18,493 research outputs found

    A network model to assess base-filter combinations

    Get PDF
    Granular filters retain base material within the narrowest constrictions of their void network. A direct comparison of the base material particle size distribution (PSD) and the filter constriction size distribution (CSD) cannot easily be used to assess fi lter - base compatibility. Here a conceptually simple random - walk network model using a filter CSD derived from discrete element modelling and base PSD is used to assess filter - base compatibility. Following verification using experimental data the model is a pplied to assess empirical ratios between filter and base characteristic diameters. The effects of filter density, void connectivity and blocking in the first few filter layers are highlighted

    Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps)

    Get PDF
    Debris \ufb02ows are among the most hazardous phenomena in mountain areas. To cope with debris \ufb02ow hazard, it is common to delineate the risk-prone areas through routing models. The most important input to debris \ufb02ow routing models are the topographic data, usually in the form of Digital Elevation Models (DEMs). The quality of DEMs depends on the accuracy, density, and spatial distribution of the sampled points; on the characteristics of the surface; and on the applied gridding methodology. Therefore, the choice of the interpolation method affects the realistic representation of the channel and fan morphology, and thus potentially the debris \ufb02ow routing modeling outcomes. In this paper, we initially investigate the performance of common interpolation methods (i.e., linear triangulation, natural neighbor, nearest neighbor, Inverse Distance to a Power, ANUDEM, Radial Basis Functions, and ordinary kriging) in building DEMs with the complex topography of a debris \ufb02ow channel located in the Venetian Dolomites (North-eastern Italian Alps), by using small footprint full- waveform Light Detection And Ranging (LiDAR) data. The investigation is carried out through a combination of statistical analysis of vertical accuracy, algorithm robustness, and spatial clustering of vertical errors, and multi-criteria shape reliability assessment. After that, we examine the in\ufb02uence of the tested interpolation algorithms on the performance of a Geographic Information System (GIS)-based cell model for simulating stony debris \ufb02ows routing. In detail, we investigate both the correlation between the DEMs heights uncertainty resulting from the gridding procedure and that on the corresponding simulated erosion/deposition depths, both the effect of interpolation algorithms on simulated areas, erosion and deposition volumes, solid-liquid discharges, and channel morphology after the event. The comparison among the tested interpolation methods highlights that the ANUDEM and ordinary kriging algorithms are not suitable for building DEMs with complex topography. Conversely, the linear triangulation, the natural neighbor algorithm, and the thin-plate spline plus tension and completely regularized spline functions ensure the best trade-off among accuracy and shape reliability. Anyway, the evaluation of the effects of gridding techniques on debris \ufb02ow routing modeling reveals that the choice of the interpolation algorithm does not signi\ufb01cantly affect the model outcomes

    On the stabilizing influence of silt on sand beds

    Get PDF
    In marine environments, sediments from different sources are stirred and dispersed, generating beds that are composed of mixed and layered sediments of differing grain sizes. Traditional engineering formulations used to predict erosion thresholds are however, generally for unimodal sediment distributions, and so may be inadequate for commonly occurring coastal sediments. We tested the transport behavior of deposited and mixed sediment beds consisting of a simplified two-grain fraction (silt (D50  =  55 µm) and sand (D50 =  300 µm)) in a laboratory-based annular flume with the objective of investigating the parameters controlling the stability of a sediment bed. To mimic recent deposition of particles following large storm events and the longer-term result of the incorporation of fines in coarse sediment, we designed two suites of experiments: (1) “the layering experiment”: in which a sandy bed was covered by a thin layer of silt of varying thickness (0.2–3 mm; 0.5–3.7 wt %, dry weight in a layer 10 cm deep); and (2) “the mixing experiment” where the bed was composed of sand homogeneously mixed with small amounts of silt (0.07–0.7 wt %, dry weight). To initiate erosion and to detect a possible stabilizing effect in both settings, we increased the flow speeds in increments up to 0.30 m/s. Results showed that the sediment bed (or the underlying sand bed in the case of the layering experiment) stabilized with increasing silt composition. The increasing sediment stability was defined by a shift of the initial threshold conditions towards higher flow speeds, combined with, in the case of the mixed bed, decreasing erosion rates. Our results show that even extremely low concentrations of silt play a stabilizing role (1.4% silt (wt %) on a layered sediment bed of 10 cm thickness). In the case of a mixed sediment bed, 0.18% silt (wt %, in a sample of 10 cm depth) stabilized the bed. Both cases show that the depositional history of the sediment fractions can change the erosion characteristics of the seabed. These observations are summarized in a conceptual model that suggests that, in addition to the effect on surface roughness, silt stabilizes the sand bed by pore-space plugging and reducing the inflow in the bed, and hence increases the bed stability. Measurements of hydraulic conductivity on similar bed assemblages qualitatively supported this conclusion by showing that silt could decrease the permeability by up to 22% in the case of a layered bed and by up to 70% in the case of a mixed bed

    EFFECTIVE SEDIMENT CONTROL IN A RESERVOIR

    Get PDF
    Sedimentation in a reservoir cannot be avoided. The average rate of sedimentation on the storage volume reduction of a reservoir in the world is about 1 % per year (Yoon,1992), meanwhile, the storage volume reduction in several reservoir in Indonesia reaches 1,64% to 2,83% per year (Atmojo,2012). These sediment’s accumulations in the reservoir will continually reduce the storage volume, thus the intended functions of reservoirs for flood control (Atmojo, 2013), irrigation and water supply, electric generation, etc. will also reduced and not optimal. Some of sediment control measures have been practiced in reducing sediment accumulation in reservoirs around the world. In principle, there are two approaches i.e., reduce the sediment input to a reservoir by land conservation, construction of check dam, sand pocket, diversion channel, etc. and reduce the sedimentation in the reservoir by sluicing, turbidity current, dredging, and flushing (Morris and Fan, 1998; Emamgholizadeh et al., 2006). This paper presents the performance of sediment’s reduction from a reservoir by flushing, sluicing, and disturbing flushing based on some laboratories results (Atmojo,2012). It is expected that this paper can contribute to elicits some finding on the selection of which suitable method for sediment reduction from a reservoir

    Validation of Observed Bedload Transport Pathways Using Morphodynamic Modeling

    Get PDF
    Phenomena related to braiding, including local scour and fill, channel bar development, migration and avulsion, make numerical morphodynamic modeling of braided rivers challenging. This paper investigates the performance of a Delft3D model, in a 2D depth-averaged formulation, to simulate the morphodynamics of an anabranch of the Rees River (New Zealand). Model performance is evaluated using data from field surveys collected on the falling limb of a major high flow, and using several sediment transport formulas. Initial model results suggest that there is generally good agreement between observed and modeled bed levels. However, some discrepancies in the bed level estimations were noticed, leading to bed level, water depth and water velocity estimation errors
    corecore