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Abstract
Electronics manufacturing faces great challenges not only in product design, but also in production
quality due to the complex sequential processes. In an enterprise with high customization and make-
to-order electronics production, automated optical inspection systems are commonly used to preserve
the highest product quality. However, high quality control standards during this automated inspection
preventing error slip invoke false error calls on approximately 60% of the products produced. Each
false flag requires a manual inspection by a machine operator, reducing the production line efficiency
and increasing the error slip probability in case of excessive amounts of false flags. This research utilizes
product and process data to enhance the automated optical inspection system of a surface mounted device
production line. The data serves as input for a machine learning model which can be generalized among
different product types, and is particularly developed to handle the class imbalance in manufacturing
data well. Results show that the balanced bagging random forest classifier performs best for the problem
at hand, reducing the number of manual checks by approximately 50%. Implementing the model as
part of the production line thus improves the line efficiency, and reduces the operator workload which
enhances the production quality.
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Executive Summary
This thesis proposes a machine learning method to reduce the number of false error flags in the electron-
ics manufacturing environment. Each industrial revolution over the past centuries caused great shifts
in the technological paradigm. Mechanization, electrical energy and digital systems were all introduced
during these technological leaps. Today, another exceptional technology-push entered industrial practice.
Increased digitalization of manufacturing plants and the corresponding increase of data generation and
availability are the main drivers of the fourth industrial revolution, also known as Industry 4.0. This
thesis is conducted at Applied Micro Electronics (AME), an independent developer and manufacturer of
high-quality electronic products in a high-mix, make-to-order production environment driven by specific
and fluctuating customer demand. The goal of AME is to create innovative products that meet or even
exceed customer expectations. Driven by technology, AME strives for the best solution combining the
disciplines of electrical, mechanical, software and industrial engineering. In the scope of this project, ma-
chine learning models are implemented in order to improve the production control of AME, contributing
to further implementation of the fourth industrial revolution. This research may lay the foundation
of a transition to smart manufacturing, which is identified by using data collected by sensors serving
as input for ‘smart technologies’ such as data-driven models, possibly leading to autonomous decision
systems. Due to growing data collections and the technology driven mindset, AME provides an adequate
environment to push the industrial paradigm to the next level.

The electronics manufacturing plant of the company consist of several work stations, each serving a
different purpose in the process. For this study, the surface-mount device (SMD) production line is
examined. This choice is twofold, it serves as the main workstation in the electronics manufacturing pro-
cess and the data availability enables extensive research in the scope of the fourth industrial revolution.
During the SMD production, electrical surface-mount components are attached on an empty printed
circuit board, using soldering paste, an automated pick and place process and a reflow oven system. The
product quality is measured using automated inspection systems, also known as the API (automated
paste inspection) and the AOI (automated optical inspection). After applying the paste, the API checks
the quality of this paste by measuring its volume, area, height and offset using a laser system. At the
end of the process, the quality of the soldering and placement is assessed by the AOI using computer
vision. Each component on the printed circuit board assembly is checked individually, using the quality
settings set by the process engineers. The default inspection tolerances are based on industry wide stan-
dards. Due to the high customization at the manufacturer, it is required to fine tune these tolerances,
optimizing the quality control. This tuning is mainly about finding the right balance between error slips
and false calls. Error slip is the undesired result of the AOI where the quality of an inspected component
is wrongly classified as good. The vast amount of different components causes it to be infeasible to fine
tune all the different inspection programs. This and other (external) factors result in false error flags
on approximately 60% of the products produced at the SMD production line. The occurrence of many
false calls at the automated optical inspection system is a common problem in electronics manufacturing.
Whenever only one component on the board does not work as it is intended, it is possible that the whole
board does not function. Therefore every error call requires additional attention from an operator. To
avoid scrapping or repairing good components each call is manually checked by the operator. Checking
all the calls during the production of the printed circuit boards can be a time costly action, leading to
decreased line efficiency. Moreover, high false call percentages during production increases the chance
that an operator will miss a real defect due to negligence, potentially leading to an increase in the error
slip ratio.

The goal of this research is to increase the overall production control and throughput of AME by utilizing
(a combination of) data-driven methods, to predict the product quality and possibly investigate relations
or dependencies between production process variables and the process outcome. This is done in an online
fashion, by using online process data in order to enhance the quality control, which improves the pro-
duction throughput. Product and process data related to the SMD production line serve as an input for
a machine learning model which tries to predict whether an incoming error call concerns a real error or a
false call. Current literature related to the topic showed some previous advances regarding false error flag
prediction in electronics manufacturing. The papers propose (machine learning) methods to enhance the
automated optical inspection, improving the image recognition algorithm or reinforcing the automated
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decision with a prediction based on process data. However, the models proposed in the literature are
limited to only one product type or use the data of only one sub process, which prevents them from being
generalizable over the entire product set. This thesis extends the current literature by using the com-
plete SMD production process data, including sensor data, machine settings and product characteristics
for multiple product types. This enhances the generalizabilty of the model thus the overall usefulness
from a business perspective. Further extension of business utilization is done by adding explanations
of the modeling results in terms of process features, increasing the potential to capture expert knowledge.

Process data in the form of process parameters and sensor data from each of the sub processes (screen-
printing, pick and place, reflow oven) is combined with static product and component type data. Data
gathering, data cleaning and feature engineering to reduce the data dimension resulted in a data set
consisting of approximately 7.4 million instances, with 35 product and process features. Each instance
corresponds to an inspection result of a individual component on a specific printed circuit board, with
the product features, process parameters, process sensor values and quality inspection results as features
for that instance. The quality inspection results target classes are either sufficient, false error flag or
real error. False error flags and real errors are distinguished by an operator, as currently each error call
requires a manual inspection which result is stored in a database. The target class is highly imbalanced,
it contains 36,347 false call instances and only 750 real error instances, the rest of the instances are com-
ponents with a sufficient quality. Exploratory data analysis lead to several findings useful for modeling.
Firstly, reoccurring problems (troublemakers) during production can be associated with either compo-
nent types and board locations. Secondly, process deviations happen between batches, but also within a
specific panel. For instance, when a panel consists of two boards, location A on board 1 can cause more
problems than the same location A on board 2. Thirdly, the reflow zones are highly correlated and thus
transformed into a lower dimension representing all relevant information. Lastly, it seems that the time
interval between two products may affect the problems happening on a product. Therefore this features
is created and included when developing the machine learning model.

The imbalanced nature of the target class was addressed with two different methods. First, various
sampling techniques (e.g. random under-sampling, random over-sampling, SMOTE Tomek links and
balanced bagging) were developed and tested with different machine learning models. Balanced bagging
in combination with class weighting and a random forest classifier performed best. The second classifier
proposed used the output of multiple autoencoders as a feature engineering method for a support vector
machine model. The advantage of this method is that it uses both the good components and the false
components majority sets so no information is lost by under-sampling. Both methods, the balanced bag-
ging classifier and the hybrid autoencoder method incorporated a way to handle uncertain predictions,
in order to reduce the error slip caused by the model. If the model is not certain enough, it predicts that
the error flag still requires a manual check by an operator. After hyperparameter tuning, both methods
were compared based on the error slip, precision and manual check ratio. For the problem at hand, the
balanced bagging random forest outperformed the ensemble hybrid autoencoder method.

Evaluating the model from a business perspective was done by adding costs to each misclassification.
Based on the company’s input, the most severe misclassifications are error slips. Thus, the main goal of
the hyperparameter tuning was finding a model which minimizes the error slip as much as possible, but
also minimizing the number of machine calls which still required a manual check. Based on evaluation on
the test set, the proposed model is able to reduce the number of manual inspections by an operator with
approximately 50%. Yearly this means a reduction of 183,000 manual inspections on component level.
Furthermore, test set results indicate that this saves checking half of the panels, saving approximately
66,500 panels to inspect each year. AME estimates that a manual inspection takes about three seconds,
thus saving approximately 153 hours every year, which means three hours each week and somewhat
more than half an hour per day. When calculating costs only from an operator perspective, the marginal
improvement is only minimal, as the costs of an operator is one euro cent per second. However, the saved
time also provides opportunity costs as more products can be produced in this time, which indirectly
increases the revenue of the company. Determining the height of these benefits is not trivial as it depends
on many external factors. Less false calls also enhance the product quality as the operator will be more
attentive if there are less machine calls during a production batch. This potentially reduces the error slip,
although currently there are no estimations available regarding these metrics. This makes it infeasible to
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do any statements about potential benefits related to quality improvements. Overall, reducing the false
calls will improve the working conditions of the operator as less time is consumed by repetitive manual
inspection tasks. Lastly, SHAP values were used to analyse the relation between the process and product
features and the product quality. It was found that the component package, the printed circuit board
length, the time interval between two products, and the screenprinting environment features were the
most important features used during prediction. Overall, there was not found a set of features related to
a sub process which contributed the most to the model. Potentially the strength of the model lies in the
fact that it combines both product, and process features of all the sub processes in the surface-mount
device production line.

In order to proceed with the development and implementation of advanced data-driven techniques such as
machine learning, it is recommended that AME adjusts the current framework to gather the process data
of different sub processes. For this research many different sources were consulted, resulting in missing
data and problems when merging the different sources. Developing a centralised database storing all the
relevant machine learning information is highly recommended. This eliminates the recurrent challenges
of scraping the log files for the relevant information and the dependency on local data files or third
parties. Developing and testing a machine learning model will be easier, if it is convenient to extract
all relevant data needed for the machine learning model. Furthermore, when the model is implemented
the pretrained model makes predictions using the live process data which has just been gathered during
the process. To ensure this, the data of a given product must be processed parallel to the production
instance. The data set of one product is relatively small thus performing these preprocessing tasks is not
computationally heavy. In short, the trained model is stored on a server which is accessed by software
at the AOI station. If there are error calls, the preprocessed process data of a given instance is given
to the model to predict whether these calls are false or not. After the prediction, the result is shown to
the operator and all relevant data is stored in the machine learning database. Future research to extend
the current research can have multiple directions. First, the proposed idea of the autoencoder classifier
can be further researched and tested on other baseline machine learning problems. Another potential
research direction is to add manufacturing system analysis regarding the current line performance to
the evaluation of the model in order to generate a more complete overview of the model’s business
performance. To conclude, expert knowledge in combination with the SHAP values can be used to
further improve the production line. Variables which can be controlled such as printing speed or the
heating coefficient can be used to further fine tune the process parameters. After validating the model
interpretation with domain experts, the adjustable features can be optimized with respect to the quality.
This process can be automated with metaheuristics (e.g. simulated annealing) which can be used for
global optimization in a large search space such as a manufacturing environment. By automating the
adjustment of process variables relative to the production quality, AME can further progress in the
paradigm of the fourth industrial revolution.
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1 INTRODUCTION

1 Introduction
Since the beginning of industrialization, technological leaps have lead to shifts in the industrial paradigm,
so called industrial revolutions (Lasi, Fettke, Kemper, Feld, & Hoffmann, 2014). The first industrial revo-
lution was characterized by the use of mechanization. An increasingly and more intensive use of electrical
energy lead to the second industrial revolution. When technology enabled the widespread use of digital-
ization in industries, the third industrial revolution began. Today, another exceptional technology-push
entered industrial practice, which heralded the fourth industrial revolution (Lasi et al., 2014). This
revolution is also known as Industry 4.0, the term being a reminiscence of software versioning. One of
the identifiers of the technology-push related to Industry 4.0 is the increasing digitalization of all man-
ufacturing equipment and manufacturing supporting tools, and the corresponding data generation and
availability. This is translated into the use of advanced models to control and analyse the manufacturing
process. Applied Micro Electronics (AME) is a developer and manufacturer of electronics and products
related to electronics, driven by technology. Quality is one of their strategic pillars and thus of great
importance for the company. In the scope of this project, machine learning models will be implemented
in order to improve the production control of AME, contributing to the further implementation of the
fourth industrial revolution. This research may lay the foundation of a transition to smart manufactur-
ing, which is identified by using data collected by sensors serving as input for ‘smart technologies’ such
as data-driven models, possibly leading to autonomous decision systems (Lasi et al., 2014). AME states
that a vast amount of data is available containing possible interrelations between the process and product
quality, but that this data is not yet analyzed, hence utilized to improve the production quality. Due
to growing data collections and the technology driven mindset, AME provides an adequate environment
to push the industrial paradigm to the next level. The remainder of this section will provide a further
company introduction, followed by a brief introduction to the field of managing manufacturing quality.
Finally, the business question is concisely touched upon.

1.1 Company Introduction
This thesis is conducted at Applied Micro Electronics (AME), an independent developer and manufac-
turer of high-quality electronic products in a high-mix, make-to-order production environment driven by
specific and fluctuating customer demand. Due to the high demand in the market, the company steadily
grows approximately 20% every year. Roughly 200,000 panels with printed circuit board assemblies are
produced each year, resulting in a yearly production turnover larger than €35 million. The goal of AME
is to create innovative products that meet or even exceed customer expectations. Driven by technology,
AME strives for the best solution combining the disciplines of electrical, mechanical, software and in-
dustrial engineering. The company is responsible for both the design and the manufacturing process.
This also means that AME tries to conduct production steps in-house as much as possible. One example
is the fact that they design and create their own machines parts, adapted to the customer’s demand.
With this design of the manufacturing process, the production system of AME is a flexible job shop
system. This means that there are production units, so-called (interconnected) workcenters, dedicated
to producing certain components or executing certain operations. Every workcenter is flexible by having
alternative resources to carry out the operations.

The workstations which belong to the business activities of AME are electronics manufacturing, system
assembly, injection moulding, machining, cable and wiring and product cleaning. Electronics manufac-
turing is the core of the production process, as this is where the printed circuit board assemblies are
produced. This workcenter is divided in two production phases surface-mount device (SMD) produc-
tion and plated through-hole (PTH) production. The former is almost fully automated and the latter
requires manual work. When products need special treatment, they are handled at the cleaning worksta-
tion, where for instance additional glue is applied. During the injection moulding process liquid plastic
is moulded to a certain shape, which can be used as a final product or as a product part. AME also
produces the moulds in-house, so they are not dependent on third party suppliers thus providing more
flexibility towards customers. Creation of the moulds is done at the machining work station. Cabling
and wiring provides the cables and wires for both external customers as internal use. Finally, the sub
assemblies or final products are built at the system assembly workstation. Products from different work-
stations may come together here to form the final product for the customer.
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1.2 Quality in manufacturing
Manufacturing quality is a board concept and researched from many different perspectives, with the
improvement or control of the product quality at its core. The most well known data-driven method
of controlling the quality is by the use of statistical process control methods (Rokach & Hutter, 2012).
Machine learning enables deeper analysis of these control charts by analyzing a mixture of charts in
order to find deviating patterns (Zhang, Yuan, Wang, & Cheng, 2020; Verron, Li, & Tiplica, 2010).
Another common objective in the manufacturing quality literature is creating understanding between
the process features and the product quality (Kusiak & Kurasek, 2001). Doing so (either with machine
learning or other methods) enables the discovery of root-causes for quality deviations and the capturing
of expert knowledge (Tseng, Jothishankar, & Wu, 2004; Du, Lv, & Xi, 2012). High level goals such as
achieving an overall high equipment efficiency, and analyzing the causes of non-satisfactory equipment
efficiency are also a common objective (Natschlager, Kossak, & Drobics, 2004). The dimension of interest
for this research is not the quality of individual products, but the overall production yield (or quality
rate) as a whole. T. Tsai (2012) uses a classification model to properly interpret the defect patterns
and uncover cause-and-effect relationships between the process parameters and the production yield.
Besides improving the efficiency of the complete line, also much research is conducted regarding the
analysis of individual products. This ranges from improving the design of the process and product
(Linn & Lam, 1998; C. Tsai, Chiu, & Chen, 2005), to predicting rare quality deviations or system
failures (Kim & Kang, 2019; Escobar & Morales-Menendez, 2019). Next to the broad range of available
knowledge related to manufacturing quality in general, the electronics manufacturing in particular is also
highly relevant. The increasing dependency of the global economy on electronics is one of the drivers
of this momentum. Quality research regards different topics such as printed circuit board design (Linn
& Lam, 1998), process quality analysis (T. Tsai, 2012; Chang, Wei, Chen, & Hsieh, 2019), product
quality prediction (Schmitt, Bönig, Borggräfe, Beitinger, & Deuse, 2020) and quality inspection using
image recognition (Richter, Streitferdt, & Rozova, 2017). Many of these advances contribute to the new
industry paradigm of Industry 4.0, and provide a foundation for a new standard in manufacturing. This
thesis builds on this previous quality research and provides further insights in electronics manufacturing
quality analysis using data-driven techniques.

1.3 Business Question
Although all of the work centers have interesting challenges related to product and production quality,
the SMD production process is the scope of this research project. The choice for this work center is
twofold. First, the SMD line is the core of the production plant and is therefore an important chain in
the production process of AME. Previous research found that SMD is a bottleneck in production, thus
improvement in process efficiency will have direct impact on the efficiency of the company as a whole.
Secondly, each sub process of the SMD line is equipped with data gathering tools, leading to much data
availability. Thus, solving problems in this process may lead to major benefits from a business perspec-
tive and the data availability provides a decent environment for extensive research.

In terms of quality there are a few problems occurring at the surface-mount device production line. When
automatically inspecting the products, large amounts of false calls happen as a result of minimizing the
error slip. Both the efficiency of the production line and the operator workload suffer due to this issue.
It is estimated each error flag costs a line operator 3 to 5 seconds. Besides the salary of the line operator,
which is 1 eurocent per second, error flags also reduce the throughput so false calls indirectly reduce the
potential turnover. Also, having many false calls during a production reduces the operator’s attentiveness
thus increases the chance of error slips. Each error slip is estimated to cost €20 to €30. Furthermore,
it is not always clear why quality deviations (resulting in false calls) happen during the process as the
interrelations between the quality and the process are not exactly known. A comprehensive description
of the business case is given in Section 4. These issues in combination with the vast amounts of data
AME is gathering lead to the following business question:

How can process data be utilized to improve production throughput, be more efficient in dedicated
workforce, and decrease the false call rate of the automated optical inspection?
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This thesis tries to answer this question by exploring and analysing process data of the surface-mounted
device production line of AME using data-driven methods. In the next section the research objective
related to this business question is described by further defining the scope, research relevance and the
research questions.
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2 Research Objective
The goal of this research is to improve the working conditions and increase the overall production control
and throughput of AME by utilizing (a combination of) data-driven methods, predicting the product
quality and possibly investigating relations or dependencies between production process variables and
the process outcome. This will mainly be done in an online fashion, using online process data in order
to enhance the quality inspection which improves the production throughput. Achieving this goal will
result in several benefits for AME, which can be divided into internal and external motivators. First
the internal motivators are described. In general, this project will help AME internally by improving
their product process via the reduction of quality deviations. This results in an increase in efficiency
and a reduction of waste (and thus costs), both in terms of materials and labour. By analyzing the
production process in relation to the product quality, expert knowledge can be captured. This could
lead to an increase of the understanding regarding the interrelations between the process and the prod-
uct. Important process parameters that affect product quality can be discovered, helping with a deeper
understanding of the process by opening the process black box. Process design might thus be improved
when introducing new products or adjusting existing ones, due to that important process features which
relate to the product quality are known. From an external point of view, the results of this project
could enlarge the adaptiveness of AME related to production planning and execution. This increases the
flexibility of AME to changing market conditions, leading to more competitive advantage.

The data-driven approach is chosen due to the fact that AME stores a vast amount of data without
using this to its full potential. If built and implemented correctly, the model will improve the production
throughput and potentially provide additional insight in the production process by exploring relations in
the production data. Different data granularity levels are used to build the model, such as the product
type level, batch level and serial number level. Another goal of this thesis is to incorporate as many
perspectives as possible to detect potential causes of product quality deviations. A combination of
different data-mining techniques will potentially contribute to an adequate quality prediction model. A
more extensive description of the relevant data concepts can be found in Section 4.4. The following
section will describe the research scope, research relevance and finally present the research questions.

2.1 Research Scope
The scope of this research will be the work center using the surface-mount technology, also known as
the SMD process. This choice is based on several reasons. First, the SMD process was (and has been)
the core of AME’s production plant from the first day of production. Almost all products which go
through the electronics manufacturing process at AME include components which require surface-mount
technology. As this research is about the possible advancements of manufacturing quality in the Industry
4.0 era, data availability is an important factor when defining the scope. Of all work centers, the SMD
process holds the largest amount of data in terms of both automated quality inspections (API & AOI)
and log data of the machines (more about this in Section 4.4). This also makes the SMD process very
relevant for this research. The Manufacturing Execution System (MES) data will be the main data
resource of this research. From a business perspective the large amount of data does naturally lead
to many potential insights. Production employees state that it can be hard to reduce the number of
false calls during the SMD process without increasing the error slip. This research encounters the false
call problem from a new (data) perspective and expectedly lead to the enhancement of the production
process by reducing the false calls and increasing the process knowledge.

This research fits in the collaboration agreement between AME and the TU/e, which goal is to optimize
the overall manufacturing production control. Within this coherence of projects different topics are re-
searched in order to maximize AME’s production control. Currently, research is conducted regarding
the optimization of production planning. Potential throughput improvements as a result of this research
project will reduce the production time for each order and therefore enhance the production planning.
The synergy of the different projects combined will lead to an increased added value from both a re-
search and business perspective. The complete production system enables more automated control in the
planning and the execution of that planning, increasing the responsiveness of the company to changing
external conditions. An overview of the topics researched in the projects are shown in Figure 1. This
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project will focus on the quality part shown in the overview.

Figure 1: Overview research project topics

As previously stated, the quality of a printed circuit board assembly is determined by a lot of factors.
Therefore, it is important to define what the definition of product quality during this research. For
this project quality is defined as the component placement quality inspected by the AOI at the end of
the SMD line. The quality of all components on a PCBA must be sufficient. A component’s quality
is considered insufficient if both the automated inspection and the operator reach consensus about the
unsatisfactory quality, meaning the product requires a repair. This is both costly in time and money
and reduces the overall sustainability of AME’s production plant. What is furthermore important for
this research are the components for which the machine and operator do not reach mutual agreement, as
these are falsely labeled as erroneous by the machine. Thus the quality of a placed component can fall
into three categories: good, insufficient or false call. Whenever the quality is insufficient, an additional
label with the error type is added to the inspection result of the placed component.

2.2 Research Relevance
The application of machine learning in manufacturing is hardly a novel theme, more than two decades
ago various papers proposed applying machine learning to improve production in the manufacturing field
(Preuveneers & Ilie-Zudor, 2017). However, due to the digital transformations which take place in the
4th Generation Industrial Revolution, the increasing availability of data boost the potential of machine
learning in manufacturing environments. Much of the research regarding PCBA quality is devoted to a
single sub process or is not generalizable for a wide range of PCBA’s. This research will try to improve the
product quality inspection by including the whole SMD production process and incorporating different
product types. In terms of business relevance the thesis will contribute to a more efficient production line
by reducing unnecessary manual inspections. Futhermore, there is a vast amount of (yet unconnected)
process data available which is not yet analysed or used in order to control the production. Thus from
both an operational and a data standpoint, there is room for improvement.

2.3 Research Questions
Based on the research objectives and the problem description the main research question is defined. This
question runs like a thread through the project. The main research question is formulated as:

What (explainable) data-driven model can be developed with product and process data to reduce the false
calls during the quality inspection, in order to improve the efficiency of production operations?
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In order to thoroughly answer the main question and provide some structure during the research the
problem is divided into several sub questions. Each sub question is addressed by a section in this research.
The questions are as follows:

1. What is AME’s current practice for monitoring the quality of printed circuit board assemblies?

2. Which state-of-arts methods are proposed in the literature regarding data-driven product quality
control in the electronics manufacturing field?

3. What product and (online) process data features are available and can be extracted, forming the
most convenient conceptual data set to analyze the product quality?

4. Which relations can be explored in the data using exploratory data analysis in order to find a
correct subset of features for predictive modeling?

5. How to select and train a data-driven model that is robust and insensitive to imbalanced manufac-
turing data, to predict whether error flags are false or correct?

6. How is the model evaluated and interpreted from a business perspective and what are the potential
benefits?

6
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3 Theoretical Background
Before the rise of data-driven analytics, physically based modeling served as the status quo for process
optimization in the production quality domain (Krauß, Frye, Beck, & Schmitt, 2019). This modeling
technique uses physical dependencies to describe the current and future state of a product or system.
A potential downside of this method is the need for a deep understanding of these physical interdepen-
dencies. With the increasing complexity of production processes and the rising employee turnover, it
is harder to acquire and retain this knowledge within companies. Digitalization has lead to a steady
growth of data in the recent years, which resulted in an increase in the use of data analytics in a wide
range of domains (Krauß et al., 2019). One of the reasons to use analytics in business decision making
is the possible avoidance of subjectivity (Banerjee, Bandyopadhyay, & Acharya, 2013). Furthermore,
data-driven models use information from observed data to identify system characteristics and predict
the future without requiring a deep understanding of interdependencies (Krauß et al., 2019). With the
advancements in collecting data with rich content and the ease of access to this data, the use of machine
learning (ML) algorithms also increased. Apart from the increase in data acquisition, other reasons
for this trend are the higher computing power, increasing reliability of algorithms, and the increase of
accessible programming libraries which enable the implementation of complex methods (Krauß et al.,
2019). Advanced analytics, such as machine learning, enable businesses to initiate proactive decision
making which can be a major competitive advantage (Banerjee et al., 2013). Thus, the development of
data-driven models shows a high potential for improvements of production processes (Krauß et al., 2019).
According to Filipič and Junkar (2000), machine learning methods are an appropriate tool for incorpo-
rating expert knowledge into decision making procedures for machining. Machine learning could help in
clarifying complex interrelations among parameters and features involved in the machining process, thus
enabling performance prediction and enhancing control. Another advantage of data mining is that the
data needed for the analysis can be collected during the normal operation of the process being studied
(Kusiak & Kurasek, 2001). This is in contrast with other approaches such as the design of experiment
approach, where costly experimentation is essential. Due to these facts a data-driven approach, machine
learning in particular, is a suitable method for this thesis and will be used in order to improve the pro-
duction control of AME’s production process. In this section, data project methodologies are described,
an overview is given regarding data mining in electronics manufacturing, followed by an explanation of
relevant methods and algorithms.

3.1 Methodology
When the data mining industry entered the main stream markets around 2000, the need for a standard-
ized process model increased (Wirth & Hipp, 2000). The CRISP-DM (Cross Industry Standard Process
for Data Mining) methodology was especially designed to provide a structured approach for all data
mining projects. The model is independent of both the industry sector and the data mining technologies
used, providing a strong guidance for research projects. While the methodology explicitly states data
mining, it can also be applied to machine learning projects as these two areas have a strong overlap and
are often used synonymously (Seidel et al., 2019). According to the methodology, a data mining project
is organized into six phases, as depicted in Figure 2. Note that the sequence of the phases is not strict
and the process is iterative. In practice, the outcome of a certain phases determines what the next phase
will be.

Business understanding is the initial phase, which focuses on understanding the project objectives and
requirements purely from a business perspective (Wirth & Hipp, 2000). This knowledge is then trans-
lated into a data science or data-driven problem definition. The subsequent phase, data understanding,
naturally progresses from the first one. Starting with the initial data collection and proceeding with ac-
tivities in order to get familiar with the data, identify data quality problems, and discover first insights.
These insights could lead to detection of interesting data subsets resulting in new business understanding
or hypotheses (Wirth & Hipp, 2000). Data preparation covers all activities to construct the final dataset
used for the data-driven model. During the modelling phase of the CRISP-DM framework, various
modelling techniques are selected, tested and tuned. As some problems only arise during the modelling
phase, there is a close link between the data preparation and the modelling phases, resulting in a highly
iterative process. Before proceeding to the deployment stage, it is important to thoroughly evaluate
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the built model from a data-mining perspective, which is done during the evaluation phase. Another
key objective is to determine if there is some important business issue that is not sufficiently considered
(Wirth & Hipp, 2000). Finally, during the deployment phase the data-driven model is implemented in
the business environment. This might be as simple as generating a report or as complex as a built-in
machine learning model in a production plant.

Figure 2: CRISP-DM Phases

The main focus of this project is creating a state-of-art machine learning model which will serve as a
proof of concept for AME’s manufacturing environment. Therefore, the deployment phase of the CRISP-
DM model is less relevant for this thesis. However, all other phases of the methodology provide a solid
structure to successfully perform a data-driven research withing AME’s production environment. The
phases of the CRISP-DM framework are covered in the chapters of this study. Business understanding is
mainly done in Section 4, data understanding and data preparation is covered in Section 5, modeling is
examined in Section 6, the evaluation phase is described in Section 7. In the conclusion of this research,
the deployment phase will be briefly touched upon by providing implementation recommendations.

When tackling a data project, a wide range of analytical techniques exists. Methodologies such as
CRISP-DM are used for the general project planning. During the data preparation and modeling phase,
the research problem can be divided into different types of analytical problems namely, descriptive, diag-
nostic or inquisititive, predictive and prescriptive analytics (Belhadi et al., 2019). An overall framework
of data analytics capabilities in manufacturing processes with these sub-problems integrated is presented
in Figure 3. Machine learning approaches are traditionally divided into three categories, depending on
the feedback of the learning system (Alpaydin, 2020). Learning is called supervised when the data con-
tains example inputs and corresponding labels, with as goal to learn a general set of rules that maps
the input to the output. Predicting a categorical target based on input consisting of historical examples
is an instance of supervised learning. With unsupervised learning there are no labels provided to the
model and the model must find structure given only the input. Clustering analysis is an example of
unsupervised learning. When using reinforcement learning, the model interacts with an environment in
order to learn a given task or goal (without human interference). Making a computer learn how to play
chess is an example of reinforcement learning. These categories of machine learning (or a combination
thereof) can be used in all four analytical levels. However, they are most commonly used during the
inquisitive and predictive phase.
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Descriptive analytics provide hindsight on the current business situation using business intelligence tools
(Belhadi et al., 2019). These analytics are regarded backward looking and help explain the question what
happened?. Examples of descriptive analysis are dashboards or reports with visualizations and statistics.
Diagnostic analytics answers the why did it happen? question. This type of analysis frequently requires
input from the descriptive phase. Generally, diagnostic (or inquisitive) analytics seek to reveal potential
rules, characteristics or relationships that exist in the data (Belhadi et al., 2019). Examples of techniques
are clustering analysis, decision trees, sequence pattern mining or generalization. Predictive analytics
aim to provide a glimps into the future based on historical data, answering the what is likely to happen?
question (Belhadi et al., 2019). Cheng, Chen, Sun, Zhang, and Tao (2018) divide predictive analytics
into two categories: statistical oriented analytics techniques and knowledge discovery techniques. The
first techniques (which for example include multinomial logit models and logistic or linear regression)
uses mathematical models to induce and analyse the data as well as predict unknown future information.
These methods are bound to statistical assumptions in order to be sound. The second category does not
require these assumptions and is sometimes able to learn more complex data relations. This category
mainly includes machine learning techniques such as artificial neural networks and support vector ma-
chines (Belhadi et al., 2019). Prescriptive analytics improve the process or task at hand based on the
output information of the predictive models. The techniques are concerned with the definition of the
set of decisions that should be done in order to improve the business process (Banerjee et al., 2013).
During these analyses, the what should be done? question is answered. Section 3 summarizes how these
techniques have already been applied in the manufacturing field.

Figure 3: General framework of data analytics capabilities in a manufacturing process (Belhadi et al., 2019)

Furthermore, identifying machine learning use cases for the SMD production process requires a highly
interdisciplinary background, i.e. knowledge in computer science, statistics and (business specific) pro-
duction engineering (Seidel et al., 2019). As this knowledge is rarely combined in one single person,
cooperation between different experts is essential. To facilitate this cooperation, Seidel et al. (2019) pro-
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pose a process-oriented use case identification methodology using the analytical levels described above.
Use cases are divided into technology-push or problem-pull categories. For technology-push, first the use
case question has to be defined. Secondly, the required input data sources containing relevant informa-
tion have to be figured out. Thirdly, the respective output data that shall be predicted or classified need
to be defined. In order to identify machine learning uses cases for the problem-pull category, practical
problems must be broken down in such a way, that they can be solved by one or more machine learning
models (Seidel et al., 2019). This thesis mainly uses the technology-push method, as it tackles a problem
with state of the art methods using data from the process. When observing the framework, this thesis
can be placed at the AOI level in the process chain and, reaches for the predictive level. The framework
is visualized in Figure 42, Appendix A.

3.2 Surface Mount Technology Literature
Production quality is a very broad concept and has been studied extensively. As the scope of this re-
search is electronics manufacturing, a brief overview of the available quality research in the surface mount
production environment is provided in this section. Note that the papers related to computer vision or
image recognition are not part of the scope of this project. Each paper will is shortly covered in terms
of its objective, method and results. The section is concluded by a brief summary and the potential
literature gap which can be filled by this thesis.

Linn and Lam (1998) research the in-process errors of the production process related to a single process
step, namely the placement of components. Their objective is create more understanding regarding the
interaction between the product design and the manufacturing process, so that less placement errors
occur during the production process. The focus is on which (and how) product characteristics can be
changed during the design phase to reduce the amount of quality deviations. A deeper understanding
is sought between the design of the product and the product quality deviations occurring due to the
production. The researchers used physical modeling to model the component placement process in a
mathematical way. In order to do so, they heavily depend on expert knowledge to find sources of process
errors. Components on the PCBA are treated as random variables with a failure probability distribution
(assumed to follow a normal distribution). With these properties added to the mathematical model,
Monte Carlo Simulation is used to do in-process error analysis and refine the design of the product in
order to improve the product quality. Besides enhancing the design process to reduce quality, there
are also methods available in the literature which automatically adjust the process to reduce errors.
Khader and Yoon (2021) propose an optimal adaptive control system to maintain quality parameters
within given limits during real-time production. Khader and Yoon (2018) implement a Q-learning re-
inforcement model in order to design optimal parameter values (printing speed, squeegee pressure and
separation speed) for the screen printing process of a PCB, finding the best possible volume deposited on
the PCB. Thus, if the printing volume is not sufficient, the agent will take action based on the optimal
policy related to that process state, changing the process parameters in real-time.

Kusiak and Kurasek (2001) analyze the occurrence of a specific solder ball defect on the PCB by taking
the entire production process into account, especially features during the production process which could
influence the error researched. They try to find rules which describe the process in relation to the pro-
duction quality, so expert knowledge is captured more easily. Kusiak and Kurasek (2001) use the rough
set theory to find rule sets which describe the relationship between solder ball defects on a PCB and pro-
duction features of the production chain. The rough set approach identifies unique features of an object
and sees whether they are shared with other objects. This method offers straightforward interpretation
of the obtained results thus enabling to increase the understanding of the production process in relation
to the product quality or specific errors (Suraj, 2004). Tseng et al. (2004) also analyze the solder ball
defects by building on the idea of Kusiak and Kurasek (2001). Their main goal is also to find a cause for
the quality deviations related to a specific error during production. Tseng et al. (2004) extend this rough
set theory by applying additional weights to features and objects in order to give some objects more
importance and using an heuristic to solve the problem. This reduces the computational time without
lowering the predictive accuracy. Tseng et al. (2004) find that the types of solder paste, (conveyor)
speed of the machine, stencil characteristics, use of vacuum to pick up components, frequency of stencil
cleanings, oven temperature and the component type are important for the PCBA quality control process.
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T. Tsai (2012) use a classification model to properly interpret the defect patterns and uncover cause-and-
effect relationships between the process parameters and the production quality. The research utilizes
decision tree learning to formulate the relationship between the process parameters and the product
quality. K-means is used to derive the definite clusters which each represent the soldering quality pro-
files, serving as the target variables during the supervised learning (T. Tsai, 2012). The sub processes
which are used include paste printing, pick and place, and reflow. They express their output as a set
of "IF-THEN" rules involving the relevant input variables (process parameters) and the product quality
classes. Their main finding is that for their problem, 50% to 70% of the soldering defects are related to
stencil printing process (T. Tsai, 2012).

Chang et al. (2019) propose a method to lower the number of false calls which are made by the detection
system of a manufacturing process, in order to increase the product yield rate and improve the equip-
ment effectiveness. During the research the automated paste inspection data at the beginning of the
production line is utilized to enhance the automated optical inspection at the end of the production line,
in order to reduce the number of false calls at component level (Chang et al., 2019). This can lead to a
slight change in the routing of a PCBA during production as not all PCBAs require an inspection if the
model provides solid predictions. This improves the production yield rate, equipment effectiveness and
reduces production costs and handling time. Incorporating different data sources related to the product
and process can increase the performance and thus the effectiveness of the model. A deep neural network
with two hidden layers is used to predict whether components are real defects or false calls. Chang et
al. (2019) find that many problems later in the SMD process are caused by the screen printing process,
as the SPI values of this process step can explain much of the later errors which occur (e.g. tombstone).
Schmitt et al. (2020) also try to reduce the number of product inspections during the production, which
reduces the production time and enhances efficiency by use gradient boosted trees. The paste inspection
data is also used in this research, reducing approximately 30% of the volume which requires a test.
Thielen et al. (2020) use the AOI inspection data in combination with the component information to
enhance the machine call detection. Using an artificial neural network they create a proof of concept
for one product type which is able to reduce 25% of the false calls having zero error slip. Each paper
addressing the false call problem uses online manufacturing data in their post-hoc analysis, which is a
common thing to do in monitoring and controlling the quality in electronics manufacturing (Lv, Kim,
Zheng, & Jin, 2018).

In summary, the papers regarding electronics manufacturing which are relevant for this thesis can be
divided into several topics: improving the PCBA design, analyzing the soldering quality, analyzing the
relations between the process and the quality, and solving the false call problem as this is a common
difficulty in the industry. Several methods are used, from physical modeling to machine learning methods,
including but not limited to clustering, neural networks, tree based methods and support vector machines.
For the false call problem the first literature gap which this thesis can fill is the fact that the models are
either trained on only one product type, or that the models do no take the complete SMD process data
into account. Schmitt et al. (2020) and Thielen et al. (2020) both state that in order to generalize their
models over a wide range of products, it is necessary to add data related to product characteristics and
the complete process. This thesis fills this gap as it will try to find decision rules for the false call problem
which have the ability to generalize over multiple product types. This will be done by including different
product types with their corresponding features in the input data. A second research gap is the lack of
explainable models in the false call studies for electronics manufacturing. To the best of our knowledge,
there is no electronics manufacturing false call literature available which elaborates on explaining the
results of the machine learning model. Explaining the outcome of the models potentially enhances the
expert knowledge of the process engineers in the electronics manufacturing industry. Adding process
features of the complete SMD production line to the input data will complement to this explainability.

3.3 Classification methods for imbalanced data
Many manufacturing quality research has to cope with imbalanced target distributions in the production
data, as quality deviations occur less frequent than sufficient production outcomes. When major class
imbalance exists in a data set, the learning system may have difficulties to learn the concept given in the
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minority class (Batista, Prati, & Monard, 2004). This section includes the different state-of-art methods
for classification with imbalanced target classes. First the different sampling methods are described.
Then, an ensemble method is depicted which is especially developed to handle class imbalance. Finally,
the chosen algorithms are described and the reasons for selecting these algorithms are discussed.

3.3.1 Sampling methods and class weights

Readjusting the target class distribution can be done by either over and under-sampling. Over-sampling
enlarges the minority class and under-sampling reduces the number of samples in the majority class. The
techniques which can be used for this method can be non-heuristic methods or heuristics.

Non-heuristic methods are relatively simple. Random over-sampling is such method and aims to balance
the class distribution by randomly replicating minority class examples (Batista et al., 2004). Random
under-sampling, also a non-heuristic method, does the opposite as it balances the class distribution
through random eliminating majority class samples (Batista et al., 2004). The non-heuristic methods
have some drawbacks. Random over-sampling increases the likelihood of overfitting because the decision
rules learned by an algorithm are then very much dependent on these copied samples. This could lead
to problems with generalization when evaluating the model over a different data set. For random under-
sampling the major drawback is the fact that potentially useful information in the majority set is lost
when removing the samples. This could hinder the learning process as these samples might be important
for the induction process (Batista et al., 2004). Heuristics can also be used for over and under-sampling
and can overcome these limitations.

SMOTE (synthetic minority over-sampling technique) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002)
is an over-sampling technique which is commonly used to balance a data set before machine learning
(Fernández, Garcia, Herrera, & Chawla, 2018). The method developed by Chawla et al. (2002) chooses
random minority samples and calculates the Euclidean distance between the sample and its k nearest
neighbors. This distance is then multiplied by a random number between 0 and 1, and added to the
minority sample, forming a new synthetic sample. Unlike random over-sampling, SMOTE adds new
information to the data set which enhances the learning process of classification models.

Tomek et al. (1976) proposed an under-sampling method based on nearest neighbors, called Tomek links.
Two data samples form a Tomek link if both points are each other’s nearest neighbors and both obser-
vations belong to a different target class (i.e. one to the majority class and one to the minority class).
Tomek links define majority data points which are close to the minority class data, making it ambiguous
to distinct. The majority class samples which are Tomek links are then removed from the data to create
a more balanced data set. This results in a data set with less edge cases which enhances the learning of
general decision rules.

Both SMOTE and Tomek links solve the drawbacks of non-heuristic methods but still not always result
in better model performance. In imbalanced data sets, class clusters may not be well defined. It can be
the case that majority class examples invade the minority class samples, even after using Tomek links to
remove cases. SMOTE can also result in synthetic minority cases which are too deeply in the majority
class space (Batista et al., 2004). Batista et al. (2003) propose a method combining both methods,
producing a balanced data set with well-defined class clusters. An example of the method is given in
Figure 4. The original data set (a) is over-sampled using SMOTE (b), then the Tomek links are identified
(c) and removed, resulting in a balanced data set with well defined clusters (d) (Batista et al., 2003).
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Figure 4: SMOTE Links (Batista et al., 2003)

The problem of skewed target classes can also be solved by applying different weights to the majority and
minority classes. The purpose of the class weights is to penalize misclassifications in the minority class
more strictly and the majority when training the model. Applying class weights during model training
is not dependent on a specific algorithm. To reduce the bias in the class imbalance as much as possible,
the sampling methods can be combined with class weights to mitigate the effect of the class imbalance
during model development.

3.3.2 Balanced Bagging Classifier

Ensemble methods use multiple machine learning algorithms to enhance the predictive performance com-
pared to a single algorithm (Polikar, 2006). Although some algorithms can be well-suited for a given
problem space, finding the best one might be difficult. Combining (preferably diverse) models can result
in better predictive performance and less overfitting. The downside of ensembling models is that it is
computationally heavier than non-ensemble models. Therefore, fast algorithms such as decision trees are
commonly used in ensemble methods. Nevertheless, slower algorithms can also benefit from ensembling
in terms of model performance. In manufacturing, the most commonly used ensemble learning methods
are bootstrap aggregating (bagging) and boosting.

Bootstrap aggregating (abbreviated as bagging) is an ensemble method which combines models based
on votes of equal weights. In order to obtain a wide range of diverse models, the method trains each
model in the ensemble with a randomly drawn subset of the training set. Training these models can
be done in parallel. Each model has a different sample although replacement is permitted during sam-
pling. The final output is determined by a majority vote or an average of the outputs of all models.
Bagging can be used for a wide range of methods including (but not limited to) decision trees (Sankhye
& Hu, 2020) and neural networks (Du et al., 2012). In order to find the best "candidate" models, several
techniques can be used. A possible, relatively simple, method is to order the candidate models based
on the mean squared error and create an ensemble with the models having the lowest error (Perrone &
Cooper, 1993). Another common techniques besides bagging is boosting. Boosting is a meta-algorithm
that builds an ensemble incrementally and emphasizes misclassified training examples of the previous
model to train the new model. Weak learners (e.g. small decision trees, also known as stumps) are added
to the ensemble to concentrate on these misclassified observations to compensate for the areas where
the existing model did not suffice. Each training example has a weight assigned which increases if the
instance is misclassified. In order to make a prediction, the results of the models are combined with a
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voting mechanism. Boosting techniques can improve the accuracy of models without depreciation of the
other useful capabilities (Martinek & Krammer, 2018). In general, boosting techniques may enlarge the
computational effort. However when using a gradient boosting approach, it is possible to overcome this
problem. Gradient boosting adjusts the original boosting algorithm so that it minimizes a differentiable
loss function via gradient descent by adding models to the ensemble. This means that the training of
new models is based on the residuals of the previous model, which speeds up the process as the weights
do not have to be calculated.

Both bagging and boosting can be used to mitigate the effect of an imbalanced target class. However,
bagging ensembles are more common due to its simplicity and good generalization ability (Galar, Fernan-
dez, Barrenechea, Bustince, & Herrera, 2011). When using bagging for dealing with the class imbalance
problems, it is not required to recompute weights or change computations in the algorithm itself, which
is the case for boosting. The main challenge of using a balanced bagging ensemble method is finding a
good way to collect the balanced subsamples which serve as an input for the ensemble models. One way
of doing this is by using an under-sampling method to reduce the size of the majority class in each repli-
cation (Barandela, Valdovinos, & Sánchez, 2003). Each bootstrap replica then consists of all the minority
class samples and an under-sampled majority class which is different in each iteration to form a diverse
ensemble. An example of the balanced bagging classifier method in combination with under-sampling
is provided in Figure 5. Over-sampling techniques such as SMOTE can also be used when forming the
bootstrap replications in each iteration (Wang & Yao, 2009). Then the set of majority instances is again
bootstrapped in each iteration, but the SMOTE algorithm generates additional minority class samples
in each iteration. Note that the same sampling method limitations as described in Section 3.3.1 apply
to each individual model in the ensemble, but the balanced bagging technique reduces these effects.

Figure 5: Balanced bagging classifier with under-sampling

3.3.3 Choice of machine learning models

According to the no free lunch theorem by Wolpert and Macready (1997), there is no such algorithm
having a priori distinction compared to other algorithms for a given problem. Stated otherwise, any two
optimization algorithms are equivalent when their performance is averaged across all possible problems
(Wolpert & Macready, 1997). Choosing an algorithm for the problem at hand is not trivial, therefore
three different supervised classification methods are examined based on the differences in underlying
learning techniques. These include a linear method (logistic regression), a nonlinear method (support
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vector machine), and a tree based method (random forest). The methods are briefly described in the
remainder of this section.

Logistic Regression
Logistic regression is a linear statistical method to model the relationship between the log odds of a
dichotomous variable and a set of explanatory variables (Kleinbaum, Dietz, Gail, Klein, & Klein, 2002).
Production features and corresponding quality measures nowadays are often described in a non-linear
fashion, making linear regression less suited for the quality prediction task. However, due to the fact
that it is a relatively simple method, it can be used as a base model to explore any first relations among
variables. For the logistic regression, the equation is comparable with the equation of multiple linear
regression, and is shown in Equation 1.

log P (y = 1)
1− P (y = 1) = α+ β1x1 + . . .+ βnxn (1)

The coefficients βn of the logit model can be interpreted as the change in the log odds of an event when
xn increases by one, all other variables held constant. These coefficients can be transformed to odd ratios
calculating e to the power of βn (Kleinbaum et al., 2002). These odd ratios can then be interpreted as
the increase (or decrease, if the odd ratio is smaller than 1) in the probability of the dependent variable
being present when a certain variable increases or is present. Logistic regression performs badly when
there are outliers in the data or when there is multicollinearity present.

Random Forest
A Random Forest is a bagging method and combines several individual weak learners (decision trees), also
known as an ensemble model. Every tree uses different subsamples of the data and splits the tree nodes
with different random subsets of features in order to reduce the bias in the model (Sankhye & Hu, 2020).
The main purpose of this method is to add randomness to generate de-correlated trees (Garcia-Ceja et al.,
2019). By averaging the output of all generated trees, the final prediction is obtained. An example of the
random forest concept is depicted in Figure 6. Random forest models are (relatively to other well known
methods) not prone to overfitting, have a good tolerance for outliers and noise, and is not sensitive to
multicollinearity in the data (Chen et al., 2020). Furthermore, it can handle nonlinear high-dimensional
data both in continuous and discrete form (Chen et al., 2020). These properties make random forests a
suitable method for predicting product quality in manufacturing. As random forests generate multiple
different random trees, it is possible to find the variable importance by averaging the differences in
prediction error based on predictor variable permutations over all trees (Garcia-Ceja et al., 2019). This
feature importance can then be used as feature selection tool prior to another machine learning model
(Leng et al., 2020). Besides the variable importance, it is also possible to further analyse the relationship
between the prediction variable and the outcome of the model, which can be visualized with a partial
dependence plot (Molnar, 2018). For the random forest the most important hyperparameters are the
maximum depth, the minimum samples in a split and the number of estimators. Maximum depth limits
the depth of each trained tree and thus to which extend each decision tree trained is prone to overfitting.
The minimum samples in a split determine how many samples are needed to make another split in the
tree. If this number is small, it is possible to create leafs with only a few samples dependent on many
decision rules. The number of estimators defines how many trees are trained to create the forest.

Support Vector Machines
Support vector machine (SVM) is a supervised learning algorithm which was originally introduced to
classify discrete multidimensional data. Support vector machines are particularly useful in small sample,
non-linear classification problems with high dimensional data (Wei, Feng, Hong, Qu, & Tan, 2017).
This makes this method useful the manufacturing industry due to the high dimensional data sets. The
algorithm maps training examples in a space and the optimization goal is to maximize the width (or
margin) of a hyperplane (or decision boundary) which (linearly) separates training examples of different
categories or classes. In most real data sets it is not possible to linearly separate training examples in a
given feature space, requiring a transformation of the data into a higher dimensional feature space. The
goal of this transformation is trying to find a dimension in which the classes are linearly separable. The
kernel trick provides a solution to this problem by using a function which represents the data only by a
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Figure 6: Random forest concept

set of pairwise similarity comparisons between the observations. The data then does not need a explicit
transformation but it can be represented by these coordinates in a higher dimensional feature space, which
saves computational effort. New cases which are to be predicted are mapped into this space, and based
on their position in that space relative to that learned hyperplane the new cases are classified (Vapnik &
Learner, 1963). Vapnik and Learner (1963) show that chance on overfitting and thus the probability of
misrepresenting untrained data is minimized when using SVM, resulting in a decent generalizing ability.
Due to the fact that support vector machines are distance based, it is recommended to standardize the
input data before learning. Support vector machines have two main hyperparameters (C and gamma)
which can be tuned to find the most suitable model for a problem. The C parameter depicts the penalty
for a misclassified data point (directly proportional to the distance to the hyperplane) when training the
decision boundary. The size of C determines the size of the penalty, and larger values result in smaller
margins thus an increased probability of overfitting. When using the radius basis function as the kernel
function to create a linearly separable data set, the gamma parameter determines the influence of a single
training point. It determines how close points should be in order to be considered as the same group
or class. For small gamma values, the points can be further away which results in bigger groups. Large
gamma values require closer points to be in the same class. Both hyperparameters can be used to tune
the model in a way that it generalizes well for all data related to a problem.

3.4 Anomaly detection with autoencoders
Another method to tackle the problem of an imbalanced target class is anomaly detection. This machine
learning method tries to identify rare items in a data set by comparing these items with the majority of
the data, treating the minority class as outliers or anomalies (Zimek & Schubert, 2017). Both supervised
and unsupervised anomaly detection methods are available. In general, supervised anomaly detection
at its core is classification in an imbalanced environment as the normal and anomaly cases are labeled
(Chandola, Banerjee, & Kumar, 2009). As these techniques are already described, supervised anomaly
detection methods are not further explained. Unsupervised anomaly detection however, provide another
potential modeling methodology. In this case, the observations are considered to be unlabeled and it is
assumed that anomalous samples differ significantly from the normal samples (Chandola et al., 2009).
By doing so, the model learns what normal behaviour is by only looking at the majority class data.
When classifying a sample, it compares the sample with this normal behaviour. If this sample does differ
to a certain extend from the normal behaviour, it is considered an outlier thus likely part of the minority
class (Chandola et al., 2009). This method utilizes the large size of the majority class by learning as
much as possible from this sample. The advantage of this method is it is not necessary to learn the
behaviour of the minority class, which is a hard task if only a few minority samples are available. A
subspace of anomaly detection are deep anomaly detection methods, which have several advantages over
traditional algorithms (Chalapathy & Chawla, 2019). First, traditional algorithms require extensive
feature engineering which results in the performance being sub-optimal for complex structures in the
manufacturing data. Deep anomaly detection methods can also be used to learn a latent space from
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the complex data structure. This output can be used as input for traditional methods (Chalapathy &
Chawla, 2019). Furthermore, deep anomaly detection methods can handle increasingly data volumes
generally well. Traditional methods can have convergence challenges when finding outliers in large scale
data sets. The complexity in the manufacturing data due to the many different product types and the
increasing data volumes make deep anomaly detection methods a suitable choice for this research.

Autoencoders are based on artificial neural networks and are considered as the fundamental unsupervised
deep architecture for anomaly detection (Baldi, 2012). Models such as autoencoders need to met several
assumptions in order to work properly (Chalapathy & Chawla, 2019; Goldstein & Uchida, 2016):

• Normal data can be distinguished from anomalous data in the original data space or the learned
data space. This assumption is met, because the error flags found by the machine have some sort
of deviation from normal component placements in order to be an error flag at all.

• The vast majority of the samples in the data set are considered to have normal behaviour. Data
imbalance is a well known problem in manufacturing environments, in most cases this results in
an imbalanced target class containing a large majority class and a small minority class. Therefore
this assumption is also met for this research.

• Unsupervised anomaly detection methods produce a outlier score based on the intrinsic data prop-
erties which need to be present in the data in order to find outliers. Finding whether this assumption
holds is one of the main goals of the research: trying to find if it is possible to capture the intrinsic
properties of a manufacturing data set by a model, which helps explaining quality behaviour.

Autoencoders are learning circuits in the form of artificial neural networks aiming to transform inputs
to outputs in the best possible way, with x̂ as reconstruction of the original input x (Baldi, 2012). It is
an unsupervised learning method because the input of the neural network is identical to the target of
the neural network. The general framework of an autoencoder consist of encoding layers, a hidden layer
representing a latent space, and decoding layers. A common practice is to constrain the number of nodes
in the hidden layer(s) compared to the input and output layers. This limits the amount of information
which can flow through the network thus learning an encoded representation of the data in a latent
space. Generally speaking, the number of neurons in the hidden layers p are smaller than the number
of neurons n in the input and output layers (0 < p < n). A rule of thumb for a basic architecture when
determining the number of neurons in a layer might be that each layer is half the size of the previous
layer for encoding, and twice the size of the previous layer for decoding. An example of an architecture
is given in Figure 7.

Figure 7: General autoencoder architecture

Learning happens in the same manner as other artificial neural networks, evaluating the output (which
is the result of the combination of activation functions in the neurons) using a loss function, and back-
propagation with the gradient descent algorithm to learn the correct model parameters (weights and
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biases) (Rumelhart, Durbin, Golden, & Chauvin, 1995). The learning process is very briefly explained to
form a general understanding of how the autoencoder model learns. First, the architecture of the model
is designed, defining the number of layers, the number of neurons per layer, the activation functions,
and the loss function. To differentiate from PCA, it is required to use non-linear activation functions
such as the Rectified Linear Unit (ReLU) or the Exponential Linear Unit (ELU) (Clevert, Unterthiner,
& Hochreiter, 2015). When initializing the network, the weights between the neurons and the biases
related to these neurons are assigned randomly. The loss function evaluates how well the output vector Ŷi

reconstructs the input vector Yi by comparing the input and output with the mean squared error (mse),
see Equation 2. In short, the backpropgation algorithm then calculates the gradient of the loss value in
the solution space relative to the weights, biases and activation functions of the network. A gradient is
defined as the direction in which a scalar function (the combination of weights and biases) has to move
for the greatest decrease of the loss. The weights and biases are then adjusted according to that gradient
in a backwards fashion, corrected by a learning rate. By providing many samples to the neural network
in an iterative fashion, the backpropagation algorithm slowly converges to a function (described by the
parameters of the network) which minimizes the loss function. An elaborate mathematical explanation
can be found in the article of Rumelhart et al. (1995).

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2 (2)

When classifying new data samples with an autoencoder, the vector of the sample is given as input to
the trained model. The model outputs a reconstructed vector of the same size as the input. Again, the
mean squared error is used to calculate the average reconstruction error for a sample. Then, in order
to define whether a sample is an outlier or not, it is compared with a given threshold value. If the
reconstruction error is larger than the threshold, the sample is considered as an anomaly data point, if it
is smaller than the threshold, the sample is considered as a normal data point (Massi, Ieva, Gasperoni,
& Paganoni, 2021). Defining the value of the threshold is problem dependent and can be done manu-
ally, with statistical distributions defining an outlier, or based on (supervised) machine learning methods.

There are several advantages and disadvantages of using unsupervised deep anomaly detection methods
for analysing imbalanced data (Chalapathy & Chawla, 2019). One of the main advantages is that the
method learns inherent data characteristics of the data set to separate normal points from anomaly
points, identifying commonalities in the data set. This method has several implementations such as
dimension reduction and feature engineering. The reconstruction error for each feature can also be used
for feature selection or finding feature importance when differentiating between majority and minority
classes. Lastly, the reconstruction errors can also be used in a classification problem if the labels of the
data samples are known. Setting the threshold can be seen as an advantage as well as a disadvantage.
It is useful as it brings a certain freedom when classifying with the model. However, this requires
additional tuning. Finding the right threshold for unsupervised problems is not always a trivial task, as
unsupervised techniques are very sensitive to noise in the data (Chalapathy & Chawla, 2019). Another
disadvantage of autoencoders is the fact that it is not easy to find the right network architecture for a
problem at hand, as it requires a lot of experimentation to find the right degree of compression.

3.5 Explainable machine learning
Generally, the main goal of a machine learning model is to find a set of decision rules which lead to the
highest possible performance. However, lately there is an uprising high demand for understanding why a
model makes certain decisions (Roscher, Bohn, Duarte, & Garcke, 2020). Model transparency and inter-
pretability of the output results enhance the adoption of models in business and increase the overall trust
in the models. Domain or expert knowledge can help explain the model or further improve the model’s
outcomes, but the complexity of well performing models hinders transparency and interpretability by
design. Therefore Lundberg and Lee (2017) proposed SHAP values, an unified approach to interpret any
machine learning model.

SHAP values stands for Shapeley Additive Explanations and is a state of the art method to explain the
result of a machine learning model (Lundberg & Lee, 2017). Shapley values originate from game theory
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and assumes there is a game with players. Shapley values quantify the contribution of each player to
the game, or the value of each player in a given game (Hart, 1989). SHAP values are an extension of
Shapley values and quantify the contribution of each feature to a prediction done by the model, where
one sample is assumed to be the game and the features assumed to be the players. To calculate the
SHAP values the algorithm trains a model on all different combinations of features. These combinations
are represented by the power set F of the features. A power set of a set S is the set of all subsets of S,
including the empty set and S (Vardi, 1991). Thus to compute the SHAP values, 2F distinct models are
trained with the same hyperparameters and training data, but with different feature sets. The marginal
contribution of a feature is calculated by comparing models in the power set. For instance, model A is
built with features x1 and x2, model B is built with features x1, x2 and x3. If model A predicts that the
target is 0.7 and model B predicts that the target is 0.6, the marginal contribution of x3 is -0.1. These
marginal values are calculated between each model which adds x3 to the feature set, also known as the
f -models. The marginal contributions of these f -models are aggregated per feature and weighted by the
binomial coefficient C(n, k) with n = f, k = F , times f. F is the total number of features in the power
set and f depicts the number of features in the f -model of a feature. Thus, the formula to calculate a
sample’s SHAP value for a given feature is depicted in Equation 3 (Lundberg & Lee, 2017).

SHAPfeature(x) =
∑

set:feature∈set

[|set| ×
(
F

|set|

)
]−1[Predictset(x)− Predictset\feature(x)] (3)

The use of SHAP values is twofold, it can be used for global interpretability and local interpretability.
The former uses the collective SHAP values to show how much each feature positively or negatively
behaves relative to the target variable. This can also be interpreted as the feature importance for each
variable. The latter increases the transparency per predicted observation, using the SHAP values of that
sample. A prediction for a case can be explained by showing the contributions to that prediction of each
feature.
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4 Application Background and Data Concepts
Since the research is being conducted at AME, it is important to develop the problem statement within
the framework of the company. This section belongs to the business understanding phase of the CRISP-
DM methodology, and will also touch upon the data understanding phase. First of all, a complete
overview of the business activities is provided. Secondly, the problem definition will be developed, con-
sisting of AME’s quality vision (their call for quality), the state of current practice for monitoring quality,
the problem statement from a company’s perspective, and process measures to support the problem state-
ment. Next, the important data sources are described followed by the definition of potentially relevant
data concepts for the problem at hand. Eventually the data gathering process is described including the
feasibility in terms of data availability, leading to the raw data set used for analysis.

4.1 General Process Description
When AME was founded the main focus was the production of electronics at the electronics manufac-
turing work center. Over the years, the company has grown, which emerged into new business interests
due to customer demand and the company’s urge for development. This means that some work centers
nowadays are mainly used to fill AME’s own need for machine parts or components, decreasing the
dependence on other companies. The following section will describe the work centers in more detail, to
provide a complete overview of the company’s activities. AME divides its manufacturing plants into six
work centers, each serving a different production purpose, contributing to the overall business of AME:

• Electronics Manufacturing
• System Assembly
• Injection Moulding
• Machining
• Cable & Wiring
• Product Cleaning

At the Electronics Manufacturing (PRD) the core products of AME are produced, which are the printed
circuit board assemblies (PCBA). AME divides this work center into two distinct subprocesses: the
surface-mounted devices (SMD), which is the workcenter of importance for this thesis, and post surface-
mounted device (post-SMD). During the SMD process, small components (which are not connected via
holes in the PCB) are attached to the printed circuit board with solder paste. To start production, an
operator places a batch of the correct blank printed circuit boards (PCB) at the beginning of the pro-
cess. First, soldering paste is added to the PCB’s solder pads with a stencil (a mold to apply the paste
on the right places) and a squeegee (a flat smooth rubber blade to apply the paste) and automatically
inspected. Then, the PCB is moved through the pick-and-place machine, where all surface-mounted
devices are picked from the component feeders and placed on the PCB. Before the production of a batch
starts, the operator loads the correct tape & reels onto feeders mounted to the machine, these tape
reels supply the components to the machine. After the components are placed on the PCB, the paste is
hardened by going through a heating and cooling process. Then, the PCB is cleaned from dust and the
component placement is automatically inspected. The operator removes the PCBA from the machine
and places it on a tray. For some products, the bottom of the PCB also requires components. In this case
the tray is moved to the beginning of the process. AME has three SMD lines which can work in parallel.
Figure 8 schematically shows the steps during the SMD process. If a product needs plated through-hole
components attached, it also moves through the post-SMD process. In this process there are several
product dependent production steps, meaning that different products can move differently through the
production plant. However, the main process during post-SMD is attaching the plated through-hole
components. These components are placed through the holes of the PCB’s by hand and then automat-
ically soldered and depanelized by a machine. Dependent on the product, it is either boxed for storage
or moved to other post-SMD production steps such as kitting and coating, in-circuit programming or a
manual inspection. During both the SMD and post-SMD processes, tests take place to assess the quality
of both the process (e.g. how many errors occurred when placing the components) and the products
(e.g. are components firmly attached to the PCB).
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Figure 8: SMD process overview

During the Injection Moulding (IM) process, liquid plastic is moulded into a certain shape, serving as a
product component or final product. The work center has five machines, all of different size. A larger
machine means that it is able to produce larger products. Some products are boxed and tested auto-
matically by the machine. Other (primarily larger) moulded products require some manual inspection
and are not boxed automatically. Larger products require visual inspection due to the fact that there
are simply more aspects of the product that could have been moulded wrong. Besides, as these larger
products are more costly than the smaller products, the manufacturing process requires more attention.
The moulds for the IM process are made by AME at the Machining (MILL) work center. Each product
which is made at the IM work center has its own mould design which is designed in collaboration with
the customer. During this design phase AME tries to use material as efficient as possible throughout
the whole company. One example is the integration of a PCB connector to the housing of a product in
order to save components during the Electronics Manufacturing work center.

The Cable & Wiring (WIRE) work center provides cables and wires for external customers but the main
bulk of the production is for internal use at the System Assembly work center. Producing cables and
wires is a relatively fast and (semi)automated process. After the wires are produced they are checked
(and sometimes assembled) manually by the manufacturing operators. The Product Cleaning (CLEAN)
work center is used to clean and glue products which require special treatment. Only a small proportion
of the produced products go through this work center.

At the System Assembly (SA) work center a sub assembly or a final product is manually assembled.
Often this is the final step before packaging and shipping. Products from different work stations may
come together here to form the final product for the customer. After assembling the products, products
can be tested automatically or manually, dependent on the product. Due to the fact that the work
center is based on manual labour, the quality of products may vary with the skill of the operator which
assembles the product. After SA, the product either is shipped to the customer or stored in the warehouse.

4.2 Problem Definition
This section describes the problem statement and outlines the importance of product quality from a
business perspective. Also, methods for assessing the product quality of the SMD production process
are described in detail which serves as a building block for the problem statement. Then the section is
concluded with an overview of the quality indicators that empirically support the problem statement.

4.2.1 Call For Quality

One of the key strategic pillars of AME is the quality of their products. They state that quality in every
discipline of the organization is on the top of the agenda. The company estimates that the direct costs of
overall poor quality is in the order of 1 million euro every year, which directly influences the profit. Cus-
tomer satisfaction is another reason why the quality of AME’s products is important. A higher customer
satisfaction will lead to more recurrent customers and a better reputation within the competitive market.
Lastly, increasing quality is a key aspect for reducing waste thus increasing sustainability over the whole
value chain. Waste reduction is important from a material, component, human and energy perspective,
as well as working in a lean and efficient way. This project is in line with AME’s Call-for-Quality of
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2021, and will contribute to their quality vision by enhancing the process related to the printed circuit
board assembly production.

Printed circuit board assemblies play a large role in the technology people use every day, which is why the
quality of these products is of great importance. Smart phones, coffee machines, assembly lines or smart
fridges depend on the functioning of their printed circuit board assemblies. Therefore, it can be seen as
the core of most technological products. By manufacturing PCBA’s, AME fulfills an important role in
this technological product space. Improving the production process quality leads to several advances. If
the production stability is improved, the overall performance will become more reliable. For the PCBA
production process, full production stability means that the error slip is nullified, the First Pass Yield
(FPY) is 100% and the Defects Per Million Opportunities (DPMO) is as low as possible, preferably 0.
These indicate that no defect products are unnoticed and almost no reparations or scraps occur due to
insufficient production quality.

The SMD production process consist of several sequential steps as described in Section 4.1. Placing the
components on the panel requires a precise and controlled process. Product engineers and operators
claim that they believe it is hard to find out why quality deviations occur during the process as the
behaviour of the production line is considered relatively stable. As of today, it is unknown whether these
deviations are incidents or whether they can be assigned an explanation. The quality of the PCBA’s may
be influenced by many (external) manufacturing features such as the component types and the process
parameters. Quality can be seen as individual quality deviations on products or the total number of
quality deviations between distinct production orders. This project will only focus on the component
placement quality deviations on individual products (printed circuit board assemblies). Although there
are presumptions regarding what production variables influence the quality of the printed circuit board
assemblies, no extensive research is conducted on this topic within AME yet. Furthermore, the company
also states that there is much data availability regarding the production process but that currently this
information is not used to find explanations for quality deviations, as it is hard to structure these vast
amounts. The latter problem will partly be tackled by this project as providing more insight in the
production process through data analysis is one of the main objectives.

4.2.2 Production Quality Assessment

There are many factors of a printed circuit board assembly which could influence its quality (e.g. solder-
ing issues, missing components or wrongly placed components). Due to this fact, it is not always obvious
what determines the quality of a PCBA. During the SMD production process there are several moments
of quality inspection, as briefly mentioned above. This subsection describes the general quality checks
applicable to the surface-mount production of printed circuit board assemblies.

Before a product goes through the SMD production process, product engineers are responsible for ad-
justing the settings related to the automated inspections as described in Section 4.1. The fundamentals
for the settings of these automated inspections are based on industry quality standards. Product and
process specific knowledge of AME’s engineers is used to further specify the inspection settings for each
product. Examples of inspection settings are the minimum and maximum amount of paste volume mar-
gins on a board during the paste application, or the maximum rotation in degrees a component may
have during the optical inspection. As PCBA’s may have a vast amount of SMD components, finding
the right quality settings for every part of the board can be a tedious work. Trade-offs must be made
between the error sensitivity during the process and the strictness of the quality check. For example,
smaller components are harder to place, which increases the chance of a wrong placement thus requiring
a more precise quality check.

During the production process the quality checks can be divided into two distinct groups: single product
quality checks and general process quality checks. The single product quality checks are described first.
After applying the paste to the pads on a blank panel, the paste on each pad is inspected by sensors
(automated paste inspection, or API) which measure the paste volume, area covered and the height.
These values are instantly compared with the quality standards as set by the product engineers. Each
paste location on the board automatically receives a quality assessment and based on the combined
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outcomes, an overall paste quality assessment is given by the system. If the quality is good or there
are no major flaws, then the product proceeds to the next production step. Quality messages are board
location specific and could be position (indicating there is paste on a wrong place), bridging (occurs
when two pads are accidentally connected by excess paste) or insufficient (meaning that there is not
enough paste added to a pad). In case there are too much warnings or even errors, the production line
is stopped as the product’s quality measurements needs revision of an operator. Each operator which
controls a production line is well trained and is able to judge whether the quality of the product is truly
insufficient. If (despite the inspection warning) the paste quality seems acceptable, the operator overrules
the automated quality inspection and the product may continue. However, if there is indeed a problem
with the paste quality, then the product is taken out of the production line, cleaned from left over paste,
and placed back at the start of the paste application process.

The next quality check for the printed circuit board assembly happens after the SMD components are
attached to the board and the paste is hardened. This is an Automated Optical Inspection (AOI) which
visually checks whether the placement of each component on the board is done correctly, in terms
of both soldering quality and component positioning. Example warnings or error messages are solder-
fillet (indicating that the soldering is not done correctly) or polarity (indicating that the rotation of
the component might be incorrect). Again, the automated inspection can accept the quality without
interference of an machine operator if it is acceptable. However, if the overall quality is uncertain, the
operator must manually check the components for which the quality might not be sufficient. When the
operator decides that the quality is acceptable, the machine’s decision is overruled, resulting in a false
machine call. Whenever an operator is also convinced that there is a quality problem related to one or
more of the components, the product is taken out of the production line and brought to a separate repair
station. An overview of the process flow is depicted in Figure 9.

Figure 9: Component quality check process flow

The general process quality is measured by aggregated process quality measurements which are visualized
in a quality monitoring system. AME created a dashboard with visualizations of traffic lights per
subprocess in their production plant. A green light means no possible quality problems, a orange light
means that there might be a possible problem and a red light indicates that an operator should intervene
with the process in order to reduce the chance of quality deviations. The color of the lights are based
on statistical process control charts, measuring different process quality parameters per subprocess. In
some cases, the lower and upper bounds of the control charts automatically adjust to a potential shift
(and sometime structural) shift in a trend. Finally, products which do not meet the correct quality are
repaired at repair stations after the production process. During this repair process additional information
regarding the quality deviations is stored, such as the type of component and the type of error. Eventually,
all quality information gathered during the production process is stored in the BI system of AME. This
BI system aggregates all information regarding the different inspections and repairs during the process
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to a production order level. This summary of the overall production quality includes several performance
measurements per product type, batch or production order.

4.2.3 Business Problem Statement

Error slip is the undesired result of the AOI where the quality of an inspected component is wrongly
classified as good (Lin & Su, 2006). To ensure the highest possible product quality, error slip must
be minimized or even nullified. By adjusting the inspection toleration boundaries of the AOI sharply,
error slip can be prevented in almost all cases. Due to the fact that error slip is undesired in electronics
manufacturing, using sharp tolerance boundaries is common practice in this manufacturing area (Thielen
et al., 2020). A downside of this choice is that by reducing the number of error slips, the number of false
calls increase. Components which are not erroneous are falsely classified as being so due to the strict
inspection tolerances. It is virtually impossible to fine tune each inspection program so that no false error
flags are raised, as the tuning is based on trial and error and thus a time intensive task. Furthermore,
several other difficulties are present when using an automated inspection of the components and their
solder joints. First, the reflective surface of the solder paste does not always reflect the light of the in-
spection machine in the same manner, leading to misclassifications as a result of differences in lightning.
Second, there exists variety in the solder amounts applied to the pads which can lead to variations in
soldering shapes per product. This is also a barrier to developing an automatic solder joint inspection
system (Mar, Yarlagadda, & Fookes, 2011). Third, different component types (even when they have
the same purpose) may also induce problems when designing an automated optical inspection. Each
product type (printed circuit board assembly) has a unique board layout therefore requiring a unique
automated inspection program. Due to the fact each component inspection requires its own settings, re-
ducing error slips without causing false calls is a very tedious task for the product development engineers.

The occurrence of many false calls in the inspection system is a common problem in electronics manufac-
turing. In case of AME, on average 62% of all panels produced yearly during contain one or more false
calls. Whenever only one component on the board does not work as intended, it is possible that the whole
board does not function. Therefore every error call requires additional attention from an operator. To
avoid scrapping or repairing good components each call is manually checked by an operator. Checking all
the calls during the production of the printed circuit boards can be a time costly action. Operators are
not always present at the review station because other locations of the production line require attention
as well. For instance, if an operator is checking the screenprinting calls or changing a component reel the
operator cannot check the machine calls at the automated optical inspection. AME also states that it
should not be the main task of an operator to check all the machine calls as this distracts from controlling
the rest of the process. Moreover, high false call percentages during production increases the chance that
an operator will miss a real defect due to negligence (Ellenbogen, 2006). Besides the increased chance
on reduced product quality in case of many false calls, the efficiency of the manufacturing line is also
reduced. Whenever a panel requires an inspection, it is stopped at the review station which can cause
congestions at the production line, reducing the throughput per hour. Hence, false calls are the result
of reducing or nullifying the error slip to increase the product quality but a vast amount of false calls
are not desired for two reasons. Too many false calls can result in the opposite of the desired quality
objectives as the negligence of operators may again lead to error slip, and it furthermore reduces the
throughput of a production line as it may cause congestions.

4.2.4 False Call Measurements

This section provides a brief overview of the magnitude of the false call problem. False call rates from the
most recent year are summarized and some example production orders with a large false call percentage
are given. It also briefly elaborates on the losses in terms of efficiency and costs. The Business Intelli-
gence (BI) environment encapsulates much data regarding different topics such as finance, service, sales
and operations. The aggregated production quality measurements are stored in the operations category
of the BI system. Different quality measurements are stored in different data aggregation levels: quality
per test location, per production order, per product type, per month, etcetera. Test locations are places
in the process where the quality of products is assessed (API and AOI). Production orders (PO) are
created by production planners based on demand generated by sales orders placed by a customer. A PO
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is unique and belongs to a certain product (PN). Thus, a PN can have multiple unique POs, but a PO
can only belong to one single unique PN.

In the recent year AME produced 210,505 panels on the SMD production line and 63.34% of those panels
contained one or more false calls at the AOI. This means that 133,324 panels in the last year required a
manual inspection without a real error being present. With an average of 2.75 calls per erroneous panel,
366,641 false calls occurred in the last year. For the API, the paste inspection earlier in the process,
approximately 65.57% of all panels contained a false call. Although this inspection location is outside
the scope of this research project, it shows that these additional manual checks induce avoidable load on
the production line operators. An overview of these values can be seen in Table 2.

Table 2: False Call Statistics September 2020 until August 2021

Panels with False Call(s) Average calls per panel Total False Calls Total Panels Panel Call Rate
133,324 2.75 366,641 210,505 63.34%

When inspecting the false call ratio per month over the recent year (Figure 10), it seems that the average
false call ratio per month is increasing over the months. The false call rate depends on the number of
panels which have one or more false calls. A possible reason could be that in the most recent months,
products are produced having more components per board, thus increasing the chance of false calls. To
take this into account the Defects Per Million Opportunities (DPMO) is used. An opportunity is defined
as the placement of a single component on a board. This way the false call measurement is corrected
by the total components placed. As can be seen in Figure 10, the DPMO also increases when the false
call rate increases. This indicates that the incremental false call rate is not caused by the fact that more
components are placed. These statistics confirm that AME is experiencing problems with the false call
rates at their SMD production lines.

Figure 10: Average false call rate per month

Furthermore, it is not an exception that a panel has more than one false call, with the average false calls
per panel being 2.75. Table 3 shows the product types with, on average, the most false calls per panel.
These values show that false calls on a panel might require quite some work from the operator. One can
imagine that when a panel has 18 false calls that the operator will be less attentive when checking all the
calls on a panel. Especially not when this is the case for more than half of all panels which is produced.

Table 3: Top 5 most false calls per panel

Product Number Average false calls per panel
6661-1900-0701 18.31
6649-1900-0600 17.56
6045-2000-4101 17.31
6880-2000-4001 16.76
6045-1904-5700 16.05

The 63.34% of panels with false calls is the yearly average, there are product types with a much higher
percentage. Figure 11 shows the product types with the most panels with false calls in the last year.
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In case many panels require more than one manual inspection due to multiple false calls per panel
the attentiveness of the operator is likely to decrease. As an example, the false call statistics of the
production orders of product 6047-1800-9204 are shown in Table 4. For each production order, almost
all panels require manual inspection by an operator. In case of production order 3, almost 11,700 manual
inspections were required during the production order. Although these are extreme cases, it confirms
why reducing the number of false calls can be beneficial both in terms of operator load and production
line efficiency.

Figure 11: 5 product types with most false calls in the recent year

Estimating the time it takes to check a machine call is not trivial as it is depending on many factors.
Ellenbogen (2006) estimated that when the operator is seated at the reviewing station, it takes approx-
imately two seconds to review a single call. AME states that a false call is lost time per definition, as
every error call congests the production line. The amount of time it takes to resolve an error is dependent
on the operator and the number of problems occurring during a production batch. From an operator
perspective it is dependent on how keen the operator is during its shift. This depends on the fatigue,
working hours, training amount, experience, and certainty related to a given error. Furthermore, when
many (false) machine calls are raised for each board in a production batch the attentiveness of an opera-
tor will likely decrease. The number of calls in a batch can depend on for instance the size of the board,
but also how many times a product is already produced before. AME assumes that whenever the average
calls on a board is less than five, the operator is more likely to check these. If there are more than five
calls per board, the operator becomes less attentive after a few boards and just ignores all other errors.
However, closing each individual flag without further inspection also takes time. Even if an operator does
not do any manual checks, time is lost by clicking on the button to close each call. If the operator is less
attentive it is also possible that real errors are assessed as false error flags, which can result in insufficient
quality for the customer. A customer returning a defect product is very time consuming and costly thus
not desired. It is however unknown what proportion of false calls actually are real errors. Concluding,
AME estimates that a decent manual check of a component requires approximately five seconds. As not
all flags are inspected well and due to the buffers in the production process they estimate that a machine
call results in a congestion time of two to three seconds, which is in line with the literature related to
this topic. This rough estimation will therefore be used in the remainder of this research.

Table 4: False call statistics for product 6047-1800-9204

Production Order Panels with
false calls Total panels False call rate

Average false
calls per
panel

1 98 100 98% 5.4
2 397 398 99.75% 5.51
3 1800 1805 99.72% 6.47
4 603 603 100% 5.73
5 1196 1202 99.50% 6
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4.3 Data Sources
Data is one of the main drivers of this project which is why it is important to have a clear view of what
data is relevant and available. Besides the application background it is important to define the data
concepts within AME relevant to the research project. First a brief overview of the different information
systems is given, serving as data sources. Then the identified data concepts related to the product quality
of the SMD production line are defined based on interviews with product and process engineers. After
defining the relevant data concepts, the availability of the concepts and the data gathering process is
addressed.

The manufacturing process of AME is supported by several information systems. Besides the daily
operational function of these systems, the data stored here may also serve as an additional value for
the process control. Most important are: the Product Data Management (PDM) system, the Enter-
prise Resource Planning (ERP) system, the Manufacturing Executing System (MES) and the Business
Intelligence (BI) system. PDM is done with Orion Client, serving as the definition layer. All relevant
information of products, tools and equipment is stored in this system. This layer also provides infor-
mation regarding the components (bill of material) per product to the ERP sytem. The ERP system
serves as the planning layer, which is done with SAP. This layer is used on a daily operational bases
to support the production, store information regarding the demand, the need for material, maintenance
or service and support the finance department. The MES serves as the execution layer and is executed
via the Orion Board Administration software. This layer includes data regarding the traceability of
the products, product quality tests and machine log files. Finally, SAP Business Intelligence serves as
the reporting layer, used for presenting the data in an readable manner for the entire organisation. An
overview of the data sources can be seen in Figure 12.

Figure 12: Overview data sources

Due to the fact that this thesis is about analyzing production execution data, the most important data
source for this research is the MES, as this includes data for the product quality and possible relevant
process features. In the next section a brief description of the relevant data is given.

4.4 Relevant Data
Besides the different data sources, (online) production data related to the product quality can conceptu-
ally be divided into several hierarchies or levels: the product number (PN) level, the production batch
level (PO), the serial number (SN) level, the component level and the board location level (RefDes).
Dividing the data into these separate levels is only needed to create additional data understanding. It
provides a conceptual framework to show how features differ between product types, batches or indi-
vidual products. Before diving into the conceptual levels an example is given for the above definitions
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to enhance the general understanding. Figure 13 depicts different concepts related to the PCBA pro-
duction. The left most image shows a PCBA from an example product type (PN) with i components
attached on unique board locations (RefDes). When these PCBA’s are produced, the empty boards
(without components) enter the production line in panels so they can be handled in standardized sizes.
The panel is identified by a serial number (SN) and contains m boards. After production these boards
are depanelized (removed from the panel) so the PCBA’s can be assembled or sold individually. The
products are produced in batches of n panels and a batch is produced on one production line. However,
a production order (which is the total quantity sold to the customer and related to a sales order) may
consist of several batches which can be produced at different production lines and on different moments
in time.

Figure 13: PCBA Concepts

In the remainder of this section all relevant product and process features are described and assigned to a
data level. The relevance of these variables is based on the domain knowledge of the product engineers,
gathered via interviews. Data withing the scope of this project is related to the the surface-mount device
production lines of AME. Each sub process, as stated in 4.1, logs data related to that sub process. No
centralized or readable data sources are in place for the machine settings of each sub process for each
product. Therefore, gathering this data is only limited to the process parameters which are stored in
the log files related to the sub processes. The remainder of this section will provide an overview of
the data concepts which might influence the product quality (as appeared from interviews with process
and product engineers) and the data availability of these concepts. Note that not all described data
concepts could be gathered for this research. Nevertheless, as some might be useful for future research it
is chosen to describe them anyway. Before describing the levels and corresponding features, an overview
is provided in Table 5. Descriptions of the features described are found in Table 28, Appendix B.
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Table 5: Data levels and associated features

Features
Data level Available Not available

Product type

Panel thickness
Soldermask finish
Pad surface
Stencil thickness
Transfer efficiency
Squeegee width

Batch

Print speed Number of strokes
Print force Stencil cleaning interval
Snap off distance Gluing
Snap off speed Placement speed
Paste type Pick up method
Zone temperature settings Component rotation
Conveyor speed Bottom support

Serial number

Position in batch Board calibration
Time interval products
Printing temperature
Printing humidity
Measured reflow temperatures

Component

Component package
Moisture sensitivity
Supply form
Placement errors

RefDes

API features
AOI quality assessment
Error type
Operator review

4.4.1 Product type level

Product type level features define a given product type (PN) and only differ between product types.
In terms of placement quality, there are several features on product type level which are considered
important, related to the panels, the PCB and the components on the product. Panel features can
influence the product quality in several ways. Deviations in the thickness (in millimeters) of panels may
result in placement problems due to wrong calibrations. Each panel has pads where soldering paste is
applied in order to attach the components on these specific places. The remaining area on the board
(where not paste is required, thus no components are placed) is soldermask, a material that does not
mix with soldering paste (tin). The soldermask determines the color of the PCB, and is green by de-
fault. However, when PCB’s deviate from this standard color, the soldermask finish can be thicker
than in the standard case, resulting in screen printing deviations. Not all pads are the same for each
product type. In the standard case the pads on a PCB are a copper surface, but sometimes there is
a pre-applied layer of tin present on the pads. This can lead to a skewed placement or printing deviations.

Other product type specific features are replaceable machine parts, designed especially for specific prod-
uct types. A stencil is used to apply the paste on the right locations on the board during the screen-
printing. It is a metal plate with apertures corresponding to the pad locations of the printed circuit
board. When the paste is pressed over this stencil, these apertures ensure that the paste ends up on
the pads. Paste application is thus greatly influenced by stencil thickness and the transfer efficiency
of the apertures (Khader & Yoon, 2021). When a stencil is thicker, more paste can be pushed on the
board, possibly influencing the paste volumes. The thickness also affects the transfer efficiency of each
aperture, which is calculated by using the aperature’s circumference and its height (which is the bound
to the stencil thickness). The transfer efficiency value determines how much of the paste is transferred
through the holes in the stencil. In some cases, when the transfer efficiency is not 100%, leftover paste
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gets stuck in the apertures which can negatively influence the paste application. In order to sweep the
paste over the stencil, a squeegee is used. This is a smooth rubber blade which controls the flow of liquid
over the stencil surface. The width of this squeegee is product type specific and may also influence the
paste application process.

4.4.2 Production batch level

The production batch or production order level regards the available data related to a given production
batch. Each product type can be produced during multiple production batches. The machine settings
and process parameters belong to the batch data level. In spite of the fact that machine settings or
production parameters seem to be product type specific, for some cases the manufacturing settings or
production parameters are changed in between batches by the process engineers. Therefore, these fea-
tures may be different for the same product type. Each sub process has its own set of machine settings
and process features. Screen printing requires several machine settings. Printing speed and printing force
determine the squeegee speed in millimeters per second and the squeegee force in kilograms. The amount
of strokes the squeegee makes also influences the paste quality. After applying the paste, the board and
the stencil are separated. The separation speed (in meters per second) and distance (in millimeters) can
be controlled and might influence the paste quality on the board (e.g. when leftover paste sticks to the
stencil). During production, the stencil is cleaned after a set interval of products. This cleaning interval
can also be controlled and when this interval is too large, left over paste might negatively influence the
outcome of the paste printing process and thus the placement quality. Process features related to the
screen printing process are the paste type and whether the board requires additional gluing to strengthen
the attachment of components.

During the pick & place process, the process engineer must design the settings for each placed component
separately. These settings are fixed for each batch. Features which can influence the quality are the
placement speed, the pick up method, whether the component requires rotation and the board bottom
support. Placement speed determines how fast the component is placed on the board. Larger components
are placed with less speed to reduce placement accuracy issues. Components are picked up with a
vacuum grip or mechanical grip. Slight differences can be present when comparing both methods on
picking stability. Component rotation is needed when the component is not placed linearly on the
board. Whenever this is the case, there is more room for error due to an extra machine setting and
handling. Bottom support is the force applied to the bottom of the board when the components are
placed. Having a board support which is too low might reduce the stability thus the placement quality.
Reflow is a relatively simple process, consisting of ten heating zones and three cooling zones. During
the heating and cooling zones the temperature respectively increases and decreases in a linear fashion.
The shape of the soldering joints may vary when the heating zones are not stable or too hot. The
conveyor speed in the reflow process also influences the heating process. Moving too fast might cause the
temperature to shift between the heating zones as the board moves the air through the different zones.
All the above settings and parameters influence components and products on an individual level but as
they are constant for the entire batch they fall into the batch data level.

4.4.3 Serial number level

The serial number level can also be defined as the panel level, which contains data on the individual
product level. Each panel which passes the production line has a unique serial number, based on the batch
number, the year and the place in the batch. Features related to this data level are mainly measured by
sensors during the production process. These features are thus constant for the entire panel. AME did
some research related to product quality within a production batch and found out that the sequential
position of a product in a batch might influence the quality of the product. For instance, they found
that paste quality might deteriorate when the machine is idle (e.g. during breaks). Therefore, features
regarding the product’s position in a batch and the time interval since the last produced product in
a batch can influence the product quality. During screenprinting process the environmental features
temperature and humidity are measured within the machine. Both influence the paste fluidity thus the
ease of applying the paste to the board. When a individual panel enters the pick & place process, the
calibration of the board is measured. This feature provides information about whether the board is
well aligned relative to the nozzles. Incorrect calibration can lead to misaligned component placement,
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reducing the quality of the product. To measure the temperature during the reflow process, sensors are
installed at each zone. Since the actual temperature may differ from the set temperature, it is interesting
to include this feature as this can influence the soldering quality. The temperatures are constant for a
panel but can differ between panels due to the movement of air through the machine.

4.4.4 Component level

Each product type has its own unique combination of different components, which can be used to describe
each product type. However, a component type can be placed multiple times one the same product type
and on multiple product types. Therefore the component characteristics are described on the component
data level. The data related to each component can be divided into component characteristics and
process information related to the component. Features describing a component type are its package,
whether the component is moisture sensitive and the supply form. Component packages are industry
wide type categories for surface-mount devices. The package code encapsulated information related to
the component types (e.g. resistors, capacitors, coils, diodes), geometrical dimensions or number of leads
(the pin which connects the component with the pad through the soldering paste). These component
types can influence the placement quality. Smaller components are harder to place as there is less
tolerance for mistakes. If a component has more leads, placing the component is also more prone to
errors. Another component feature is whether components are sensitive to moisture, therefore require
special handling procedures. The supply form of a component can also affect the placement quality.
Most components are supplied to the machine via tape, which is the most stable supply form. Some
components are picked from a tray, this form is less stable as these components can easily shift or rotate
while on the tray. Besides the process characteristics, information (e.g. pick up errors) is gathered for
each panel during the process related to the placement scores of the component types on that panel. For
example, during production of product type 6736-1504-2007, on panel A there occurred 8 pick up errors
when placing component 2000-3003-1004 (which is placed on 12 locations on the panel), but on panel B
only 1 error occurred for that same component type. These placement error features do thus not belong
to the serial number (panel) data level, as they differ for each component on a specific panel.

4.4.5 Board location (RefDes) level

The board location data level has the lowest data granularity as it describes a specific location on a
particular printed circuit board assembly. Each PCB has its own set of locations where components
can be placed, and all of these locations are identified by a unique identifier (which is called a reference
destination, or RefDes), see Figure 14 for an example. In most cases a RefDes is described by a letter and
one or more numbers, and it is bound to a product type. Meaning that for product type A, the RefDes
R102 can be located in the upper right corner, but for product type B RefDes R102 might be located in
the middle of the board. Thus, these names do only serve as a unique identifier per product type and do
not provide any information related to the location on the product type. Figure 15 shows that for each
board of a given product type, the RefDes defines a unique location on that product type. Hence, when
there are 4 boards in a panel, the panel has 4 RefDes with the same name, which are distinguishable in
combination with the board identifier in the panel (e.g. U301_1, U301_2, U301_3, U301_4).

Both the API and AOI operate on the board location (or RefDes) level. After the screenprinting process,
the API checks the paste on every board location based on several features: paste volume, paste height,
paste area, offset in the X direction and offset in the Y direction. The latter two features describe
whether the paste is applied at the correct coordinates related to the pad. The volume, height and area
features provide information related to the amount of paste applied on the pads. At the end of the SMD
production process, the AOI checks the quality of each component on the separate board locations. If
the automated inspection evaluates the component placement on a RefDes as insufficient, the error flag
type is added to the call. For each error flag found by the machine, the operator must manually check
the call, deciding whether the machine made a false call or a correct call. If both the machine and the
operator agree on the fact that the quality is insufficient, the whole board is brought to the repair station.
Whenever the repair station operator thinks no repair is required after checking the error, the correct
call will be replaced by a false call for that component. A false call can thus occur when the machine
and the line operator disagree, and when the repair station operator overrules the decision of the AOI
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and the line operator. Consequently, the earlier described product quality and the false call indication
is defined at the lowest data granularity level, which is the board location (or RefDes) level.

(a) Top of PCB (b) Bottom of PCB

Figure 14: PCB design with reference destinations

Figure 15: RefDes example

4.4.6 Process and data

In order to provide a better view of the data related to the process, Figure 16 depicts the data by linking
it to the relevant sub processes. A distinction is made between the log data (which is gathered during
the process) and the process parameters (which are set before the production starts). If a real error is
found at the AOI, the product is brought to the repair station. Thus, data regarding the type of error
and whether a call is false or are generated at both the AOI and the repair station.
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Figure 16: Data concepts linked to the SMD line

4.5 Data Gathering
After defining the data concepts it is required to gather a representative data sample in order to conduct
analyses. This section briefly elaborates on the data gathering process, data sources, data availability
and provides an example of the gathered data set.

A notation is used to introduce the different data set concepts. Let xi denote the feature vector of all
product and process features for sample i. The categorical target variable for sample i is depicted as yi,
with yi = {good, false call, real error}. Each sample represents the inspection of a placed component on
a board, given all the product, board, production and component features of that instance. All the gath-
ered instances combined form the complete data set D = {xi,yi}. The training, validation, and test sets
are denoted by Dtrain, Dval, Dtest respectively, where each of these sets is a subset of D. Ten different
PN’s were randomly chosen to start the data gathering. Choosing randomly reduces the potential bias
in the data set and increases the probability on a representative sample. Before March 2021, there were
no log files available for the reflow production process, which is why this date is chosen as a starting
point. The chosen product types were produced in totally 52 batches from March 2021 to July 2021.
Some products have a top and a bottom side (see Figure 14, and due to the fact that each product side
has its own settings and features, a PCB side (top or bottom) is treated as a single production batch
instance. This results in 83 batch instances of 10 different product types.

During the gathering process, several problems occurred related to the data availability. First, in case of
some variables, the data is not available at all or not available in any utilizable form (e.g. information
related to the soldermask finish is only stored in the text of PDF files). Second, other features, such
as the panel thickness or the gluing specifications, are only gathered by process engineers in local data
files (e.g. Excel sheets) without being stored in a company wide database. This does not contribute
to the completeness and quality of the data. Third, the machine settings of the pick and place process
are embedded in a software environment which cannot easily return the settings in a readable format.
Furthermore, the (large) database connected to this process is developed and configured by the machine
supplier. This leads to difficulties when there is a need to extract the correct data from the system. Due
to this fact only summarized error messages per component per panel could be extracted for the pick &
place process. Fourth, some data is supplied by third parties. For example, the stencil data related to
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the stencil thickness and the transfer efficiency of the apertures is supplied by the stencil manufacturer.
Lastly, the above mentioned issues not only result in incompleteness of the data but also bring forth
merging issues. In case of the transfer efficiency per aperture related to a board location (which can be
very useful for analysing the quality of the product), it is not possible to merge the aperture’s efficiency
to the board location because the stencil location identifiers do not match with the PCB location iden-
tifiers (RefDes) of AME. Besides the lack of correct primary and secondary keys in the different data
sources, the missing data in some of the sources also results in highly incomplete and therefore useless data
records. Features for which there was too much missing data were disregarded for further data gathering.

The result of exploring the data gathering possibilities regarding the availability of each feature can be
found in Table 5. It is interesting to see that the product type features are the least available. All
features with sufficient quality or amounts were incorporated in the data gathering to create the raw
data set. Most gathered data is scraped from log files as a result of the production process. Each panel
has its own log file per sub process. For the API and the AOI these log files contain information per pad,
and multiple pads can be associated with a RefDes. There are a few assumptions made when reading
the log files. The API checks each pad on the board, but the individual pads are not within the scope
of the research. Therefore, the paste inspection values of multiple pads belonging to the same RefDes
are aggregated by taking the mean values. For the AOI, whenever an error is found at a given pad, it
is assumed that this error relates to the associated RefDes. When multiple pads of a RefDes contain
an error, the most occuring error type as proposed by the machine is assumed as the main error type
associated with the RefDes. Information related to the components are extracted from the ERP system
and merged via the component identifier.

After collecting and merging all the data, a set is created representing 9 product types and 53 production
batches. The raw data contains approximately 7.4 million instances (or rows). Each row represents a
board location on a specific panel which is checked by the AOI at the end of the process. The features
describing the row are all the process features as described in Table 28, Appendix B. A unique row is
described by a combination of primary keys namely the PN (product type), SN (serial number), batch
identifier, board identifier in a panel, and the RefDes (unique board location identifier). The previously
described data levels associated with each feature describe whether variables are constant between rows
or not. For instance, if a specific panel contains 200 components then there are 200 rows associated with
that panel. As each placed components has information related to the paste inspection, the rows differ
for these features. However, all components on the panel went through the reflow zones at the same
time so the reflow temperature features are constant for all these 200 rows. Figure 17 provides a general
example of the variability in the data levels for one given product type. The colors in the columns depict
how the data varies in and between the data levels. The most variability can be found on the board
location level, and the least on the product type level. Before building any machine learning models it is
first required to understand the data well. In the next section an exploratory data analysis is conducted
which provides useful information regarding constructs like the data distributions, multicollinearity and
relations with the target.

Figure 17: Data set dummy example for one product type to show variability within and between data levels
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5 Data Exploration
Exploratory data analysis is an important facet in the comprehensive world of data science. This impor-
tant step of the data understanding phase in the CRISP-DM framework summarizes the gathered data
sets by using statistical measures and data visualizations. Besides describing the main characteristics of
the data, exploratory data analysis is also useful for formulating hypotheses. These hypotheses can lead
to either new ideas for further data collection or insights which are useful during the following phases of
the CRISP-DM framework (e.g. feature engineering or data modeling). This section will first elaborate
on the data understanding by performing an exploratory data analysis. After the data understanding, the
data preparation phase of CRISP-DM is described, including data preprocessing and feature engineering.

5.1 Exploratory Data Analysis
Initially the data gathering started with 10 PN’s, consisting of approximately 83 production batches.
However, due to merging different data sources together, missing data in one or more of the sources
resulted in a dataset of 9 PN’s and 59 production batches. These batches include 8795 produced panels
which can have one or more PCBA’s (see Figure 13). As each panel can have a top and a bottom (which
are produced separately), the data contains 15,253 panel production instances. After depanelization
(cutting the boards from the panel), the data contains 22,846 individual PCBA’s which are sold to
the customers. On all these boards approximately 7.4 million components were inspected, each row
representing a component with its corresponding process features. These inspections include 36,347 false
calls and only 750 real errors, see Table 6. Besides the error flag, the machine also provides an error
type to the data. These error types and their false call ratio is shown in Table 7. For the most occurring
error types, coplanarity has the most real errors. This error occurs when not all leads are connected
well to the board due to component quality deviations, soldering or placement issues. Other interesting
errors are polarity and OCROCV because relatively much error flags are raised here by the machine but
almost none are real errors.

Table 6: Target class imbalance

Inspection result Instances Ratio
Good 7,388,342 0.9951
False call 36,347 0.0048
Real error 750 0.0001

Table 7: Error types and false call rates

Error type Total Real errors False calls False call
percentage

Pad overhang 13,153 119 13,034 99%
Coplanarity 7365 279 7086 96.2%
Solderfillet 7018 42 6976 99.4%
Polarity 5954 7 5947 99.9%
Missing 1654 194 1460 88.3%
OCROCV 1525 1 1524 99.9%
Dimension 237 40 197 83.1%
Bridging 180 66 114 63.3%
Absence 11 2 9 81.8%

These values might not really endorse the problem stated earlier. Nevertheless, 58% of all the panels
produced in the sample had one or more false calls which required a manual check, see Table 8. Relative
to the number of inspections performed only few false calls occur. Still more than half of the panels
need manual inspection, thus the false calls form a real issue during SMD production. An overview per
product type can be found in Table 29, Appendix C.
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Table 8: Distribution of false calls over panels

One or more false
call(s) on panel

Number of
panels

Yes 8,918
No 6,335

Total 15,253

5.1.1 Errors in batches over time

Exploring the data starts from a high level, finding whether there are differences between product types
or batches. As can be seen in Figure 10, Section 4 the false calls increase over time during the last
months. As time might be important, the batches are chronologically sorted and visualized in Figure 18.
Each bar represents the correct error flag ratio. The same trend is seen, as there is an increase in the
number of false calls in the most recent weeks, having a correct call ratio of almost zero. Furthermore, no
clear relation is found regarding the product types and the correct calls. Therefore it might be interesting
to see which other factors (e.g. component types or board locations) cause the error flags in the batches.

Figure 18: Correct flag ratio for batches over time

5.1.2 Troublemakers

Line operators and production engineers state that during some batches, error flags are caused by specific
components or board locations, which are defined as troublemakers. A troublemaker is a component
package or board location which causes the most (false) error flags. To check whether this observation
is true, the error flags are analyzed per batch. For each batch the error flags are counted per component
type and board location, providing the troublemaker and its error ratios for the batch. These ratio’s
can be compared between batches to find in which extend a troublemaker is causing problems. As
an example, the comparison of these distributions for product type 6649-1000-2226 is visualized with
boxplots in Figure 19. For this PN the component distributions (Figure 19a) show that 25% to 65% of
the error flags are caused by the same component package (which can be on multiple board locations).
Then there is a sharp decrease in terms of the distribution domain for the second largest troublemaker
(approximately 10% to 30%). The domain of the third largest component type troublemaker is even
smaller but decreases less sharply. This is an indication that each batch has a large troublemaker
accompanied by smaller troublemakers. Although it cannot be generalized that all error flags are caused
by only one or two component types in a batch. When looking at the RefDes distribution, as seen
in Figure 19b, we see a similar pattern. Nevertheless, the component type and RefDes distributions
differ a bit, which might indicate that error flags are either influenced by components or the board
locations. To further substantiate the hypothesis about troublemakers, a t-test is conducted comparing
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the distributions of the trouble makers. The result of this test also indicates that there is a statistically
difference (p<0.05) between troublemakers and non-troublemakers. The above findings were also found
when analyzing the other product types so can be generalized for the entire sample.

(a) Component type (b) RefDes (board location)

Figure 19: Boxplots of troublemaker distributions over batches

After the confirmation that batches contain troublemakers it is interesting to see which component types
and board locations are troublemakers. The biggest component type troublemaker per batch is depicted
in Figure 20. There is a clear distinction between troublemakers of product types when comparing the top
or bottom of the products. Furthermore, the troublemakers can reoccur between similar batches within
the same week but also in later produced batches. Problems can thus be both product type specific or
batch specific. Either way, the data shows that taking the component types into account during the
modeling phase can be fruitful for the modeling results. Reoccurring component type troublemakers can
also be the result of board location problems (e.g. due to stencil quality deviations). Therefore the same
exploration is also done for the board locations on a panel, as shown in Figure 21a. When comparing
both Figure 20 and 21a, it is notable that for some batches the ratio decreases and for some batches the
ratio stays relatively the same. Indicating that respectively, for some cases the problems are caused by
the component types and in other cases the problems are caused by the board locations. Furthermore,
the reoccurring troublemaker pattern over batches for the same product type as seen for the component
type, is also present for the board locations.
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Figure 20: Component type troublemakers per batch

A panel can have multiple board locations with the same name due to the fact that multiple boards
can be in a panel. To further investigate whether problems occur at panel level or board level, Figure
21b depicts the troublemakers based on the board specific locations. When the ratio of the biggest
troublemaker decreases, there is an indication that it is a panel problem. If the ratio does not decrease
the problem can be ascribed to a unique board location thus it is a problem on board level. Both
situations seem to happen when comparing figures 21a and 21b. Therefore, it is interesting to further
look into the data variance on the RefDes levels.
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(a) Troublemakers per RefDes (can be multiple) on panel

(b) Troublemakers per unique RefDes on a board

Figure 21: Troublemakers for board locations

5.1.3 RefDes Variance

So far the exploration of the data showed that problems can occur due to components or board locations.
AME states that the process features for a given RefDes can vary between batches or even within the
same panel. The variance between batches is the result of overall varying conditions during different
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production instances. Varying process features within the same panel is the result of fluctuations during
the screenprinting process. For instance, a board on the upper left side of the panel can have other paste
distributions than a board on the lower left side of the panel. This can have several causes such as minor
deviations for each board in the stencil, or because less paste is applied at certain stencil areas. To see
whether these assumptions related to the board level variance hold, the distributions of the same board
location between batches are compared, and the distributions of the same board locations within a panel
are compared.

Both explorations are most easily described by using a specific RefDes on a product type as an example.
First, the paste feature variance between batches is compared by comparing the RefDes U100 for a set of
eight batches of product 6649-1000-2226. Four of the batches are produced in week 12 and the other four
batches are produced in week 14. An conceptual example of how the data distributions were constructed
is shown in Figure 22a. The distributions are compared by using boxplots, which are shown in Figure
22b. Each boxplot represents the distribution of paste feature values for one specific RefDes in a batch,
unique to a board in the panel. What is seen is that batches produced in the same week behave somewhat
the same, although there is also variation when comparing those batches. For batches produced in other
weeks, the distributions differ a lot more, which confirms the statement of AME that the process can
vary between production orders and even between batches within the same production order.

(a) Conceptual example of data distributions between batches

(b) Paste feature distributions per batch

Figure 22: Example of paste feature variation between batches
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Variance can also be present for the same board locations on different boards in a panel. A random
batch is picked from a random product type, in order to compare the distributions for the same reference
destinations on a panel. Product 6023-1600-0605 is produced in a panel with four boards, resulting in
four reference destinations with name D300 in a panel. Again, a conceptual example is provided in
Figure 23a. Each boxplot in Figure 23b depicts the paste feature distribution in a batch for a given
board. What can be concluded is that even on same board locations within a panel, there is variation in
the screenprinting process. Both comparisons of the variation between batches and within panels lead
to the conclusion that it is worthwhile to treat each board location as a separate data point during the
data analysis and model building.

(a) Conceptual example of data distributions within a panel

(b) Paste feature distributions per batch

Figure 23: Example of paste feature variation within a panel

5.1.4 Errors over time within batch

It might be the case that errors happen during the start of the batch or after operator breaks. Therefore
the error flag data relative to the time in a batch is explored. Here again, due to the varying production
time lengths, examples are used to find whether hypothesis can be formed based on the data. These
examples can be found in Figure 43, Appendix C. The examples do not show any relationship between
the false calls and the time aspect in a batch. In order to compare all the batches in the data, the
relative place of a product in a batch is considered by standardizing all time intervals of the batches
to a range between 0 and 1. Then, the distribution of error flags can be plotted to show whether on
average more flags happen in the beginning of a batch, see Figure 24. Apart from the large spike, which
is caused by a product with many errors, only a small increase in errors is found in the beginning of a
batch. Furthermore the wavy pattern might indicate that after production breaks more false calls occur.
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Due to these observations, two features related to the time in a batch can be relevant for the modeling
phase. First, to find whether there is a relation between the start of a batch and error flags, a sequential
index is added to the data, referring to the location in the production batch of each panel. The first
panel which passes the SMD line has index 1, the second index 2, and so on. Second, the time interval in
seconds between the last product and the current product is added as a feature to catch possible quality
deviations after production breaks. If there was a 5 minute break between two panels, then the feature
value for the current panel will be 300 seconds.

Figure 24: Distribution of all error flags relative to the time of the production case

5.1.5 Predictive features in relation with target

To get a feeling for the relationships between the process variables and the target variable the dis-
tributions of the features are explored for each target category (good component, false machine call,
correct machine call). This is done with visualizations, descriptive statistics and statistical tests to
check whether there is a difference between the distributions of the targets. Welch t-test is a statistical
test for comparing means between two groups of unequal sample size (no assumption regarding equal
variances as with the student t-test) (Ahad & Yahaya, 2014). As the Welch t-test is not robust when
the data is not normally distributed, a Kolmogorov-Smirnov test is also executed. This test is based
on the maximum difference between a hypothetical and empirical distribution function (Massey Jr, 1951).

Generally the process features can be divided into several categories, related to the sub process and
machine parameters or features as a result of the process. As it is needless to deal with each variable
individually, the relationships between the process and the target variable are discussed per category.
The results are depicted in Appendix C, Section C.3. For the screen printing environment variables no
large differences are found when comparing the targets. When comparing the descriptives of the screen
printing paste features a downward deviation is found for the real error flags. In case of the screen
printing parameters, it is found that the real errors have higher settings, indicating that there might be
some problems related to the settings. The pick and place features related to the components show some
deviations in the descriptives but when comparing the visualizations of the distributions it is hard to tell
any real differences. The pick and place error features show that this data is very sparse which might
indicate that there is a lack of information there. When looking at the reflow features, no unexpected
differences are found. Thus, when comparing all the descriptives of the process features only in some
cases deviations are found. Furthermore, all statistical test show that there are significant differences
between the target categories. Note the robustness of these test might be decreased due to the great
imbalance in the target class. Further analysis in the next section will provide more insights in the data
distributions for each quality class.

As seen earlier, component characteristics can also influence the process quality. Therefore the relations
between the categorical component variables and the target variable are also explored. These are depicted
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Figure 25: Component packages for each target class

by using bar charts for each target class, comparing the distributions of these bars. Most interesting is
the component package, as this feature has the most variation. The bar charts related to the component
package feature are depicted in Figure 25. The differences between the target classes might indicate the
component package relevance when assessing the process quality with the component features. Further
component characteristic features can be found in Appendix C, Section C.3. The above univariate
comparisons showed that there are variations between target classes when comparing the process data.
However, multivariate analysis (during the modeling phase) must find the complete set of relations
between the process features and the target.

5.1.6 Correlating process features

Multicollinearity occurs in a data set whenever the predicting features are highly correlated. Models
derived based on this data might have reduced predictive performance or lead to wrong system analysis
(Garg & Tai, 2013). Therefore a correlation matrix of the process variables is visualized in Figure 26.
Remarkable but not unexpected are the high correlations between the reflow features, as these represent
the linear increase and decrease of the temperature in the oven. For the other variables there are no
worrying high correlation values found. In case of the reflow features, a different representation of the
data is required in order to be used during the modeling phase. This and other preprocessing actions
are described in the following section.
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Figure 26: Correlation table of process features

5.2 Preprocessing & feature engineering
After getting a first feeling for the data it is important to further preprocess the data prior to the model-
ing phase. Preprocessing consists of data cleaning and transformation (Lv et al., 2018). Cleaning involves
techniques for filling or removing missing data, reducing noise by handling outliers and duplicate data,
and dropping redundant columns. Transformation includes both dimensionality reduction and encoding
features to the right data format for modeling.

Missing data
Not all modeling techniques can handle missing data equally well which is why it is important to reduce
the missingess in a data set. Most missingness is occurring at the reflow features, as approximately 25%
of the conveyor speed variable is missing and 2% for each heating zone, which results in approximately
530,000 rows with missing values in on or more of the heating zones. The conveyor speed feature is
removed from the data set as this feature can be replaced by the reflow process time, which is a direct
result of the conveyor speed. This relation can also be seen in the correlation matrix, having a very strong
correlation of -0.99 (see Figure 26). Interpolation is a mathematical method to create new points based
on the values of surrounding existing points (Steffensen, 2006). In the case of the reflow temperature
zones, linear interpolation is an appropriate method, since the zones become warmer and colder in a
linear fashion. Only missing values at the beginning of the end of the sequence cannot be estimated

44



5 DATA EXPLORATION

with this method. However when using linear interpolation, approximately 85% of the rows containing
missing values can be filled. The other instances are removed from the data set. Furthermore, the wiper
frequency variable related to the screen printing process also contains many missing values, but this
features is dropped as it is a constant for all rows. After removing the missing data, there are 7,346,253
complete data rows in the data set. For the target class distribution of this complete data set see Table
9.

Table 9: Target classes after removing missingness

Inspection result Instances Ratio
Good 7,297,070 0.9950
False call 36,096 0.0049
Real error 747 0.0001
Total 7,333,913 1.0000

Product time intervals
As stated earlier, the time interval in seconds between two products in a batch can be relevant for the
detection of quality deviations. In order to create this variable, the panels are sorted per batch based on
the production time in the AOI log file, and the interval between two consecutive products is calculated.
In order to remove any outliers related to this variable, all the rows having a time interval greater than
7 days (604,800 seconds) are removed from the data. It was found that these outliers are duplicates in
the data, as the serial number of these products were all found earlier in the data. These duplicates can
be a result of a manual scan after the reparation in the data or a new test after the production batch.
Note that removing these instances also reduces the noise in the data as only the quality during the first
test (without reparations or other adjustments) is relevant for this research. The size of the data set
after removing these outliers or duplicates is shown in Table 10.

Table 10: Target classes after removing duplicates

Inspection result Instances Ratio
Good 7,287,670 0.9950
False call 36,011 0.0049
Real error 739 0.0001
Total 7,324,420 1.0000

Categorical encoding
Machine learning models require a numerical vector representation of the data in order to work well.
Representing categorical variables (i.e. the component characteristics) in a numerical form can be done
in several ways. A common practice is using one-hot encoding, which transforms each category of a
categorical feature in a dummy variable. Whenever a feature has seven unique categories, seven dummy
variables are added each describing one category. However, when there are many categories present in
a variable the method of one-hot encoding create high-dimensional feature vectors. This leads to sparse
input vectors which decreases the machine learning model performance as the hypothesis space increases
(Altendorf, Restificar, & Dietterich, 2012). Therefore when having many categories, it is preferred to
find a low-dimensional representation of these high-cardinality string categorical variables (Cerda &
Varoquaux, 2020). A simple yet effective method is target encoding, because this does not increase
the dimensionality of the data to a large extend. The method accounts for the prior probability of a
category feature relative to the target. This probability is calculated based on the given (training) data.
For instance, when a component package occurs 10 times of which 7 times as good call, 2 times as false
error flag and 1 time as correct error flag, the encoded values for that component package are 0.7, 0.2
and 0.1 respectively. New variables are added per target category and not per categorical value, reducing
the increase of the data dimension greatly. A potential downside of the method is the decrease of the
model’s outcome interpretability. To prevent data leakage, the encoding is done after splitting the data
and fitted on the training set. The method is robust against imbalanced data and therefore useful for
this research.
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Feature engineering
The curse of dimensionality theory states that the difficulty of problems rapidly grows as the number of
dimension increase (Bellman, 1966). Some state that the cost of an algorithm grows exponentially by
adding a dimension (Kuo & Sloan, 2005), besides the fact that adding more variables increases the noise
in the data set thus the ability to generalize well. As stated, it is preferred to transform the correlating
variables related to the reflow process in a way that captures the most important information in the least
amount of dimensions. Several things are important when considering the heating parameters related to
the soldering quality: what is the maximum temperature of the zones and how fast do the temperatures
rise and fall (Mar et al., 2011). Therefore, the temperature features can be captured in three variables:
the maximum temperature, the average temperature, and the linear slope of the temperature zones.
The latter is done by fitting a linear line to the data points related to the heating and cooling zone
values, then using the line coefficient as feature for the model. An example of this method is depicted
in Figure 27, the coefficients for the heating and cooling zones are 17.40 and -42.90, respectively. Using
this method captures all relevant information of the heating zones and reduces the noise and dimensions
in the data set. Furthermore, using only the total attempts as a indicator for how well the pick and
place process is dependent on the number of components placed. Therefore the total components placed
is divided by the total picking attempts, to create a placement score which is independent of the total
components placed. Finally, to get the relative place of a product in batch, the product index is divided
by the total products in a batch.

(a) Heating zones (b) Cooling zones

Figure 27: Lines fitted to the heating and cooling zones

5.3 Concluding remarks
Before proceeding the the modeling phase of the CRISP-DM framework, a brief summary of the data
exploration findings and feature engineering is provided. During the data exploration several useful
modeling insights are gained. First of all, the exploratory data analysis show that the data is highly
imbalanced, and that some error types happen more frequently than others. The number of panels in
the data set with one or more false calls is 58%, this is comparable to the complete population which is
62%. Furthermore, no time dependency was found for the real error ratio when comparing the different
batches over time, the results only show an increase in false calls over time. Reoccurring problems
(troublemakers) during production can be associated with either component types or board locations,
thus both should be taken into account during modeling. Process deviations can happen between batches,
but also within a specific panel. For instance, when a panel consists of two boards, RefDes U100 on
board 1 can cause more problems than the same RefDes U100 on board 2. Also, it is also shown that
the production position of a product in a batch may slightly influence the quality, as well as the time
interval between two produced panels. Analysis regarding the interrelations of features show that the
distributions for the targets behave slightly different for some features. Interpolating the missing values
and cleaning the data lead to a complete data set, which can be used during the modeling phase. It
was also shown that the reflow process features are highly correlated, requiring an aggregation to reduce
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the dimensionality of the data. The linear increment and decrement of the temperature in the reflow
heating zones are transformed to a linear coefficient, representing the temperature change in one variable.
The average and maximum temperature are also added so no information regarding the process is lost.
Lastly, the categorical features related to the components have a high cardinality. Therefore, target
encoding is used to transform these categorical features making them eligible for the modeling phase.
To conclude this section an overview of the features used for the modeling phase is given in Table 11. In
the next section the modeling phase is described, defining the data splitting methods and the modeling
development.

Table 11: Modeling features

Identifiers Screen printing Pick & place Component (encoded)
PN Temperature Total components Package type
SN Humidity Total pick attempts Supply form
Board ID Print force No pick up error Moisture sensitive
Side ID Print speed Pick up error
Week Nr Snap off distance Vision error Quality result
Batch Nr Snap off speed Placement score Machine error call
Component ID Volume (%) False call target
RefDes Height (um) Reflow

Area (%) Process time (s)
Panel Offset X (mm) Max. heating zone
Panel interval (s) Offset Y (mm) Max cooling zone
Relative batchpos. Heating & cooling coefficients
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6 Quality Modeling
This section describes the development of a predictive model that aims to use online process data to
enhance the outcome of the quality control system, which is part of the modeling phase in the CRISP-
DM framework. Doing so helps reducing the required manual checks at the SMD production line.
If an error flag is raised by the AOI, the model uses the process data to assess the error flag using
binary classification. Whenever the model predicts that it is a real error or a false error with a given
certainty, there is no manual check required. If the model is not certain enough, then the operator still
has to do a manual check to prevent error slips. An overview of the process flow with the model is
given in Figure 28. The highly imbalanced target class requires specific modeling approaches which are
able to handle the minority classes well. Different types of models are developed: multiple classification
methods using various methods to tackle the imbalance data problem, and an anomaly detection method
which treats the false error flags and correct error flags as abnormal data. Firstly, the different data
splitting methods of the models are explained. Secondly, the general evaluation metrics are described
and explained briefly. Thirdly, for each model an explanation of the model development is given followed
by a numerical evaluation of the models. Furthermore, for each approach an uncertainty mechanism is
developed and numerically tested. This mechanism ensures that a model is as certain as possible about
a prediction to reduce the numbers of unwanted errors from a business perspective.

Figure 28: Component quality check process flow with model

6.1 Splitting method
During the model development there is a constant tradeoff between bias and variance. The tradeoff is
the conflict trying to simultaneously reduce these two constructs in order to let the model generalize
well beyond the training set (Kohavi, Wolpert, et al., 1996). Bias can also be described as underfitting,
which happens when the model’s assumptions are too simple which results in missing relevant relations
between the input data and the target. Variance is the opposite of bias and can also be defined as over-
fitting. A model overfits if it is too strictly fitted to the training set, which results in learning random
noise from that set. When this happens the model does not generalize well on other data sets. Splitting
the data in a proper way helps with evaluating the model well and helps in finding the best tradeoff
between bias and variance. The data is split in a training, validation and test set. Training data Dtrain

is used to train the model in order to learn from the data. Validation data Dval is used to tune the
hyperparameters of the model in the best possible way. Testing data Dtest is eventually used to test
the real performance of the model, as this data is never shown to the model thus considered as ‘new’
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data. Both modeling methods (classification and anomaly detection) require a different splitting method.

When using standard classification, the training, validation and testing data is split into proportions of
respectively 60%, 20% and 20%. Group splitting is used when splitting the data, meaning that a data
group can either be in the training or the test set to prevent data leakage. For the problem at hand,
an individual panel (SN) is considered as one group because SN data level features are the same for all
samples belonging to that panel. If no group split is used, the algorithm can learn information about
a group which can be used during the evaluation on the test set. Using the group split ensures that
no panel specific information is learned during training which is then also present in the test set. This
concept is called data leakage, and is a common problem in machine learning problems with groups in the
data. It can lead to higher performance measures during the development phase than expected in the real
world, resulting in unwanted outcomes when deploying the model (Ayotte, Banavar, Hou, & Schuckers,
2021). K -fold cross validation is a resampling technique to evaluate models with different samples when
only limited data is available. Due to the small minority classes, K -fold cross validation is an effective
method to evaluate the models. An example of 5-fold group cross validation for the classification models
is given in Figure 29. To ensure that the performance metrics are less biased due to the class imbalance,
the validation and test sets are balanced (2 majority class samples to 1 minority class sample). Doing so
facilitates a better evaluation regarding how well the model can separate the different classes. It further
enables comparison with the anomaly detection method performance metrics, as the test and validation
set for an autoencoder classification problem are balanced by design. Splitting the data for the anomaly
detection is described in the following paragraph.

Figure 29: Classification K-fold group split

For the anomaly detection a different splitting method is required. As described in Section 3.4, anomaly
detection methods learn the distribution of what is considered normal data. After learning what is
considered normal data, it tries to predict the anomaly cases (the minority class in our problem). If the
model cannot predict these instances well, they are labeled as anomaly data. The training set for this
problem thus only contains normal data (the majority target class), which is size N. Then, the anomaly
data (minority class) is split into a validation and a test set. If the anomaly data is size A, then the
validation set and the test set both have A/2 anomaly instances. The validation set and test set also
require normal data in order to evaluate the model for both classes. Therefore, the the training set is
size N -A, and A normal cases are split into the validation and test set. Thus, both the validation and
test set have A/2 normal instances and A/2 anomaly data instances. Again, data belonging to a given
panel (SN) may not occur in both the training and test set to prevent data leakage. An example of the
splitting method is given in Figure 30.
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Figure 30: Anomaly detection split

6.2 Evaluation metrics
Interpreting the metrics and their significance is an important step to correctly evaluate different learning
algorithms (Tharwat, 2020). For this research it is important to use metrics which are not sensitive to
imbalanced data. For instance, accuracy is a commonly used metric for classification performance and
is defined as the ratio between the correctly samples to the total number of samples. However, when
the majority class contains 99% of all the data and the model predicts everything as the majority
class, the accuracy will also be 99%. More robust metrics for imbalanced data are sensitivity (recall),
specificity (inverse recall), and the Geometric Mean (GM) (Tharwat, 2020). Classification metrics are
constructed by using a combination of true positives, true negative, false positives and false negatives.
These concepts are dependent on the predicted values in relation to the real values of the test samples.
An visual explanation of these concepts is given in Figure 31.

Figure 31: Confusion matrix concepts

Sensitivity & Specificity
Recall or sensitivity represents the positive classified samples to the total number of positive samples
(Tharwat, 2020). Stated otherwise, it shows how many of the samples are detected. Specificity or inverse
recall is the same, but then for the negative class. These constructs can also be viewed as the accuracy
for a given class and are therefore not sensitive to the class imbalance. See Figure 31 for the equations
related to both concepts.

Geometric Mean
Most classifiers aim to improve both the sensitivity without sacrificing the specificity. The problem with
this goal is that, especially with imbalanced data, these constructs are often conflicting (Tharwat, 2020).
The Geometric Mean (GM) metric uses both the sensitivity and specificity so that it is not dependent
on the class imbalance (Boughorbel, Jarray, & El-Anbari, 2017). The formula of the GM is showed in
Equation 4.
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√
TP

TP + FN
× TN

TN + FP
(4)

Precision & Negative Predictive Value
Precision represents the proportion of positive predicted sample which really is a positive predicted sam-
ple. Thus it represents the correctness of predicting a given class. The negative predictive value is the
inverse of the precision and relates to the same construct for the negative class. These metrics, although
sensitive to imbalanced data (Tharwat, 2020), is also an interesting metric for this research because it is
important how well the model can predict a certain class if it finds one. The equations of both precision
and negative predictive value are found in Figure 31.

Metric importance for the false call detection problem
Prior to developing any models it is important to define the importance of each performance metric
based on the business implication. By taking the business implementation into account when building
the model, the most gains can be made if the model is used during production. The best case scenario
would be that the model does not make any mistakes and each error flag is classified correctly as false or
real error, removing all manual checks. However, this is an unrealistic assumption as there will always be
wrong classifications due to noise in the data. For each wrong classification there are different business
implications. The worst misclassification is when a real error is predicted to be a false call because then
the error flag is wrongly dismissed and the component is assumed to be of sufficient quality (resulting
in error slip). There is a probability that this failure will be found later during the functional test but
as not every board undergoes this functional test, it is not safe to assume that the erroneous compo-
nent is captured at this workstation. The misclassification of a false error flag as real error is less of
a problem because at the repair station it is then found that no repair is required for the component.
However, this is also not preferred as sending too much false calls to the repair stations may create new
inefficiencies at the repair station. It is necessary to be quite sure about the predictions, especially when
a false call is predicted. This means that it is preferred to develop models for which the precision is
as high as possible for both classes. All other uncertain predictions still require a manual inspection
to nullify the error slip as much as possible. Due to the imbalanced target class the most business
value is in correctly classifying false calls. This is simply because only correctly classifying the real error
only solves a small part of the problem in absolute sense. Say a model is only certain about classifying
the real errors, then for the given sample only 739 of the 36,750 error flags do not require a manual check.

For the problem at hand it is important that no misclassifications are made, therefore an additional
class which can be predicted is added when the model is not sure, which is referred to as the uncertain
class from this point forward. The proportion of the predicted uncertain class should be as small as
possible. Nonetheless, the error slips (insufficient quality deemed as sufficient) and redundant repairs
(products at repair station without error) should also be minimized in parallel. It is likely that these
metrics will contravene as predicting less uncertain classes will lead to more misclassifications. Both
the uncertain class ratio and the misclassification ratio (error slip and redundant repairs) equations are
shown in Equation 5 and 6 respectively. For instance, when there are 10 cases of class A, of which 7 are
predicted correctly, 2 are predicted as uncertain and 1 is predicted as class B, the misclassification ratio
is 0.1. The uncertainty ratio for class A in this case is 0.2.

Uncertainty ratio = Uncertain predictions

Total predictions
(5)

Misclassification ratio = Class misclassifications− uncertain predictions
Total class occurrences

(6)

6.3 Machine learning for imbalanced data
In this section different machine learning methods are developed for classifying false error flags and real
errors. As described in Section 3.3.3, these models are logistic regression, support vector machine and
random forest. To tackle the target imbalance in the manufacturing data, different sampling techniques
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and the balanced bagging method are examined. For all these methods balanced class weights are used
to penalize minority class misclassifications, in order to learn as much as possible from the minority class.
First, the cross validation results are discussed after which the most suitable method is chosen. For this
method an additional uncertainty mechanism is added to ensure the model only predicts a class when it
is really sure. Finally, the hyperparameters of the model are tuned and evaluated on the test set.

6.3.1 Selecting the classification model

Each modeling method is tested with the different sampling techniques and validated via 5-fold cross
validation. The performance metrics for both classes are important, as it is not preferred to have error
slips and it is also not preferred to create congestion at the repair station. As described, it is required to
find a model with the highest possible precision for both classes. The performance metrics of the logistic
regression for the different sampling methods are given in Table 12. It is notable that the sampling
techniques have little effect on the logistic regression results. Only when using balanced bagging with
under-sampling, the performance metrics differ slightly. However, the performance metrics show that
logistic regression only predicts false calls, as the recall is almost one and the precision is exactly the
distribution of the majority class relative to the minority class. These findings might be the result of the
fact that logistic regression is very prone to outliers. Overall, the linear method is not suitable for this
problem, which was already expected due to the distributions of manufacturing data in general.

Table 12: Logistic regression average validation results with standard deviation

Real error False call
Sampling method Recall Precision GM Recall Precision GM
None 0.03 (0.06) 0.18 (0.37) 0.08 (0.15) 0.99 (0.00) 0.67 (0.01) 0.82 (0.01)
Random over-sampling 0.03 (0.06) 0.18 (0.37) 0.08 (0.15) 0.99 (0.00) 0.67 (0.01) 0.82 (0.01)
Random under-sampling 0.03 (0.06) 0.18 (0.37) 0.08 (0.15) 0.99 (0.00) 0.67 (0.01) 0.82 (0.01)
SMOTE Links 0.03 (0.06) 0.18 (0.37) 0.08 (0.15) 0.99 (0.00) 0.67 (0.01) 0.82 (0.01)
Balanced Bagging SMOTE 0.03 (0.06) 0.18 (0.37) 0.08 (0.15) 0.99 (0.00) 0.67 (0.01) 0.82 (0.01)
Balanced Bagging under-sampling 0.11 (0.17) 0.30 (0.37) 0.17 (0.23) 0.98 (0.03) 0.69 (0.04) 0.82 (0.01)

The performance results of the support vector classifier are depicted in Table 13. In general, the method
can separate the false call class relatively well, which is expected due to the class imbalance. The false
call recall is high for the methods which do not incorporate under-sampling, leading to a lower recall
in the real error class. This indicates that most of the samples are predicted as false call, which might
result in error slips. Using under-sampling for support vector machines enables the method to better
separate both classes, as the recall for the real error class tends to be higher in these cases. Compared
to logistic regression, support vector machines perform much better as the method enables to separate
the classes in a non-linear way.

Table 13: Support vector machine average validation results with standard deviation

Real error False call
Sampling method Recall Precision GM Recall Precision GM

None 0.64 (0.24) 0.88 (0.09) 0.74 (0.19) 0.97 (0.01) 0.85 (0.08) 0.91 (0.04)
Random over-sampling 0.66 (0.24) 0.88 (0.08) 0.75 (0.2) 0.97 (0.01) 0.86 (0.08) 0.91 (0.05)
Random under-sampling 0.77 (0.12) 0.77 (0.09) 0.77 (0.09) 0.89 (0.05) 0.89 (0.05) 0.89 (0.04)
SMOTE Links 0.63 (0.26) 0.87 (0.12) 0.73 (0.22) 0.97 (0.01) 0.85 (0.08) 0.91 (0.05)
Balanced Bagging SMOTE 0.62 (0.25) 0.89 (0.11) 0.73 (0.22) 0.97 (0.01) 0.84 (0.08) 0.91 (0.05)
Balanced Bagging under-sampling 0.72 (0.21) 0.76 (0.12) 0.74 (0.16) 0.89 (0.04) 0.87 (0.08) 0.88 (0.05)

When consulting the performance metrics of the random forest models in Table 14, several things stand
out. First, the over-sampling techniques perform relatively bad compared to the under-sampling tech-
niques. The precision might be relatively high for the real errors, indicating that when it predicts an error
it is most likely to be correct. However, there are also many false call predictions for which the precision
is not that high, indicating that there are relatively much real errors predicted as false calls, which is
not preferred. For the under-sampling cases the results seem more promising, especially for the balanced
bagging with under-sampling. The method has a relatively high precision for both classes combined with
a decent recall. Compared with the support vector classifier, the random forest performs better over
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all folds, as the standard deviation of the metrics is much lower. The fact that balanced bagging suits
random forest better might be explained by the fact that this algorithm already uses a bagging method.
Overall, the results show that under-sampling is a more suitable method for the problem at hand than
over-sampling. The random forest classifier in combination with the balanced bagging under-sampling
is assumed to suit the false call problem best. The following section will further elaborate on the model
by adding uncertainty, further tuning the model to the problem at hand.

Table 14: Random Forest average validation results with standard deviation

Real error False call
Sampling method Recall Precision GM Recall Precision GM
None 0.21 (0.09) 0.99 (0.02) 0.44 (0.12) 1.0 (0.00) 0.72 (0.02) 0.85 (0.01)
Random over-sampling 0.26 (0.11) 0.99 (0.02) 0.49 (0.13) 1.0 (0.00) 0.73 (0.03) 0.85 (0.02)
Random under-sampling 0.72 (0.15) 0.87 (0.07) 0.79 (0.11) 0.95 (0.02) 0.87 (0.06) 0.91 (0.04)
SMOTE Links 0.34 (0.15) 0.97 (0.03) 0.56 (0.14) 0.99 (0.01) 0.75 (0.04) 0.87 (0.02)
Balanced Bagging SMOTE 0.30 (0.13) 0.99 (0.02) 0.53 (0.14) 1.0 (0.00) 0.74 (0.04) 0.86 (0.02)
Balanced Bagging under-sampling 0.74 (0.10) 0.91 (0.05) 0.82 (0.06) 0.97 (0.02) 0.88 (0.04) 0.92 (0.02)

6.3.2 Adding uncertainty to the model

As described in Section 6.2, misclassifications of both target classes may result in unwanted business
results. Therefore, the model should be very sure about a prediction before accepting the outcome. The
production process design allows that the model can be uncertain about a prediction. For these cases
the production operator should just check the machine call, as is already required for every error flag
currently. The aim of the model is to be as confident as possible about a prediction but also to limit the
number of uncertain predictions. In order to find the prediction confidence of the random forest model,
the predicted class probabilities can be used. These probabilities are computed as the mean predicted
class probabilities of the trees in the forest. The fraction of class samples in a leaf determines the class
probability of a single tree. When predicting, the random forest model then can provide a probability
indicating how certain the model is regarding a particular prediction. To add uncertainty to the model,
a probability cutoff value must be chosen. When the class probability of a prediction is smaller than that
cutoff value, the model is not certain enough about a prediction thus the error flag requires a manual
check. When the model is 50% sure about a prediction, the prediction is just as good as a random guess.
Therefore, the cutoff value should always be between 0.51 and 1, preferably as close to 1 as possible. For
instance, if the cutoff value is 0.7 and the class probability is 0.75, the model predicts that particular
class. If the class probability is only 0.6, the model predicts that the error flag requires a manual check.

6.3.3 Model evaluation

To find the best model configuration for the balanced bagging random forest model, different sets of
hyperparameters are evaluated via grid search. This regards the maximum depth of the trees, the
minimum samples used for a split, and the number of estimators in the ensemble. Furthermore, different
cutoff values for the classification probability are also examined, to check what level of certainty suits
the problem best. In total, 630 different configurations are tested and assessed on different performance
metrics. Most importantly, the misclassification ratio’s of both the false call class and real error class
should be minimized. These metrics are depicted by the error slip and the redundant repair ratio, which
are associated with the precision. However, having a high precision but also many uncertain cases (which
then still require a manual check) does not solve any business problems. It is therefore key to balance
both the precision the classes and the number of predictions which still require a manual check. Reducing
the number of manual checks is comparable to finding a recall which is as high as possible. Table 15
shows three model outcomes which each serve a different goal, from low misclassification ratio’s to a low
manual inspection percentage with a high recall for both classes.
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Table 15: Hyperparameter search results balanced bagging random forest classifier

Real error False call

Max. depth
Min.

samples
split

Estimators P. cutoff Recall Precision Error
slip Recall Precision Redundant

repair Manual ratio

10 2 2000 0.90 0.19 1.00 0.02 0.61 0.99 0.00 0.53
25 5 100 0.80 0.25 0.98 0.04 0.78 0.98 0.001 0.39
10 5 100 0.60 0.52 0.94 0.17 0.93 0.92 0.01 0.14

In general, the precision of each class is relatively high, probably due to the fact that the uncertainty
factor is added to the model. The higher the probability cutoff, the more predictions require a manual
check, reducing the recall of both classes. This shows that the probability cutoff used for classification
might serve as a useful method to control the model’s certainty. The algorithm is a bit better at separating
the false call class as the recall for this class is higher than for the real error class. This is also indicated
by the high error slip (when a real error is predicted as false call), compared to the low redundant repairs
(when a false call is predicted as real error). Selecting the best model in terms of business perspective
purely based on these performance metrics is not feasible as they do not take costs and saved time into
account. However, these metrics can be used to compare the model with the anomaly detection method
of the following section. Both methods will be compared in Section 6.5 and the most feasible model will
be evaluated in Section 7.

6.4 Autoencoder
This section describes the development of the autoencoder model suitable for the binary classification
task as described in Figure 28. Firstly, the common way of using the output of an autoencoder for binary
target classification is explained. Secondly, the most suitable input data sets (normal and anomaly) are
discovered using this classification method. Then, the most suitable network architecture is defined and
tested. After defining the input data and architecture, a method is proposed and tested to improve
the autoencoder classification task for the problem at hand, using multiple autoencoders in combination
with supervised learning.

As an additional introduction for this section, the chosen default model parameters are described briefly.
The shape of the input data is n×35, where n is dependent on which data points are considered as normal
behaviour. The number of features define the shape of the input layer, which is 35 in this case. As stated
in Section 3.4, halving and doubling the number of neurons during encoding and decoding respectively
is a good rule of thumb when developing a first model. Therefore, this architecture serves as the default
architecture used in the development of the autoencoder. The default structure is depicted in Figure
32. For each layer the activation function is the Exponential Linear Unit (ELU) as this alleviates the
vanishing gradient problem, speeds up the learning, and has better generalization performance compared
to the ReLU function (Clevert et al., 2015). For each model which is trained during the development
phase, column wise standardization is done. This enhances the learning process because it prevents that
large feature values overshadow smaller features when computing the gradients.

Figure 32: Default architecture
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6.4.1 Binary autoencoder classification using τ

Despite the unsupervised nature of the autoencoder method, it is possible to use the model as a binary
classifier. After training the model on the normal data, the validation set (containing normal data and
anomaly data) enables evaluating to which extend the model is able to distinguish normal data from
anomaly data. After reconstructing each sample in the validation set with the trained autoencoder, it is
possible to calculate the mean reconstruction error for each sample. It is expected that for the different
target classes the reconstruction error distributions will be different. For the normal set the reconstruction
errors should be low while the errors for the anomaly set should be higher. To classify new data samples,
a threshold τ must be set which serves as a reconstruction error cutoff point for normal samples and
anomaly samples. The validation set is used to decide the value of τ , and the test set is used to evaluate
the performance of the model and its threshold. τ can be determined based on the reconstruction errors
but it is also possible to use the standardized distribution of the reconstruction errors (e.g. the Z-score).
This enables the use of percentiles which makes it is more trivial to set a threshold detecting outliers.
Instead of using percentiles based on the standard deviation, the Median Absolute Deviation (MAD) is
more resilient to outliers and therefore better scalable and more robust. MAD is defined as the median
of the absolute deviations from the data’s median X̃, see Equation 8 (Sematech, 2006). The modified
Z-score is then calculated with the MAD instead of the standard deviation, see Equation 9.

X̃ = median(X) (7)

MAD = median(|Xi − X̃|) (8)

Mi = 0.6745(Xi − X̃)
MAD

(9)

These Z-scores can then be used to determine when a sample is an outlier or not, setting the threshold
τ based on the standardized distribution. Note that using a threshold which is too high causes all the
data points to be normal. Setting a threshold which is too low causes all the data points to be classified
as anomaly. In summary, a higher threshold means more precision for the anomaly class, and a lower
threshold means more recall for the anomaly class (although the value of the classifier vanishes when all
samples are classified as anomalies). Whilst the threshold when classifying brings a certain flexibility
to the model, choosing the best threshold value is a non-trivial task and requires decent validation to
prevent over- or underfitting.

6.4.2 Normal and anomaly input data

When training the autoencoder, there are several possibilities regarding what is considered as normal
data and anomaly data due to the different target classes. In order to explore how the different data
samples behave when trained on an autoencoder, several autoencoders with the default architecture are
trained on multiple data sets. Before training the neural network and using it for the binary classification,
the data is split as described in Section 6.1. The performance of the different models using τ = 3 is given
in Table 16.

Table 16: Default AE performance for different input sets, τ = 3

Normal class Anomaly class
Model Normal data Anomaly data Recall Precision GM Recall Precision GM

1 Good False 95.3% 63.8% 78.0% 46.0% 90.8% 64.6%
2 Good Real 93.0% 59.5% 74.4% 36.9% 84.0% 55.6%
3 Good & False Real 94.0% 59.4% 74.7% 35.8% 85.7% 55.4%
4 False Real 98.4% 55.6% 73.9% 21.4% 92.9% 44.6%

When inspecting the performance metrics of the different models, the most interesting are the metrics of
the anomaly class. From these values it can be concluded that the model is better able to distinguish good
and false call data points than good and real error data points. When treating the false calls as anomaly
data (Model 1), the model has a precision of 90.8%, indicating that when it finds a anomaly class it is
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right in most of the cases. When the real errors are treated as anomaly data, the most promising normal
data set based on the GM is the good components subset (Model 2), with a GM of 55.6%. However, as
stated in Section 6.2, it is important to perform well on precision for both the false error and the real
error class. When taking this into account, model 1 and model 4 perform best when classifying the false
calls and the real errors respectively. These results show that using a single autoencoder might not be
sufficient when solving the problem at hand, as the classifiers perform not well enough to be reliable.

6.4.3 Network architecture and parameters

In order to find the best model architecture, different configurations are tested with data sets considering
false error flags and real error flags as normal and anomaly data, respectively. This choice is made as this
is these are the smallest subsets of data which reduces the computational time during the tests. Both
shallow (only having one hidden layer) and different levels of deep (having more than one hidden layers)
configurations are tested and evaluated on the anomaly precision and recall. Furthermore, the effect of
using the ReLU activation function is also considered. All configurations with performance metrics are
found in Table 17.

Table 17: Network parameters and anomaly evaluation metrics for false calls and real errors

Model Hidden Layers Activation
function Recall Precision

1 4 Elu 30.89% 82.61%
2 8 Elu 33.60% 83.22%
3 16 Elu 26.83% 84.62%
4 8, 4, 8 Elu 31.44% 89.32%
5 16, 8, 16 Elu 24.93% 86.79%
6 16, 8, 4, 8, 16 Elu 31.44% 81.69%
7 16, 8, 4, 2, 4, 8, 16 ReLu 3.79% 60.87%
8 16, 8, 4, 2, 4, 8, 16 Elu 30.89% 91.20%
9 16, 8, 4, 2, 1, 2, 4, 8, 16 Elu 23.04% 90.43%
10 24, 18 ,12, 6, 2, 6, 12, 18, 24 Elu 21.68% 84.21%

First of all, it can be confirmed that the ELU is the preferred activation function when compared to the
ReLU (Clevert et al., 2015). Surprisingly, the shallow neural network do not perform badly compared
to the deep neural networks. Nevertheless, the deeper variants seem to perform a bit better as probably
more information can be captured by each layer. The most promising configurations are Model 4 and
Model 8, having comparable anomaly performance metrics. These configurations investigated further by
analysing how the models perform for different threshold values τ .

Threshold analysis
The configurations of Model 4 and 8 from Table 17 are tested for different values of τ by using a grid
search. Figure 33 shows the results of these analyses. When comparing both figures, it can be seen that
for Model 4 the metrics both drop to zero after a threshold of 8, which means that no data points are
classified as anomaly after this threshold. The graph of Model 8 shows that there is a moment when all
of the anomaly samples are classified correctly, although the recall is very low at this point. The slope
of the recall line is a bit less steep for Model 8 compared to Model 4. However, in terms of performance
metrics there is not a significant difference between the two models. Since more layers increase the
likelihood that more information is captured, Model 8 is chosen as the most suitable configuration for
the problem at hand.
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(a) Model 4 (b) Model 8

Figure 33: Model performance for different values of τ

6.4.4 Autoencoder ensemble for target classification

After determining a suitable network configuration, the model can be used to classify the target variables.
For the problem at hand, it is important to be really sure about a prediction before overruling the machine
call with an algorithm. Table 16 and Figure 33 show that only learning the false call data as normal
behaviour and classifying the real errors as anomaly data is not sufficient to solve the business problem.
Using the hard threshold as a decision boundary for the problem is too sensitive to the edge cases. Too
substantiate this claim, the reconstruction errors of Models 1 and 4 in Table 16, are depicted in Figure
34.

(a) Good - False flag (b) False flag - Real error

Figure 34: Reconstruction error distributions

The figures show that there are too many uncertain cases (overlapping reconstruction errors) when only
using one autoencoder. Therefore, using multiple autoencoders which learned representations of different
normal data sets can help to further differentiate the target classes. Additionally, uncertainty can be
added to the model in the form of a third target class. Model A learns the representation of the good
components and Model B learns the representation of the false error flags. These models can collectively
classify new data instances by using boolean logic. This logic is schematically represented in Figure 35.
The input sample is an error flag, as explained in Figure 28. When both the models classify the incoming
sample as normal data it is more likely that it is indeed a false call, as models A and B classify it as
a good component and false call respectively. Whenever both models classify it as an anomaly, models
A and B both classify it as a false call and a real error respectively, increasing the likelihood that it is
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indeed a real error. When there is no agreement between the models regarding the sample, the sample
(machine call) requires the additional manual check to prevent error slip.

Figure 35: Boolean logic autoencoder ensemble classifier

The concept can also be seen as dividing the reconstruction error of each sample per model in a two
dimensional space. Each dimension represents the reconstruction errors of a model, which are then
classified by using a linear threshold τ for each model. This other representation is somewhat similar to
dividing a search space with a decision tree. A dummy example of classification using the boolean logic
in as explained in Figure 35, is depicted in Figure 36.

Figure 36: Dummy example of the boolean logic

Multiple models potentially increase the amount of information which can be learned, but setting the
threshold for each model becomes even less trivial. The thresholds interact with each other to come to
a classification, which is why it is not as easy as finding the best threshold for each model. An feasible
solution is to do a grid search over a range of threshold combinations. The goal is to find a combination of
threshold values which minimizes the misclassification ratio’s. Besides, it is also important to minimize
the number of manual check predictions especially for the false calls, as this will greatly reduce the
number of manual checks. Two metrics can be considered using the Pareto frontier representing the
metrics graphically on a 2D space. This enables finding a set of feasible solutions. The goal of the grid
search is to find a combination of threshold values which minimizes the ratio of real errors classified as
false flags (to prevent error slip) and maximize the ratio of false flags classified as false flags (to decrease
the manual checks). Figure 37 visualizes the Pareto frontier respective to the two chosen performance
metrics.
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Figure 37: Pareto frontier result of threshold gridsearch

What can be seen in the frontier is that there are not any feasible solutions. Whenever the correct false
error flag predictions are maximized, there are also many real errors predicted as false error flags (as
seen in the top right corner of the graph). When the misclassified real errors are minimized then also
almost no false calls are classified as false calls. Both findings indicate that the boolean logic with hard
threshold values as described in Figure 35, lead to many false flag predictions, both correct and incorrect.
In order to see how the predictions behave over the different target classes, the point where both the
axes are approximately 0.4 is further investigated. The threshold values for this point are 4.5 for Model
A and 0.5 for model B. The confusion matrix of this model is shown in Table 18.

Table 18: Confusion matrix with τA = 4.5, τB = 0.5

Actual
Predicted False flag Real error Manual check

False flag 141 47 182
Real error 149 80 141

First of all, the matrix shows that by using the boolean logic of the ensemble autoencoders an additional
target class is added. For these threshold values the two models do not agree in 43.6% of the cases.
This indicates that there are many edge cases in the data for which the distributions do not clearly
tell whether it is a real error or a false call. Furthermore, there are 149 real errors classified as false
flag which would result in a high error slip. Also 47 real errors were actually false error flags, which
may cause unnecessary workload at the repair stations. The results of both the Pareto frontier and the
chosen example show that the boolean logic of combining autoencoders based on hard τ values does not
provide the wanted results. Thus, using hard threshold values to classify the reconstruction errors is not
a suitable method for the problem at hand, due to the fact that the classifier must be really sure when
a target is predicted. If not this is not the case, then a sample must be classified as uncertain, leading
to a manual check. The following section will propose methods to define a threshold which can include
more flexibility in the decision making.

6.4.5 Learning a threshold function in a multidimensional space

An additional layer of uncertainty can be added to the model by using a threshold range over each
reconstruction error space instead of a hard threshold. In that case, all points smaller than the minimum
of the threshold range are classified as normal samples and all points larger than the maximum range
value are classified as anomaly samples. The samples which fall in the threshold range are then classified
as uncertain points, requiring a manual check. However, there are several challenges when using this
method. First of all, setting the threshold range for the best model performance is even less trivial
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than using a hard threshold. Even when only using one autoencoder, searching the solution space of
the minimum and maximum range values can be a computationally heavy task when done by brute
force. If this problem is simplified by choosing a standard range and moving that range over the search
space as a sliding window new challenges emerge (e.g. finding the right standard range and defining
the optimal step size for optimization). Combining multiple autoencoders enlarges the hyperparameter
search space of the method, increasing the number of possible parameter sets with the power of 2 each
time an additional model is used.

One of the reasons for the misclassifications with the boolean logic is probably that using a linear decision
boundary for each autoencoder seperately limits the search space, see Figure 36. Therefore a method is
proposed which combines the reconstruction errors from the two model in order to create a multidimen-
sional search space. Still, each autoencoder learns a separate representation of a different normal data
set, but the reconstruction errors of the validation set are then used to learn a decision function. It is
assumed that the reconstruction errors of the false calls are closer to the origin of the space than the
real errors. This creates a potential to divide the space in normal and anomaly samples with a decision
boundary. Samples which are close to that boundary are assumed to be edge cases, and predicted as
uncertain cases. A dummy example of a two dimensional space divided by a learned decision boundary
is shown in Figure 38. The search space is the result of the unsupervised autoencoders which can be
sensitive to noise (Chalapathy & Chawla, 2019). To reduce this sensitivity, supervised learning methods
can be used to create decision rules dividing the subspace (Chalapathy & Chawla, 2019). These decision
boundary can then be interpreted as a flexible threshold dividing the results of the autoencoders in false
error flags, real error flags, and manual checks.

Figure 38: Dummy example of learned decision threshold

Support vector machines are an obvious choice for this problem, as the goal of the algorithm is to find a
(non-linear) decision boundary separating samples in a multidimensional space, as explained in Section
3. This way a flexible threshold is learned in the form of a decision boundary separating the classes in the
best possible way. The soft margin theory used for learning the support vectors serves as an inspiration
for defining a margin around the decision boundary in which samples are classified as uncertain. If data
points in the multidimensional space cannot be separated easily, the model classifies it as an uncertain
class. Furthermore, the algorithms hyperparameters (C & gamma) provide a compact search space to
find a decision boundary which generalizes well on new data other than the validation set. When using
this hybrid machine learning method, the latent representation of the trained autoencoders is used as
a feature engineering step. The imbalanced target class distributions are presented to the supervised
learning methods in a different way than in Section 6.3. The reconstruction error samples which are
used as input for the supervised model are treated as a separate machine learning problem. This means
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that K-fold group splits are used to train, validate and test the model, again making sure that no data
leakage takes place. A complete conceptual overview of the hybrid machine learning method is depicted
in Figure 66, Appendix D.

Average reconstruction error results
For each sample xi which is predicted by the trained autoencoder, the reconstruction error of each
feature in xi is returned. This is the squared difference of the real feature value and the predicted
feature value. In other words, the autoencoder provides information related to how well it can reproduce
each feature in xi. Finding the mean reconstruction error for xi is done by calculating the mean of all
feature reconstruction errors. Doing so for both autoencoders creates a two dimensional search space, as
depicted in Figure 38. The results of the default support vector machine separating the two dimensional
reconstruction error space, are depicted in Table 19. The model predicts a manual check if the distance of
a sample to the decision boundary is smaller than 1. Compared with Table 18, the method is significantly
better in separating the classes.

Table 19: Confusion matrix learned decision boundary for average reconstruction errors

Actual
Predicted False flag Real error Manual check

False flag 87 14 137
Real error 2 16 107

Feature reconstruction error
To enable further learning, the feature reconstruction errors are used to create a multidimensional space.
Each of the two autoencoders returns a reconstruction error for each feature, resulting in a total of
70 dimensions. Again, a decision boundary is trained with 5-fold cross validation. The result of the
classification based on the feature reconstruction errors is depicted in the confusion matrix in Table 20.
Compared to the average reconstruction error model, it can be seen that the model is better at correctly
detecting false flags in the data. It does not directly lead to better results for the real error class, as
more real errors are predicted as false flags which is unfavourable. However, this model seems to have
the most potential due to the information increase which is brought by the higher dimensional data.
Therefore, a grid search is done for the model’s hyperparameters in order to find the best model.

Table 20: Confusion matrix learned decision boundary for feature reconstruction errors

Actual
Predicted False flag Real error Manual check

False flag 113 3 121
Real error 8 20 96

Hyperparameter tuning
The hyperparameters tuned for the support vector machine are C and gamma, combined with the margin
to the decision boundary to predict the uncertain class. In total 378 different configurations are tested.
Just as for the balanced bagging random forest in Section 6.3.3, the misclassification ratio’s for both
classes and the manual check ratio should be minimized. Again, three model outcomes which each serve
a different goal are chosen for comparison, from high precision in both classes to a low manual inspection
percentage. The results of the models are shown in Table 21.

Table 21: Hyperparameter search results hybrid machine learning

Real error False call

C gamma Margin Recall Precision Error
slip Recall Precision Redundant

repair Manual ratio

10 10 2 0.03 0.96 0.01 0.17 0.98 0.00 0.97
1 10 1 0.20 0.83 0.06 0.5 0.93 0.01 0.58

10,000 10 1 0.54 0.86 0.29 0.84 0.83 0.04 0.13
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The results show that when the precision of the real error class is high, the recall is relatively low. The
low error slip and the high manual ratio indicate that much of the real errors are classified as edge
cases and thus predicted as the uncertain class. When the recall of both classes is higher, the number
of manual checks also decrease. However, the precision of both classes is reduced and the error slip is
relatively high, which is not preferred. To choose the most feasible method, the next section will compare
the random forest classifier with the classifier based on the reconstruction errors.

6.5 Concluding Remarks Modeling Phase
The final section of this chapter will conclude the section by briefly comparing the balanced bagging
classifier and the anomaly detection classification method. The methods are compared through the var-
ious performance metrics. The best method will then be used to find the most suitable model from a
business perspective in Section 7.

When comparing the results of the hyperparameter tuning of the methods in Tables 15 and 21 it turns
out that adjusting the hyperparameters brings quite some flexibility to both methods. Comparing the
first model in both tables, where both methods have a high precision for the classes, the balanced bagging
random forest seems to outperform the anomaly detection method. Both the recall and the number of
required manual checks show better results, indicating that the method is better at detecting real errors
without classifying them as uncertain predictions. For the second set of configurations the balanced
bagging random forest performs better for all the performance metrics. The recall is higher for both
classes, the precision is also very high compared to the anomaly detection method and the manual check
ratio is also lower. Both models seem to handle uncertain predictions relatively well, as the error slip
and redundant repair values are not very high. For the final configuration, with the lowest manual check
ratio, the error slip for both models increases to a certain extend. However, the balanced bagging clas-
sifier method again outperforms the autoencoder method as it still has a smaller error slip and a higher
precision for both classes.

Overall, it seems that the balanced bagging random forest method is a more suitable method to predict
whether a machine call is a real error or not. This result is somewhat unexpected because the anomaly
detection method also could learn from the good cases, providing an additional dimension to the data.
However, an important assumption regarding this method is that the distributions of the normal and
anomaly data sets are substantially different. Most probably there is not enough difference in the set
of process features of the good inspection results, false calls and real errors. A reason for this could be
the fact that an error flag can occur due to the a slight deviation in a certain feature. It is possible
that the autoencoder was not able to detect major differences between the data distributions of the
classes, providing a somewhat noisy reconstruction error input for the support vector machine classifier.
Furthermore, the random forest classifier was able to learn more from the false call majority set in a
supervised manner, as it had more samples to learn from. For the autoencoder method, these majority
samples were used to learn the autoencoder what normal behaviour is. Then only a slight subset was
used to train the supervised method with the learned representations of the autoencoders. The results
show that for the problem at hand it, is better to provide more (majority) data to the supervised
learning method than using this data to create a different representation, in order to tackle the heavily
class imbalance problem. Furthermore, it is not trivial to decide which balanced bagging classifier
configuration performs best in terms of business goals. Just picking the model with the highest precision
does not solve any real problems. It is necessary to evaluate the balanced bagging random forest in
relation to the business case. In the next section real world costs are used to estimate which model leads
to the most business benefits.
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7 Business Evaluation
This section covers the evaluation phase of the CRISP-DM methodology by evaluating the selected model
from a business perspective. As shown in Figure 2, this phase is done in close collaboration with the
company as it requires deeper business understanding related to the different model outcomes. First, the
evaluation method is proposed by attaching the model results to business outcomes. Then this evaluation
method is used to find the best model configuration in terms of hyperparameters. The results of the best
model are examined, and explained using SHAP values. Eventually, the final model is then evaluated on
the test set which enables estimation of the added business value of the model.

7.1 Evaluation method
Evaluating the balanced bagging random forest classifier from a business perspective requires certain
business assumptions. Based on these assumptions regarding the costs of the model’s outcome, the most
feasible model is chosen. The company states that the error slip is the most important performance
measure because it is both undesired in terms of costs but also from a customer satisfaction viewpoint.
Due to the importance of the competitive advantage on the market, AME cannot permit to have a
bad reputation in terms of product quality. They aim to have an error slip ratio which is smaller than
0.3%. The current error slip for the surface-mount device production line is however unknown, as it
is complicated to directly assign a defect on a returned PCBA to a problem in the production line.
The costs when a customer returns an insufficient product are approximated at €20. Redundant repairs
(products which go to the repair station but do not require a repair) are the result of predicting a false call
as a real error. This error is less severe compared to an error slip, but still not preferred as it can congest
the repair station. The actual redundant repair rate is approximated to be negligible, which should also
be the aim of the model. There are no direct costs associated to these repairs. AME expresses all time
related inefficiencies in terms of operator costs. The salary of an operator is €36 per hour, which means
each second costs 1 eurocent. It is approximated that a redundant repair costs 45 seconds, thus €0.45
per redundant repair. This logic can also be used to determine the savings related to reduced manual
inspections. As mentioned in Section 4, each machine call takes approximately 4 seconds, which means
that each manual inspection costs €0.04. The costs of the error slip, redundant repairs, and manual
inspections can be used to create a linear cost function from a business perspective. The outcome of the
5-fold cross validation combined with this linear function, results in a cost value to determine the most
feasible hyperparameters. The linear function is depicted in Equation 10.

c = 20× error slip+ 0.45× redundant repair + 0.04×manual inspection (10)

7.1.1 Soft constraints

The skewed costs of the manual inspection will probably result in a large bias towards having as much
manual inspections as possible, which is not desired. During the assessment of the hyperparameter
search results, it indeed appears that the models with the lowest costs have a manual inspection rate of
100%. For these cases, no misclassifications are done and only manual inspections are required. These
results make it seem as if using no model is more preferred due to the lack of mistakes. However, when
all machine calls require a manual inspection it is still very plausible that error slips and redundant
repairs happen. The fact that the current costs related to these human errors are unknown, is why it
is required to add additional soft constraints for choosing the model. Otherwise, the current situation
could have been compared with the model outcome to find the configuration which provides the largest
improvement. First, the reduction of manual inspections should be as high as possible in order to solve
issues related to the false call problem. Unfortunately, these issues cannot be directly related to monetary
values (e.g. operator workload and line efficiency), which is why it is necessary to assess the best model
in a subjective way. Second, the error slip ratio is preferred to be smaller than 0.3%, and should be as
low as possible at all times. Lastly, the redundant repair rate also cannot be too high, due to the fact
that this results in repair station congestions.
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7.1.2 Choose model with cost function

The minimum cost value of all 630 hyperparamter configurations is €77.08, and the maximum cost value
is €2442.30. When taking the soft constraints into account, the most feasible model for the problem at
hand is €184.36 based on the 5-fold cross validation. Note that due to the fact that cross validation
is used, it is possible that some folds perform relatively bad due to the small minority sample in these
folds. This can particularly result in overestimations of the error slip. The performance metrics and the
confusion matrix are given in Table 22 and 23 respectively. These results show that the model is very
good at detecting false error flags relative to detecting real errors. This is probably caused by the fact
that this minority class is less present in the 5 folds on which the model was trained. The relatively high
model probability cut off of 0.90 in combination with the model configurations, show that approximately
45% of the manual inspections can be reduced. Although there are no redundant repairs, the error slip
of 2% is a bit too high for the business case of AME.

Table 22: Most feasible model cross validation performance metrics

Real error False call

Max. depth
Min.

samples
split

Estimators P. cutoff Recall Precision Error
slip Recall Precision Redundant

repair Manual ratio

None 10 250 0.90 0.18 1.00 0.02 0.58 0.99 0.00 0.55

Table 23: Confusion matrix 5-fold cross validation most feasible model

Actual
Predicted False flag Real error Manual check

False flag 722 0 564
Real error 7 91 545

7.1.3 Company benefit estimations

To assess the final performance of the model, the model configuration is retrained on all training data
and examined on the test set. It is expected that these results are slightly better as the model has more
minority data to learn from. As stated in Section 6.1, the test set is balanced to reduce any bias in the
evaluation. The test set includes 8 product types, 281 panels and has 408 samples. Among these samples,
there are 291 false call instances and 117 real error instances. The test set performance metrics and the
confusion matrix of the model trained on the complete training set are respectively given in Tables 24
and 25. As expected, performance on the test set is a bit better, probably due to the increase minority
samples during training. Most noticeable is that the error slip approximates zero. This indicates that
having more data to learn from enhances the separation ability for the minority class.

Table 24: Confusion matrix test set

Actual
Predicted False flag Real error Manual check

False flag 173 1 117
Real error 0 24 93

Table 25: Test set performance metrics

Real error False call

Max. depth
Min.

samples
split

Estimators P. cutoff Recall Precision Error
slip Recall Precision Redundant

repair Manual ratio

None 10 250 0.90 0.21 0.96 0.00 0.59 1 0.01 0.51

It is not trivial to estimate the monetary savings when implementing the tool in the production line, as
the current costs and ratio for error slips and redundant repairs are unknown. Nevertheless, the results
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show that it potentially 50% of the manual inspections can be reduced. As shown in Section 4.2.4, there
are 366,641 false error flags occurring in the recent year. Using the model would approximately reduce
the number of manual inspections by half, saving 183,000 inspections yearly. Each day, approximately 30
minutes of manual inspections can be saved. This leads to benefits both from a human capital perspec-
tive and a production line efficiency perspective. From a human capital perspective this means that less
manual checks are required, making the work less tedious which reduces the probability of error slips.
Reducing the number of manual checks also indirectly increases the throughput.

Besides the enhancements on a component level, it is also possible to create an estimation for the benefits
from a panel perspective. This estimation regards the reduced number of panels which require a manual
inspection. Reducing the manual inspections per panel rather than per component provides additional
benefits, as not stopping a panel at all (compared to checking less calls) further reduces operator workload
and increases throughput. To estimate the reduction in panel inspections the following assumption
applies: if there is no manual check class prediction done by the model for a given panel, then the
panel does not require a manual inspection thus is considered as a saving. The results show that 147 of
the 281 panels in the test set do not require any manual checks if the model is used, which results in
approximately 52% less panel inspections. To further investigate this on a product type level, the panel
savings per product type are given in Table 26. There seems to be a slight relation between the average
calls per panel for a product type and the reduced manual inspections. This is expected as panels with
only a few falls error flags require less predictions, so there is less chance that the model predicts the
uncertain class. Lastly, the potential monetary savings are also shown in the table. These values only
indicate the direct savings of the model, which relates to the reduction of manual inspections (being
€0.04 per reduced manual inspection). Note that the values are small due to the relatively small amount
of panels. Other potential euro savings regard the increase in throughput and efficiency, leading to an
increase in turnover due to an increase in the production amount. Next, an explanation of the model’s
outcome regarding is given in the following section.

Table 26: Panel ratio without manual inspection

Product type Total
Panels

Mean Calls
per Panel

Panel
Savings

Saving
Percentage

Direct
Euro

Savings
6023-1600-0605 8 1.88 5 62.5% €0.38
6047-1800-9204 113 1.30 84 74.3% €4.38
6649-1000-2226 9 1.11 0 0% €0
6661-1900-0501 9 1.11 0 0% €0
6736-1504-2007 56 1.31 19 33.9% €1.00
6736-1602-9407 22 1.24 10 45.5% €0.50
6761-1200-5901 31 1.10 26 83.9% €1.14
6782-1700-1809 33 2.18 3 9% €0.26

7.2 Explaining the model
Besides the savings related to the manual inspections, the machine learning model’s outcome can also be
used to create additional process understanding. Increased interpretability of a machine learning model
leads to easier adoption within the business setting, which is why this is an important evaluation step.
Explaining the model’s outcome can be done by analysing the samples predicted as the uncertain class,
and utilizing SHAP values to interpret the impact of a certain value for the target feature. Both serve as
new input for further modeling improvements and can create additional business understanding related
to the false error flags.

Global interpretability
The collective SHAP values of the training set are used to examine the feature importances of the model,
also known as the global interpretability. For each balanced bootstrap sample in the balanced bagging
classifier, the SHAP values are calculated with the random forest trained on that bootstrap sample.
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These values are aggregated per feature and the 20 most important features are shown in Figure 39. The
plot is generated by all the samples and their SHAP values and includes information about the feature
importance, impact and original value. Importances are shown by the vertical ordering of the variables,
decreasing from top to bottom. The impact is given by the horizontal position on the axis. For the
problem at hand, a prediction of 0 means a real error and a prediction of 1 means a false call. Thus,
samples with a negative SHAP value lead to real error predictions and positive values lead to false call
predictions. Based on the colors of the samples, information regarding the original value of a sample is
provided. Red means the value of the sample is relatively high and blue means the value of the sample
is relatively low. Combining both the impact and the original values provide insights in the correlation
with the target variable. To test the robustness of the method, the SHAP values are compared with the
feature importances as computed by the random forest. These are the averages of the impurity decrease
within each tree, and shown in Figure 40. Both methods show almost the same ordering of the variables,
confirming the robustness of the SHAP values.

Figure 39: SHAP values for real errors (left) and false error flags (right)
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Figure 40: Feature importance random forest

The plot with the SHAP values can be used to explore the relationship between the process and product
quality. Most interesting are the top features, as these provide the most information when doing a pre-
diction. It is interesting to see that the impact and values for some feature are separated generally well,
providing information about the relation between the quality inspection outcome and the feature. Before
examining the results, it is important to note that these values do not serve as causal relations, but only
provide insights to the associations between the process features and the target variable. Directly inter-
preting these results as casual relations might result in wrong conclusions due to spurious relations in the
data. First, the component package encoded feature seems to have a great influence on the predictions.
A low value for this feature means that the component package is not frequently involved in false calls,
based on historical data. Furthermore, smaller PCB lengths seem to have a stronger relationship with
false error flags and larger PCB’s seem to be more involved in real errors. For screenprinting humidity,
it seems that most errors happen when the humidity is low during screenprinting. Furthermore, if the
time interval between products is low, less real errors happen. Increased time between products can for
instance be caused by lunch breaks, shift rotations or machine setups. The company confirms that these
occasions can negatively influence the product quality.

Screenprinting settings also influence the prediction of the product quality. Lower snap off speed seem
to have a positive relation with the product quality. A high print speed also seems to have a positive
relation with the product quality. Be aware that this result can also be found due to the fact that
products which are prone to more errors, have slower printing speed setting. Paste values measured with
the API are less important but show that high values for area, volume and offset are slightly associated
with real errors. The placement score, which captures the quality of the component placement shows that
a higher score is associated with false calls thus better quality. For the reflow temperature features, the
plot shows that higher average temperatures and larger heating coefficients (faster temperature increase)
are associated with real errors. Note that many of these samples are centered around zero, indicating
that if the reflow values are not extreme there is not much information in these features. Overall, no
set of features related to a specific SMD sub process contributed most to the model. Potentially, the
strength of the model lies in the fact that it combines both product, and process features of all the sub
processes in the surface-mount device production line.

Local interpretability
Local interpretability regards the analysis of individual samples which are predicted by the model. It
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could be the case that specific error categories are harder to detect well. Table 26 already provided
information related to the product types and model predictions. For each of the misclassifications in
the test set, it interesting to see the error message distributions. This information could provide further
insights in why the model makes certain decisions to potentially improve the performance. An overview
of the error message distributions is given in Table 27. The error types are ranked vertically in decreasing
order from most occurring to least occurring in the complete data set (both training and test). For the
false error flag classes, there is no clear distribution between the predicted classes and the error type.
However, for the real error class it is shown that the model distinguishes the coplanarity error category
best. It is also able to find some of the pad overhang classes but is not very successful in classifying the
other real error types.

Table 27: Error types and predictions

Actual False flag Real error

Error type
Predicted False

flag
Real
error

Manual
check

Absolute
total

False
flag

Real
error

Manual
check

Absolute
total

Pad overhang 61% 1% 38% 110 - 8% 92% 37
Coplanarity 54% - 46% 54 - 64% 36% 33
Solderfillet 57% - 43% 58 - - 100% 8
Polarity 67% - 33% 49 - - - 0
Missing 78% - 22% 9 - - 100% 21

OCROCV 40% - 60% 10 - - - 0
Dimension - - 100% 1 - - 100% 1
Bridging - - - 0 - - 100% 15
Absence - - - 0 - - 100% 2

To further investigate these findings, the individual SHAP values of these points can be used to see which
features were used to predict these cases. Three samples are inspected namely, pad overhang correctly
predicted as false error flag, correctly predicted as real error, and a real error predicted as manual check.
The first two show the difference between a false call prediction and a real error prediction, and the
latter depicts a sample for when the model is not certain enough. These instances as shown in Figure
41 serve as an example for how the model’s predictions can be explained relative to their feature values.
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(a) True False Error Flag

(b) True Real Error

(c) Manual Check - Real Error

Figure 41: SHAP values: feature contributions to sample predictions

A predicted value f(x) close to zero means that the model predicts a real error, and close to one means
a false error flag prediction. If the model is uncertain as in Figure 41c, depicting an uncertain real error
prediction, the manual check class is predicted. The base value is 0.5, and the arrows indicate how
strongly each feature is pushing the prediction in a certain direction. When examining Figure 41a, the
main drivers of the false call prediction are the humidity during the screenprinting process, the fact that
the component package which is checked often occurs as a false call in the entire data set, and the low
snap off speed. Another interesting feature is the small time interval between the previous product and
this product, which also pushes the prediction to the false call class. Figure 41b also shows that the
small time interval pushes the prediction to the false call, but the impact of the features pushing the
prediction to a real error are much stronger. The main driver is that the component package does not
seem to be a package which results in many false calls. For this prediction, contrary to the latter, the
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high (instead of low) snap off speed pushes the prediction to a real error. For the uncertain prediction,
depicted in Figure 41c, the prediction is pushed in both directions without a dominant set of features for
each class. What is interesting to see is that the sample has both a high screenprinting humidity pushing
the prediction to the false call, but also a component package which is associated with real errors. Due
to these contrary features, the model is not certain enough and a manual inspection is required. The
first two samples showed that the small time interval between the samples and previous products pushed
the prediction to the false error flag prediction. The large time interval for the last sample presents
the opposite behaviour, it pushes the prediction to a real error. Combining the local SHAP values with
the plot in Figure 39 creates a complete picture regarding the predictions, which also shows that large
time intervals between products are more likely to be associated with real errors. In general, the figures
provide a intuitive insight in how the model makes predictions. These examples can either be used to
validate the results with domain knowledge, improve the domain knowledge or enhance the model by
detecting potential noisy or missing features.
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8 Conclusion
This research proposed a machine learning model to enhance the automated optical inspection for surface-
mount devices in an electronics manufacturing environment. The model enables reducing the false error
flags by predicting whether machine calls are real errors or false calls. The concluding section of this
thesis summarizes the main findings of the research by answering the research question as proposed in
Section 2.3. Each of the sub questions is extensively answered by the sections in this report. Therefore
this section provides a brief summary of the findings. Summarizing the sub questions will collectively
provide an answer to the main research question:

What (explainable) data-driven model can be developed with process data to reduce the false calls during
the quality inspection, in order to improve line efficiency and decrease operator workload?

After answering the main research question by collectively answering the sub questions, the (business)
recommendations, limitations, and future research are described finally.

8.1 Main Findings
AME uses an automated optical inspection as current practice for the product quality control of the
surface-mount devices. The default inspection tolerances are based on industry wide arrangements. Due
to the high customization at the manufacturer, it is required to fine tune these tolerances, optimizing the
quality control. This tuning is mainly about finding the right balance between error slips and false calls.
However, the vast amount of different components causes it to be infeasible to fine tune all the different
inspection programs. This and other (external) factors result in false calls on approximately 60% of the
products, leading to line inefficiencies and additional operator workload. Literature regarding the topic
endorse the falls call problem in electronics manufacturing. These papers propose (machine learning)
methods to enhance the automated optical inspection, by improving the image recognition algorithm
or reinforcing the automated decision with a prediction based on process data. However, the models
proposed in the literature are limited to the analysis of one product, error type, or solely use the data
of one sub process. This prevents the model to be generalized over multiple products. This research
extends the current literature by using the complete SMD production process data, including sensor
data, machine settings and product characteristics for multiple product types. This enhances the gener-
alizabilty of the model, thus the overall usefulness from a business perspective. Further extending this
business utilization is done by adding explanations of the modeling results in terms of process features,
increasing the potential to capture expert knowledge.

When gathering the data, issues occurred mainly due to missing data or the inability to link different
data sources. Exploring the data showed that the target class was highly imbalanced. It also showed that
troublemakers can be either board locations or components, and that it is not clear at which moment in
a batch the most errors happen. Furthermore, (correlating) process variables required additional feature
engineering. This included extracting reflow process heating zone features, such as the linear coefficient
for the change in temperature and the average and maximum temperatures in the zones. To suppress the
dimensionality increase, the categorical features were target encoded. The product and process features
where then used to develop and test different data-driven models, based on imbalanced machine learning
and anomaly detection. It turned out that for the problem at hand, the imbalanced classification model
performed best. This is probably due to the fact that the data distributions of the different classes did not
differ to such an extend, that the reconstruction errors could be used to detect anomalies. Furthermore,
the imbalanced machine learning classifier was trained in such a way that it had more potential to learn
from the majority class than the anomaly detection method, which could also explain the difference in
performance. Nonetheless, there is potential in using the reconstruction errors of multiple autoencoders
as a feature engineering step in imbalanced problems, as it can capture information from the complete
majority set.

The balanced bagging random forest classifier with an additional uncertainty filter dependent on the
class probability, is the best performing model. Based on the test set, the model is able to reduce
approximately 50% of the manual component checks (approximately 183,000) by predicting whether a
machine call is false or not, without increasing the error slips or redundant repairs. In terms of panels,
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a first simple estimation showed that 52% less panels require a manual check. This saves approximately
30 minutes of manual inspections each day. Implementing the model in the production line improves the
line efficiency (increasing the throughput) and reduces the operator workload (increasing the quality).
Besides the improvements from a production line perspective, the model can also be used to create
additional process understanding relative to the product quality. SHAP values can be used to interpret
the predictions from both a global and local perspective. The former provides an importance for each
feature related to the target variable, and the latter increases the transparency of individual predictions
based on their feature values.

8.2 Business Recommendations
The recommendations resulting from this research are divided into several topics. First, an overview
of the improvements related to the data storage and gathering is given. Then, general implementation
recommendations are provided from a model development, data engineering and software engineering
perspective.

Data is the main driver of a machine learning model and in order to make it work properly the data must
be clean and complete. One of the drawbacks during this research was the fact that the data related
to the different sub processes were stored on different databases, local file directories or even managed
by third parties. In order to successfully develop and implement machine learning engines, the data for
each important sub process should be easily accessible and up to date. It can be helpful to create a new
database dedicated to this task. The database can retrieve the relevant data from other databases or
directly from machines. This avoids problems with data merging and accelerates future machine learning
projects. Using such a database will also prevent the use of complicated log text file scraping techniques.
This scraping step of data collection is unnecessary as it only leads to a duplication of work. When the
machine generates the data, the data is handled by saving it in the log file and storing this file in a
directory. In addition to this handling, it is recommended to subtract the relevant machine learning data
directly from the sub process in the dedicated database. Doing so prevents replicative time consuming
data gathering tasks and potential missing data due to unstructured saving directories. Furthermore,
the dependencies on local files, either from process engineers or third parties such as machine part sup-
pliers is also undesirable. Machine part and product specific information is currently only stored in local
directories and not easily accessible. Adding this general product information to the machine learning
database will be helpful. Furthermore, the above mentioned problems (i.e. storing log files as text and
having data stored in local directories) leads to merging problems (e.g. for the stencil aperture locations
and the board locations) and missingness in the data. Lastly, the component packages database seems
rather outdated, as many nowadays standard component packages are still categorized as non-standard
components due to the technology shift over the years. This decreases the potential information in the
package feature, which is why it is recommended to reassess the package categories of these components.

Implementation of the developed model in the surface-mount device production process is recommended
to increase the line efficiency and reduce the operator workload. The implementation of a machine learn-
ing engine is an important task and should not be underestimated. There are few things that should
be taken into account. To improve the ability to generalize well over the different product types, the
training set should be maximized as much as possible. In the best case, the entire data population is used
to train one or more machine learning models. When the model is developed and trained, the decision
function must be stored on a server which can be used by the software of the AOI. In order to predict
possible machine calls, it is necessary that process data related to the product arriving at the inspection
station is quickly processed so it can be used as model input. A brief example is provided to elaborate on
how the model might be used in the production process. For the example it is assumed that the model
is already trained and stored at the inspection station, ready to predict incoming cases.

When product A enters the SMD process, the product is scanned, creating a data profile for the product
which is temporarily stored on a server. The static features of this data profile are automatically filled
by the machine learning database. During the production of product A, process data is gathered and
added to the data profile at every production step. When the automated optical inspection finds three
error flags, the data profile of product A is read from the server to retrieve the feature values of those
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three components with error flags. This data is used as input for the machine learning model which
provides a prediction per flag. If all three calls are assessed as false, and the model is certain about its
predictions, the operator does not see any of these calls. However, when a manual check is required,
the model shows the operator which component needs a manual check, how certain the model is about
its prediction, and what variables (additional to the standard AOI information) guided the prediction.
Whenever the model predicts that the board requires a repair, the data relevant for that repair is stored,
and a notification is added that the board must go to the repair station. After the predictions, both
the results of the predictions and the product’s data profile are stored in the machine learning database.
This data can then again be used when training new models. Training new models once in a while is
important due to the concept of data shift. Certain trends in the production process may change over
time as new products are added, reducing the performance of the model. Lastly, using the model in
the above described manner minimizes any real-time data handling constraints, as the data size handled
locally is only small and can be computed parallel to the process.

8.3 Limitations & Future Research
Finally, the research is concluded by describing the limitations of this thesis and specifying the directions
for future research.

The conducted research is subject to several limitations. In the first place, the data set which is used
to conduct the research consists of 9 randomly selected product types. Relative to the complete set of
product types which AME produces this is only a small sample. This size reduces the ability to generalize
the solution over all product types of AME. Furthermore, the size of the sample only provides a small
test set which is why the results of the study only are a rough estimation of the performance and business
benefits. Another limitation is the lack of knowledge regarding the current performance estimators of
the business. Not having this information complicates the model’s evaluation in terms of saved costs.
Due to time limitations no extensive real world sampling was possible to create an estimation for these
metrics, resulting in business evaluations which only remain an estimation. Another limitation is the
fact that no sensitivity analysis is conducted for different input data sets (e.g. training the model only
on one product type to see its effectiveness). Possibly, the model performs better when only trained on
one product type. However, using sub sets with this minority sample size will probably not be beneficial
for the general performance. The final limitation regards the lack of analysis conducted regarding the
manufacturing system as a whole. Analyzing the manufacturing system provides insights in the cur-
rent performance of a production line in terms of throughput and utilization. Doing so enables better
estimations of the current production line performance, which improves the evaluation of the potential
benefits when the model is implemented. This research mainly focused on developing the model and less
on how the production line behaves, and what the exact implications of using such model are for the
manufacturing system of AME.

The academical goal of the research was to develop a model able to handle imbalanced high dimensional
manufacturing data, nullifying the number of misclassifications. During the research, several other di-
rections have been found which can further improve the proposed method. First, the proposed idea
of the autoencoder classifier can be further researched and tested on other baseline machine learning
problems. The main assumption regarding this method is that the feature distributions of the target
classes differ significantly, using the combined reconstruction errors of the autoencoders as a feature
engineering method for a supervised learning method. For the problem at hand, the results showed
that there are too many cases in which there is uncertainty due to overlapping process feature values.
However, the ensemble autoencoder classifier potentially performs well in imbalanced environments with
multiple classes, as it is able to learn from the complete majority class sets, losing as little as possible
information. Instead of using the reconstruction error as input, the output of the latent space (the most
inner layer of the network) can also be utilized as input data for a supervised learning method.

Another potential research direction is to add manufacturing system analysis regarding the current line
performance to the evaluation of the model in order to generate a more complete overview of the model’s
performance. Doing so will be crucially for determining how a false call detection model fits in the
surface mount device production line, potentially strengthening the need for real world implementation.
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Currently the model is optimised on reducing the total number of false calls, further research can also be
conducted to optimise the model in a way that it reduces the number of panels which require inspection.
This would need a different approach and data aggregation level. Moreover, the output of the model
in terms of line efficiency improvements can also be used to enhance the planning model as stated in
Section 2.1. If there is more data available to evaluate the model on, a time saving estimation can be
made for each product type in Table 26. These estimations can then be used to improve the input
data of the planning tool in order to get a more reliable outcome, in case the false call detection model
is implemented. Lastly, expert knowledge in combination with the model explanation can be used to
further improve the production line. Not all features which are in the model can be controlled, such
as the component package or the PCB length. However, variables which can be controlled such as the
printing speed or the heating coefficient, can be used to fine tune the process parameters. After validating
the model explanation with domain experts, the controllable features can be optimized respective to the
quality. This process can even be automated with metaheuristics (e.g. simulated annealing), which can
be used for global optimization in a large search space such as a manufacturing environment (Kirkpatrick,
Gelatt, & Vecchi, 1983). By automating the adjustment of process parameters relative to the production
quality, AME can further progress in the paradigm of the fourth industrial revolution.
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A USE CASE IDENTIFICATION FRAMEWORK

Appendix A Use case identification framework

Figure 42: Use case identification matrix for SMD production from a process perspective (Seidel et al., 2019)
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Appendix B Data Concepts

Table 28: Data concepts relevant for the surface-mount device quality

Feature name Description Data level Available

Panel thickness Thickness of the panel in millimeter Product type No

Soldermask finish Material type that does not mix
with tin

Product type No

Pad surface Components are attached on the
copper pads

Product type No

Stencil thickness Thickness (height) in millimeters Product type No

Transfer efficiency Information for each aperture of the
stencil, indicating how easily paste
can make its way through the hole

Product type No

Squeegee width Width of the squeegee (rubber blade
to apply paste) in millimeters

Product type No

Print speed Squeegee speed in millimeters per
second (screenprinting)

Batch Yes

Print force Squeegee force on the stencil in kilo-
grams (screenprinting)

Batch Yes

Number of strokes Amount of times the squeegee moves
over the stencil (screenprinting)

Batch No

Snap off distance Separation distance in millimeters
after paste application between the
printed circuit board and the stencil
(screenprinting)

Batch Yes

Snap off speed Separation speed in meters per sec-
ond after paste application between
the printed circuit board and the
stencil (screenprinting)

Batch Yes

Stencil cleaning interval Amount of products after which the
stencil is cleaned during production
(screenprinting)

Batch No

Paste type Type of paste used for the attach-
ment of components (screenprint-
ing)

Batch Yes

Gluing Binary feature whether the board
requires gluing in addition to the
paste (screenprinting)

Batch No

Placement speed How fast the components are placed
from the supply form on the board
(pick & place)

Batch No
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Pick up method How components are picked up from
the supply form, either with a vac-
uum grip or mechanical grip (pick &
place)

Batch No

Component rotation Whether the placed component re-
quires additional rotation when
placed on the board (pick & place)

Batch No

Bottom support Force applied to the bottom of the
board when placing the components
(pick & place)

Batch No

Zone temperature settings Settings for the temperature in de-
grees Celcius for each of the heating
and cooling zones (reflow)

Batch Yes

Conveyor speed Speed of the board when moving
through the reflow heating zones
(reflow)

Batch Yes

Position in batch Index indicating whether the prod-
uct was the i-th product in a batch

Serial number Yes

Time interval since last product The time interval in seconds be-
tween the given product and the
product produced before

Serial number Yes

Printing temperature Temperature in the printing ma-
chine in degrees Celcius

Serial number Yes

Printing humidity Humidity of the air in the printing
machine in degrees Celcius

Serial number Yes

Board calibration Information how well the board is
aligned relative to the Fuji machine
(pick & place)

Serial number No

Measured zone temperature Temperatures in degrees Celcius for
the zones may differ from the set
temperatures

Serial number Yes

Component package Industry wide component category
defining the shape, number of leads
and type

Component Yes

Moisture sensitivity level Indicates whether a component is
sensitive to moisture and requires
special handling

Component Yes

Component supply form How the component is supplied to
the machine as this can influence the
picking stability

Component Yes

Placement errors Placement errors occurred during
production for a component type on
a specific panel

Component Yes
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Paste inspection features API features measured for each lo-
cation on a panel, providing infor-
mation related to the paste quality

RefDes Yes

Quality assessment AOI call related to component
placement for each board location
on a panel

RefDes Yes

Error type Error types are provided for insuffi-
cient board locations

RefDes Yes

Operator review Manual check of the operator related
to insufficient component place-
ments as assessed by the AOI

RefDes Yes
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Appendix C Exploratory Data Analysis
C.1 Descriptive statistics

Table 29: False call percentages per product type

PN Panels with false call Total panels Percentage with false call

6023-1600-0605 534 899 59.4%

6047-1800-9204 2453 2799 87.6%

6298-1300-3904 51 281 18.1%

6649-1000-2226 1049 4050 25.9%

6661-1900-0501 586 849 69%

6736-1504-2007 1521 1978 76.9%

6736-1602-9407 1224 2331 52.5%

6761-1200-5901 614 674 91.1%

6782-1700-1809 886 1392 63.6%
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C.2 Error flags over time within a batch

(a) Example 1

(b) Example 2

Figure 43: Error calls over time in example batches
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C.3 Process variables distributions per target category
C.3.1 Screenprinting: machine environment

Figure 44: Screenprinting machine temperature

Figure 45: Screenprinting machine humidity
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C.3.2 Screenprinting: paste features

Figure 46: Screenprinting area (%)

Figure 47: Screenprinting volume (%)
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Figure 48: Screenprinting height (um)

Figure 49: Screenprinting offset X
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Figure 50: Screenprinting offset Y

C.3.3 Screenprinting: process parameters

Figure 51: Screenprinting print force
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Figure 52: Screenprinting print speed

Figure 53: Screenprinting snap off distance
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Figure 54: Screenprinting snap off speed

C.3.4 Pick & place: components on panel

Figure 55: Pick and place total components
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Figure 56: Pick and place total attempts

C.3.5 Pick & place: error messages per component type

Figure 57: Pick and place no pick up error
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Figure 58: Pick and place vision error

Figure 59: Pick and place pick up error
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C.3.6 Reflow

Figure 60: Reflow heating zone 1

Figure 61: Reflow cooling zone 1
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Figure 62: Reflow conveyor speed

Figure 63: Reflow process time
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C.3.7 Component characteristics

Figure 64: Component supply form

Figure 65: Component moisture sensitivity
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Appendix D Modeling

Figure 66: Conceptual representation of hybrid machine learning model
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