1,307 research outputs found

    3D Registration of Aerial and Ground Robots for Disaster Response: An Evaluation of Features, Descriptors, and Transformation Estimation

    Full text link
    Global registration of heterogeneous ground and aerial mapping data is a challenging task. This is especially difficult in disaster response scenarios when we have no prior information on the environment and cannot assume the regular order of man-made environments or meaningful semantic cues. In this work we extensively evaluate different approaches to globally register UGV generated 3D point-cloud data from LiDAR sensors with UAV generated point-cloud maps from vision sensors. The approaches are realizations of different selections for: a) local features: key-points or segments; b) descriptors: FPFH, SHOT, or ESF; and c) transformation estimations: RANSAC or FGR. Additionally, we compare the results against standard approaches like applying ICP after a good prior transformation has been given. The evaluation criteria include the distance which a UGV needs to travel to successfully localize, the registration error, and the computational cost. In this context, we report our findings on effectively performing the task on two new Search and Rescue datasets. Our results have the potential to help the community take informed decisions when registering point-cloud maps from ground robots to those from aerial robots.Comment: Awarded Best Paper at the 15th IEEE International Symposium on Safety, Security, and Rescue Robotics 2017 (SSRR 2017

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Close range mini Uavs photogrammetry for architecture survey

    Get PDF
    The survey of historical façades contains several bottlenecks, mainly related to the geometrical structure, the decorative framework, the presence of natural or artificial obstacles, the environment limitations. Urban context presents additional restrictions, binding by ground acquisition activity and leading to building data loss. The integration of TLS and close-range photogrammetry allows to go over such stuff, not overcoming the shadows effect due to the ground point of view. In the last year the massive use of UAVs in survey activity has permitted to enlarge survey capabilities, reaching a deeper knowledge in the architecture analysis. In the meanwhile, several behaviour rules have been introduced in different countries, regulating the UAVs use in different field, strongly restricting their application in urban areas. Recently very small and light platforms have been presented, which can partially overcome these rules restrictions, opening to very interesting future scenarios. This article presents the application of one of these very small RPAS (less than 300 g), equipped with a low-cost camera, in a close range photogrammetric survey of an historical building façade in Bologna (Italy). The suggested analysis tries to point out the system accuracy and details acquisition capacity. The final aim of the paper is to validate the application of this new platform in an architectonic survey pipeline, widening the future application of close-range photogrammetry in the architecture acquisition process

    Intercomparison of UAV platforms for mapping snow depth distribution in complex alpine terrain

    Get PDF
    [EN]Unmanned Aerial Vehicles (UAVs) offer great flexibility in acquiring images in inaccessible study areas, which are then processed with stereo-matching techniques through Structure-from-Motion (SfM) algorithms. This procedure allows generating high spatial resolution 3D point clouds. The high accuracy of these 3D models allows the production of detailed snow depth distribution maps through the comparison of point clouds from different dates. In this way, UAVs allow monitoring of remote areas that were not achievable previously. The large number of works evaluating this novel technique has not, to date, conducted a systematic evaluation of concurrent snowpack observations with different UAV devices. Taking into account this, and also bearing in mind that potential users of this technique may be interested in exploiting ready-to-use commercial devices, we conducted an evaluation of the snow depth distribution maps with different commercial UAVs. During the 2018-19 snow season, two multi-rotors (Parrot Anafi and DJI Mavic Pro2) and one fixed-wing device (SenseFly eBee plus) were used on three different dates over a small test area (5 ha) within Izas Experimental Catchment in the Central Pyrenees. Simultaneously, snowpack distribution was retrieved with a Terrestrial Laser Scanner (TLS, RIEGL LPM-321) and was considered as ground truth. Three different georeferencing methods (Ground Control Points, ICP algorithm over snow-free areas and RTK-GPS positioning) were tested, showing equivalent performances under optimum illumination conditions. Additionally, for the three acquisition dates, both multi-rotors were flown at two distinct altitudes (50 and 75 m) to evaluate impact on the obtained snow depth maps. The evaluation with the TLS showed an equivalent performance of the two multi-rotors, with mean RMSE below 0.23 m and maximum volume deviations of less than 5%. Flying altitudes did not show significant differences in the obtained maps. These results were obtained under contrasted snow surface characteristics. This study reveals that under good illumination conditions and in relatively small areas, affordable commercial UAVs provide reliable estimations of snow distribution compared to more sophisticated and expensive close-range remote sensing techniques. Results obtained under overcast skies were poor, demonstrating that UAV observations require clear-sky conditions and acquisitions around noon to guarantee a homogenous illumination of the study area.This work was supported by the research projects of the Spanish Ministry of Economy and Competitiveness projects "El papel de la nieve en la hidrologia de la peninsula iberica y su respuesta a procesos de cambio global-CGL2017-82216-R" and the JPI-Climate co-funded call of the European Commission and INDECIS and CROSSDRO which are part of ERA4CS, and ERA-NET. Authors do not have any conflict of interest.). J. Revuelto is supported by a "Juan de la Cierva Incorporacion" postdoctoral fellow of the Spanish Ministry of Science, Innovation and Universities (Grant IJC2018-036260-I). I. Vidaller is supported by the Grant FPU18/04978 and is studying in the PhD program in the University of Zaragoza (Earth Science Department)

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    Unmanned Aerial Vehicle (UAV) for monitoring soil erosion in Morocco

    Get PDF
    This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV’s log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents

    Investigation on the automatic geo-referencing of archaeological UAV photographs by correlation with pre-existing ortho-photos

    Get PDF
    We present a method for the automatic geo-referencing of archaeological photographs captured aboard unmanned aerial vehicles (UAVs), termed UPs. We do so by help of pre-existing ortho-photo maps (OPMs) and digital surface models (DSMs). Typically, these pre-existing data sets are based on data that were captured at a widely different point in time. This renders the detection (and hence the matching) of homologous feature points in the UPs and OPMs infeasible mainly due to temporal variations of vegetation and illumination. Facing this difficulty, we opt for the normalized cross correlation coefficient of perspectively transformed image patches as the measure of image similarity. Applying a threshold to this measure, we detect candidates for homologous image points, resulting in a distinctive, but computationally intensive method. In order to lower computation times, we reduce the dimensionality and extents of the search space by making use of a priori knowledge of the data sets. By assigning terrain heights interpolated in the DSM to the image points found in the OPM, we generate control points. We introduce respective observations into a bundle block, from which gross errors i.e. false matches are eliminated during its robust adjustment. A test of our approach on a UAV image data set demonstrates its potential and raises hope to successfully process large image archives

    GPS-Denied Navigation Using Location Estimation and Texel Image Correction

    Get PDF
    In recent years, the use of small drones, also categorized as small Unmanned Aerial Vehicles (sUAV), has surged. They are used for tasks like surveying land, collecting data from a distance, and performing maneuvers for military operations. These drones are popular because they are affordable, small, easy to use, and can navigate well in complex areas. These factors make them a cheap and quick option for tasks like surveying and surveillance when compared to traditional methods. This thesis introduces a system that uses algorithms to figure out where the drone is. Typically, this relies on sensors and GPS, but GPS can sometimes be unreliable for certain uses. To address this, the system uses complex algorithms by using motion sensors along with a camera and a specialized mapping sensor. By combining these technologies, the system can estimate the drone’s location. Compared to relying solely on GPS, this system provides a reliable estimate close to GPS
    corecore