles 
driving on a straight highway with lanes. The distance between the lane markings is assumed constant (parallel 
lines). In Figure 30(b), L1 and L2 are the distances between two lane-markings. d1 and d2 are the distances from 
the front bumper of the ego vehicle to a predetermined position and the rear bumper of the front vehicle, 
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respectively. Using the similarity of triangles d2 can be calculated. Though this method is robust to noise, it is 
suitable only for straight highway scenarios with lane marking. 
 

 
Figure 30: Width Based Methods: a) Intervehicle distance calculation based on bounding box height change 
b) Intervehicle distance calculation based on lane-markings 

   

 
Figure 31: Position-Based Method 

In the position-based algorithm, the vertical position of the bounding box from the bottom pixels of the image, as 
shown in figure 31, is used to calculate the inter-vehicle distance. The distance and vertical position are propor-
tional. However, this method needs to assume the road is planar, even though the slope has nothing to do with it. 
If this assumption holds, this method is suitable for calculating the position of any type of object (Pedestrian, 
Bicycle) provided it is on the road. Despite this advantage, this method is susceptible to noise. A small pixel 
variation in the vertical position of the bounding box can cause significant distance errors, more specifically with 
objects that are further away than the closer ones. Secondly, for this method, minor deviations in the camera 
orientation (pitch angle) or height from the ground plane, may cause significant errors for objects that are further 
away. To overcome this disadvantage, Cho, G.Kim & J. [7] proposed a combination of the width and position-
based methods along with a Kalman filter. The project demands a solution that is generalized and is applicable 
for highway as well as urban driving scenarios. Thus, using the above two methods, along with a Kalman filter, 
was a preferred choice. 
 
Figure 32, describes the detailed algorithm designed for estimating the position of every vehicle object. A vehicle 
object contains a Track ID and its bounding box information. Based on this, vehicle coordinate positions X and 
Y, Kalman filter gains are computed. It is assumed that the bounding box fits the detected vehicle in the image 
correctly. The bottom pixels of the box signifies the contact points of the vehicle with the ground plane, which 
are the points of interest for estimating the absolute position.  
The position of the vehicle is first calculated with respect to the camera coordinate system using the position 
estimation method based on the camera intrinsic parameters and the height of the camera from the ground plane. 
The lateral position(x-position) in camera coordinates is more stable compared to the longitudinal position (z-
position). To compensate for measurement noise in the longitudinal position, the width-based method is used to 
compute the vehicle height given the bounding box height and the longitudinal distance. A Kalman filter, having 
a motion model as a constant height (to incorporate that the actual height of the vehicle is constant) is used for 
averaging out the vehicle height. The estimated height is again used to estimate the longitudinal distance. The last 
step involves the transformation of measurements from the camera to the ego-vehicle coordinate system. By fol-
lowing this process, the vehicle 2D position can be robustly estimated for any agnostic vehicle with low execution 
time. 
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Figure 32: Position Estimator Workflow 

5.2.3.2 Target Vehicle Classifier 
As classifying objects is computationally intensive, the whole process benefits from performing this task less 
often, therefore, to classify vehicles efficiently, we are suggesting an approach where the classification happens 
based on the distance between the target and ego vehicle. 
 
The workflow of the classification module is similar to the object detector. Once the classification model is loaded 
and successfully initialized bounding boxes from every tracked vehicle object are fed to the classifier. The image 
is resized to the network dimensions, and inferencing is performed to output a binary result indicating whether the 
vehicle is a target or not.    
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Figure 33: Target Vehicle Classifier Workflow 

5.2.3.3 Target Vehicle Pose Estimation 
Once a vehicle object is identified as a target, its pose needs to be estimated with respect to the ego-vehicle. 
Similar to position estimation described in Section 5.2.3.1, DNNs and conventional computer vision techniques 
are used depending on the requirements. In relation to DNNs, DeepIM [10], Keypoint detector localization [11] 
and PVNet [12]are examples of current cutting edge pose estimation methods. However, the challenge for the 
implementation of such methods requires large amount of training data.  In this project, since the target vehicle is 
a textured object, sufficient features can be extracted, making computer vision techniques a preferred choice.  
 
The process of pose estimation can be divided into two parts as shown in Figure 34, an offline process which 
involves registering the model of the target that the user wants to track and the second part involving an online 
process of estimating pose given the registered model.  
 

 
Figure 34: Target Pose Estimator Workflow 
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The offline model registration process involves the following steps: 
• Detect features and descriptors for different images of the target. 
• Compute the 3d position of the detected features with respect to a local coordinate system of the target. 
• The descriptor information, along with its corresponding 3d position, are written to a file representing a 

model of the target. 
Once a model registration is performed, the generated model is used for online pose estimation.  
The following are the steps performed during online pose estimation: 

• Features and descriptors are extracted within the bounding box for vehicle objects classified as targets. 
• Feature matching is carried with the observed features in the above step and with those in the model. 
• For the matched features, the corresponding 3d locations are assigned to the observed features. 
• Given the 3d object points, the 2d image points of the features in the scene and the camera intrinsic 

properties, the pose of the camera can be computed relative to the detected object's local coordinate 
system.  

• The Perspective-n-Point (PnP) function estimates an object pose by finding such a pose that minimizes 
reprojection error, that is, the sum of squared distances between the observed image points and the pro-
jected object points. The use of RANSAC makes the function resistant to outliers. 

5.3    Lane Perception 
The lane perception module is responsible for perceiving the lanes present in front and rear of the ego vehicle. 
Figure 35 shows the design flow of the lane perception module. The lane perception module is responsible for the 
following functions: 

• Identify and classify the lane markings such as left adjacent lane, left ego lane, right ego lane, and right 
adjacent ego lane if they are present on the road. 

• Render the detected lane markings in-vehicle display. 
• Project the image points to world points with respect to the ego-vehicle coordinate system. 
• Fits a polynomial through the projected world points.  
 

 
Figure 35: Lane Perception Workflow 

The module outputs Lane Objects. Each Lane object has information related to the type of lane-marking (solid or 
dashed), type of lane (Ego lane or Ego adjacent lane) and coefficients of the polynomial. These objects are encoded 
as CAN messages and provided to the CAN interface.  
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5.4    Free Space Perception 
The free-space perception module, as shown in figure 36, estimates the drivable space around the vehicle by 
computing the free-space boundary from images provided by every camera. The module uses a deep neural net-
work to output image points representing the free-space boundary. These points are projected to world coordinates 
to calculate the actual free-space boundary around the ego vehicle. The coordinates of each point are provided to 
the vehicle control system over the CAN bus. 
 

 
Figure 36: Free Space Perception Workflow 

 
. ■ ■ ■ 
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6.Implementation 
 
 
The previous chapter reflected on different design methods that can be used to meet the desired functionality. The 
design of each module was explained by referring to the inputs of each module and what functions are performed 
to transform the inputs to desired outputs. This chapter refers to how these designs are finally realized and imple-
mented in software code. In the first section, a brief description is provided about NVidia DriveWorks libraries 
reflecting on the reasons it is used. In the second section, the different methods used to implement the design are 
described. 

6.1    NVidia Drive Software 
The surround vision system (SVS) needs to run in real-time and be deployed on a cooperative automated vehicle. 
This requires an embedded device with high computational resources and low power consumption. To that effect, 
the NVidia drive PX 2, an embedded device specifically designed for autonomous driving functions is used. The 
main benefit this device offers is low power consumption along with desired graphics processing capabilities. The 
NVidia Drive software is used for developing applications on the Drive PX 2. Figure 37 describes the Drive 
software stack, which consists of the Drive OS (operating system), the DriveWorks Software Development Kit 
(SDK), and the high-level NVidia Drive Autonomous Vehicle (AV) library. 
 
 

 
Figure 37:NVidia Drive Software Stack [10] 

Drive OS is responsible for communication with the hardware components and connected sensors.  
DriveWorks SDK enables developers to implement autonomous solutions by providing comprehensive libraries 
for sensor information acquisition, deep learning, and rendering. 
Drive AV utilizes the DriveWorks SDK to provide high-level functions like Object Perception, Planning, and 
Mapping Modules. The Perception modules, for example, have deployment-ready neural networks for object de-
tection (DriveNet), lane detection (LaneNet), and free space Detection (FreeSpaceNet).       

6.2    Mapping of SVS Architecture to DriveWorks APIs 
As discussed in the architecture Chapter 4 & 5, functionalities offered by the NVidia Drive software are mapped 
to individual modules. This mapping is explained in the following sub-sections:     

6.2.1.  Camera Image Acquisition 
The camera image acquisition (CIA) module uses the NVmedia Interface (mapped as the GSML interface in the 
architecture) to communicate with the cameras. This interface reads the images from the connected cameras syn-
chronously and provides the RAW images to the CIA module. Sensor abstraction & image processing APIs pro-
vided by DriveWorks are used to initialize the module and create an image processing pipeline to process the 
RAW images, respectively. Every image from each camera is then processed sequentially by passing through this 
pipeline to output RGB and RGBA formats as in figure 38. After processing, each image is rectified with its 
corresponding camera intrinsic parameters.    
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Figure 38: Image Processing Pipeline 

6.2.2 Deep Neural Networks 
NVidia Deep neural networks (DNN) are used for object detection, classification, lane detection, and free space 
detection. NVidia DriveWorks provides two options for implementation. The first option involves a DNN API 
which allows importing a TensorRT model of a custom neural network. The second option involves using NVidia 
proprietary neural networks like DriveNet, LaneNet & FreespaceNet for object, lane and free space detection, 
respectively. Since we are concerned with deployment and working with the outputs of the detector, we use the 
second option to perform all detection related activities.  

6.2.2.1 Object Detector 
As mentioned in the previous chapter, we use DriveNet object detector that operates in batch mode. It accepts an 
array of images and provides object proposals (in the form of bounding boxes) belonging to five classes. The 
objects detected per class per camera are saved in separate containers. For more details, please refer to NVidia 
DriveWorks Documentation [13]. 

6.2.2.2 Object/Target Vehicle Tracker 
We use the DriveWorks Tracking API to perform vehicle Tracking. The API provides tunable parameters for 
setting the number of features for tracking and threshold parameters for clustering the bounding boxes between 
frames. Vehicles proposals detected by the object detector are fed to the trackers to output vehicle tracks. For 
more details refer NVidia DriveWorks Documentation [13].   

6.2.2.3 Target Vehicle Classifier 
A Renault Twizy is used as the target vehicle in this project. Figure 39 describes the approach taken for training 
the Target Vehicle Classifier.  
 

 
Figure 39: Pipeline for Training and Deployment of Classifier 



Eindhoven University of Technology 

43 
 

For generating the target vehicle dataset, a Renault Twizy is driven around the ego vehicle at different distances 
from the cameras, and h264 videos are recorded. Inferencing is performed on these videos using the DriveNet 
Object Detector, and the detected vehicle images are saved to disk. A similar process is followed for generating 
the dataset for Non-target vehicles by driving on the highway and parking lots.  
 
Objects that are further away from the ego vehicle have a smaller bounding box. These images, when saved and 
resized to network dimensions, appear pixelated and grainy. Using such images for training makes it difficult for 
the classifier to learn from such data and thus leads to poor classification performance. A solution to this problem 
is to classify boxes having a minimum size enough to incapsulate visibly distinct features for training. Thus, 
classifier training is performed only on vehicles within 30m distances where the size of the boxes is sufficiently 
large enough. 
 
For training the classifier, a Docker image of NVidia Digits is used. Digits provide an interactive interface to 
choose from different existing network architectures and train for classification and object detection. We use a 
pre-trained model of GoogleNet (trained on the ImageNet dataset). The input image size of the network is 
256x256, and the provided images are stretched and resized to the input dimensions for training. The two nodes 
at the output layers provide the probability to which class the object belongs. The output from Digits is the network 
model and a model description file describing the network layers. These two files are imported to the TensorRT 
tool of DriveWorks for inference optimization. The TensorRT model generated by the tool is then used for online 
inferencing. 
 
During execution, the bounding boxes of vehicle class provided by object vehicle tracker are resized to input 
network dimension, the probabilities provided at the output nodes are compared, and the class to which the object 
belongs to is provided.        

6.2.3 Vehicle Position and Other Objects Estimation 
For estimating the position of all vehicles/other objects, we calculate the bottom centre pixel position of the 
bounding box [𝑢𝑢, 𝑣𝑣] with respect to image coordinates. As shown in figure 40, this point signifies the nearest 
distance of the object, based on the ground plane assumption.  
 

 
Figure 40: Position Estimation Schematic Diagram Front View 

 
The transformation from pixel to ray for the camera can be expressed as 
 
                                                                  𝑟𝑟 = [𝐾𝐾]−1𝑖𝑖                                                                        (6.1) 
Where  𝑖𝑖 = [𝑢𝑢 𝑣𝑣 1]𝑇𝑇  is the position of the bottom-centre bounding box pixel in image coordinates, 

𝐾𝐾 = �
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� is the Camera intrinsic Matrix wherein 𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦, 𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦 are the focal lengths and camera principal 

points, r= [𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑]𝑇𝑇 is the direction vector of the ray originating from the camera focal point and passing 
through the given pixel.  
Given the height of the camera 𝑡𝑡𝑧𝑧 (in meters) with respect to the ground plane, eq 6.2 calculates the scale factor 
𝑠𝑠, required to obtain the intersection point of the ray with the ground plane. 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 is the object’s world position in 
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meters with respect to camera coordinate system, 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐, 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 & 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 being the lateral, vertical and longitudinal 
distance respectively. 
                                                     𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 = [𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐]𝑇𝑇 = [𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑧𝑧 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐]𝑇𝑇 = 𝑠𝑠𝑟𝑟             (6.2) 
 
Solving and resubstituting for 𝑠𝑠 gives 

𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑧𝑧 𝑓𝑓𝑦𝑦/𝑓𝑓𝑥𝑥
(𝑢𝑢−𝑐𝑐𝑥𝑥)
(𝑣𝑣−𝑐𝑐𝑦𝑦)

,    𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑡𝑡𝑧𝑧,  𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑧𝑧𝑓𝑓𝑦𝑦/(𝑣𝑣 − 𝑐𝑐𝑦𝑦)                (6.3) 

 
These positions of detected vehicles/objects are then transformed into vehicle coordinates (coordinate system 
defined in Appendix D.2) using the camera extrinsics [𝑅𝑅], [𝑡𝑡]. 
        𝑤𝑤𝑣𝑣𝑣𝑣ℎ = [𝑅𝑅]𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 + [𝑡𝑡]          (6.4) 
 

Kalman Filter Calculation 
As the preceding vehicle moves away from the ego-vehicle the bounding box translates from the bottom, to the 
center of the image. To analyze the sensitivity of the measured longitudinal position 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 with respect to the 
bottom-center bounding box pixel height position 𝑣𝑣.  
 
From eq 6.3     𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑧𝑧

𝑓𝑓𝑦𝑦
𝑝𝑝

              (6.5) 

where 𝑝𝑝 = �𝑐𝑐𝑦𝑦 − 𝑣𝑣� is the vertical distance from the image center. 
 
Sensitivity is defined as the change in longitudinal distance with respect to change in pixel vertical distance  

 
|𝑆𝑆| = 𝑑𝑑𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐

𝑑𝑑𝑝𝑝
= 𝑡𝑡𝑧𝑧 𝑓𝑓𝑦𝑦/𝑝𝑝2            (6.6)

     
Thus, if the cameras optical axis is parallel to the ground plane, as the bottom of the bounding box moves to the 
centre of the image, the sensitivity increases parabolically.  
 
 
To mitigate the effects of noise due to high sensitivity, a Kalman filter is implemented that uses the width-based 
method [7] by incorporating the bounding box height 𝐵𝐵ℎ information to calculate the vehicle height 𝐻𝐻𝑐𝑐 given by 
eq 6.7.  
 

    𝐻𝐻𝑐𝑐 = 𝐵𝐵ℎ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐/𝑓𝑓𝑦𝑦                  (6.7) 
 
The Kalman filter estimates the vehicle height state 𝐻𝐻, which is constant. The constant model is given below, and 
since we are confident that the vehicle’s height is constant, the process noise is assumed small and positive defi-
nite. 

 
𝐻𝐻𝑘𝑘 = 𝐻𝐻𝑘𝑘−1 + 𝑤𝑤𝑘𝑘   𝐸𝐸(𝑤𝑤𝑘𝑘𝑤𝑤𝑘𝑘𝑇𝑇) = 𝑄𝑄𝑘𝑘𝛿𝛿𝑖𝑖−𝑗𝑗 = 0.001    (6.8) 
 
𝐻𝐻𝑐𝑐 = 𝐻𝐻𝑘𝑘 + 𝑣𝑣𝑘𝑘   𝐸𝐸(𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇) = 𝑅𝑅𝑘𝑘𝛿𝛿𝑖𝑖−𝑗𝑗 = 0.1      (6.9) 

 
Here the state 𝐻𝐻 which is the height of the detected vehicle. 
The Kalman filter equations are as follows [11] :  

 
The model priori covariance 𝑃𝑃𝑘𝑘− is calculated as  
 
     𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐴𝐴𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1                    (6.10) 

 
= 𝑃𝑃𝑘𝑘−1+  

 
Kalman Gain 𝐾𝐾𝑘𝑘 is given by   𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘

−𝐶𝐶𝑇𝑇

�𝐶𝐶𝑃𝑃𝑘𝑘
−𝐶𝐶𝑇𝑇+𝑅𝑅𝑘𝑘�

                      (6.11) 

 

=
𝑃𝑃𝑘𝑘−

(𝑃𝑃𝑘𝑘− + 𝑅𝑅𝑘𝑘)
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The model posteriori covariance 𝑃𝑃𝑘𝑘+ is calculated as  

 
    𝑃𝑃𝑘𝑘+ = (1 − 𝐾𝐾𝑘𝑘𝐶𝐶)𝑃𝑃𝑘𝑘−                                            (6.12)  
 

= (1 − 𝐾𝐾𝑘𝑘)𝑃𝑃𝑘𝑘−  
 
The model priori state estimate 𝐻𝐻𝑘𝑘− is calculated as 
 

𝐻𝐻𝑘𝑘− = 𝐴𝐴𝑘𝑘−1𝐻𝐻𝑘𝑘−1−  
 

= 𝐻𝐻𝑘𝑘−1+  
 
The model posteriori state estimate 𝐻𝐻𝑘𝑘+ is calculated as 
 

𝐻𝐻𝑘𝑘+ = 𝐻𝐻𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝐻𝐻𝑐𝑐 − 𝐻𝐻𝑘𝑘−)                                      (6.13) 
 
Before calculating the estimated longitudinal distance, the noisy bounding box height measurement needs to be 
filtered so that the estimated longitudinal distance is not noisy. A first-order discrete filter is used to filter meas-
urements below a time constant 𝜏𝜏.  
 
                                     𝐵𝐵ℎ(𝑖𝑖+1) = 𝜏𝜏

(1+𝜏𝜏)
𝐵𝐵ℎ(𝑖𝑖) + 1

(1+𝜏𝜏)
𝐵𝐵ℎ                 (6.14) 

 
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑒𝑒𝑒𝑒 = 𝑓𝑓𝑦𝑦 ∗ 𝐻𝐻𝑘𝑘+/𝐵𝐵ℎ(𝑖𝑖+1)                       (6.15) 

The positions in the camera coordinate system are then transformed into the ego-vehicle coordinate system us-
ing equation 6.4. 

6.2.4 Target Vehicle Pose Estimation 
The Target vehicle pose estimator is responsible for estimating the pose, more specifically, the relative heading 
(𝛼𝛼)and orientation of the target vehicle (𝜃𝜃) with respect to the ego-vehicle, as shown in figure 41. 
 

 
Figure 41:Top-View Schematic for Heading and Orientation Measurements 

   
A model of the target vehicle is first registered offline and then used for online pose estimation. Since the camera 
sensor size & intrinsic properties are input parameters for both the above activities, the same camera must be used.  

ϴ 

α 
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Model Registration 
For the offline Model registration described in Section 5.2.2.3, a template image of the Twizy is captured using a 
Sekonix GMSL camera [12]. To extract features and descriptors from the template image, ORB features are used, 
since they are scale and illumination invariant. To extract the 3D points of the corresponding features, it is assumed 
that the rear shape of the Twizy is similar to a 3D box. By manually aligning a 3D mesh and using the Moller-
Trumbore ray-tracing algorithm [16], the 3d points on the surface of the Twizy are computed as shown in Figure 
42.  
 

 
Figure 42: 3D Box mesh manually aligned with the Twizy rear surface and feature points extracted 

Another approach can be to estimate the relative 3d position of all features from a stereo image. However, the 
effects of noise need to be investigated. 

Online Pose Estimation 
Online pose estimation is performed in OpenCV environment. ORB features & descriptors from the bounding 
box of a detected target are matched with the features in the model using a matching algorithm (e.g. Flann matcher 
algorithm) to output a set of matches. The corresponding 3d points of the model are assigned to the matched 
features in the scene. There may be conditions in which not all the matched 3d points lie on the vehicle. To 
eliminate these points (outliers), Random Sample Consensus (RanSac) [14] along with PnP algorithms are used 
to estimate an optimal pose that best fits the given set of points. A 3d mesh box is then fitted to visualize the 
estimated 6D pose of the target vehicle. Refer OpenCV Real-time Pose Estimation documentation for more details 
[15].  

6.2.5 Lane Detection & Polynomial Fitting 
The Lane detection API from DriveWorks provides the image points of the detected lanes. These image points 
are projected to world points in the vehicle coordinate system using the transformations explained in eq 6.2 & eq 
6.4. A 3rd order polynomial is fit on these world points. The polynomial regression model [16] is used for obtaining 
the polynomial coefficients. The polynomial regression model is given as  

 𝑑𝑑𝑖𝑖 = 𝐶𝐶𝑜𝑜 + 𝐶𝐶1𝑑𝑑𝑖𝑖 + 𝐶𝐶2𝑑𝑑𝑖𝑖2 + 𝐶𝐶3𝑑𝑑𝑖𝑖3 + 𝜖𝜖                      (6.15) 
 

𝑑𝑑 = 𝑋𝑋𝐶𝐶+∈ 
Where ∈ is an unobserved random error with mean zero conditioned on a scaler variable 𝑑𝑑.   
𝐶𝐶 is the vector of estimated polynomial regression coefficients (using ordinary least squares estimation) is 

𝐶𝐶 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑑𝑑 

6.2.6 Free Space Detection 
We use the Free Space detection API provided by DriveWorks. The API provides a set of image points which 
need to be projected to world points similar to Section 6.2.5. Since the free space image points provided by the 
detector are large, communication of all these points requires too many CAN message IDs which is not feasible. 
If an object is detected in the image, only free space boundary points in the vicinity of the detected object are 
provided. 
   
■■■ 
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7. Validation and Test Results 
 
After completion of the implementation of all modules, the final step is the testing and validating the performance 
of the system. The performance is evaluated using two experimental setups. The first, involves a vehicle simulator 
for evaluating different possible scenarios. The second involves the vehicle setup involving the Drive PX 2 and 
the GMSL cameras. In both setups, unit testing is first performed to check whether each function satisfies the 
requirements and provides necessary information at its interfaces. We then perform system-level testing to eval-
uate the performance in conformance with the driving scenarios discussed in Chapter 3.  

7.1 Experimental Setup  

7.1.1.  Carla Simulator  
A vehicle simulator is necessary for quickly & safely evaluating the performance of each module in different 
scenarios involving urban layouts (freeways, cities), different vehicle types, buildings and weather conditions. To 
that effect, the Carla vehicle simulator [18] is used on Ubuntu 16.04 LTS (x86_64 architecture). A BMW sedan 
is chosen as the ego vehicle and fitted with four cameras placed horizontally, 1.5m from the ground plane. Each 
cameras have a 60deg FOV with a resolution of 1080x720. Different scenarios are simulated in Carla and fed to 
the SVS software to validate each functional module, as shown in Figure 43.    
 

 
Figure 43: CARLA Simulator setup for unit testing of SVS functions 

7.1.2.  Test Vehicle 
We conducted the experiments on a Renault Twizy cooperative automated driving research platform. It consists 
of one lead vehicle and one ego vehicle. The ego vehicle, Renault Twizy, which is equipped with four GMSL 
Sekonix cameras [12] mounted on the roof covering the front, rear, front-left and front-right views as shown in 
figure 44. Each camera has a 60deg FOV with a resolution of 1920x1208.  
 

 
Figure 44: Ego-vehicle fitted with GSML cameras and connected to the DRIVE PX 2 

GMSL Cameras 

NVidia Drive PX2 
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The Drive PX 2 is placed on the roof of the ego-vehicle. It is powered with a 12V DC power supply. It receives 
input from each camera and communicates with the Vehicle control PC via CAN. The Drive PX 2 consists of two 
independent SoCs, namely Tegra A and B. The SVS functionality is deployed on the Tegra A for testing purposes. 
For visual verification of the system by the operator, a HDMI display is fixed (at the back side of vehicle front 
seat) inside the vehicle. 

7.2    Unit Testing 
To validate the information computed by each module as per requirements, the output information from each 
module is rendered on the display. Unit Testing was performed using the Carla simulator as well as the Drive PX 
2. The following table highlights the unit-testing results of each module. 
 

Table 2: Unit Testing Observations 

Module Sub-module 
(level-1) 

Sub-
module 
(level-2) 

Validation of outputs 
through Rendering 

Performance  
Observations 

Remarks 

CIA NA NA Input frames from each  
camera are captured in the  
required dimensions and  
processed successfully 

Distortion observed 
near the image cor-
ners while testing 
with GMSL Cam-
eras 

Image Rectification is neces-
sary when using a lens. Due to 
technical issues, image rectifi-
cation was kept out of scope. 

Object 
Percep-
tion 

Object  
Detector 

NA Objects belonging to all  
desired classes are de-
tected and encapsulated 
in a bounding box.  

Many false detec-
tions observed in 
heavy rainy weather 
conditions during 
simulator test and in-
door environments 
during vehicle tests.  

The DriveNet Detector is 
trained with data collected in 
sunny weather conditions with 
cameras placed horizontally. 

Vehicle 
Tracker 

NA Every detected vehicle 
object belonging to each 
camera is marked with a 
unique instance ID.  

Tracked box size 
and is noisy for ob-
jects beyond 30m. 
False tracks initial-
ized when station-
ary. The Vehicle 
tracks are stable for 
objects up to 40m. 

Tracker Parameters need to be 
fine-tuned for different driving 
conditions.  

Tracked  
object  
Manager  

 Non-Tracked vehicle ob-
jects are killed after not 
being tracked for 3-con-
secutive frames.  

No memory leaks 
observed. 

 

Vehicle 
Position 
Estimator 

X,Y Positions of Tracked 
Vehicle objects are com-
puted in vehicle coordi-
nates using Kalman Fil-
ter. 

Minimum distance 
of objects are limited 
to 7m.  
As objects move fur-
ther away from the 
ego vehicle, the er-
ror related to longi-
tudinal distance in-
creases. 
 

Detected Object ground con-
tact points are out of camera 
FOV.  
Position estimation accuracy is 
dependent on the accuracy of 
camera extrinsic and the com-
plete fitting of bounding on the 
detected object. Inaccurate fit-
ting at large distances leads to 
significant errors.  

Other  
objects 
Position 
Estimator 

X,Y Positions of Bicycles 
and Pedestrians are com-
puted in vehicle coordi-
nates 

False reading for 
Objects under 7m.  

For objects under 7m, detected 
object ground contact points 
are out of camera FOV. 

Target 
Classifier 

All vehicles are classified 
when a new track is in-
stantiated. 

Classification is in-
accurate. 

Inadequate variety in training 
data 

Target 
Pose  
Estimator 

Target Vehicle Pose Esti-
mated. 

Pose Estimation 
evaluated consider-
ing the target vehicle 
as a Van.    
Pose estimation for 
multiple targets in 

We assume the surfaces of the 
vehicle planar and use a 3d box 
mesh to extract the 3d points.  
 
Single target setup 
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image not imple-
mented. 

Lane 
Percep-
tion 
Module 

Lane  
Detection 

NA Lanes detected are ren-
dered correctly along 
with lane types and posi-
tion types. Lanes detected 
on Front and Rear cam-
eras. 

NA NA 

 Lane  
Polynomial 
Fitting 

NA Tested with parallel 
straight lanes on the left 
and right of the ego-vehi-
cle. 

Able to estimate the 
offset distance by 
±0.1𝑚𝑚 accuracy. 

NA 

Free 
space 
Percep-
tion 
Module 

NA NA Free space detected on all 
cameras.  

World points com-
puted with 10cm ac-
curacy up to 30m 

 

CAN 
Com-
municat-
ion 

  Tracked Vehicles with 
Track ID, Position and 
Target status are commu-
nicated. Lane & free 
space information is pro-
vided.  

  

7.2.1.  Unit Testing Rendering Results: 

 
Figure 45: Unit Testing of Object Perception Module 

Figure 45 describes the outputs of the object detector, tracker and position Estimator. The object detector accu-
rately detects the preceding vehicle as a car and fits a bounding box accurately over the detection. The detector 
misclassifies the same vehicle as a bicycle, and there are also false car detections. The vehicle object tracker filters 
false car detection and provides a stable track with a unique track ID. The stable tracked object x and y position 
are estimated with respect to the ego-vehicle as per the requirements.       
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Figure 46: Unit Testing of Lane and Free space module 

Figure 46 represents the results of the lane and free space module. The lane module clearly detects the rad bound-
ary to the left and right with different colours. The free space module also clearly identifies the free space in the 
image by providing free space boundary points as rendered in the image. Free space points near the detected 
vehicles vicinity are highlighted in red. These points are provided to the CAN interface.     
For combined system results check the following video link : https://www.youtube.com/watch?v=4tIrmb65i8A  

7.2.2.  Position Estimation Static Results 
To validate the accuracy of the position estimator, we place a lead vehicle at a distance between 10 to 40m from 
the ego vehicle and measure the accuracy in steps of 10m, as shown in figure 47.  
 

 
Figure 47: Static Test Setup with cones placed at steps of 10m. 

Table 3: Position Estimation static testing results 

Intervehicle 
Distance 
Ground 

Truth(m) 

Intervehicle Distance 
Measured   

(m) 
 
∆ 

Absoluter Error 
(Ground Truth -

Measured  
Position) (m) 
∆𝑣𝑣𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒 

Standard Deviation 
of Measurement 

Data (m) 
𝜎𝜎 

10 10.05 0.05 0.05 
20 20.06 0.06 0.15 
30 32             2.0 0.8 
40 45.3 5.3 0.8 

 
As per Table 3, it is observed that the absolute error (∆) depends on the error in the camera pose, the intervehicle 
distance and the detection accuracy (how well the box fits the detected vehicle). The standard deviation (𝜎𝜎) on the 
other hand is inversely proportional to the camera resolution. 

https://www.youtube.com/watch?v=4tIrmb65i8A
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7.2.3.  Position Estimation Dynamic Results 
In relation to Position Estimation, for evaluating the performance of Kalman filtering, the following tests are 
performed by placing cones in steps of 10m distances to mark the ground truth positions. 

1) Preceding Vehicle moving away from ego-vehicle from 10m to 30m. 
2) Preceding Vehicle approaching ego-vehicle from 30m to 10m. 

 
1) Preceding Vehicle moving away from ego-vehicle from 10m to 30m. 

In this scenario, the preceding vehicle starts at 10m and departs away from the ego-vehicle, intermittently halting 
at 20m and 30m. Figure 48 correlates the measured longitudinal position, the estimated longitudinal position by 
the Kalman filter and the ground truth locations of the cones (10m, 20m, 30m). Between 10m to 20m, it is observed 
that the error between the measurements and the Kalman filter estimates are small. As the filter accounts for the 
past historical data, the filter estimates lag the measurement readings. 
 
Between 25m and above, it is observed that the error between the measurements and the Kalman filter estimates 
increase. This is due to the poor fitting of the detected vehicle’s bounding box during this phase(as per visual 
observation). The height of the tracked bounding box provided by the tracker is larger than desired. As the box 
height and the measured longitudinal distance are used to obtain the preceding vehicle’s height, the calculated 
value is higher than expected, as shown in figure 49 (between 37-70sec). The larger than expected box-height 
measurement produces an estimate that is shorter than the actual longitudinal distance.  
 
The accurate fitting of the bounding box with the detected vehicle in the image depends on the parameters of the 
tracker used for clustering the neighbouring bounding box proposals provided by the object detector. These pa-
rameters need to be tuned such that the performance is satisfactory in all environments. 
 

 
Figure 48: Longitudinal position results for vehicle departing away from the ego-vehicle 

 

Deviation in measured 
and estimated values due 
to larger than desired 
bounding box height 
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Figure 49: Vehicle Height measurements & estimates of the detected preceding vehicle  

 
2) Vehicle approaching an ego Vehicle 30-10m. 

In this scenario, the preceding vehicle starts at 30m and approaches the ego-vehicle, intermittently halting at 
20m and 10m. Figure 50 correlates the measured longitudinal position, the estimated longitudinal position by 
the Kalman filter and the ground truth locations of the cones (10m, 20m, 30m). The measurement readings are 
accurate w.r.t to the ground truth, and the filter estimates also do not deviate significantly from the measured 
data. As discussed in the earlier scenario, the filter estimates lag the measurement reading.  
 

 
Figure 50: Position estimation results for vehicle approaching the ego vehicle 

Measured data higher 
due to larger than desired 
height of bounding box 
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Figure 51 compares the measured and estimated values for the height of the detected vehicle. When a new 
tracked object is detected, the initial estimate quickly converges to the measurement values since the Kalman 
gain is high during the initial readings. The Kalman gain drops with subsequent measures making the filter less 
sensitive to measurements reading as the track ages, which is desirable.  
 

 
Figure 51: Vehicle Height measurements and estimates of preceding vehicle 

Form the above two scenarios it can be observed that the position estimation method implemented is vehicle 
agnostic and provides the position of detected objects fairly accurately upto 30m. For objects beyond 30m, a 
conservative estimate is provided (lower measurement than actual). The filter does a good job of removing any 
disturbance or noise due to detected box size or due to road undulations.  

7.2.4.  Target Pose (Heading) Estimation Results 
To validate the pose estimate more specifically the heading angle, the validation is scoped to testing a single target 
vehicle detected by the front camera of the ego-vehicle. The testing is performed in accordance with driving 
scenario 4. Figure 52 describes the test setup where a stationary target is placed in front of the ego vehicle, and 
the ego-vehicle is driven back and forth at a slow speed (3kmph) on a curved path by locking the steering wheel 
towards one side. The detailed expected behaviour is described in Appendix A (DS 4). 
 

Fast convergence 
to measured data 

Estimates insensitive 
to measured data 
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Figure 52: Test Setup for Target Pose Estimation 

 
During execution, we detect features within the bounding box of the target. These features are then matched with 
the features in the template model. It is observed that a high number of matches (at least more than 30) provides 
a more accurate pose estimate. Among the matches, inliers are computed using the RANSAC and PnP algorithms 
to obtain an optimal estimate of the pose. If the interpixel distance between the inliers are greater, the precision of 
the pose estimate is higher. As the inter-vehicle distance between the target and ego-vehicle increases the inter-
pixel distance between the inliers drops, leading to a drop in precision.  
 
For validation, an IMU sensor is placed in the ego-vehicle, which will provide the change in yaw values.  
Figure 53 shows the heading angle of the target vehicle computed by the front camera and the relative change in 
the heading of the ego-vehicle measured by the IMU. Since the target vehicle is stationary, the change in the ego-
vehicle’s yaw should match the change in the heading angle of the target. A good correlation is observed in the 
two plots.  
 

 
Figure 53: Correlation of heading angle measurements by camera with IMU measurements 

 
For the online testing results click on https://www.youtube.com/watch?v=sDuzfNlXUEA 

https://www.youtube.com/watch?v=sDuzfNlXUEA
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From the above results, it can be concluded that the pose estimation works well for intervehicle distances up to 
30m and for small heading angles (0-30deg). If the target vehicle is wide (e.g. Truck) the interpixel distances of 
the features detected will be wider than the existing setup, leading to better precision and greater intervehicle 
distances. Thus, this method is suitable for highway platooning driving scenarios where the relative heading angles 
between vehicles are lower. 

7.2.5.  Lane Polynomial Fitting Results 
The plot in figure 54 indicates the road boundary points detected by the Lane Detector on the left and right side 
of the ego vehicle. In the image, lanes that are nearer to the ego-vehicle are represented by a greater number of 
pixels. When these pixels are mapped to world points, a higher resolution and precision is obtained for points 
nearer to the vehicle. 
It should be noted that the position of these 2D points is reasonably accurate compared to the ground truth. How-
ever, the accuracy is dependent on the camera extrinsic parameters which are affected by the vehicle motions 
(pitch, bounce).  
 
Third-order polynomials are fit through these 2D road points. Thus, the lane coefficients provided by the system 
are accurate and are useful for path planning purposes. 
 

 
Figure 54: Lane Polynomial Fitted with measured data 

7.3    System-Level Testing 
In system-level testing, we evaluate the response of the SVS in different driving scenarios by driving the ego-
vehicle in the TU/e campus. In the video described in the following link, we drive in an urban environment (TU/e 
campus) following a target vehicle in front of the ego-vehicle.  
Video-link: https://www.youtube.com/watch?v=G0XBVVIsJOU 
Since the test is conducted in an urban scenario, many detections were observed for objects beyond 100m which 
were irrelevant. Since each object is processed sequentially, it leads to longer execution time. We thus tuned our 
parameters to filter out objects which are smaller than a threshold box size limiting the detection range to approx-
imately 35m. 
 
 

https://www.youtube.com/watch?v=G0XBVVIsJOU
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Figure 55: On-Road testing with target and ego vehicle 

7.3.1.  System Profiling: 
To analyze the overall execution time taken per input frame by the system, we breakdown and measure the time 
taken by each module. As per the architecture since object, free space and lane detections are independent pro-
cesses, it is desired to execute these processes on separate threads. However, due to limited computational re-
sources resulting in internal switching between processes, we observed that there were no significant improve-
ments in running these processes in parallel compared to sequentially [19]. Additional research is necessary to 
investigate this problem.  
 
The timeline shown in Figure 56, describes the execution time for the front camera when a new vehicle track is 
created due to a new vehicle detection or due to a track change.  
Figure 57 describes the execution time when existing tracked vehicles are detected, and no new tracks created. 
The total processing time is given by 

𝜏𝜏𝑒𝑒𝑦𝑦𝑒𝑒 =  𝑚𝑚{𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜏𝜏𝑂𝑂𝑂𝑂 + 𝜏𝜏𝐹𝐹𝐹𝐹𝑂𝑂 + 𝜏𝜏𝐿𝐿𝑂𝑂 + 𝜏𝜏𝑇𝑇𝑅𝑅 + 𝑛𝑛𝜏𝜏𝐶𝐶𝐶𝐶 + 𝑙𝑙 𝜏𝜏𝑝𝑝 + 𝜏𝜏𝑝𝑝𝑜𝑜𝑒𝑒𝑣𝑣} 
Where  

𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶: 𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝐴𝐴𝑛𝑛 & 𝑃𝑃𝑟𝑟𝐴𝐴𝑐𝑐𝐼𝐼𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝐼𝐼  𝜏𝜏𝑂𝑂𝑂𝑂:𝑂𝑂𝑂𝑂𝑂𝑂𝐼𝐼𝑐𝑐𝑡𝑡 𝐷𝐷𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐𝑡𝑡𝑖𝑖𝐴𝐴𝑛𝑛 
𝜏𝜏𝐹𝐹𝐹𝐹𝑂𝑂:𝐹𝐹𝑟𝑟𝐼𝐼𝐼𝐼𝑠𝑠𝑝𝑝𝐼𝐼𝑐𝑐𝐼𝐼 𝐷𝐷𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐𝑡𝑡𝑖𝑖𝐴𝐴𝑛𝑛      𝜏𝜏𝐿𝐿𝑂𝑂: 𝐿𝐿𝐼𝐼𝑛𝑛𝐼𝐼 𝐷𝐷𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐𝑡𝑡𝑖𝑖𝐴𝐴𝑛𝑛 
𝜏𝜏𝑇𝑇𝑅𝑅:𝑉𝑉𝐼𝐼ℎ𝑖𝑖𝑙𝑙𝑐𝑐𝐼𝐼 𝑇𝑇𝑟𝑟𝐼𝐼𝑐𝑐𝑇𝑇𝑖𝑖𝑛𝑛𝐼𝐼         𝜏𝜏𝐶𝐶𝐶𝐶:𝑉𝑉𝐼𝐼ℎ𝑖𝑖𝑙𝑙𝑐𝑐𝐼𝐼 𝐶𝐶𝑙𝑙𝐼𝐼𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝐼𝐼𝑡𝑡𝑖𝑖𝐴𝐴𝑛𝑛 
𝜏𝜏𝑝𝑝:𝑉𝑉𝐼𝐼ℎ𝑖𝑖𝑐𝑐𝑙𝑙𝐼𝐼 𝑝𝑝𝐴𝐴𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝐴𝐴𝑛𝑛 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚𝐼𝐼𝑡𝑡𝑖𝑖𝐴𝐴𝑛𝑛  𝜏𝜏𝑝𝑝𝑜𝑜𝑒𝑒𝑣𝑣:𝑇𝑇𝐼𝐼𝑟𝑟𝐼𝐼𝐼𝐼𝑡𝑡 𝑝𝑝𝐴𝐴𝑠𝑠𝐼𝐼 𝐼𝐼𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚𝐼𝐼𝑡𝑡𝑖𝑖𝐴𝐴𝑛𝑛 

𝑚𝑚:𝑁𝑁𝑢𝑢𝑚𝑚𝑂𝑂𝐼𝐼𝑟𝑟 𝐴𝐴𝑓𝑓 𝐶𝐶𝐼𝐼𝑚𝑚𝐼𝐼𝑟𝑟𝐼𝐼𝑠𝑠 
𝑛𝑛:𝑁𝑁𝑢𝑢𝑚𝑚𝑂𝑂𝐼𝐼𝑟𝑟 𝐴𝐴𝑓𝑓 𝑛𝑛𝐼𝐼𝑤𝑤 𝑣𝑣𝐼𝐼ℎ𝑖𝑖𝑐𝑐𝑙𝑙𝐼𝐼 𝐴𝐴𝑂𝑂𝑂𝑂𝐼𝐼𝑐𝑐𝑡𝑡 𝑡𝑡𝑟𝑟𝐼𝐼𝑐𝑐𝑇𝑇𝑠𝑠 
𝑙𝑙:𝑁𝑁𝑢𝑢𝑚𝑚𝑂𝑂𝐼𝐼𝑟𝑟 𝐴𝐴𝑓𝑓 𝑙𝑙𝑖𝑖𝑣𝑣𝐼𝐼 𝑣𝑣𝐼𝐼ℎ𝑖𝑖𝑐𝑐𝑙𝑙𝐼𝐼 𝐴𝐴𝑂𝑂𝑂𝑂𝐼𝐼𝑐𝑐𝑡𝑡 𝑡𝑡𝑟𝑟𝐼𝐼𝑐𝑐𝑇𝑇𝑠𝑠 

 

 
Figure 56: Execution time for Front Camera when four new tracks are created 
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Figure 57: Execution time for Front Camera with existing tracks. 

From the above two figures, it can be concluded that by performing classification only once, a clear improvement 
in execution time is observed. It is also observed that the execution time proportionally increases with the number 
of cameras.  

7.3.2.  Comparison with Stereo Vision System. 
The following table provides a comparison with of the execution time taking by the proposed SVS system and the 
earlier stereo system on a desktop with NVidia 1060 GPU and an Intel Core i7-4790K CPU. 

Table 4: Comparison of the execution time of SVS and Stereo Vision systems on Host PC 

Functions SVS System per camera Stereo Vision system 
Image Acquisition and Pro-
cessing 

1.627ms 1.627ms 

Object Detection & Tracking 7.2 ms 7.2 ms 
Lane Detection 2 ms 2 ms 
Free space Detection 2 ms 2 ms 
Position Estimation/Depth es-
timation 

0.1ms  
(considering 100 vehicle object tracks) 

94 ms 

Target vehicle Classification 2ms --- 
Target vehicle Pose Estimation 164 ms --- 

 

It can be concluded that the estimation time for position estimation is 940 times faster than the earlier stereo vision 
system. The high execution time of 164ms for Target vehicle Pose estimation is due to the OpenCV CPU imple-
mentation. OpenCV GPU implementation is recommended.  
 
■■■ 
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8.Project Management 
 
This chapter gives an overview of the time and resource management for the project. First, a description of the 
project plan is provided, which is used in the second section to make a risk assessment for the most critical risks 
for completion of the project, according to the goals, and on time. After this, an assessment is made of how well 
the plan was followed. 

8.1    Project Planning 
At the start of the project, a work breakdown was constructed to identify the sub-tasks required for successful 
implementation of the concept on the prototype vehicle. To achieve the main goal, the following sub-tasks were 
identified: 

1) Identify and construct the functional requirements 
2) Setup the necessary software packages required for training Deep Neural Networks and DriveWorks 
3) Evaluate different neural network architectures and compatibility with NVidia DriveWorks. 
4) Visualize the system interconnections (architecture, relation to existing systems) 
5) Deploy and test existing networks to identify initial errors in the architecture. 
6) Build a vehicle Test setup to generate data for training custom detector/classifier. 
7) Label and train DNN. 
8) Implement system functions on the host machine (personal PC) using C++ and DriveWorks Libraries. 
9) Deploy system on Drive PX 2. 
10) Perform on Unit and on-Road Testing.  

 
Based on this work-breakdown, an initial plan was created, as shown in figure 58. To control the process, progress 
meeting with the stakeholders and supervisors were defined bi-weekly with the university supervisor as well as 
the company supervisor. To be able to compensate for delays in the project, it was planned to finish at the begin-
ning of August, leaving the remainder time for other delayed activities.  
 

09-Jan-20 28-Sep-20
01-Feb-20 01-Mar-20 01-Apr-20 01-May-20 01-Jun-20 01-Jul-20 01-Aug-20 01-Sep-20

09-Jan-20 - 25-Feb-20
Literature Survey & 
Sofware Installation

28-Feb-20 19-May-20
01-Mar-20 01-Apr-20 01-May-20

28-Feb-20 - 17-May-20
Vehicle & Twizy Detection

20-May-20 - 
10-Jun-20

Lane 
Detection

13-Jun-20 - 
04-Jul-20
Freespace 
Estimation

07-Jul-20 - 07-
Aug-20

Unit & Vehicle 
Testing

10-Aug-20 - 22-Sep-20
Buffer

03-Apr-20 - 25-Apr-20
Deployment and 
Implementation

27-Apr-20 - 18-May-20
Pose Estimation

01-Mar-20 - 02-Apr-20
Generating Dataset & Training Network

 
Figure 58: Initial Project plan constructed at the beginning of the project. 

8.2    Risk management 
 
With the project plan from the previous section, the main risks for the completion of the project goals according 
to the requirements within the given time were identified. This activity was repeated in the beginning of every 
month based on the knowledge gained during the literature study and implementation trials. Exploring and exper-
imentation with the provided code samples of DriveWorks provided an insight on what solutions are optimal, 
compatible and feasible within the given time-frame. 
The main risks, along with their likelihood and impact, are listed in Table 5. Possible mitigation strategies are also 
listed in this table. Risks R1, R2 & R7 actually happened, resulting in the decision to go ahead with CARLA 
simulator testing and training for a different type of target vehicle available in the simulator. Due to unavailability 
of access to the labs, there was a lot of uncertainty related to the implementation on the Drive PX2. However, 
when access was granted, fortunately due to the unit testing carried out on the simulator, no serious software bugs 
were observed.  
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Table 5: Risk Management Table 

ID Description  Like
li-
hoo
d 

Impact Time 
Hori-
zon 

Mitigation Strategy 

R1 Unable to generate enough 
training data for the Object De-
tector/Classifier using the vehi-
cle mounted cameras due to 
COVID19 restrictions 

5 4 Medium Use a vehicle simulator to generate 
training data for classifier. Use 
Nvidia’s trained object detector. 

R2 Drive PX 2 unavailable for test-
ing due to corona restriction  

5 5 Long Preform all unit and system test on 
a simulator to validate all functions.  

R3 Insufficient time and manpower 
for labelling training data 

4 3 Long Accept the risk and adjust the scope 
of the project to only building the 
software pipeline for the neural net-
work. Inform all stakeholders about 
the problem and arrive at a mutual 
agreement. 

R4 Testing availability limited due 
to COVID19 university lab re-
strictions 

3 3 Long Plan tests precisely in advance; pre-
pare necessary experiments off-line 
to minimize required time with the 
vehicle. 

R5 DriveWorks not compatible 
with certain network architec-
tures 

3 3 Short Study and analyse network archi-
tectures of existing state of the art 
networks and identify reasons for 
incompatibility at an early stage. 

R6 Limited time for implementa-
tion of pose estimation for tar-
gets 

4 5 Short Assign higher priority to methods 
that have available code which can 
be easily modified and integrated in 
less time. 

R7 Unable to validate the system 
for highway driving conditions 
due to COVID19 restrictions 

5 3 Long Accept the risk. 

 

8.3    Project task execution 
The project plan present in Section 8.1, as is usually the case could not be executed fully according to plan. Figure 
59 shows how the planned tasks were actually executed.   
 

09-Jan-20 28-Sep-20
01-Feb-20 01-Mar-20 01-Apr-20 01-May-20 01-Jun-20 01-Jul-20 01-Aug-20 01-Sep-20

28-Feb-20 11-May-20
01-Mar-20 01-Apr-20 01-May-20

26-Apr-20 - 12-May-20
Position Estimation

28-Jun-20 - 
19-Jul-20

Unit & 
Vehicle 
Testing

03-Apr-20 - 25-Apr-20
Driveworks Implementation along 

with Simulator Testing

09-Jan-20 - 25-Feb-20
Literature Survey & 
Sofware Installation

12-Aug-20 - 28-Sep-20
Documentation

20-Jul-20 - 
10-Aug-20

Pose 
Estimation

01-Mar-20 - 02-Apr-20
Setting up CARLA simulator

06-Jun-20 - 
27-Jun-20
Freespace 
Estimation

16-May-20 
- 05-Jun-20

Lane 
Detection

25-Feb-20 - 14-May-20
Vehicle & Twizy Detection

 
Figure 59: Actual Executed Plan 

 
The main delay was caused due to the unavailability of access to the vehicle and the Drive PX 2 till the month of 
July resulting in the scheduling of all vehicle testing activities from mid-July. Furthermore, the Drive PX 2 was 
expected to be flashed with the latest version of DriveWorks 1.2 and ready, which was not the cause. Additional 
two weeks were lost in understanding the processes related to flashing the Drive PX 2, which were not accounted 
for earlier. Thankfully, due to the rigorous unit testing performed earlier on the simulator, few runtime errors were 
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observed. The final phase of the project between July to mid-September was critical where it was needed to push 
harder to integrate the Pose Estimation module designed in OpenCV with DriveWorks. It was possible to integrate 
and test for only a few controlled cases; however, on-road testing for different use-cases seemed infeasible due to 
COVID-19 restrictions. 
 
■■■ 
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9. Conclusion and Recommendations 
 
This report started with a motivation for self-driving cars, the benefits they offer, and the challenges present to 
reach level 5 self-driving. The need for a surround vision system was described to meet the goal for cooperative 
and autonomous driving. The system was then designed using a system engineering approach which involved 
using the CAFCR methodology for identifying the stakeholder's concerns and key drivers. The SEMAS method-
ology was used to describe driving scenarios, derive requirements and propose the architecture of the system by 
describing the desired behaviour at different levels of abstraction. Functional modules, which were derived from 
the architecture, were implemented considering different design choices available in the literature and the con-
straints. Different Deep Neural Network architectures were evaluated with respect to implementation effort, time 
and compatibility. Conventional computer vision techniques were used to estimate the position of objects and 
pose for target vehicles. The designs were implemented using NVidia DriveWorks and OpenCV libraries. The 
designed software was deployed on the Drive PX 2 embedded system. Each module was validated with respect to 
the driving scenarios. Finally, this chapter closes the report first by providing an account of the achievements 
made in this assignment. Furthermore, some recommendations and final thoughts on future work are presented at 
the end of the chapter.   

9.1    Conclusions 
The main technical goal of this assignment was to design and deploy a prototype of a real-time surround-vision 
system in the demonstrator vehicle Renault Twizy. The main focus of this project was to investigate the possibility 
of using monocular cameras to detect and estimate the position of surrounding objects, identify a potential target 
among the detected vehicles for platooning and estimate their pose.  
The following are the key conclusions observed while carrying out this project: 
 

1) System Architecture: The Architecture of the system is designed using object-oriented principles, each 
function is decoupled, and its interfaces are clearly identified. The architecture is abstract and independ-
ent of the implementation. This allows different possible implementations in the future. 
 

2) Object & Target Vehicle Detection and Tracking: Deep Neural Networks are used for robust detection 
of objects. Different network architectures were evaluated considering the compatibility with Drive-
Works and Drive PX 2. After careful consideration of the available resources (Time for creation and 
labelling of the dataset, human resources) it was decided to use an existing trained object detector for 
detecting vehicles and train a classifier for classifying vehicle detections as target vehicles (Twizys). The 
bounding boxes are tracked to mitigate false detections. The proposed design efficiently detects and 
tracks vehicles and other objects and provides stable detections to the vehicle controller through the CAN 
interface. Thus, with all the stable & robust information of objects from the surroundings, the vehicle 
controller can take safe decisions.  
 

3) Target Classifier Training: A training methodology for data collection, labelling of the dataset for clas-
sification and deployment in the system is described. However, in this project, it was not possible to train 
the classifier robustly due to insufficient training data. For future work, additional data can be generated 
using the existing camera setup by driving in all desired scenarios using the proposed data-generation 
and training methodology.  
 

4) Position estimation of Objects: Position of objects are estimated by solely relying on monocular vision. 
It is assumed that the ego-vehicle and the detected object lie on the same ground plane and the height of 
the camera from the ground plane is known. The assumption is valid for highway driving conditions and 
identifies the position of objects accurately up to 30m. The algorithm takes negligible memory and is 
1000x faster than stereo disparity computations, thus suitable for real-time applications.  
For vehicle objects, it is assumed that the height of the vehicle is constant and additionally, the height of 
the bounding box is used to provide a more robust estimate which is independent of the ground plane 
assumption. Thus, by combining these two measurements, the system can work in all possible scenarios, 
and only depend on accurate detection (location and fitting of the bounding box) of the objects. The 
position and class of all detected objects are available on the CAN interface which can be used for fusion 
with other sensors. 
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5) Target Vehicle Pose Estimator: The pose of a target is computed given the prior information of the 
shape of the target. In this project, the target is a Renault Twizy. ORB Features and their corresponding 
3D locations are extracted and used as a template to match the features of the same object in the scene. 
Based on the matches, the pose of the vehicle is computed. Since ORB features are used, the algorithm 
is robust to illumination. The heading of the target is validated using an IMU sensor. The precision of 
the pose/heading drops as the intervehicle distance increases. In this project, the testing was scoped to 
only extracting features points from the rear & left faces of the model. However, further testing is re-
quired to identify how the algorithm performs in different scenarios. 
 

6) Lane and Free space Detection: Existing neural networks provided by DriveWorks are implemented to 
detect lanes and free space.  The coefficient of the lanes computed are validated during testing. These 
coefficients are provided to the CAN interface. However, further testing is required to validate the Lane 
Polynomial Coefficients, Object Free Space Points on CAN data.   

9.2    Future Work and Recommendations 
 
The section outlines the work required to be done for the completion of the project along with the possible future 
extensions. 

• As mentioned in the above section, the architecture of the system was designed with a purpose of building 
a prototype in mind. For further improvement, it is necessary to do a functional safety analysis of each 
functional component. Using the existing functional modules, high levels modules that can fuse the in-
formation from both modules can be designed. For e.g.  

o Computing the lane on which a detected vehicle is running on. Higher priority can be assigned 
to those vehicles which are running on adjacent lanes. 

o Using the free space and the bounding information to determine nearest objects. This will aid 
in dynamic path planning. 

• It is suggested to use the Robot Operating System (ROS) framework, where the functional modules are 
mapped to ROS nodes. This will improve the flexibility of the system and make it easy to build and 
add more functionality without disturbing the existing code. 

• The Drive PX 2 consists of two identical and independent Parker System on Chips (SoC)GPUs, called 
Tegra A and B respectively. At present, all neural networks are deployed only on the Tegra A SoC. 
Even though the detection modules are run on independent CPU threads and CUDA streams, the mod-
ules operate sequentially due to limited resources. It is recommended to exploit the full capabilities of 
the Drive PX 2 by deploying a few of the networks on the Tegra B SoC and use TCP/IP to communi-
cate the results between both SoCs. 

• In relation to pose estimator, the rear shape of the Twizy was assumed as a 3d Box, and features points 
were extracted from only the left and rear side of the target. It is recommended to fit a 3d mesh of a 
Twizy to extract all the points on the external surface of the vehicle. This will lead to better precision 
and accuracy for targets beyond 30m. 

• Object Detectors like Yolo V4 and Yolo V5 which are recently proposed in 2020 provide a higher ac-
curacy and detection speed. It is recommended to evaluate how much improvement in execution time, 
accuracy and memory can be achieved by deploying these networks on the Drive PX 2. Specific atten-
tion needs to paid for unsupported layers of DriveWorks TensorRT. 

• The change in camera extrinsic positions due to the compliance of the ego vehicle's suspension can be 
corrected by online camera calibration. 

• The current software implementation is scoped to estimating the pose of a single target vehicle present 
in the scene. It is recommended to improve the software to implement multiple dynamic targets. Fur-
thermore, the implementation of pose estimation can be moved to the GPU for faster than present CPU 
execution. 

• Presently fusion of measurements from different sensors occurs at a late stage, e.g. Processing infor-
mation from each sensor like radar, camera independently and then fusing the position measurements. 
Also, only limited information can be transmitted by each sensor due to the limited bandwidth of the 
CAN network. If the raw point cloud data of the radar was clustered using the camera bounding box 
detections at an early stage, this would lead in the improvement of the detection accuracy.     
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Glossary 
 
 
 
 
CIA     Camera Image Acquisition 

CPU   Central Processing Unit 

CUDA   Compute unified Device Architecture 

DeepIm  Deep Iterative Matching for 6D Pose Estimation  

DNN   Deep Neural Network 

D&C   Dynamics and Control Group 

FOV    Field of View 

GMSL   Gigabit Multimedia Serial Link 

GPU   Graphics Processing Unit 

HDMI   High-Definition Multimedia Interface 

i-CAVE  Integrated Cooperative Autonomous Vehicles 

IO   Input/output 

MPS   Mobile Perceptions Group 

OS   Operating System 

ORB   Oriented Fast and rotated Brief 

PnP   Perspective-n-Point 

PVNet  Pixel-wise Voting Network for 6DoF Pose Estimation 

RANSAC  Random sample consensus 

SoC   System on chip 

SVS    Surround Vision System 

TU/e    Eindhoven University of Technology 

V2V     Vehicle-to-Vehicle 

Yolo  You only look once 
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Appendix A.    
Driving Scenarios: 
 
DS 1 - CACC 

 
Context 
Ego-vehicle driving beside a platoon of target vehicles on a highway. 
Actors 
Target vehicles (Twizy’s), other vehicles, Lane markings, Lighting conditions, Road conditions 
Preconditions 

1) The target vehicles are driving in a platoon 
2) There are other vehicles around the ego-vehicle 
3) The visibility is clear, and the weather is sunny 
4) The SVS system is inactive 

Trigger 
1) SVS system is activated. 

Expected ego-vehicle behaviour 
1) The ego-vehicle detects and classifies the vehicles which are clearly or partially visible to the cameras 

as a "Target"(Twizy) or "other vehicle"(cars) around its surrounding 
2) The ego-vehicle calculates the pose of the detected target vehicle (Twizy) with respect to itself. 
3) The ego-vehicle calculates the position of other detected vehicles. 
4) The ego-vehicle computes the curvature and position of the left and right lane markings belonging to 

the ego vehicle if present 
5) The ego-vehicle detects the free space around the vehicle 
6) The ego-vehicle displays all perceived information to the operator 

Postconditions 
1) Detections are provided until the system is deactivated 

Key Performance Indicators (KPIs) 
1) The number of false negatives detected. (objects incorrectly classified have a higher risk) 
2) The detection range of the system. (How far can an object be accurately detected) 
3) The accuracy at which the position of objects are estimated 
4) The number of target vehicles the system can handle (detect as well as provide pose). 
5) The time required to detect and estimate the position of vehicles/objects 
6) The accuracy of the vehicle position estimate with respect to the ground truth 
7) The execution time required to compute the pose of the target vehicle when detected 
8) The accuracy of the computed pose of the target vehicle when detected 
9) The rate at which the system updates the position of the targets and other vehicles on the CAN bus  
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DS 2: Parking Lot Vehicle Stationary 

 

Context 
1) Other vehicles parked around the ego Vehicle 
2) The visibility is clear. 
Actors 

Other vehicles 
Preconditions 
1) There are vehicles parked around the ego vehicle (5-20m radial distance from ego-vehicle). 
2) The system is inactive. 

Trigger 

1) The system is activated 
Expected system behaviour 
1) The system detects and classifies the vehicles as a target (Twizy) or other vehicle(cars) around its 
surrounding. 
2) The system calculates the position of all vehicles. 
3) The system estimates the pose for all target vehicles. 
4) The system detects the free space around the ego-vehicle  

5) The system publishes all the computed information on the CAN-bus 
Postcondition 
1) Keeps providing detections till the system is deactivated. 

KPIs 
1) The number of true detections perceived by the system. Precision, recall, F1score. 
2) The max number of detections the detector can handle. 

3) The max position of all vehicle from the ego vehicle for detecting the target.(max size of the object 
in image to be classified suitable for detections) 

4) The time required to estimate a detection when the detector is activated. (as a factor of number of 
detections) 
5) The accuracy of the estimated vehicle positions with respect to the ground truth value. 
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DS 3: Parking lot Vehicle Approaching 

 

Context 
1) The visibility is clear. 

2) The ego vehicle is in a parking lot with more than one vehicle around it  
Actors 

Target vehicles(Twizy), other vehicles 
Preconditions 

1) The system is acitve. 

2) The target vehicle is initially out of range and driving towards the ego vehicle 

Trigger 

1) The target vehicle enters in the range of the ego vehicle's cameras. 
Expected vehicle behaviour 
1) The system detects and classifies the target vehicles which are clearly or partially visible to the cameras as 
a “Target”(Twizy) or “other vehicle”(cars) around its surrounding. 
2) The system calculates the pose of the detected target vehicle with respect to ego vehicle 
3) The system calculates the position of all vehicles. 
4) The system publishes all the computed information on the CAN-bus 
Postcondition 
1) Keeps providing detections till the detector is deactivated. 

KPIs 
1) The number of true detections perceived by the system. Precision, recall, F1score. 
2) The max position of all vehicle from the ego vehicle for detecting the target.(max size of the object in im-
age to be classified suitable for detections) 
3) The minimum pixel area of a vehicle required to be worthy for detection 

4) The number of target vehicles the detector can handle (detect as well as provide pose) . 
5) The time required to estimate a detection when the detector is activated. (as a factor of number of detec-
tions) 
6) The accuracy of the estimated vehicle positions with respect to the ground truth value. 
7) The time required to compute the pose of the target vehicle when detected. 
8) The time required to translate CAN messages and publish on the CAN bus. 
9) The rate at which the system updates the position of the targets and other vehicles on the CAN bus 
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DS 4: Ego Vehicle Approaching a Stationary Target 

 
Context 
1) The ego vehicle moves forward towards a Target vehicle (Twizy) parked in front of it in a curved path as 
shown in above figure. 
Actors 
Target vehicles (Twizy) 
Preconditions 
1) The system is active. 
2) The visibility is clear. 
Trigger 
1) The target vehicle starts approaching the target vehicle following a curved path. 
Expected system behaviour 
1) The system detects and classifies the vehicle as a target vehicle(Twizy). 
2) The system calculates the pose of the detected target vehicle with respect to ego vehicle 
Postcondition 
1)Detections are provided until the target gets out of the FOV of the cameras. 
KPIs 
1) The accuracy of classification of the detected vehicle.  
2) The accuracy of the pose estimate of the target with respect to intervehicle distance 
3) The variance in the measurement of pose data. 
4) The time required to compute the pose of the target vehicle when detected. 
5) The rate at which the system updates the position of the targets and other vehicles on the CAN bus 
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DS 5: Target Vehicle Departing uphill from Ego-Vehicle 

 
Context 

1) The ego vehicle is stationary, and a preceding vehicle moves away from the ego vehicle up a ramp. 

Actors 

Other vehicles (Cars), Road Uphill gradient 
Preconditions 

1) The system is active. 
2) The visibility is clear. 

Trigger 

1) The preceding vehicle starts from the same plane as that of the ego vehicle and drives up a ramp. 
Expected system behaviour 

1) The system detects and classifies the vehicle as “other vehicle” (Non-target). 
2) The system calculates the position of the detected vehicle with respect to ego vehicle 
Postcondition 
1)Detections are provided until the target gets out of the FOV of the cameras. 
KPIs 
1) The accuracy of classification of the detected vehicle.  
2) The accuracy of the position estimate of target with respect to intervehicle distance 
3) The variance in the measurement of position data. 

4) The time required to compute the position of the vehicle when detected. 
5) The rate at which the system updates the position of the targets and other vehicles on the CAN bus 
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Appendix B.  
Example description of camera Rig Configuration file for front Camera. 

    "rig": { 
"sensors": [ 

 { 
     "name": "Front_60FOV", 
     "nominalSensor2Rig": { 

"quaternion": [ 
    -0.3536, 

  0.3536, 
-0.6124,
0.6124

], 
"t": [ 

  0.0, 
  0.0, 
  1.42 

] 
     }, 
     "parameter": "", 
     "properties": { 

"Model": "pinhole", 
"cx": "9.674573781498158e+02", 
"cy": "5.939498223275325e+02", 
"distortion": "-0.444577318609922 0.224404687754395", 
"fx": "1.935708341198060e+03", 
"fy": "1.934157368441432e+03", 
"height": "1208", 
"params": "", 
"width": "1920" 

     }, 
     "protocol": "camera.virtual", 
     "sensor2Rig": { 

"quaternion": [ 
    -0.3536, 

  0.3536, 
-0.6124,
0.6124

], 
"t": [ 

  0.0, 
  0.0, 
  1.42 

      ] 
     } 
 },] 

} 



Eindhoven University of Technology 

75 

Appendix C.   
Network Compatibility with DriveWorks: 

A deep neural network (DNN) is composed of several layers which perform different mathematical operations. 
Each layer must be compatible with the TensorRT optimization tool provided for DriveWorks to integrate with 
the DriveWorks APIs. This constraint limits the number of possible network choices.  
The following Network types were evaluated to meet the above requirements and constraints. 

Network Name Compatibility Status 
MobileNet-SSD Incompatible due to Permute, Prior-Box Layers 
YOLO V3 Incompatible due to Upsample, Flatten, Leaky Relu 

layers 
YOLO V1-Tiny All Layers compatible 
DetectNet All Layers compatible 

Appendix D.   
Coordinate Systems 

The camera has a right-handed coordinate system, where the camera origin is at the optical centre of the left 
camera. The x-axis points to the right of the image plane, the y-axis points to the bottom of the image plane, 
and the z-axis points forward along the optical axis. 

Vehicle Coordinate System: The vehicle uses a right-handed coordinate system, where the vehicle origin is 
considered to be under the center of the rear axle. The x-axis points forward to the front of the vehicle, the y-
axis points to the left of the vehicle, and the z-axis points to the upward of the vehicle. 
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