
1 INTRODUCTION 
Braided rivers constitute one of the three most 
common channel types found on Earth (Chalov & 
Alexeevsky, 2015). These rivers are characterized 
by multiple channels, as well as wide active and 
mostly un-vegetated widths. Braiding can be mes-
merizing since flow and sediment transport interact 
and are able to change morphology in a rapid and 
complex fashion. Generally, braiding occurs due to 
high sediment supply in a channel or a river 
(Church, 1992). Processes involved include local 
scour and fill, channel bars development and migra-
tion, as well as bifurcation mechanisms. The phe-
nomena listed above are generated due to high 
stream power as well as low bed and bank erosion 
resistance relative to stream energy (Ashmore 2013, 
Belletti et al. 2015).  

The physical mechanisms of braiding make nu-
merical modeling, more specifically sediment and 
bedload modeling, of this river style challenging. 
Some of the challenges faced when modeling braid-
ed rivers include the spatial and temporal scales of 
morphodynamics. A model’s spatial resolution and 
comparable extent, temporal frequency and accuracy 
of observational data for calibration can lead to other 
difficulties. Conventional topographical channel 
surveys are done such that larger areas are analyzed 
to obtain coarse data, while high resolution data is 
gathered for small areas (Li et al., 2008). However, 
the use of acoustic Doppler current profiler (aDcp) 
technology to obtain apparent bedload transport 

rates measurements, while water depths and veloci-
ties are concurrently acquired, lead to a new ap-
proach to map channel processing. This method en-
ables the direct measurement of bedload transport, 
but might lead to biased measurements due to the 
suspended sediments loads (Rennie 2002, Rennie & 
Millar, 2004). 

Most sediment transport models used to simulate 
braided rivers are depth-averaged models because 
three-dimensional (3D) morphodynamics modeling 
tends to be computationally expensive and 3D cali-
bration data are often unavailable (Lane et al., 1999). 
However, braided river flows are strongly affected 
by 3D effects and bedload transport tend not to be 
handled effectively using averaged cross-sectional or 
channel properties data. On the other hand, two-
dimensional (2D) model accounts for secondary cir-
culation and appropriate transverse and longitudinal 
bed shear stress vectors which can contribute to rep-
resent adequately the 3D complexity of 
morphodynamics. Bedload rate increases non-
linearly with bed shear stress in excess of the critical 
shear stress for particle entrainment (Li et al., 2008). 
In many braided rivers, bedload transport is, howev-
er, not limited to bankfull flow, and bedload 
transport is observed at relatively low flows, far be-
low bankfull conditions (Williams et al., 2015). 
Conventional 2D morphodynamics models use bed 
shear stress distribution to estimate bedload distribu-
tion. However, field evidence suggests that sediment 
supply locations, such as eroding banks, can dictate 
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are, respectively, 47%, 62% and 70% for Survey B 
to D, resulting in an average difference of 60%.  
Thus, it would be adequate to assume that the flow 
at the upstream boundary of the study area is about 
60% smaller than at Invincible. Therefore, flow 
measured at Invincible, recorded at a frequency of 
15 minutes, lagged by 90 minutes and reduced by 
60%, was set as the upstream discharge boundary. 
The loss in flow can be explained by the flow ex-
pansion across the wide braided network, as well as 
loss to groundwater. 

Table 2. Flow at Invincible considering time lag 

Furthermore, a flow versus water level relation-
ship, also known as QH-relationship, was used as 
the downstream boundary condition. Discharges for 
different water levels were calculated using constant 
channel slope and roughness values, along with the 
assumption of a horizontal water surface across the 
downstream boundary. For the given Rees ana-
branch, the mean slope is 0.004, while the roughness 
value (ks) of 0.04 m was used. This roughness value 
was found to be optimal for the Rees River (Wil-
liams et al., 2013). The QH-relation was calculated 
based on a cross-section of the river, near the down-
stream boundary. The cross section was divided into 
segments, then the mean depth, area, conveyance 
and flow was calculated for all segments. From this, 
discharges were estimated for different horizontal 
water levels. 

2.4 Performance Assessment 

Water velocity, water depth and bed elevation pre-
dictions by the Delft3D model at the end of the sce-
nario were compared to measured field data to as-
sess the model’s performance,. Predicted and 
measured data were compared by calculating the 
mean absolute error (MAE), as well as the root mean 
square error (RMSE) and the coefficient of determi-
nation (r2). The error statistics mentioned are defined 
in Table 3, where xmodeled represents predicted depth, 
velocity or bed elevation and xmeasured symbolizes 
measured depth, velocity or bed elevation. 

Table 3. Error Statistics Formulation 

Error Statistic Formula 
Mean Absolute 
Error (MAE) MAE ൌ

∑ |x୫୭ୢୣ୪ୣୢ െ x୫ୣୟୱ୳୰ୣୢ|
୬
୧

n
Root Mean 

Square Error 
(RMSE) 

RMSE ൌ 	ඨ
∑ ሺx୫୭ୢୣ୪ୣୢ െ x୫ୣୟୱ୳୰ୣୢሻଶ୬
୧

n

Coefficient of De-
termination (r2) 

rଶ ൌ 1 െ
∑ ሺx୫ୣୟୱ୳୰ୣୢ െ x୫୭ୢୣ୪ୣୢതതതതതതതതതതതሻଶ୬
୧

∑ ሺx୫ୣୟୱ୳୰ୣୢ െ x୫୭ୢୣ୪ୣୢሻଶ୬
୧

 

3 RESULTS 

As introduced in Section 2.3.1., several sediment 
transport formulas were analyzed in order to identify 
the one generating the best predictions. The follow-
ing section will present and analyze the model’s 
predictions obtained from the different sediment 
transport formulas used.  

3.1 Sediment Transport Formula Sensitivity 
Analysis 

A major step of the calibration process was to identi-
fy the sediment transport formula which would most 
effectively model the morphodynamics that were 
observed between the field surveys. A total of four 
sediment transport formulas supported by Delft3D 
were analyzed, namely the Wilcock-Crowe (2003), 
Gaueman et al. (2009), Meyer-Peter and Müller 
(1948) and Van Rijn (1984a,b,c). The formulas were 
tested for Scenario 1 using the model setup de-
scribed in Section 2.3.2. Note that here, the down-
stream boundary condition was forced using a fixed 
water level condition. Model predictions for water 
velocity and water depths were evaluated to the ob-
served data. Moreover, the predicted bed levels at 
the end of the simulation were also compared to the 
surveyed elevations.  

3.1.1 Numerical Analysis 
The performances of all formulas are assessed nu-
merically using the error statistics presented in Table 
3. First, the estimated water velocity field resulting
from sediment transport estimations, thus an estima-
tion of the morphological changes that occurred dur-
ing the scenario, is compared to the observed flow of
the Rees River measured during Survey C. Table 4
shows the statistics obtained from the different for-
mulas for the water velocity component. Results
shown in Table 4 suggest that the Meyer-Peter and
Müller formula generates better correlation between
the observed and modeled velocities. On the other
hand, the Gaueman et al. formula resulted in smaller
mean velocity errors, as both RMSE and MAE val-
ues are the smallest.

Survey 
Date and 
Time 

Discharge at 
Invincible 
(cms) 

Discharge at 
the upstream 
boundary 
(cms) 

Diff. 
(%) 

B 07/02/2011, 
14:38 76.18 35.60 47% 

C 10/02/2011, 
5:56 37.79 23.60 62% 

D 16/02/2011, 
15:35 20.64 

14.40 70% 
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Table 4. Numerical Performance of Sediment Transport For-
mula for Velocity Component 

Formula r2 
RMSE 
(m/s) 

MAE 
(m/s) 

Gaueman et al. 0.0833 0.4291 0.3442 

Wilcock-Crowe 0.0456 0.4813 0.3565 

Meyer-Peter and Müller 0.2883 0.4891 0.3812 

Van Rijn 0.0936 0.6526 0.4926 

Secondly, the same statistics were calculated 
from the comparison between observed and modeled 
water depths, as show in Table 5. Results presented 
in Table 5 show that all formulas give similar mean 
depth errors, but that the correlation of the modeled 
depths with observed depths is somewhat better us-
ing the Van Rijn formula. 

Table 5. Numerical Performance of Sediment Transport For-
mula for Depth Component 

Formula r2 
RMSE 
(m) 

MAE 
(m) 

Gaueman et al. 0.1439 0.2195 0.1875 

Wilcock-Crowe 0.1504 0.2284 0.1905 

Meyer-Peter and Müller 0.0647 0.2225 0.1647 

Van Rijn 0.3512 0.2222 0.1809 

Finally, the last comparison looks at the statistics 
of the predicted bed levels after the simulation. Ta-
ble 6 shows the statistics obtained from the different 
formulas for the bed level component. Results sug-
gest that the Meyer-Peter and Müller formula leads 
to better estimation of the bed levels observed dur-
ing Survey C. However, the other formulas give 
somewhat similar statistics than the ones obtained 
using the Meyer-Peter and Müller. Thus, analyzing 
the results using the numerical performances of each 
formula, the Meyer-Peter and Müller formula is the 
one that generates smaller mean errors for all ana-
lyzed variables. 

Table 6. Numerical Performance of Sediment Transport For-
mula for Bed Level Component 

Formula r2 
RMSE 
(m) 

MAE 
(m) 

Gaueman et al. 0.8129 0.3069 0.2666 

Wilcock-Crowe 0.8426 0.2665 0.2215 

Meyer-Peter and Müller 0.8323 0.2239 0.1709 

Van Rijn 0.7233 0.2615 0.2223 

3.1.2 Visual Interpretation of the Results 
Observed and predicted distribution maps of all 
three variables analyzed in the last section will be 
presented in this section. This visual interpretation 
of the predicted results is done in order to confirm 

the results obtained in Section 3.1.1, as good statis-
tics do not always translate into reasonable results. 
First, Figure 3 illustrates the velocities distribution 
map for the observed data, as well as the resulting 
velocity distribution maps for the tested sediment 
transport formulas. Note that water is flowing from 
top to bottom in the figure. One important note con-
cerning the observed velocity distribution maps is 
related to the side channel on the right bank of the 
river predicted by the model (Fig. 3B-E). The chan-
nel was present at the time of the measurements but 
was not surveyed. When comparing the observed ve-
locity field (Fig. 3A) to the other distribution maps, 
only the Van Rijn formula clearly indicates the pres-
ence of a bar near the upstream boundary and the 
flow that goes around this bar. Furthermore, the us-
age of the Van Rijn formula results in better sedi-
ment transport estimations as the resulting velocity 
field, obtained from the predicted morphology, is 
better estimated than with the other formulas.  

Figure 4. (A) Observed Velocities Distribution Map for Survey 
C. (B-E) Velocity Distribution Maps Resulting from
Morphodynamics Simulation of Sediment Transport Formulas

Secondly, the same distributions maps were gen-
erated for the water depths, as shown in Figure 5. 
Similarly, the Van Rijn formula lead to better sedi-
ment transport estimations during the scenario, as 
the estimated water depth are in better agreement 
with the observed data.  

Figure 5. (A) Observed Depths Distribution Map for Survey C. 
(B-E) Depths Distribution Maps Resulting from 
Morphodynamics Simulation of Sediment Transport Formulas 
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The flow field is well replicated and the deep 
section of the river, downstream of the bar, is also 
well captured by the model. The final bed elevations 
distribution maps, shown in Figure 6, were comput-
ed to visually compare the bed elevations measured 
during Survey C to the predicted bed levels at the 
end of the scenario. The distributed bed levels con-
firm that the use of the Van Rijn formula leads to 
better estimation of the morphodynamics that oc-
curred in between Surveys B and C, since the pre-
dicted bed elevations are well replicated, compared 
to the estimations obtained with the other formulas. 
Thus, even if the Meyer-Peter and Müeller formula 
generated better estimations from a numerical point 
of view (see Section 3.1.1), the distributed maps of 
water velocity, depths and bed levels demonstrate 
that the Van Rijn’s predictions seems better for the 
given Rees River reach.  

 

Figure 6. (A) Observed Bed Levels Distribution Map for Sur-
vey C. (B-E) Bed Levels Distribution Maps Resulting from 
Morphodynamics Simulation of Sediment Transport Formulas 

 
In order to assess this given discrepancy between 

the numerical and visual results, the distributed dif-
ference maps between the observed and the modeled 
results were computed. First, Figure 7 illustrates the 
difference between the observed and modeled veloc-
ity fields for all tested formulas. As shown in Figure 
4, velocity resulting from the sediment transport 
predictions using the Van Rijn formula were the 
ones which best replicated the general velocity field 
observed on site. Analyzing Figure 7, it appears that 
the low statistical values of the velocities obtained 
with the Van Rijn formula are due to the fact that the 
locations of the channels, following morphological 
changes estimated by the model, are slightly off the 
observed channels location. Thus, the velocity val-
ues, following morphological changes using the Van 
Rijn formula, are close to the observed velocities, as 
shown by the white and light red zones delimited by 
the black lines (Fig. 7D). However, the location of 
the predicted channels differ from the observed 
ones, as shown by the blue zones (Fig. 7D), which 
lead to the low statistical values listed in Table 4.  

 

Figure 7. (A-D) Difference Distribution Maps Between Ob-
served and Resulting Velocities from Morphodynamics Simu-
lation for different Sediment Transport Formulas 

 
As for, the Gaueman et al. and the Wilcock-

Crowe formulas, they do not predict the confluence 
of the channels downstream of the bar, thus leading 
to high velocity differences in that zone. Although 
the Meyer-Peter and Müller formula yielded in mor-
phological changes that best estimate water veloci-
ties, it lead to underestimation of the flow in the 
channel on the right side of the bar and to overesti-
mation of the flow over the bar. A similar process 
was done to analyze the areas where the depth and 
bed level predictions by the model differ from the 
observed data. Figure 8 shows the difference be-
tween observed and modeled water depths for the 
Rees anabranch. The distributed map illustrating the 
water depths difference obtained using the Van Rijn 
formula (Fig. 8 D) shows that the predicted channels 
locations differ from the observed data.  

 

Figure 8. (A-D) Difference Distribution Maps Between Ob-
served and Resulting Depths from Morphodynamics Simula-
tion for different Sediment Transport Formulas 

 
Moreover, the water depths in the main thalweg 

of the river are overestimated using the Van Rijn 
formula. The morphological changes estimated by 
Gaueman et al. and the Wilcock-Crowe formulas 
lead to underestimation of the flow depth in the ana-
branch. As for the Meyer-Peter and Müller formula, 
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it leads to underestimation the flow depths in the ar-
eas where the velocity estimations were close to the 
observed velocities downstream of the bar (see Fig. 
7B). Figure 9 shows the bed elevation differences 
between observed data and modeled results, as well 
as the difference between the DEM of Survey C and 
Survey B.  All formulas, other than the Van Rijn, 
lead to overestimation of the bed elevations in the 
Rees anabranch. Indeed, the Van Rijn formula leads 
to underestimation of the riverbed throughout the 
anabranch, while the bed elevation predictions to-
wards the left bank of the river at the downstream 
end of the reach are overestimated. However when 
comparing the modeled results (Fig. 9B-D) to the 
DEM of difference between Survey C and B (Fig. 
9A), only the Van Rijn formula’s predictions con-
cerning the erosion and sedimentation areas are 
comparable to what was observed. Similar to the ob-
servation that was made analyzing Figure 7, the low 
statistical values obtained using the Van Rijn formu-
la (presented in Table 4 to 6), are linked to 
misprediction in the channel locations, since the re-
sulted velocities, depths and bed levels do favor the 
Van Rijn formula when the results are visually com-
pared to the observed data (Figs 3-5). 

 

Figure 9. (A-D) Difference Distribution Maps Between Ob-
served and Resulting Bed Elevations from Morphodynamics 
Simulation for different Sediment Transport Formulas 

4 DISCUSSION 

The use Van Rijn’s sediment transport formula lead 
to the best agreement between the results of the 
Delft3D model and the observed data gathered on 
the Rees River. It is interesting that, out of the for-
mulas that were tested, the Van Rijn’s 
morphodynamics predictions are the closest to the 
morphological changes that were noticed in the 
gravel bed Rees River, as it was developed for sandy 
rivers. The good morphological predictions by the 
Van Rijn’s for the Rees River can be explained by 
the simple correlation that links excess shear stress 
and non-dimensional grain size. Thus, even though 
the Van Rijn formula was derived from work related 
to sandy rivers, it still can adequately predict 

morphodynamics at a single anabranch scale in 
gravel bed rivers.  

As previously mentioned, this paper introduced 
the morphodynamic model which was used to com-
pare observed bedload transport pathways of the 
Rees River anabranch to modeled bedload transport 
results. Ultimately, this work endeavors to investi-
gate whether shear stress distributions are useful for 
predicting bedload transport pathways, as well as at-
tempting to validate the bedload transport pathways 
observed on the field. The modeled bedload path-
ways, obtained at the end of the simulations, were 
compared to the pathways derived from field obser-
vations through a vector correlation analysis (Crosby 
et al. 1993, Rennie and Millar 2004).  The 2D 
bedload spatial distribution predicted by the Van 
Rijn model was significantly correlated to the spatial 
distribution of apparent bedload velocity observed 
by Williams et al. (2015). The vector correlation re-
sults will be used to guide further model refine-
ments. 

5 CONCLUSION 

The present paper presented the initial calibration of 
a Delft3D model used to simulate morphological 
changes occurring in a 300 m anabranch of New 
Zealand’s Rees River. This model will ultimately be 
used to assess whether shear stress distribution is a 
useful tool to predict bedload transport pathways. 
Several sediment transport formulas that are imple-
mented in Delft3D were tested to identify which one 
would best reproduce (predict) field measurements. 
Out of the four sediment transport formulas that 
were investigated, the Meyer-Peter and Müller for-
mula lead to smaller mean errors for all analyzed 
variables, namely water velocity, water depth and 
bed elevation. Thus, a point-to-point comparison be-
tween observed and modeled data leads to better sta-
tistics with the Meyer-Peter and Müller formula. On 
one hand, the velocities, depths and bed levels are 
best reproduced by the Van Rijn formula when the 
distribution maps are used to compare modeled re-
sults to the observed data. On the other, low statis-
tics were obtained when comparing the Van Rijn’s 
results on a point-to-point basis to observed da-
ta. However, it was found that the lower statistical 
values obtained with Van Rijn’s formula were due 
to misprediction of the channel locations. Conse-
quently, the Van Rijn’s formula was found to be the 
one leading to best agreement between observed da-
ta and model predictions, despite occasionally lead-
ing to lower statistical values. 
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