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Zusammenfassung

Schätzung von Straßenoberflächen und -begrenzungen aus Sequenzen von Tie-
fenkarten unter Verwendung probabilistischer Modelle

Diese Arbeit präsentiert ein Verfahren zur Detektion und Rekonstruktion von Straßeno-
berflächen und -begrenzungen auf der Basis von Tiefenkarten.

Aktive Fahrerassistenzsysteme, welche mit der im Fahrzeug verbauten Sensorik die Um-
gebung erfassen, interpretieren und den Fahrer unterstützen, sind ein aktueller Forschungs-
schwerpunkt der Fahrzeugindustrie. Eine wesentliche Aufgabe dieser Systeme ist die Mo-
dellierung der statischen Fahrzeugumgebung. Dies beinhaltet die Bestimmung der vertika-
len Neigungs- und Krümmungseigenschaften der Fahrbahn, sowie die robuste Detektion von
Hindernissen und somit des befahrbaren Freiraumes. Hindernisse von geringer Höhe, wie z.B.
Bordsteine, sind in diesem Zusammenhang von besonderem Interesse, da sie häufig die erste
geometrische Begrenzung des Fahrbahnbereiches darstellen.

In diesem Kontext gewinnt die Verwendung von Tiefenkarten aus Stereo-Kamera-Sys-
temen wegen der hohen Datenrate und relativ geringen Kosten des Sensors zunehmend an
Bedeutung. Aufgrund des starken Messrauschens beschränken sich herkömmliche Verfahren
zur Hinderniserkennung jedoch meist auf erhabene Objekte wie Fahrzeuge oder Leitplanken,
oder aber adressieren einzelne Objektklassen wie Bordsteine explizit. Dazu werden häufig
extrem restriktive Annahmen verwendet wie z.B. planare Straßenoberflächen.

Der Hauptbeitrag dieser Arbeit besteht in der Entwicklung, Analyse und Evaluation eines
Verfahrens, welches den befahrbaren Freiraum im Nahbereich des Fahrzeugs detektiert und
dessen Begrenzung mit Hilfe einer Spline-Kurve explizit modelliert. Das Verfahren berück-
sichtigt insbesondere Hindernisse geringer Höhe (größer als 10 cm) ohne Beschränkung auf
bestimmte Objektklassen. Weiterhin ist das Verfahren in der Lage, mit verschiedenartigen
Neigungs- und Krümmungseigenschaften der vor dem Fahrzeug liegenden Fahrbahnoberfläche
umzugehen und diese durch Verwendung eines flexiblen Spline-Modells zu rekonstruieren.

Um trotz der hohen Flexibilität des Modells und des hohen Messrauschens robuste Ergeb-
nisse zu erzielen, verwendet das Verfahren probabilistische Modelle zur Vorverarbeitung der
Eingabedaten und zur Detektion des befahrbaren Freiraumes. Aus den Tiefenkarten wird un-
ter Berücksichtigung der Strahlengänge und Unsicherheiten der Tiefenmessungen ein Höhen-
modell berechnet. In einem iterativen Zwei-Schritt-Verfahren werden anhand dieses Höhen-
modells der befahrbare Freiraum mit Hilfe eines Markov-Zufallsfeldes bestimmt sowie die
Parameter der begrenzenden Spline-Kurve und Straßenoberfläche geschätzt. Ausreißer in den
Höhendaten werden dabei explizit modelliert.

Die Leistungsfähigkeit des Gesamtverfahrens sowie der Einfluss zentraler Komponenten,
wird im Rahmen von Experimenten auf synthetischen und realen Testszenen systematisch
analysiert. Die Ergebnisse demonstrieren die Fähigkeit des Verfahrens, die Begrenzung des
befahrbaren Freiraumes sowie die Fahrbahnoberfläche selbst in komplexen Szenarien mit
multiplen Hindernissen oder starker Fahrbahnkrümmung akkurat zu modellieren. Weiterhin
werden die Grenzen des Verfahrens aufgezeigt und detailliert untersucht.



Summary

Street Surfaces and Boundaries from Depth Image Sequences Using Probabilistic
Models

This thesis presents an approach for the detection and reconstruction of street surfaces
and boundaries from depth image sequences.

Active driver assistance systems which monitor and interpret the environment based on
vehicle mounted sensors to support the driver embody a current research focus of the auto-
motive industry. An essential task of these systems is the modeling of the vehicle’s static
environment. This comprises the determination of the vertical slope and curvature charac-
teristics of the street surface as well as the robust detection of obstacles and, thus, the free
drivable space (alias free-space). In this regard, obstacles of low height, e.g. curbs, are of
special interest since they often embody the first geometric delimiter of the free-space.

The usage of depth images acquired from stereo camera systems becomes more important
in this context due to the high data rate and affordable price of the sensor. However, recent
approaches for object detection are often limited to the detection of objects which are dis-
tinctive in height, such as cars and guardrails, or explicitly address the detection of particular
object classes. These approaches are usually based on extremely restrictive assumptions, such
as planar street surfaces, in order to deal with the high measurement noise.

The main contribution of this thesis is the development, analysis and evaluation of an
approach which detects the free-space in the immediate maneuvering area in front of the
vehicle and explicitly models the free-space boundary by means of a spline curve. The
approach considers in particular obstacles of low height (higher than 10 cm) without limitation
on particular object classes. Furthermore, the approach has the ability to cope with various
slope and curvature characteristics of the observed street surface and is able to reconstruct
this surface by means of a flexible spline model.

In order to allow for robust results despite the flexibility of the model and the high
measurement noise, the approach employs probabilistic models for the preprocessing of the
depth map data as well as for the detection of the drivable free-space. An elevation model is
computed from the depth map considering the paths of the optical rays and the uncertainty
of the depth measurements. Based on this elevation model, an iterative two step approach
is performed which determines the drivable free-space by means of a Markov Random Field
and estimates the spline parameters of the free-space boundary curve and the street surface.
Outliers in the elevation data are explicitly modeled.

The performance of the overall approach and the influence of key components are system-
atically evaluated within experiments on synthetic and real world test scenarios. The results
demonstrate the ability of the approach to accurately model the boundary of the drivable
free-space as well as the street surface even in complex scenarios with multiple obstacles or
strong curvature of the street surface. The experiments further reveal the limitations of the
approach, which are discussed in detail.
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Symbol Description

General notation:

x scalar
x Euclidean vector
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Chapter 1

Introduction

1.1 Motivation

Automotive driver assistance systems which support and relieve the driver gained greater
significance and credence in the last decade. Reasons are more stringent demands on safety
and driving comfort due to the increasing traffic volume. Let us divide these systems in two
groups.

On the one hand, there are conventional systems which support the driver in critical situa-
tions, such as the Anti-lock Braking System (ABS) or the Electronic Stability Control (ESC).
During the last decades, these systems have widely established as standard equipment in to-
day’s cars.

On the other hand, more advanced systems aim to avoid critical situations beforehand.
Vehicle mounted sensors are used to monitor and analyze the immediate vicinity of the car to
increase and guide the driver’s attention and assist the driver in planning decisions. Examples
for these high-level applications are collision and lane departure warnings, vehicle and traffic
sign recognition, or traffic jam and parking assistants. The majority of these advanced
applications require a preprocessing of the sensor output to extract meta information about
the local environment of the vehicle. Particularly, the robust detection and accurate modeling
of the free drivable space (alias free-space) in front of the vehicle (see Figure 1.1) as well as
of the street elevation is a vital prerequisite.

Figure 1.1: Two examples for free-space detection results. The image projection of the drivable free-space
is marked by a green carpet. The left image shows the result of the approach presented by Badino et al.
[2007]. The sidewalk and median strip are classified as road inliers due to their low height occurrence. The
right image shows the desired result representing the free-space limited by the actual first geometric obstacle,
including curbs.

Various vehicle mounted sensors are used in this context, such as laser scanners, time-of-
flight cameras or radar. However, stereo camera systems are getting more and more affordable

13



14 CHAPTER 1. INTRODUCTION

and are used for versatile applications, since they provide appearance as well as dense depth
map information at a high data rate using modern stereo vision algorithms.

Although the task of free-space detection from stereo vision depth maps is well addressed
in the field of driver assistance and robotics, most of these approaches are limited to the
detection of obstacles that are distinctive in height, such as cars, walls or guardrails. In
general, the actual geometric boundary of the drivable area is defined by objects of low height,
e.g. curbs or traffic isles, as illustrated in Figure 1.1. Due to the high geometric variability of
the obstacles and their possibly low height occurrence compared to the measurement noise
of stereo vision depth maps, the detection and modeling of this actual boundary remains a
challenging task.

As key focus of this thesis, we address this task in a probabilistic way to obtain accurate
reconstructions of the street boundary (alias free-space boundary) and the street surface from
depth image sequences.

1.2 Related Work

Automotive driver assistance systems aim to enhance the safety and comfort of the vehicle
occupants as well as driving economics. The scope and variety of these systems and their
submodules is very extensive. A comprehensive overview is given e.g. in [Rajamani, 2012]
or [Kücükay and Bergholz, 2004].

The field of autonomous driving, where the driver is replaced rather then relieved, forms
the extreme case of this development and becomes increasingly topical. Pioneer work was
done in the joint-venture program PROMETHEUS 1 from 1986 to 1995, a collaboration of
European universities and automotive companies. The achievable performance capabilities
using almost arbitrary combinations of high-tech sensors were shown in the DARPA2 Grand
Challenges in 2004/05 and the Urban Challenge 2007. A more recent example is the VIAC 3

of the University of Parma, where in 2010 four vehicles drove from Parma, Italy, to Shang-
hai, China, largely autonomously based on internal sensors and sensor data perceived by a
preceding non-autonomous vehicle [Broggi et al., 2010].

The remainder of this section presents the integration of the approach proposed in this
thesis in the overall context of driver assistance systems (Section 1.2.1) and provides a com-
prehensive overview on published approaches closely related to the topic of this thesis (Sec-
tion 1.2.2).

1.2.1 Driver Assistance Systems

To specify the focus of this thesis let us consider the classification of driver assistance systems
presented in Section 1.1 in more detail. We distinguished two groups by whether or not the
system is based on information on the vehicle’s environment perceived by car mounted sensors.

The first group comprises systems based on submodules monitoring the vehicle state or
even the driver himself by inertial or inner car sensors. Examples are ABS and ESP to improve
the driveability in critical situations as already mentioned, adaptive headlights which improve
the illumination in curves, or Emergency Brake Assist (EBA) which ensure the maximum
braking power in an emergency stop situation.

The systems of the second group support and relieve the driver in his planning tasks based
on information about the environment of the vehicle or its scheduled path perceived from car

1PROgraMme for a European Traffic of Highest Efficiency and Unprecedented Safety
2Defense Advanced Research Projects Agency
3VisLab Intercontinental Autonomous Challenge
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Figure 1.2: Hierarchical formulation of the overall planning effort for autonomous driving. The planning
effort is subdivided in four single steps, where for each of them the alignment with respect to the spatial
scope, the required world model knowledge and computation time horizon is symbolized. The dashed box
encompasses the scope addressed in this thesis. The diagram is modified from [Arkin, 1998].

mounted sensors and map knowledge. Following the hierarchical decomposition of planning
tasks for automotive control defined by Payton [1986] and Arkin [1998], we subdivide the
overall planning effort in four separate steps:

(a) Mission Planning: Determination of abstract mission goals in a geographic manner
using global map knowledge (e.g. reach specific destination, search for next fuel station).

(b) Map-Based Planning: Translation of geographic goals to specific route plans using
map information and constraints (e.g. determine fastest route, avoid traffic jam).

(c) Local Planning: Actual vehicle control aiming at the execution of a map-based
plan by adaption to local conditions and unexpected changes based on sensor data
(e.g. compliance with traffic rules, safety distance and lane keeping, overtaking and
lane change maneuvers).

(d) Reflexive Planning: Immediate reaction to unexpected events (e.g. collision avoid-
ance, active brake assist or precrash systems).

Figure 1.2 illustrates the relationship of planning steps, required knowledge and time horizon.

The combinatorial support for the tasks (a) and (b) is tackled by GPS-based automotive
navigation systems employing map-based knowledge as well as traffic information. In the last
decade, theses systems have established as a standard tool in today’s cars.

Support for the tasks (c) and (d) requires knowledge on the local world model. This
requires car mounted sensors and efficient algorithms to perceive and analyze the immediate
vicinity of the vehicle in real-time. In particular, this includes the robust detection of the
traversable street region and the accurate modeling of its boundary, which has been explored
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by many researchers in the intelligent transportation systems community. One can categorize
the developed approaches in two subgroups depending on their task.

The first category represents the detection of specific objects. This comprises for example
the detection of vehicles [Sun et al., 2006] or more recent [Barth and Franke, 2010], pedestrian
detection [Ess et al., 2009, Dollár et al., 2012, Byun et al., 2012], or the detection of curbs
[Turchetto and Manduchi, 2003, Oniga et al., 2007b, Siegemund et al., 2010].

The second category comprises approaches for generic obstacle detection which aim to
detect and model geometric limitations of the drivable free-space independent of their seman-
tics. This task is referred to as free-space detection or free-space computation in the literature
and represents the scope of this thesis.

1.2.2 Detection and Modeling of the Traversable Street Surface and Street
Boundaries

The following paragraphs provide an overview on relevant publications addressing free-space
computation, where we focus on vision based approaches including monocular and stereo-
scopic systems.

Unlike in case of scientific challenges such as the DARPA challenges, the kind and number
of usable sensors is limited by cost and design properties when addressing systems for the
automotive market. Thus, it is important to tackle multiple applications with a few low-
cost sensors. This attracts the usage of affordable stereo camera systems which provide
synchronous depth map and appearance information at a high data rate employing modern
stereo vision algorithms.

For the sake of completeness, we also give examples for approaches based on alternative
sensors, such as laser scanners, and approaches based on sensors fusion. Finally, we explicitly
address the problem of detecting low obstacles, such as curbs and small traffic isles, and give
a brief introduction to the few existing suitable methods.

1.2.2.1 Vision Based Free-Space Detection and Modeling

Monocular Systems: The set of algorithms based on a single camera is largely dominated
by two basic ideas.

Approaches following the first idea classify the image pixels in a set of classes representing
street and street-adjacent objects using appearance information, e.g. color and texture. The
result is either given by the set of pixels classified to street itself (e.g. [Shioyama et al., 2003]),
or the classification result is used to estimate the parameters of a predefined street model using
simplifying assumptions and information on the camera orientation. In an early approach,
Thorpe et al. [1988] perform a pixelwise Gaussian Maximum Likelihood classification to assign
each single pixel to a road or non-road class. From the classification result the direction and
vanishing point of the street is estimated assuming the road to be straight, flat and of a
predefined width. In [Crisman and Thorpe, 1993] the authors present an extension of this
idea in order to deal with intersections. In a similar approach, Kim et al. [2011] suggest the
usage of alternative color-spaces to cope with illumination changes.

Broggi and Bert [1995] and more recent Chen and Liu [2010] propose an alternative
idea, where they project the image to the assumed street plane using the known camera
calibration and estimate the street borders by comparing the projected image to a set of road
templates. Since no explicit geometric reconstruction of obstacles is performed, these methods
are referred to as road detection algorithms rather than free-space detection algorithms in
the literature.
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Figure 1.3: Example for a road pavement that mimics an obstacle. The dark stripe on the left side appears
similar to the curb on the right side. Consideration of its junction to the traffic isle shows that the stripe
actually represents no geometric obstacle.

The second group of monoscopic approaches additionally applies 3d information deter-
mined by structure from motion. Brostow et al. [2008] and Sturgess et al. [2009] combine
color and texture cues with geometric information such as height above the street plane,
distance to the camera path and surface orientation in order to segment the image into re-
gions representing street and street adjacent objects. To obtain a smooth segmentation, they
employ a Markov Random Field (see Section 2.4.1) defined on the image lattice. However,
although obtaining promising results, the approaches are far from being real-time capable.

Carlsson and Eklundh [1990] and Cerri and Grisleri [2005] use information about the
vehicle’s ego-motion to employ a technique called Inverse Perspective Mapping (IPM). Two
successively acquired images are projected on the ground plane and aligned considering the
planar ego-motion of the vehicle. Comparison of the color values in both images allows for the
detection of horizontal regions which represent moving obstacles. In case the ego-vehicle is
moving, even static obstacles of distinct height may be detected considering variations caused
by the changed perspective. Note that these approaches heavily depend on the validity of
the flat ground plane assumption and the quality of the ego-motion estimation.

Stereoscopic Approaches: An alternative approach to monocular systems exploits the
additional depth information provided by stereo camera systems. The derived spatial infor-
mation is used to overcome challenges of purely appearance based methods which severely
suffer from image artifacts, highlights and shadows mimicking obstacles. Furthermore, the
road paving may confuse appearance based algorithms by forming obstacle-like line and color
structures, as depicted in Figure 1.3, demonstrating the need for geometry information. This
is particularly the case when using gray value cameras. In [Michalke et al., 2010] the au-
thors demonstrate the benefit of the explicit detection of geometric obstacles for their road
detection framework.

The general idea of geometry based approaches is to evaluate the relationship of 3d point
or depth measurements with a street surface model. The free-space is extracted as the
horizontal region incorporating mainly measurements which conform to this model. Existing
approaches vary in the way the free-space is determined and the way the street surface and
free-space boundary are modeled. Let us first consider some examples for street surface
representations and then proceed with an overview on relevant publications categorized in
approaches based on disparity map analysis, IPM and grid based methods.
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Street Surface Models: The most common street surface model is given by the flat
surface assumption. The street is modeled as ground plane either fixed to the camera system
or governed by free slope parameters. Although comfortable for handling and computation
effort, the flat surface assumption in general does not hold, e.g. in case of undulating terrain
and in case of roads which are roof-shaped for water drainage. Thus, height thresholds
and noise values are defined lavishly to cope with the model limitations which restricts the
detection scope to objects of distinct height.

More sophisticated approaches comprise piecewise planar representations [Labayrade
et al., 2002], quadratic surfaces [Nedevschi et al., 2008], or clothoid based models [Nedevschi
et al., 2004]. Wedel et al. [2009] employ a cubic B-Spline (see Section 2.7) parameterized
along the longitudinal axis of the vehicle to model the curvature in longitudinal direction.
However, these models may still be insufficient for more complicated environments, e.g. when
crossing the roof shaped median strip in highway construction sites.

Manduchi et al. [2005] propose an interesting, alternative approach which was originally
designed for off-road navigation but also applied in the VIAC challenge [Broggi et al., 2011].
The approach does not rely on a specific street surface model. The triangulated 3d points are
classified as obstacle or road related assuming an obstacle point to be always above a road
point, whereas a small horizontal offset is admitted. Simply put, each point defines a cone
open to the top with the vertex given by the point coordinates and a predefined aperture
angle. Each point lying in the cone of another point with at least a certain vertical offset is
classified as obstacle. Although very flexible, outlier detection becomes complicated due to
the lack of a proper surface model. This makes the method unsuitable for the detection of
low obstacles.

Disparity Map Analysis: So called v-disparity map approaches are based on the desire
to compute the free-space from a disparity map without performing expansive triangulation
for each pixel. Wedel et al. [2009] give a comprehensive review of v-disparity approaches.

The basic idea is that the ideal transformation from the domain spanned by the height
and longitudinal axis of the camera system to the domain spanned by the image row v and
disparity d is straight line preserving. Thus, assuming the bank angle of a flat ground plane
to be zero, points on the ground plane are projected on a line in the (v, d)-domain. Labayrade
et al. [2002] employ Hough transformation to extract a piecewise planar street surface model
from the (v, d)-measurements. Note that this implies the assumption that the majority of
pixels observes the street surface. All pixels are classified as road or non-road comparing
their (v, d)-coordinates to the respective reference given by the surface model using a region
growing algorithm to obtain a dense result. In [Labayrade and Aubert, 2003] an extension
for non-zero bank angles is proposed. Jung et al. [2007] use this representation to detect
preceding vehicles.

Inverse Perspective Mapping: Similar to the monocular IPM approaches, knowledge
about the relative orientation of the cameras to the ground plane is used to warp the left
and right image to a common view-port. This view-port is either given by the birds eye view
[Bertozzi and Broggi, 1998, Hattori and Maki, 2000, Onoguchi et al., 1995] or by one of the
camera view-ports [Okutomi and Noguchi, 1998]. In case the ground-plane assumption holds,
corresponding pixels depicting the ground plane in both of the warped images should match
in their color values. Thus, analyzing the matching of the corresponding pixels yields the
free-space estimation. Hattori and Maki [2000] determine the free-space boundary by fitting
a road template to the pixels classified as free-space similar to the monocular approaches.
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Bertozzi and Broggi [1998] and Onoguchi et al. [1995] perform a radial sweep and search for
the closest violation of the ground-plane assumption along each scan-line.

The local evaluation of the match of corresponding pixels can be insufficient considering
image artifacts such as reflections and highlights or homogeneous regions. Kubota et al.
[2007] propose a sophisticated approach based on a restrictive environment model. The
objects delimiting the free-space are assumed to be embodied by building blocks which are
vertical columns perpendicular to the ground plane whose widths are defined to span the same
amount of image columns each. An extended version of IPM is performed. The pixels below
the foot-points of the building blocks are warped via the ground plane as before, while all
pixels above the foot-points are warped via the fronto-parallel vertical surface of the building
blocks. Thus, different distances of the building blocks to the camera yield different matching
costs. Dynamic programming is employed to find the solution that minimizes the costs.

Probabilistic Occupancy Grids: Grid based representations are an established
method to model the environment and to efficiently store and evaluate 3d information. They
are widely used for non-automotive modeling applications in computer vision and computer
graphics. Examples are space carving techniques for 3d reconstruction introduced by Kutu-
lakos and Seitz [2000] or visibility culling in synthetic scenes [Batagelo and Wu, 2002].

Elfes [1989] introduced so called occupancy grids for path-planning applications in
robotics. The occupancy grid is designed as planar lattice in the horizontal Cartesian space
holding a probabilistic statement for each cell whether to be occupied by an obstacle or not.

One can categorize occupancy grids in two groups. First, there are deterministic occu-
pancy grids which can be understood as 2d histograms counting the number of 3d measure-
ments aligned to a specific cell without modeling the noise properties [Franke et al., 1997,
Nedevschi et al., 2008]. On the other hand, stochastic or probabilistic occupancy grids con-
sidering the sensor uncertainty of incoming range measurements to update the occupancy
statements of the cells. Thrun et al. [2005] give a comprehensive review on the computation
of planar and spatial occupancy grids and their applications in robotics.

Existing methods for free-space detection employing probabilistic occupancy grids mainly
differ in the design of the grid structure and the coordinate system it is aligned to. Badino
et al. [2007] give an overview of planar occupancy grids comprising Cartesian grids, polar
grids and grids aligned to the column-disparity domain of the stereo-camera system. While
Cartesian grids fixed to the world system facilitate temporal integration [Murray and Little,
2000, Kohara et al., 2010], grids fixed to the camera system (polar and column-disparity)
allow for an efficient tracing of the optical ray and, thus, evaluation of free-space and occlusion
information induced by a depth measurement (see Section 3.2.2.1).

In their proposal, Badino et al. [2007] employ a polar grid and use an approach similar
to [Kubota et al., 2007] to estimate the free-space boundary. Dynamic programming is
performed to search for the respective cell in each longitudinal grid column which most likely
incorporates the nearest obstacle. Thus, the boundary is given by vertical building blocks
located at the determined cells. As a global constraint, solutions with small differences
between the estimated obstacle distances in neighboring columns are favored.

In [Badino et al., 2009], the authors perform an additional dynamic programming step
to estimate a single height value for each building block claiming neighboring blocks to be
of similar height. The building blocks are referred to as so called Stixel (vertical STIcks
projected to the piXEL domain) and the overall model as Stixel world.

In recent publications, several improvements were proposed for the Stixel world. Wedel
et al. [2009] introduce a B-spline based ground plane estimation to overcome violations of
the flat ground plane assumption. Benenson et al. [2011] propose an approach to estimate
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Stixels without prior computation of a depth map. In [Pfeiffer and Franke, 2011], the authors
introduce multilayer Stixel where multiple consecutively arranged obstacles can be estimated
in each longitudinal grid column.

1.2.2.2 Alternative Sensors and Sensor Fusion

Besides vision based approaches, several alternative sensors are employed for free-space de-
tection. Although not scope of this thesis, let us consider selected publications employing
alternative sensors for free-space detection in the automotive domain for the sake of com-
pleteness.

Ultrasonic devices and Time of Flight cameras have a very low detection range and, thus,
are used for applications concerning the direct vicinity of the car, such as parking assistance
[Pohl et al., 2006, Satonaka et al., 2006, Scheunert et al., 2007].

In [Kaliyaperumal et al., 2001] and [Nikolova and Hero, 2000] the authors describe how
to obtain a synthetic top-view image of the terrain by analyzing the backscatter of a front
mounted radar sensor. Free-space is determined similar to the monocular vision based ap-
proaches which analyze birds-eye view projections.

Laser based approaches generally either fit a parameterized road model to the measured
point cloud data [Kirchner and Ameling, 2000, Wijesoma et al., 2004, Zhang, 2010] or employ
occupancy grids especially when fused with other sensors [Lacaze et al., 2002, Wellington
et al., 2006, Urmson et al., 2008, Homm et al., 2010].

Homm et al. [2010] propose an efficient algorithm for computing occupancy grids from
laser and radar data using the power of modern GPU’s.

Wellington et al. [2006] propose an outstanding approach addressing off-road scenarios
based on laser, camera and infrared sensors. The sensor data is stored in a 3d Cartesian
occupancy grid which is fixed to the world system. For each cell, material features are
determined describing point density, remission strength and color. Each vertical column of
the grid is decomposed in cells representing ground, vegetation, obstacle and free-space via
a Markov Chain (see Section 2.4). Based on this decomposition the columns are classified
in traversable and non-traversable classes considering neighborhood relations in a Markov
Random Field.

1.2.2.3 Detection of Low Obstacles Using Depth Maps

All the listed depth map based approaches for free-space detection in the automotive domain
are designed to detect obstacles which are distinctive in hight (e.g. vehicles, walls, guardrails
and trees) and are not suited for the detection of low (or in-distinctive) objects, such as curbs
or small traffic isles.

Although these objects generally form the actual delimiter of the drivable free-space, to
our knowledge only a few depth map based approaches proved suitable for their detection.

In [Nedevschi et al., 2008] and [Nedevschi et al., 2009] the authors employ a deterministic
Cartesian occupancy grid. The grid cells are labeled as road, traffic isle or obstacle by
threshold based classification considering the highest point per cell and the point density.
A quadratic ground surface model as well as temporal integration are employed to enhance
precision and robustness of the labeling result. The free-space boundary is determined by a
radial sweep along the image columns which yields the nearest obstacle in specified column
directions. The detected samples are lined up yielding a polygonal boundary representation.

Kang and Chung [2011] employ a probabilistic polar occupancy grid and a stereo vision
system with a large baseline of 0.5 meters. Following the idea of multi-volume occupancy
grids [Dryanovski et al., 2010] the 3d points in each single cell are arranged in vertical clusters
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by thresholding the vertical point distance. For each single cluster information about the
height above the ground plane and about the point density as well as hight discontinuities
to the longitudinal neighboring cells are evaluated in a probabilistic way to decide whether
the cell is occupied or not. However, although achieving promising results, the robustness
of the current implementation suffers from the flat ground plane assumption and the lack of
temporal integration.

1.3 Problem Statement and Achievements of the Thesis

The goal of this thesis is to provide a novel approach for the robust detection and modeling
of street surfaces and boundaries from depth map sequences for automotive applications.
In this context, we refer to the term street surface as a continuous representation of the
vertical elevation of the street. The term street boundary means a continuous representation
of the first geometric obstacles in viewing direction delimiting the traversable (drivable) free-
space in front of the vehicle, where we consider height discontinuities of more then 10 cm as
non-traversable (non-drivable).

Thereby, we address urban scenarios implying a low velocity of the ego-vehicle
(< 50 km/h) on the one hand as well as complex structures of the street boundary, including
small traffic isles, complicated intersections, parking and moving cars, etc. on the other hand.
In some literature, such complex structures are referred to as unstructured environment.

The key achievement of this thesis is an approach based on a parameterized environment
model describing the relations and stochastic properties of the model components, sensor
data and measurement outliers in a probabilistic way. Thus, the approach is able to cope
with a high amount of measurement noise, which for example occurs in depth maps computed
from small baseline stereo vision. A flexible, spline based model of the street surface allows
for the detection and modeling of even low obstacles (curbs, traffic isles) and undulating
street surfaces up to distances of 16 m to the sensor. The continuous representation of the
environment model based on B-splines allows for an evaluation of the street elevation and
boundary at an arbitrary position and direction in the region of interest.

1.4 Organization of the Thesis

In Chapter 2 we start by introducing the mathematical concepts and used notation which
provide the theoretical background of this thesis. This includes the fundamental concepts
of binocular stereo vision for depth map computation as well as techniques employed for
classification and parameter estimation tasks. The chapter further describes the concept and
properties of B-splines, which are used in this thesis to define a flexible model for the surface
and boundary of the street.

Chapter 3 provides an exhaustive definition of this model as well as a detailed description
of the total workflow developed to estimate the model parameters from recorded depth map
sequences. This further comprises data acquisition, model initialization and self-validation
of the estimated model.

The proposed approach is evaluated in Chapter 4 by characterizing the performance prop-
erties and limitations of the overall concept and of selected submodules based on synthetic
and real world scenarios.

Finally, Chapter 5 gives a conclusion and presents an outlook on possible future research
referring to the proposed work.
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Chapter 2

Technical Background

In this chapter, we introduce the mathematical concepts used for the detection and modeling
of street boundaries and surfaces from depth image sequences as well as the utilized notation.

First, we give an introduction to the general notation regarding geometric and probabilis-
tic entities. The second section provides the utilized model assumptions and mathematics
for depth map acquisition from a stereo vision sensor. Further, the chapter gives an overview
on the employed techniques for the detection and reconstruction of the street surface and
boundary comprising least squares parameter estimation, graphical models, logistic regres-
sion and the Expectation Maximization algorithm. Finally, the concept of B-splines, which
form the basis of the street surface and street boundary model, is sketched.

To give the reader the opportunity to assess the relevance of the single sections due to his
personal prior knowledge, we provide a short hint on the purpose of the respective technique
in the overall concept as well as key assumptions in a box at the beginning of each section
excluding Section 2.1.

2.1 Notation

2.1.1 Representation of Geometric Entities

Throughout this thesis, we use both Euclidean and homogeneous coordinates to represent
geometric entities such as 2d and 3d points and 2d lines as well as their relations. This
section introduces the notation utilized to distinguish between Euclidean and homogeneous
representation and the entity itself.

2.1.1.1 Euclidean and Homogeneous Representation of Point Entities

Assume a point entity in the n-dimensional space to be given which we denote by a calligraphic
symbol x . The representation of this entity in Euclidean coordinates is denoted by a bolt
slanted symbol x ∈ IRn, whereas the homogeneous representation is given by a bolt upright
symbol x ∈ IRn+1. Euclidean and homogeneous representation of the same point entity are
related by

x = λ

[
x
1

]
, (2.1)

23
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with an arbitrary non-zero scale factor λ, and vice versa via normalization

x =
1

[x]n+1




[x]1
...

[x]n


 . (2.2)

To simplify the distinction, we use capital letters for the representation of 3d point en-
tities, e.g. X ,X and X. Single scalar coordinate values are always denoted by small let-
ters, e.g. X = [x, y, z]T, or by the combination of vector (or matrix) symbol and index,
e.g. X = [[X]1, [X]2, [X]3]T.

2.1.1.2 Homogeneous Representation of 2D Lines

For the representation of 2d lines, let us consider the Hessian normal form which claims that
each point x on the line satisfies nTx = d, where n denotes the normal of the line and d its
distance to the origin. This motivates the homogeneous representation

l = λ

[
n
−d

]
, (2.3)

with λ ∈ IR \ {0} and |n| = 1, allowing for the simple test of the point-line incidence relation

lTx = 0. (2.4)

Further, the intersection point of two lines l1 and l2 is given by their cross product

x = l1 × l2 (2.5)

= S(l1)l2 = S(l2)l1, (2.6)

with the skew symmetric matrix

S(l) =




0 −[l]3 [l]2
[l]3 0 −[l]1
−[l]2 [l]1 0


 . (2.7)

For detailed information on relations between geometric entities including treatment of un-
certainties we refer to [Meidow et al., 2009].

2.1.2 Representation of Probabilistic Entities

This section introduces the notation used to represent probabilistic entities including random
variables as well as discrete probabilities and probability density functions. Assume a to be
a discrete random variable which can take values a ∈ {. . . , ci, . . . }, with i = 1, . . . , I .

We use the symbol P (a = ci) to denote the probability that a takes the value ci. Note,
we will use this pedantic notation in spatial cases to avoid ambiguity, though in general
we will refrain from explicit distinction of random variable and assigned value in order to
simplify the notation. Thus, in case the interpretation is provided by the context, we simply
write P (a) to denote the distribution of the random variable and P (ci) to denote the evaluated
probability for a certain value ci. In an analogous manner, we employ this simplified notation
for conditional and joint distributions of multiple random variables.

Finally, in case l represent a continuous random variable, we use the symbol ℘(l) to
represent its probability density function (PDF).
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2.2 Sensor Model for Stereo Camera Systems

Cameras are passive sensors that project the three dimensional environmental space on a two
dimensional image plane. Intensities of light rays emitted or reflected from visible objects are
measured by light sensitive material, such as photographic film (analog cameras) or electronic
sensors (digital cameras). Exploitation of the exposure geometry and radiometric relations
of images taken from two different viewports enables to estimate the 3d position of the ray
emitting point making the camera system a 3d point cloud sensor.

In this section we summarize the mathematical formalisms and assumptions applied for
modeling the geometric component of the imaging process (Section 2.2.1) as well as the
reconstruction process (Section 2.2.2). Section 2.2.3 introduces the utilized notation and the
usage of the terms camera system and image coordinates in the remainder of this thesis.
Finally, Section 2.2.4 and Section 2.2.5 present the employed techniques for stereo matching
and camera calibration.

We follow [McGlone et al., 2004, chapter 3.2] and [Hartley and Zisserman, 2003], which
we refer to for more detailed information.

Within this thesis, we use the pinhole camera model to represent the image acquisition
process [Hartley and Zisserman, 2003, chapter 6.1]. The utilized stereo camera system
is assumed to be accurately calibrated, i.e. the interior and relative orientation of the
cameras is known and rectified to the normal case of the image pair [McGlone et al., 2004,
chapter 3.2.2.5]. Image coordinates are given in the rectified camera system, which we
briefly refer to as camera system in the subsequent chapters. For dense stereo matching,
we employ the method of Gehrig et al. [2009] which embodies an implementation of the
Semi Global Matching approach presented in [Hirschmüller, 2005].

2.2.1 Image Acquisition Model

The general projection model for image acquisition comprises three euclidean, right handed
coordinate systems (see Figure 2.1(a)). These are:

• A 3d world system Sw holding object coordinates in the environmental space.

• A local 3d camera system Sc describing object coordinates relative to the camera’s
orientation. The negative local cz axis defines the camera’s viewing direction, while cy
points upwards.

• A 2d sensor system Ss parallel to the camera system’s xy-plane holding the measurable
pixel coordinates of projected points.

Modeling the projection process means to mathematically describe the mapping of the world
coordinates wX of a point entity X to the sensor coordinates sx of the corresponding image
point x .

For this purpose, we employ the geometry of a pinhole camera assuming all projection
rays to pass through a single point called the projection center O.

2.2.1.1 General Camera Model

We model the overall projection process sx = sP w ( wX) by four successive transformations

sx = sP w ( wX) = sP s ◦ sP c ◦ cP c ◦ cP w ( wX). (2.8)
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Figure 2.1: Utilized geometric model for a single camera (a) and a stereo camera pair (b). In (b), we use the
shorthand notation a′ to mark entities related to the second camera. Note, that the image plane, in contrast
to the physical setup, is drawn in viewing direction to get an upright image.

These are:

1. The transformation cX = cP w ( wX) of X from the world system into the local camera
system.

2. The perspective projection cx = cP c(
cX) of X onto the image plane I .

3. The affine transformation into the sensor system yielding the ideal image point
sx = sP c(

cx).

4. A nonlinear transformation modeling straight line perturbing parts, such as design
related influences like lens distortion, yielding the observable image point sx = sP s (

cx).

In homogeneous coordinates the combination of the first three transformations read as

sx = sPw
wX (2.9)

= sKc︸︷︷︸
sP c

cKc
[
I 3 | 0

]
︸ ︷︷ ︸

cP c

cMw︸︷︷︸
cP w

wX, (2.10)

which defines the so called projective camera model.

Exterior Orientation: The relative orientation cP w of world and camera system is gov-
erned by six extrinsic parameters. These are namely the three parameters defining the ro-
tation matrix R and the euclidean coordinates of the projection center XO , which in com-
bination define the transformation of the point coordinates from the world system into the
camera system

cMw =

[
R −RXO
0T 1

]
. (2.11)
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Interior Orientation: The orientation of the image plane in the camera system as well as
the relation of the sensor coordinate system to the camera system is given by five intrinsic
parameters. The transformation

cK c =



c 0 0
0 c 0
0 0 1


 (2.12)

is defined by the principle distance c. The principle distance embodies the distance of pro-
jection center and image plane in the ideal case.

The affine transformation into the sensor system

sK c =




1 s x0

0 1 +m y0

0 0 1


 (2.13)

is governed by the position of the principle point [x0, y0]T, i.e. the foot point of the projection
center onto the image plane, and by the potential scale difference m and shear s of the
coordinate axes of Ss .

Additional intrinsic parameters are required to model the straight line perturbing parts
sP s to compensate projection errors. The number of this parameters depends on the utilized
camera and the intended level of precision. We refer to [McGlone et al., 2004, pp. 227 ff.]
and [Hartley and Zisserman, 2003, chapter 7.4].

2.2.1.2 Ideal Camera Model

In case the intrinsic parameters are known, image coordinates can be reduced to cx. The
projection model facilitates to

cx = cP c ◦ cP w ( wX) (2.14)

= cKcR
[
I 3 | −XO

] wX (2.15)

= cPw
wX, (2.16)

which is called the ideal camera model.

Note that cx refers to a 2d point in the image plane rather than to a 3d point in the
camera system.

2.2.2 Triangulation of 3D Points

Using pictures taken from two different viewports enables to reconstruct the world coordinates
of a depicted point X from the point coordinates measured in both images cx and c′x. As-
suming the interior and exterior orientations of both cameras to be known, the 3d-coordinates
of wX can be reconstructed determining the intersection point of the respective projection
rays. In case of calibrated cameras, the reconstruction problem facilitates to the matching
problem of finding the corresponding point c′x to a given image point cx. We can break this
down to a one dimensional search along image rows introducing further assumptions about
the exposure geometry.

2.2.2.1 Normal Case of The Image Pair

We talk about a normal case of the image pair in case both cameras are ideal and identical
and the relative orientation is given by a translation along the first camera’s x-axis, i.e. both
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cameras share the same image plane (see Figure 2.1(a)). The relative orientation of the
cameras c′M c = c′M w ◦ wM c is represented by the coordinate transformation describing
the motion of the first camera system into the second camera system

c′Mc =




1 0 0 −B
0 1 0 0
0 0 1 0
0 0 0 1


 , (2.17)

where the base length B defines the distance between the projection centers.

Note that in the current and the subsequent paragraph we temporally use c to distinguish
the rectified camera system from the system c describing the general case. Following this,
Section 2.2.3 presents the simplified final notation used in the remainder of this thesis.

2.2.2.2 Stereo Rectification

If the exterior orientations of the cameras is known, the general case can be reduced to the
normal case by warping the images using homographies cx = H cx and c′x = H′ c

′
x to fulfill

the projection models

cx =



c 0 0 0
0 c 0 0
0 0 1 0


 cMw

︸ ︷︷ ︸
cPw

wX (2.18)

c′x =



c 0 0 0
0 c 0 0
0 0 1 0


 c′Mc

cMw

︸ ︷︷ ︸
c′Pw

wX. (2.19)

The estimation of H and H′ is called stereo rectification in the literature. Note that we will
not discuss corresponding estimation techniques in this thesis.

2.2.3 Simplified Notation

In the remainder of this thesis, we assume the cameras to be accurately calibrated and
rectified to the normal case and image points to be given by their coordinates in the rectified
system cx rather than by their raw measurements sx or general case coordinates cx.

Thus, to simplify the notation, we use the symbol c to address the system of the first
rectified camera c and use the shorthand notation x = [u, v, 1]T := cx for the rectified left
image as well as x′ = [u′, v′, 1]T := c′x for the rectified right image.

2.2.4 Stereo Matching

The correspondence problem in the normalized case facilitates to a matching problem along
image rows. This means, given a certain interest point x = [u, v]T in the left image, the
corresponding point in the right image x′ = [u + d, v]T is defined by an image row offset d
called disparity. The reconstructed 3d coordinates in the camera system of the first camera
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are given by

cx =
uB

d
(2.20)

cy =
vB

d
(2.21)

cz =
cB

d
. (2.22)

There exist various algorithms for stereo matching in the literature. For a detailed review
on stereo matching algorithms we refer to [Brown et al., 2003] or more recent [Lazaros et al.,
2008].

We can roughly subdivide existing stereo algorithms in two groups. On the one hand,
local stereo matching methods which estimate correspondences for a set of interest points
matching local statistics computed from the points neighborhood, e.g. [Zinner et al., 2008].
These local approaches bear advantages in computation time, local precision and robustness,
but they fail in image regions with weak local statistics such as poorly textured regions. This
results in sparse disparity estimates and may be insufficient for applications requiring a dense
disparity map.

On the other hand, global stereo matching algorithms aim to compute a correspondence
for nearly every pixel in the reference image. Prior information concerning global coherence
in the estimated disparity field, e.g. smoothness or ordering constraints, is introduced to
estimate correspondences even for poorly textured image regions. Local statistics and prior
information are combined in a global cost function. Recent methods, e.g. [Taguchi et al.,
2008], [Papadakis and Caselles, 2010] or [Pock et al., 2010], differ in modeling this cost
function and the chosen optimization technique.

However, targeting a global coherent solution implicates significant increase in compu-
tation time. This brings rise to so called scanline algorithms which demand coherence for
each image row independently, e.g. [Birchfield and Tomasi, 1996] or [Meerbergen et al., 2002].
Unfortunately, these methods suffer from streaking artifacts due to the unmodeled scanline
perpendicular correlations. This means that the estimated disparities tend to be smooth in
scanline direction but inconsistent in perpendicular direction.

The Semi-Global Matching (SGM) approach of Hirschmüller [2005] yields a compromise
between coherence level and computational effort. The cost function is optimized along
a specific number of scanlines uniformly rotated to each other. The work of Gehrig et al.
[2009] proposes a implementation of an extended SGM approach, yielding a real-time capable
hardware solution on a field-programmable gate array (FPGA) platform.

A performance study on SGM in comparison to other matching algorithms can be found in
[Steingrube et al., 2009] or on the middlebury evaluation platform 1. Figure 2.2(b) illustrates
an example of a disparity map computed with the Semi-Global Matching algorithm.

2.2.5 Camera Calibration

The calibration of the stereo camera system comprises the estimation of the intrinsic pa-
rameters for both cameras defining sP s ,

s ′P s ′ and sP c ,
s ′P c′ , the estimation of the relative

orientation cM c′ , as well as the rectification step computing H and H′.
We use a calibration system similar to the tool presented by Bouguet [2007]. A planar

calibration rig showing a checkerboard pattern of known size is captured from different posi-
tions, as depicted in Figure 2.2(a). The unknown calibration parameters are estimated from
automatically detected correspondences in the respective checkerboard projections.

1http://middlebury.edu/stereo/

http://middlebury.edu/stereo/
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(a) Calibration rig (b) Disparity map from SGM

Figure 2.2: Planar rig with checkerboard pattern used for camera calibration (a) and exemplary disparity
map computed with the SGM algorithm (b). Red color encodes large disparities (near distances), while green
color encodes small disparity values (far distances).

2.3 Parameter Estimation

In this section we sketch the concept of parameter estimation from uncertain measurements
in an overdetermined system. The underlying model which characterizes the relation and
stochastic properties of measurements and unknown parameters is introduced in Section 2.3.1.
The calculus for parameter estimation in linear models is presented in Section 2.3.2 comprising
maximum likelihood estimation as well as the consideration of additional prior information
to achieve the maximum a posteriori estimate. Section 2.3.3 describes the utilized procedure
to deal with non-linear models. For additional information, it is referred to [McGlone et al.,
2004, chapter 2.2.4] or [Koch, 2000, chapter 4], which provide the basis for this section.

The parameters governing the street surface and boundary in the proposed approach are
estimated in a weighted least squares sense assuming observations and unknown parameters
to be Gaussian distributed. Bayesian estimation is performed by introducing temporal and
spatial prior information via fictitious observations. Further, we use the Gauss-Newton
method to deal with the non-linearity of the estimation problem.

2.3.1 Gauss-Markov Model

Assume a vector of uncertain observations z ∈ IRN to be given which embodies a random
sample drawn from the Gaussian distribution z ∼ N (z̃,Σzz). Note, that we temporarily use
a detailed notation for a better understanding that symbolically distinguishes between the
true value z̃, the stochastic variable z and the actually observed sample value z.

From the observations, a vector of unknown parameters p ∈ IRU shall be estimated.
Further, the nonlinear functional model f : IRU → IRN describes the relation of the real
observation and parameter values z̃ and p̃ such that

z̃ = f(p̃). (2.23)

Since the observations are uncertain, the equality holds merely for the expected value

E (z) = f(p̃) (2.24)
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or respectively by adding a residual vector v modeling the negative measurement deviations

z + v = f(p̃). (2.25)

As stated above, we assume that the mean of the observations corresponds to the true ob-
servations, i.e. the distribution of the residuals is given by the Gaussian distribution

z̃ − z = v ∼ N (0,Σzz), (2.26)

which we refer to as stochastic model.

The combination of the functional model (2.23) and the Gaussian stochastic model (2.26)
forms the so called Gauss-Markov model [see e.g. Koch, 1997, chapter 3.2].

In order to keep the notation uncluttered, we refrain from an explicit symbolic distinction
of stochastic variables and their sample values in the remainder of this thesis and use the
simplified notation

z + v = f(p), v ∼ Σzz (2.27)

to represent estimation tasks via the Gauss-Markov model.

2.3.2 Least Squares Estimation in Linear Models

Let us now consider how to determine estimates p̂ for the true parameters p̃ based on the intro-
duced model. We start with the case of a linear2 functional model, i.e. the function f(p) = Ap
is defined by the so called design matrix A ∈ IRN×U. The treatment of non-linear models is
discussed subsequently in Section 2.3.3.

Section 2.3.2.1 describes the principle estimation procedure. Section 2.3.2.2 discusses the
consideration of additional prior information.

2.3.2.1 Maximum Likelihood (ML) Estimation

From a probabilistic point of view, the model represents the likelihood of the unknown pa-
rameters

℘ (z | p) = G (z | Ap,Σzz) , (2.28)

where G represents the Gaussian PDF. The task is to find the parameter assignment p̂ which
is most likely, i.e. which yields the maximum argument for the likelihood function

p̂ = argmax
p

[℘ (z | p)] , (2.29)

referred to as maximum likelihood estimate.

Considering the negative logarithm of the likelihood function, the maximum likelihood
estimate is given by the minimum argument

p̂ = argmin
p

[
(Ap− z)T Σ−1

zz (Ap− z)
]
. (2.30)

The determination of the minimum argument represents a weighted least squares estimation
task. A detailed derivation is given in [Koch, 1997, pp. 174 ff.].

2W.l.o.g., the linear model may be replaced by an affine model by adding a constant term.
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As a necessary criterion, the first derivative with respect to the unknown parameters
needs to vanish at the optimum, i.e.

ATΣ−1
zz Ap̂− ATΣ−1

zz z
!

= 0. (2.31)

This yields p̂ to be the solution of the linear normal equation system

ATΣ−1
zz A︸ ︷︷ ︸

N

p̂ = ATΣ−1
zz z︸ ︷︷ ︸
h

(2.32)

with the normal equation matrix N and the right hand side of the normal equation h.

The theoretical precision of the estimated parameters defined by this model is given by

Σp̂p̂ = N−1. (2.33)

2.3.2.2 Maximum a Posteriori (MAP) Estimation

In addition to the information provided by the observations via the likelihood (2.28), prior
knowledge ℘(p) on the unknown parameters may be available, e.g. derived from temporal or
spatial smoothness constraints. The first paragraph of this section sketches the consideration
of such prior knowledge in the estimation process yielding the maximum a posteriori estimate
of the unknown parameters. The second paragraph describes how to treat prior information
which is given by samples of a function of the unknown parameters rather than about the
parameters themselves.

For detailed information we refer to [Koch, 2000, chapter 4.2].

MAP Estimation in the Gauss-Markov Model The maximum a posteriori esti-
mate p̂M is defined as the maximum argument of the posterior distribution of the unknown
parameters. The posterior distribution combines the likelihood (2.28) and prior information
via the Bayes theorem

℘ (p | z) =
℘ (z | p)℘ (p)

℘ (z)
, (2.34)

with ℘ (z) =
∫
℘ (z | p)℘ (p) dp. Considering that the denominator does not depend on p,

the maximum a posteriori estimate is given by

p̂M = argmax
p

℘ (p | z) (2.35)

= argmax
p

[℘ (z | p)℘ (p)] (2.36)

or, if defined in terms of the negative logarithm, by the minimum argument

p̂M = argmin
p

[− ln℘ (z | p)− ln℘ (p)] . (2.37)

Assume uncertain prior knowledge on the unknown parameters is given by a Gaussian
distribution

℘(p) = G (p | p0,Σp0p0) , (2.38)
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i.e. the expected value of p is a priori assumed to be given by a specific value p0 and its
precision by the covariance matrix Σp0p0 . The maximum a posteriori estimate can be derived
via the procedure presented in the previous section using the extended Gauss-Markov model

[
z
p0

]
+

[
v
vp0

]
=

[
A
IU

]
p̂M ,

[
v
vp0

]
∼ N

(
0,

[
Σzz 0
0 Σp0p0

])
, (2.39)

see [Koch, 2000, chapter 4.2.6]. Thus, p̂M is given by the solution of the extended normal
equation system

(
ATΣ−1

zz A + Σ−1
p0p0

)
p̂M = ATΣ−1

zz z + Σ−1
p0p0p0. (2.40)

Prior Information from fictitious observations: In this thesis, we exploit prior knowl-
edge represented by uncertain information about a function k(p) of the parameters rather
than about the parameters themselves. The information is given by an additional set of
observations zk which are independent to z and connected to the unknown parameters p via
a linear Gaussian model

zk + vk = k(p) := Ak p, vk ∼ N (0,Σkk). (2.41)

This model provides prior information about the unknown parameters considering the max-
imum likelihood estimate

p̂k = argmax
pk

[℘ (zk | pk)] (2.42)

obtained from (2.32). This yields the prior distribution

℘(p) = G

(
p | p̂k,

(
AkTΣ−1

kk Ak
)−1

)
. (2.43)

By substituting Σ−1
p0p0 = AkTΣ−1

kk Ak and Akp0 = zk in (2.40), the MAP estimate is given by
the solution of the extended normal equation system

(
ATΣ−1

zz A + AkTΣ−1
kk Ak

)

︸ ︷︷ ︸
N

p̂M = ATΣ−1
zz z + AkTΣ−1

kk zk︸ ︷︷ ︸
h

. (2.44)

Note that this corresponds to the solution directly obtained from the combined model

[
z
zk

]
+

[
v
vk

]
=

[
A
Ak

]
pM ,

[
v
vk

]
∼ N

(
0,

[
Σzz 0
0 Σkk

])
(2.45)

treating actual observations z and prior information zk as two sets of independently dis-
tributed observations. Thus, there is no need for an explicit computation of p̂k.

Throughout this thesis, we utilize the model (2.45) to formulate MAP estimation tasks.
We use the term fictitious observations for the observations zk corresponding to the prior in
order to distinguish them from the actual observations z.
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2.3.3 Least Squares Estimation in Non-Linear Models

In case f (or k) is a non-linear function we employ the Gauss-Newton algorithm [see e.g. Alt,
2002] treating the non-linear problem as a sequence of linear problems that are solved using
the method presented in the last section. For simplicity, we explain the procedure by only
considering the function f . Non linear MAP estimation is treated analogously.

The non-linear function f is approximated using first degree Taylor expansion at a lin-
earizion point p(0) neglecting higher order terms

f(p) = f
(
p(0) + ∆p

)
≈ f

(
p(0)

)
+
∂f (p)

∂p

∣∣∣∣
p=p(0)︸ ︷︷ ︸

A(0)

∆p (2.46)

to obtain the linearized Gauss-Markov model

∆z + v = A(0)∆p, v ∼ N (0,Σzz) , (2.47)

with the reduced observations ∆z := z − f(p(0)).
The unknown parameters p̂ are estimated in an iterative manner. Starting with approx-

imate values p̂(0) := p(0) and ν := 0, we repeat the steps:

1. Linearize f at the current parameter estimate p̂(ν) to achieve A(ν), using (2.46);

2. Compute the reduced observations ∆z(ν) = z − f
(
p̂(ν)

)
;

3. Estimate the correction ∆̂p
(ν)

by solving N(ν)∆̂p
(ν)

= h(ν);

4. Update the parameter estimate p̂(ν+1) = p̂(ν) + ∆̂p
(ν)

;

5. Increase iteration counter ν := ν + 1;

until a termination criterion is fulfilled, e.g. until the maximal relative update

max
i




∣∣∣∣∆̂p
(ν)

i

∣∣∣∣
√[

Σ
(ν)
p̂p̂

]
ii


 , i = 1, . . . , U, (2.48)

falls below a certain threshold.
In case ν̂ denotes the last iteration of this procedure, the final parameter estimate is given

by p̂(ν̂) and its precision by

Σ
(ν̂)
p̂p̂ = N(ν̂)−1

. (2.49)

2.4 Probabilistic Graphical Models

Probabilistic graphical models, also called graphical models, are diagrammatic representations
used to model the conditional independence properties of a set of random variables. The
representation is usually given by a graph whose nodes represent the random variables while
its edges encode the dependency relation between them. The decision whether using a directed
or undirected graph for the representation distinguishes the two major groups of graphical
models given by Bayesian Networks, also known as directed graphical models, and Markov
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Random Fields (MRFs), also known as undirected graphical models [see Kindermann and
Snell, 1980]. In this thesis, we restrict to the undirected version.

The remainder of this chapter provides a brief introduction of MRFs including their prop-
erties and variations utilized in this thesis (Section 2.4.1). Further, we mention the techniques
employed for inference which denotes the determination of the posterior probabilities of the
assignment of the random variables based on the assumptions defined by the MRF’s struc-
ture (Section 2.4.2). The introduction is based on [Bishop, 2006, chapter 8] and [Hastie et al.,
2009, chapter 17.2], which we refer to for more detailed information.

We employ graphical models based on Conditional Random Fields (CRFs) for two tasks.
First, models based on an acyclic chain structure are used to capture the elevation at discrete
horizontal positions in front of the vehicle. The second task embodies the determination
of a probabilistic statement about which of these positions belong to the drivable street
region and which do not. The horizontal positions are arranged in a 4-connected horizontal
grid, and we employ a CRF aligned to this grid structure in order to model the respective
probabilistic properties the statement depends on. For inference, we employ max-sum
algorithm for the chains and Loopy Belief Propagation for the grid.

2.4.1 Markov Random Fields

A Markov Random Field is represented by an undirected graph which is defined by a set
of nodes i ∈ I, each connected to a discrete random variable li, as well as a set of edges
representing the neighborhood structure within the graph. Two nodes i, j ∈ I are said to
be neighbored if an edge between both corresponding nodes exists. We use the symbol N i

to describe the set of nodes which are neighbored to node i. The vector holding the full set
of random variables is denoted by l = [. . . , li, . . . ]

T. Figure 2.3(a) depicts an example for a
graphical model of a MRF with four variables. In the following, we will use the term node
to additionally address the respective connected random variable.

l4

l3

l2
l1

(a) Graphical model with unobserved variables

l4

l3

l2
l1

(b) Graphical model with two variables observed

Figure 2.3: Graphical model for an MRF representing the conditional independence properties of four
variables l1, . . . , l4. In Figure (a) all variables are treated as unobserved represented by bright shaded nodes. In
Figure (b) the variables l2 and l3 are treaded as observed, i.e. their specific value is known, which is represented
by dark shaded nodes. Via the global Markov property, the graph structure implies that each variable is
conditional independent of its diagonal opponent given the value of its connected neighbors since there exists
no direct link between them. For example, considering the observation state in (b), the class assignment of l1
is conditional independent of the assignment of l4 given the value of l2 and l3. This is because there exists no
path between l1 and l4 that is not ‘blocked’ by an observed node. This means P (l1 | l2, l3, l4) = P (l1 | l2, l3).
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2.4.1.1 Conditional Independence Properties

The graph structure implies the conditional independence properties of the random variables
via the so called global Markov property. The property states that given its neighbors a
node is conditionally independent to all nodes of the graph not included in its neighborhood,
i.e. P (li | l\i) = P (li | N i), ∀i ∈ I. The symbol l\i denotes the vector l without element i.
See Figure 2.3(b) for an illustration of this property.

This insight allows for a simplification of the joint probability P (l) via the Hammersley-
Clifford theorem [Clifford, 1990]. The theorem states that the set of factorizations of P (l)
meeting the requirements defined by the Markov property for a specific graph equals the set
of distributions that factorize into positive functions ΨC(lC) over the maximal cliques C ∈ C
of the graph

P (l) =
1

ζ

∏

C∈C
ΨC(lC). (2.50)

A maximal clique is a fully connected subset of nodes which are unable to add an additional
node without loosing the property of full connectivity. The entity ζ denotes the normalization
constant

ζ =
∑

l∈L

∏

C∈C
ΨC(lC), (2.51)

which is known as partition function. The vector lC holds the subset of random variables as-
sociated to the respective clique. The functions ΨC(lC) are referred to as potential functions.

For example, the graphical model presented in Figure 2.3(a) implies the factoriza-
tion P (l1, l2, l3, l4) ∼ Ψ12(l1, l2)Ψ23(l2, l3)Ψ34(l3, l4)Ψ41(l4, l1). Note that this factorization
should be understood as a kind of upper limit of the possible dependency of the variables,
i.e. the potential functions must not depend on variables which are not part of the respective
cliques, but they may depend only on a subset of the clique or further factorize into products
of subsets.

2.4.1.2 Utilized Variants of Markov Random Fields

There exist several special variants of MRFs which mainly differ in the complexity of the
underlying graph structure or the definition of the potential functions. In this thesis, we
utilize so called Conditional Random Fields (CRFs) introduced by Lafferty et al. [2001].
CRFs explicitly model the dependency of the random variables l to a set of observations z,
such as pixel color values in an image segmentation task, i.e. the task of assigning each pixel
to one out of a set of specific image segments. This dependency is modeled explicitly by
defining the potential functions to depend on both l and z

P (l | z) =
1

ζ

∏

C∈C
ΨC(lC | z). (2.52)

More precisely, following [Lafferty et al., 2001] the set {l, z} represents a CRF in case the
variables l obey the Markov property with respect to the graph when conditioned on z. Note
that there exists some inconsistency in the exact definition of CRFs in different communities.

Graphically the observations are introduced as additional nodes in the graph structure
which are treated as observed.

The structure of the CRFs employed in the approach proposed in this thesis are restricted
to two cases. The first of them are linear-chain CRFs, whereby the name follows from the
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z4z3z2z1

l4l3l2l1

(a) Linear-chain CRF

z4

z3

z2

z1

l4

l3

l2
l1

(b) CRF with fully connected binaries

Figure 2.4: Examples for the graph structures of CRFs relevant for this thesis. Figure (a) illustrates the
first case in which the nodes for the class labels are lined up in a chain structure. Figure (b) demonstrates
the second case in which the nodes are arranged in a 4-connected grid. For simplicity only a 2 × 2 subset
is represented. In both cases, the upper layer of observed nodes represents the observations zi, while the
lower layer of unobserved nodes represents the class labels li. Note that in comparison to (a), the nodes
for observations and class labels of grid neighbors in (b) are fully connected and, thus, the binary potential
functions may also depend on the respective observations.

graph structure since all nodes li are lined up in one row, as illustrated in Figure 2.4(a). This
structure implies the factorization of the joint probability in unary and binary terms

P (l | z) =
1

ζ

I∏

i=1

Ψ(li | zi)
I∏

i=2

Φ(li, li−1), (2.53)

where Ψ defines the unary potentials and Φ the binary potential functions. As described in
the subsequent section, the simple structure of these models allows for exact inference. Note
that this roughly corresponds to the concept of Markov chains [see Bishop, 2006, chapter 13],
which are usually represented via directed graphical models.

The graph structure of the second case is governed by a planar graph with 4-connected
neighborhood, see Figure 2.4(b). The nodes of labels and observations of direct grid neighbors
are fully connected and, thus, form the cliques of the graph. This structure implies that the
single potential functions depend on no more than the observations zi, zj and class labels li, lj
of direct grid neighbors i and j. In order to separately model the individual local class
decisions based on the observations and the influence of the neighborhood relation, we will
assume the joint probability to decompose into a product of unary and binary terms

P (l | z) =
1

ζ

∏

i∈I
Ψ(li | zi)

∏

(i,j)∈N 4

Φ(li, lj | zi, zj). (2.54)

The symbol N 4 denotes the set of index tuples (i, j) which define the neighbors out of the
4-neighborhood of the grid.

2.4.2 Inference in Markov Random Fields

Inference in MRFs denotes the task to determine the posterior probabilities for the class
assignments of all nodes, or a subset of nodes, given the conditional independence assumptions
defined by the MRFs structure. Thereby, a subset of the nodes may be clamped to observed
values, such as the observations z in a CRF.

With respect to the CRFs employed in this thesis, we restrict to the two tasks of searching
for:
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(a) The most probable assignment of all random variables en bloc

l̂ = argmax
l

P (l | z). (2.55)

(b) The evaluation of the marginals

P (li | z) =
∑

l\li

P (l | z) (2.56)

for all li, with i ∈ I. The short notation under the sum means that the ith element is
omitted when summing over the possible assignments of l.

The naive method of evaluating all possible assignments is computational expensive or even
intractable also for small sized problems due to the sheer number of combinations to be
evaluated. There exist several methods for inference exploiting the simplifying assumptions
given by the CRF’s structure.

2.4.2.1 Exact Inference in Undirected Acyclic Graphs

For tackling problem (a) in acyclic graphs (chains in our case), we use the max-sum algorithm
[Bishop, 2006, chapter 8.4.5]. This method is based on a message passing schedule, prop-
agating probability information from the graph’s leave nodes to a selected root node. The
method keeps track of the respective node assignments that gave rise to the most probable
assignment of the root node. This tracked set of assignments represents the desired most
probable assignment of all random variables.

There exists a similar method, which encounters problem (b) called sum-product algorithm
[see MacKay, 2003, pp. 334-340]. The method also relies on a message passing technique but
uses the messages for marginalization rather than for maximization.

Both message passing techniques are also known as belief propagation in literature.

2.4.2.2 Approximate Inference in Undirected Graphs with Cycles

There exist techniques for exact inference in graphs with cycles, such as Graph-Cuts [Boykov
et al., 2001]. However, they are restricted to certain model classes, e.g. the li need to be
binary variables and the potential functions need to be submodular [see Kolmogorov and
Zabin, 2004], in order to guarantee a global optimal solution making them unsuitable for our
applications.

To tackle problem (b) in cyclic graphs we employ loopy belief propagation [Frey and
MacKay, 1998]. The idea is to apply the sum-product algorithm as for acyclic graphs and
sequentially pass messages to the neighbors until convergence or a maximum number of
iterations is reached. Note that this technique also yields approximative results but bears
the advantage to be highly parallelizable and, thus, is suitable for real-time applications.

2.5 Logistic Regression

In the later sections we encounter the problem to estimate a classification model from sample-
sets of two predefined classes in a one dimensional feature space. Put simply, a set of samples
is given which describes the appearance of two classes with respect to a single real-valued
feature. The task is to estimate a model that given an arbitrary feature value, i.e. an ar-
bitrary position in the addressed feature space, provides probabilities for both classes to be
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assigned. Further, the model shall provide an explicit formulation of the decision boundary.
The decision boundary partitions the feature space into regions differing in which of the
both classes is more probable, i.e. both classes are equiprobable on the decision boundary.
For the estimation of the classification model, we employ logistic regression, an established
probabilistic classifier.

The fundamental concept of logistic regression is summarized in Section 2.5.1 and Sec-
tion 2.5.2, which specify the task and the logistic regression model. Section 2.5.3 describes
the estimation of the model focusing on the determination of the decision boundary and its
accuracy. Further, we show how we tread uncertainties in the sample positions. Finally, Sec-
tion 2.5.4 depicts the modifications of the procedure for the case that the class assignments of
the input samples are non-deterministic, i.e. the information is provided by the probability
of a class-membership instead of a definite membership statement.

For detailed information, we refer to [Hastie et al., 2009, chapter 4.4] and [Bishop, 2006,
chapter 4.3], which provide the basis for this section.

We employ logistic regression to estimate local decision boundaries along discrete viewing
directions in the horizontal plane, i.e. to estimate the local separation of ‘street regions’
from ‘non-street regions’. We assume this decision boundaries to be adequate sample mea-
surements of the horizontal free-space boundary.

2.5.1 Logistic Regression Task

Assume a number of samples j = 1, . . . , J was drawn from a set of classes, and their posi-
tion with respect to a feature space y is known. This samples form the so called training
set {y = [. . . , yj , . . . ]

T, t = [. . . , tj , . . . ]
T} which is defined by the position of the samples in

the feature space yj and their respective class assignments tj , also referred to as targets.

The task is to estimate the parameters w of a model g(w, y) from the training set which
allows to evaluate the posterior probability P (ti | yi,w) for an arbitrary class assignment ti
at an arbitrary feature position yi. The model parameters shall be optimal in the sense that
the posterior probability of the class assignments given by the training set is maximized

ŵ = argmax
w

J∏

j=1

P (tj | yj ,w). (2.57)

In this thesis, we restrict to the case of a binary classification task over an one dimen-
sional feature space y. This means only two classes exist and the class assignment can be
encoded by the target values tj ∈ {0, 1}. Further, the decision boundary is given by a single
scalar y0 which represents the most probable separation of both classes. We use an alternative
formulation of (2.57) for the binary classification task

ŵ = argmax
w

J∏

j=1

P (0 | yj ,w)1−tjP (1 | yj ,w)tj . (2.58)

2.5.2 Logistic Regression Model

The model employed by logistic regression is based on a logistic function g, which we also
refer to as sigmoid function, which models the posterior probability of the classes 0 and 1
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with respect to the feature space y

P (1 | y,w) = g(w, y) :=
1

1 + exp(−(w1y + w0))
(2.59)

P (0 | y,w) = 1− g(w, y) =
exp(−(w1y + w0))

1 + exp(−(w1y + w0))
. (2.60)

The sigmoid function is governed by the model parameters w = [w0, w1]T. Since w1 controls
the slope of the sigmoid function, we will refer to it as slope parameter in the remainder of
this thesis.

The decision boundary y0 between the classes is given by the 0.5-crossing of the sigmoid
function

y0 = −w0

w1
. (2.61)

2.5.3 Estimation of the model parameters

In the following, we describe the procedure for the estimation of the model parameters w.
The estimation task embodies a non-linear optimization problem. The utilized iterative
optimization procedure based on Newton’s method is presented in Section 2.5.3.1.

Beside the model parameters and the decision boundary, we also demand information
about the precision of the decision boundary σ2

y0 . Section 2.5.3.2 describes an approach to
determine this information by exploiting the similarity of the iterative optimization procedure
and the iterative weighted least squares scheme presented in Section 2.3.3. The mathematical
derivations in this section are largely based on [Bishop, 2006, pp. 207-208].

Finally, Section 2.5.3.3 describes a regularization scheme utilized to prevent from numeric
instabilities in case the best solution would be a sigmoid function of infinite steepness.

2.5.3.1 Optimization via Newton’s method

Formulation of the Cost Function: Instead of searching for the maximum argument
of (2.58), we solve for the minimum argument

ŵ = argmin
w

C(w) (2.62)

of the respective negative logarithm. This yields the cost function of the non-linear optimiza-
tion task

C(w) =
J∑

j=1

(tj − 1) lnP (0 | yj ,w)− tj lnP (1 | yj ,w). (2.63)

In order to facilitate the determination of the Jacobian and Hessian of the
cost function presented in the next paragraph, we rearrange the cost function to
a simplified representation. Substituting (2.59) and (2.60) and exploiting the iden-
tity 1− g(w, y) = exp(−(w1y + w0))g(w, y) results in

C(w) =

J∑

j=1

(tj − 1) ln (1− g(w, yj))− tj ln g(w, yj) (2.64)

=

J∑

j=1

− (tj − 1) (w1yj + w0) + (tj − 1) ln g(w, yj)− tj ln g(w, yj). (2.65)
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Finally, after summarizing we achieve the simplified formulation of the cost function

C(w) =
J∑

j=1

(1− tj) (w1yj + w0)− ln g(w, yj). (2.66)

Iterative Update Scheme: The parameters are estimated in an iterative scheme using
Newton’s method. Each update step

ŵ(ν+1) = ŵ(ν) − H−1
C (ŵ(ν))JC(ŵ(ν)) (2.67)

is governed by the Jacobian JC and Hessian HC holding the first and second derivatives of
the cost function with respect to the parameters w.

The derivation of the Jacobian and Hessian facilitates when bringing to mind that the
partial derivatives of the sigmoid function g can in turn be expressed in terms of the sigmoid
function itself

∂

∂w0
g(w, yj) =

exp(−(w1y + w0))

(1 + exp(−(w1y + w0)))2 = g(w, yj) (1− g(w, yj)) (2.68)

∂

∂w1
g(w, yj) =

exp(−(w1y + w0))yj

(1 + exp(−(w1y + w0)))2 = g(w, yj) (1− g(w, yj)) yj . (2.69)

Using this insight, we obtain the Jacobian

JC(w) =
J∑

j=1

(1− tj)

[
1
yj

]
− ∂ ln g(w, yj)

∂g

[
∂
∂w0

g(w, yj)
∂
∂w1

g(w, yj)

]
(2.70)

=

J∑

j=1

(g(w, yj)− tj)

[
1
yj

]
. (2.71)

The second derivatives follow from the derivation of the components of the Jacobian with
respect to w0 and w1. They again facilitate to the partial derivation of the sigmoid function
yielding the Hessian

HC(w) =

J∑

j=1

[
1
yj

] [
∂
∂w0

g(w, yj)
∂
∂w1

g(w, yj)
]

(2.72)

=
J∑

j=1

g(w, yj) (1− g(w, yj))

[
1
yj

] [
1 yj

]
. (2.73)

Inserting Jacobian and Hessian into (2.67) yields the update step of the estimation pro-
cedure. The update step can be formulated in a compact matrix representation

ŵ(ν+1) = ŵ(ν) +
(
Y T Diag(k(ν))Y

)−1
Y T(t− g(ν)) (2.74)

in terms of the feature matrix Y := [y,1J ] and the current posterior probabilities

g(ν) := [g(ŵ(ν), y1), . . . , g(ŵ(ν), yJ)]T. (2.75)

The short hand notation k(ν) denotes the Hadamard product

k(ν) := g(ν) ◦ (1− g(ν)). (2.76)
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2.5.3.2 Determination of the Precision of the Decision Boundary

The decision boundary y0 follows from the negative fraction of the estimated parame-
ters (2.61). Information about its precision σ2

y0 can be achieved via error propagation in
case the precision of the estimated parameters Σŵŵ is known. To obtain this information,
let us consider the similarity of the Newton update step (2.74) and the update step for the
weighted least squares optimization in non-linear models presented in Section 2.3.3. We
will find that we can re-interpret the optimization task of logistic regression as least squares
optimization task and, thus, obtain Σŵŵ by the inverse of the respective normal equation
matrix.

The first paragraph of this section describes the analogy between the tasks as well as
the utilized procedure for the computation of the desired precision information. The second
paragraph describes how to tread the case that the training sample positions yj are uncertain,
i.e. are given by Gaussian distributed random variables rather than by fixed values. A scheme
is presented to incorporate the known precision σ2

yj in the estimation process.

Optimization via Iterative Reweighted Least Squares: We can re-interpret the New-
ton update step by reshaping (2.74) to

ŵ(ν+1) = ŵ(ν) +

(
A(ν)TΣ

(ν)
tt

−1
A(ν)

)

︸ ︷︷ ︸
N (ν)

−1

A(ν)TΣ
(ν)
tt

−1 (
t− g(ν)

)

︸ ︷︷ ︸
h(ν)

. (2.77)

This corresponds to a Gauss-Newton update step of the weighted least squares problem

ŵ = argmin
w

[
(t− g(w,y))T Σ

(ν)
tt

−1
(t− g(w,y))

]
, (2.78)

with the Jacobian (i.e. the design matrix)

A(ν) =
∂g(ν)

∂w

∣∣∣∣∣
w=ŵ(ν)

= Diag
(
k(ν)

)
Y (2.79)

and the covariance matrix of the targets Σ
(ν)
tt = Diag

(
k(ν)

)
. Thus, we can think of the

optimization procedure as estimation of the parameters ŵ in a non-linear Gauss-Markov
model, as described in Section 2.3.3, with the functional and the stochastic model given by

t + vt = g(w,y), vt ∼ N
(
0,Σ

(ν)
tt

)
(2.80)

using the short hand notation g(w,y) = [g(w, y1), . . . , g(w, yJ)]T. The only difference is

given by the fact that Σ
(ν)
tt is recomputed in every iteration (reweighted least squares).

Following (2.49), the precision of the estimated parameters is given by the inverse of the
normal equation matrix in the final iteration step ν̂

Σŵŵ = N(ν̂)−1
. (2.81)

Finally, linear error propagation yields the desired precision of the decision boundary

σ2
ŷ0

=

[
− 1

ŵ1
,
ŵ0

ŵ2
1

]
Σŵŵ

[
− 1

ŵ1
,
ŵ0

ŵ2
1

]T
. (2.82)
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For a better interpretation of the obtained precision, let us examine the stochastic meaning

of Σ
(ν)
tt . Consider the expected value and variance of a class assignment t ∈ {0, 1} based on

the currently estimated model parameters, i.e. governed by the posterior probabilities (2.59)
and (2.60), which read as

E (t) = 0 · P
(
t = 0 | y,w(ν)

)
+ 1 · P

(
t = 1 | y,w(ν)

)
= g(w(ν), y) (2.83)

σ2
t = E

(
t2
)
− E (t)2 = g(w(ν), y)− g(w(ν), y)2. (2.84)

Note that the evaluation of the variance (2.84) for the training samples yj equals the compo-

nents of k(ν), which in turn embody the diagonal elements of Σ
(ν)
tt . Put simply, Σ

(ν)
tt represents

the variance of the class assignments based on the currently estimated model rather than the
variance of the target values of the training set.

Treatment of Sample Position Uncertainty: Let us now assume that the sample
positions yj are Gaussian distributed random variables with the variance σ2

yj rather than
fixed values. This yields the estimation task

ŵ = argmax
w

℘(t,y | w). (2.85)

We use the local derivative of g with respect to y to propagate the uncertainty in the space
of g. In combination with (2.84) we obtain the new covariance matrix of the targets

Σ
(ν)
tt = Diag

(
[. . . , σ

(ν)
tj

2
, . . . ]T

)
, (2.86)

with

σ
(ν)
tj

2
= σ

(ν)
tj

2
+


 ∂g(ŵ(ν), yj)

∂y

∣∣∣∣∣
yj




2

σ2
yj (2.87)

= σ
(ν)
tj

2
+
(
k

(ν)
j ŵ1

)2
σ2
yj , (2.88)

where kj denotes the kth component of (2.76).
With the uncertainty transfered to the targets, we treat y as certain and achieve the same

initial situation as stated for the original task (2.58). Thus, we approximate (2.85) by solving

ŵ = argmax
w

P (t | y,w) (2.89)

by the procedure presented in the previous sections using the extended uncertainty (2.88).

2.5.3.3 Regularization

In case of separable training data, i.e. in case a decision boundary can be determined without
any misclassified training sample, the optimal model is represented by a sigmoid function of
infinite steepness. This would cause numerical instabilities in the estimation process. Thus,
the slope parameter w1 is regularized using the prior assumption that the slope parameter is
of small value w1 ∼ N

(
0, 1

λ

)
. The variance is governed by a regularization parameter λ which

embodies a weightening parameter of small value, say λ = 10−6. The prior is introduced to
the estimation procedure by appending the negative logarithm of the respective Gaussian
function G

(
w1 | 0, 1

λ

)
to the cost function (2.66). With the first and second derivative



44 CHAPTER 2. TECHNICAL BACKGROUND

∂
(
− lnG

(
w1 | 0, 1

λ

))

∂w1
= λw1 and

∂2
(
− lnG

(
w1 | 0, 1

λ

))

∂w2
1

= λ, (2.90)

the linearized regularization term extends the parameter update in Equation (2.77) to

ŵ(ν+1) = ŵ(ν) +

(
N(ν) + Diag

([
0
λ

]))−1
(
h(ν) −

[
0

λŵ
(ν)
1

])
. (2.91)

Analogous to (2.80), we can re-interpret the newton update for the regularized model as
reweighted least squares update step. The respective Gauss-Markov model is given by

[
t
0

]
+

[
vt
vw

]
=

[
g(w,y)

w1

]
,

[
vt
vw

]
∼ N

(
0,

[
Σ

(ν)
tt 0

0T 1
λ

])
, (2.92)

with the covariance matrix of the targets defined by (2.86).

2.5.4 Treatment of Non-Deterministic Targets

In this thesis, we face the situation that the information provided by the targets of the training
set is given by the probabilities of the class memberships P (tj = 0 | yj) and P (tj = 1 | yj)
instead of a definite membership statement.

With the short hand notations Pj0 := P (tj = 0 | yj) and Pj1 := P (tj = 1 | yj), the cost
function for the respective minimization task reads as

C(w) =
J∑

j=1

−Pj0 lnP (0 | yj ,w)− Pj1 lnP (1 | yj ,w) (2.93)

=

J∑

j=1

(Pj1 − 1) lnP (0 | yj ,w)− Pj1 lnP (1 | yj ,w). (2.94)

Considering the similarity of (2.94) to the original cost function (2.63), we can determine
the model parameters by the procedure described in Section 2.5.3 by simply substituting Pj1
for tj . Therefore, the parameters are estimated in an iterative re-weighted least squares
procedure based on the functional model




...
Pj1

...

0




+

[
vt
vw

]
=




...
g(w, yj)

...

w1



, (2.95)

which follows from the adaption of (2.92). The stochastic model

[
vt
vw

]
∼ N

(
0,

[
Σ

(ν)
tt 0

0T 1
λ

])
(2.96)

is governed by the covariance matrix of the targets (2.86) and the regularization parameter λ.
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2.6 The Expectation Maximization Algorithm for Maximum
a Posteriori Estimation

In parameter estimation tasks, the statistical model which defines the relationship between
unknown parameters and observations may depend on additional latent (unobserved) vari-
ables that are vital for the estimation process. The Expectation Maximization (EM) algo-
rithm [see Dempster et al., 1977] is a general technique to deal with this problem by alternately
searching for the latent variables and unknown parameters.

This section describes the usage of the EM algorithm for maximum a posteriori estimation
tasks. The formalisms are mainly base on [Bishop, 2006, Chapter 9.3].

In the proposed approach we encounter the problem that the detection task, i.e. the decision
which areas of the considered world region belong to the street and which do not, and the
estimation of the street surface and boundary parameters mutually depend on each other’s
results. Thus, we use the EM-algorithm to tackle both tasks simultaneously.

2.6.1 General EM Algorithm

Assume a joint distribution ℘(z, l|θ) over a set of observations z and discrete latent vari-
ables l that is controlled by unknown parameters θ to be given. Let the latent vari-
ables l = [. . . , li, . . . ]

T ∈ L be discrete values li ∈ {c1, . . . , cK}, with i = 1, . . . , I. Assume
the only knowledge on l to be given by the posterior probability P (l|z,θ). Further, a prior
distribution ℘(θ) for the unknown parameters is known.

We address the task of finding the MAP estimate

θ̂ = argmax
θ

℘(θ | z). (2.97)

We can reformulate this problem in terms of the known distributions ℘(z, l|θ) and ℘(θ).
Therefore, we exploit the proportionality ℘(θ | z) ∼ ℘ (z | θ)℘(θ) defined by the Bayes’
theorem as well as the law of total probability ℘ (z | θ) =

∑
l∈L ℘ (z, l | θ) to achieve the

reformulated task

θ̂ = argmax
θ

[∑

l∈L
℘ (z, l | θ)℘(θ)

]
. (2.98)

The evaluation of the likelihood term requires information about both the observations and
latent variables, i.e. about the set {z, l}. This set is called complete dataset in order to
distinguish from the incomplete dataset formed by the observations z solely. Thus, we also
use the term complete-data likelihood to refer to ℘(z, l|θ).

According to the problem specific definition of the likelihood term, this optimization
problem may be quite challenging or even infeasible. In particular, if the joint distribu-
tion ℘ (z, l | θ) belongs to the exponential family (e.g. a Gaussian distribution as in the least
squares problems presented in Section 2.3.2) the technique of searching for the maximum
argument of the logarithm as alternative to (2.98), i.e.

θ̂ = argmax
θ

[
ln
∑

l∈L
℘ (z, l | θ) + ln℘(θ)

]
, (2.99)

will not yield the anticipated simplification of the task since the sum appears inside the
logarithm.
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The EM algorithm addresses this problem by iteratively estimating the unknown parame-

ters θ̂
(ν+1)

from the expected value ξ
(
θ, θ̂

(ν)
)

of the complete-data log likelihood ln℘(z, l | θ)

under the posterior distribution of the latent variables P (l|z, θ̂(ν)
), as described in Algo-

rithm 1.

Choose an initial setting for the parameters θ(0);
repeat

Estimation step

Evaluate P
(
l|z, θ̂(ν)

)
for all possible assignment of l;

Maximization step
Estimate

θ̂
(ν+1)

= argmax
θ

[
ξ
(
θ, θ̂

(ν)
)

+ ln℘(θ)
]
, (2.100)

with the expectation of the complete-data log likelihood

ξ
(
θ, θ̂

(ν)
)

=
∑

l∈L
P
(
l|z, θ̂(ν)

)
ln℘ (l, z|θ) ; (2.101)

until convergence criterion is fulfilled ;

Algorithm 1: EM algorithm for MAP estimation

In case the algorithm is used for a minimization problem, e.g. when searching for the min-
imum argument of the negative log likelihood, the maximization step simply turns into a
minimization step, i.e. (2.100) changes to

θ̂
(ν+1)

= argmin
θ

[
−ξ
(
θ, θ̂

(ν)
)
− ln℘(θ)

]
. (2.102)

Note that the EM algorithm is a local optimization procedure and, thus, in general is not
guaranteed to find the global optimal solution.

2.6.2 EM Algorithm with Simplified Assumptions

If we assume the probabilities in (2.101) to factorizes into products

P
(
l | z, θ̂(ν)

)
=

I∏

i=1

P
(
li | z, θ̂

(ν)
)

(2.103)

and

℘ (l, z | θ) =
I∏

i=1

℘ (li, zi | θ) , (2.104)

the maximization step simplifies to

θ̂
(ν+1)

= argmax
θ

[
I∑

i=1

K∑

k=1

P
(
li = ck | z, θ̂

(ν)
)

ln (℘(li = ck, zi | θ) + ln℘(θ)

]
. (2.105)

A proof is given in Section D.1.
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2.7 B-Splines

B-splines have shown to be a suitable tool to model complex curves and surfaces of locally
varying shape and are widely used in the field of computer graphics. The basic idea is to divide
the entity, e.g. a curve or a surface, into segments which are locally modeled by a polynomial
representation of low degree, say quadratic or cubic. This bears advantages in terms of
complexity compared to a single polynomial segment as well as in terms of locality compared
to several alternative spline representations, e.g. Bézier curves and surfaces [Piegl and Tiller,
1997, Chapter 1]. We will find the latter aspect particularly helpful when estimating the spline
parameters for the street boundary curve and the street surface (see Section 3.5.2) since the
locality property yields a sparse relation between observations and unknown parameters.

In the following, we give a short introduction of B-splines and in particular B-spline curves
and surfaces. We focus on the chosen parametrization and properties that are exploited in this
thesis. For the sake of completeness, after describing curves and surfaces in Section 2.7.1 and
2.7.2, we give a formal definition of the B-spline basis functions in Section 2.7.3 and describe
how we deal with parameter values beyond the defined parameter range in Section 2.7.4. The
theory presented in this section is largely based on [Piegl and Tiller, 1997, Chapter 3].

Within this thesis, we utilize uniform B-spline functions to model the elevation charac-
teristics of the street and the horizontal delimiter of the free-space. The street surface
is represented by a B-spline surface defined over a bidirectional grid of control points lo-
cated in the horizontal space. A planar B-spline curve is used to represent the horizontal
boundary of the street.

2.7.1 B-Spline Curves

A planar B-spline curve is a parametric curve x(τ) = [x(τ), y(τ)]T governed by the curve
parameter τ ∈ [τmin, τmax] which specifies the position along the curve. Each point
on the curve is computed by a weighted linear combination of a set of control points
xm = [xm, ym]T, with m = 1 . . .M, such that

x(τ) =

M∑

m=1

Bm,q (τ)xm. (2.106)

The respective weights Bm,q (τ) for each control point are sampled from polynomial basis
functions of degree q. A mathematical definition of this B-spline basis functions and their
derivatives is given in Section 2.7.3. This basis functions differ from zero only in a finite
interval. This yields the locality property, i.e. the spline curve is subdivided in M − q so
called spline sections. These sections are each controlled by a subset of q + 1 control points
{xj , . . . ,xj+q}, where j denotes the respective section number. Thus, (2.106) expands to
a polynomial of degree q over the parameter τ whose coefficients are fully described by the
respective control point subset. We refer to the respective subset as the spline section’s active
control points. This property is illustrated in Figure 2.5.

Another property that we exploit states that each curve section lies inside the convex hull
of its respective active control points.

2.7.1.1 Spline Parametrization

The borders of the intervals in which the basis functions differ from zero are defined by a set
of so called knots τ = [τ1 . . . τM+q+1]T. In case the knots are equally distributed on τ , the
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(b) Cubic B-spline basis functions (clamped)
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(c) B-spline curve using unclamped basis functions
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(d) B-spline curve using clamped basis functions

Figure 2.5: The first row illustrates M = 6 cubic B-spline basis functions covering the parameter
range τ ∈ [0, 3] over three spline sections. For Figure (a) a uniform knot distribution was chosen. Figure
(b) shows the clamped version, i.e. the first and last knot are repeated degree + 1 times. This gives the first
and the last basis function complete control at τmin and τmax, respectively. The second row illustrates B-spline
curves constructed from a set of control points xm using the respective basis function set depicted the first
row. In (d) we can see the property of the clamped version to force the curve to reach the first and last control
point at τmin and τmax, respectively.

basis functions are just shifted copies of each other and we speak of a uniform spline. In case
the first and last knots are repeated q + 1 times, the endpoints of the curve match the first
and last control point, as shown in Figure 2.5(d), and we speak of a clamped spline.

In this thesis, we use the uniform and unclamped definition. In order to describe the
position along the spline, we choose a parametrization which is τmin := 0 at the start of the
first spline section and τmax := M − q at the end of the last spline section. This means that
each section has a parameter range of 1.

2.7.1.2 Curvature of a B-Spline Curve

In this work, we make use of prior assumptions about the curvature of the B-spline curve
for regularization issues. Following [Bronstein et al., 2001, p. 239], the local curvature of a
planar parameterized curve at a certain parameter position τ0 is defined as

κ(τ0) =

∣∣∣∣
x′(τ0) x′′(τ0)
y′(τ0) y′′(τ0)

∣∣∣∣
|x′(τ0)|3

=
x′(τ0)y′′(τ0)− x′′(τ0)y′(τ0)

(x′(τ0)2 + y′(τ0)2)3/2
. (2.107)

This corresponds to the inverse of the radius of the osculating circle, i.e. the circle that
touches the curve at the considered point x(τ0) with the same tangent and curvature.
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In terms of the control point coordinates, the kth derivative of a B-spline curve with
respect to the spline parameter τ is defined as

x(k)(τ0) = [x(k)(τ0), y(k)(τ0)]T =
M∑

m=1

B(k)
m,q (τ0)xm, (2.108)

where B(k)
m,q (τ0) denotes the kth derivative of the mth basis function as defined in (2.123).

Inserting (2.108) into (2.107), we achieve the local curvature as function of the control point
coordinates

κτ0([x1, . . . ,xM ]T) =
(∑M

m=1 B ′m,q (τ0)xm

)(∑M
m=1 B ′′m,q (τ0) ym

)
−
(∑M

m=1 B ′′m,q (τ0)xm

)(∑M
m=1 B ′m,q (τ0) ym

)

((∑M
m=1 B ′m,q (τ0)xm

)2
+
(∑M

m=1 B ′m,q (τ0) ym

)2
)3/2

.

(2.109)

In Section 3.5.2.2, this curvature measure is utilized as regularization term in a non-linear
optimization procedure. For linearization issues, we require the first derivatives with respect
to the control point coordinates given by

∂κτ0
∂xm

=
y′′(τ0)B ′m,q (τ0)− y′(τ0)B ′′m,q (τ0)

|x′(τ0)|3
−

2x′(τ0)B ′m,q (τ0)

∣∣∣∣
x′(τ0) x′′(τ0)
y′(τ0) y′′(τ0)

∣∣∣∣
|x′(τ0)|5

(2.110)

and

∂κτ0
∂ym

=
x′(τ0)B ′′m,q (τ0)− x′′(τ0)B ′m,q (τ0)

|x′(τ0)|3
−

2y′(τ0)B ′m,q (τ0)

∣∣∣∣
x′(τ0) x′′(τ0)
y′(τ0) y′′(τ0)

∣∣∣∣
|x′(τ0)|5

. (2.111)

2.7.2 B-Spline Surfaces

Similar to curves, B-splines are used to define piecewise polynomial 2.5d surfaces, i.e. surfaces
defined as a height function h(x, y) over the coordinate axes x and y. The height function
is embodied by the weighted linear combination of a bidirectional grid of N = I × J control
point heights hi,j and reads as

h(x, y) =
I∑

i=1

J∑

j=1

Bi,q (τ(x)) Bj,q (µ(y))hi,j . (2.112)

The 2d B-spline basis functions are given by the product of two 1d basis functions governed
by the parameters τ(x) ∈ [0, I − q] and µ(y) ∈ [0, J − q], respectively. An illustration is
provided by Figure 2.6(a).

In the remainder of this thesis, we restrict to the case that the knot points are arranged in
a bidirectional grid with constant spacing dx = ∂τ

∂x and dy = ∂µ
∂y , respectively, which is located

at [xmin, ymin]T as illustrated in Figure 2.6. Thus, the relation between world coordinates and
parameters is given by the linear transformation

[
τ(x)
µ(y)

]
=




(x− xmin)

dx
(y − ymin)

dy


 . (2.113)
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(a) 2d quadratic B-spline basis function B10,2 (τ, µ) (b) Quadratic B-spline surface

Figure 2.6: Figure (a) shows an example of a 2d B-spline basis function constructed from two 1d basis
functions B10,2 (τ, µ) = B3,2 (τ) B2,2 (µ). Additionally, the set of one dimensional basis functions for both axes
is plotted. The green circles mark the knot positions. The dotted lines in the τ, µ plane show that six spline
sections are created in the interval [0, 3] × [0, 2]. Figure (b) shows an example for a B-spline surface in this
interval constructed from the basis functions depicted in (a). The section borders on the surface are marked by
green lines. Note that in this example the spline parametrization equals the axes parametrization, i.e. τ = x
and µ = y.

Analog to B-spline curves, the surface is subdivided in two dimensional splines sections which
are fully described by a subset of the control point heights (3 × 3 in case of quadratic basis
functions). An example for this subdivision is given in Figure 2.6(b).

For ease of readability we introduce the shorter notation

h(x, y) =
N∑

n=1

Bn,q (x, y)hn, (2.114)

with Bn,q (x, y) := Bi,q (τ(x)) Bj,q (µ(y)) and the new indices n = (i− 1)J + j .

2.7.2.1 Derivatives of a B-Spline Surface

Let us now consider the kth derivatives of the surface with respect to the grid coordinates,
where the order k = a+ b composes of the order of the partial derivative in x direction a and
the order of the partial derivative in y direction b. The derivatives evaluated at the position
[x0, y0]T read as

∂k

∂xa∂yb
h(x0, y0) =

1

daxd
b
y

I∑

i

J∑

j

B(a)
i,q (τ(x0)) B(b)

j,q (µ(y0))hi,j (2.115)

and in the shorter notation

∂k

∂xa∂yb
h(x0, y0) =

N∑

n=1

B(a,b)
n,q (x0, y0)hn, (2.116)

with

B(a,b)
n,q (x0, y0) =

B(a)
i,q (τ(x0)) B(b)

j,q (µ(y0))

daxd
b
y

. (2.117)



2.7. B-SPLINES 51

2.7.2.2 Curvature of a B-Spline Surface

Analog to the curves, we introduce prior knowledge on smoothness when estimating the street
spline surfaces in Section 3.5.2.1.

As measure of the local curvature in the xy space at the position [x0, y0]T, we use the
quadratic variation given by the trace of the squared Hessian

tr
(
H2
h(x0, y0)

)
=

(
∂2

∂x2
h(x0, y0)

)2

+ 2

(
∂2

∂x∂y
h(x0, y0)

)2

+

(
∂2

∂y2
h(x0, y0)

)2

. (2.118)

The trace of the squared Hessian yields an approximation for the mean squared curvature

κ2
x0,y0 ≈

1

2
tr
(
H2
h(x0, y0)

)
(2.119)

since we assume the slope of the street surface to be small, i.e. we assume the first derivatives
of h with respect to x and y to vanish. We refer to Grimson [1981] for further details.

Inserting Equation (2.116), we obtain a formulation of the local curvature measure as
function of the control point heights

κ2
x0,y0([h1, . . . , hN ]T) ≈

1

2

(
N∑

n=1

B(2,0)
n,q (x0, y0)hn

)2

+

(
N∑

n=1

B(1,1)
n,q (x0, y0)hn

)2

+
1

2

(
N∑

n=1

B(0,2)
n,q (x0, y0)hn

)2

.

(2.120)

2.7.3 B-Spline Basis Functions

We use the recursive definition of the B-spline basis functions given by the Cox-de Boor
recursion formula [De Boor, 1972]. The mth B-spline basis function of degree q governed by
the knot vector τ = [τ1, . . . , τM+q+1]T is defined as

Bm,q (τ) =
τ − τm

τm+q − τm
Bm,q−1 (τ) +

τm+q+1 − τ
τm+q+1 − τm+1

Bm+1,q−1 (τ) (2.121)

Bm,0 (τ) =

{
1 if τm ≤ τm+1

0 otherwise.
(2.122)

The kth derivative of the B-spline basis function is given by the closed form

B(k)
m,q (τ) = q

(
B(k−1)
m,q−1 (τ)

τm+q − τm
−

B(k−1)
m+1,q−1 (τ)

τm+q+1 − τm+1

)
. (2.123)

2.7.4 Handling of Points beyond Outer Section Borders

When discussing the temporal filtering of the street surface model in Section 3.4.1.1, we will
encounter the problem of dealing with point coordinates aligned with parameter values beyond
the outer section borders (beyond the outer green borders in Figure 2.6(b)), i.e. [τ, µ]T /∈
{[0, I − q]× [0, J − q]}. We treat those points as if their parameter is included in the closest
outer section when evaluating the case differentiation (2.122). In simple terms, the local
surface of the respective most outer section is expanded in the undefined area.
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Chapter 3

Concept of an Approach for
Identification and Reconstruction of
Street Surfaces and Boundaries

In this chapter, we present the concept of an approach for the detection and reconstruction of
street surfaces and boundaries from depth image sequences captured from a moving platform.
The approach is designed to match the requirements and conditions formulated in the problem
statement given in Section 1.3.

The subsequent section provides an overview which sketches the objective and the total
workflow of the approach. The remainder of this chapter gives a detailed description of the
computation steps, mathematical entities and model assumptions.

3.1 Overview

This section gives a brief description of the input data, objective and workflow of the approach
including its single processing and key ideas. Figure 3.1 provides a diagrammatic illustration
of the total workflow. We use the roman numerals introduced in the figure to refer to the
single processing steps.

Input Data: The proposed algorithm is performed for each acquisition time step of a
continuous data stream. The input data is given by depth maps containing 3d information
about the area in front of the vehicle. In our examples they are extracted from image pairs
of a stereo camera system via the Semi-Global Matching (SGM) approach introduced in
Section 2.2.4. The stereo matching procedure corresponds to processing step (I) in Figure 3.1.

Further, information about the 3d ego-motion of the test vehicle and, thus, of the cameras
is provided. Both data sources are required to be synchronized. Section 3.2 gives a detailed
summary of the data acquisition, related precomputation steps and coordinate systems.

Objective: The key objective of the proposed approach is to determine and model the
drivable free-space in front of the vehicle for every depth map acquisition time step. This
comprises the detection and reconstruction of the street surface and the horizontal street
boundary, i.e. the estimation of the parameters of a continuous representation of both en-
tities. The term street surface defines the vertical elevation of the street, while the term
street boundary defines the first geometric delimitation of the drivable street area, i.e. height
differences of at least 10 cm in positive or negative direction. Without providing any further

53
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Figure 3.1: Workflow illustrating the main processing steps (boxes with rounded corners) at each image
acquisition time step t. The rectangular shaped boxes present the involved entities such as the current input
data, transfer parameters and results as well as their respective precisions are represented by covariance
matrices. The total workflow is divided in three steps: (a) The extraction of the digital elevation map (DEM)
from the image data. The height values ht stored in the DEM form the observations for the estimation of
the model parameters θ and the evaluation of the posterior distribution of the latent variables l; (b) The
processing of temporal prior information for temporal filtering as well as approximate values for the model

parameters θ̂
(0)

t employed to initialize the EM-Algorithm. The prior information is computed based on the
estimation result of the previous time step θ̂t−1 and information of the vehicle’s egomotion. It consists of
predicted sample points on the street surface h−t and boundary x−t ; (c) The estimation of the current model

parameters θ̂t via the EM-algorithm. The symbol ν represents the iteration counter of the EM-algorithm;
The remainder of this chapter gives a detailed description of the single steps and meanings of the symbols.
We will use the roman numerals assigned to the rounded boxes to refer to the respective processing steps.

details on the specific definition at this juncture, let us denote the unknown model parameters
by the parameter vector θ which is composed of the parameters of the street surface Sθ and
boundary Bθ.

The approach shall not be limited to a special type of delimiting obstacles, e.g. curbs or
vehicles, but be generic enough to model the geometric delimitation of the free-space caused
by arbitrary obstacles in short-range. The experiments in Section 4 show the actual detection
range to be limited to distances between 10 and 20 m to the sensor. The detection range
is governed by the ratio of the accuracy of the sensor data and the height of the free-space
delimiting obstacle.

Note that we do not aim to reconstruct the surface structures in regions beyond the street
boundary.

Furthermore, in the context of driver assistance systems the approach should be real-time
capable to allow for online processing. Figure 3.2 illustrates an example for a reconstruction
result in order to provide a visual explanation of the meaning of drivable and non-drivable
regions, street surface and street boundary.

Workflow and Key Idea: This paragraph gives a brief description of the algorithm’s
total workflow and sketches the key idea. It further provides an explicit definition of the
overall optimization task and introduces simplifying assumptions. For this purpose, the
major components of the estimation model are roughly introduced. A detailed description is
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(a) Manually annotated free-space

(b) 2d view of example result

(c) 3d view of example result

Figure 3.2: Example for a reconstruction result. The left input image is shown in (a). The true drivable
free-space is manually annotated by a green carpet. In (c), a 3d model of the reconstruction result is il-
lustrated. The plotted surface represents the reconstructed street surface (extended into non-street regions).
The colors encode the estimated most probable assignment, i.e. green colored dots mark drivable regions (alias
street regions), while blue colored dots mark non drivable regions (alias non-street regions). The orange line
represents the reconstructed horizontal street boundary. Figure (b) depicts the backprojection of the result
to the left input image.

provided later on in Section 3.3.

Preprocessing: Two preprocessing steps are performed for each acquisition time step t.
First, an elevation model is computed from the incoming depth measurements (processing
step (II)). It is represented by a Digital Elevation Map (DEM) D providing discrete height
measurements ht = [. . . , hij,t, . . . ]

T together with their precision Σhtht . The height measure-
ments are aligned to the cell centers x = [. . . ,xij , . . . ]

T of a horizontal grid, with (ij) ∈ D.
The grid is located in front of the vehicle with the horizontal cell coordinates fixed to the
camera system. Thus, observed from the camera, the horizontal position of the height mea-
surements do not change over time. However, they possess an uncertainty caused by the grid
discretization that we model by Σxx.

In addition to the height measurements, the estimated model parameters of the previous
time step θ̂t−1 together with their precision Σ

θ̂t−1θ̂t−1
are known. This model is predicted

to the current time step in the second preprocessing step (processing step (III)) in order to
yield both temporal prior knowledge and approximate values for the estimation of the current
model parameters.

Optimization Task: This rough introduction of the model and its involved entities
allows us to formulate the objective stated in the previous paragraph as optimization task.
We define the desired model parameters to be embodied by the most probable parameter
assignment given the introduced information

θ̂t = argmax
θ

[
℘
(
θ | ht, θ̂t−1,x,Σhtht ,Σxx,Σθ̂t−1θ̂t−1

)]
. (3.1)

In order to keep the notation uncluttered, we omit the explicit representation of the de-
pendency on the covariance matrices and the constant grid poses x in the following. Using
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this simplified notation, we reformulate (3.1) as a minimization task employing the negative
logarithm

θ̂t = argmin
θ

[
− ln℘

(
θ | ht, θ̂t−1

)]
(3.2)

= argmin
θ

[
− ln℘ (ht | θ)− ln℘

(
θ | θ̂t−1

)]
. (3.3)

The second transformation step follows from the proportionality ℘(a | b) ∼ ℘(b | a)℘(a)
yielded by Bayes’ theorem. It provides a representation of the task in terms of a like-
lihood and a prior for the unknown model parameters. Note that we assume the like-
lihood term to be independent of the parameters estimated in the previous time step,
i.e. ℘(ht | θ, θ̂t−1) = ℘(ht | θ).

The prior term encodes model knowledge of temporal and spatial smoothness. By ‘tem-
poral smoothness’ we mean that the new model should be consistent with the samples taken
from the previous model in processing step (III).

The likelihood encodes the relation of model parameters and observed height values. The
idea is to estimate the street surface from the height observations of all cells located in the
drivable street area. The street boundary shall be estimated as border which separates the
cells located in the drivable area from those located in the non-drivable area, as depicted in
Figure 3.2. For this purpose, we need additional information about the affiliation of each cell
with respect to the drivable area in order to evaluate the likelihood in (3.3). Assume this
information is encoded in the discrete latent variables l = [. . . , lij , . . . ]

T and the postulated
relations between the model parameters and the complete dataset {ht, l} are encoded in the
complete-data likelihood ℘ (ht, l | θ). We obtain the final formulation of the task exploiting
that ℘ (ht | θ) follows from marginalization of the complete-data likelihood over l

θ̂t = argmin
θ


− ln

∑

l∈L

℘ (ht, l | θ)− ln℘
(
θ | θ̂t−1

)

 , (3.4)

where L denotes the set of all possible assignments for l. The specific definitions of the
likelihood and prior terms are described in the later sections. In advance, Figure 3.3(a)
provides a graphical representation of the conditional independence properties which are
assumed for the entities involved in the optimization task.

Optimization Procedure: The exact optimization of (3.4) is infeasible considering
the background of a real-time application. This is because the logarithm acts on the sum
rather than directly on the likelihood terms. Since we employ normal distributions to model
the densities ℘ (ht, l | θ) the solution for (3.4) results in a quite complex expression. In order
to overcome this challenges, we approximate the solution using the iterative procedure of the
Expectation Maximization algorithm (EM-algorithm) presented in Section 2.6. This means
that the log likelihood ln℘(ht | θ) is approximated by its expected value under the posterior

distribution of the latent variables P
(
l | ht, θ̂t

)

ln℘(ht | θ) ≈
∑

l∈L

P
(
l | ht, θ̂t

)
ln℘ (ht, l | θ) (3.5)

rather than computed by exact marginalization over l as in (3.4). Since the desired param-
eters θ̂t are needed for the evaluation of the posteriors, the estimation is performed in an
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(a) Observation state for original problem

Bθ̂t−1

Sθ̂t−1

Bθ̂
(ν)

t

Sθ̂
(ν)

t

lij

hij,t
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Figure 3.3: Graphical representation of the conditional independence properties of the entities involved in
the parameter estimation process at acquisition time step t in the manner of a Conditional Random Field. For
simplification, only a 2 × 2 subset of the DEM’s grid cells is depicted. Dark shaded nodes are considered as
observed, i.e. the value of the corresponding variable is known and fixed. Bright shaded nodes are considered
as unobserved. The different colors of the edges are used to improve visibility and have no further meaning.
Figure (a) depicts the initial situation with labels and model parameters unobserved. The remaining figures
illustrate the observation state for the single steps of the EM-algorithm. In the E-step (Figure (b)), the

model parameters are treated as observed using the values Sθ̂
(ν)

t and Bθ̂
(ν)

t estimated in the M-step of the
previous iteration. Considering the global Markov property (Section 2.4.1.1), the graph structure implies
that the conditional distribution of each variable lij conditioned on all other variables only depends on the
model parameters, its corresponding height observation as well as the latent variables and height observations
of its direct grid neighbors. In the M-step (Figure (c)), the latent variables are treated as observed using
subsequently each possible assignment lij ∈ L. The new parameter estimate is achieved by the expected value
resulting from all assignments, as defined in (3.6). The graph structure demonstrates that the parameter
sets Sθ and Bθ are independent given the hij,t and lij and, thus, can be estimated separately in the M-step.
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iterative manner

θ̂
(ν+1)

t = argmin
θ


−

∑

l∈L

P
(
l | ht, θ̂

(ν)

t

)
ln℘ (ht, l | θ)− ln℘

(
θ | θ̂t−1

)

 . (3.6)

The symbol ν represents the iteration counter.

Starting with an initial parameter guess θ̂
(0)

t achieved from the processing step (III), three
iterative steps are alternately accomplished.

In the Estimation step (processing step (IV)), briefly denoted as E-step, the posterior

probabilities P
(
l | ht, θ̂

(ν)

t

)
for all possible assignments of the latent variables l ∈ L are

evaluated. For this purpose, the parameters estimated in the previous iteration θ̂
(ν)

t are kept
fixed. In order to efficiently evaluate the posterior probabilities in an approximative manner,
we employ the inference tools for CRFs mentioned in Section 2.4.

The second step (processing step (V)) of the iterative procedure is embodied by the
Minimization step, briefly denoted as M-step. It embodies the estimation of the parameters
via (3.6) based on the posterior probabilities evaluated in the E-step. As opposed to the
literature, we refer to this step as ‘Minimization step’ rather than as ‘Maximization step’
since we address a minimization task. We will find that the total estimation task decomposes
into two independent tasks for estimating the parameters of the street surface Sθ and street
boundary Bθ, respectively. This becomes explicit referring to Figure 3.3(c). The figure
provides an overview of which entities are treated as unknown and which as observed during
the M-step. The parameter sets Sθ and Bθ are conditional independent given the latent
variables l and heights h are observed since there exist no connecting path through unobserved
variables. Thus, we solve (3.6) by estimating both parameter sets independently based on
the ideas roughly sketched in the following. The street surface parameters are estimated in
a least squares sense using the MAP estimation procedure presented in Section 2.3.2.2. The
idea regarding the street boundary is as follows. We estimate a classification model that
provides probabilities for the affiliation to the drivable area or non-drivable area for arbitrary
horizontal positions in front of the vehicle. This model is based on the logistic regression
model presented in Section 2.5 and is estimated from the posterior probabilities obtained in
the E-step. The street boundary is then given by the decision boundary of the classification
model which represents the separation of drivable from non-drivable areas.

As a final step for each iteration, a self diagnostic check (processing step (VI)) on the
estimated environment model is performed after the M-step. Its purpose is to check for
convergence of the iterative procedure and to detect local or global violations of the model
assumptions in order to evaluate the validity of the result.

Organization of the Chapter: The single components and processing steps of the overall
approach are introduced in the following sections.

First, Section 3.2 describes the procedure for the acquisition and preprocessing of the
depth map data obtained from processing step (I). This includes the definition of the involved
coordinate systems and the computation of the elevation model (processing step (II)). Further,
the section depicts the acquisition of ego-motion information.

Section 3.3 provides the definition of the geometric and probabilistic properties of the
environment model which forms the basis for the estimation process. This includes a formal
definition of the model parameters and their relation to the observations and latent vari-
ables. Further, the section describes the structure of the prior distribution ℘(θ | θ̂t−1) which
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composes of prior assumptions about the spatial and temporal behavior of the model. The
specific definition of the spatial prior is given at this point.

The specific definition of the temporal prior is addressed in Section 3.4 within the scope
of the prediction step (processing step (III)). This section further comprises the prediction of
the current model for the initialization of the EM-algorithm based on the results estimated
in the previous acquisition time step.

Finally, Section 3.5 describes the estimation of the model parameters governed by the
EM-algorithm and provides the specific definition of the likelihood ℘ (ht, l | θ) and the pos-
terior P (l | ht,θ). The section is subdivided in the description of the Estimation step (pro-
cessing step (IV)), the Minimization step (processing step (V)) and the evaluation of the
estimated result (processing step (VI)).

3.2 Data Acquisition and Preprocessing

This section gives a detailed description of the representations and algorithms used to extract
the relevant input data for a single acquisition time step. The approach presented in this
thesis is mainly based on the interpretation of an elevation model of the respective observed
world region. The elevation model is extracted from synchronously captured depth maps,
i.e. all measurements in the map are acquired simultaneously. The depth maps are obtained
from a stereo camera system using the SGM algorithm for depth computation. Other sensors
providing synchronously captured depth maps, such as time-of-flight cameras, would also be
suitable. Figure 3.8 shows an example scenario including the triangulated point cloud. For
comparison, the respective extracted elevation model is depicted in Figure 3.8(c).

(a) Left rectified input image (b) Triangulated point cloud

Figure 3.4: Left image of a stereo pair (a) and the corresponding point cloud triangulated from SGM depth
measurements (b) plotted in image gray values. The task is to detect and model the street surface as well as
the horizontal boundary of the street.

The section is organized as follows. After a brief description of the sensor setup in
Section 3.2.1, we present the extraction of the elevation model from the captured depth
map in Section 3.2.2. This corresponds to processing step (II) in the total workflow (see
Figure 3.1) and includes the definition of the underlying assumptions and requirements,
involved coordinate systems and structures, as well as the estimation of the elevation and
elevation uncertainties. Section 3.2.3 finally describes the acquisition of information about
the ego-vehicle’s three dimensional motion between successive time steps, which is required
for temporal filtering issues.
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3.2.1 Sensor Setup

The vehicle’s environment is captured by a stereo camera system mounted behind the wind-
shield. The cameras are assumed to be calibrated and rectified to the normal case, as de-
scribed in Section 2.2. The intrinsic parameters as well as the position and orientation of the
camera relative to the vehicle is assumed to be known and accurate. Thus, 3d coordinates
can be computed from the depth map using (2.20) to (2.22).

The viewing direction of the camera approximately matches the driving direction of the
vehicle. Further, it is approximately leveled to the local ground surface, i.e. the deviation of
the upward direction of the rectified camera system cy to the normal of the plane through
the vehicles axles is assumed to be small.

Figure 3.5(a) illustrates the mounting of the stereo camera system.

(a) Stereo camera rig

eh

ey

cy

cz

hg

(b) Camera and elevation map systems

Figure 3.5: Utilized stereo camera system (a) mounted behind the windshield of the car. Figure (b) illustrates
the relative orientation between the camera system c and the elevation map system e. The x-axes of both
systems point into the image. The distance hg denotes the height of the camera above the ground level.

3.2.2 Probabilistic Elevation Map Computation

The representation used to capture the elevation should meet the following requirements:

(a) It needs to be efficient in both computation and access on neighborhood relations.

(b) It shall be dense which means that elevation information is provided homogeneously in
the observed region of interest.

(c) It shall be robust in dealing with outliers and measurement uncertainties.

(d) It needs to be accurate enough to model even small obstacles, such as curbs of at
least 10 cm in height.

To meet these requirements, we compute a digital elevation map (DEM) D from the depth
information achieved from SGM stereo computation, i.e. a discrete 2.5d model storing unique
height values for the cells of a regular grid which is parallel to the horizontal plane of the
camera system. Grid based data structures are widely used for environment modeling and
obstacle detection tasks since they are efficient in handling and allow for a direct access to
neighborhood relations. The local height values are estimated by means of a probabilistic
model which evaluates occlusion and free-space information yielded by the depth measure-
ments. This brings two major advantages. First, assuming the elevation of occluded areas
to match the elevation of the occluding object, the extracted elevation information becomes
more dense. Second, free-space information allows to outvote the erroneous elevation state-
ment induced by measurement outliers.
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In the following section, we give a detailed description of the utilized DEM structure
and introduce the corresponding notation relevant for the succeeding sections. Note that the
design of the DEM’s grid structure is customized for the usage of a stereo camera system and
may be altered to be more suitable when employing alternative sensors.

Section 3.2.2.2 describes the probabilistic approach employed for the estimation of the
local cell elevations.

Finally, we discuss the stochastic properties of the DEM in Section 3.2.2.3.

3.2.2.1 Coordinate System and Grid Structure of the Digital Elevation Map

The local coordinate system Se (the index e stands for elevation map) containing the elevation
map is defined to be parallel to the horizontal plane of the coordinate system of the left
camera, as illustrated in Figure 3.5(b). In simple terms, the local y-axis is defined by the
cameras viewing direction, whereas the x-axis points right. The right handed system is
completed by the h-axis representing the elevation coordinate (alias height coordinate). The
origin is located on ground level, straight under the projection center of the left camera.
Thus, the position of the camera in the elevation map system is fully described by its height
above the ground hg. Note that we omit the superscript e at the axes for a shorter notation
and, thus, all axis specifications refer to this system if not otherwise stated.

The DEM’s grid structure is aligned to the xy-plane. The cell indices (ij) ∈ D count from
near to far j = 1 . . . J in longitudinal direction and from left to right i = 1 . . . I in lateral
direction. We use the term longitudinal column (or y-column) to address all cells with the
same value in i and analogously lateral column (or x-column) for all cells with the same value
in j.

The coordinates of the cell centers are denoted by xij = [xij , yij ]
T and collected in the

vector x = [. . . ,xT
ij , . . . ]

T. The corresponding estimated height values are given by the

vector h = [. . . , hij , . . . ]
T. The aggregate of all three coordinates for a single point is denoted

by the 3-vector Xij = [xij , yij , hij ]
T.

Instead of arranging the grid cells paraxial to the Cartesian axes, we design the grid
structure to be regular in the image columns with increasing cell sizes in y direction resulting
in the trapezoidal shape presented in Figure 3.6(a). This choice is motivated by three reasons:

• It allows for an efficient tracing of projection rays through the grid cells in order to
extract free-space and occlusion information.

• It provides a suitable coverage of the field of view (FOV) of the camera, i.e. it does not
hold any cells that lie outside the FOV.

• The density and precision of depth measurements decreases with increasing distance to
the camera favoring the usage of increasing cell sizes.

The property ‘regular in the image columns’ means that each cell center on the grid’s longi-
tudinal column i projects back to the same image column ui yielding the relation

xij
yij

=
ui
c
, (3.7)

where c denotes the principle distance of the camera. Further, the grid’s x-spacing dxj is
governed by a constant pixel spacing du

dxj :=
du
c
yij . (3.8)
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(a) Grid of the elevation map

(b) Voxel grid

(c) Single voxel column and zero plane

Figure 3.6: Grid structure of the DEM (a), voxel grid (b) and single voxel column (c). The left camera is
positioned at the origin. The y-axis corresponds to the camera’s viewing direction. Note, the resolution is
scaled down for illustration issues.

To make a compromise between measurement per cell and a homogeneous allocation of
the grid cells, we design the grid cells to grow equally in both dimensions with increasing
distance to the camera. Thus, the y-spacing dyj is defined to match the local x-spacing at
the cell center

dyj := dxj , (3.9)

to form nearly isotropic cells, as illustrated in Figure 3.6(a).

The limits of the grid’s extent in lateral longitudinal direction are denoted by [xmin, xmax]
and [ymin, ymax] respectively. The extent in image columns is denoted by [umin, umax].

We refer to Section A for a detailed description of the computation of the cell center
coordinates and the cell assignment of depth measurements.

3.2.2.2 Local Elevation Estimation

There exist various strategies to compute the local elevation values hij for the cells (ij) of
the DEM from depth measurements. The straightforward way is to extract the height value
from the triangulated heights of all measurements assigned to a cell due to their triangulated
horizontal position. A common height value for the cell could then be determined by the
mean of the assigned measurements or by the highest value as in [Nedevschi et al., 2007].

However, in addition to the triangulated point position, depth estimates yield informa-
tion about free-space and occlusion by tracing the optical ray’s path. Similar to the work
of Wellington et al. [2006], we use this information to determine the local elevations in a
probabilistic way. The approach is similar to the idea of space carving techniques and 3d
occupancy grids, see Section 1.2.2.1.

To model free-space and occlusion information, we extend the horizontal grid structure
to a voxel grid by assigning a vertical stack of V voxels (alias voxel column) to each cell of
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(a) Voxel grid projected in the image plane
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(b) Graphical model

Figure 3.7: Figure (a): Voxel grid projected in the image plane. The spacings in this example are chosen
by du = 20 pel and dv = 3 pel. Figure (b): Graphical model for the estimation of the most probable
assignment of the classes solid, surface, and free-space to the voxels v ∈ {1, . . . ,V } of a single voxel column.
For visualization issues, a simplified model with V = 5 is depicted. Further, the respective numbers of valid
observations nv as well as the numbers of hits nhv and pass-throughs npv are collected in a single node connected
to the respective class label ιv . Note that the lowest and highest nodes are observed since the lowest voxel v = 1
is permanently assigned to solid and the highest voxel v = V is permanently assigned to free-space.

the elevation grid, as illustrated in Figure 3.6(b). The vertical voxel spacing is defined to
be regular in the image rows governed by a constant spacing dv. Figure 3.7(a) depicts the
projection of the voxel grid to the image.

The idea for the elevation estimation for a specific cell is to determine the voxel of the
respective vertical column which most likely contains the local surface, i.e. the vertical separa-
tion between solid ground and free-space. The vertical coordinate of the corresponding voxel
center embodies the desired elevation value. The basic concept for this approach, which is
based on a probabilistic model, is presented in the following paragraph. The subsequent para-
graph describes the learning procedure for the related probabilistic entities, i.e. likelihoods
and transition probabilities.

Concept for the Probabilistic Estimation of the Local Elevation: The basic ap-
proach for the estimation of the local elevation of a DEM cell is as follows. We decide for
each voxel in the respective vertical column whether its volume contains free-space or is solid,
i.e. blocked or occluded by an obstacle. The local surface elevation is then obtained from the
voxel which most likely represents the vertical boundary between free-space and solid voxels,
i.e. the upper boundary of the local surface structure. We explicitly denote this boundary
by the class surface. This explicit representation by a separate class allows to model the
appearance of the surface voxels with respect to the observations and obviates the discussion
of whether the highest solid voxel or the lowest free-space voxel would be more suitable to
describe the surface.

The labeling decision for a certain voxel is governed by the depth measurements whose
optical ray paths coincide with the voxel volume, i.e. whose pixel coordinates are included
in the image projection of the voxel (see Figure 3.7(a)). There are three possible ways a
depth measurement may affect a voxel. It may exactly fall in this voxel causing a hit, may
hit a more distant voxel causing a pass-through, or hit a nearer voxel implying the current
voxel to be occluded. The respective numbers of hits, pass-throughs and occlusions for the
voxels v = 1, . . . ,V form the observations for the classification task and are denoted by nhv , npv ,
and nov . Note that the number of states and thus the amount of incorporated information
differs from the work of Wellington et al. [2006] where only binary states (hit or pass-through)
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are considered.
In summary, the state ιv of a voxel v is given by either solid, surface or free-space. For

each voxel column we search for the most probable path from the lowest voxel of the column,
permanently assigned to solid, to the highest voxel, permanently assigned to free-space. Forc-
ing the label surface to appear exactly once per voxel column, the desired elevation values hij
are given by the height coordinates of the voxels assigned to surface. This classification is
done for each voxel column independently employing the linear-chain CRF model presented
in (2.53). This means the joint probability conditioned on the observed numbers and the
fixed class assignments of the lowest and highest voxels decomposes into a product of unary
and binary terms

P
(
ι2, . . . , ιV−1 | ι1, ιV ,no,nh,np

)
∼

V−1∏

v=2

℘

(
nhv
nv
,
npv
nv

∣∣∣∣ ιv
) V∏

v=2

P (ιv | ιv−1) , (3.10)

whereas no, nh and np collect the respective numbers nov , nhv and npv for v = 2, . . . ,V − 1.
Let us have a closer look at the potential functions embodying the unary and binary

terms, which are both learned from reference data as described in the subsequent paragraph.
We define the unary term for a voxel v by the likelihood

℘

(
nhv
nv
,
npv
nv

∣∣∣∣ ιv
)
, ιv ∈ {solid, surface, free-space}, (3.11)

governed by the ratio of the number of hits nhv and the number of pass-throughs npv regarding
the total number of pixels nv = nhv + npv + nov that observe the voxel and have a valid depth
value attached. Note that due to the usage of nv the number of occlusions nov = nv −nhv −npv
is implicitly modeled in (3.11). DEM cells with less than 20% valid depth observations
regarding all assigned pixels of the whole voxel column (e.g. originating from data gaps in
the depth map) as well as DEM cells where the whole voxel column does not include any hits
(completely occluded structures) are marked as invalid and are not used for the estimation
of the street surface (see Section 3.5.2.1). The utilized class likelihoods are illustrated in
Figure 3.11.

The binary terms P (ιv | ιv−1) of (3.10) are represented by the class transition probabilities
given in Table 3.1. Note that the probability that a solid voxel and a free-space voxel are
neighbored as well as the probability that a surface voxel is neighbored to another surface
voxel equals zero. Thus, with the lowest and highest voxel permanently assigned to solid and
free-space, each assignment of ι2, . . . , ιV−1 yielding non-zero probability contains exactly one
appearance of class surface.

The most probable assignment ι̂2, . . . , ι̂V−1 and, thus, the position of the surface voxel is
determined via the max-sum algorithm, see [Bishop, 2006, Chapter 13.2].

An example for an estimated elevation map is illustrated in Figure 3.8(c). Further, Fig-
ure 3.9 shows a comparison to alternative, less complex strategies for elevation estimation.
The probabilistic approach 3.9(b) demonstrates the ability to cope with the depth measure-
ment errors scattering from the traffic sign due to the evaluation of pass-through information
which provides a distinct benefit compared to 3.9(c) and 3.9(d). Moreover, although the
effect of height discretization is observable in 3.9(b), the resolution appears to be sufficient to
model the elevation of the curb (approximately located at y = 10.4 m). Note, the elevation in
the region behind the traffic sign follows the optical ray over the top of the occluding object
since the voxels behind the sign are dominated by occluded votes. Of course, this prevents a
correct representation of the surface behind the traffic sign but, since we only search for the
closest obstacle, the approach does not suffer from this issue.
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(a) Left rectified input image

(b) Triangulated point cloud (c) Elevation map

Figure 3.8: Figure (c) illustrates the DEM which is computed from depth map information received via SGM
from the scenario depicted in (a). For comparison, the triangulated point cloud is depicted in (b) plotted in
image gray values.

(a) Considered image region (b) Elevation map from presented approach

(c) Elevation map from mean height in cell (d) Elevation map from highest point in cell

Figure 3.9: Elevation maps computed via different strategies for the small horizontal patch framed in (a).
The Figures (b)-(d) show the cross section through the point cloud corresponding to the local elevation map
cells in camera system coordinates. The computed heights of the cell centers are marked by orange dots.
Figure (b) shows the result of the presented probabilistic approach. For comparison the result from taking the
mean height (c) and maximum height (d) of all triangulated points assigned to the respective cell is illustrated.
The green markings on the horizontal axis indicate the position of the curb.
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Learning of Class Likelihoods and Transition Probabilities: This paragraph pro-
poses the learning procedure utilized for the determination of the required likelihoods and
transition probabilities for the classes solid, surface and free-space.

The class likelihoods and transition probabilities are learned from a set of about 450
reference images containing various obstacles, such as parking cars, walls and pedestrians.

Reference data is obtained from a Velodyne LIDAR HDL-64E 1 scanner mounted on the
rooftop of the test vehicle, see Figure 3.10. The sequences are recorded frame by frame in
stop an go motion to avoid motion drift in the lidar point cloud and, thus, to allow for a
stable calibration to the stereo camera system. For detailed information on the test setup we
refer to Pfeiffer et al. [2010].

(a) Sensor setup (b) Lidar distance measurements

Figure 3.10: Illustration of the utilized sensor setup (a). The Velodyne lidar scanner is mounted on a roof
rack, while the stereo camera rig is installed behind the windshield of the test vehicle (image source: Pfeiffer
et al. [2010]). In (b), an example for a lidar point cloud projected into the image plane is shown. The colors
encode the distance to the camera. Red dots represent small distances and green dots large distances. For
visibility issues the point cloud is cropped at 18 meter distance.

Ground truth labels are derived as follows. The lidar measurements are assigned to the
respective voxels of the grid. For each voxel column containing at least one measurement, the
highest voxel containing a lidar point is assigned to surface, while all voxels lying above are
assigned to free-space and voxels bellow to solid. Voxel columns with no lidar measurement
are excluded from the learning process.

The class likelihoods are learned based on the ground truth labels and the observed
numbers of hits, path-throughs and occlusions obtained from the stereo camera system using
kernel density estimation [see Bishop, 2006, chapter 2.5.1]. Thereby we employ symmetric
Gaussian kernels governed by a standard deviation of σ = 0.04. Since the domain of the hit
and pass-through ratio is bounded, the resulting likelihoods are renormalized over the interval
{[0, 1] × [0, 1]} ∩ {nhn + np

n ≤ 1}. Moreover, to allow for an efficient access when computing
the DEM, we store the likelihoods evaluated at discrete positions in a dudv×dudv grid rather
than evaluating online from the total set of kernels.

The logarithms of the learned likelihoods are illustrated in Figure 3.11. Let us consider
two examples to simplify the interpretation of the figures. A voxel with a low hit ratio of ≈ 0
and a high pass-through ratio of ≈ 1 obtains likelihood values listed in the upper left corners
of the respective plots. Comparison to the colorbar reveals that the voxel is most likely
assigned to the class free-space. A voxel which shows low values in both ratios obtains the
values in the lower left edges. Thus, it is most likely assigned to solid since the respective
plot yields the highest values for the stated ratios. This seems reasonable because low hit
and pass-through ratios indicate a high ratio of occlusions.

1http://velodynelidar.com/lidar/lidar.aspx

http://velodynelidar.com/lidar/lidar.aspx
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Figure 3.11: Logarithms of learned class likelihoods for the classes solid (a), surface (b) and free-space (c)

evaluated in a grid with 50× 50 cells. The triangle structure is caused by the relation nh

n
+ np

n
≤ 1. We use

the terms hit ratio and pass-through ratio for nh

n
and np

n
respectively.

(a) Example image (b) Point cloud profile

Figure 3.12: Example showing a vehicle front (a) and the respective point cloud profile (b) which demon-
strates the depth scattering of SGM. The point cloud derived from SGM is plotted in gray values, while the
lidar measurements are plotted by red points. The scattering effect appears in particular at horizontal image
structures, such as the radiator grill of the car.

A particularly conspicuous aspect is the relatively high amount of occlusions,
i.e. nh

n ≈ np

n ≈ 0, in the likelihood of the class free-space. This can be explained by strong
scattering effects in the SGM depth measurements, as shown in Figure 3.12. The erroneous
points count as occlusions for all free-space voxels on the path between the point’s triangu-
lated position and the actual boundary of the obstacle.

The class transition probabilities are derived by simply counting the observed class tran-
sitions in the test set, which yields the values presented in Table 3.1.

3.2.2.3 Stochastic Properties of the Elevation Map

Let us now discuss the stochastic properties of the elevation measurements concerning their
vertical and horizontal precision. We define the horizontal components of the DEM’s elevation
samples to be given by the respective cell centers. The cell centers therefore act as represen-
tatives of the whole cell. This sample position is uncertain with respect to the discretization
of the DEM grid, i.e. an arbitrary position inside a cell might be a better representation for
the actual object that yields the determined elevation.

The horizontal uncertainties caused by the local discretization are modeled by the vari-
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Table 3.1: Transition probabilities of a voxel assigned to class b to its higher neighbor assigned to class a,
where a and b take the values solid, surface or free-space. For a better understanding, let us assume a certain
voxel is assigned to class solid. The conditional probability of its next higher neighboring voxel to belong the
same class is given by 0.95, whereas the conditional probability to belong to class surface is given by 0.05.

P (a | b) b = solid b = surface b = free-space

a = solid 0.95 0 0
a = surface 0.05 0 0
a = free-space 0 1 1

ances

σ2
xij := E

(
x2
ij

)
− E (xij)

2

︸ ︷︷ ︸
0

(3.12)

=
1

dxj

∫ dxj
2

−
dxj
2

x2dx =
d2
xj

12
(3.13)

σ2
yij := σ2

xij (3.14)

and collected in the covariance matrix Σxx = Diag
(

[. . . , σ2
xij , σ

2
yij , . . . ]

T
)

.

In addition, we compute local height variances for the estimated height val-
ues h = [. . . , hij , . . . ]

T. The variances are modeled by the sum of three components

σ2
hij

=
1

12

(yij
c
dv

)2
+

1

12

(
hij − hg
yij

dx

)2

+

(
(hij − hg) yij

Bc

)2

σ2
d. (3.15)

Keep in mind that the symbols B and c denote the baseline and principle distance of the
camera system. The first and second term describe the effect of the vertical and horizontal
discretization. The third term represents the precision of the height measurements propagated
from the precision of the disparity measurements σ2

d via the triangulation concept. From
the geometric constellation illustrated in Figure 3.13 and from the relation of disparity and
distance (2.22) considering that the camera system’s z-axis corresponds to the negative y-axis
of the elevation map system (see Figure 3.5(b)), we obtain the identities

v

h− hg
=
c

y
= − d

B
. (3.16)

The identities yield the relations

(i) : h = −vB
d

+ hg, (ii) : v =
(h− hg)c

y
, (iii) : d = −Bc

y
. (3.17)

From relation (i), we obtain the relation of the precision of the height and the precision of
the disparity via non-linear error propagation

σ2
h =

(
vB

d2

)2

σ2
d. (3.18)

Finally, substituting the relations (ii) and (iii) yields the third term of the total height pre-
cision (3.15).

We assume a precision of σd = 0.5 pel for the disparities computed from
SGM algorithm. The single elevation variances are collected in the covariance ma-
trix Σhh = Diag([. . . , σ2

hij
, . . . ])T.
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Figure 3.13: Relation of the longitudinal and vertical coordinates y and h of a world point X to the horizontal
coordinate v of its image projection and the principle distance c. The geometric constellation shows the ratio
of c and v to be identical with the ratio of y and h − hg, whereas hg describes the height of the camera’s
projection center over ground level. Note that the image plane I , in contrast to the physical setup, is drawn
in viewing direction to get an upright image.

3.2.3 Ego-Motion

Formally, we use the term ego-motion to describe the six parameter coordinate transformation
from the local grid coordinate systems of the previous time step Set−1 into the current time
step Set . The transformation is given by the homogeneous transformation matrix

tMt−1(ut) =

[
R
(
Rut

)
Tut

0T 1

]
. (3.19)

The 6-vector

ut =

[
Rut
Tut

]
(3.20)

contains the respective three parameters of rotation Rut and translation Tut. The corre-
sponding precision is represented by covariance matrix Σutut . The rotation parameters are
given in Rodriguez representation. For a detailed description of this representation we refer
to [McGlone et al., 2004, chapter 2.1.2]. We use the algorithm of [Badino, 2007] to estimate
the ego-motion parameters. Other vision based approaches would also be suitable.

3.3 Environment Model

This section presents a detailed definition of the geometric and probabilistic properties of the
environment model which form the basis for the estimation process. The environment model
acts as a generative model describing the measured elevation of observed street regions,
street adjacent regions as well as the street boundary. As introduced in Section 3.1, we
define the considered task of street surface and boundary detection and reconstruction by
a MAP estimation of the respective model parameters incorporating temporal and spacial
prior information. The model is chosen to fulfill several requirements which we assume to be
crucial to allow for an adequate estimation result:

(a) The model needs to be flexible and general enough to model even complex scenarios,
such as multiple obstacles and small traffic isles.

(b) It needs to be robust regarding erroneous and sparse measurements.

(c) It shall be based on a continuous representation, to allow for evaluation in the entire
observed region of interest.
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To fulfill these requirements, we assume the observed elevation model to be generated by a B-
spline surface for street regions and to be drawn from a uniform distribution for street adjacent
regions providing a high generality of the model. The street boundary which represents the
separation of street and street adjacent regions is modeled by a B-spline curve. The usage of
B-splines yields a continuous and flexible representation. Robustness is increased by explicit
modeling of outliers and simplified topology assumptions, i.e. the street boundary is unique
in image column direction. Further, we claim spatial and temporal smoothness as prior
assumptions to cope with sparse and noisy measurements.

The subsequent sections give a detailed definition of the individual components of the
utilized environment model starting with a general overview in Section 3.3.1. Subsequently,
Section 3.3.2 and Section 3.3.3 yield the definition for the street surface and boundary model.
Section 3.3.4 provides additional prior assumptions about the spatial and temporal behavior
of the model.

3.3.1 Definition of the Generative Environment Model

As stated above, the environment model is governed by two functions, namely a B-spline
surface Sf which defines the elevation model of the street surface and a B-spline curve Bf
which defines the horizontal boundary of the street, i.e. the separation of street regions and
street adjacent regions. Figure 3.14(d) illustrates an example for the environment model. As
pointed out in Section 2.7 B-splines bear the property of locality and, thus, embody a flexible
and continuous representation. The parameter vectors governing the functions Sf and Bf are

denoted by Sθ and Bθ, respectively, forming the joint parameter set θ = [ Sθ
T
, Bθ

T
]T. Their

uncertainty is represented by the block diagonal covariance matrix Σθθ = Diag( SΣθθ,
BΣθθ).

To interrelate elevation map cells and model functions, we assign each cell to one out of
three classes which define the whole horizontal semantics of the environment model. The
classes are given by Ch = {street, outlier, adjacent}. The class assignments of the DEM’s cells
are denoted by the labels l = [. . . , lij , . . . ]

T, with lij ∈ Ch. The set of all possible labelings l
is given by L.

3.3.2 Surface Model

We assume the total elevation model to be given by the mixture distribution

hij ∼
1− αij

2
N
(
Sf
(
xij ,

Sθ
)
, Sσ

2
hij

)

+
1− αij

2
N
(
Sf
(
xij ,

Sθ
)
, Oσ

2
hij

)

+ αij U(h), (3.21)

where the symbols N and U represent the normal and uniform distribution. The sym-
bols Sσhij and Oσhij denote the height uncertainty of cells assigned to the classes street and
outlier, respectively. The weighting factors αij describe the cell’s prior probabilities to belong
to the class adjacent and are governed by the street boundary function Bf defined in (3.27).
A detailed definition of the αij is given in Section 3.3.3.2.

Let us now take a closer look at the meaning of the elevation models for the different
classes.



3.3. ENVIRONMENT MODEL 71

(a) Left rectified input image (b) Triangulated point cloud

(c) Elevation map (d) Classified spline model

Figure 3.14: Figure (d) presents the environment model derived from the DEM plotted in (c). The model
is represented by estimated street surface, colored due to the estimated most probable class assignments, and
the estimated street boundary, which is represented by the orange line. The input image and the respective
triangulated point cloud are plotted in (a) and (b).

3.3.2.1 Elevation Model for Street Regions

Existing methods for free-space detection generally use planar or second order surfaces to
describe the street surface. Although adequate for most scenarios, results are unsatisfying
when the street curvature is just locally constant, e.g. in case of for roof-shaped street surfaces
often used for drainage of rainwater.

Instead of using higher degree surfaces, we assume the street surface to be sufficiently
describable by a second degree, uniform B-spline surface

Sf
(

[x, y]T, Sθ
)

=
N∑

n=1

Bn,2(x, y) Shn (3.22)

= [B1,2(x, y), . . . ,BN,2(x, y)] Sθ. (3.23)

This enables the system to model locally different curvatures. The functions Bn,2(x, y) denote
the B-spline basis functions of second degree providing the weights for the control points Shn,
see Section 2.7.2. The set of surface parameters, namely the control point heights, is collected
in the vector Sθ = [ Sh1, . . . ,

ShN ]T. This allows for the representation of the surface as vector
product (3.23).

The spline parameters are aligned to the x and y coordinates of the DEM. The spline
sections are arranged in an equidistant Cartesian grid (not to be confused with the non-
equidistant DEM grid) which is fixed relative to the horizontal plane of the elevation map
system Se , as illustrated in Figure 3.15(a). The grid center is located at the DEM coordi-
nates [0, ymax−ymin

2 + ymin]T. In our experiments, we decided to use four sections in lateral
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(a) Street surface spline sections (b) Street border spline sections

Figure 3.15: Spline sections of the street surface compared to the grid structure of the DEM (a). The borders
of the surface sections are marked by red lines, while the DEM is shaded in green color. The black crosses
mark the horizontal sample positions xq, q = 1, . . . , Q used for spatial and temporal filtering. In (b) the
sections of the boundary spline are illustrated. The spline itself is plotted by a thick orange line, the section
bounds are marked by red crosses. The section limits with respect to the image columns are marked by red
lines. The background is shaded by the colorized point cloud computed from SGM and corresponds to the
scene depicted in Figure 3.14(a).

and two in longitudinal direction, with the section lengths defined to cover the whole area
of the DEM. This choice allows to model up to two different vertical curvature values in
longitudinal direction. In lateral direction it allows for different curvatures for the transitions
from the vehicle’s current driving lane surface to the lateral neighboring surfaces assuming
an approximative lane width of 3 m. In special situations a different choice may be useful.

To separate reliable observations from outliers, we split the street region in the two
classes street and outliers. Thus, we assume the generative model for the heights of DEM
cells belonging to the street region to be given by the Gaussian mixture model defined by the
first two summands in Equation 3.21. This yields the class likelihood functions for the DEM
cells (ij) ∈ D

℘
(
hij | lij = street, Sθ

)
= G

(
hij | Sf

(
xij ,

Sθ
)
, Sσ

2
hij

)
(3.24)

and

℘
(
hij | lij = outlier, Sθ

)
= G

(
hij | Sf

(
xij ,

Sθ
)
, Oσ

2
hij

)
. (3.25)

The variance Sσ
2
hij corresponding to the class street models two effects, i.e. the influence

of the uncertainty of the DEM’s height measurements σ2
hij

defined in (3.15) and the influence

of the uncertainty caused by horizontal discretization defined in (3.13) and (3.14). The
horizontal uncertainty is propagated to the vertical component via the local slope of the
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Figure 3.16: Example for density functions defining measurement noise (red line) and outlier (blue) distri-
bution, which are centered at Sf

(
[x, y]T, Sθ

)
= 0 for simplification. Height measurements exceeding the 3 Sσ

interval are more likely to belong to the class outlier than to street and vice versa. The density function of
the class adjacent is plotted as green line. Note, that adjacent is always preferred over outlier.

street surface estimated in the last frame, as described in Section B, which yields a good
approximation assuming the curvature of Sf to be small. This allows us to treat the grid cell
positions xij as certain when estimating Sθ and, thus, to estimate the surface parameters in
a linear model which significantly reduces the computational effort.

The second summand in Equation (3.21) models outliers in the vertical distribution of the
street measurements. We assume the outliers to originate from a normal distribution located
at the proper mean but governed by a much larger variance Oσ

2
hij = ρ Sσ

2
hij . The constant

factor ρ is chosen such that both density functions intersect at Sf
(
[x, y]T, Sθ

)
± 3 Sσhij , as

illustrated in Figure 3.16. Note that comparing both density functions when performing
maximum likelihood estimation results in an implicit three sigma test, i.e. height measure-
ments exceeding the 3 Sσhij interval around the local surface elevation Sf

(
[x, y]T, Sθ

)
are

more likely assigned to outlier than to street. The computation of the factor ρ is described
in Section D.2.

3.3.2.2 Elevation Model for Street Adjacent Regions

The elevation structure of street adjacent regions may be arbitrary ranging from vertical
structures through to horizontal pavement surfaces. Thus, we assume the height measure-
ments drawn from street adjacent regions to follow a uniform distribution over the considered
height interval h = [−1.5, 1.5] m.

This class is denoted by adjacent and yields the likelihood

℘
(
hij | lij = adjacent, Sθ

)
= U(hij | h). (3.26)

Note that the likelihood does not depend on Sθ and, with this, has no effect on the street
surface estimation step described in Section 3.5.2.1.

3.3.3 Street Boundary Model

The boundary function Bf embodies a continuous representation of the perimeter of the
drivable free-space, i.e. explicitly models the separation of the class set {street, outlier} from
the class adjacent.
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We introduce a simplified topology assumption which states that for every image row
coordinate there exists a unique class change from the free-space region (classes street and
outlier) to the non-free-space region (class adjacent) in longitudinal direction. This explicitly
models the intention to detect the first and only the first object in viewing direction delimiting
the drivable free-space.

We utilize a third order B-spline curve defined in the horizontal plane in order to to allow
for a flexible but smooth representation of the free-space boundary

Bf
(
β, Bθ

)
=

M∑

m=1

Bm,3(β)Bxm (3.27)

=

[
B1,3(β) 0

0 B1,3(β)
. . .

BM,3(β) 0
0 BM,3(β)

]
Bθ. (3.28)

Similar to the street surface model, the set of 2d control points defines the parameter vector for

the street boundary Bθ = [Bx
T
1 , . . . ,

Bx
T
M ]T. This allows for the definition of the boundary

via the matrix-vector product (3.28). The x any y components of Bf are denoted by Bfx
and Bfy.

3.3.3.1 Spline Parametrization

The parameter β ∈ [0, Bn] defines the position on the spline curve and the local influence of
the control points Bxm = [Bxm,

Bym]T via the basis functions Bm,3. The entity Bn = M − 3
defines the number of spline sections (see Section 2.7.1). The parameter intervals are dis-
tributed uniformly along the u-axis of the image, i.e. the back projections of the spline
sections cover the same number of image columns each. The parameter values aligned to
the longitudinal columns of the DEM are denoted by βi. An example illustration for the
boundary spline sections is given in Figure 3.15(b).

There exist several alternative heuristics for the choice of the spline parametrization,
e.g. based on the chord length or curvature. For a discussion of different parameterizations,
we refer to [Piegl and Tiller, 1997, chapter 9.2] or [Farin, 2002, chapter 9.6].

However, we selected the parametrization along the image columns due to several reasons.
Although a curvature based parametrization allows for more exact reconstruction results
at edge structures, it appeared to be very sensitive to measurement errors and tends to
oversampling in sections with strong curvature. In our experiments, the chosen approach
appeared to be the best compromise between flexibility and robustness. It explicitly supports
the topology assumption and guarantees a balanced distribution of observations per spline
section. Furthermore, newly observed boundary segments can directly be integrated in the
parametrization without the need for any prior information, which is particularly important
in sharp turning maneuvers.

3.3.3.2 Class Probabilities from Boundary Function

The street boundary plays a central role in the definition of the elevation model represented by
the mixture distribution (3.21). The relative position of a sample to the boundary, i.e. within
or beyond the encircled region, indicates its affiliation to the class set {street, outlier} (free-
space) or to the class adjacent (non-free-space), respectively. This affiliation is represented
by the weighting factors αij which embody assignment probabilities rather than a fixed
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assignments since the boundary is uncertain, i.e.

1− αij
2

= P
(
lij = street | Bθ

)
(3.29)

1− αij
2

= P
(
lij = outlier | Bθ

)
(3.30)

αij = P
(
lij = adjacent | Bθ

)
. (3.31)

The assignment probability is modeled similar to the logistic regression model yielding the
weighting factors by the local evaluation

αij := gi
(
Bθ, yij

)
(3.32)

of the sigmoid function

gi
(
Bθ, y

)
:=

1

1 + exp
(
−wi

(
y − Bfy

(
βi,

Bθ
))) . (3.33)

The longitudinal component of the street boundary function Bfy determines the inflection
point of the sigmoid and, thus, the decision boundary between free-space and non-free-space
(see Figure 3.17). The usage of the sigmoid model reflects the simplified topology assumption
which states that for every image row coordinate there exists a unique class change from the
free-space region to the non-free-space region in y direction.

Note that the boundary function is evaluated at the respective DEM grid column i,
i.e. at the parameter position βi, indicating that we use one sigmoid model per longitudinal
column of the DEM. The individual slopes of the sigmoids are controlled by the slope pa-
rameters w = [w1, . . . , wI ]

T. Figure 3.17(b) illustrates the variation of the sigmoid slopes for
different grid rows.

One can think of αij as spatial prior for the class assignment, i.e. for the latent variables l,
not to be confused with the spatial prior for the model parameters defined in the next section.
The prior states that the unique class change (i.e. the decision boundary) between adjacent
and the remaining classes along grid column i is located at Bfy

(
βi,

Bθ
)
. In this context,

the slope parameter wi defines the influence of the prior. The properties of this term are

discussed in detail later on when defining the posterior probability P (l | ht, θ̂
(ν)

t ) for the
estimation step of the EM-algorithm (see Section 3.5.1).

3.3.4 A Priori Assumptions

This section introduces the prior knowledge about the model parameters which is combined
with the previously introduced likelihood functions to estimate the model parameters via the
optimization function defined by (3.6).

We assume the prior knowledge for the surface and boundary parameters to be indepen-
dent such that the total prior decomposes into

℘
(
θ | θ̂t−1

)
:= ℘

(
Sθ | Sθ̂t−1

)
℘
(
Bθ | Bθ̂t−1

)
, (3.34)

whereas both parameter sets only depend on their respective counterpart in θ̂t−1. The sub-
sequent sections describe the structure of both terms.
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(a) Image projection of the estimated street boundary

(b) Weighting factors αij plotted as sigmoid functions along each DEM column

(c) Weighting factors αij plotted as 2.5d sigmoidal surface

Figure 3.17: Two examples scenarios demonstrating the relation of the street boundary spline Bfy
(
βi,

Bθ
)
,

plotted in orange color, and the weighting factors αij . The first row depicts the example scenarios as well as
the image projection of the estimated street boundary. The second row shows the sigmoid functions defining
the αij plotted against each longitudinal column of the DEM. Note the different slopes of the sigmoid functions
that are best visible in the right image around the gap between the truck and the curb. The street boundary
is defined by the 0.5-level-sets of the sigmoid functions (orange line), which correspond to the respective
inflection points. The weighting factors are plotted as 2.5d surface using color encoding for clarification, while
the 0.5-level is plotted as transparent plane.
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3.3.4.1 Prior Assumptions about the Street Surface

As a priori assumption for the street surface we claim temporal and spatial smoothness,
i.e. the estimated surface is assumed to be rigid over time and of low curvature. We use the

procedure described in Section 2.3.2.2 to model the prior ℘
(
Sθ | Sθ̂t−1

)
in terms of fictitious

observations. These observations compose of two sets Sz
temp
t and Sz

spat
which define the

temporal (temp) and spatial (spat) prior knowledge about the parameters via the functional
relationship

[
Sz

temp
t

Sz
spat

]
+

[
Sv

temp
t

Sv
spat

]
=

[
Sk

temp
(
Sθ, Sθ̂t−1

)

Sk
spat ( Sθ

)
]
, (3.35)

where the residuals Sv
temp
t and Sv

spat
are independent and normal distributed.

The mathematical formulation of the observations Sz
temp
t and the function Sk

temp
as well

as the stochastic properties of Sv
temp
t are given in Section 3.4.1.1 in the context of the model

prediction step.
For spatial smoothness, we claim that each of the three components of the mean squared

curvature defined in (2.120) shall vanish at a set of sample positions xq, with q = 1, . . . , Q,
evenly distributed in the considered region of interest, as depicted in Figure 3.15(a). This
yields three fictitious observations per sample. Summarized, the spatial prior information is
defined by the linear functional model

3Q








...

0

0

0
...




︸︷︷︸
Sz

spat

+ Sv
spat

=




...

. . . 1√
2
B(2,0)
n,2 (xq, yq) . . .

. . . B(1,1)
n,2 (xq, yq) . . .

. . . 1√
2
B(0,2)
n,2 (xq, yq) . . .

...







...
Shn

...




︸ ︷︷ ︸
Sk

spat( Sθ)

. (3.36)

The influence of the spatial smoothness term is governed by the parameter Sλ introduced
via the stochastic model

Sv
spat ∼ N

(
0,

1
Sλ

I 3Q

)
. (3.37)

Note that Sλ is a tuning parameter which is determined empirically.

3.3.4.2 Prior Assumptions about the Street Boundary

Analogous to the street surface, the prior assumptions for the street boundary parameters Bθ
is defined by two separate sets of fictitious observations modeling the temporal and spatial
assumptions

[
Bz

temp
t

Bz
spat

]
+

[
Bv

temp
t

Bv
spat

]
=

[
Bk

temp
(
Bθ, Bθ̂t−1

)

Bk
spat (Bθ

)
]
. (3.38)

Again, the temporal term is described in Section 3.4.1.2 when discussing the prediction step.
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The spatial term claims low curvature. For each spline section, the curvature κ is given
by a third order polynomial in the spline parameter governed by the respective active control
points, as defined by (2.107). Thus, forcing the curvature to vanish at at least four distinct
sample positions within a single spline section is sufficient to suppress the curvature in the
complete section interval. Given Bn spline sections in our boundary spline model, we choose
A = 4Bn + 1 sample positions βa, with a = 1, . . . , A, distributed equidistant in the spline
parameter space by βa = 1

4(a−1). To regularize the spline control points Bθ we constrain the
local curvature measure κβa(Bθ) defined in (2.109) at each sample point to vanish. Collecting
this A constraints in a single equation system, we obtain the nonlinear Gaussian model

A








...
0
...




︸︷︷︸
Bz

spat

+Bv
spat

=




...
κβa(Bθ)

...




︸ ︷︷ ︸
Bk

spat(Bθ)
, (3.39)

where again the variance

Bv
spat ∼ N

(
0,

1
Bλ

IA

)
(3.40)

is governed by a tuning parameter Bλ.

3.4 Model Prediction

We assume the variation of the observed street boundary and surface characteristics to be
small between successive frames. Thus, using information about the vehicle’s ego-motion,
the model parameters estimated in the previous acquisition time step t − 1 can be used to
predict the model at the current time step t. This information transfer provides both prior
information and initial values for the current model parameters due to our assumption of
temporal rigidity of the model. The acquisition of the prior terms and initial values embodies
processing step (III) of the total workflow depicted in Figure 3.1.

The following sections provide a detailed description of processing step (III), also re-
ferred to as prediction step. First, Section 3.4.1 depicts the acquisition of the temporal prior
knowledge based on the previously estimated model θ̂t−1 and the ego-motion information in-
troduced in Section 3.2.3. This comprises the formulation of the temporal components of the
prior distributions ℘( Sθ | Sθ̂t−1) and ℘(Bθ | Bθ̂t−1) previously introduced in Section 3.3.4.
The temporal prior terms for the street surface parameters are defined in Section 3.4.1.1 and
those for the street boundary parameters in Section 3.4.1.2.

Subsequently, Section 3.4.2 demonstrate how to obtain approximate values θ̂
(0)

t for the
model parameters to initialize the very first EM iteration of the each time step. Again, the
discussion is subdivided in terms of the surface parameters (Section 3.4.2.1) and the boundary
parameters (Section 3.4.2.2). Further, the section describes the initialization of the model for
the very first time step or in case of reinitialization (Section 3.4.2.3).

3.4.1 Acquisition of Temporal Prior Knowledge

Keep in mind that we defined the parametrization of both the surface and the boundary
spline relative to the local elevation map system in order to reduce the computational effort,
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e.g. to allow for the precomputation of the spline weights. Unfortunately, this complicates the
definition of a proper system model for the control points since the control point positions
and the spline parametrization with respect to a stationary world system change for each
acquisition time step. Thus, we employ a sampling based method to predict the current
model parameters.

Simply put, temporal filtering is performed by demanding that the current estimated
model needs to be able to describe a set of points sampled from the previous model. These
predicted samples embody the fictitious observations Sz

temp
t and Bz

temp
t for the temporal

prior terms in (3.35) and (3.38). In the following we describe the acquisition of these ob-
servations and formulate the functional dependency to the respective model parameter set
represented by Sk

temp
( Sθ, Sθ̂t−1) and Bk

temp
(Bθ, Bθ̂t−1).

3.4.1.1 Temporal Prior for the Street Surface Parameters

The street surface estimated in the previous time step is sampled at evenly arranged horizontal
positions in the coordinate system Set−1 . The sample positions are defined by the corner points
and half positions of the spline sections xq = [xq, yq]

T, with q = 1, . . . , Q, as illustrated in
Figure 3.15(a). This yields Q samples of the form

Xq,t−1 =




xq
yq

Sf
(
xq,

Sθ̂t−1

)


 . (3.41)

We transform the samples to the current system Set by means of ego-motion information and
obtain the predicted sample points

X−q,t =

[
x−q,t
h−q,t

]
=




1 0 0 0
0 1 0 0
0 0 1 0


 tMt−1(ut)

[
Xq,t−1

1

]
. (3.42)

The matrix tMt−1(ut) represents the coordinate transformation which projects the coor-
dinates from the old system Set−1 to the current system Set governed by the ego-motion
parameter vector ut. See Section 3.2.3 for further details about the utilized ego-motion
information.

We collect the predicted samples in the vector X−t = [. . . ,X−q,t
T
, . . . ]T and denote their

joint precision by the covariance matrix Σ−
X−t X

−
t

. The covariance matrix is derived via error

propagation from the precisions of the ego-motion parameters Σutut and the precision of the
previously estimate surface parameters SΣ

θ̂t−1θ̂t−1
. This derivation is lengthy and therefore

presented separately in Section C.1.

The idea for the formulation of the prior term is to demand that the new model sufficiently

describes the sample points, i.e. h−q,t
!

= Sf
(
x−q,t,

Sθ̂t

)
should hold for all q within the

precision of the samples. Note, since all three coordinates of the predicted 3d samples are
uncertain, this formulation represents an implicit function of the observations. To allow
for an efficient estimation in a linear model, we use a procedure analogous to the calculus
presented in Section B. This means we propagate the horizontal uncertainties in Σ−

X−t X
−
t

to

the vertical component in order to treat the horizontal sample positions as certain. The local
derivatives with respect to the horizontal coordinates at the sample positions are adopted
from the surface parameters estimated in the previous frame. Neglecting the effect of the
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vehicle’s pitch and roll movement, which is assumed to be small, the derivatives read as

∂

∂x
Sf q =

N∑

n=1

B(1,0)
n,2 (xq, yq) ĥn,t−1 (3.43)

∂

∂y
Sf q =

N∑

n=1

B(0,1)
n,2 (xq, yq) ĥn,t−1, (3.44)

where we use the short form notation Sf q := Sf(xq,
Sθ̂t−1). Following (B.6), the precision

of the heights of the samples including the predicted vertical uncertainty and propagated
horizontal accuracy is given by

Σ−
h−t h

−
t

=




. . .

− ∂
∂x − ∂

∂y 1
. . .


Σ−

X−t X
−
t




. . .

− ∂
∂x − ∂

∂y 1
. . .




T

. (3.45)

Finally, the temporal prior assumption which forms the second block of (3.35) is given by
the linear Gaussian model

Q








...
h−q,t

...




︸ ︷︷ ︸
Sz

temp

t

+ Sv−t + Sr−t︸ ︷︷ ︸
Sv

temp

t

=




...
Sf
(
x−q,t,

Sθ
)

...




︸ ︷︷ ︸
Sk

temp
(
Sθ, Sθ̂t−1

)
, (3.46)

where Sv−t models the uncertainty propagated from the ego-motion and surface parameters
with

Sv−t ∼ N
(
0,Σ−

h−t h
−
t

)
. (3.47)

The additional Gaussian noise term

Sr−t ∼ N
(
0, Sσ2

r IQ
)

(3.48)

represents the model error caused by the reparametrization of the spline surface, i.e. caused
by the displacement of the control points with respect to the fixed world system. In our
experiments we use Sσr = 0.5 cm. The term further guarantees the joint covariance matrix
to be regular.

The joint covariance matrix describing both effects and therefore the precision of Sv
temp
t

is denoted by

Σh−t h
−
t

= Σ−
h−t h

−
t

+ Sσ2
r IQ. (3.49)

3.4.1.2 Temporal Prior for the Street Boundary Parameters

The prediction of the street boundary is done by a similar sampling procedure. To avoid
occluded samples considering the topology assumption, samples are generated by searching
for the first intersection of the old spline with each y-column of the current DEM grid.
One can think of the y-columns as lines li, with i = 1, . . . , I, which connect the origin and
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(a) Intersection of predicted spline (b) Filtering of boundary spline

Figure 3.18: Figure (a) illustrates the intersection of the predicted boundary function with the y-columns
of the DEM. Note that the number of columns is reduced to improve the visibility. Figure (b) depicts the
different entities of boundary spline estimation. The approximate points x−i,t derived from intersecting the
predicted spline with the y-columns are marked by red crosses. The class boundaries achieved from logistic
regression x+

i,t, as described in Section 3.5.2.2, are marked by black crosses. The final estimated spline is
drawn as line in orange color. The scenario is the same as in Figure 3.4(a) but shown in an early stage, where
the spline still propagates from its initial position.

the respective point defined by the horizontal coordinates of the first grid row [xi1, yi1]T,
as illustrated in Figure 3.18(a). Considering the homogeneous representation of a 2d line
introduced in (2.3), we derive the line representations

li =



−yi1
xi1
0


 . (3.50)

In order to compute the intersection points, the boundary spline is transformed to the
current elevation map system by applying the ego-motion matrix tMt−1(ut) to the previously
estimated spline control points Bx̂m,t−1. This yields the predicted control points

Bx
−
m,t =

[
1 0 0 0
0 1 0 0

]
tMt−1(ut)



Bx̂m,t−1

0
1


 . (3.51)

Note that the points are projected to the horizontal plane since the boundary spline is defined
as horizontal delimiter of the drivable region, which renders the vertical coordinate useless.
The single control points are collected in the vector Bθ

−
t by concatenation. The precision of

the predicted control points BΣθ−t θ
−
t

follows via error propagation from the precision of the

ego-motion parameters Σutut and the precision of the unpredicted control points BΣ
θ̂t−1θ̂t−1

.

The respective derivation is particularized in Section C.2.

The ith sample point is computed as the intersection point of the ith grid column and
the predicted spline as described in Algorithm 2 yielding

x−i,t = Bf
(
β−i,t,

Bθ
−
t

)
=

M∑

m=1

Bm,3(β−i,t)
Bx
−
m,t. (3.53)

An example comparing intersected points and final estimated spline is given in Figure 3.18(b).
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foreach Grid column i = 1, . . . , I do
Initialize set of candidate sample points Si = ∅;
foreach Spline section s = 1, . . . , Bn do

if li = [−yi1, xi1, 0]T intersects the convex hull of the control points of section s
then

Compute all real valued roots of the third order polynomial

0 =
[
−yi1 xi1 0

] [∑s+3
m=s Bm,3(β)Bx

−
m,t

1

]
(3.52)

with respect to β and discard solutions with parameter values beyond the
current spline section, i.e. β /∈ [s− 1, s] ;
Compute corresponding intersection candidate points for all valid roots
via (3.53) and append them to Si ;

end

end
if Si 6= ∅ then

Choose the actual sample point x−i,t to be the point in Si which is closest to the

camera. The corresponding spline parameter is stored in β−i,t ;

else
Mark sample point i as invalid.

end

end

Algorithm 2: Algorithm for the computation of spline samples by intersection of the
predicted spline and the y-columns of the DEM grid. Samples marked as invalid are
excluded from the temporal prior.

Similar to the surface prediction step, we obtain the temporal component of the
prior (3.38) via the linear Gaussian model

2I








...
x−i,t

...




︸ ︷︷ ︸
Bz

temp

t

+ Bv−t + Br−t︸ ︷︷ ︸
Bv

temp

t

=




...
Bf
(
βi,

Bθ
)

...




︸ ︷︷ ︸
Bk

temp
(
Bθ, Bθ̂t−1

)
, (3.54)

with i = 1, . . . , I. Samples marked as invalid are excluded by setting their respective entries
to zero.

The residuals Bv
temp
t consist of two terms. The first term Bv−t represents the sample

uncertainty propagated from the predicted control points Bθ̂t−1. The second term Br−t
covers the model errors caused by the reparametrization of the predicted spline as well as the
violation of model assumptions, e.g. in case of non-static obstacles. The following paragraphs
introduce both terms in detail.

Sample Uncertainty Propagated from the Predicted Control Points: The residuals

Bv−t ∼ N
(
0, Jg

BΣθ−t θ
−
t
JT
g

)
(3.55)
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model the effect of the uncertainty of the predicted control points on the intersected samples.
The exact Jacobian for the intersection step (3.53)

Jg =
∂ Bf

(
β−, Bθ

−
)

∂ Bθ
−

∣∣∣∣∣∣
β−=β−i,t,

Bθ
−

=Bθ
−
t

, (3.56)

becomes quite complex since perturbations of the predicted control points Bθ
−
t affect the

solution for the intersection parameter β−i,t determined via Algorithm 2. Thus, instead of
considering the intersection of the lines li with the spline itself we approximate the entries
of the Jacobian considering the intersection of the line li with the local spline tangent. By
local spline tangent we mean the tangent locally evaluated at the determined intersection
point x−i,t. The tangent is described by a 2d line in homogeneous representation

gi,t =

[
G x−i,t

′

−(x−i,t)
TG x−i,t

′

]
, (3.57)

with the local derivative

x−i,t
′
=
∂x−i,t

∂β−i,t
=

M∑

m=1

B ′m,3
(
β−i,t

)
Bx
−
m,t, (3.58)

and the matrix

G =

[
0 −1
1 0

]
. (3.59)

Employing the calculus of projective geometry, the intersection point of two 2d lines given
in homogeneous representation follows from the cross product. Thus, the intersection points
in homogeneous coordinates read as

x−i,t = S (li) gi,t (3.60)

= S





−yi1
xi1
0




gi,t (3.61)

using the skew symmetric matrix S to represent the cross product as well as the definition of
the lines representing the y-columns (3.50). The relation to Euclidean coordinates is given
by dividing the Euclidean part by the homogeneous coordinate

x−i,t =
1

[x−i,t]3

[
[x−i,t]1
[x−i,t]2

]
. (3.62)

Linear error propagation via (3.57), (3.61) and (3.62) yields

Σ−
x−t x

−
t

= Jg
BΣθ−t θ

−
t
JT
g , (3.63)

with the Jacobian

Jg ≈




...
1

(x−i,t)h

[
I 2 | −x−i,t

]
S
(
[−yi1, xi1, 0]T

) ∂g

∂

(
Bx
−
m,t

)
...




(3.64)
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and the partial derivatives of g given by the (3× 2M)-matrix

∂g

∂
(
Bx
−
m,t

) =


. . .

G B ′m,3
(
β−i,t

)

−(x−i,t)
TG B ′m,3

(
β−i,t

)
− (x−i,t

′
)TG Bm,3

(
β−i,t

) . . .


 . (3.65)

We refer to [Meidow et al., 2009] for a detailed description of the error propagation for straight
line intersections and Euclidean normalization.

Model Errors: The second residual term of the Gaussian model (3.54)

Br−t ∼ N


0,




. . . (
Bσ

(ν+1)
ri,t

)2
I2

. . .





 (3.66)

represents deviations from the system model caused by the sampling process and
reparametrization. We further use this term to handle violations of the model assumptions
with respect to the temporal filtering. This means, the influence of the filtering for spline
regions which are still expanding from the initialization point or which model non-static ob-

stacles shall be reduced. The assignment of the respective noise values for Bσ
(ν+1)
ri,t depends

on the assessment of the local validity of the model and is described in Section 3.5.3.1 when
discussing the local evaluation of the estimated model.

The joint covariance matrix describing both effects Bv−t and r−t and therefore the precision

of Bv
temp
t is denoted by

(
Σx−t x

−
t

)(ν+1)
= Σ−

x−t x
−
t

+




. . . (
Bσ

(ν+1)
ri,t

)2
I2

. . .


 . (3.67)

3.4.2 Initial Values for the Model Parameters

The iterative process of the EM-algorithm requires initial values θ̂
(0)

t to perform the E-step
in the very first iteration of every acquisition time step. The following both sections describe
the computation of this initial values for the street surface parameters (Section 3.4.2.1) and
the street boundary parameters (Section 3.4.2.2) based on the prior information provided
in the previous section. Finally, Section 3.4.2.3 describes the initialization for the very first
acquisition time step.

3.4.2.1 Initial Values for the Street Surface

When discussing the estimation of the street surface parameters in Section 3.5.2.1 we will
find that the estimation task is embodied by a linear least squares estimation problem and,
thus, we do not require approximate values for the estimation of the initial parameter values.
However, considering the optimization task (3.6) the estimation requires knowledge about

the latent variables l in particular about their posterior distribution P
(
l | ht, θ̂

−
t

)
. We use

the symbol θ̂
−
t to denote the predicted model knowledge. Hence, given initial values for the

posterior probabilities, we obtain the initial parameter values in the same way as for any of
the subsequent iterations.



3.4. MODEL PREDICTION 85

In order to get meaningful initial posteriors, we exploit the intersected positions on the
grid columns (3.53) provided by Algorithm 2. This positions allow for the determination
of an initial labeling l−t of the grid cells by simply checking on which side of the intersected
position a particular grid point lies. All cells on the side facing the ego-vehicle are assigned to
street, while all cells beyond the predicted boundary spline are assigned to adjacent. Treating
this information as certain, we simply define the initial posterior probabilities by

P
(
l | ht, θ̂

−
t

)
=

{
1, if l = l−t
0, otherwise

(3.68)

and estimate the initial surface parameters Sθ̂
(0)

t in the way described in Section 3.5.2.1.

3.4.2.2 Initial Values for the Street Boundary

In contrast to the street surface, we will find that the estimation of the street boundary
parameters results in a non-linear optimization task due to the non-linearity of the spatial
prior (3.39). We make use of the linear model (3.54) to obtain approximate values for the
non linear estimation of the parameters in the very first EM iteration of the current time
step.

Since not all grid columns intersect the old spline at a valid parameter value and distance,
as described above, there may be insufficient observations for a proper estimation of the
control point coordinates, especially in the most outer spline sections. Thus, we introduce a
linear regularization term inducing low curvature assumption. This is done by claiming the
local second derivatives of the x and y component of the spline function Bf = [ Bfx,

Bfy]
T

to vanish at the I parameter values βi aligned to the longitudinal DEM grid columns (see
Section 3.3.3.1)

Bfx
′′
(
βi,

Bθ̂
)

=
M∑

m=1

B ′′m,3 (βi)
Bxm = 0 (3.69)

Bfy
′′
(
βi,

Bθ̂
)

=
M∑

m=1

B ′′m,3 (βi)
Bym = 0. (3.70)

The shorthand notations Bfx
′′

and Bfy
′′

describe the respective second derivatives with
respect to the spline parameter β. These terms factorize into a linear combination of the
second derivatives of the spline basis functions B ′′m,3 and the respective components of the

spline control points Bxm = [Bxm,
Bym]T, as described in (2.108).

In summary, the approximate values for the boundary spline control points, denoted

by Bθ̂
(0)

t = [Bx̂
(0)
1,t , . . . ,

Bx̂
(0)
M,t]

T, are estimated in a weighted least squares sense via the linear
model (3.54) including the prior information (3.69) and (3.70)

2I





2I








...
x−i,t

...

...
0
0
...




+



Bv

temp
t

Bv−κt


 =




...
Bf
(
βi,

Bθ
)

...

...
Bfx
′′ (
βi,

Bθ
)

Bfy
′′ (
βi,

Bθ
)

...




. (3.71)
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Substitution of the definition of Bf given by (3.28) together with (3.69) and (3.70) reveals
the linearity of the model

2I





2I








...
x−i,t

...

...
0
0
...




+



Bv

temp
t

Bv−κt


 =




...
B1,3(βi) 0

0 B1,3(βi)
. . .

BM,3(βi) 0
0 BM,3(βi)

...

...

B ′′1,3 (βi) 0

0 B ′′1,3 (βi)
. . .

B ′′M,3 (βi) 0

0 B ′′M,3 (βi)
...




Bθ.

(3.72)

The influence of the prior is governed by the curvature weighting parameter Bλ defined
in Section 3.3.4.2 yielding the stochastic model



Bv

temp
t

Bv−κt


 ∼ N


0,



(

Σx−t x
−
t

)(0)
0

0 1
Bλ

I 2I




 . (3.73)

3.4.2.3 Model Initialization

For the very first frame, Bθ̂
(0)

is assigned by predefined values which generate a spline that
encircles a small region in front of the car, as depicted in Figure 3.19. We assume this region

to cover solely street to make an initial estimate of the street surface Sθ̂
(0)

in the presented
way possible.

(a) Initialization of street boundary (b) Image projection of initial boundary

Figure 3.19: Initialization of the street boundary spline (orange line) plotted in bird’s-eye view (a) and
projection to the left input image (b). The control points are marked by light blue crosses. The colors of
the grid cells denote the respective initial guess for the best labeling, whereas green means street blue means
adjacent.
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3.5 Model estimation via EM-Algorithm

This section describes the iterative procedure based on the EM-algorithm which is employed
for the estimation of the model parameters via the optimization function

θ̂
(ν+1)

t = argmin
θ


−

∑

l∈L

P
(
l | ht, θ̂

(ν)

t

)
ln℘ (ht, l | θ)− ln℘

(
θ | θ̂t−1

)

 , (3.74)

previously introduced by (3.6). The definition and actual composition of the prior
term ℘(θ | θ̂t−1) := ℘( Sθ | Sθ̂t−1)℘(Bθ | Bθ̂t−1) was already presented by Section 3.3.4 and
Section 3.4.1.

In the following, we define the remaining terms of the optimization function and give
the detailed description of the single components of the optimization procedure. This in-
cludes the description of the estimation step (processing step (IV)) and the specific definition

of the posterior probabilities P (l | ht, θ̂
(ν)

t ) in Section 3.5.1 as well as the description of
the minimization step (processing step (V)) and the specific definition of the complete-data
likelihood ℘ (ht, l | θ) in Section 3.5.2.

The total procedure is summarized in Algorithm 3. For further details on the general
principles of the EM-algorithm, we refer to Section 2.6. The iterative procedure is initialized

with the approximate parameter set θ̂
(0)

t which is derived from the prediction step described
in Section 3.4.2. Figure 3.20 provides an example depicting the intermediate results after
estimation and maximization step for subsequent iterations in order to illustrate the general
idea of the iterative procedure.

As a final step for each iteration of the EM-algorithm, a self diagnostic check is per-
formed (processing step (VI)). This includes the evaluation of the current model with respect
to termination criteria in order to check if another iteration is necessary. Further, the validity
of the current model with respect to the model assumptions is validated for two reasons:

• To determine an appropriate stochastic model for temporal filtering of the boundary

spline embodied by the choice of the noise value Bσ
(ν+1)
ri,t for the residual term (3.66).

• To trigger a possibly necessary reinitialization of the total system causing a the model
to be recomputed from scratch in the next frame.

The criteria and single parts of this processing step are discussed in Section 3.5.3

3.5.1 Expectation Step (Posterior Distribution of the Latent Variables)

The expectation step embodies the evaluation of the posterior probabilities P
(
l | ht, θ̂

(ν)

t

)
for

every possible assignment of the latent variables l ∈ L. We define this probability by means
of a Conditional Random Field (see Section 2.4.1.2) aligned to the DEM’s grid structure and
assume the posterior to factorize into a product of unary and binary terms

P
(
l | ht, θ̂

(ν)

t

)
∼

∏

(ij)∈D

Ψ
(
lij | hij,t, θ̂

(ν)

t

) ∏

(ij,i′j′)∈N 4

Φ
(
lij , li′j′ | hij,t, hi′j′,t

)
. (3.79)

The symbol N 4 denotes the set of index tuples (ij, i′j′) defining all neighbors out of the
4-neighborhood of the grid. The conditional independence properties of the CRF are illus-
trated by the respective graphical model shown in Figure 3.21.
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Start with the initial setting for the parameters θ̂
(0)

t determined in the prediction step;
repeat

Estimation step
Evaluate posterior probabilities for all possible labelings l ∈ L ;
This is approximated by the product of the local marginals

P
(
l | ht, θ̂

(ν)

t

)
∼

∏

(ij)∈D

P
(
lij | ht, θ̂

(ν)

t

)
(3.75)

computed via the Sum-Product algorithm, as described in Section 3.5.1.
Minimization step

Estimate the best parameters for the environment model

θ̂
(ν+1)

t = argmin
θ

[
−
∑

l∈L
P
(
l | ht, θ̂

(ν)

t

)
ln℘ (ht, l | θ)− ln℘

(
θ | θ̂t−1

)]
; (3.76)

As described in Section 3.5.2, this is equivalent to independently estimate the
best parameters for the street surface and the street boundary respectively:

• Estimate Sθ̂
(ν+1)

t =

argmin
Sθ


−
∑

(ij)∈D

∑

lij∈Ch
P
(
lij | ht, θ̂

(ν)

t

)
ln℘

(
hij,t | lij , Sθ

)
− ln℘

(
Sθ | Sθ̂t−1

)

;

(3.77)

• Estimate Bθ̂
(ν+1)

t =

argmin
Bθ


−
∑

(ij)∈D

∑

lij∈Ch
P
(
lij | ht, θ̂

(ν)

t

)
lnP

(
lij | Bθ

)
− ln℘

(
Bθ | Bθ̂t−1

)

;

(3.78)until Convergence criterion is fulfilled ;

Algorithm 3: EM-algorithm for environment model estimation. Note that we address
a minimization task and, thus, refer to the second step as minimization step rather than
as maximization step.
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(a) Initial boundary and labeling

(b) Expectation step, iteration 1

(c) Expectation step, iteration 2

(d) Expectation step, iteration 3

(e) Minimization step, iteration 1

(f) Minimization step, iteration 2

(g) Minimization step, iteration 3

Figure 3.20: Example demonstrating the principle of the presented EM algorithm. The algorithm starts
with an initial guess about the class decisions and model parameters, as plotted in the top figure. The initial
guess is retrieved from the last frame’s result via the prediction step (Section 3.4.2) or from the initialization
step (Section 3.4.2.3). The estimation step (Section 3.5.1) evaluates the posterior probability of all possible
assignments for the latent variables l based on the relation of the currently estimated model parameters and
observed elevation values. The respective most probable assignment is depicted in the figures of the left
column. The minimization step (Section 3.5.2) comprises the estimation of the model parameters, namely the
street surface and boundary spline control points, based on the current posterior probabilities. The respective
estimated street boundaries are plotted as orange lines.
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Bθ̂
(ν)

t

Sθ̂
(ν)

t

lij

hij,t

Figure 3.21: Graphical model describing the conditional independence properties of (3.79) in the estimation
step. Dark shaded nodes are considered as observed, while bright shaded notes are unobserved. This means,

the incomplete dataset ht as well as the model parameters θ̂
(ν)

t estimated in the previous iteration are observed,
while only the latent variables l are unobserved. For simplification the model is depicted for a 2 × 2 subset
of DEM grid cells. Note, since the model parameters are observed, the latent variables are conditional
independent of the old model parameters estimated in the previous frame θ̂t−1 due to the global Markov
property (see Section 2.4.1.1). Thus, we omit the nodes for the old parameters in comparison to the graphical
model of the complete system presented in Figure 3.3.

Unary Terms: The unary terms represent the influence of the observation likelihoods
governed by the mixture distribution (3.21) on the assignment decision and read as

Ψ
(
lij | hij,t, θ̂

(ν)

t

)
= P

(
lij | Bθ̂

(ν)

t

)
℘
(
hij,t | lij , Sθ̂

(ν)

t

)
. (3.80)

For clarification, depending on the assignment of lij , P ( lij | Bθ̂
(ν)

t ) is evaluated

via (3.29), (3.30) or (3.31), while ℘(hij,t | lij , Sθ̂
(ν)

t ) is evaluated via (3.24), (3.25), or (3.26).

This yields the following properties induced by the unary terms for the individual class
assignment of a cell (ij) ∈ D:

(a) The smaller the vertical distance of the cell’s height measurement hij,t to the
currently estimated street surface Sf , the more likely is the cell assigned to
the class street.

This property is encoded by the likelihood of the class street

℘
(
hij,t | lij = street, Sθ̂

(ν)

t

)
= G

(
hij,t | Sf

(
xij ,

Sθ̂
(ν)

t

)
, Sσ

2
hij,t

)
(3.81)

defined in (3.24) and becomes explicit when comparing to the likelihood functions of
the remaining classes in Figure 3.16.

(b) The position of the current boundary spline estimate Bfy(βi,
Bθ̂

(ν)

t ) and the

local slope ŵ
(ν)
i,t of the sigmoid function (3.33) defines the area of region

competition between street and adjacent.



3.5. MODEL ESTIMATION VIA EM-ALGORITHM 91

From (3.31) to (3.33) we obtain the spatial prior of the class adjacent

P
(
lij = adjacent | Bθ̂(ν)

t

)
=

1

1 + exp
(
−ŵ(ν)

i,t

(
yij − Bfy

(
βi,

Bθ̂
(ν)

t

))) (3.82)

P
(
lij 6= adjacent | Bθ̂(ν)

t

)
= 1− 1

1 + exp
(
−ŵ(ν)

i,t

(
yij − Bfy

(
βi,

Bθ̂
(ν)

t

))) (3.83)

modeled by the sigmoid function depicted in Figure 3.17. In the vicinity of the sig-
moid’s inflection point Bfy the influence of (3.82) and (3.83) on the unary terms (3.80)
is small. This allowa for a region competition of the classes street and outlier versus
adjacent based on the likelihood functions (3.24),(3.25) and (3.26). On the contrary,
with increasing distance to the inflection point the spatial prior terms (3.82) and (3.83)
converge to the value 1 or 0, respectively. This suppresses the influence of the likeli-
hood terms and, thus, restricts the area of region competition. The magnitude of the

restriction is governed by the slope parameter of the sigmoid ŵ
(ν)
i,t .

Note, the values of the slope parameters result from the previous minimization step.
Their computation is described in Section 3.5.2.2 in the context of the estimation of the
boundary parameters via logistic regression. In the initial iteration, they are defined

by the fixed value ŵ
(0)
i,t := 2.

(c) Single cells in front of the current border with height measurement deviating
from the current street surface are most likely assigned to the class outlier.

As described in (b), the spatial prior equally favors the classes street and outlier on
the near side of the boundary spline, while suppressing class adjacent. Therefore, the
classes street and outlier compete based on their likelihood functions (3.24) and (3.25)
which are given by Gaussian distributions centered at the same mean and governed by
their respective standard deviations Sσhij,t and Oσhij,t . By definition of Oσhij,t , the
class outlier becomes more likely than class street in case the distance of the local height

measurement hij,t to the local height of the estimated street surface Sf
(
xij ,

Sθ̂
(ν)

t

)

exceeds three times the standard deviation for height measurements of the class street

∣∣∣hij,t − Sf
(
xij ,

Sθ̂
(ν)

t

)∣∣∣ > 3 Sσhij,t . (3.84)

Briefly speaking, the relation of both likelihoods is

℘
(
hij,t | lij = outlier, Sθ̂

(ν)

t

)



> ℘

(
hij,t | lij = street, Sθ̂

(ν)

t

)
, if (3.84) is true,

≤ ℘
(
hij,t | lij = street, Sθ̂

(ν)

t

)
, if (3.84) is false.

(3.85)

Figure 3.16 illustrates this relation showing the likelihood of the class outlier
to exceed the likelihood of the class street for values of h beyond the interval[
Sf
(
xij ,

Sθ̂
(ν)

t

)
± 3 Sσhij,t

]
.

Note, neglecting the remaining components of the unary and binary terms, this
property implicitly represents a 3-sigma outlier test, i.e. a cell is classified as outlier if
the local height measurement exceeds the 3-sigma interval around the local height of
the estimated street surface.
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Binary Terms: The binary terms Φ introduce prior knowledge on the neighborhood rela-
tions regarding the cell assignments. These prior assumptions are:

• The segmentation is assumed to be smooth and class transitions are preferred at height
discontinuities.

• The class outlier is assumed to occur occasionally making two outlier cells unlikely to
be neighbors.

The first assumption is modeled by favoring the assignment of the same labels via a data
dependent Potts model. Neighboring cells are the more likely to belong to the same class the
smaller the weighted difference of their height observations

Φ
(
lij = li′j′ 6= outlier | hij,t, hi′j′,t

)
= 1 (3.86)

Φ
(
lij = li′j′ = outlier | hij,t, hi′j′,t

)
= 0.1 (3.87)

Φ
(
lij 6= li′j′ | hij,t, hi′j′,t

)
= 1− exp

(
−1

2

(
hij,t − hi′j′,t

)2

σ2
hij,t

+ σ2
hi′j′,t

)
. (3.88)

The second assumption is modeled by a significantly smaller value in (3.87) compared
to (3.86). Figure 3.22 depicts examples for the binary terms.

 

 

Φ (lij,t 6= li′j′,t | hij,t, hi′j′,t)

Φ
(
lij,t = li′j′,t = ch2 | hij,t, hi′j′,t

)
Φ
(
lij,t = li′j′,t 6= ch2 | hij,t, hi′j′,t

)

hij,t − hi′j′,t [m]
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

1

2

Figure 3.22: Example for the binary potentials Φ. Class changes are punished if the height difference of
neighboring cells is small. The punishment nearly vanishes at discontinuities exceeding 10 cm in height.
Further, cells assigned to the class outlier are unlikely to be neighbors.

Inference As the exact evaluation for each possible assignment is not feasible considering
the background of a real-time application, we approximate the posterior by the product of
the marginals of the single cell assignments

P
(
l | ht, θ̂

(ν)

t

)
≈

∏

(ij)∈D

P
(
lij | ht, θ̂

(ν)

t

)
. (3.89)

Thus, we can make use of the simplified formulation of the EM algorithm described in Sec-
tion 2.6.2.

To estimate the marginals, we employ Sum-Product algorithm (Loopy Belief Propaga-
tion), as described for example in [MacKay, 2003, pp. 334 to 340].

An alternative to the Sum-Product algorithm would be to solve for the most probable
assignment, e.g. via Graph Cuts or Max-Product algorithm, and approximate the posterior
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distribution via local marginalization in a similar way. However, the decision for Sum-Product
algorithm is based on the fact that this algorithm can be implemented efficiently exploiting the
potential for parallel processing of the multi-core processor architecture of today’s computers
which allows for the desired real time performance.

Note, that although the presented approach yields an approximative solution, our exper-
iments show a considerable improvement compared to a cell-wise classification where neigh-
borhood relations are neglected (see Section 4.3.4.3).

3.5.2 Minimization Step (Estimation of the Model Parameters)

The minimization step (processing step (V)) embodies the actual estimation of the model
parameters. With the prior term and the posterior probabilities defined, the only term
missing for the evaluation of the optimization function (3.74) is the complete-data likeli-
hood ℘ (ht, l | θ).

The complete-data likelihood represents the validity of the environment model defined
by the mixture distribution (3.21) for each cell of the DEM. More precisely, the likelihood
is defined in terms of the spatial class priors P

(
lij | Bθ

)
embodied by (3.29) to (3.31) and

the local likelihoods of the class assignments with respect to the height measurements (3.24)
to (3.26) and reads as

℘ (ht, l | θ) :=
∏

(ij)∈D

℘
(
hij,t, lij | Bθ, Sθ

)
(3.90)

:=
∏

(ij)∈D

P
(
lij | Bθ

)
℘
(
hij,t | lij , Sθ

)
. (3.91)

Substituting the factorization of the joint probability (3.90) and the approximation of the
posterior of the latent variables (3.89) into the optimization function (3.74) yields

θ̂
(ν+1)

t ≈ argmin
θ


−

∑

l∈L

∏

(ij)∈D

P
(
lij | ht, θ̂

(ν)

t

) ∑

(ij)∈D

ln℘ (hij,t, lij | θ)− ln℘
(
θ | θ̂t−1

)

 .

(3.92)

Employing the simplified formulation of the maximization step given in Section 2.6.2, the
estimation task simplifies to

θ̂
(ν+1)

t = argmin
θ


−

∑

(ij)∈D

∑

lij∈Ch
P
(
lij | ht, θ̂

(ν)

t

)
ln℘ (hij,t, lij | θ)− ln℘

(
θ | θ̂t−1

)

 .

(3.93)
Finally, substituting the factorization (3.91) and the assumption of independent pri-
ors ℘(θ | θ̂t−1) := ℘( Sθ | Sθ̂t−1)℘(Bθ | Bθ̂t−1), the total estimation task decomposes into
independent estimation tasks for the street surface parameters

Sθ̂
(ν+1)

t = argmin
Sθ


−

∑

(ij)∈D

∑

lij∈Ch
P
(
lij | ht, θ̂

(ν)

t

)
ln℘

(
hij,t | lij , Sθ

)
− ln℘

(
Sθ | Sθ̂t−1

)



(3.94)
and the street boundary parameters

Bθ̂
(ν+1)

t = argmin
Bθ


−

∑

(ij)∈D

∑

lij∈Ch
P
(
lij | ht, θ̂

(ν)

t

)
lnP

(
lij | Bθ

)
− ln℘

(
Bθ | Bθ̂t−1

)

 .

(3.95)
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Keep in mind that we already observed this decomposition property in Section 3.1 in the
discussion of the conditional independence properties of the complete system defined by the
graphical model depicted in Figure 3.3(c).

The following paragraphs give a detailed description of both estimation tasks, which
both appear in the manner of a MAP estimation task in a Gauss-Markov model (see Sec-
tion 2.3.2.2). The paragraphs include the explicit formulation of the functional and stochastic
models as well as prior assumptions and matrix dimensions.

3.5.2.1 Estimation of the Street Surface Parameters

The MAP estimation of the street surface parameters for the current itera-
tion ν + 1 embodies the determination of the minimum argument of (3.94). Remind
that ℘

(
hij,t | lij = adjacent, Sθ

)
is defined by the uniform distribution (3.26) and, thus,

yields a constant value for the considered height interval h = [−1.5, 1.5] m. Therefore, the
term is independent of the unknown parameters Sθ and can be ignored in the estimation
yielding the simplified estimation task

Sθ̂
(ν+1)

t = argmin
Sθ

[
−
∑

(ij)∈D

P
(
lij = street | ht, θ̂

(ν)

t

)
ln℘

(
hij,t | lij = street, Sθ

)

+ P
(
lij = outlier | ht, θ̂

(ν)

t

)
ln℘

(
hij,t | lij = outlier, Sθ

)

− ln℘
(
Sθ | Sθ̂t−1

)]
. (3.96)

Put simply, the surface parameters are estimated from the height measurements of all cells
located in the drivable free-space region (represented by street and outlier) weighted by the
probability that they belong to this region. This matches the key idea for the estimation of
the street surface parameters proposed in Section 3.1.

For illustration purpose, Figure 3.23 depicts the dependency structure of the involved
variables.

Sθ̂t−1

Sθ

l
(ν)
ij

hij,t

Figure 3.23: Graphical model depicting the conditional independence properties of the variables involved in
the estimation of the surface parameters. As in the graphical representation of the complete system presented
in Figure 3.3, only a 2 × 2 subset of DEM grid cells is depicted and dark shaded nodes are considered as
observed, while bright shaded notes are unobserved. Note, since both the latent variables and the height
measurements are observed, the surface parameters are conditional independent of the boundary parameters
due to the global Markov property (see Section 2.4.1.1). Thus, the boundary parameters are omitted in the
graph since they do not participate in the estimation of the surface parameters.
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Since the remaining distributions in 3.96, i.e. the distribution of the height observations
and the distribution of the fictitious observations forming the prior term 3.35, are given by
normal distributions, we formulate the MAP-estimation task in terms of a Gauss-Markov
model similar to (2.45).

The likelihood term is defined by the respective likelihood terms of the surface

model (3.24) and (3.25) reweighted by the posterior probabilities P
(
lij,t | ht, θ̂

(ν)

t

)
. The

prior terms model the assumptions of spatial and temporal smoothness, as described in Sec-
tion 3.3.4.2 and Section 3.4.1.1. In combination, we obtain the linear functional model




...
hij,t

...

...
hij,t

...
Sz

temp
t

Sz
spat




+ Sv
(ν+1)
t =




...
Sf
(
[xij , yij ]

T, Sθ
)

...

...
Sf
(
[xij , yij ]

T, Sθ
)

...
Sk

temp
(
Sθ, Sθ̂t−1

)

Sk
spat ( Sθ

)




. (3.97)

More precisely, substitution of the respective definitions, i.e. (3.22) for Sf , (3.36) for the
spatial prior, and (3.46) for the temporal prior yields

IJ





IJ





Q





3Q








...
hij,t

...

...
hij,t

...

...
h−q,t

...

...
0
0
0
...




︸ ︷︷ ︸
Szt

+ Sv
(ν+1)
t =




...
. . . Bn,2(xij , yij) . . .

...

...
. . . Bn,2(xij , yij) . . .

...

...
. . . Bn,2(x−q,t, y

−
q,t) . . .

...

...

. . . 1√
2
B(2,0)
n,2 (xq, yq) . . .

. . . B(1,1)
n,2 (xq, yq) . . .

. . . 1√
2
B(0,2)
n,2 (xq, yq) . . .

...




︸ ︷︷ ︸
SA




...
Shn

...




︸ ︷︷ ︸
Sθ

, (3.98)

with the (2IJ + 4Q×N) design matrix SA whose entries are given by second order B-spline
basis functions Bn,2 and their derivatives.
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The stochastic model Sv
(ν+1)
t ∼ SΣ

(ν+1)
ztzt is governed by the covariance matrix

SΣ
(ν+1)
ztzt =




. . .
Sσ

2

hij,t

P

(
lij=street|ht,θ̂

(ν)

t

)
. . .

︸ ︷︷ ︸
IJ × IJ

. . .
Oσ

2

hij,t

P

(
lij=outlier|ht,θ̂

(ν)

t

)
. . .

︸ ︷︷ ︸
IJ × IJ

Σh−t h
−
t︸ ︷︷ ︸

Q×Q
1
Sλ

I 3Q

︸ ︷︷ ︸
3Q× 3Q




,

(3.99)

where unprinted elements equal zero. The variances of the blocks dedicated to the height
observations correspond to the different variances of the elevation models for street and outlier
measurements defined in Section 3.3.2.1. The blocks dedicated to the fictitious observations
of the prior terms are adopted from the respective definitions (3.49) and (3.37). Note that

the posterior probabilities P
(
lij | ht, θ̂

(ν)

t

)
appear in the denominator since the covariance

matrix represents the inverse of the weight matrix.

The best estimate of the current surface parameters Sθ̂
(ν+1)

t and the corresponding pre-

cision
(
SΣ

θ̂tθ̂t

)(ν+1)
are obtained by the calculus described in Section 2.3.2.2. An example

for an estimated surface comprising the participating 3d point entities is illustrated in Fig-
ure 3.24.

3.5.2.2 Estimation of the Street Boundary Parameters

This section explains the estimation of the boundary parameters via the optimization func-
tion (3.95) as well as the estimation of the slope parameters ŵ(ν+1) required for the evaluation
of the unary terms in the subsequent expectation step. For a better understanding of the
estimation procedure, let us first discuss the key idea in an illustrative manner before we
consider the mathematical derivation.

By definition, the street boundary spline represents the horizontal delimiter of the drivable
free-space, i.e. the separation of the class street (including outlier) and the class adjacent.
Put simply, the street boundary represents the decision boundary between the class adjacent
and the remaining classes. Thus, given a certain class assignment of the DEM cells l, the key
idea is to estimate the decision boundary based on the model introduced by the sigmoid func-
tions P (lij = adjacent | Bθ) = gi(

Bθ, yij) in Section 3.3.3.2. The decision boundary along
each grid column (i.e. the 0.5-level-set of the respective sigmoid) is defined by the position
of the boundary spline evaluated at the respective spline parameter value βi. This condition
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(a) Example scenario and most probable labeling

(b) Perspective view on estimated surface (c) Bird’s-eye view on estimated surface

Figure 3.24: Example of an estimated street surface. The example scenario is depicted in (a) including the
image projection of the DEM grid points. The colors encode the determined most probable labeling. The
remaining figures depict the geometric entities participating in the estimation of the street surface described
by the functional model (3.98) as well as the estimated street surface itself (green surface). Figure (c) shows a
bird’s-eye view with the horizontal positions of the entities, while Figure (b) additionally shows their vertical
component, if available. The entities are given by: 1. The DEM grid points containing the current height
observations Xij,t = [xij , yij , hij,t]

T plotted as red dots. Note that only those points are plotted, which
participate in the estimation process, i.e. those that are classified as street or outlier. 2. The horizontal
sample positions xq = [xq, yq]

T used to apply the curvature constraint and to predict the surface information
for the next time step. The sample points are marked by black crosses and omitted in the perspective view since
they lack a vertical component. 3. The predicted sample points from the last time step X−q,t = [x−q,t, y

−
q,t, h

−
q,t]

T

are plotted as blue crosses. Note that their horizontal position corresponds to xq in the previous time step
transformed to the current system via ego-motion information. 4. The estimated control points Shn,t of the
spline surface. The maximum position xn of the respective B-spline basis function (see Figure 2.6(a)) is used
to form the horizontal component of the respective plotted 3d point Xn,t. These points are marked by orange
stars. Additionally, the spline section borders are drawn as gray lines in the bird’s-eye view.

yields a lateral connection of the grid columns and embodies the functional relation of the
latent variables and the street boundary parameters. Figure 3.17 visualizes the interaction
of the boundary spline and the sigmoid functions.

Note that given l, the estimation of the street boundary parameters is independent of the
street surface parameters and the current height observations, as indicated by the graphical
model presented in Figure 3.25.

In next paragraph, the optimization function (3.95) is reformulated in the manner of a
logistic regression task in order to demonstrate the applicability of the just presented idea.
The subsequent paragraphs present two strategies for the actual estimation of the boundary
and slope parameters. Both strategies are based on the calculus of logistic regression presented
in Section 2.5 in combination with the least squares procedure explained in Section 2.3.2.2.
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Bθ̂t−1

Bθ

l
(ν)
ij

Figure 3.25: Graphical model depicting the conditional independence properties of the variables involved
in the estimation of the boundary parameters. As in the graphical representation of the complete system
presented in Figure 3.3, only a 2×2 subset of DEM grid cells is depicted and dark shaded nodes are considered
as observed, while bright shaded notes are unobserved. Note, in case the latent variables are observed, the
boundary parameters are conditional independent of the height measurements and the surface parameters due
to the global Markov property (see Section 2.4.1.1). Thus, these entities do not participate in the estimation
of the boundary parameters and are omitted in the graph.

Transformation of the Optimization Task into an Instance of Logistic Regression:
The MAP estimation of the street boundary parameters for the current iteration ν + 1 em-
bodies the determination of the minimum argument of (3.95). From the definition of the
probabilities P

(
lij | Bθ

)
given by (3.29), (3.30) and (3.31) follows the identity

P
(
lij = street | Bθ

)
= P

(
lij = outlier | Bθ

)
=

1− P
(
lij = adjacent | Bθ

)

2
(3.100)

=
P
(
lij 6= adjacent | Bθ

)

2
. (3.101)

With this identity, we can reformulate the optimization task (3.95) expanding the sum over
the possible class assignments

Bθ̂
(ν+1)

t = argmin
Bθ

[
−
∑

(ij)∈D

P
(
lij = street | ht, θ̂

(ν)

t

)
ln
P
(
lij 6= adjacent | Bθ

)

2

+ P
(
lij = outlier | ht, θ̂

(ν)

t

)
ln
P
(
lij 6= adjacent | Bθ

)

2

+ P
(
lij = adjacent | ht, θ̂

(ν)

t

)
lnP

(
lij = adjacent | Bθ

)

− ln℘
(
Bθ | Bθ̂t−1

)]
. (3.102)

Finally, exploiting the fact that the posterior probabilities sum to 1 with respect to the
classes, i.e.

P
(
lij = street | ht, θ̂

(ν)

t

)
+ P

(
lij = outlier | ht, θ̂

(ν)

t

)
= P

(
lij 6= adjacent | ht, θ̂

(ν)

t

)
,

(3.103)
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allows to further simplify the formulation by summarizing the first both terms of the sum.
We obtain

Bθ̂
(ν+1)

t = argmin
Bθ

[
−
∑

(ij)∈D

P
(
lij = adjacent | ht, θ̂

(ν)

t

)
lnP

(
lij = adjacent | Bθ

)

+ P
(
lij 6= adjacent | ht, θ̂

(ν)

t

)
lnP

(
lij 6= adjacent | Bθ

)

− ln℘
(
Bθ | Bθ̂t−1

)]
. (3.104)

Note that the factor 1/2 vanishes since the logarithm yields a constant additive term which
is independent of Bθ.

As defined by (3.31) to (3.33), the probability P (lij = adjacent | Bθ) is given by the local
evaluation of the sigmoid function

gi
(
Bθ, yij

)
=

1

1 + exp
(
−wi

(
yij − Bfy

(
βi,

Bθ
))) . (3.105)

Thus, (3.104) roughly corresponds to a logistic regression task with non deterministic tar-
gets (see Section 2.5.4) for each longitudinal grid column, with targets defined by

tij =

{
1, if lij = adjacent

0, if lij 6= adjacent
. (3.106)

The only differences to the task presented in Section 2.5.4 are given by the additional
prior information ℘(Bθ | Bθ̂t−1) and the explicit representation of the decision boundary
in gi

(
Bθ, yij

)
via Bfy in comparison to the logistic regression model (2.59).

Estimation Strategies: We present two approaches for the estimation of the boundary
spline which both employ logistic regression for the estimation of the decision boundary and
the slope parameters. For detailed information about the principles of logistic regression, we
refer to Section 2.5.

The first approach decomposes the task in three successive steps with the first both of
them illustrated in Figure 3.26. In the first step, the decision boundary is computed for each
DEM y-column independently using logistic regression. This yields one observation of the
form

(
x+
i,t

)(ν+1)
+ Bv

(ν+1)
i,t = Bf

(
βi,

Bθ
(ν+1)
t

)
(3.107)

for every y-column i. In the second step, this observation model is combined with the prior
assumptions ℘(Bθ | Bθ̂t−1) to perform MAP estimation of the unknown parameters in a

weighted least squares sense. The final step re-estimates the slope parameters ŵ(ν+1) in order
to adapt them to the new decision boundary induced by the estimated boundary spline. The
effect of this adaption is illustrated in Figure 3.27.

As an alternative to this three-step approach we present an one-step approach which
demonstrates how to reformulate the logistic regression task and directly integrate it into the
MAP estimation.

However, we prefer the three-step approach over the one-step approach due to several
reasons:
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• We observed a poor convergence behavior of the one-step approach especially in the
case of imprecise approximate values. We assume this behavior to be caused by the
high-grade non-linearity of the functional model.

• It requires a high amount of additional regularization effort in the one-step approach
to keep the estimated boundary inside the range of the grid boundaries [ymin, ymax].

• The explicit formulation of the decision boundary via the observations x+
i,t in the three-

step approach allows for consideration of the variation of the decision boundary over
successive EM iterations, as described in (3.111).

• The reduced complexity of the equation system as well as the better convergence be-
havior of the three-step approach result in reduced computational effort.

Thus, although approximative, we deem the three-step approach to be more suitable for prac-
tical usage. Nevertheless, we also present the one-step approach for the sake of completeness
but will not consider it in the remainder of this thesis.

The following paragraphs describe both approaches in detail beginning with the three-step
approach.

Three-Step Approach for the Estimation of the Boundary Spline:

Step 1, Boundary Sample Observations from Logistic Regression: As de-

scribed above, the first step of the approach determines a set of samples
(
x+
i,t

)(ν+1)
which rep-

resent the most likely separation between the class set {street, outlier} and the class adjacent
along the longitudinal columns of the DEM grid, as depicted in Figure 3.26(a). The samples
are computed for each grid column independently via logistic regression using the procedure
presented in Section 2.5. For this purpose, we introduce target values tij = 0 for all cells
assigned to street or outlier and tij = 1 for those assigned to adjacent. The y-coordinate
of the cell centers act as respective feature positions with uncertainties σyij embodied by the
discretization uncertainties (3.14).

As result, we obtain the distance
(
y+
i,t

)(ν+1)
of the decision boundary for each longitudinal

column of the DEM i = 1 . . . I.

The corresponding x coordinates follow from exploiting the relation (3.7) of the cell co-
ordinates. The corresponding image row coordinate ui and the principle distance c and read
as

(
x+
i,t

)(ν+1)
=
ui
c

(
y+
i,t

)(ν+1)
. (3.108)

In combination we achieve the 2d-samples

(
x+
i,t

)(ν+1)
=



ui
c

(
y+
i,t

)(ν+1)

(
y+
i,t

)(ν+1)


 . (3.109)

Let us now consider the stochastic properties of the 2d-samples. The lateral precision
of each sample is governed by the local lateral discretization uncertainty of the DEM grid.
Considering the constant cell width du with respect to the image projection of the DEM
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(a) Boundary estimation step 1 (b) Boundary estimation step 2

Figure 3.26: Principle procedure of the proposed two-step approach for the estimation of the boundary
spline. The utilized scenario is illustrated in Figure 3.28(b). Figure (a) depicts the procedure for the first step.
For each y-column i (gray lines) a single sample position x+

i,t (black pluses) is computed via logistic regression
in order to define a separation along the y-column between cells assigned to street (green dots) or oultier (red
dots) and those assigned to adjacent (blue dots). By means of the right most sample, the derived lateral and
longitudinal uncertainties σxi,t and σyi,t are shown schematically. Figure (b) illustrates the second step. The

computed set of sample positions is used to estimate the control points Bθt governing the boundary spline.
The estimated control points are plotted by orange crosses. The estimated boundary spline is drawn in orange
color. Note that only a sparse subset of y-columns and DEM cell centers is plotted due to visualization issues.

grid, as depicted in Figure 3.7(a), the discretization uncertainty is given by σu = du√
12

. Error

propagation via (3.109) results in the lateral precision of the samples

(
σ

(ν+1)

x+i,t

)2

=




(
y+
i,t

)(ν+1)

c




2

σ2
u. (3.110)

We define the precision in longitudinal direction by means of two terms

(
σ

(ν+1)

y+i,t

)2

=
(
σ(ν+1)
yi,t

)2
+

1

ν + 1

ν+1∑

v=1

((
y+
i,t

)(v)
−
(
y+
i,t

)(v+1)
)2

. (3.111)

The first term models the precision obtained from logistic regression, as described in (2.82).
We add the second term to consider the variation of the samples over the EM iterations.
This causes observations which strongly vary over the iterations, such as spline regions still
propagating from the initialization, to obtain a high uncertainty value.

Samples exceeding the longitudinal grid boundaries [ymin, ymax] are set to ymin and ymax,
respectively, and are assigned with an fictitious uncertainty value of 1 m for the longitudinal
component.

In summary, linear error propagation yields the covariance matrix of the 2d samples

(
Σx+i,tx

+
i,t

)(ν+1)
=

[
(y+i,t)

(ν+1)

c
ui
c

0 1

]

d2u
12 0

0

(
σ

(ν+1)

y+i,t

)2



[

(y+i,t)
(ν+1)

c
ui
c

0 1

]T
, (3.112)

with the Jacobians derived from (3.109).
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Step 2, Boundary Spline Estimation: In the second step, the control points of the

boundary spline Bθ
(ν+1)
t are estimated in a maximum a posteriori sense (see Section 2.3.2.2)

combining the observation model presented in (3.107) with the temporal and spatial prior
assumptions defined in Section 3.4.1.2 and Section 3.3.4.2. This means that the estimated
spline shall meet the following requirements:

• It shall sufficiently describe the samples
(
x+
i,t

)(ν+1)
determined in the first step to

meet the observation model. As stated above, these samples are assigned to the spline
parameter values βi, with i = 1 . . . I, since they are observed along the longitudinal
columns of the DEM.

• It shall sufficiently describe the sample points x−i,t, defined in (3.62), to meet the tem-
poral prior condition (3.54). These points are computed from the intersection of the
longitudinal DEM columns and the boundary spline estimated in the previous time step
and, thus, also correspond to the spline parameter values βi.

• Its curvature κβa at the spline parameter values βa, with a = 1 . . . A, shall be small to
meet the spatial prior condition defined in (3.39).

In combination the observation model and the priors yield the nonlinear equation system

2I





2I





A








...(
x+
i,t

)(ν+1)

...

...
x−i,t

...

...
0
...




︸ ︷︷ ︸
Bz

(ν+1)
t

+Bv
(ν+1)
t =




...
Bf
(
βi,

Bθ
)

...

...
Bf
(
βi,

Bθ
)

...

...
κβa

(
Bθ
)

...




︸ ︷︷ ︸
f
(
Bθ
)

, (3.113)

containing 4I +A equations. The stochastic model is given by the covariance matrix

BΣ
(ν+1)
ztzt =




. . . (
Σx+i,tx

+
i,t

)(ν+1)

. . .
︸ ︷︷ ︸

2I × 2I (
Σx−t x

−
t

)(ν+1)

︸ ︷︷ ︸
2I × 2I

1
Bλ

IA
︸ ︷︷ ︸
A×A




. (3.114)
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The parameters Bθ̂
(ν+1)

t are estimated in a weighted least squares sense employing the Gauss-
Newton algorithm due to the non linearity of the problem, as described in Section 2.3.3.

Approximate values are given by the result of the previous EM iteration result Bθ̂
(ν)

t or,
in the very first iteration of each time step, obtained from the prediction step described in
Section 3.4.2.2. The respective (4I + A × 2I) design matrix for iteration υ which embodies
the Jacobian of (3.113) reads as

BA(υ)
=




...
...

B1,3(βi) 0
0 B1,3(βi)

. . .
BM,3(βi) 0

0 BM,3(βi)
...

...
...

...
B1,3(βi) 0

0 B1,3(βi)
. . .

BM,3(βi) 0
0 BM,3(βi)

...
...

...
...

∂κβa

∂ Bx1

∣∣∣∣
Bθ=Bθ̂

(υ)

∂κβa

∂ By1

∣∣∣∣
Bθ=Bθ̂

(υ)
. . .

∂κβa

∂ BxM

∣∣∣∣
Bθ=Bθ̂

(υ)

∂κβa

∂ ByM

∣∣∣∣
Bθ=Bθ̂

(υ)

...
...




.

(3.115)

The entries embody the partial derivatives of the boundary spline function (3.28) and the
partial derivatives of the curvature given by (2.110) and (2.111).

Step 3, Adaption of the Slope Parameters: The final step embodies the estima-

tion of the sigmoid slope parameters ŵ
(ν+1)
t . The slope parameters can be seen as control

parameters for an adaptive step size modulation for the iterative update of the boundary
spline. Considering the definition of the unary terms in Section 3.5.1, a lower slope param-
eter causes a lower influence of the spatial prior term in the subsequent estimation step of
the EM-algorithm, i.e. the area of region competition becomes larger. This in turn allows for
a larger shift of the boundary spline in the subsequent minimization step. Put simply, the
quality of the decision boundary governs the step size via the slope parameters.

Let us first discuss why we refrain from taking the slope parameters derived from the
logistic regression step (step 1). The adjusted boundary spline, which by definition repre-
sents the decision boundary between the class adjacent and the remaining classes, in general

differs from the samples
(
x+
i,t

)(ν+1)
derived in step 1. This means in particular that the

decision boundary along the grid columns, which is embodied by the local evaluation of the

spline Bf
(
βi,

Bθ̂
(ν+1)

t

)
, is shifted in comparison to the decision boundary obtained from the

logistic regression step. Since the slope of the logistic function is correlated to the quality of
the class separation given by the decision boundary, as illustrated in Figure 3.27, the slope
parameters estimated from the logistic regression step may be inappropriate.

The procedure for the estimation of the local slope parameter ŵ
(ν+1)
i,t corresponds to

the minimization of the original logistic regression cost function (2.94) keeping the decision

boundary y0 = Bf
(
βi,

Bθ̂
(ν+1)

t

)
fixed. This means, with the definition of the decision

boundary (2.61), we can reformulate the sigmoid function (2.59) in terms of the decision



104 CHAPTER 3. CONCEPT

y0Bfy

(
βi,

Bθ̂
(ν+1)

t

)

y[m]
6 8 10 12 14 16
0

0.5

1

y0

y[m]
6 8 10 12 14 16
0

0.5

1

Figure 3.27: Example plots describing the meaning of the slope of the sigmoid functions which represent
the posterior probability for the assignment of class adjacent. The functions are estimated from the targets
depicted by red crosses. The vertical axis describes the value of the targets ti,j and the sigmoid functions,
respectively. The two functions plotted by green dashed lines result from the logistic regression approach
presented in Section 2.5, while the blue line results from the adaption of the slope of the sigmoid function to

the shifted decision boundary Bfy(βi,
Bθ̂

(ν+1)

t ). Comparison of the functions reveals that the slope depends on
how well the decision boundary (0.5-level-set) separates the classes. In the upper figure the classes are perfectly
separable favoring a very step slope that is solely damped by the regularization term (see Section 2.5.3.3).
The lower figure demonstrates the obviously lower slope in case of non-smooth distribution of the targets.
The blue line in the upper figure depicts the adapted slope after shifting the decision boundary away from the
locally optimal position. The distinct difference of the slope motivates the additional effort of the adaption
step (step 3). Note that we used fixed targets for visualization issues. Actually, the information about the

targets is given by the probabilities for both possible assignment represented by P (lij = adjacent | ht, θ̂
(ν)

t )

and P (lij 6= adjacent | ht, θ̂
(ν)

t ) rather than by fixed values (see Section 2.5.4). However, the argumentation
does not change.

boundary

gi,t (wi, y) =
1

1 + exp
(
−wi

(
y − Bf

(
βi,

Bθ̂
(ν+1)

t

))) , (3.116)

with wi representing the only free parameter. Note that this corresponds to the definition
of gi(

Bθ, y) in (3.33).
With the shortcut gij,t := gi,t (wi, yij) the adapted cost function reads as

Ct(wi) =

J∑

j=1

−P
(
lij 6= adjacent | ht, θ̂

(ν)

t

)
ln
(
1− gij,t

)
− P

(
lij = adjacent | ht, θ̂

(ν)

t

)
ln gij,t.

(3.117)

Estimation of the slope parameters as minimum argument of the cost function

ŵ
(ν+1)
i,t = argmin

wi
Ct(wi) (3.118)

results in an iterative procedure which is quite similar to the one presented in Section 2.5.3.1
and derived analogously. The respective Jacobian and Hessian for the iterative update
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scheme (2.67) simplify to a first and second derivative of Ct with respect to the slope param-
eter and read as

JCt(wi) =

J∑

j=1

(
gij,t − P

(
lij = adjacent | ht, θ̂

(ν)

t

))
yij (3.119)

and

HCt
(wi) =

J∑

j=1

gij,t
(
1− gij,t

)
y2
ij . (3.120)

Finally, including the regularization procedure presented in Section 2.5.3.3, the Newton up-
date step follows as

ŵ
(υ+1)
i,t = ŵ

(υ)
i,t −

JCt
(
ŵ

(υ)
i,t

)
+ λŵ

(υ)
i,t

HCt

(
ŵ

(υ)
i,t

)
+ λ

, (3.121)

with the iteration counter υ and a small regularization parameter λ = 10−6.

One-Step Approach for the Estimation of the Boundary Spline: As an alternative
to the three-step approach, we could combine the regression and spline estimation steps in
a single adjustment based on the reformulated logistic model (3.116) treating Bθ as free pa-
rameters as well. This means, instead of using an intermediate representation given by spline
samples as in the three-step approach, we can directly estimate the unknown parameters,

i.e. the control points of the boundary spline Bθ̂
(ν+1)

t and the slope parameters ŵ
(ν+1)
t , from

the logistic model

g
(
wi,

Bθ, y
)

=
1

1 + exp
(
−wi

(
y − Bfy

(
βi,

Bθ
))) . (3.122)

and the information P
(
lij = adjacent | ht, θ̂

(ν)

t

)
about the targets

tij =

{
1, if lij = adjacent

0, if lij 6= adjacent
. (3.123)

Considering the interpretation of the logistic regression task as iterative re-weighted least
squares problem defined by the functional model (2.80), we achieve J observations per lon-
gitudinal grid column i = 1, . . . , I of the form

P
(
lij = adjacent | ht, θ̂

(ν)

t

)
+ vtij =

1

1 + exp
(
−wi

(
yij − Bfy

(
βi,

Bθ
))) (3.124)

yielding information about the slope parameters and the position of the boundary spline in

longitudinal direction. The stochastic model vtij ∼ N
(

0, σ
(υ)
tj

2
)

is governed by the uncer-

tainties (2.88), which need to be recomputed for each iteration υ of the non-linear estimation
procedure.

For the position of the boundary spline in lateral direction, let us consider the parame-
terization of the boundary spline along the horizontal axis of the image (u-axis) presented in
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Section 3.3.3.1. By definition, the image projection of the local evaluation of the estimated
boundary spline at the spline parameter values βi needs to be incident with the corresponding
image column ui. Exploiting the relation (3.7) of the horizontal coordinates in the elevation
map system to the image row coordinate ui and the principle distance c, we obtain I obser-
vations of the form

ui + vui = c
Bfx

(
βi,

Bθ
)

Bfy
(
βi,

Bθ
) (3.125)

for the lateral direction. The stochastic model vui ∼ N
(
0, σ2

u

)
describes the lateral dis-

cretization uncertainty of the DEM grid with respect to its image projection. Considering
the constant cell width du, the discretization uncertainty is given by σu = du√

12
.

The complete functional model follows from adding the temporal and spatial prior
terms (3.54) and (3.39) as well as regularization terms for the slope parameters wi and
reads as

I





IJ





2I





A





I








...

ui

...

...

P
(
lij = adjacent | ht, θ̂

(ν)

t

)

...

...
x−i,t

...

...
0
...
...
0
...




+ Bv =




...

c
Bfx

(
βi,

Bθ
)

Bfy
(
βi,

Bθ
)

...

...
1

1+exp
(
−wi

(
yij− Bfy

(
βi,

Bθ
)))

...

...
Bf
(
βi,

Bθ
)

...

...
κβa

(
Bθ
)

...

...
wi
...




. (3.126)
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The respective stochastic model is given by

Bv ∼ N




0,




d2
u

12
I I

︸ ︷︷ ︸
I × I

. . .

σ
(υ)
tj

2

. . .
︸ ︷︷ ︸

IJ × IJ (
Σx−t x

−
t

)(ν+1)

︸ ︷︷ ︸
2I × 2I

1
Bλ

IA
︸ ︷︷ ︸
A×A

1

λ
I I

︸︷︷︸
I × I







. (3.127)

The parameters of the boundary spline Bθ̂
(ν+1)

t and the slope parameters ŵ
(ν+1)
t are esti-

mated by the iterative procedure based on the Gauss-Newton algorithm presented in Sec-

tion 2.3.3. Note that the σ
(υ)
tj

2
are recomputed in every iteration υ.

Since we will not consider this estimation model in the remainder of this thesis, we refrain
from providing additional information about the linearization of the non-linear model.

3.5.3 Evaluation of the Estimated Model

As a final step in each iteration (processing step (VI)), we evaluate the estimated model
for self-diagnostic purpose pursuing two goals. First, we evaluate the local validity of the
estimated boundary model at the sample positions βi in order to determine the appropriate
model for temporal filtering and to provide a local confidence statement. Second, termination
criteria are evaluated examining whether the iterative process has converged or the estimated
model is degenerated and, thus, to decide whether to accept or decline the overall model.

3.5.3.1 Local Evaluation of the Boundary Spline

To obtain a statement on the local model validity, we consider the local configuration of

the three sample points provided by the estimated spline Bf
(
βi,

Bθ̂
(ν+1)

t

)
, the predicted

spline samples x−i,t and current decision boundary
(
x+
i,t

)(ν+1)
. More precisely, we compare
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and
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(3.129)

to the three empirically defined thresholds τ+
1 < τ+

2 and τ− and distinguish three cases:
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(a) Moving obstacle (b) Bridged gap

Figure 3.28: Two examples illustrating the three cases defined for local evaluation of the estimated boundary
spline. Spline regions representing static obstacles are painted in orange color, those representing non sta-
tionary obstacles or segments which slightly violate the model assumptions are drawn in yellow color. Invalid
parts are drawn in green color. Figure (a) shows an example for a moving obstacle. Note that the right side
of the car is classified as stationary since the car moves forward and, thus, its right side boundary remains
constant. Figure (b) shows an example of a gap between two obstacle which is bridged by the boundary spline
implying a local violation of the model assumptions.

(a) The distance between all three sample points is small, i.e. d+ < τ+
1 and d− < τ−. We

assume the local boundary is valid and describes a stationary object.

(b) The model is slightly violated or the boundary is not static, i.e. τ+
1 < d+ < τ+

2 or
(d+ < τ+

1 )∧ (d− < τ−). This case represents moving obstacles or situations with small
measurement errors or insufficient flexibility of the model.

(c) The model is significantly violated, i.e. d+ > τ+
2 . This is the case for severe vio-

lations of the model assumptions or if spline regions have not yet propagated to the
actual obstacle. Further, this case includes spline samples beyond the longitudinal grid

boundaries Bfy

(
βi,

Bθ̂
(ν+1)

t

)
/∈ [ymin, ymax].

Figure 3.28 shows two examples illustrating the presented cases. An example for a moving
obstacle is given in 3.28(a). Figure 3.28(b) shows a bridged gap between two obstacles. In
our experiments, we use the thresholds τ+

1 = .1 m, τ+
2 = .4 m and τ− = .1 m. In the first

iteration of each time step, the case decision is adopted from the respective nearest sample
point of the previous time step.

The case decision affects the local assignment of the appropriate model for temporal
filtering via the additive noise term Brt representing the local deviation from the model, as
defined in (3.66). We assume the local deviation for samples classified to case (a) to be small

and, thus, assign a small value of Bσ
(ν+1)
ri,t = 0.02 m to the respective samples. For those

classified to the remaining cases (b) and (c), we assign a larger value of Bσ
(ν+1)
ri,t = 0.4 m.

Although the presented evaluation method turned out to be suitable for most situations,
it purely relies on a heuristic making the development of a more sophisticated approach a
worthwhile goal for future work.

3.5.3.2 Termination Criteria

The iterative process of the EM-Algorithm is stopped if one of the following three termination
criteria is fulfilled:

• A maximum number of iterations νmax is reached.

• No label was changed in the last classification step.

• The estimated model is degenerated.
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In the last case, the system is reinitialized and the model is computed from scratch. We
call the model degenerated in case the percentage of street labels falls beyond a certain
threshold τstreet or the percentage of outlier labels exceeds a certain threshold τoutlier. In our
experiments, we choose τstreet = 20% and τoutlier = 10% of the total number of cells as well
as a maximum number of νmax = 3 iterations.
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Chapter 4

Experiments

The evaluation of the presented approach is divided in two sections. Section 4.2 describes a
set of experiments using a simulated testing environment to evaluate the performance and
limits of the approach with respect to measurement noise and outliers under controlled and
ideal conditions. Synthetically generated disparity maps are systematically disturbed in order
to analyze the effect on the deviation of estimated and true free-space boundary.

Section 4.3 evaluates the performance and limits of the approach and selected key compo-
nents under real-world conditions. In addition to qualitative studies, the evaluation comprises
experiments on a benchmark dataset which provides manually annotated reference results.
These experiments yield quantitative statements about the approach’s applicability in real-
world traffic scenarios.

In Section 3, a set of model parameters defining the configuration and interaction of the
approach’s components was introduced. The parameters control the structure of the DEM,
the flexibility of the street surface and boundary model, as well as their estimation procedures,
and the self evaluation and termination criteria.

Table 4.1 summarizes our proposal for the assignment of all relevant parameters which
represents the default parameter set for all following experiments unless stated otherwise.
Several parameter values were already motivated in the sections they were introduced, while
the remainder was empirically determined. For convenience, the table provides references to
the respective section or equation the parameters were initially introduced.

111
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Table 4.1: Default parameter set: The table summarizes the proposed configuration of the approach’s model
parameters and thresholds. Beside the parameter value, the section or equation which defines or introduces
the respective parameter is given by a reference. Parameters which were not labeled by a symbol so far are
marked with ‘-’ in the symbol column.

Description Symbol Value Defined in

DEM computation:

# cells in longitudinal direction I 45 Section 3.2.2.1
# cells in lateral direction J 47 Section 3.2.2.1
# cells in vertical direction V 85 Section 3.2.2.1
lateral cell spacing in image columns du 20 pel Section 3.2.2.1
vertical cell spacing in image rows dv 3 pel Section 3.2.2.1
longitudinal grid limit far ymin 16 m Section 3.2.2.1
longitudinal grid limit near ymax 5.5 m Section 3.2.2.1
uncertainty of disparity measurements σd 0.5 pel Section 3.2.2.3

Street surface estimation:

# lateral sections - 4 Section 3.3.2.1
# longitudinal sections - 2 Section 3.3.2.1
# control points in Sθ N 24 Section 3.3.2.1
spatial smoothness weight Sλ 20 Section 3.3.4.1
system noise Sσr 0.5 cm (3.48)

Boundary spline estimation:

# spline sections Bn 18 Section 3.3.3.1
# control points in Bθ M 21 Section 3.3.3
spatial smoothness weight Bλ 0.5 Section 3.3.4.2

system noise Bσ
(ν+1)
ri,t 0.02 m/0.4 m (3.66)

Self evaluation:

model violation threshold τ+
1 0.1 m Section 3.5.3.1

severe model violation threshold τ+
2 0.4 m Section 3.5.3.1

prediction threshold τ− 0.1 m Section 3.5.3.1

Termination criteria:

max. number of EM iterations νmax 3 Section 3.5.3.2
min. percentage of street labels τstreet 20 % Section 3.5.3.2
max. percentage of outlier labels τoutlier 10 % Section 3.5.3.2

4.1 Evaluation Criteria

As defined Section 3.1, the overall objective of the presented approach is to determine and
model the drivable free-space in front of the vehicle. Beside visual examination, the perfor-
mance of the approach with respect to this objective is evaluated on both synthetic and real
world data by comparing the estimated result with ground truth knowledge. While in the
synthetic experiments the ground truth is known from the simulation model, it is obtained
from manual annotation for the real world experiments. The comparison of estimated result
and ground truth data is done by means of two measures. The first of them rates the ac-
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Figure 4.1: Examples for the image projection of the free-space obtained from a real world scenario (left
column) and a synthetic scenario (right column). The free-space defined by the ground truth is depicted in
the middle row and estimation result in the bottom row. The upper row depicts the original image for the
real world scenario and the artificial disparity image for the synthetic scenario.

curacy of the estimated free-space region with respect to its image projection. The second
measure evaluates the spatial accuracy of the estimated free-space boundary with respect to
the horizontal space. The following sections describe both measures in detail.

4.1.1 Accuracy Assessment of the Image Projection of the Free-Space:

The first approach rates the similarity of the annotation and the image projection of the
estimated free-space, where the latter means the set of all pixels encircled by the image pro-
jection of the estimated boundary spline. To compute the image projection of a boundary
sample, we assign the local elevation of the true street surface (in case of synthetic scenarios)
or estimated street surface(in case of real-world scenarios) as height coordinate for the re-
spective sample position. Figure 4.1 depicts examples for estimated results and the respective
ground truth annotations for both a real world and a synthetic scenario.

We present the comparison results typically by confusion matrices holding the rates of
pixels correctly classified to free-space or non-free-space as well as the rates of incorrect
assignments. We use an alternative representation of the confusion matrices by aligning the
entries in a single table row, as described in Table 4.2, to neatly arrange multiple results in
a single table allowing for more convenient comparison.

Table 4.2: Employed pattern for the confusion matrices comparing pixel assignments of the estimated re-
sult (Est.) and the annotated ground truth (GT) information. Referring to pixels assigned to free-space in the
annotated image as free-space pixels and to those assigned to non-free-space as non-free-space pixels, the entries
hold the percentage of non-free-space-pixels correctly assigned to non-free-space by the estimated result (a)
and those incorrectly assigned to free-space (b). Analogously, they hold the percentage of free-space-pixels
assigned to non-free-space (c) and free-space (d).

GT non-free-space free-space

Est. non-free-space free-space non-free-space free-space

Description of experiment a b c d

For interpretation, a high value of b induces that the free-space boundary estimated in
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the respective experiment tends to overshoot the obstacles. A high value of c induces that
the free-space boundary was estimated to close to the camera, i.e. the algorithm erroneously
detected some non-existent obstacles.

4.1.2 Evaluation of the Spatial Accuracy of the Free-Space Boundary:

The second evaluation approach assesses the spatial accuracy of the estimated free-space
boundary. The measure is based on the shortest distance of the estimated free-space boundary
to the ground truth boundary. For each frame we evaluate the measure for a set of sample
positions. The samples are drawn equidistant from the estimated spline with respect to the
spline parameter such that we obtain one horizontal sample point per image column. We
refer to this samples points as ground truth samples.

Remember that the data basis provided for the free-space estimation is limited to the
horizontal extent of the DEM grid which causes the estimation result to be cropped by the
longitudinal grid boundaries ymin and ymax, as described in Section 3.5.2.2. In case the true
free-space boundary lies beyond the DEM grid borders, we consider the estimated boundary
to be correct if it lies on (or beyond) the grid borders. Thus, we crop the polygon formed
by the ground truth reference samples by the grid boundaries ymin and ymax as well. As
accuracy measure for a certain sample position on the estimated spline, we consider the
shortest Euclidean distance to the polygon formed by the cropped ground truth samples.
Figure 4.3 gives a visual explanation of the ground truth computation.

Note, an alternative would be to measure the error along the projection ray. However,
this would cause disproportionate error measures especially at lateral obstacle borders, as
depicted in Figure 4.2.

Figure 4.2: Example motivating the choice of the distance measure for evaluation. The blue lines mark
the true road borders which separate the free-space (white) from non-free-space (bright blue). The estimated
free-space boundary is given by the orange line which is approximately 15 cm away from the ground truth
considering the shortest distance. Assume we aim to evaluate the error of the estimated spline sample marked
by the black cross. In case we would measure the distance to the ground truth along the projection ray (green
dashed line), we would achieve a very large error which is visually out of proportion to the actual accuracy of
the reconstruction. The annotiation of the coordinate axes is given in [m].
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(a) Annotated free-space and image projection of the free-space GT boundary

(b) Image projection of the cropped free-space GT boundary and estimated free-space boundary

(c) Comparison of GT and estimated boundary

Figure 4.3: Example for the ground truth (GT) data used to evaluate the accuracy of the estimated free-space
boundary. Figure (a) shows the annotated ground truth as green carpet and the resultant image projection of
the GT boundary as blue line. The GT boundary after cropping by the DEM grid borders is indicated as blue
dashed line. Figure (b) additionally depicts the image projection of the estimated free-space boundary, which
shows considerable errors caused by erroneous stereo measurements in the region of the vehicle’s shadow.
Figure (c) presents the scene from a bird’s-eye view and illustrates the comparison of ground truth and
estimated free-space boundary depicting a sample set of the error distances by green lines.
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4.2 Experiments on Synthetic Data

This section discusses a set of experiments in a simulated testing environment. The simulation
allows for evaluation under controlled conditions and enables the comparison to ideal reference
results, which we refer to as ground truth.

The following aspects are analyzed and discussed:

(a) Effect of increasing noise in the disparity measurements on the precision of the estimated
free-space boundary with respect to the ground truth (outer precision);

(b) Effect of increasing noise in the disparity measurements on the stability of the estimated
free-space boundary (inner precision);

(c) Effect of increasing outlier percentage in the disparity measurements on the estimated
free-space boundary;

The following section describes the simulation setup and introduces the synthetic bench-
mark dataset. Subsequently, the aspects (a)-(c) are analyzed in the experiments presented
in Section 4.2.2-Section 4.2.4. Section 4.2.5 provides a final discussion of the achieved results
and insights.

4.2.1 Setup of Synthetic Sequences

The synthetic benchmark database consists of a set of simulated disparity map sequences. In
each sequence, a virtual camera is moved along a predefined trajectory through a synthetic
scenario with a constant speed of 0.5 m per frame. The virtual camera is defined as pinhole
camera governed by the parameters presented in Table 4.3. The trajectory is represented by
a quadratic B-spline in order to allow for a smooth motion.

Table 4.3: Parameters of the virtual camera. The horizontal viewing direction is defined by the local tangent
of the trajectory. The lateral and longitudinal axes of the local camera system are parallel to the ground
plane causing the rotation angles to equal zero. The remaining parameters are designed to match those of the
camera system utilized for the real world experiments, as described in Section 4.3.1.

Parameter Value

principal distance 1250 pel
# image columns 1024
# image rows 440
height above ground plane 1.2 m
stereo-baseline 0.3 m
yaw angle 0◦

pitch angle 0◦

roll angle 0◦

The scenarios are motivated by concept drawings of design templates for roadways and
road boundaries presented in [American Association of State Highway and Transportation Of-
ficials, 2001]. The templates model different types of four-way-intersections, T-intersections,
roundabouts and highway-ramps including medians and small traffic isles. Figure 4.4 depicts
the total dataset of design templates.

Horizontal obstacle boundaries are represented by planar sample points with a sampling
distance of 5 cm. For determination of the precise position, e.g. for intersection with optical
rays, the boundary is locally refined by cubic interpolation.
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Figure 4.4: Design templates of the scenarios included in the synthetic benchmark database. Street regions
are plotted in white color, while non-street regions are plotted in bright blue. The street boundaries are drawn
by blue lines. The green line represents the trajectory of the virtual camera. Note that there exist multiple
trajectories in some scenarios. The annotation of the coordinate axes is given in [m] to demonstrate the scale.
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(a) Bird’s-eye view of simulated scenario

(b) Synthetic disparity maps for obstacle height ho = −0.2 m

(c) Synthetic disparity maps for obstacle height ho = 0.05 m

(d) Synthetic disparity maps for obstacle height ho = 0.1 m

(e) Synthetic disparity maps for obstacle height ho = 0.2 m

(f) Synthetic disparity maps for obstacle height ho = 0.4 m

Figure 4.5: Examples for scenarios included in the synthetic benchmark database. The first row (a) depicts
the respective design template. Street regions are plotted in white color, while non-street regions are plotted
in bright blue. The street boundaries are drawn by blue lines. The green line represents the trajectory of
the virtual camera whose current position is marked by the car model. The longitudinal grid columns of the
DEM, plotted by a set of gray lines, indicate the field of view. Street boundary parts visible from the current
camera position and in the range of the DEM are highlighted by red lines. The annotation of the coordinate
axes is given in [m] to demonstrate the scale. The remaining rows (b)-(f) illustrate the synthetic disparity
maps. The color-encodings defined by the respective colorbars are given in [pel].



4.2. EXPERIMENTS ON SYNTHETIC DATA 119

Disparity maps are computed for each position of the trajectory via ray tracing. The
elevation of street regions is constantly set to 0 m, while the elevation of obstacle regions is
set to a constant height ho. Through each single pixel of the virtual camera the optical ray
is casted into the 3d space using the pinhole camera concept. The distance of the closest
intersection point with either the street surface, a horizontal obstacle surface, or a vertical
obstacle border defines the respective pixel’s disparity value. Examples for synthetic disparity
maps are given in Figure 4.5.

The synthetic dataset consists of 29 scenes with a total of 4831 frames.

To assess the performance of the approach with respect to different obstacle heights,
the disparity maps are computed for five different values of the constant obstacle eleva-
tion ho ∈ {0.05 m, 0.1 m, 0.2 m, 0.4 m,−0.2 m} scaling the total number of sequences and
frames to 145 and 24155, respectively. The values are chosen to represent obstacles dis-
tinctive in height (0.4 m) as well as flat obstacles in the vicinity of the average height of
curbs (0.2 m) and below (0.05 m and 0.1 m). Further, a negative obstacle elevation (−0.2 m)
is considered to evaluate the ability of the approach to deal with street boundaries embodied
by negative elevation discontinuities, such as roadside ditches.

4.2.2 Evaluation of the outer precision at increasing noise

This experiment assesses the effect of in creasing measurement noise on the outer precision
of the estimated free-space boundary. By ‘outer precision’, we mean the accuracy of the
estimated result with respect to the ground truth, while measurement noise denotes the
uncertainty of the disparity values obtained from stereo matching.

We expect the precision of the result to diminish with increasing noise until the algorithm
reaches its limit. Regarding the different obstacle heights we expect 0.05 m to be too low
to allow for a proper reconstruction result. Especially in larger distances, the elevation
difference to the street surface might be to small to enable the algorithm to separate non-
street measurements from street measurement causing the boundary to overshoot obstacles.
We expect 0.1 m, however, to be large enough to allow for a sufficient reconstruction in the
considered range interval of 6 to 16 m to the camera. For the larger values of 0.2 m and
0.4 m, we expect similar results which might be slightly more accurate than for 0.1 m but
show a similar behavior with respect to the increasing noise.

Experimental Setup: In order to determine the effect of increasing measurement noise
the algorithm is applied on the synthetic dataset in five runs. In each run the synthetic
disparity measurements are disturbed by Gaussian noise with different standard deviations.
The standard deviations for the single runs are given by σd ∈ {0.0, 0.25, 0.5, 0.75, 1.0} pel.
The parameter settings of the algorithm correspond to the values presented in Table 4.1.

Note, in order to prevent the evaluation statistics to be biased by initialization errors, the
first five images of every sequence are discarded from evaluation.

Discussion of the Assessment of the Image Projection of the Detected Free-Space:
The precision of the estimated result is evaluated with respect to the criteria presented in
Section 4.1. The accuracy assessment of the image projection of the detected free-space is
presented in Table 4.4. The table is subdivided in five blocks, one block for each obstacle
height. Each block consists of five rows which hold the entries of the confusion matrices
obtained for the run with the respective indicated measurement noise.

For an obstacle height of 0.05 m, the algorithm performs surprisingly well in case of zero
noise. However, the algorithm reaches its limits for higher noise values and shows a strong
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Table 4.4: Accuracy assessment of the image projection of the detected free-space. Each row holds the
entries of a confusion matrix describing the classification result obtained on the synthetic dataset. The table
is separated in five blocks, each of which holds the results obtained for a different value for the obstacle height
under the indicated noise levels. A detailed description of the pattern describing the meaning of the row entries
is given in Table 4.2. The total ratio of free-space pixels in the synthetic database is 64.0% yielding 36.0% for
the total ratio of non-free-space pixels.

GT non-free-space free-space

Est. non-free-space free-space non-free-space free-space

obstacle disparity
height noise σd

0.05 m 0.00 pel 97.7 2.3 0.3 99.7
0.25 pel 67.1 32.9 0.3 99.7
0.50 pel 33.4 66.6 0.2 99.8
0.75 pel 26.6 73.4 0.2 99.8
1.00 pel 53.3 47.7 5.4 94.6

0.10 m 0.00 pel 97.1 2.9 0.6 99.4
0.25 pel 97.2 2.8 0.6 99.4
0.50 pel 97.5 2.5 0.8 99.2
0.75 pel 99.5 0.5 1.1 98.9
1.00 pel 99.7 0.3 4.7 95.4

0.20 m 0.00 pel 98.4 1.6 0.6 99.4
0.25 pel 98.5 1.5 0.7 99.3
0.50 pel 98.9 1.1 0.9 99.1
0.75 pel 99.5 0.5 2.4 98.6
1.00 pel 99.7 0.3 6.2 93.8

0.40 m 0.00 pel 99.4 0.6 0.7 99.3
0.25 pel 99.4 0.6 0.9 99.1
0.50 pel 99.6 0.4 1.1 98.9
0.75 pel 99.8 0.2 2.7 97.3
1.00 pel 99.9 0.1 6.5 93.5

-0.20 m 0.00 pel 92.3 7.7 0.1 99.9
0.25 pel 92.2 7.8 0.1 99.9
0.50 pel 92.5 7.5 0.1 99.9
0.75 pel 93.5 6.5 0.3 99.7
1.00 pel 97.7 2.3 5.4 94.6
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tendency to overshoot obstacles which is reflected in the high amount of misclassified non-
free-space pixels. The tendency is confirmed by visual examination of the results.

Comparison of the second, third and fourth block of Table 4.4 reveals that the results
obtained for the obstacle heights 0.1 m, 0.2 m and 0.4 m show a related behavior. The
respective results for the noise levels up to σd = 0.5 pel appear to be very similar within
each block showing low misclassification ratios. For σd = 0.75 pel all three blocks present
increased ratios for misclassified free-space pixels. This effect occurs significantly stronger in
the results obtained for a noise value of σd = 1 pel. Comparison among the different obstacle
heights reveals that the algorithm performs slightly better for larger obstacles regarding noise
levels up to σd = 0.5 pel. Surprisingly, for the noise level σd = 0.75 pel and more extreme
for σd = 1 pel, the ratio of misclassified free-space pixels rises for increasing obstacle height.

We assume that this behavior is caused by the scattering effect already mentioned in
Section 3.2.2.2 (see also Figure 3.12). The effect is depicted in Figure 4.6 for a longitudinal
slice corresponding to a single image column. Consideration of the region in front of the
obstacle reveals that the scattering of the points originating from the vertical surface of the
obstacle border induces a large elevation error when vertically comparing the point position
to the ground truth. Thus, the obstacle appears closer than it really is causing the algorithm
to estimate the free-space boundary to close to the camera, i.e. to classify free-space regions
as non-free-space-regions.

Compared to the larger obstacle heights, the vertical surface for the height of 0.1 m
depicted in Figure 4.6(a) is small and causes fewer erroneous measurements which are sig-
nificantly closer to the street surface. This enables the probabilistic model of the DEM
computation to deal with this errors more easily than in case of larger obstacle heights and,
thus, to cause fewer misclassified free-space pixels.

Naturally, the effect intensifies with increasing disparity noise. Visual examination reveals
that especially for σd = 1 pel even the scattering of the points originating from the street
surface mimics faked obstacles in distant regions.

Finally, the results for the negative obstacle height −0.2 m summarized in the last block
of Table 4.4 reveal an obvious tendency of overshooting for noise values σd ≤ 0.75 pel. A
probable explanation of this behavior relates to the fact that the region behind the true
street boundary is occluded and, thus, the elevation in this region is unobserved. Consider
the utilized method for the estimation of the DEM presented in Section 3.2.2.2 and the
example depicted in Figure 4.7. The estimated elevations for the grid cells in the region
directly behind the true street boundary lie in the vicinity of the projection ray to the street
boundary (green dotted line). Thus, the transition from the street elevation level to the non-
street elevation level in the DEM heights is smooth. The small alteration of the elevation
of the cells close behind the true boundary makes them likely to be classified as street and,
thus, encourages the estimated street boundary to overshoot.

For σd = 1 pel the strong noise mimics obstacles in the remote areas of the DEM grid
and causes too close estimates as described for the remaining obstacle height values.

Discussion of the Spatial Accuracy of the Free-Space Boundary: Let us now con-
sider the spatial accuracy of the free-space boundary. Figure 4.8 presents the statistics of
the computed error distances plotted against the distance to the camera. More precisely, the
complete set of errors is arranged in successive 1 m wide bins along the longitudinal axis.
For each bin, the respective mean error is plotted. For comparison issues the local horizontal
cell spacing of the DEM is plotted as blue dashed line. Furthermore, Figure 4.9 presents the
cumulative distribution of the error for each distance bin in order to provide an overview of
the distribution of the errors.
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(a) Obstacle height 0.1 m

(b) Obstacle height 0.4 m

Figure 4.6: Side view on a synthetically generated obstacle of 0.1 m height (a) and 0.4 m height (b) demon-
strating the scattering effect. The axes represent the longitudinal coordinate of the elevation map system y
and the height coordinate h. The dotted blue line describes the ground truth of the surface, i.e. viewing from
left to right the line describes the street surface at height level zero passing over into the vertical obstacle
border and finally into the obstacle’s top surface. The black dots mark the points triangulated from a single
column of the synthetic disparity image with the thin gray lines indicating the projection rays. The estimated
heights of the respective longitudinal column of the elevation map are plotted as orange dots. The disparity
image was disturbed by Gaussian noise with standard deviation σd = 0.75 pel resulting in strong displacements
of the ground truth points along their projection rays. Consideration of the region in front of the obstacle
around y ∈ [9.5 m, 10 m] reveals that the scattering of the points originating from the vertical surface induce
a large elevation error when vertically comparing the point position to the ground truth. While the proba-
bilistic model appears to be able to robustly handle the scattering for the small vertical surface at obstacle
height 0.1 m, the extensive scattering at larger obstacle heights appears to be more challenging. In some
cases this leads to massed erroneous elevation measurements in front of the obstacle causing the algorithm
to estimate the free-space boundary to close to the camera, i.e. causing free-space regions to be classified as
non-free-space-regions.
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Figure 4.7: Side view on a synthetically generated obstacle of negative height (−0.2 m). The axes represent
the longitudinal coordinate of the elevation map system y and the height coordinate h. The dotted blue
line describes the ground truth of the surface. The orange dots mark the estimated heights of the elevation
map computed from the synthetic disparity image with the thin gray lines indicating the corresponding
projection rays. Note, that the step at y = 10 m occludes the ground truth surface up to approximately y =
11.6 m. Considering the method for the elevation estimation presented in Section 3.2.2.2, the voxels below
the projection ray touching the upper edge of the boundary (green dotted line) are dominated by occluded
votes, while the voxels above the ray are dominated by pass-through votes. Thus, the estimated elevations in
this area are in line with the projection ray. The vertical magenta line at y = 10.3 m indicates the estimated
distance of the street boundary. The estimated boundary distinctly overshoots the true boundary caused
by the smoothed transition from the street surface to the surface of the non-street region in the computed
elevation map heights. Note, one might wonder why the algorithm detects a boundary anyway since the
street surface model is flexible enough to fit the smooth transition. However, the majority of the elevation
measurements in the transition region have no influence on the surface estimation since DEM cells without any
hit votes in the respective voxel column are excluded from the street surface estimation (see Section 3.2.2.2).

The statistics confirm the observed tendencies presented in the previous paragraph. Con-
sidering obstacle heights of 0.05 m, the results show mean errors of about half the local
cell spacing in case no noise is added which significantly rise with increasing disparity noise
reflecting the strong tendency of overshooting.

The results for obstacle heights of 0.1 m to 0.4 m reveal a more robust behavior with mean
errors in the range of half the local cell spacing up to noise values of σd = 0.5 pel. This implies
the ability for a reasonable reconstruction of the free-space boundary within the tolerance
of the cell spacing. The respective statistics in Figure 4.9 show that more than 97% of the
errors are smaller than 0.2 m. While the mean errors for σd = 0.75 pel are nearly twice the
size but still in the range of the local cell spacing, the algorithm obviously reaches its limits
for σd = 1 pel with around 30% of the errors exceeding a value of 0.5 m. As in the previous
paragraph, comparison of the statistics obtained for the different obstacle heights reveals that
for the upper noise levels the errors slightly increase for larger obstacle heights. We assume
that this reflects the increasing influence of the scattering effect depicted in Figure 4.6.

Finally, for negative obstacle heights the statistics present a very similar behavior for
noise values between σd = 0 pel and σd = 0.75 pel. The mean errors lie in the range of the
local cell spacing and, thus, distinctly exceed the errors obtained for the positive obstacle
heights over 0.05 m considering noise levels up to σd = 0.5 pel. This reflects the tendency
of overshooting discussed in the previous paragraph (see Figure 4.7). Analogous to the
remaining obstacle heights, the errors significantly rise for σd = 1 pel.

Note, the drop of the mean errors in Figure 4.8 for the last bin may seem counterintuitive.
However, keep in mind the way the errors are computed in case the ground truth boundary
lies beyond the DEM grid borders. The algorithm has no information about the world beyond
the DEM grid borders. Thus, we accept the estimated boundary to be correct if it lies on
or beyond the grid borders since in this case it correctly tells us that there is no obstacle in
the considered region of interest. In this case, error distances are computed as the shortest
distance to the cropped ground truth boundary, as described in Section 4.1.2, causing the
errors of estimates close to the grid border to drop.
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(a) Obstacle height 0.05 m

(b) Obstacle height 0.10 m

(c) Obstacle height 0.20 m

(d) Obstacle height 0.40 m

(e) Obstacle height −0.20 m

Figure 4.8: Mean errors obtained on the synthetic dataset for the evaluation of the outer precision plotted
against the distance to the camera. The error measure is given by the distance of the estimated boundaries to
the respective ground truth, as described in Section 4.1.2. The mean errors were evaluated in successive 1 m
intervals with respect to the camera distance. The blue dashed reference line describes the local cell spacing
of the DEM. Each plot collects the results for the indicated obstacle height composed of the mean errors
obtained for the considered disparity noise levels σd. The results reveal that the algorithm reaches its limits
at latest at noise level of σd = 1 pel for all obstacle height values. An obstacle height of 0.05 m appears to be
to low to allow for a proper reconstruction except in case of zero noise. The errors in the lowest figure show
that the algorithm is able to handle obstacles of negative height, albeit at an higher error rate in comparison
to the positive obstacle heights due to its overshooting tendency (see Figure 4.7). Note that the errors drop
in the last bin since the ground truth is cropped to the DEM grid borders, as explained in Section 4.1.2.
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(a) Obstacle height 0.05 m

(b) Obstacle height 0.10 m

(c) Obstacle height 0.20 m

(d) Obstacle height 0.40 m

(e) Obstacle height −0.20 m

Figure 4.9: Cumulative distributions of the errors obtained on the synthetic dataset for the evaluation of the
outer precision. The group structure of the single figures is adopted from Figure 4.8. Note that the labeling
of the ordinate begins at 0.5 to improve the resolution. It is obvious that the best results are obtained for
the obstacle heights between 0.1 m and 0.4 m and for noise levels σd ≤ 0.5 pel, where more than 97% of the
errors are smaller than 0.2 m. Comparison of the single results among each other reveals the same relative
behavior as observed for the mean error. The high percentage of large errors for σd = 1 pel as well as for all
noise levels σd > 0 pel at an obstacle height of 0.05 m confirms that the ability of the approach to properly
model the free-space boundary in this cases is limited.
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4.2.3 Evaluation of the inner precision

This experiment evaluates the effect of in creasing measurement noise on the inner precision
of the estimated free-space boundary. By ‘inner precision’, we understand the variation of the
estimated result with respect to repeated runs on the same test bed. In each run, the noise
which is used to disturb the synthetic disparity images is independently generated based on
the considered noise level (Monte Carlo simulation). We expect the inner precision to behave
similar to the outer precision regarding the comparison of the combinations of obstacle height
and noise level. This means we expect the inner precision to be low for all runs with obstacle
height of 0.05 m or noise level σd = 1 pel.

Experimental Setup: The setup largely corresponds to the setup of the previous ex-
periment since we consider the same set of synthetic sequences and obstacle heights. The
considered noise levels are given by σd ∈ {0.25, 0.5, 0.75, 1.0} pel. The individual experiments
for each combination of obstacle height and noise level are repeated K = 20 times, whereas
the artificial disparity noise is recomputed for each repetition. To assess the inner precision
of the estimated free-space boundary, we employ a procedure similar to the presented in Sec-
tion 4.1.2. The only difference is embodied by the fact that we do not analyze the shortest
distance to the ground truth but compute the shortest distance to an ‘average’ boundary
spline. This average spline is derived from the set of results obtained from the repetitions
of the considered frame, i.e. its single control point coordinates Bθt are averaged from the
respective control point coordinates Bθ̂t,k estimated in the repetitions k = 1, . . . ,K yielding

Bθt =
1

K

K∑

k=1

Bθ̂t,k. (4.1)

Figure 4.10 provides an example depicting the estimated free-space boundaries obtained from
the same frame in repeated runs as well as the respective average boundary.

Discussion: Figure 4.11 presents the statistics of the computed error distances to the
average spline. As for the outer precision, the error is plotted against the distance to the
camera using the same discretization bins as for Figure 4.8. The cumulative distribution of
the errors is depicted in Figure 4.12.

As expected, the statistics reveal that the results for obstacle heights between 0.1 m
and 0.4 m for noise levels σd ≤ 0.5 m are extremely stable, i.e. show very low deviation with
respect to the average boundary. From the cumulative distribution of the error, we see that
approximately 99% of the deviations are smaller than 0.1 m. In this regard, the algorithm
performs slightly better with increasing obstacle height. The precision slightly decreases for
the noise value σd = 0.75 pel and significantly drops for σd = 1 pel.

For an obstacle hight of 0.05 m, the statistics show high deviations to the average spline
implying the results of the Monte Carlo runs to be mutual inconsistent.

The statistics of the negative obstacle height of −0.2 m show a behavior which is similar
to those of the heights > 0.05 m. The deviations to the average boundary are very small for
noise levels σd ≤ 0.75 pel, although we observed the tendency of overshooting when evaluating
the outer precision in the previous paragraph. Put simply, the algorithm tends to overshoot
obstacle borders of negative height but, however, yields consistent results even for input noise
levels up to σd = 0.75 pel.
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(a) σd = 0.25 pel (b) σd = 1 pel

Figure 4.10: Examples for an average spline used to compute the inner precision for two noise levels. Street
regions are plotted in white color, while non-street regions are plotted in bright blue. The true street boundaries
are drawn by blue lines. The annotation of the coordinate axes is given in [m]. The thin black lines represent
the estimated free-space boundaries of the N = 20 Monte Carlo runs. The orange line depicts the respective
average spline computed via (4.1). Both results are obtained for an obstacle height of 0.2 m.

4.2.4 Evaluation of the influence of outliers

In this experiment, the ability of the approach to deal with outliers (gross errors) in the input
data is assessed. This means that the input data is not only disturbed by Gaussian noise
but is additionally modified by a certain amount of errors which exceed the 3σd confidence
interval of the noise distribution.

We expect the approach to be able to deal with outliers up to a moderate degree due to
the sophisticated approach utilized for DEM computation as well as the explicit modeling of
outliers in the expectation step. However, the treatment of outliers is challenging because of
the high flexibility of the spline representation employed to model the street surface and in
particular the free-space boundary.

Experimental Setup: The setup differs from that of the first experiment only in the way
the synthetic disparity maps are disturbed. Instead of using Gaussian noise of different lev-
els for the single runs, the single noise values are drawn from mixture distributions. More
precisely, a certain percentage 100%−Ω of the noise values is drawn from a Gaussian distri-
bution of fixed standard deviation σd = 0.5 pel, which matches the noise assumption of the
algorithm (see Table 4.1). The remaining percentage Ω is homogeneously drawn from two
uniform distributions representing outliers in the disparity measurements. We define outliers
to be noise values exceeding the 3σd confidence interval of the Gaussian distribution. Thus,
the uniform distributions are defined to lie on both sides of the 3σd confidence interval in the
ranges [−10σd,−3σd] and [3σd, 10σd] respectively. The single runs of the experiments utilize
different ratios of outliers Ω ∈ 10%, 20%, 30%, i.e. of randomly chosen noise values which are
drawn from the uniform distributions. Figure 4.13 illustrates the mixture distributions for all
considered outlier ratios. The experiments are evaluated for a fixed obstacle height of 0.2 m.
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(a) Obstacle height 0.05 m

(b) Obstacle height 0.10 m

(c) Obstacle height 0.20 m

(d) Obstacle height 0.40 m

(e) Obstacle height −0.20 m

Figure 4.11: Mean errors obtained on the synthetic dataset for the evaluation of the inner precision plotted
against the distance to the camera. The error measure describes the shortest distance of the estimated spline
to the average spline computed from the results of all Monte Carlo runs of the respective frame via (4.1). The
mean errors were evaluated in successive 1 m intervals with respect to the camera distance. The blue dashed
reference line describes the local cell spacing of the DEM. Each plot collects the result for the indicated obstacle
height composed of the mean errors obtained for the considered disparity noise levels σd. The results reveal
that the algorithm yields consistent results for the Monte Carlo runs of all obstacle heights 6= 0.05 m and noise
levels σd < 1 pel. The results obtained for the obstacle height of 0.05 m appear to be inconsistent. Note that
the errors drop in the last bin since by construction the estimated boundary spline will not significantly exceed
the DEM grid borders (The samples computed in step 1 of the three-step approach presented in Section 3.5.2.2
will never exceed the DEM grid borders).



4.2. EXPERIMENTS ON SYNTHETIC DATA 129

(a) Obstacle height 0.05 m

(b) Obstacle height 0.10 m

(c) Obstacle height 0.20 m

(d) Obstacle height 0.40 m

(e) Obstacle height −0.20 m

Figure 4.12: Cumulative distributions of the errors obtained on the synthetic dataset for the evaluation of the
inner precision. The group structure of the single figures corresponds to the structure chosen in Figure 4.11.
Note that the labeling of the ordinate begins at 0.5 to improve the resolution. For obstacle heights 6= 0.05 m
and for noise levels σd ≤ 0.5 pel, approximately 99% of the errors are smaller than 0.1 m implying a high
consistency of the results obtained from the different Monte Carlo runs. Comparison of the single results
among each other reveals the same relative behavior as observed for the mean error. For σd = 1 pel as well
as for an obstacle height of 0.05 m, the results reveal a high percentage of large errors implying inconsistent
results.
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(a) Ω = 10% (b) Ω = 20% (c) Ω = 30%

Figure 4.13: Mixture distributions utilized to generate the disparity noise including different percentages
of outliers Ω ∈ 10%, 20%, 30%. The distributions are composed of a normal distribution N (0, σ2

d) governed
by a standard deviation of σd = 0.5 pel and of a uniform distribution divided evenly on both sides of the
the 3σd confidence interval of the Gaussian distribution. Put simply, the uniform distribution is defined over
the range [−10σ, 10σ] with the interval [−3σ, 3σ] carved out.

Discussion: Table 4.5 presents the accuracy assessment of the image projection of the
detected free-space. The single rows hold the entries of the confusion matrices obtained for
the different outlier ratios. For comparison, the first row holds the results obtained for the
same noise level of σd = 0.5 pel but without any outliers attached.

Figure 4.14 summarizes the statistics obtained for the spatial precision of the estimated
free-space boundary with respect to the ground truth. Figure 4.14(a) presents the mean
errors plotted against the distance to the camera, while Figure 4.14(b) depicts the cumulative
distribution of the error.

Comparison of the first two rows in Table 4.5 and the respective statistics in Figure 4.14
reveals that the presence Ω = 10% outliers does not considerably affect the achieved precision.
The effect for twice the value Ω = 20% is more apparent resulting in nearly twice the mean
error for distances over 12 m. The third row in Table 4.5 shows an increased tendency to
underestimate the distance to the obstacle, which we again assume to be caused by the
scattering effect discussed for the first experiment. By comparison, the precision observed
for Ω = 20% nearly matches the results achieved without outliers in the first experiment for
the noise level σd = 0.75 pel.

Finally, a ratio of Ω = 30% shows a significantly drop in the achieved precision implying
that the algorithm reaches its limits. Visual examination reveals that the strong scattering
of the points triangulated from the disparity image even those originating from the street
surface lead to massed erroneousness elevation measurements mimicking faked obstacles. For
illustration purpose, Figure 4.15 depicts an example for a DEM computed under an outlier
ratio of Ω = 30%.

4.2.5 Discussion of the Results on Synthetic Data

Summarized, the results of the single experiments reveal that for obstacle heights ≥ 0.1 m
and for noise levels σd ≤ 0.5 pel the algorithm performs well, i.e. the mean error lies in the
order of magnitude of half the local cell spacing of the DEM grid and the result of multiple
Monte Carlo runs appears to be consistent. Note that σd ≤ 0.5 pel matches the noise
assumption of the algorithm (see Table 4.1). The performance decreases for σd = 0.75 pel
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Table 4.5: Accuracy assessment of the image projection of the detected free-space. Each row holds the
entries of a confusion matrix describing the classification result obtained on the synthetic dataset under
different outlier ratios. A detailed description of the pattern describing the meaning of the row entries is given
in Table 4.2. The total ratio of free-space pixels in the synthetic database is 64.0% yielding 36.0% for the total
ratio of non-free-space pixels.

GT non-free-space free-space

Est. non-free-space free-space non-free-space free-space

outlier
percentage

0% 98.9 1.1 0.9 99.1
10% 99.0 1.0 1.2 98.8
20% 99.4 0.6 2.3 97.7
30% 99.9 0.1 15.2 84.8

(a) Mean error

(b) Cumulative Error

Figure 4.14: Error statistics obtained for the different outlier ratios Ω ∈ 10%, 20%, 30% with an obstacle
height of 0.20 m and a noise level of σd = 0.5 pel. The statistics describe the mean error to the ground truth
plotted against the distance to the camera (a) and the cumulative error distribution (b). For comparison,
the results obtained without outliers are plotted as well. The results reveal that adding 10% outlier does not
significantly affect result. For 20% outlier ratio the error increases noticeably, while under 30% the algorithm
reaches its limits.
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(a)

(b)

Figure 4.15: Example for an DEM computed for the scenario depicted in the first column of Figure 4.5.
The obstacle height of the simulated scenario amounts 0.20 m. In (a) the synthetic disparity measurements
are perturbed with noise level of σd = 0.5 pel and an outlier ratio of Ω = 30%. Figure (b) shows the result
obtained without any perturbation for comparison. The colors denote the local elevation whereas the colorbar
scale is given in [m]. Especially in the rear area of the DEM grid, one can observe massed erroneousness
elevation measurements which are high enough to mimic faked obstacles.

yielding approximately twice the value for the mean error. This is, however, still in the
order of magnitude of the local cell spacing. For larger noise levels (σd = 1 pel) and smaller
obstacles (0.05 m) the algorithm obviously reaches its limits.

Furthermore, the results show that the approach is able to deal with obstacles of negative
height. In this case, the estimated free-space boundary shows a stable tendency to slightly
overshoot.

Regarding gross errors in the input data, the approach demonstrates the ability to nearly
compensate outliers up to a ratio of 10% and to yield reasonable results for ratios up to 20%.

Note that this insights originate from experiments on synthetic data which was generated
based on simplified assumptions. Thus, the insights will hold for real-word data only to a
limited extend but, however, provide an idea of the achievable performance.
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4.3 Experiments on Real-World Data

This section presents experiments based on stereo image sequences acquired in real-world
traffic scenarios. By means of the experiments we analyze the following aspects:

(a) Applicability of the approach in real-world traffic scenarios.

(b) Influence of selected model components on the performance of the overall approach.

(c) Transferability of the insights achieved on synthetic data.

(d) Limitations of the approach.

First of all we describe the setup of the research vehicle serving as sensor platform for the data
acquisition in Section 4.3.1. Section 4.3.2 describes the benchmark dataset utilized for evalua-
tion of the presented approach. The experiments evaluating the performance of the approach
on real-world data are described and discussed in three sections. Section 4.3.3 evaluates the
performance using the default parameter set. Section 4.3.4 evaluates the performance of sin-
gle object components and the effect of certain model modifications. Section 4.3.5 assesses
the frequency of the erroneous detection of non-existing obstacles (alias ghost objects). Sec-
tion 4.3.6 summarizes the insights obtained from the experiments with respect to the aspects
stated above.

Note, experiments on real-world data are vital for approaches targeting real-world appli-
cations in order to evaluate the actual applicability of the approach. However, due to the
lack of unbiased and exact ground truth information, we understand the statements obtained
from real-world experiments to be rather of qualitative than of quantitative nature.

4.3.1 Data Acquisition and Setup of the Research Vehicle

The datasets forming the basis for the real-world experiments were recorded by a Mercedes-
Benz research vehicle, as depicted in Figure 4.16. The vehicle is designed for testing and
evaluation of innovative camera based driver assistance systems.

(a) (b) (c)

Figure 4.16: (a) Research vehicle providing the sensor platform for data acquisition. The stereo camera
system depicted in (b) and (c) is mounted behind the windshield.

A stereo camera rig with a baseline of ≈ 0.3 m and aperture angle of approximately 44◦ is
mounted behind the windshield pointing in driving direction along the vehicle’s longitudinal
axis. The system provides stereo image sequences with a frequency of 25 frames per second.
The recorded 12 bit gray-scale images have a resolution of 1024× 440 pel and are rectified to
the normal case. For each stereo image pair, dense disparity maps were computed via SGM
in real-time on a FPGA. Section 2.2 provides detailed information regarding rectification and
disparity map computation.
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Additionally, full 3d ego-motion information is provided by the image based approach of
[Badino et al., 2007], as described in Section 3.2.3.

The approach presented in this thesis is evaluated offline since multiple components are
implemented in Matlab and, thus, are not real-time capable so far. See Section 4.3.6.1 for a
discussion of computation times.

In the reminder of this chapter we use the term sequence to address the entirety of the
data acquired simultaneously with a recorded image stream, i.e. disparity maps, camera
calibration parameters and ego-motion information.

4.3.2 Benchmark Dataset

For the sake of evaluation, a set of sequences was combined to a benchmark dataset and
assigned with manually annotated ground truth information.

4.3.2.1 Dataset Description

The dataset comprises 11 sequences recorded in urban and suburban environment with a
total number of 8325 frames. The sequences are chosen to cover multiple scenarios comprising
intersections, traffic isles and roundabouts under the presence of various moving and static
objects, such as parking and driving cars and pedestrians crossing the street. It further
contains a short sequence of a highway construction site.

Every 25th frame was manually annotated by an expert, i.e. the image is pixel-wise
labeled with free-space or non-free-space. Figure 4.17 and Figure 4.18 depict sample images
taken from the dataset as well as example annotations and estimated results achieved from
the presented approach using the default parameter set.

In the following we use the term ‘free-space pixels’ to address pixels assigned to free-space
in the annotated image, and the term ‘non-free-space pixels’ to refer to those assigned to
non-free-space.

4.3.2.2 Evaluation Methods

Similar to the synthetic experiments, we compare the annotation with the respective esti-
mated result by means of the two evaluation measures presented in Section 4.1. While the
ground truth for the assessment of the image projection of the free-space is directly given by
the annotation, some precomputation is necessary in order to obtain ground truth information
for the spatial evaluation.

The idea is to project the annotated boundary from the image onto the estimated street
surface. More precisely, the term annotated boundary denotes the set which holds the lowest
non-free-space pixel for each column of the annotated image. We intersect the optical rays
through these pixels with the estimated street surface using the known intrinsic camera
calibration parameters. This provides the desired ground truth samples of the free-space
boundary in the horizontal space which line up to the ground truth boundary.

4.3.3 Benchmark Evaluation Using the Proposed Model and Parameters

In this experiment, we evaluate the performance of the presented approach on the benchmark
dataset with respect to the validity of the estimated free-space region and the accuracy of
the estimated free-space boundary. For that purpose, the evaluation measures presented in
Section 4.1 are computed for each frame of the database. The results are obtained using the
default parameter set presented in Table 4.1.
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Figure 4.17: Three example scenarios of the benchmark dataset represented by a vertical triple of images,
respectively. The first row depicts the ground truth annotation marked by a green carpet. The remaining rows
illustrate the reconstruction and classification result in 3d (third row) and its image projection (second row).
Color meanings for these rows are equivalent to those presented in Figure 3.14(d), i.e. green color marks cells
classified as street, blue color marks cells classified as adjacent and red color marks cells classified as outlier.
The spline representing the free-space boundary is plotted in orange color. Additionally, we mark the grid
cells tagged as invalid due to insufficient data density in the DEM estimation with black color (part I).
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Figure 4.18: Three example scenarios of the benchmark dataset represented by a vertical triple of images,
respectively. The first row depicts the ground truth annotation marked by a green carpet. The remaining rows
illustrate the reconstruction and classification result in 3d (third row) and its image projection (second row).
Color meanings for these rows are equivalent to those presented in Figure 3.14(d), i.e. green color marks cells
classified as street, blue color marks cells classified as adjacent and red color marks cells classified as outlier.
The spline representing the free-space boundary is plotted in orange color. Additionally, we mark the grid
cells tagged as invalid due to insufficient data density in the DEM estimation with black color (part II).
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As observed in the experiments on synthetic data, we expect the accuracy to drop with
increasing distance to the sensor, proportional to the DEM’s cell spacing. For the absolute
value, we expect the accuracy to be clearly lower than in the synthetic experiments due to
the high complexity of real-world scenarios causing severe violations of the environment and
measurement model assumptions.

Discussion of the Assessment of the Image Projection of the Detected Free-Space:
The accuracy assessment of the image projection of the detected free-space computed from
all frames of the benchmark dataset is presented in the first line of Table 4.6, which we will
use as reference for the experiments in Section 4.3.4.

The respective table entries present high and balanced class-wise accuracies, i.e. 98.7%
for non-free-space and 96.9% for free-space. Considering the missclassifications, slightly more
free-space pixels were incorrectly assigned to non-free-space than vice versa. This trend
applies for almost all results of the following experiments. We assume the spatial constraining
model of the boundary spline to be a potential cause for this effect. Yielding robustness on
the one hand it causes the boundary spline to bridge over narrow gaps between neighboring
obstacles causing a intermediate free-space region to be misclassified. Examples for this
bridging effect appear in the scenarios illustrated in the bottom row in Figure 4.17, where
gaps between the car/pedestrian and the sidewalk cannot be exactly modeled by the spline.
A detailed discussion of this effect is given in Section 4.3.6.4.

Discussion of the Spatial Accuracy of the Free-Space Boundary: Let us now con-
sider the spatial accuracy of the free-space boundary. Figure 4.19(a) presents the statistics
of the computed error distances plotted against the distance to the camera. More precisely,
the complete set of errors is arranged in successive 1 m wide bins along the longitudinal axis.
The plotted lines connect the values of the respective mean error as well as the 0.75, 0.9 and
0.95-percentile value of each bin. For comparison issues, the local cell spacing of the DEM
is plotted as blue dashed line. Note that the error drops for the last bin since we crop the
ground truth to the DEM grid. This effect was already discussed in the third paragraph of
Section 4.2.2.

Figure 4.20(a) presents the local cumulative distribution of the error for each distance
bin in more detail. The topmost row underlines the just mentioned statistical effect induced
by samples on the DEM grid borders. The statistics show that 75% of the errors do not
significantly exceed the mean error, whereas a little less than 90% of the errors are smaller
than the duplicated mean value. We consider around 5% percent of the errors in distances
between 12 m and 15 m as significant since they exceed a value of 1 m. We will present
several effects causing the significant errors when discussing the limitations of the approach
in Section 4.3.6.4.

Figure 4.20(b) presents the cumulative distribution plotted against the lateral position on
the spline. The plot reveals that the errors appear to be smaller at the center of the spline
than at the outsides. Comparison to Figure 4.20(a) shows that the correlation of the error
to the lateral position is significantly smaller than to the longitudinal position.

When discussing the results obtained under several model modifications in Section 4.3.4,
we will use the mean error as well as the cumulative error distribution plotted in Figure 4.19(b)
as reference values.
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(a) Distribution of the error plotted against the distance to the camera

(b) Cumulative distribution of the error

Figure 4.19: Error statistics obtained on the benchmark dataset using the default parameter set. Figure (a)
illustrates the distribution of the error of the estimated boundary in relation to the distance to the camera.
The error statistics are given by the mean error as well as the 0.75, 0.9 and 0.95-percentiles which were
evaluated in successive 1 m intervals with respect to the camera distance. The blue dashed reference line
describes the local cell spacing of the DEM. Figure (b) depicts the cumulative distribution of the error. Note
that the labeling of the ordinate begins at 0.5 to improve the resolution. The mean error lies in the order
of magnitude of the horizontal cell spacing. Around 75% of the errors do not significantly exceed the mean
value and around 90% are smaller than the duplicated mean value. Significant errors appear especially in the
region between 12 m to 15 m.

(a) Cumulative distribution of the error plotted against the distance to
the camera

(b) Cumulative distribution of the error plotted against the lateral po-
sition

Figure 4.20: Detailed examination of the error distribution with respect to the relative position of the sensor.
Figure (a) illustrates the cumulative distribution of the error evaluated in successive 1 m intervals on the y-
axis (same intervals as used in Figure 4.19(b)). Figure (b) plots the cumulative distribution of the error with
respect to the boundary spline parameter and, thus, to the lateral image axis u. To simplify the notation the
values of u are normalized to the interval [0, 1]. The magnitude of the error grows as expected with increasing
distance and outwardly regarding the lateral direction.



4.3. EXPERIMENTS ON REAL-WORLD DATA 139

4.3.4 Evaluation of Selected Parameter and Model Modifications

Beside the evaluation using the default model parameters, we repeat the last experiment with
several changes of the presented model and parameters in order to analyze their impact on
the estimated result. This comprises the evaluation using the following modifications which
we refer to as sub-experiments:

Section 4.3.4.1: Changes of the number of maximum iterations in the EM-algorithm.

Section 4.3.4.2: Simplification of the street surface model.

Section 4.3.4.3: Simplification of the DEM classification step by simplifying binary and
unary terms.

Section 4.3.4.4: Omission of the temporal priors for the estimation of street surface and
free-space boundary parameters.

Section 4.3.4.5: Omission of the spatial prior for the estimation of free-space boundary
parameters.

Section 4.3.4.6: Omission of the local self evaluation step presented in Section 3.5.3.1.

Section 4.3.4.7: Simplified computation of the DEM.

We expect all modifications to cause a drop of the classification accuracy as well as of the
spatial accuracy of the boundary spline.

The following sections describe the respective changes of the model and the model param-
eters in detail. They also discuss the results with respect to the evaluation criteria presented
in Section 4.3.2.2. To allow for a more convenient comparison, Table 4.6 summarizes the
confusion matrices which represent the accuracy assessment for each single sub-experiment.
Each confusion matrix is arranged in a single row using the pattern presented in Table 4.2.

Analogously, Figure 4.21 compares the spatial accuracy of the estimated boundary spline
for each sub-experiment based on the mean error plotted against the distance to the cam-
era. Further statistics are presented by means of the cumulative distribution of the error in
Figure 4.22. In each plot, the reference values obtained using the default parameter set are
drawn in orange color.

4.3.4.1 Evaluation of the Influence of the Maximum Number of EM Iterations

In this sub-experiment, we analyze the progression of the estimated result with increasing
number of iterations used for the EM-algorithm. In the default parameter set, the method is
terminated after a maximum of 3 iterations. For comparison, the experiment was repeated
using a maximum number of 1, 2 and 4 iterations.

Discussion of the Assessment of the Image Projection of the Detected Free-Space:
The classification results presented in the second block of Table 4.6 show only minor changes
for the accuracy of non-free-space pixels but a continuous improvement for free-space pixels
with increasing iteration number. This seems reasonable due to the fact that the vehicle is
moving forward. In each frame the boundary spline needs to propagate from its predicted
position into the newly observed free-space region until it reaches an obstacle. The distance
which the spline may propagate is limited by the weighting factors αij defined in (3.33) which
are iteratively updated in the EM-algorithm. Limiting the iterations may prevent the spline
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(a) Evaluation of the influence of the number of EM iterations

(b) Evaluation of the usage of simplified street surface models

(c) Evaluation of changes of the CRF’s unary and binary terms

(d) Evaluation of the omission of the temporal priors

(e) Evaluation of several model simplifications

Figure 4.21: Mean errors obtained on the benchmark dataset using modified model parameters plotted
against the distance to the camera. The means were evaluated using the same successive intervals as for
Figure 4.19(a). The plots are divided in four groups: Figure (a) illustrates the variation of the error with
respect to the number of iterations used for the EM-algorithm. The influence of alternative surface models
is depicted in Figure (b). Figure (c) describes the impact of changes of the CRF’s unary and binary terms,
while Figure (d) shows the effects of the omission of temporal prior terms. Figure (e) compares the results
obtained from omission of the spatial boundary prior, the omission of the self evaluation step and the simplified
computation of the DEM. In each figure the orange line describes the reference error obtained using the default
parameter set. The default parameter set achieves the lowest error for all experiments. Further comparison
reveals that the sophisticated approach for DEM computation, the usage of a flexible street surface model and
the usage of the full unary term appear to be most crucial.



4.3. EXPERIMENTS ON REAL-WORLD DATA 141

(a) Evaluation of the influence of the number of EM iterations

(b) Evaluation of the usage of simplified street surface models

(c) Evaluation of changes of the CRF’s unary and binary terms

(d) Evaluation of the omission of the temporal priors

(e) Evaluation of several model simplifications

Figure 4.22: Cumulative distributions of the errors obtained on the benchmark dataset using modified model
parameters. The group structure of the single figures corresponds to the structure chosen in Figure 4.21. Again,
the orange lines describe the values obtained using the default parameter set, also depicted in Figure 4.19(b).
Note that the labeling of the ordinate begins at 0.5 to improve the resolution. The most crucial drop of
precision appears for the simplified unary term which causes a significant increase of errors in the range of
0 m to 1.5 m. Further, the omission of the spatial and temporal boundary priors show a vast effect indicated
by the relatively slow ascend of the respective cumulative distributions and by the fact that over 5% of the
errors exceed a value of 1.9 m.
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Table 4.6: Accuracy assessment of the image projection of the detected free-space. Each row holds the entries
of a confusion matrix describing the classification result obtained on the benchmark dataset. The results
are obtained under the default parameter set (first row), varying iteration numbers of the EM-Algorithm
(second block), alternative street surface models (third block), alternative CRF terms (fourth block), omission
of temporal priors (fifth block) or other modifications (sixth block). A detailed description of the pattern
describing the meaning of the row entries is given in Table 4.2. The total ratio of free-space pixels in the
annotated database is 43.6% yielding 56.4% for the total ratio of non-free-space pixels.

GT non-free-space free-space

Est. non-free-space free-space non-free-space free-space

default parameters 98.7 1.3 3.1 96.9

1 EM iteration 98.8 1.2 5.2 94.8
2 EM iteration 98.7 1.3 3.5 96.5
4 EM iteration 98.6 1.4 2.9 97.1

quadratic surface 98.9 1.1 6.1 93.9
plane 99.0 1.0 7.3 92.7

no binaries terms 97.9 2.1 3.5 96.6
simplified unary terms 91.9 8.1 8.4 91.6
Potts model 98.7 1.6 3.5 96.5

no temp. prior 89.8 10.2 2.1 97.9
no temp. boundary prior 90.9 9.1 1.8 98.2
no temp. surface prior 98.5 1.5 4.3 95.7

no spatial boundary prior 92.2 7.8 1.9 98.1
no self evaluation step 98.7 1.3 6.9 93.1
simplified DEM comp. 99.0 1.0 9.7 90.3

to propagate right up to the newly observed obstacles and, thus, causes free-space pixels to
be incorrectly classified as non-free-space.

The fact that the accuracy of non-free-space pixels does not drop in the same order of
magnitude implies that the spline does not tend to overshot the obstacle when propagating.
This was confirmed from visual evaluation of the result sequences.

Discussion of the Spatial Accuracy of the Free-Space Boundary: The analysis of
the error statistics given in Figure 4.21(a) and Figure 4.22(a) shows notable improvements
from iteration 1 to iteration 2, marginal improvements from iteration 2 to iteration 3 and
nearly no improvement from iteration 3 to iteration 4. This confirms the choice of a maximum
of 3 iterations in the default parameter set.

4.3.4.2 Evaluation of the Usage of Simplified Street Surface Models

Unlike the majority of free-space detection methods, the presented approach uses a spline
based street surface model in order to allow for the representation of complex scenarios with
varying surface curvatures. Figure 4.23 depicts a set of example scenarios motivating the
usage of a complex surface model.

For comparison, error statistics were computed on the benchmark dataset using a
quadratic surface as well as a plane as street surface model. For clarification, by the term
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Figure 4.23: Example for street surfaces with high and multiple curvatures recorded in suburban regions in
Redwood City, California. Note, the images are chosen for illustration issues and are not part of the benchmark
database.

‘quadratic surface’, we understand the height model

hij = a0x
2
ij + a1y

2
ij + a2xijyij + a3xij + a4yij + a5 (4.2)

with six free parameters a0, . . . , a5. A plane yields the height model

hij = b0xij + b1yij + b2 (4.3)

with three free parameters b0, . . . , b2.
The classification result shows a significant decrease for the class accuracy of free-space

for both alternative surface models. This trend is confirmed by the statistics of the boundary
spline errors presented in Figure 4.21(b) and Figure 4.22(b). Using a plane as street surface
model results in a mean error which is nearly twice the error achieved with the spline model.
Figure 4.24 gives some examples of erroneous estimations caused by the low flexibility of the
plane model typically appearing at intersections or in case of roof-shaped street surfaces.

Figure 4.24: Example results showing estimation errors using a plane as street surface model. The low
flexibility of the model prevents it from correctly modeling street lane adjacent surfaces with different slope,
such as neighboring lanes in case of a roof-shaped street surface or crossing lanes at an intersection. Color
meanings are equivalent to those presented in Figure 4.17.

The quadratic surface visually appears to be sufficient in the majority of scenarios but
fails in complex situations such as in the highway construction site example presented in
Figure 4.25. Further, it also fails in some situations similar to those presented in Figure 4.24
when a quadratic surface is insufficient to adequately model two adjacent planes with different
slope. In those cases, the spline surface benefits from its ability to model multiple curvatures.

4.3.4.3 Evaluation of Changes of the CRF’s Unary and Binary Terms

In the following, we analyze the influence of the unary and binary terms of the CRF governing
the classification step, as described in Section 3.5.1. Three modifications were tested in
different runs on the benchmark dataset:

(I) Simplification of the unary term: Considering the definition of the unary term (3.80),

we omit the spatial prior P
(
lij,t | Bθ̂

(ν)

t

)
. Thus, the area of region competition between

street and adjacent is no longer restricted.
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Figure 4.25: Comparison of different street surface models based on a highway construction site scenario.
The lane crosses the median strip causing complex curvature characteristics for the street surface. The left
column shows the estimated result using the proposed spline surface. The center column illustrates the result
obtained using a quadratic surface, while the results in the right column were computed using a plane. To
allow for a compact representation only every fifth image is plotted. Color meanings are equivalent to those
presented in Figure 4.17.

(II) Omission of the binary term: In this case, the classification is performed for each cell
independently based on the unary term.

(III) Simplification of the binary term: Instead of data dependent binary terms as defined in
(3.86)-(3.88), we use a data independent Potts model. Neighboring cells are assumed
to belong to the same class with probability 1 − ε, while ε defines the probability to
belong to different classes. We chose ε = 0.01 for this experiment.

The accuracy assessment is presented in the fourth block of Table 4.6. Figure 4.21(c) and
Figure 4.22(c) illustrate the evaluation of the spatial accuracy.

Discussion of the Results Obtained from Simplification of the Unary Term: Both
statistics show a significant drop of the accuracy for the simplified unary term (I). This
demonstrates the importance of the spatial prior induced by the sigmoid function (3.33).
The term constrains the alteration of the boundary spline by limiting the region competition
in the classification step to a narrow band around the currently estimated boundary. The
omission of the term changes the topology assumptions and allows for street cells on the far
side of the current boundary as well as for adjacent cells on the near side. This significantly
complicates the task to detect the correct free-space boundary via logistic regression.

Discussion of the Results Obtained from Omission of the Binary Term: The
importance of the unary spatial prior term also reflects in the evaluation of the omission
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Figure 4.26: Example for erroneousness estimates when omitting the binary term. Cells assigned to the
class outlier tend to cluster and form a rival hypothesis to the correct assignment of adjacent. This allows the
boundary spline to overshot obstacle borders. Color meanings are equivalent to those presented in Figure 4.17.

of the binary term (II). Comparing the accuracy of the boundary to the one estimated by
means of the default parameter set, we observe a decrease especially in distances over 10 m.
However, the accuracy does not drop as significantly as in (I). We assume this to be caused
by strong unary terms. The main influence of the binary term is limited to the narrow
band around the currently estimated spline since the unary spatial prior term already claims
homogeneous class distributions in regions which are distant to the boundary. Omission of
the binary term primarily impairs the classification result in this limited region and, thus,
the overall impairment of the estimation result is limited.

Further, the binary term suppresses clusters of cells to be assigned to outlier (3.87). With-
out the binary term, outlier -clusters may form a rival hypothesis to the correct assignment
of adjacent allowing the boundary spline to overshot obstacle borders. Figure 4.26 provides
an example for this effect.

Discussion of the Results Obtained by Means of the Potts Model: The error
statistics obtained for the Potts model show that the improvement of the data dependent
binaries used in the reference experiment is small but, however, apparent. Visual examination
of the result sequences reveals high similarity between the estimated boundaries of both
approaches, also in terms of the limitations.

However, in the majority of cases the data dependent binary terms yield a more exact
estimation of the boundary. We assume that this behavior is caused by the fact that the model
explicitly prefers positions at elevation discontinuities. These, in general, are indicators for
the presence of an obstacle border especially for objects which are distinctive in height.
This means, although simple height thresholding is insufficient particularly when detecting
obstacles like curbs from extremely noisy data, the consideration of height discontinuities as
feature is nevertheless useful.

4.3.4.4 Evaluation of the Impact of the Temporal Prior Assumptions

The purpose of this sub-experiment is to asses the stabilizing effect of the temporal prior
assumptions introduced in Section 3.3.4 on the estimated result. Therefore, we abandon
the temporal prior terms in both the estimation of the street surface (3.98) as well as the
estimation of the free-space boundary (3.113). To evaluate the impact of the individual priors,
we rerun the experiment and omit only one of the priors respectively.

The entries of the confusion matrices printed in the fifth block of Table 4.6 show a sig-
nificant decrease of the classification accuracy of non-free-space pixels stating over 10% to
be incorrectly assigned to free-space in case both priors are omitted. The reduced spatial
accuracy (see Figure 4.21(e) and Figure 4.22(e)) confirms this result.
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Comparison of the results obtained from omission of the individual priors reveals that
omission of the surface prior causes fewer miss-classifications in total than omission of the
boundary prior. Further, while omission of the surface prior causes mainly free-space pixels
to be miss-classified, omission of the boundary prior mainly affects the assignment of non-
free-space pixels, which pretty much conforms to the result obtained from omission of both
terms.

In the following, we discuss the insights obtained from visual examination in detail.

Visual Examination of the Impact of the Temporal Boundary Prior: As expected,
omission of the temporal boundary prior causes a considerable drop of the temporal smooth-
ness of the estimated free-space boundary, i.e. the boundary spline seems shaky and volatile.
Additionally, the boundary spline tends to overshot low obstacles, which explains the high
amount of incorrectly assigned non-free-space pixels.

We explain this behavior in the following way. Without the restraining influence of the
prior, the spline may immediately react to erroneousness height estimations which blur the
elevation discontinuity of the obstacle border and, thus, overshot the obstacle borders. In
case the elevation behind the obstacle matches the currently estimated street surface, e.g. in
case of small traffic isles (Figure 4.17, bottom row, left) or thin median strips (Figure 4.17,
center row, left), the spline may stay in the wrong position in the subsequent frames, while
the obstacle’s height measurements are classified as outliers. This effect also significantly
intensifies the cropping of obstacle edges which we describe in more detail when discussing
the challenges and limitations in Section 4.3.6.4.

Visual Examination of the Impact of the Temporal Surface Prior: Visual exam-
ination with respect to the omission of the temporal surface prior reveals that the overall
result appears very similar to the reference result. The major difference is given by the effect
of occasional occurring stereo errors. Since the restraining influence of the prior is gone, the
estimated surface reacts stronger to erroneous height measurements. As a consequence, the
estimated surface locally significantly differs from the actual street surface causing the local
free-space region to be classified as non-free-space.

In case both priors are omitted, the overshooting effect dominates causing the lower
percentage of miss-classified free-space pixels.

4.3.4.5 Evaluation of the Impact of the Spatial Prior Assumptions

This section discusses the impact of the spatial boundary prior for the estimation of the free-
space boundary. Similar to the temporal prior in the preceding sub-experiment, the spatial
boundary prior was omitted. The respective confusion matrix entries in Table 4.6 show a
considerable drop in the class accuracies which is only slightly smaller than the one observed
from omission of the temporal prior. The error statistics of the estimated boundary in
Figure 4.21(e) indicate that the accuracy drop gets more significant with increasing distance
to the camera.

As expected, visual examination reveals a considerable reduction of the boundary spline’s
smoothness. The higher flexibility intensifies the spline’s reaction to erroneous elevation
measurements and, thus, reduces the robustness. Particular adverse effects are observable
at the border of flat obstacles in the rearmost part of the DEM, where the higher flexibility
enables the spline to penetrate and finally overshoot flat obstacles.

As a positive aspect, the effects caused by insufficient flexibility, such as bridging effects
and cropping of obstacle edges, are considerably reduced. However, the impact of the positive
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aspects is all too small to compensate the negative effects.

Future work may adapt the spatial filtering to the complexity of the current free-space
boundary using map information or a similar approach as introduced for adaption of the
temporal filtering in Section 3.5.3.1.

Note, the influence of the spatial prior for the estimation of the street surface could not
be evaluated in the same way since the prior is mandatory to guarantee a robust estimation
even in case the number of valid cells assigned to the class street is small.

4.3.4.6 Evaluation of the Impact of the Local Self-Evaluation Step

The sub-experiment presented in Section 4.3.4.4 has proven the temporal boundary prior
to be crucial for a proper and temporally stable estimation of the boundary splines. Of
course, in case the assumption of static obstacle borders is violated, e.g. in case of moving
obstacles or if the spline propagates into newly observed regions, the prior term may be rather
contra-productive than helpful. Thus, we introduced the heuristic self-evaluation approach
presented in Section 3.5.3.1 in order to detect local violations of the model assumptions along
the estimated spline.

In this sub-experiment we abandon the self-evaluation approach from the total workflow
to evaluate its impact on the final result. The uncertainty of the additive noise term Brt
representing the local deviation from the model, as defined in (3.66), is constantly set to
Bσ

(ν+1)
ri,t = 0.02 m.

The second-last row of Table 4.6 states a high rate of incorrect assignments of free-space
pixels, which additionally causes a considerably lower accuracy of the free-space boundary,
as illustrated in Figure 4.21(e) and Figure 4.22(e).

The visual examination of the result sequences shows that the low value of Bσ
(ν+1)
ri,t ,

although vital for proper temporal filtering at static obstacles, distinctly restricts the prop-
agation speed of the boundary spline. In many cases, the spline is not able to reach and
properly adhere to the border of newly observed obstacles within the first frame of their
appearance. The effect increases at higher driving speeds and explains the high amount of
incorrectly assigned free-space pixels.

Figure 4.27 depicts an example showing a moving obstacle. The comparison of the results
obtained with self-evaluation (left column) and without self-evaluation (right column) reveals

that the online adaption of Bσ
(ν+1)
ri,t is crucial to adequately react to local violations of the

assumption of static obstacle borders. The higher value of Bσ
(ν+1)
ri,t in the spline regions

drawn in yellow and green color enables the estimated spline to adequately adhere to the cars
front which occludes the free-space boundary estimated in the last frame. Further, it allows
the spline to faster convert back to the background obstacle (roundabout) when the car has
passed. The respective results in the right column show a significantly slower reaction when
omitting the self-evaluation step.

4.3.4.7 Evaluation of the Usage of a Naive DEM Computation Approach

The presented algorithm for the computation of the DEM heights, see Section 3.2.2, is quite
complex compared to previously used methods. Although we already mentioned the ad-
vantages of the utilized approach, as illustrated in Figure 3.9, this sub-experiment yields a
comparison to a naive but faster method. In the alternative method, the maximum height
of all triangulated points assigned to a cell is taken to represent the cell’s elevation value hij
similar to the approach proposed by [Oniga et al., 2007a]
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Figure 4.27: Example scenario incorporating a moving obstacle. The images compare the estimation result
obtained with self-evaluation step (left column) and without self-evaluation step (right column). Color mean-
ings are equivalent to those presented in Figure 4.17. For clarification, we used the color coding proposed
in Figure 3.28 to annotate the assignment of the spline sections obtained by the self-evaluation step. Spline
regions representing static obstacles are painted in orange color, those representing non stationary obstacles
or segments which slightly violate the model assumptions are drawn in yellow color. Invalid parts are drawn
in green color.

Results show a significantly lower percentage of correctly assigned free-space pixels com-
pared to the reference result. In numbers, nearly 10% of all free-space pixels were incorrectly
assigned to non-free-space. The error statistics in Figure 4.21(e) show that the mean error is
two to three times the value obtained in the reference experiment.

There are two factors explaining the high error rates. The first factor is given by the
significantly higher amount of erroneousness elevation measurements causing improper esti-
mates of the street surface spline as well as incorrect assignments in the DEM classification
step.

For the second factor, consider the scattering effects of the triangulated stereo measure-
ments described in Figure 4.6. Points scattered from an object towards the camera position
overrule the maximum in closer cells on the same optical ray. This causes the boundary to
be estimated too short with respect to the sensor position.

To effectively employ a DEM for the detection of low obstacles which is computed by the
naive method a very constraining model for the obstacle boundaries and street surface needs
to be used to cope with the high amount of outliers including occasional scattering effects.
Unfortunately, this would significantly limit the ability of the approach to model complex
obstacle boundaries.
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4.3.5 Falsely Detected Objects (Ghost Objects)

In addition to erroneous deviations to actual obstacle borders, the estimated free-space bound-
ary may hallucinate completely new obstacles. We refer to such erroneousness estimations
which are visually not assignable to an actual obstacle as ghost objects. Figure 4.30 gives two
examples for large sized ghost objects.

This section discusses the reasons as well as the frequency of occurrence of ghost objects.
The evaluation is based on the estimation results obtained on the benchmark dataset using
the default parameters.

To simplify the discussion, we divided the detected ghost objects in four groups specifying
their kind and reason of occurrence. Table 4.7 summarizes the amounts of detections per
group as well as the total amount of ghost objects. A total of 124 ghost objects was detected.

Table 4.7: Amounts and types of ghost objects detected in the benchmark dataset using the default parameter
set.

type of ghost object amount

minor ghost objects 87
ghost objects from insufficient street model 7
ghost objects from erroneous stereo measurements (illumination) 7
ghost objects from erroneous stereo measurements (road markings) 18
unspecified 5

Σ 124
Σ (without minor ghost objects) 37

We classified 87 of them as ‘minor ghost objects’, i.e. ghost objects of small size which are
only visible in a single frame, as illustrated in Figure 4.28. This kind of ghost objects is
relatively easy to eliminate by claiming temporal consistency and a minimum extent for
detected obstacles. Neglecting the minor ghost objects, the total number reduces to 37. We

Figure 4.28: Two examples for minor ghost objects visible in the upper left corner of the DEM’s image
projection. This type of ghost objects occasionally occur and disappear in the successive frame. Color meanings
are equivalent to those presented in Figure 4.17.

assigned most of them to the remaining groups which are described and discussed in the
remainder of this section. Five ghost objects occur due to individual reasons and are marked
as unspecified in Table 4.7.

Ghost Objects from Insufficient Street Model: Although the utilized street model is
designed to be very flexible, it may be insufficient in special situations. A common scenario
causing the ghost objects of this group is depicted in Figure 4.29. The edge between two
adjacent lane surfaces of a roof-shaped street is located in the outermost corner of the DEM
grid.
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(a) Image projection of the estimation result

(b) Front view (c) Bird’s-eye view

Figure 4.29: Ghost object caused by insufficient flexibility of the street surface model. The ghost object
covers the outermost left corner of the DEM grid. Figure (b) depicts a front view of the respective spline
section of the estimated street surface. The triangulated point cloud achieved from SGM stereo computation
is plotted by black dots. The estimated elevations for the cells of the DEM are plotted by red dots. The
orange line marks the boundary spline. In (c), the spline section is depicted from bird’s-eye view. Additional
color meanings are equivalent to those presented in Figure 4.17.

Figure 4.29(c) shows a bird’s-eye view of the respective spline section of the street surface.
Although evidently incorrect when comparing to Figure 4.29(a), a small region in the outer-
most left edge of the DEM grid is labeled as adjacent and, thus, separated by the estimated
boundary spline. The front view presented in Figure 4.29(b) reveals that, due to the roof
shape of the street surface, the measured elevation values of the cells in this region follow a
different surface slope than the remaining height measurements. Caused by their relatively
low number (less than 10% of the total number of cells in the spline section), their influence
with respect to the street surface estimation is to small to compete with the estimate claimed
by the remaining observations and the spatial smoothness prior. Additionally, the incorrect
estimate is supported by some erroneous height measurements in the corner region.

We observed this kind of ghost object 7 times in the benchmark dataset results. The
presented example embodies the occurrence with the largest spatial and temporal extend.
It appeared for 86 successive frames, which means all the way down to the small traffic isle
visible in the background in Figure 4.29(a).

Ghost Objects from Erroneous Stereo Measurements: The introduction of stabilizing
spatial and temporal priors as well as the explicit modeling of outliers in the classification
step allows for accurate results even under the presence of a moderate number of occasional
occurring outlier measurements (see Section 4.2.4 for the influence of outliers). However,
the quality of the estimated result eventually depends on the reliability of the elevation
measurements and, thus, on the reliability of the stereo measurements since we use cameras for
data acquisition. Large-area stereo errors, in particular if they are of persistent nature, have
the same appearance with respect to the DEM’s elevation measurements as real obstacles.
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We observed two major groups of persistent large-area errors in stereo measurements
obtained from the utilized SGM implementation.

Ghost Objects from Erroneous Stereo Measurements Caused by Illumination:
Extreme illumination conditions such as complex shadow patterns and extreme glare effects
on the street or on the windshield cause large-area stereo errors. Under constant driving
direction, the illumination effect and therefore the location of the measurement errors may
stay persistent over a certain frame period.

Figure 4.30 depicts two examples of illumination effects causing the detection of ghost
objects. The second row shows side views of the local elevation measurements (red dots)
as well as triangulated points obtained from SGM stereo matching (black dots). The plots
reveal a significant scattering of the triangulated points towards areas below the street surface
which causes a high amount of erroneousness elevation measurements of the respective DEM
cells. Consequently, the algorithm classifies these cells as adjacent and incorrectly delimits
the estimated free-space in a too close position.

(a) Image projection of the estimation result

(b) Side view

(c) Bird’s-eye view

Figure 4.30: Two examples illustrating ghost objects which are caused by illumination effects. In (a) both
example images show a significant glare effect on the road in front of the car. The respective figures in (b)
show a side view of the 3d point cloud measurements and estimated cell elevations in a local region around the
position of the ghost objects. The triangulated point cloud achieved from SGM stereo computation is marked
by black dots. The estimated elevations for the cells of the DEM are plotted by red dots. The respective
bird’s eye views are plotted in (c). Additional color meanings are equivalent to those presented in Figure 4.17.

The black colored regions in the respective bird’s-eye views in Figure 4.30(c) show a
significant reduction of the number of valid measurements in the regions of the glare effects.
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This sparseness of measurements may be used in future work in order to detect regions of
unreliable input data.

Ghost Objects from Erroneous Stereo Measurements Caused by Road Mark-
ings: The second group of large-area errors in the estimated stereo correspondences occa-
sionally occur in the area of street markings, as depicted in Figure 4.31. Figure 4.31(b) shows
front views of the respective scenarios which demonstrate the effect on the triangulated point
cloud and cell elevations. Comparing the positions of the ghost objects and real objects in the
front view reveals similar obstacle structures in the local triangulated point clouds. Thus,
the usage of additional information, e.g. obtained from the appearance in the image, seems
inevitable for the elimination of this kind of ghost objects in future work.

The demonstrated effect is considerably stronger when observing almost horizontal struc-
tures, which is a known issue for common stereo matching algorithms. We refrain from a more
detailed consideration of the reasons for this effect since the evaluation of stereo matching
algorithms is not in the focus of this thesis.

(a) Image projection of the estimation result

(b) Front view

Figure 4.31: Examples for ghost objects occasionally occurring in the vicinity of road markings. Color
meanings are equivalent to those presented in Figure 4.17. The figures in (b) present front views of the
respective triangulated point cloud (black dots) and DEM cell elevations (red dots). Comparison to the
overlying images shows significant amounts of erroneous point cloud measurements in the vicinity of the ghost
objects.

4.3.6 Discussion of Real-World Results

In the following we present a summary of insights obtained from the experiments on real-world
data with respect to the four aspects stated in the very beginning of Section 4.3.

4.3.6.1 Applicability of the Approach in Real-World Traffic Scenarios

Performance of the approach: The overall results indicate the ability of the approach to
deal with the high complexity and variability of real-world traffic scenarios and to accurately
estimate the boundary of the drivable free-space as well as the street surface in the majority
of cases.

The approach was tested on challenging scenarios showing complex characteristics of the
actual free-space boundary. The scenarios included intersections, driveways, roundabouts,
small traffic isles, as well as moving objects such as cars and pedestrians crossing the street.
The height of the well detected obstacles reached from several meters (vehicles, walls) to
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less than 10 cm (curbs), where the latter dominated in the scenarios. This shows the high
flexibility and generality of the presented approach.

With regard to the accuracy of the estimated free-space boundary the experiments re-
vealed that the error of the estimated boundary is in average about the size of the local cell
spacing of the DEM.

The approach reaches its limits under the presence of persistent, large-area stereo errors,
as described in Section 4.3.5, since they cause an extremely similar appearance in the elevation
observations as actual obstacles. Further challenges caused by model limitations are presented
is Section 4.3.6.4. These limitations reflect in the outlier statistics of the estimation result.
They cause occasional large-scale deviations of the estimated spline to the actual free-space
boundary, especially observable in larger distances between 12 m and 15 m to the camera.
Of course, the influence of the individual limitations on the applicability of the approach
needs to be eventually evaluated in terms of the particular requirements of the respective
higher-level applications.

Computation times: The major drawback preventing from online testing in the research
vehicle is given by the computation times. As stated above, the current implementation is
partially written in Matlab which significantly increases the computation times compared to
a pure C++ implementation.

The current computation time on a PC equipped with an Intel Core 2 Extreme (4 × 2.53
GHz) processor and 4 GB RAM amounts to approximately 0.5 s per frame excluding image
acquisition and stereo computation. This significantly exceeds the available time for online
processing at 25 fps which amounts to 40 ms deducting approximately 10 ms for transfer of
the stereo result from the FPGA and 3 ms for the computation of the ego-motion. A detailed
analysis of the computation times of the individual submodules would not be meaningful for
the current implementation since they highly depend on the respective proportion of C++
and Matlab code.

However, we are convinced that a pure C++ implementation will fulfill real-time require-
ments. The conviction is caused by the earlier implementation of a similar approach presented
in [Siegemund et al., 2010] and [Siegemund et al., 2011]. This approach was designed to de-
tect and reconstruct curbs on the roadside. It is based on a less dynamic environment model
but yet shows a high degree of similarity in the overall concept and the majority of the single
processing steps. The computation time of the current C++ implementation of this approach
amounts to less than 10 ms per frame and, thus, indicates a very probable real-time capabil-
ity of the approach presented in this thesis. Further, the major components of the approach
bear a high degree of parallelization capability, such as the computation of the DEM, the
inference in the E-step via the sum-product algorithm and the simultaneous processing of
the independent logistic regression tasks in the M-step.

4.3.6.2 Influence of Single Model Components on the Performance of the Over-
all Approach

The analysis of the model modifications in Section 4.3.4 demonstrates that all considered
submodules yield a positive update to the accuracy of the overall approach.

The comparison of alternative, less sophisticated street surface models demonstrates the
benefit of the spline model’s flexibility. The approach can handle scenarios with complex
shaped street surfaces, such as different slopes of the adjacent lanes in intersection scenar-
ios, roads of distinctive roof shape as well as the crossing of a median strip in a highway
construction site.
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The most significant impact was observed from omitting the spatial prior in the unary
term of the CRF. This indicates that the restriction of the area of region competition in the
classification step has a the stabilizing effect on the estimation result.

The apparent impact of the binary terms is limited to the area of region competition
governed by the unary prior term and, thus, less significant. However, the binary terms
facilitate uncluttered estimation results in the proximity of obstacle borders improving the
accuracy of the estimated boundary spline. Comparison to a Potts model reveals that the
effect of the data dependent formulation acts rather as vernier adjustment. Nevertheless,
quantitative and visual results prove a small but positive impact on the result’s accuracy.

The analysis of the prior assumptions introduced to stabilize the estimation of the model,
i.e. street surface and boundary spline, demonstrates temporal filtering to be crucial for ac-
curate estimation results. The omission of the temporal boundary prior causes the boundary
spline to be shaky and volatile when observed over successive frames and encourages the
spline to overshoot flat obstacles. The omission of the surface prior appeared to be less
crucial but yet causes the estimation to be more sensitive to erroneousness elevation data.

Analysis of the spatial filtering of the boundary reveals similar drops of the estimation
accuracy in case the spatial prior is omitted. The higher flexibility of the spline intensifies the
effects of erroneous elevation measurements especially in larger distances causing a significant
reduction of the robustness.

The self evaluation step presented in Section 3.5.3 appeared to be highly valuable. The
adaption of the temporal filtering of the boundary spline to the specific local conditions allows
the spline to propagate into newly revealed free-space regions as well as to handle moving
obstacles. On the other hand, in case of static objects, a less dynamic model can be used to
increase the robustness.

Finally, the utilized approach for the computation of the DEM’s elevation measurements
which considers the path of the optical ray as well as occlusion properties shows a significant
update in comparison to a naive approach. It appears to be highly valuable when dealing
with extremely noisy data.

4.3.6.3 Transferability of the Insights Achieved on Synthetic Data

Let us now compare the results obtained under real-world conditions to those achieved for
the synthetic dataset in Section 4.2. In both cases the mean error behaves proportional to
the local cell spacing of the DEM grid. More precisely, the behavior of the mean error with
respect to the distance to the camera roughly corresponds to the statistics obtained for a
noise level of σd = 0.75 pel on the synthetic dataset.

Consideration of the respective cumulative error reveals that the results obtained for the
experiments on the synthetic data appear to be to optimistic in comparison to those achieved
under real-world conditions which reveal a higher amount of large scale errors. This is due
to the fact that the general conditions for real-world scenarios are more challenging than
the synthetic scenarios which are generated based on simplified assumptions. For instance,
the complexity of the free-space boundary and the curvature characteristics of the street
surface is much higher than the in the simulation. Moving obstacles such as cars or bicyclists
additionally violate the model assumptions. Further, illumination effects may perturb the
stereo matching results in nearly arbitrary manner.

Regarding the robustness of the approach with respect to outliers, the insights obtained in
the discussion of ghost objects from erroneousness stereo measurements in Section 4.3.5 reveal
the ability of the approach to handle a moderate number of outliers also under real-world
conditions. However, the discussion reveals further that the performance is rather bound to
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the configuration of the outliers than to their sheer amount, i.e. massed stereo errors and
those which are persistent over time appear more challenging than a possibly larger amount
scattered over the whole image.

4.3.6.4 Challenges and Limits

The following paragraphs point out and discuss challenging scenarios and limitations of the
presented approach.

Detection Range: An obvious limitation is given by the restricted detection range. In
the presented experiments a maximum range of 16 m was used. This is due to the fact that
in larger distances small obstacles, such as curbs, vanish in the noise of the triangulated
point cloud. Thus, the range off applications for higher-level modules based on the estimated
free-space or surface model is limited to urban or suburban scenarios with moderate driving
speeds. Certainly, the approach could be adapted to detect larger objects, such as cars or
guardrails, in greater distances. However, this would change the actual scope and is not
discussed in this thesis.

Insufficient Flexibility of the Boundary Spline: Although more sophisticated than
representations based on lines, single polynomial functions, or splines parameterized along
the viewing axis, the flexibility of the presented boundary model is limited, all the more since
spatial smoothness is explicitly claimed as prior assumption. The model was designed to
yield a compromise between flexibility and robustness. Thus, special scenarios appear to be
challenging or even intractable since the actual boundary is too complex or severely violates
the model assumptions.

In the following, we discuss typical challenging scenarios and associated effects.

Narrow Objects: The major challenge is given by very narrow objects, such as the
poles of traffic signs and street lights, as depicted in the left image of Figure 4.32(a). Due
to the thin shape, the obstacle causes only the elevations of cells in a single longitudinal
grid column to differ from the street surface. Since the spline is parameterized along the
horizontal axis of the image, its ability to model strictly longitudinal objects is limited and
causes incorrect assignments in the lateral neighborhood of the obstacle, as depicted in Fig-
ure 4.32(b). Thus, the overall costs of treating the elevation measurements as outlier are

(a) (b)

Figure 4.32: Two examples for pole-like obstacles. Figure (a) shows a very thin obstacle (traffic sign pole)
which is erroneously classified as outlier. Figure (b) depicts a wider pole-like object which is correctly classified
as non-free-space by the boundary spline. However, the spline is not flexible enough to correctly reconstruct
the vertical borders causing a to wide estimation with increasing distance. Color meanings are equivalent to
those presented in Figure 4.17.

smaller than those of modeling the spline around the obstacle.
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A possible solution to overcome this limitation would be the combination of the approach
with a method specialized for the detection tall obstacles that is able to detect this type of
objects, such as the Stixel world presented in [Badino et al., 2009].

However, the occurrence of pole-like obstacles on the driving lane which not separated by
a curb is rather rare.

Bridging Effects: Another effect caused by insufficient flexibility of the spline model
is given by what we call ‘bridging effect’. The free-space between neighboring obstacles is
incorrectly classified as non-free-space since the boundary spline ‘bridges’ the gap between
the obstacles in case it is to narrow. Of course, the intensity of the effect rises when using a
high weight for the spatial filtering for the boundary spline.

Figure 4.33 illustrates examples of the bridging effect. Figure 4.33(a) shows the bridging
between a moving obstacle (vehicle) and the newly revealed background obstacle (round-
about), i.e. the object that was occluded by the vehicle some frames ago. The preceding
frames of the sequence are depicted in Figure 4.27. The bridging of the gap between the
obstacles is supported by both the spatial filtering prior as well as the spatial smoothness
prior. The latter retards the propagation of the spline into the newly revealed free-space
region.

(a) (b) (c)

Figure 4.33: Three examples demonstrating the bridging effect, i.e. the bridging of gaps between neighboring
obstacles by the boundary spline. Figure (a) shows the bridging effect in a scenario including a moving obstacle.
The remaining figures depict bridging effects which may occur when the free-space boundary migrates from an
occluding obstacle to the occluded obstacle. Color meanings are equivalent to those presented in Figure 4.17.

A more common occurrence of the bridging effect is depicted in Figure 4.33(b) and Fig-
ure 4.33(c). The bridging occurs when the free-space boundary migrates from the edge of an
occluding obstacle to the occluded obstacle. Due to the spline parametrization and spatial
smoothness assumption, the spline is not able to properly model the abrupt discontinuity.
Instead, a smoothed result is obtained which bridges the region in between which actually
represents free-space.

Cropping of Obstacle Edges: The last effect also occurs when the boundary spline
reaches the edge of an obstacle. This effect restricts to scenarios where the obstacle is flat and
reveals the street surface beyond, i.e. the elevation of the region behind the obstacle matches
the street surface, as illustrated in Figure 4.34. This violates the topology assumption which
states that there exists only a single transition from free-space to non-free-space in viewing
direction.

During the classification step, the spatial unary prior is not strong enough to prevent some
of the cells behind the obstacle edge to be classified as street. Consequently, the boundary
spline tries to encompass this cells and, thus, crops the obstacle edge.

Illumination and Stereo Artifacts: The presented approach entirely relies on elevation
information obtained from an arbitrary depth map sensor. In our experiments a stereo camera
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Figure 4.34: Three examples demonstrating the effect of cropping of obstacle edges. The obstacle is flat and
reveals the street surface beyond. The boundary spline tries to include the area behind the obstacle into the
estimated free-space region causing the obstacle edge to be cropped.

system was employed for data acquisition. Thus, the quality of the estimation result suffers
from the same issues as the utilized stereo algorithm. The explicit treatment of outliers in
the environment model as well as the sophisticated computation of the DEM allows for a
compensation of erroneousness stereo measurements up to a certain degree.

However, the consequences of large-area stereo errors caused by illumination issues, as
discussed in detail in Section 4.3.5, clearly limit the applicability of the approach in special
scenarios, such as strong rain, wet reflective road surfaces, or night scenes without auxiliary
equipment. To cope with those challenging scenarios an additional appropriate sensor would
be useful.

Extensive Occlusion of the Street Surface: Let us now discuss how extensive occlusions
of the street surface affect the estimation results obtained on the benchmark dataset.

Section 3.5.3.2 describes the detection and treatment of so called ‘degenerated models’.
This term describes estimation results where the percentage of DEM cells assigned to outlier
exceeds the threshold τoutlier or the percentage of DEM cells classified as street falls below
the threshold τstreet.

The experiment on the benchmark dataset using the default parameter set reveals two
occurrences of a degenerated models. Both are caused by extensive occlusions of the street
surface by other vehicles. Figure 4.35 shows the respective scenarios by means of the last valid
estimation result and the first estimation result after successful reinitialization. In between,
the algorithm continuously classifies the result as degenerated stating correctly that there is
no reliable free-space detected.

Figure 4.35: Two scenarios of the benchmark dataset which caused degenerated models. In both situations,
the vehicle occludes extensive parts of the street surface such that the number of DEM cells classified as
street falls below the threshold τstreet. The upper row shows the respective frames providing the last estima-
tion result before the degenerated model was detected. The bottom row shows the respective first frame in
which the system was successfully reinitialized, i.e. the model was estimated from scratch without detecting
a degenerated model. Color meanings are equivalent to those presented in Figure 4.17.
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Chapter 5

Conclusion and Outlook

Conclusion: In this thesis, we presented and analyzed a novel approach for the detection
and reconstruction of street surfaces and boundaries from depth map sequences. The system
addresses the scope of driver assistance systems which denies the usage of multiple expensive
sensors and motivates the acquisition of the depth maps via a single vehicle mounted stereo
camera system. However, the approach is generic in such a way that other sensors providing
synchronously captured depth maps, such as time-of-flight cameras, would also be suitable.
The focus of the approach lies on the explicit modeling of the street boundary (alias free-
space boundary) which represents the first geometric delimiter of the free drivable space in
front of the vehicle. This includes even low obstacles, such as curbs. By explicit modeling
we mean that the free-space boundary is continuously represented by a parameterized curve
in the horizontal plane.

The major challenges lie in the high geometric variability of the obstacles and their pos-
sibly low height occurrence compared to the measurement noise of stereo vision depth maps.
The flexible models based on B-splines that are used to represent the free-space boundary
and the street surface enable the approach to model the visible horizontal silhouette of nearly
arbitrary obstacles even in case of undulating street surfaces. Prior assumptions about the
spatial and temporal rigidity of the boundary are involved in the estimation process to permit
a stable and temporally consistent result despite the high flexibility of the model.

In a precomputation step, a DEM is computed from the depth information acquired from
stereo matching in order to model the elevation characteristics in front of the vehicle. For the
computation of the discrete elevation entries of the DEM, a sophisticated approach is used
which traces the optical ray’s path and assesses occlusion and free-space information rather
than solely the triangulated point position. This proved crucial to deal with the measurement
noise and outliers in the data.

An iterative approach is performed to estimate the parameters of the spline model from the
height information stored in the DEM. The first step of each iteration utilizes a CRF to derive
a probabilistic statement for each cell of the DEM’s grid of whether the cell belongs to the
drivable street region or the non-drivable region. Additionally, outliers are explicitly modeled.
In the second step, the parameters of the street surface are estimated from the elevation
measurements whereas the influence of the single observations is weighted by the probability of
the respective cell to belong to the street region. Further, the free-space boundary is estimated
as most probable separation of drivable and non-drivable regions with respect to the viewing
direction. Therefore, in the manner of logistic regression a classification model is fitted into
the probabilistic assignment information of the DEM cells. Put simply, for each longitudinal
column of the DEM grid, a logistic function is estimated which continuously describes the
local assignment probabilities. The free-space boundary is then estimated from the inflection
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points of the logistic functions which represent the local decision boundary between drivable
and non-drivable region. The logistic regression model is in turn considered as spatial prior
in the unary terms of the CRF in the subsequent iteration in order to restrict the area of
region competition and, thus, to prevent the boundary from overshooting obstacles. In a
postprocessing step for each iteration, a self-diagnostic routine is performed which assesses
the local validity of the estimated boundary model in order to adapt the temporal filtering
or to trigger a reinitialization if necessary. This proved to be essential to deal with moving
obstacles and to allow the boundary to propagate into previously occluded free-space regions.

Experiments on both synthetic and real-world scenarios revealed that the system is able
to accurately detect and model the free-space boundary in the considered distance range of
up to 16 m to the camera. This includes even low obstacles down to a height of 0.1 m as
well as obstacles of negative height. The system is able to deal with the high measurement
noise and with, theoretically, up to 20% outliers in the data. The experiments further prove
the applicability of the approach under real-world conditions and demonstrate the impact
of the approach’s single components on the result. Regarding the components, the sophisti-
cated approach for DEM computation, the usage of a flexible street surface model and the
consideration of the logistic regression model in the unary term of the CRF appear to be
most crucial. To the knowledge of the author, there is recently now other vision based sys-
tem yielding comparable performance at a similar spectrum of allowed obstacle shapes and
heights as well as curvature characteristics of the street surface.

However, the system reaches its limits for large-area stereo errors, especially if they appear
persistent over a couple of successive frames which causes the erroneous detection of faked
obstacles (ghost objects). Furthermore, although the approach utilizes a very flexible model
to represent the free-space boundary, it proved insufficient for very narrow obstacles, such as
poles, and tends to bridge gaps between obstacles standing close together.

Outlook:

Real-Time Capable Implementation: The online application of the system in a
test vehicle essentially requires the assessment of its real-time capability based on a full C++
implementation (or based on an alternative programming language of similar efficiency).
However, as discussed in Section 4.3.6.1 we are optimistic that an appropriate implementation
will match the respective computation time requirements considering the low computation
time of a C++ implementation of a predecessor version and the parallelization capabilities
of the approach.

Consideration of Appearance Information: In the presented experiments we uti-
lize a stereo camera system to monitor the vehicle’s environment. So far, only the geometric
information derived from stereo matching was utilized to solve the addressed task. Additional
appearance based information, such as color, texture and line structures should be considered
in future versions. The fusion of geometric and appearance information grants new opportu-
nities to overcome some limitations of the system and, in particular, to significantly extend
the detection range. Similar to [Michalke et al., 2010], a possible strategy could be to learn
the appearance of street and obstacles in close range based on the results of the presented
system and to trace the street boundary in more distant regions.

Probabilistic Model for Self Evaluation: The presented procedure for the self eval-
uation of the estimated result (processing step (VI)) which is employed to detect and treat
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model violations purely relies on a heuristic. The development of a more sophisticated
approach is a worthwhile goal for future work all the more because the experiments have
demonstrated that this step is crucial to deal with real-world conditions especially under the
presence moving obstacles. Similar to the classification of the voxels for the elevation esti-
mation in Section 3.2.2.2, a linear chain CRF could be used to determine the states of the
local boundary segments, whereas the possible states are given by the three cases presented
in Section 3.5.3.1 indicating if the segment represents a stationary object, or slightly or even
significantly violates the model. The respective potential functions could be learned from a
manual annotated test set.

Alternative Environment Models: The utilized environment model based on B-
spline representations for both street surface and boundary was chosen to yield a compromise
of flexibility and robustness. However, alternative models could be more suitable in special
situations and, in particular, if special scenarios are addressed. In [Siegemund et al., 2010]
and [Siegemund et al., 2011], a less flexible model is utilized where the street boundary is
defined to laterally separate the drivable region (classes street and outlier) from the non-
drivable region (class adjacent) along a third order polynomial with respect to the vehicle’s
longitudinal axis (see Figure 5.1). This model is designed to represent curbs and proved to
be very robust but limits the approach to obstacles being collateral to the vehicles driving
corridor.

Figure 5.1: Schematic illustration of the less flexible model employed in [Siegemund et al., 2010] and [Siege-
mund et al., 2011]. This model was designed to represent curbs being collateral to the vehicles driving corridor.
The free-space boundary which is plotted by an orange line is defined to laterally separate the drivable region
from the non-drivable region along a third order polynomial with respect to the vehicle’s longitudinal axis.

Similarly, one can think of a even more flexible model than the one presented in this
thesis. This might help to overcome limitations in the shape and topology of obstacles the
system is able to model. Remind that the logistic regression model which is used to represent
the local a posterior probabilities of the class adjacent implies a topology assumption that
allows only for a single transition from the drivable region to the non-drivable region in
viewing direction. This assumption proved to stabilize the result but prevents the system to
detect drivable regions behind the first obstacle which might be worthwhile for instance in
intersection scenarios to model the crossing lane. In a preliminarily experiment, we replace the
logistic regression model with an alternative classifier. We use the implementation of [Roscher
et al., 2012] based on the theory of Import Vector Machines (IVM) introduced by [Zhu and
Hastie, 2005], i.e. a probabilistic kernel based classifier. As for the logistic regression model,
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the feature domain of the classifier is given by the horizontal space. The free-space boundary
is embodied by the decision boundary between the class adjacent and the remaining classes.
Preliminary results on intersection scenarios are depicted in Figure 5.2. Due to the kernel
based representation, the classifier does, in theory, not imply any topology assumption which
enables the system to model multiple transitions between drivable and non-drivable regions
in viewing direction. However, some work needs to be done to stabilize this extreme flexible
model over time and to reduce the additional computational effort which denies a real-time
capable solution so far.

(a) Image projection

(b) Perspective view

(c) Local a posteriori probabilities of class adjacent

Figure 5.2: Two examples (one per column) demonstrating preliminary results for the usage of an alternative
environment model based on IVM. Figure (a) depicts the image projection of the result. Figure (b) provides
a perspective view on the estimated street surface. Color meanings are equivalent to those presented in
Figure 4.17. Figure (c) illustrates the local a posteriori probabilities of class adjacent obtained from the IVM
classifier, which are used as weighting factors α in the mixture distribution (3.21). For comparison, examples
for the a posterior probabilities obtained for the logistic regression model were presented in Figure 3.17. Note
that this alternative model in theory does not entail any topology assumption. In particular it is able to model
multiple transitions between drivable and non-drivable regions in viewing direction.



Appendix A

Construction of the Digital
Elevation Map

In this section we describe how to compute the cell center coordinates of a grid that satis-
fies the requirements defined in Section 3.2.2.1, i.e. the cell centers are regular in the image
columns and the cell spacings in both dimensions coincide dxj = dyj , as illustrated in Fig-
ure 3.6(a). Further, the assignment of depth measurements to the respective cells is demon-
strated.

Computation of Cell Center Coordinates: The grid structure is completely defined by
the following parameters:

• The distance ymin = yi1 − dy1
2 , i = 1, . . . , I, of the grid to the origin in longitudinal

direction.

• The image column coordinate of the left grid boundary umin.

• The spacing in the image columns du.

• The principle distance c.

• The number of cells in lateral and longitudinal direction, i.e. I and J .

By definition, all cell centers of the same longitudinal grid column i lie on the same horizontal
projection ray, i.e. project to the same image column ui := umin + 1

2du + (i− 1)du. Assuming
the local cell spacings dyj to be known, the cell center coordinates can be computed by

yij = ymin +

j−1∑

j′=1

dyj′ +
dyj
2

(A.1)

xij = yij
ui
c
. (A.2)

Since on the other hand the cell spacings depend on the yij coordinates

dyj = dxj = xij − xi−1j =
du
c
yij , (A.3)

we can only derive a direct formulation for the spacings dy1 of the first grid row. To obtain
the remainder of the cell spacings, let us consider a recursive formulation of (A.1)

yij = yij−1 +
dyj−1

2
+
dyj
2
. (A.4)
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Substituting (A.3) for yij and yij−1 yields a recursive formulation for the cell spacings

dyj = dyj−1 +
du
c

(
dyj−1

2
+
dyj
2

)
(A.5)

= a dyj−1 = aj−1dy1 , (A.6)

with the shortcut

a :=
1 + du

2c

1− du
2c

. (A.7)

In a similar way we derive an explicit formulation for the spacing dy1 from y1 = ymin +
dy1
2

by substituting (A.3) for y1 yielding

dy1 =
1

c
du
− 1

2

ymin. (A.8)

Finally, substituting (A.6) and (A.8) in (A.1) results in

yij = ymin + dy1

j−1∑

j′=1

aj
′−1 + dy1

aj−1

2
(A.9)

= ymin + dy1
aj−1 − 1

a− 1
+ dy1

aj−1

2
, (A.10)

where we used the property of a partial sum of a geometric series

J−1∑

j=0

aj =
J∑

j=1

aj−1 =
aJ − 1

a− 1
. (A.11)

Cell Assignment of Depth Measurements: The assignment of a certain depth mea-
surements y in image column u to the respective lateral index i is straight forward

i =

⌊
u− umin

du
+ 1

⌋
. (A.12)

The assignment to the longitudinal cell index j can either be done by online evaluating the
inverse function of (A.10) omitting the last term

j =

loga


 y − ymin

dy1

(
1

a−1

) + 1


+ 1

 , (A.13)

or more efficient by creating a lookup table of high resolution.



Appendix B

Treatment of Sample Position
Uncertainty for the Estimation of
the Street Surface Spline

In Section 3.3.2.1 we discussed the advantages of treating the sample positions xij = [xij , yij ]
T

as certain when estimating the street surface from the DEM’s height observations h(xij , yij).
However, the sample positions are defined by the horizontal cell centers which act as rep-
resentatives of the whole cell and are therefore uncertain due to the discretization of the
DEM grid. The functional model for the estimation of the control point heights hn from the
observations X = [. . . , xij , yij , hij , . . . ]

T reads as




...
h(xij , yij) + vhij

...


 =




...∑N
n=1 Bn,2

(
xij + vxij , yij + vyij

)
hn

...


 , (B.1)

with the sample residuals [. . . , vxij , vyij , vhij , . . . ]
T ∼ N (0,ΣXX). The covariance matrix is

given by the diagonal matrix ΣXX = Diag
(

[. . . , σ2
xij , σ

2
yij , σ

2
hij
, . . . ]T

)
holding the horizon-

tal and vertical precision of the DEM measurements defined in (3.13), (3.14) and (3.15).
Since (B.1) cannot be converted into an explicit function with respect to the observations,
the estimation of the parameters would require an expensive iterative procedure involving
multiple recomputations of the spline weights.

This section describes an approximative approach for the treatment of horizontal uncer-
tainties of the sample positions in order to allow for an efficient estimation in a linear model
resulting in a significant reduction in computational effort.

In order to obtain a function that is explicit with respect to the observations, we replace
the right sides of (B.1) by the first-order approximation

N∑

n=1

Bn,2
(
xij + vxij , yij + vyj

)
hn

≈
N∑

n=1

Bn,2 (xij , yij)hn + vxij
∂

∂x
h(xij , yij) + vyij

∂

∂y
h(xij , yij). (B.2)

The local derivatives embodying the last both terms are approximated from the surface
estimated the previous frame. Let the respective horizontal positions of the sample positions
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with respect to the coordinate system of the previous frame be denoted by [xold
ij , y

old
ij ]T and the

respective estimated control points by ĥold
n . Using the simplified notation for the derivatives

of B-spline basis functions introduced in (2.117), the derivatives are given by

∂

∂x
h(xij , yij) =

N∑

n=1

B(1,0)
n,2

(
xold
ij , y

old
ij

)
ĥold
n (B.3)

∂

∂y
h(xij , yij) =

N∑

n=1

B(0,1)
n,2

(
xold
ij , y

old
ij

)
ĥold
n . (B.4)

Substituting the approximation (B.2) in the initial model (B.1) yields the approximated
linear model




...
h(xij , yij)

...


+




...

vhij − vxij ∂∂xh(xij , yij)− vyij ∂∂yh(xij , yij)
...




︸ ︷︷ ︸
v

=

N∑

n=1

Bn,2 (x, y)hn, (B.5)

with v ∼ N (0,Σhh) and the sample position treated as certain. The precision of v is given
by the diagonal matrix

Σhh = JhΣXXJT
h (B.6)

holding the height precision of the single samples Sσ
2
hij as diagonal elements. The Jacobian Jh

is given by the block diagonal matrix

Jh =




. . .

− ∂
∂xh(xij , yij) − ∂

∂yh(xij , yij) 1
. . .


 . (B.7)



Appendix C

Error propagation for the
Prediction Step

The prediction step discussed in Section 3.4 involves the transformation of the previously es-
timated environment model into the current elevation map system. This comprises in detail
the transformation of a set of samples of the previously estimated surface (Section 3.4.1.1) as
well as the transformation of the control points of the previously estimated boundary (Sec-
tion 3.4.1.2). In the following, we describe the respective error propagation based on the
precisions Σutut ,

SΣ
θ̂t−1θ̂t−1

and BΣ
θ̂t−1θ̂t−1

of the current ego-motion parameters ut and

previously estimated model parameters Sθ̂t−1 and Bθ̂t−1. Section C.1 describes the deriva-
tion of the precision Σ−

X−t X
−
t

of the predicted 3d surface samples. Section C.2 comprises the

quite similar derivation of the precision BΣθ−t θ
−
t

of the 2d control points predicted from the

previously estimated boundary spline.

C.1 Error propagation for the Prediction of the Street Surface

As defined in Section 3.4.1.1, the previously estimated street surface is sampled at the hori-
zontal positions xq = [xq, yq]

T, with q = 1, . . . , Q, in the previous elevation map system Set−1 .
By means of the definition of the street surface model (3.23) the 3d-surface samples read as

Xq,t−1 = SX q( Sθ̂t−1) (C.1)

using the assistance function

SX q
(
Sθ
)

:=




xq
yq

Sf
(
xq,

Sθ
)


 =




xq
yq

[B1,2(xq, yq), . . . ,BN,2(xq, yq)]
Sθ


 . (C.2)

The transformation into the current elevation map system Set based on the ego-motion
information introduced in Section 3.2.3 yields the predicted samples

Xq,t = SMq

(
ut,

Sθ̂t−1

)
, (C.3)

where the prediction function is defined by

SMq

(
u, Sθ

)
:=




1 0 0 0
0 1 0 0
0 0 1 0


 tMt−1(u)

[
SX q( Sθ)

1

]
. (C.4)
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The ego-motion matrix tMt−1(u) defines the coordinate transformation from the previous
elevation maps system into the current system caused by the vehicles motion. The matrix is
governed by the parameter vector u which holds the three parameters of rotation Rut and
translation Tut. The exact definition is given by (3.19).

Using linear error propagation, the precision of the predicted samples is given by the
covariance matrix

Σ−
X−t X

−
t

= SJu

[
SΣ

θ̂t−1θ̂t−1
0

0 Σutut

]
SJu

T
. (C.5)

The Jacobian is defined by the partial derivatives of SMq with respect to u and Sθ evaluated
at the currently determined ego-motion parameters ut and previously estimated street surface
parameters Sθ̂t−1

SJu =




...
...

∂ SMq

∂u

∣∣∣∣
u=ut, Sθ= Sθ̂t−1

∂ SMq

∂ Sθ

∣∣∣∣
u=ut, Sθ= Sθ̂t−1

...
...



. (C.6)

To obtain this partial derivatives, we expand the prediction function (C.4) in terms of the
rotation part Ru and translation part Tu of the ego-motion parameters using definition (3.19)

SMq

(
u, Sθ

)
= R

(
Ru
)
SX q( Sθ) + Tu. (C.7)

From this, we directly obtain the partial derivatives with respect to the street surface param-
eters

∂ SMq

∂ Sθ
=
∂ SMq

∂ SX q
∂ SX q
∂ Sθ

= R
(
Ru
)



0 . . . 0
0 . . . 0

B1,2(xq, yq) . . . BN,2(xq, yq)


 (C.8)

and with respect to the translation parameters

∂ SMq

∂ Tu
= I 3. (C.9)

The partial derivative with respect to the rotation parameters Ru requires some more effort
due to the nonlinearity. The idea is to reformulate the rotation in terms of an approximate

rotation R
(
Ru

(0)
)

and a small update R
(
∆Ru

)

R
(
Ru
)

= R
(
Ru

(0)
)

R
(
∆Ru

)
(C.10)

≈ R
(
Ru

(0)
) (

I 3 + S
(
∆Ru

))
, (C.11)

whereas the update is approximated by means of the skew symmetric matrix

S
(
∆Ru

)
=




0 −[∆Ru]3 [∆Ru]2
[∆Ru]3 0 −[∆Ru]1
−[∆Ru]2 [∆Ru]1 0


 . (C.12)

For a detailed discussion of this approximation we refer to [McGlone et al., 2004, chap-
ter 2.1.2.9].
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Inserting the approximation into (C.7) yields the approximated prediction function

SMq

(
∆Ru, Tu

(0)
, Tu, Sθ

)

= R
(
Ru

(0)
) (

I 3 + S
(
∆Ru

))
SX q( Sθ) + Tu (C.13)

= R
(
Ru

(0)
)
SX q( Sθ) + R

(
Ru

(0)
)

S
(
∆Ru

)
SX q( Sθ) + Tu (C.14)

= R
(
Ru

(0)
)
SX q( Sθ)− R

(
Ru

(0)
)

S
(
SX q( Sθ)

)
∆Ru+ Tu, (C.15)

whereas the last transformation step follows from the identity S(a)b = −S(b)a.
From (C.15) the partial derivation with respect to the rotation parameters follows by the

approximation

∂

∂ Ru
SMq

(
u, Sθ

)∣∣∣∣Ru=Ru
(0)
≈ ∂

∂∆Ru
SMq

(
∆Ru, Tu

(0)
, Tu, Sθ

)∣∣∣∣
∆Ru=0

(C.16)

= −R
(
Ru

(0)
)

S
(
SX q( Sθ)

)
(C.17)

Finally, we achieve the required entries of the Jacobian (C.6) by evaluation of the partial
derivatives (C.8), (C.9) and (C.17) for u = ut and Sθ = Sθ̂t−1

∂ SMq

∂u

∣∣∣∣
u=ut, Sθ= Sθ̂t−1

≈
[
−R

(
Rut

)
S (Xq,t−1) I 3

]
(C.18)

∂ SMq

∂ Sθ

∣∣∣∣
u=ut, Sθ= Sθ̂t−1

= R
(
Rut

)



0 . . . 0
0 . . . 0

B1,2(xq, yq) . . . BN,2(xq, yq)


 . (C.19)

Note that we substituted the definition of the 3d-sample points Xq,t−1 = SX q( Sθ̂t−1).

C.2 Error propagation for the Prediction of the Street Bound-
ary

Let us now consider the error propagation for the prediction of the street boundary described
in Section 3.4.1.2. The transformation of the previously estimated boundary into the current
system is embodied by the transformation of the previously estimated control points of the
boundary spline Bθ̂t−1. Keep in mind that the parameter vector Bθ embodies the concate-
nation of the horizontal coordinates of the single control points (see Section 3.3.3). Thus, we
can define a function to access the 3d-coordinates of the mth control point

[
Bx̂m,t−1

0

]
= BXm(Bθ̂t−1) (C.20)

by means of the unit vector e2m and e2m−1

BXm
(
Bθ
)

:=



eT2m−1

Bθ
eT2m

Bθ
0


 . (C.21)

Similar to the previous section, the coordinates of the control points are transformed to
the current system via the prediction function

BMm

(
u, Bθ

)
:=

[
1 0 0 0
0 1 0 0

]
tMt−1(u)

[
BXm(Bθ)

1

]
. (C.22)
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Note that the points are projected to the horizontal plane since the boundary spline is defined
as horizontal delimiter of the drivable region, which the vertical coordinate useless. The
precision of the predicted control points follows from linear error propagation

BΣθ−t θ
−
t

= BJu

[
BΣ

θ̂t−1θ̂t−1
0

0 Σutut

]
BJu

T
, (C.23)

with the Jacobian

BJu =




...
...

∂ BMm
∂u

∣∣∣∣
ut, Bθ̂t−1

∂ BMm

∂ Bθ

∣∣∣∣
ut, Bθ̂t−1

...
...



. (C.24)

As in the previous section, we substitute the definition of the ego-motion matrix (3.19)
into the prediction function

BMm

(
u, Bθ

)
:=

[
1 0 0
0 1 0

] (
R
(
Ru
)
BXm(Bθ) + Tu

)
(C.25)

in order to determine the partial derivatives which assemble the Jacobian. The derivatives
with respect to the boundary parameters and the translation parameters read as

∂ BMm

∂ Tu
=

[
1 0 0
0 1 0

]
(C.26)

∂ BMm

∂ Bθ
=
∂ BMm

∂ BXm
∂ BXm
∂ Bθ

=

[
1 0 0
0 1 0

]
R
(
Ru
)


eT2m−1

eT2m
0T


 . (C.27)

The partial derivative with respect to the rotation parameters is obtained analogously to the
procedure presented for the street surface prediction using the approximation (C.11) for the
rotation matrix. Thus, with the only difference embodied by the additional projection matrix
the derivative reads as

∂ BMm

∂ Ru

∣∣∣∣Ru=Ru
(0)
≈ −

[
1 0 0
0 1 0

]
R
(
Ru

(0)
)

S
(
BXm(Bθ)

)
. (C.28)

In combination, evaluation with u = ut and Bθ = Bθ̂t−1 yields the partial derivatives which
assemble the Jacobian BJu

∂ BMm

∂u

∣∣∣∣
u=ut,Bθ=Bθ̂t−1

≈
[
1 0 0
0 1 0

] [
−R

(
Rut

)
S
([

Bx̂m,t−1

0

])
I 3

]
(C.29)

∂ BMm

∂ Bθ

∣∣∣∣
u=ut, Sθ= Sθ̂t−1

=

[
1 0 0
0 1 0

]
R
(
Rut

)


eT2m−1

eT2m
0T


 . (C.30)

Note that we used the definition of BXm given by (C.20) to write the derivative in terms of
the previously estimated control points Bx̂m,t−1.



Appendix D

Mathematical Derivations

This Section contains mathematical proofs and derivations for statements given earlier within
this thesis.

D.1 Simplified Computation of the Expectation in the EM-
Algorithm

Statement: Assume a vector of random variables l = [l1, . . . , lI ]
T to be given which take

discrete values li ∈ {c1, . . . , cK} and satisfies
∑K

k=1 P (li = ck) = 1 and P (l) =
∏I
i=1 P (li).

The expected value of a function f(l) :=
∑I

j=1 fj(lj) is then given by

E(f(l)) =
∑

l∈L

P (l)f(l) (D.1)

!
=

I∑

i=1

K∑

k=1

P (li = ck)fi(ck), (D.2)

where L denotes the set of all possible assignments of l.

Proof: The proof is done by mathematical induction over the number of elements in l:

• Assume I = 1:

∑

l1∈L
P (l1)f(l1) =

K∑

k=1

P (l1 = ck)f(ck) � (D.3)

• Assume I > 1: We subdivide the total sum over L in K sums over subsets {L|l1 = ck},
where the first respective element of l is fixed to ck and split off the terms including f1
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to achieve

∑

l∈L

P (l)f(l) =
∑

l∈L

I∏

i=1

P (li)
I∑

j=1

fj(lj) (D.4)

=

K∑

k=1

∑

l∈{L|l1=ck}

P (l1 = ck)
I∏

i=2

P (li)


f1(ck) +

I∑

j=2

fj(lj)


 (D.5)

=
K∑

k=1

P (l1 = ck)f1(ck)
∑

l∈{L|l1=ck}

I∏

i=2

P (li)

+
K∑

k=1

P (l1 = ck)
∑

l∈{L|l1=ck}

I∏

i=2

P (li)
I∑

j=2

fj(lj). (D.6)

We now use the induction hypothesis to rearrange the second term

K∑

k=1

P (l1 = ck)
∑

l∈{L|l1=ck}

I∏

i=2

P (li)
I∑

i=2

fi(li) (D.7)

induction
=

K∑

k=1

P (l1 = ck)
K∑

k′=1

I∑

i=2

P (li = ck′)fi(ck′) (D.8)

=
K∑

k′=1

I∑

i=2

P (li = ck′)fi(ck′)

K∑

k=1

P (l1 = ck)

︸ ︷︷ ︸
1

. (D.9)

Moreover, from successive factorization follows the identity

∑

l∈{L|l1=ck}

I∏

i=2

P (li) =
K∑

k′=1

P (ck′)
∑

l∈{L|l1=ck,l2=ck′}

I∏

i=3

P (li) (D.10)

=
∑

l∈{L|l1=ck,l2=c1}

I∏

i=3

P (li)

K∑

k′=1

P (ck′)

︸ ︷︷ ︸
1

= · · · = 1, (D.11)

where the second equation uses the fact that the product does not include l2, i.e. is
independent on k′.

Finally, inserting (D.9) and (D.11) in (D.6) and aggregating the sums yields

∑

l∈L

P (l)f(l) =

K∑

k=1

P (l1 = ck)f1(ck) +

K∑

k′=1

I∑

i=2

P (li = ck′)fi(ck′) (D.12)

=

K∑

k=1

I∑

i=1

P (li = ck)fi(ck). � (D.13)

D.2 Standard Deviation from Intersection of Gaussians

Statement: Assume a Gaussian PDF f(x) = G(x | µ, σ2) to be given. Neglecting the trivial
solution σc = σ, the standard deviation of the normal distribution with the same mean whose
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density function fc(x) = G(x | µ, σ2
c ) intersects f at x1 = µ− c σ and x2 = µ+ c σ is defined

by

σc =

√
− c2

L (−c2 exp(−c2))
σ, (D.14)

with L being the Lambert W function that satisfies L(x) exp(L(x)) = x. For more informa-
tion on the Lambert W function, we refer to [Corless et al., 1996].

Proof: The identity (D.14) follows from solving

f(µ+ c σ) = fc(µ+ c σ) (D.15)

for σc claiming σc 6= σ. Using the substitution υc = exp
(
−1

2c
2
)
, we get

G(µ+ c σ | µ, σ2) = G(µ+ c σ | µ, σ2
c ) (D.16)

⇔ 1√
2πσ

exp
(
−1

2c
2
)

=
1√

2πσc
exp

(
−1

2

(cσ)2

σ2
c

)
(D.17)

⇔ υc =
σ

σc
exp

(
−1

2
c2σ

2

σ2
c

)
. (D.18)

Squaring both sides an multiplying −c2 yields

− c2υ2
c = −c2 σ2

σ2
c

exp
(
−c2 σ2

σ2
c

)
. (D.19)

From the property L(x) exp(L(x)) = x of the Lambert W function, we finally derive

L
(
−c2υ2

c

)
= −c2σ

2

σ2
c

(D.20)

⇔ σc =

√
−1

L (−c2υ2
c )
cσ (D.21)

=

√
−c2

L (−c2 exp(−c2))
σ. � (D.22)
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