831 research outputs found

    Extending Hardware Transactional Memory Capacity via Rollback-Only Transactions and Suspend/Resume

    Get PDF
    Transactional memory (TM) aims at simplifying concurrent programming via the familiar abstraction of atomic transactions. Recently, Intel and IBM have integrated hardware based TM (HTM) implementations in commodity processors, paving the way for the mainstream adoption of the TM paradigm. Yet, existing HTM implementations suffer from a crucial limitation, which hampers the adoption of HTM as a general technique for regulating concurrent access to shared memory: the inability to execute transactions whose working sets exceed the capacity of CPU caches. In this paper we propose P8TM, a novel approach that mitigates this limitation on IBM\u27s POWER8 architecture by leveraging a key combination of techniques: uninstrumented read-only transactions, Rollback Only Transaction-based update transactions, HTM-friendly (software-based) read-set tracking, and self-tuning. P8TM can dynamically switch between different execution modes to best adapt to the nature of the transactions and the experienced abort patterns. In-depth evaluation with several benchmarks indicates that P8TM can achieve striking performance gains in workloads that stress the capacity limitations of HTM, while achieving performance on par with HTM even in unfavourable workloads

    Stretching the capacity of Hardware Transactional Memory in IBM POWER architectures

    Full text link
    The hardware transactional memory (HTM) implementations in commercially available processors are significantly hindered by their tight capacity constraints. In practice, this renders current HTMs unsuitable to many real-world workloads of in-memory databases. This paper proposes SI-HTM, which stretches the capacity bounds of the underlying HTM, thus opening HTM to a much broader class of applications. SI-HTM leverages the HTM implementation of the IBM POWER architecture with a software layer to offer a single-version implementation of Snapshot Isolation. When compared to HTM- and software-based concurrency control alternatives, SI-HTM exhibits improved scalability, achieving speedups of up to 300% relatively to HTM on in-memory database benchmarks

    OASIS - Identifying the Core Attributes for RDBMS Alternatives

    Get PDF
    Since their introduction in the 1970s, relational database management systems have served as the dominate data storage technology. However, the demands of big data and Web 2.0 necessitated a change in the market, sparking the beginning of the NoSQL movement in the late 2000s. NoSQL databases exchanged the relational model and the guaranteed consistency of ACID transactions for improved performance and massive scalability [1]. While the benefits NoSQL provided proved useful, the lack of sufficient SQL functionality presented a major hurdle for organizations which require it to properly operate. It was clear that new RDBMS solutions which did not compromise functionality or scalability were necessary, which has led to the rise of a new class of modern relational database management systems, NewSQL [2]. This paper seeks to identify a consistent set of requirements necessary for an ideal RDBMS substitute. Among these requirements include possessing the features of a modern RDBMS, which includes support of the relational data model and standard ANSI SQL, ACID transactions, and ODBC/JDBC drivers. Additionally, the substitute must address typical RDBMS’ shortcomings in scalability by providing cost-effective scale-out capabilities. These requirements will then be used to filter out existing NoSQL and NewSQL database systems which could serve as viable substitutes to a typical RDBMS

    Applying HTM to an OLTP System: No Free Lunch

    Get PDF
    Transactional memory is a promising way for implementing efficient synchronization mechanisms for multicore processors. Intel's introduction of hardware transactional memory (HTM) into their Haswell line of processors marks an important step toward mainstream availability of transactional memory. Transaction processing systems require execution of dozens of critical sections to insure isolation among threads, which makes them one of the target applications for exploiting HTM. In this study, we quantify the opportunities and limitations of directly applying HTM to an existing OLTP system that uses fine-grained synchronization. Our target is Shore-MT, a modern multithreaded transactional storage manager that uses a variety of fine-grained synchronization mechanisms to provide scalability on multicore processors. We find that HTM can improve performance of the TATP workload by 13-17% when applied judiciously. However, attempting to replace all synchronization reduces performance compared to the baseline case due to high percentage of aborts caused by the limitations of the current HTM implementation. Copyright 2015 ACM

    Hybrid STM/HTM for nested transactions in Java

    Get PDF
    Transactional memory (TM) has long been advocated as a promising pathway to more automated concurrency control for scaling concurrent programs running on parallel hardware. Software TM (STM) has the benefit of being able to run general transactional programs, but at the significant cost of overheads imposed to log memory accesses, mediate access conflicts, and maintain other transaction metadata. Recently, hardware manufacturers have begun to offer commodity hardware TM (HTM) support in their processors wherein the transaction metadata is maintained “for free” in hardware. However, HTM approaches are only best-effort: they cannot successfully run all transactional programs, whether because of hardware capacity issues (causing large transactions to fail), or compatibility restrictions on the processor instructions permitted within hardware transactions (causing transactions that execute those instructions to fail). In such cases, programs must include failure-handling code to attempt the computation by some other software means, since retrying the transaction would be futile. This dissertation describes the design and prototype implementation of a dialect of Java, XJ, that supports closed, open nested and boosted transactions. The design of XJ, allows natural expression of layered abstractions for concurrent data structures, while promoting improved concurrency for operations on those abstractions. We also describe how software and hardware schemes can combine seamlessly into a hybrid system in support of transactional programs, allowing use of low-cost HTM when it works, but reverting to STM when it doesn’t. We describe heuristics used to make this choice dynamically and automatically, but allowing the transition back to HTM opportunistically. Both schemes are compatible to allow different threads to run concurrently with either mechanism, while preserving transaction safety. Using a standard synthetic benchmark we demonstrate that HTM offers significant acceleration of both closed and open nested transactions, while yielding parallel scaling up to the limits of the hardware, whereupon scaling in software continues but with the penalty to throughput imposed by software mechanisms

    An evaluation of Intel’s Restricted Transactional Memory for CPAs,

    Get PDF
    Abstract. With the release of their latest processor microarchitecture, codenamed Haswell, Intel added new Transactional Synchronization Extensions (TSX) to their processors' instruction set. These extensions include support for Restricted Transactional Memory (RTM), a programming model in which arbitrary sized units of memory can be read and written in an atomic manner. This paper describes the low-level RTM programming model, benchmarks the performance of its instructions and speculates on how it may be used to implement and enhance Communicating Process Architectures

    Análise de malware com suporte de hardware

    Get PDF
    Orientadores: Paulo Lício de Geus, André Ricardo Abed GrégioDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O mundo atual é impulsionado pelo uso de sistemas computacionais, estando estes pre- sentes em todos aspectos da vida cotidiana. Portanto, o correto funcionamento destes é essencial para se assegurar a manutenção das possibilidades trazidas pelos desenvolvi- mentos tecnológicos. Contudo, garantir o correto funcionamento destes não é uma tarefa fácil, dado que indivíduos mal-intencionados tentam constantemente subvertê-los visando benefíciar a si próprios ou a terceiros. Os tipos mais comuns de subversão são os ataques por códigos maliciosos (malware), capazes de dar a um atacante controle total sobre uma máquina. O combate à ameaça trazida por malware baseia-se na análise dos artefatos coletados de forma a permitir resposta aos incidentes ocorridos e o desenvolvimento de contramedidas futuras. No entanto, atacantes têm se especializado em burlar sistemas de análise e assim manter suas operações ativas. Para este propósito, faz-se uso de uma série de técnicas denominadas de "anti-análise", capazes de impedir a inspeção direta dos códigos maliciosos. Dentre essas técnicas, destaca-se a evasão do processo de análise, na qual são empregadas exemplares capazes de detectar a presença de um sistema de análise para então esconder seu comportamento malicioso. Exemplares evasivos têm sido cada vez mais utilizados em ataques e seu impacto sobre a segurança de sistemas é considerá- vel, dado que análises antes feitas de forma automática passaram a exigir a supervisão de analistas humanos em busca de sinais de evasão, aumentando assim o custo de se manter um sistema protegido. As formas mais comuns de detecção de um ambiente de análise se dão através da detecção de: (i) código injetado, usado pelo analista para inspecionar a aplicação; (ii) máquinas virtuais, usadas em ambientes de análise por questões de escala; (iii) efeitos colaterais de execução, geralmente causados por emuladores, também usados por analistas. Para lidar com malware evasivo, analistas tem se valido de técnicas ditas transparentes, isto é, que não requerem injeção de código nem causam efeitos colaterais de execução. Um modo de se obter transparência em um processo de análise é contar com suporte do hardware. Desta forma, este trabalho versa sobre a aplicação do suporte de hardware para fins de análise de ameaças evasivas. No decorrer deste texto, apresenta-se uma avaliação das tecnologias existentes de suporte de hardware, dentre as quais máqui- nas virtuais de hardware, suporte de BIOS e monitores de performance. A avaliação crítica de tais tecnologias oferece uma base de comparação entre diferentes casos de uso. Além disso, são enumeradas lacunas de desenvolvimento existentes atualmente. Mais que isso, uma destas lacunas é preenchida neste trabalho pela proposição da expansão do uso dos monitores de performance para fins de monitoração de malware. Mais especificamente, é proposto o uso do monitor BTS para fins de construção de um tracer e um debugger. O framework proposto e desenvolvido neste trabalho é capaz, ainda, de lidar com ataques do tipo ROP, um dos mais utilizados atualmente para exploração de vulnerabilidades. A avaliação da solução demonstra que não há a introdução de efeitos colaterais, o que per- mite análises de forma transparente. Beneficiando-se desta característica, demonstramos a análise de aplicações protegidas e a identificação de técnicas de evasãoAbstract: Today¿s world is driven by the usage of computer systems, which are present in all aspects of everyday life. Therefore, the correct working of these systems is essential to ensure the maintenance of the possibilities brought about by technological developments. However, ensuring the correct working of such systems is not an easy task, as many people attempt to subvert systems working for their own benefit. The most common kind of subversion against computer systems are malware attacks, which can make an attacker to gain com- plete machine control. The fight against this kind of threat is based on analysis procedures of the collected malicious artifacts, allowing the incident response and the development of future countermeasures. However, attackers have specialized in circumventing analysis systems and thus keeping their operations active. For this purpose, they employ a series of techniques called anti-analysis, able to prevent the inspection of their malicious codes. Among these techniques, I highlight the analysis procedure evasion, that is, the usage of samples able to detect the presence of an analysis solution and then hide their malicious behavior. Evasive examples have become popular, and their impact on systems security is considerable, since automatic analysis now requires human supervision in order to find evasion signs, which significantly raises the cost of maintaining a protected system. The most common ways for detecting an analysis environment are: i) Injected code detec- tion, since injection is used by analysts to inspect applications on their way; ii) Virtual machine detection, since they are used in analysis environments due to scalability issues; iii) Execution side effects detection, usually caused by emulators, also used by analysts. To handle evasive malware, analysts have relied on the so-called transparent techniques, that is, those which do not require code injection nor cause execution side effects. A way to achieve transparency in an analysis process is to rely on hardware support. In this way, this work covers the application of the hardware support for the evasive threats analysis purpose. In the course of this text, I present an assessment of existing hardware support technologies, including hardware virtual machines, BIOS support, performance monitors and PCI cards. My critical evaluation of such technologies provides basis for comparing different usage cases. In addition, I pinpoint development gaps that currently exists. More than that, I fill one of these gaps by proposing to expand the usage of performance monitors for malware monitoring purposes. More specifically, I propose the usage of the BTS monitor for the purpose of developing a tracer and a debugger. The proposed framework is also able of dealing with ROP attacks, one of the most common used technique for remote vulnerability exploitation. The framework evaluation shows no side-effect is introduced, thus allowing transparent analysis. Making use of this capability, I demonstrate how protected applications can be inspected and how evasion techniques can be identifiedMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE

    An Analytical Model of Hardware Transactional Memory

    Get PDF
    This paper investigates the problem of deriving a white box performance model of Hardware Transactional Memory (HTM) systems. The proposed model targets TSX, a popular implementation of HTM integrated in Intel processors starting with the Haswell family in 2013. An inherent difficulty with building white-box models of commercially available HTM systems is that their internals are either vaguely documented or undisclosed by their manufacturers. We tackle this challenge by designing a set of experiments that allow us to shed lights on the internal mechanisms used in TSX to manage conflicts among transactions and to track their readsets and writesets. We exploit the information inferred from this experimental study to build an analytical model of TSX focused on capturing the impact on performance of two key mechanisms: the concurrency control scheme and the management of transactional meta-data in the processor's caches. We validate the proposed model by means of an extensive experimental study encompassing a broad range of workloads executed on a real system
    corecore