7 research outputs found

    Driving vivid virtual environments from sensor networks

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 89-95).The rise of ubiquitous sensing enables the harvesting of massive amounts of data from the physical world. This data is often used to drive the behavior of devices, but when presented to users, it is most commonly visualized quantitatively, as graphs and charts. Another approach for the representation of sensor network data presents the data within a rich, virtual environment. This thesis introduces the concept of Resynthesizing Reality through the construction of Doppelmarsh, the virtual counterpart of a real marsh located in Plymouth Massachusetts, where the Responsive Environments Group has deployed and maintained a network of environmental sensors. By freely exploring such environments, users gain a vivid, multi-modal, and experiential perspective into large, multi-dimensional datasets. We present a variety of approaches to manifesting data in "avatar landscape", including landscapes generated off live video, tinting frames in correspondence with temperature, or representing sensor history in the appearance and behavior of animals. The concept of virtual lenses is also introduced, which makes it easy to dynamically switch sensor-to-reality mapping from within virtual environments. In this thesis, we describe the implementation and design of Doppelmarsh, present techniques to visualize sensor data within virtual environments, and discuss potential applications for Resynthesizing Reality.by Don Derek Haddad.S.M

    Contributions to virtual reality

    Get PDF
    153 p.The thesis contributes in three Virtual Reality areas: ¿ Visual perception: a calibration algorithm is proposed to estimate stereo projection parameters in head-mounted displays, so that correct shapes and distances can be perceived, and calibration and control procedures are proposed to obtain desired accommodation stimuli at different virtual distances.¿ Immersive scenarios: the thesis analyzes several use cases demanding varying degrees of immersion and special, innovative visualization solutions are proposed to fulfil their requirements. Contributions focus on machinery simulators, weather radar volumetric visualization and manual arc welding simulation.¿ Ubiquitous visualization: contributions are presented to scenarios where users access interactive 3D applications remotely. The thesis follows the evolution of Web3D standards and technologies to propose original visualization solutions for volume rendering of weather radar data, e-learning on energy efficiency, virtual e-commerce and visual product configurators

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Ubiquitous volume rendering in the web platform

    Get PDF
    176 p.The main thesis hypothesis is that ubiquitous volume rendering can be achieved using WebGL. The thesis enumerates the challenges that should be met to achieve that goal. The results allow web content developers the integration of interactive volume rendering within standard HTML5 web pages. Content developers only need to declare the X3D nodes that provide the rendering characteristics they desire. In contrast to the systems that provide specific GPU programs, the presented architecture creates automatically the GPU code required by the WebGL graphics pipeline. This code is generated directly from the X3D nodes declared in the virtual scene. Therefore, content developers do not need to know about the GPU.The thesis extends previous research on web compatible volume data structures for WebGL, ray-casting hybrid surface and volumetric rendering, progressive volume rendering and some specific problems related to the visualization of medical datasets. Finally, the thesis contributes to the X3D standard with some proposals to extend and improve the volume rendering component. The proposals are in an advance stage towards their acceptance by the Web3D Consortium

    Ubiquitous volume rendering in the web platform

    Get PDF
    176 p.The main thesis hypothesis is that ubiquitous volume rendering can be achieved using WebGL. The thesis enumerates the challenges that should be met to achieve that goal. The results allow web content developers the integration of interactive volume rendering within standard HTML5 web pages. Content developers only need to declare the X3D nodes that provide the rendering characteristics they desire. In contrast to the systems that provide specific GPU programs, the presented architecture creates automatically the GPU code required by the WebGL graphics pipeline. This code is generated directly from the X3D nodes declared in the virtual scene. Therefore, content developers do not need to know about the GPU.The thesis extends previous research on web compatible volume data structures for WebGL, ray-casting hybrid surface and volumetric rendering, progressive volume rendering and some specific problems related to the visualization of medical datasets. Finally, the thesis contributes to the X3D standard with some proposals to extend and improve the volume rendering component. The proposals are in an advance stage towards their acceptance by the Web3D Consortium

    Evaluating Indoor Positioning Systems in a Shopping Mall: The Lessons Learned From the IPIN 2018 Competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75 th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
    corecore