710 research outputs found

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    Clinical Pathways in Stroke Rehabilitation

    Get PDF
    This open access book focuses on practical clinical problems that are frequently encountered in stroke rehabilitation. Consequences of diseases, e.g. impairments and activity limitations, are addressed in rehabilitation with the overall goal to reduce disability and promote participation. Based on the available best external evidence, clinical pathways are described for stroke rehabilitation bridging the gap between clinical evidence and clinical decision-making. The clinical pathways answer the questions which rehabilitation treatment options are beneficial to overcome specific impairment constellations and activity limitations and are well acceptable to stroke survivors, as well as when and in which settings to provide rehabilitation over the course of recovery post stroke. Each chapter starts with a description of the clinical problem encountered. This is followed by a systematic, but concise review of the evidence (RCTs, systematic reviews and meta-analyses) that is relevant for clinical decision-making, and comments on assessment, therapy (training, technology, medication), and the use of technical aids as appropriate. Based on these summaries, clinical algorithms / pathways are provided and the main clinical-decision situations are portrayed. The book is invaluable for all neurorehabilitation team members, clinicians, nurses, and therapists in neurology, physical medicine and rehabilitation, and related fields. It is a World Federation for NeuroRehabilitation (WFNR) educational initiative, bridging the gap between the rapidly expanding clinical research in stroke rehabilitation and clinical practice across societies and continents. It can be used for both clinical decision-making for individuals and as well as clinical background knowledge for stroke rehabilitation service development initiatives. ; Provides evidence-based clinical practice guidelines for stroke rehabilitation Discusses clinical problems and evidence, comments on assessment, therapy and technical aids Written by experienced experts with a background in clinical practic

    Clinical Pathways in Stroke Rehabilitation

    Get PDF
    This open access book focuses on practical clinical problems that are frequently encountered in stroke rehabilitation. Consequences of diseases, e.g. impairments and activity limitations, are addressed in rehabilitation with the overall goal to reduce disability and promote participation. Based on the available best external evidence, clinical pathways are described for stroke rehabilitation bridging the gap between clinical evidence and clinical decision-making. The clinical pathways answer the questions which rehabilitation treatment options are beneficial to overcome specific impairment constellations and activity limitations and are well acceptable to stroke survivors, as well as when and in which settings to provide rehabilitation over the course of recovery post stroke. Each chapter starts with a description of the clinical problem encountered. This is followed by a systematic, but concise review of the evidence (RCTs, systematic reviews and meta-analyses) that is relevant for clinical decision-making, and comments on assessment, therapy (training, technology, medication), and the use of technical aids as appropriate. Based on these summaries, clinical algorithms / pathways are provided and the main clinical-decision situations are portrayed. The book is invaluable for all neurorehabilitation team members, clinicians, nurses, and therapists in neurology, physical medicine and rehabilitation, and related fields. It is a World Federation for NeuroRehabilitation (WFNR) educational initiative, bridging the gap between the rapidly expanding clinical research in stroke rehabilitation and clinical practice across societies and continents. It can be used for both clinical decision-making for individuals and as well as clinical background knowledge for stroke rehabilitation service development initiatives. ; Provides evidence-based clinical practice guidelines for stroke rehabilitation Discusses clinical problems and evidence, comments on assessment, therapy and technical aids Written by experienced experts with a background in clinical practic

    Robust state estimation for the control of flexible robotic manipulators

    Get PDF
    In this thesis, a novel robust estimation strategy for observing the system state variables of robotic manipulators with distributed flexibility is established. Motivation for the derived approach stems from the observation that lightweight, high speed, and large workspace robotic manipulators often suffer performance degradation because of inherent structural compliance. This flexibility often results in persistent residual vibration, which must be damped before useful work can resume. Inherent flexibility in robotic manipulators, then, increases cycle times and shortens the operational lives of the robots. Traditional compensation techniques, those which are commonly used for the control of rigid manipulators, can only approach a fraction of the open-loop system bandwidth without inducing significant excitation of the resonant dynamics. To improve the performance of these systems, the structural flexibility cannot simply be ignored, as it is when the links are significantly stiff and approximate rigid bodies. One thus needs a model to design a suitable compensator for the vibration, but any model developed to correct this problem will contain parametric error. And in the case of very lightly damped systems, like flexible robotic manipulators, this error can lead to instability of the control system for even small errors in system parameters. This work presents a systematic solution for the problem of robust state estimation for flexible manipulators in the presence of parametric modeling error. The solution includes: 1) a modeling strategy, 2) sensor selection and placement, and 3) a novel, multiple model estimator. Modeling of the FLASHMan flexible gantry manipulator is accomplished using a developed hybrid transfer matrix / assumed modes method (TMM/AMM) approach to determine an accurate low-order state space representation of the system dynamics. This model is utilized in a genetic algorithm optimization in determining the placement of MEMs accelerometers for robust estimation and observability of the system’s flexible state variables. The initial estimation method applied to the task of determining robust state estimates under conditions of parametric modeling error was of a sliding mode observer type. Evaluation of the method through analysis, simulations and experiments showed that the state estimates produced were inadequate. This led to the development of a novel, multiple model adaptive estimator. This estimator utilizes a bank of similarly designed sub-estimators and a selection algorithm to choose the true value from a given set of possible system parameter values as well as the correct state vector estimate. Simulation and experimental results are presented which demonstrate the applicability and effectiveness of the derived method for the task of state variable estimation for flexible robotic manipulators.Ph.D

    SELF-IMAGE MULTIMEDIA TECHNOLOGIES FOR FEEDFORWARD OBSERVATIONAL LEARNING

    Get PDF
    This dissertation investigates the development and use of self-images in augmented reality systems for learning and learning-based activities. This work focuses on self- modeling, a particular form of learning, actively employed in various settings for therapy or teaching. In particular, this work aims to develop novel multimedia systems to support the display and rendering of augmented self-images. It aims to use interactivity (via games) as a means of obtaining imagery for use in creating augmented self-images. Two multimedia systems are developed, discussed and analyzed. The proposed systems are validated in terms of their technical innovation and their clinical efficacy in delivering behavioral interventions for young children on the autism spectrum

    Graphene textiles towards soft wearable interfaces for electroocular remote control of objects

    Get PDF
    Study of eye movements (EMs) and measurement of the resulting biopotentials, referred to as electrooculography (EOG), may find increasing use in applications within the domain of activity recognition, context awareness, mobile human-computer interaction (HCI) applications, and personalized medicine provided that the limitations of conventional “wet” electrodes are addressed. To overcome the limitations of conventional electrodes, this work, reports for the first time the use and characterization of graphene-based electroconductive textile electrodes for EOG acquisition using a custom-designed embedded eye tracker. This self-contained wearable device consists of a headband with integrated textile electrodes and a small, pocket-worn, battery-powered hardware with real-time signal processing which can stream data to a remote device over Bluetooth. The feasibility of the developed gel-free, flexible, dry textile electrodes was experimentally authenticated through side-by-side comparison with pre-gelled, wet, silver/silver chloride (Ag/AgCl) electrodes, where the simultaneously and asynchronous recorded signals displayed correlation of up to ~87% and ~91% respectively over durations reaching hundred seconds and repeated on several participants. Additionally, an automatic EM detection algorithm is developed and the performance of the graphene-embedded “all-textile” EM sensor and its application as a control element toward HCI is experimentally demonstrated. The excellent success rate ranging from 85% up to 100% for eleven different EM patterns demonstrates the applicability of the proposed algorithm in wearable EOG-based sensing and HCI applications with graphene textiles. The system-level integration and the holistic design approach presented herein which starts from fundamental materials level up to the architecture and algorithm stage is highlighted and will be instrumental to advance the state-of-the-art in wearable electronic devices based on sensing and processing of electrooculograms

    Investigation of Upper Limb Kinematics and Corticospinal Pathway Activity Early After Stroke

    Get PDF
    Abstract Reach-to-grasp is an essential part of activities of daily living (ADL’s); despite rehabilitation reach-to-grasp often impaired after a stroke contributing to disability. Upper limb rehabilitation interventions need improvement. A deeper understanding of underlying kinematic characteristics and the neural correlates of movement can be achieved through neuro-biomechanical assessment. This would provide knowledge of the interaction of the nervous and musculoskeletal system, which may contribute to development of improved targeted upper limb interventions. A systematic review and meta-analysis was conducted investigating the kinematic differences in reach-to-grasp between stroke survivors and neurologically intact adults. The results indicate stroke survivors consistently demonstrate different kinematics to neurologically intact adults during reach-to-grasp in the central and ipsilateral workspace. There was heterogeneity of the reach-to-grasp task, and included studies demonstrated unclear or high potential risk of bias. A test-retest reliability study investigated transcranial magnetic stimulation (TMS) measures of corticospinal pathway excitability in the bilateral biceps, extensor carpi radialis (ECR), and abductor pollicis brevis (APB) in neurologically intact adults. The results demonstrate variable reliability; the lower end of the confidence interval was below acceptable reliability (ICC < 0.70) for many measures. The 95% confidence intervals (CI) and 95% limits of agreement (LOA) were wide, further indicating imprecision in measurement. A test-retest reliability study investigated TMS measures of corticospinal pathway excitability in the bilateral biceps, ECR and APB in stroke survivors within three months after stroke. The results demonstrate variable reliability; and the lower end of the confidence interval was below the range of acceptable reliability (ICC < 0.70) for many measures. The 95% CI and 95% LOA were wide, further indicating imprecision in measurement. Investigations into the variability of TMS measures in sub-acute stroke survivors and neurologically intact adults; as well as specificity of TMS measurement warrant future investigations to determine the use of TMS within these populations
    corecore