32,163 research outputs found

    Approaches to the use of sensor data to improve classroom experience

    Get PDF
    quipping classrooms with inexpensive sensors can enable students and teachers with the opportunity to interact with the classroom in a smart way. In this paper an approach to acquiring contextual data from a classroom environment, using inexpensive sensors, is presented. We present our approach to formalising the usage data. Further we demonstrate how the data was used to model specific room usage situation as cases in a Case-based reasoning (CBR) system. The room usage data was than integrated in a room recommendations system, reasoning on the formalised usage data. We also detail on our on-going work to integrating the systems presented in this paper into our Smart University vision

    Data literacy in the smart university approach

    Get PDF
    Equipping classrooms with inexpensive sensors for data collection can provide students and teachers with the opportunity to interact with the classroom in a smart way. In this paper two approaches to acquiring contextual data from a classroom environment are presented. We further present our approach to analysing the collected room usage data on site, using low cost single board computer, such as a Raspberry Pi and Arduino units, performing a significant part of the data analysis on-site. We demonstrate how the usage data was used to model specifcic room usage situation as cases in a Case-based reasoning (CBR) system. The room usage data was then integrated in a room recommender system, reasoning on the formalised usage data, allowing for a convenient and intuitive end user experience based on the collected raw sensor data. Having implemented and tested our approaches we are currently investigating the possibility of using (XML)Schema-informed compression to enhance the security and efficiency of the transmission of a large number of sensor reports generated by interpreting the raw data on-site, to our central data sink. We are investigating this new approach to usage data transmission as we are aiming to integrate our on-going work into our vision of the Smart University to ensure and enhance the Smart University's data literacy

    Position paper on realizing smart products: challenges for Semantic Web technologies

    Get PDF
    In the rapidly developing space of novel technologies that combine sensing and semantic technologies, research on smart products has the potential of establishing a research field in itself. In this paper, we synthesize existing work in this area in order to define and characterize smart products. We then reflect on a set of challenges that semantic technologies are likely to face in this domain. Finally, in order to initiate discussion in the workshop, we sketch an initial comparison of smart products and semantic sensor networks from the perspective of knowledge technologies

    Towards In-Transit Analytics for Industry 4.0

    Full text link
    Industry 4.0, or Digital Manufacturing, is a vision of inter-connected services to facilitate innovation in the manufacturing sector. A fundamental requirement of innovation is the ability to be able to visualise manufacturing data, in order to discover new insight for increased competitive advantage. This article describes the enabling technologies that facilitate In-Transit Analytics, which is a necessary precursor for Industrial Internet of Things (IIoT) visualisation.Comment: 8 pages, 10th IEEE International Conference on Internet of Things (iThings-2017), Exeter, UK, 201

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • 

    corecore